1 /*
   2  * Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "jfr/jfrEvents.hpp"
  28 #include "jfr/support/jfrThreadId.hpp"
  29 #include "logging/log.hpp"
  30 #include "logging/logStream.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "oops/markWord.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "runtime/atomic.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/interfaceSupport.inline.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "runtime/objectMonitor.hpp"
  40 #include "runtime/objectMonitor.inline.hpp"
  41 #include "runtime/orderAccess.hpp"
  42 #include "runtime/osThread.hpp"
  43 #include "runtime/safepointMechanism.inline.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/stubRoutines.hpp"
  46 #include "runtime/thread.inline.hpp"
  47 #include "services/threadService.hpp"
  48 #include "utilities/dtrace.hpp"
  49 #include "utilities/macros.hpp"
  50 #include "utilities/preserveException.hpp"
  51 #if INCLUDE_JFR
  52 #include "jfr/support/jfrFlush.hpp"
  53 #endif
  54 
  55 #ifdef DTRACE_ENABLED
  56 
  57 // Only bother with this argument setup if dtrace is available
  58 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  59 
  60 
  61 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  62   char* bytes = NULL;                                                      \
  63   int len = 0;                                                             \
  64   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  65   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  66   if (klassname != NULL) {                                                 \
  67     bytes = (char*)klassname->bytes();                                     \
  68     len = klassname->utf8_length();                                        \
  69   }
  70 
  71 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  72   {                                                                        \
  73     if (DTraceMonitorProbes) {                                             \
  74       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  75       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  76                            (monitor), bytes, len, (millis));               \
  77     }                                                                      \
  78   }
  79 
  80 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  81 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  82 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  83 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  84 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  85 
  86 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  87   {                                                                        \
  88     if (DTraceMonitorProbes) {                                             \
  89       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  90       HOTSPOT_MONITOR_##probe(jtid,                                        \
  91                               (uintptr_t)(monitor), bytes, len);           \
  92     }                                                                      \
  93   }
  94 
  95 #else //  ndef DTRACE_ENABLED
  96 
  97 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  98 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
  99 
 100 #endif // ndef DTRACE_ENABLED
 101 
 102 // Tunables ...
 103 // The knob* variables are effectively final.  Once set they should
 104 // never be modified hence.  Consider using __read_mostly with GCC.
 105 
 106 int ObjectMonitor::Knob_SpinLimit    = 5000;    // derived by an external tool -
 107 
 108 static int Knob_Bonus               = 100;     // spin success bonus
 109 static int Knob_BonusB              = 100;     // spin success bonus
 110 static int Knob_Penalty             = 200;     // spin failure penalty
 111 static int Knob_Poverty             = 1000;
 112 static int Knob_FixedSpin           = 0;
 113 static int Knob_PreSpin             = 10;      // 20-100 likely better
 114 
 115 DEBUG_ONLY(static volatile bool InitDone = false;)
 116 
 117 // -----------------------------------------------------------------------------
 118 // Theory of operations -- Monitors lists, thread residency, etc:
 119 //
 120 // * A thread acquires ownership of a monitor by successfully
 121 //   CAS()ing the _owner field from null to non-null.
 122 //
 123 // * Invariant: A thread appears on at most one monitor list --
 124 //   cxq, EntryList or WaitSet -- at any one time.
 125 //
 126 // * Contending threads "push" themselves onto the cxq with CAS
 127 //   and then spin/park.
 128 //
 129 // * After a contending thread eventually acquires the lock it must
 130 //   dequeue itself from either the EntryList or the cxq.
 131 //
 132 // * The exiting thread identifies and unparks an "heir presumptive"
 133 //   tentative successor thread on the EntryList.  Critically, the
 134 //   exiting thread doesn't unlink the successor thread from the EntryList.
 135 //   After having been unparked, the wakee will recontend for ownership of
 136 //   the monitor.   The successor (wakee) will either acquire the lock or
 137 //   re-park itself.
 138 //
 139 //   Succession is provided for by a policy of competitive handoff.
 140 //   The exiting thread does _not_ grant or pass ownership to the
 141 //   successor thread.  (This is also referred to as "handoff" succession").
 142 //   Instead the exiting thread releases ownership and possibly wakes
 143 //   a successor, so the successor can (re)compete for ownership of the lock.
 144 //   If the EntryList is empty but the cxq is populated the exiting
 145 //   thread will drain the cxq into the EntryList.  It does so by
 146 //   by detaching the cxq (installing null with CAS) and folding
 147 //   the threads from the cxq into the EntryList.  The EntryList is
 148 //   doubly linked, while the cxq is singly linked because of the
 149 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 150 //
 151 // * Concurrency invariants:
 152 //
 153 //   -- only the monitor owner may access or mutate the EntryList.
 154 //      The mutex property of the monitor itself protects the EntryList
 155 //      from concurrent interference.
 156 //   -- Only the monitor owner may detach the cxq.
 157 //
 158 // * The monitor entry list operations avoid locks, but strictly speaking
 159 //   they're not lock-free.  Enter is lock-free, exit is not.
 160 //   For a description of 'Methods and apparatus providing non-blocking access
 161 //   to a resource,' see U.S. Pat. No. 7844973.
 162 //
 163 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 164 //   detaching thread.  This mechanism is immune from the ABA corruption.
 165 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 166 //
 167 // * Taken together, the cxq and the EntryList constitute or form a
 168 //   single logical queue of threads stalled trying to acquire the lock.
 169 //   We use two distinct lists to improve the odds of a constant-time
 170 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 171 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 172 //   A key desideratum is to minimize queue & monitor metadata manipulation
 173 //   that occurs while holding the monitor lock -- that is, we want to
 174 //   minimize monitor lock holds times.  Note that even a small amount of
 175 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 176 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 177 //   locks and monitor metadata.
 178 //
 179 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 180 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 181 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 182 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 183 //
 184 //   The EntryList is ordered by the prevailing queue discipline and
 185 //   can be organized in any convenient fashion, such as a doubly-linked list or
 186 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 187 //   to operate in constant-time.  If we need a priority queue then something akin
 188 //   to Solaris' sleepq would work nicely.  Viz.,
 189 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 190 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 191 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 192 //   EntryList accordingly.
 193 //
 194 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 195 //   somewhat similar to an elevator-scan.
 196 //
 197 // * The monitor synchronization subsystem avoids the use of native
 198 //   synchronization primitives except for the narrow platform-specific
 199 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 200 //   the semantics of park-unpark.  Put another way, this monitor implementation
 201 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 202 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 203 //   underlying OS manages the READY<->RUN transitions.
 204 //
 205 // * Waiting threads reside on the WaitSet list -- wait() puts
 206 //   the caller onto the WaitSet.
 207 //
 208 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 209 //   either the EntryList or cxq.  Subsequent exit() operations will
 210 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 211 //   it's likely the notifyee would simply impale itself on the lock held
 212 //   by the notifier.
 213 //
 214 // * An interesting alternative is to encode cxq as (List,LockByte) where
 215 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 216 //   variable, like _recursions, in the scheme.  The threads or Events that form
 217 //   the list would have to be aligned in 256-byte addresses.  A thread would
 218 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 219 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 220 //   Note that is is *not* word-tearing, but it does presume that full-word
 221 //   CAS operations are coherent with intermix with STB operations.  That's true
 222 //   on most common processors.
 223 //
 224 // * See also http://blogs.sun.com/dave
 225 
 226 
 227 void* ObjectMonitor::operator new (size_t size) throw() {
 228   return AllocateHeap(size, mtInternal);
 229 }
 230 void* ObjectMonitor::operator new[] (size_t size) throw() {
 231   return operator new (size);
 232 }
 233 void ObjectMonitor::operator delete(void* p) {
 234   FreeHeap(p);
 235 }
 236 void ObjectMonitor::operator delete[] (void *p) {
 237   operator delete(p);
 238 }
 239 
 240 // -----------------------------------------------------------------------------
 241 // Enter support
 242 
 243 void ObjectMonitor::enter(TRAPS) {
 244   jint l_ref_count = ref_count();
 245   ADIM_guarantee(l_ref_count > 0, "must be positive: l_ref_count=%d, ref_count=%d", l_ref_count, ref_count());
 246 
 247   // The following code is ordered to check the most common cases first
 248   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 249   Thread * const Self = THREAD;
 250 
 251   void* cur = try_set_owner_from(NULL, Self);
 252   if (cur == NULL) {
 253     assert(_recursions == 0, "invariant");
 254     return;
 255   }
 256 
 257   if (cur == Self) {
 258     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 259     _recursions++;
 260     return;
 261   }
 262 
 263   if (Self->is_lock_owned((address)cur)) {
 264     assert(_recursions == 0, "internal state error");
 265     _recursions = 1;
 266     set_owner_from_BasicLock(cur, Self);  // Convert from BasicLock* to Thread*.
 267     return;
 268   }
 269 
 270   if (AsyncDeflateIdleMonitors &&
 271       try_set_owner_from(DEFLATER_MARKER, Self) == DEFLATER_MARKER) {
 272     // The deflation protocol finished the first part (setting owner),
 273     // but it failed the second part (making ref_count negative) and
 274     // bailed. Acquired the monitor.
 275     assert(_recursions == 0, "invariant");
 276     return;
 277   }
 278 
 279   // We've encountered genuine contention.
 280   assert(Self->_Stalled == 0, "invariant");
 281   Self->_Stalled = intptr_t(this);
 282 
 283   // Try one round of spinning *before* enqueueing Self
 284   // and before going through the awkward and expensive state
 285   // transitions.  The following spin is strictly optional ...
 286   // Note that if we acquire the monitor from an initial spin
 287   // we forgo posting JVMTI events and firing DTRACE probes.
 288   if (TrySpin(Self) > 0) {
 289     assert(_owner == Self, "must be Self: owner=" INTPTR_FORMAT, p2i(_owner));
 290     assert(_recursions == 0, "must be 0: recursions=" INTX_FORMAT, _recursions);
 291     assert(((oop)object())->mark() == markWord::encode(this),
 292            "object mark must match encoded this: mark=" INTPTR_FORMAT
 293            ", encoded this=" INTPTR_FORMAT, ((oop)object())->mark().value(),
 294            markWord::encode(this).value());
 295     Self->_Stalled = 0;
 296     return;
 297   }
 298 
 299   assert(_owner != Self, "invariant");
 300   assert(_succ != Self, "invariant");
 301   assert(Self->is_Java_thread(), "invariant");
 302   JavaThread * jt = (JavaThread *) Self;
 303   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 304   assert(jt->thread_state() != _thread_blocked, "invariant");
 305   assert(this->object() != NULL, "invariant");
 306   assert(_contentions >= 0, "must not be negative: contentions=%d", _contentions);
 307 
 308   // Keep track of contention for JVM/TI and M&M queries.
 309   Atomic::inc(&_contentions);
 310 
 311   JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(jt);)
 312   EventJavaMonitorEnter event;
 313   if (event.should_commit()) {
 314     event.set_monitorClass(((oop)this->object())->klass());
 315     event.set_address((uintptr_t)(this->object_addr()));
 316   }
 317 
 318   { // Change java thread status to indicate blocked on monitor enter.
 319     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 320 
 321     Self->set_current_pending_monitor(this);
 322 
 323     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 324     if (JvmtiExport::should_post_monitor_contended_enter()) {
 325       JvmtiExport::post_monitor_contended_enter(jt, this);
 326 
 327       // The current thread does not yet own the monitor and does not
 328       // yet appear on any queues that would get it made the successor.
 329       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 330       // handler cannot accidentally consume an unpark() meant for the
 331       // ParkEvent associated with this ObjectMonitor.
 332     }
 333 
 334     OSThreadContendState osts(Self->osthread());
 335     ThreadBlockInVM tbivm(jt);
 336 
 337     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 338     for (;;) {
 339       jt->set_suspend_equivalent();
 340       // cleared by handle_special_suspend_equivalent_condition()
 341       // or java_suspend_self()
 342 
 343       EnterI(THREAD);
 344 
 345       if (!ExitSuspendEquivalent(jt)) break;
 346 
 347       // We have acquired the contended monitor, but while we were
 348       // waiting another thread suspended us. We don't want to enter
 349       // the monitor while suspended because that would surprise the
 350       // thread that suspended us.
 351       //
 352       _recursions = 0;
 353       _succ = NULL;
 354       exit(false, Self);
 355 
 356       jt->java_suspend_self();
 357     }
 358     Self->set_current_pending_monitor(NULL);
 359 
 360     // We cleared the pending monitor info since we've just gotten past
 361     // the enter-check-for-suspend dance and we now own the monitor free
 362     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 363     // destructor can go to a safepoint at the end of this block. If we
 364     // do a thread dump during that safepoint, then this thread will show
 365     // as having "-locked" the monitor, but the OS and java.lang.Thread
 366     // states will still report that the thread is blocked trying to
 367     // acquire it.
 368   }
 369 
 370   Atomic::dec(&_contentions);
 371   assert(_contentions >= 0, "must not be negative: contentions=%d", _contentions);
 372   Self->_Stalled = 0;
 373 
 374   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 375   assert(_recursions == 0, "invariant");
 376   assert(_owner == Self, "invariant");
 377   assert(_succ != Self, "invariant");
 378   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
 379 
 380   // The thread -- now the owner -- is back in vm mode.
 381   // Report the glorious news via TI,DTrace and jvmstat.
 382   // The probe effect is non-trivial.  All the reportage occurs
 383   // while we hold the monitor, increasing the length of the critical
 384   // section.  Amdahl's parallel speedup law comes vividly into play.
 385   //
 386   // Another option might be to aggregate the events (thread local or
 387   // per-monitor aggregation) and defer reporting until a more opportune
 388   // time -- such as next time some thread encounters contention but has
 389   // yet to acquire the lock.  While spinning that thread could
 390   // spinning we could increment JVMStat counters, etc.
 391 
 392   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 393   if (JvmtiExport::should_post_monitor_contended_entered()) {
 394     JvmtiExport::post_monitor_contended_entered(jt, this);
 395 
 396     // The current thread already owns the monitor and is not going to
 397     // call park() for the remainder of the monitor enter protocol. So
 398     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 399     // event handler consumed an unpark() issued by the thread that
 400     // just exited the monitor.
 401   }
 402   if (event.should_commit()) {
 403     event.set_previousOwner((uintptr_t)_previous_owner_tid);
 404     event.commit();
 405   }
 406   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 407 }
 408 
 409 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 410 // Callers must compensate as needed.
 411 
 412 int ObjectMonitor::TryLock(Thread * Self) {
 413   void * own = _owner;
 414   if (own != NULL) return 0;
 415   if (try_set_owner_from(NULL, Self) == NULL) {
 416     assert(_recursions == 0, "invariant");
 417     return 1;
 418   }
 419   // The lock had been free momentarily, but we lost the race to the lock.
 420   // Interference -- the CAS failed.
 421   // We can either return -1 or retry.
 422   // Retry doesn't make as much sense because the lock was just acquired.
 423   return -1;
 424 }
 425 
 426 // Install the displaced mark word (dmw) of a deflating ObjectMonitor
 427 // into the header of the object associated with the monitor. This
 428 // idempotent method is called by a thread that is deflating a
 429 // monitor and by other threads that have detected a race with the
 430 // deflation process.
 431 void ObjectMonitor::install_displaced_markword_in_object(const oop obj) {
 432   // This function must only be called when (owner == DEFLATER_MARKER
 433   // && ref_count <= 0), but we can't guarantee that here because
 434   // those values could change when the ObjectMonitor gets moved from
 435   // the global free list to a per-thread free list.
 436 
 437   guarantee(obj != NULL, "must be non-NULL");
 438   if (object() != obj) {
 439     // ObjectMonitor's object ref no longer refers to the target object
 440     // so the object's header has already been restored.
 441     return;
 442   }
 443 
 444   markWord dmw = header();
 445   if (dmw.value() == 0) {
 446     // ObjectMonitor's header/dmw has been cleared so the ObjectMonitor
 447     // has been deflated and taken off the global free list.
 448     return;
 449   }
 450 
 451   // A non-NULL dmw has to be neutral (not locked and not marked).
 452   ADIM_guarantee(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value());
 453 
 454   // Install displaced mark word if the object's header still points
 455   // to this ObjectMonitor. All racing callers to this function will
 456   // reach this point, but only one can win.
 457   markWord res = obj->cas_set_mark(dmw, markWord::encode(this));
 458   if (res != markWord::encode(this)) {
 459     // This should be rare so log at the Info level when it happens.
 460     log_info(monitorinflation)("install_displaced_markword_in_object: "
 461                                "failed cas_set_mark: new_mark=" INTPTR_FORMAT
 462                                ", old_mark=" INTPTR_FORMAT ", res=" INTPTR_FORMAT,
 463                                dmw.value(), markWord::encode(this).value(),
 464                                res.value());
 465   }
 466 
 467   // Note: It does not matter which thread restored the header/dmw
 468   // into the object's header. The thread deflating the monitor just
 469   // wanted the object's header restored and it is. The threads that
 470   // detected a race with the deflation process also wanted the
 471   // object's header restored before they retry their operation and
 472   // because it is restored they will only retry once.
 473 }
 474 
 475 // Convert the fields used by is_busy() to a string that can be
 476 // used for diagnostic output.
 477 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) {
 478   ss->print("is_busy: contentions=%d, waiters=%d, ", _contentions, _waiters);
 479   if (!AsyncDeflateIdleMonitors) {
 480     ss->print("owner=" INTPTR_FORMAT, p2i(_owner));
 481   } else if (_owner != DEFLATER_MARKER) {
 482     ss->print("owner=" INTPTR_FORMAT, p2i(_owner));
 483   } else {
 484     // We report NULL instead of DEFLATER_MARKER here because is_busy()
 485     // ignores DEFLATER_MARKER values.
 486     ss->print("owner=" INTPTR_FORMAT, NULL);
 487   }
 488   ss->print(", cxq=" INTPTR_FORMAT ", EntryList=" INTPTR_FORMAT, p2i(_cxq),
 489             p2i(_EntryList));
 490   return ss->base();
 491 }
 492 
 493 #define MAX_RECHECK_INTERVAL 1000
 494 
 495 void ObjectMonitor::EnterI(TRAPS) {
 496   jint l_ref_count = ref_count();
 497   ADIM_guarantee(l_ref_count > 0, "must be positive: l_ref_count=%d, ref_count=%d", l_ref_count, ref_count());
 498 
 499   Thread * const Self = THREAD;
 500   assert(Self->is_Java_thread(), "invariant");
 501   assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant");
 502 
 503   // Try the lock - TATAS
 504   if (TryLock (Self) > 0) {
 505     assert(_succ != Self, "invariant");
 506     assert(_owner == Self, "invariant");
 507     assert(_Responsible != Self, "invariant");
 508     return;
 509   }
 510 
 511   if (AsyncDeflateIdleMonitors &&
 512       try_set_owner_from(DEFLATER_MARKER, Self) == DEFLATER_MARKER) {
 513     // The deflation protocol finished the first part (setting owner),
 514     // but it failed the second part (making ref_count negative) and
 515     // bailed. Acquired the monitor.
 516     assert(_succ != Self, "invariant");
 517     assert(_Responsible != Self, "invariant");
 518     return;
 519   }
 520 
 521   assert(InitDone, "Unexpectedly not initialized");
 522 
 523   // We try one round of spinning *before* enqueueing Self.
 524   //
 525   // If the _owner is ready but OFFPROC we could use a YieldTo()
 526   // operation to donate the remainder of this thread's quantum
 527   // to the owner.  This has subtle but beneficial affinity
 528   // effects.
 529 
 530   if (TrySpin(Self) > 0) {
 531     assert(_owner == Self, "invariant");
 532     assert(_succ != Self, "invariant");
 533     assert(_Responsible != Self, "invariant");
 534     return;
 535   }
 536 
 537   // The Spin failed -- Enqueue and park the thread ...
 538   assert(_succ != Self, "invariant");
 539   assert(_owner != Self, "invariant");
 540   assert(_Responsible != Self, "invariant");
 541 
 542   // Enqueue "Self" on ObjectMonitor's _cxq.
 543   //
 544   // Node acts as a proxy for Self.
 545   // As an aside, if were to ever rewrite the synchronization code mostly
 546   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 547   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 548   // as well as eliminate a subset of ABA issues.
 549   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 550 
 551   ObjectWaiter node(Self);
 552   Self->_ParkEvent->reset();
 553   node._prev   = (ObjectWaiter *) 0xBAD;
 554   node.TState  = ObjectWaiter::TS_CXQ;
 555 
 556   // Push "Self" onto the front of the _cxq.
 557   // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 558   // Note that spinning tends to reduce the rate at which threads
 559   // enqueue and dequeue on EntryList|cxq.
 560   ObjectWaiter * nxt;
 561   for (;;) {
 562     node._next = nxt = _cxq;
 563     if (Atomic::cmpxchg(&_cxq, nxt, &node) == nxt) break;
 564 
 565     // Interference - the CAS failed because _cxq changed.  Just retry.
 566     // As an optional optimization we retry the lock.
 567     if (TryLock (Self) > 0) {
 568       assert(_succ != Self, "invariant");
 569       assert(_owner == Self, "invariant");
 570       assert(_Responsible != Self, "invariant");
 571       return;
 572     }
 573   }
 574 
 575   // Check for cxq|EntryList edge transition to non-null.  This indicates
 576   // the onset of contention.  While contention persists exiting threads
 577   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 578   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 579   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 580   // arrange for one of the contending thread to use a timed park() operations
 581   // to detect and recover from the race.  (Stranding is form of progress failure
 582   // where the monitor is unlocked but all the contending threads remain parked).
 583   // That is, at least one of the contended threads will periodically poll _owner.
 584   // One of the contending threads will become the designated "Responsible" thread.
 585   // The Responsible thread uses a timed park instead of a normal indefinite park
 586   // operation -- it periodically wakes and checks for and recovers from potential
 587   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 588   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 589   // be responsible for a monitor.
 590   //
 591   // Currently, one of the contended threads takes on the added role of "Responsible".
 592   // A viable alternative would be to use a dedicated "stranding checker" thread
 593   // that periodically iterated over all the threads (or active monitors) and unparked
 594   // successors where there was risk of stranding.  This would help eliminate the
 595   // timer scalability issues we see on some platforms as we'd only have one thread
 596   // -- the checker -- parked on a timer.
 597 
 598   if (nxt == NULL && _EntryList == NULL) {
 599     // Try to assume the role of responsible thread for the monitor.
 600     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 601     Atomic::replace_if_null(&_Responsible, Self);
 602   }
 603 
 604   // The lock might have been released while this thread was occupied queueing
 605   // itself onto _cxq.  To close the race and avoid "stranding" and
 606   // progress-liveness failure we must resample-retry _owner before parking.
 607   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 608   // In this case the ST-MEMBAR is accomplished with CAS().
 609   //
 610   // TODO: Defer all thread state transitions until park-time.
 611   // Since state transitions are heavy and inefficient we'd like
 612   // to defer the state transitions until absolutely necessary,
 613   // and in doing so avoid some transitions ...
 614 
 615   int nWakeups = 0;
 616   int recheckInterval = 1;
 617 
 618   for (;;) {
 619 
 620     if (TryLock(Self) > 0) break;
 621     assert(_owner != Self, "invariant");
 622 
 623     // park self
 624     if (_Responsible == Self) {
 625       Self->_ParkEvent->park((jlong) recheckInterval);
 626       // Increase the recheckInterval, but clamp the value.
 627       recheckInterval *= 8;
 628       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 629         recheckInterval = MAX_RECHECK_INTERVAL;
 630       }
 631     } else {
 632       Self->_ParkEvent->park();
 633     }
 634 
 635     if (TryLock(Self) > 0) break;
 636 
 637     if (AsyncDeflateIdleMonitors &&
 638         try_set_owner_from(DEFLATER_MARKER, Self) == DEFLATER_MARKER) {
 639       // The deflation protocol finished the first part (setting owner),
 640       // but it failed the second part (making ref_count negative) and
 641       // bailed. Acquired the monitor.
 642       break;
 643     }
 644 
 645     // The lock is still contested.
 646     // Keep a tally of the # of futile wakeups.
 647     // Note that the counter is not protected by a lock or updated by atomics.
 648     // That is by design - we trade "lossy" counters which are exposed to
 649     // races during updates for a lower probe effect.
 650 
 651     // This PerfData object can be used in parallel with a safepoint.
 652     // See the work around in PerfDataManager::destroy().
 653     OM_PERFDATA_OP(FutileWakeups, inc());
 654     ++nWakeups;
 655 
 656     // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 657     // We can defer clearing _succ until after the spin completes
 658     // TrySpin() must tolerate being called with _succ == Self.
 659     // Try yet another round of adaptive spinning.
 660     if (TrySpin(Self) > 0) break;
 661 
 662     // We can find that we were unpark()ed and redesignated _succ while
 663     // we were spinning.  That's harmless.  If we iterate and call park(),
 664     // park() will consume the event and return immediately and we'll
 665     // just spin again.  This pattern can repeat, leaving _succ to simply
 666     // spin on a CPU.
 667 
 668     if (_succ == Self) _succ = NULL;
 669 
 670     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 671     OrderAccess::fence();
 672   }
 673 
 674   // Egress :
 675   // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 676   // Normally we'll find Self on the EntryList .
 677   // From the perspective of the lock owner (this thread), the
 678   // EntryList is stable and cxq is prepend-only.
 679   // The head of cxq is volatile but the interior is stable.
 680   // In addition, Self.TState is stable.
 681 
 682   assert(_owner == Self, "invariant");
 683   assert(object() != NULL, "invariant");
 684   // I'd like to write:
 685   //   guarantee (((oop)(object()))->mark() == markWord::encode(this), "invariant") ;
 686   // but as we're at a safepoint that's not safe.
 687 
 688   UnlinkAfterAcquire(Self, &node);
 689   if (_succ == Self) _succ = NULL;
 690 
 691   assert(_succ != Self, "invariant");
 692   if (_Responsible == Self) {
 693     _Responsible = NULL;
 694     OrderAccess::fence(); // Dekker pivot-point
 695 
 696     // We may leave threads on cxq|EntryList without a designated
 697     // "Responsible" thread.  This is benign.  When this thread subsequently
 698     // exits the monitor it can "see" such preexisting "old" threads --
 699     // threads that arrived on the cxq|EntryList before the fence, above --
 700     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 701     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 702     // non-null and elect a new "Responsible" timer thread.
 703     //
 704     // This thread executes:
 705     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 706     //    LD cxq|EntryList               (in subsequent exit)
 707     //
 708     // Entering threads in the slow/contended path execute:
 709     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 710     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 711     //
 712     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 713     // exit operation from floating above the ST Responsible=null.
 714   }
 715 
 716   // We've acquired ownership with CAS().
 717   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 718   // But since the CAS() this thread may have also stored into _succ,
 719   // EntryList, cxq or Responsible.  These meta-data updates must be
 720   // visible __before this thread subsequently drops the lock.
 721   // Consider what could occur if we didn't enforce this constraint --
 722   // STs to monitor meta-data and user-data could reorder with (become
 723   // visible after) the ST in exit that drops ownership of the lock.
 724   // Some other thread could then acquire the lock, but observe inconsistent
 725   // or old monitor meta-data and heap data.  That violates the JMM.
 726   // To that end, the 1-0 exit() operation must have at least STST|LDST
 727   // "release" barrier semantics.  Specifically, there must be at least a
 728   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 729   // the lock.   The barrier ensures that changes to monitor meta-data and data
 730   // protected by the lock will be visible before we release the lock, and
 731   // therefore before some other thread (CPU) has a chance to acquire the lock.
 732   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 733   //
 734   // Critically, any prior STs to _succ or EntryList must be visible before
 735   // the ST of null into _owner in the *subsequent* (following) corresponding
 736   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 737   // execute a serializing instruction.
 738 
 739   return;
 740 }
 741 
 742 // ReenterI() is a specialized inline form of the latter half of the
 743 // contended slow-path from EnterI().  We use ReenterI() only for
 744 // monitor reentry in wait().
 745 //
 746 // In the future we should reconcile EnterI() and ReenterI().
 747 
 748 void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) {
 749   jint l_ref_count = ref_count();
 750   ADIM_guarantee(l_ref_count > 0, "must be positive: l_ref_count=%d, ref_count=%d", l_ref_count, ref_count());
 751 
 752   assert(Self != NULL, "invariant");
 753   assert(SelfNode != NULL, "invariant");
 754   assert(SelfNode->_thread == Self, "invariant");
 755   assert(_waiters > 0, "invariant");
 756   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
 757   assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 758   JavaThread * jt = (JavaThread *) Self;
 759 
 760   int nWakeups = 0;
 761   for (;;) {
 762     ObjectWaiter::TStates v = SelfNode->TState;
 763     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 764     assert(_owner != Self, "invariant");
 765 
 766     if (TryLock(Self) > 0) break;
 767     if (TrySpin(Self) > 0) break;
 768 
 769     if (AsyncDeflateIdleMonitors &&
 770         try_set_owner_from(DEFLATER_MARKER, Self) == DEFLATER_MARKER) {
 771       // The deflation protocol finished the first part (setting owner),
 772       // but it failed the second part (making ref_count negative) and
 773       // bailed. Acquired the monitor.
 774       break;
 775     }
 776 
 777     // State transition wrappers around park() ...
 778     // ReenterI() wisely defers state transitions until
 779     // it's clear we must park the thread.
 780     {
 781       OSThreadContendState osts(Self->osthread());
 782       ThreadBlockInVM tbivm(jt);
 783 
 784       // cleared by handle_special_suspend_equivalent_condition()
 785       // or java_suspend_self()
 786       jt->set_suspend_equivalent();
 787       Self->_ParkEvent->park();
 788 
 789       // were we externally suspended while we were waiting?
 790       for (;;) {
 791         if (!ExitSuspendEquivalent(jt)) break;
 792         if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 793         jt->java_suspend_self();
 794         jt->set_suspend_equivalent();
 795       }
 796     }
 797 
 798     // Try again, but just so we distinguish between futile wakeups and
 799     // successful wakeups.  The following test isn't algorithmically
 800     // necessary, but it helps us maintain sensible statistics.
 801     if (TryLock(Self) > 0) break;
 802 
 803     // The lock is still contested.
 804     // Keep a tally of the # of futile wakeups.
 805     // Note that the counter is not protected by a lock or updated by atomics.
 806     // That is by design - we trade "lossy" counters which are exposed to
 807     // races during updates for a lower probe effect.
 808     ++nWakeups;
 809 
 810     // Assuming this is not a spurious wakeup we'll normally
 811     // find that _succ == Self.
 812     if (_succ == Self) _succ = NULL;
 813 
 814     // Invariant: after clearing _succ a contending thread
 815     // *must* retry  _owner before parking.
 816     OrderAccess::fence();
 817 
 818     // This PerfData object can be used in parallel with a safepoint.
 819     // See the work around in PerfDataManager::destroy().
 820     OM_PERFDATA_OP(FutileWakeups, inc());
 821   }
 822 
 823   // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 824   // Normally we'll find Self on the EntryList.
 825   // Unlinking from the EntryList is constant-time and atomic-free.
 826   // From the perspective of the lock owner (this thread), the
 827   // EntryList is stable and cxq is prepend-only.
 828   // The head of cxq is volatile but the interior is stable.
 829   // In addition, Self.TState is stable.
 830 
 831   assert(_owner == Self, "invariant");
 832   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
 833   UnlinkAfterAcquire(Self, SelfNode);
 834   if (_succ == Self) _succ = NULL;
 835   assert(_succ != Self, "invariant");
 836   SelfNode->TState = ObjectWaiter::TS_RUN;
 837   OrderAccess::fence();      // see comments at the end of EnterI()
 838 }
 839 
 840 // By convention we unlink a contending thread from EntryList|cxq immediately
 841 // after the thread acquires the lock in ::enter().  Equally, we could defer
 842 // unlinking the thread until ::exit()-time.
 843 
 844 void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) {
 845   assert(_owner == Self, "invariant");
 846   assert(SelfNode->_thread == Self, "invariant");
 847 
 848   if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 849     // Normal case: remove Self from the DLL EntryList .
 850     // This is a constant-time operation.
 851     ObjectWaiter * nxt = SelfNode->_next;
 852     ObjectWaiter * prv = SelfNode->_prev;
 853     if (nxt != NULL) nxt->_prev = prv;
 854     if (prv != NULL) prv->_next = nxt;
 855     if (SelfNode == _EntryList) _EntryList = nxt;
 856     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
 857     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
 858   } else {
 859     assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
 860     // Inopportune interleaving -- Self is still on the cxq.
 861     // This usually means the enqueue of self raced an exiting thread.
 862     // Normally we'll find Self near the front of the cxq, so
 863     // dequeueing is typically fast.  If needbe we can accelerate
 864     // this with some MCS/CHL-like bidirectional list hints and advisory
 865     // back-links so dequeueing from the interior will normally operate
 866     // in constant-time.
 867     // Dequeue Self from either the head (with CAS) or from the interior
 868     // with a linear-time scan and normal non-atomic memory operations.
 869     // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 870     // and then unlink Self from EntryList.  We have to drain eventually,
 871     // so it might as well be now.
 872 
 873     ObjectWaiter * v = _cxq;
 874     assert(v != NULL, "invariant");
 875     if (v != SelfNode || Atomic::cmpxchg(&_cxq, v, SelfNode->_next) != v) {
 876       // The CAS above can fail from interference IFF a "RAT" arrived.
 877       // In that case Self must be in the interior and can no longer be
 878       // at the head of cxq.
 879       if (v == SelfNode) {
 880         assert(_cxq != v, "invariant");
 881         v = _cxq;          // CAS above failed - start scan at head of list
 882       }
 883       ObjectWaiter * p;
 884       ObjectWaiter * q = NULL;
 885       for (p = v; p != NULL && p != SelfNode; p = p->_next) {
 886         q = p;
 887         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
 888       }
 889       assert(v != SelfNode, "invariant");
 890       assert(p == SelfNode, "Node not found on cxq");
 891       assert(p != _cxq, "invariant");
 892       assert(q != NULL, "invariant");
 893       assert(q->_next == p, "invariant");
 894       q->_next = p->_next;
 895     }
 896   }
 897 
 898 #ifdef ASSERT
 899   // Diagnostic hygiene ...
 900   SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
 901   SelfNode->_next  = (ObjectWaiter *) 0xBAD;
 902   SelfNode->TState = ObjectWaiter::TS_RUN;
 903 #endif
 904 }
 905 
 906 // -----------------------------------------------------------------------------
 907 // Exit support
 908 //
 909 // exit()
 910 // ~~~~~~
 911 // Note that the collector can't reclaim the objectMonitor or deflate
 912 // the object out from underneath the thread calling ::exit() as the
 913 // thread calling ::exit() never transitions to a stable state.
 914 // This inhibits GC, which in turn inhibits asynchronous (and
 915 // inopportune) reclamation of "this".
 916 //
 917 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 918 // There's one exception to the claim above, however.  EnterI() can call
 919 // exit() to drop a lock if the acquirer has been externally suspended.
 920 // In that case exit() is called with _thread_state == _thread_blocked,
 921 // but the monitor's ref_count is > 0, which inhibits reclamation.
 922 //
 923 // 1-0 exit
 924 // ~~~~~~~~
 925 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 926 // the fast-path operators have been optimized so the common ::exit()
 927 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
 928 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 929 // greatly improves latency -- MEMBAR and CAS having considerable local
 930 // latency on modern processors -- but at the cost of "stranding".  Absent the
 931 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 932 // ::enter() path, resulting in the entering thread being stranding
 933 // and a progress-liveness failure.   Stranding is extremely rare.
 934 // We use timers (timed park operations) & periodic polling to detect
 935 // and recover from stranding.  Potentially stranded threads periodically
 936 // wake up and poll the lock.  See the usage of the _Responsible variable.
 937 //
 938 // The CAS() in enter provides for safety and exclusion, while the CAS or
 939 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 940 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
 941 // We detect and recover from stranding with timers.
 942 //
 943 // If a thread transiently strands it'll park until (a) another
 944 // thread acquires the lock and then drops the lock, at which time the
 945 // exiting thread will notice and unpark the stranded thread, or, (b)
 946 // the timer expires.  If the lock is high traffic then the stranding latency
 947 // will be low due to (a).  If the lock is low traffic then the odds of
 948 // stranding are lower, although the worst-case stranding latency
 949 // is longer.  Critically, we don't want to put excessive load in the
 950 // platform's timer subsystem.  We want to minimize both the timer injection
 951 // rate (timers created/sec) as well as the number of timers active at
 952 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 953 // the integral of the # of active timers at any instant over time).
 954 // Both impinge on OS scalability.  Given that, at most one thread parked on
 955 // a monitor will use a timer.
 956 //
 957 // There is also the risk of a futile wake-up. If we drop the lock
 958 // another thread can reacquire the lock immediately, and we can
 959 // then wake a thread unnecessarily. This is benign, and we've
 960 // structured the code so the windows are short and the frequency
 961 // of such futile wakups is low.
 962 
 963 void ObjectMonitor::exit(bool not_suspended, TRAPS) {
 964   Thread* const Self = THREAD;
 965   void* cur = Atomic::load(&_owner);
 966   if (THREAD != cur) {
 967     if (THREAD->is_lock_owned((address)cur)) {
 968       assert(_recursions == 0, "invariant");
 969       set_owner_from_BasicLock(cur, Self);  // Convert from BasicLock* to Thread*.
 970       _recursions = 0;
 971     } else {
 972       // Apparent unbalanced locking ...
 973       // Naively we'd like to throw IllegalMonitorStateException.
 974       // As a practical matter we can neither allocate nor throw an
 975       // exception as ::exit() can be called from leaf routines.
 976       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
 977       // Upon deeper reflection, however, in a properly run JVM the only
 978       // way we should encounter this situation is in the presence of
 979       // unbalanced JNI locking. TODO: CheckJNICalls.
 980       // See also: CR4414101
 981 #ifdef ASSERT
 982       LogStreamHandle(Error, monitorinflation) lsh;
 983       lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT
 984                     " is exiting an ObjectMonitor it does not own.", p2i(THREAD));
 985       lsh.print_cr("The imbalance is possibly caused by JNI locking.");
 986       print_debug_style_on(&lsh);
 987 #endif
 988       assert(false, "Non-balanced monitor enter/exit!");
 989       return;
 990     }
 991   }
 992 
 993   if (_recursions != 0) {
 994     _recursions--;        // this is simple recursive enter
 995     return;
 996   }
 997 
 998   // Invariant: after setting Responsible=null an thread must execute
 999   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
1000   _Responsible = NULL;
1001 
1002 #if INCLUDE_JFR
1003   // get the owner's thread id for the MonitorEnter event
1004   // if it is enabled and the thread isn't suspended
1005   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
1006     _previous_owner_tid = JFR_THREAD_ID(Self);
1007   }
1008 #endif
1009 
1010   for (;;) {
1011     assert(THREAD == _owner, "invariant");
1012 
1013     // Drop the lock.
1014     // release semantics: prior loads and stores from within the critical section
1015     // must not float (reorder) past the following store that drops the lock.
1016     // Uses a storeload to separate release_store(owner) from the
1017     // successor check. The try_set_owner() below uses cmpxchg() so
1018     // we get the fence down there.
1019     release_clear_owner(Self);
1020     OrderAccess::storeload();
1021 
1022     if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1023       return;
1024     }
1025     // Other threads are blocked trying to acquire the lock.
1026 
1027     // Normally the exiting thread is responsible for ensuring succession,
1028     // but if other successors are ready or other entering threads are spinning
1029     // then this thread can simply store NULL into _owner and exit without
1030     // waking a successor.  The existence of spinners or ready successors
1031     // guarantees proper succession (liveness).  Responsibility passes to the
1032     // ready or running successors.  The exiting thread delegates the duty.
1033     // More precisely, if a successor already exists this thread is absolved
1034     // of the responsibility of waking (unparking) one.
1035     //
1036     // The _succ variable is critical to reducing futile wakeup frequency.
1037     // _succ identifies the "heir presumptive" thread that has been made
1038     // ready (unparked) but that has not yet run.  We need only one such
1039     // successor thread to guarantee progress.
1040     // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1041     // section 3.3 "Futile Wakeup Throttling" for details.
1042     //
1043     // Note that spinners in Enter() also set _succ non-null.
1044     // In the current implementation spinners opportunistically set
1045     // _succ so that exiting threads might avoid waking a successor.
1046     // Another less appealing alternative would be for the exiting thread
1047     // to drop the lock and then spin briefly to see if a spinner managed
1048     // to acquire the lock.  If so, the exiting thread could exit
1049     // immediately without waking a successor, otherwise the exiting
1050     // thread would need to dequeue and wake a successor.
1051     // (Note that we'd need to make the post-drop spin short, but no
1052     // shorter than the worst-case round-trip cache-line migration time.
1053     // The dropped lock needs to become visible to the spinner, and then
1054     // the acquisition of the lock by the spinner must become visible to
1055     // the exiting thread).
1056 
1057     // It appears that an heir-presumptive (successor) must be made ready.
1058     // Only the current lock owner can manipulate the EntryList or
1059     // drain _cxq, so we need to reacquire the lock.  If we fail
1060     // to reacquire the lock the responsibility for ensuring succession
1061     // falls to the new owner.
1062     //
1063     if (try_set_owner_from(NULL, Self) != NULL) {
1064       return;
1065     }
1066 
1067     guarantee(_owner == THREAD, "invariant");
1068 
1069     ObjectWaiter * w = NULL;
1070 
1071     w = _EntryList;
1072     if (w != NULL) {
1073       // I'd like to write: guarantee (w->_thread != Self).
1074       // But in practice an exiting thread may find itself on the EntryList.
1075       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1076       // then calls exit().  Exit release the lock by setting O._owner to NULL.
1077       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1078       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1079       // release the lock "O".  T2 resumes immediately after the ST of null into
1080       // _owner, above.  T2 notices that the EntryList is populated, so it
1081       // reacquires the lock and then finds itself on the EntryList.
1082       // Given all that, we have to tolerate the circumstance where "w" is
1083       // associated with Self.
1084       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1085       ExitEpilog(Self, w);
1086       return;
1087     }
1088 
1089     // If we find that both _cxq and EntryList are null then just
1090     // re-run the exit protocol from the top.
1091     w = _cxq;
1092     if (w == NULL) continue;
1093 
1094     // Drain _cxq into EntryList - bulk transfer.
1095     // First, detach _cxq.
1096     // The following loop is tantamount to: w = swap(&cxq, NULL)
1097     for (;;) {
1098       assert(w != NULL, "Invariant");
1099       ObjectWaiter * u = Atomic::cmpxchg(&_cxq, w, (ObjectWaiter*)NULL);
1100       if (u == w) break;
1101       w = u;
1102     }
1103 
1104     assert(w != NULL, "invariant");
1105     assert(_EntryList == NULL, "invariant");
1106 
1107     // Convert the LIFO SLL anchored by _cxq into a DLL.
1108     // The list reorganization step operates in O(LENGTH(w)) time.
1109     // It's critical that this step operate quickly as
1110     // "Self" still holds the outer-lock, restricting parallelism
1111     // and effectively lengthening the critical section.
1112     // Invariant: s chases t chases u.
1113     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1114     // we have faster access to the tail.
1115 
1116     _EntryList = w;
1117     ObjectWaiter * q = NULL;
1118     ObjectWaiter * p;
1119     for (p = w; p != NULL; p = p->_next) {
1120       guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1121       p->TState = ObjectWaiter::TS_ENTER;
1122       p->_prev = q;
1123       q = p;
1124     }
1125 
1126     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1127     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1128 
1129     // See if we can abdicate to a spinner instead of waking a thread.
1130     // A primary goal of the implementation is to reduce the
1131     // context-switch rate.
1132     if (_succ != NULL) continue;
1133 
1134     w = _EntryList;
1135     if (w != NULL) {
1136       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1137       ExitEpilog(Self, w);
1138       return;
1139     }
1140   }
1141 }
1142 
1143 // ExitSuspendEquivalent:
1144 // A faster alternate to handle_special_suspend_equivalent_condition()
1145 //
1146 // handle_special_suspend_equivalent_condition() unconditionally
1147 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1148 // operations have high latency.  Note that in ::enter() we call HSSEC
1149 // while holding the monitor, so we effectively lengthen the critical sections.
1150 //
1151 // There are a number of possible solutions:
1152 //
1153 // A.  To ameliorate the problem we might also defer state transitions
1154 //     to as late as possible -- just prior to parking.
1155 //     Given that, we'd call HSSEC after having returned from park(),
1156 //     but before attempting to acquire the monitor.  This is only a
1157 //     partial solution.  It avoids calling HSSEC while holding the
1158 //     monitor (good), but it still increases successor reacquisition latency --
1159 //     the interval between unparking a successor and the time the successor
1160 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1161 //     If we use this technique we can also avoid EnterI()-exit() loop
1162 //     in ::enter() where we iteratively drop the lock and then attempt
1163 //     to reacquire it after suspending.
1164 //
1165 // B.  In the future we might fold all the suspend bits into a
1166 //     composite per-thread suspend flag and then update it with CAS().
1167 //     Alternately, a Dekker-like mechanism with multiple variables
1168 //     would suffice:
1169 //       ST Self->_suspend_equivalent = false
1170 //       MEMBAR
1171 //       LD Self_>_suspend_flags
1172 
1173 bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) {
1174   return jSelf->handle_special_suspend_equivalent_condition();
1175 }
1176 
1177 
1178 void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {
1179   assert(_owner == Self, "invariant");
1180 
1181   // Exit protocol:
1182   // 1. ST _succ = wakee
1183   // 2. membar #loadstore|#storestore;
1184   // 2. ST _owner = NULL
1185   // 3. unpark(wakee)
1186 
1187   _succ = Wakee->_thread;
1188   ParkEvent * Trigger = Wakee->_event;
1189 
1190   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1191   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1192   // out-of-scope (non-extant).
1193   Wakee  = NULL;
1194 
1195   // Drop the lock.
1196   // Uses a fence to separate release_store(owner) from the LD in unpark().
1197   release_clear_owner(Self);
1198   OrderAccess::fence();
1199 
1200   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1201   Trigger->unpark();
1202 
1203   // Maintain stats and report events to JVMTI
1204   OM_PERFDATA_OP(Parks, inc());
1205 }
1206 
1207 
1208 // -----------------------------------------------------------------------------
1209 // Class Loader deadlock handling.
1210 //
1211 // complete_exit exits a lock returning recursion count
1212 // complete_exit/reenter operate as a wait without waiting
1213 // complete_exit requires an inflated monitor
1214 // The _owner field is not always the Thread addr even with an
1215 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1216 // thread due to contention.
1217 intx ObjectMonitor::complete_exit(TRAPS) {
1218   Thread * const Self = THREAD;
1219   assert(Self->is_Java_thread(), "Must be Java thread!");
1220   JavaThread *jt = (JavaThread *)THREAD;
1221 
1222   assert(InitDone, "Unexpectedly not initialized");
1223 
1224   void* cur = Atomic::load(&_owner);
1225   if (THREAD != cur) {
1226     if (THREAD->is_lock_owned((address)cur)) {
1227       assert(_recursions == 0, "internal state error");
1228       set_owner_from_BasicLock(cur, Self);  // Convert from BasicLock* to Thread*.
1229       _recursions = 0;
1230     }
1231   }
1232 
1233   guarantee(Self == _owner, "complete_exit not owner");
1234   intx save = _recursions; // record the old recursion count
1235   _recursions = 0;        // set the recursion level to be 0
1236   exit(true, Self);           // exit the monitor
1237   guarantee(_owner != Self, "invariant");
1238   return save;
1239 }
1240 
1241 // reenter() enters a lock and sets recursion count
1242 // complete_exit/reenter operate as a wait without waiting
1243 void ObjectMonitor::reenter(intx recursions, TRAPS) {
1244   Thread * const Self = THREAD;
1245   assert(Self->is_Java_thread(), "Must be Java thread!");
1246   JavaThread *jt = (JavaThread *)THREAD;
1247 
1248   guarantee(_owner != Self, "reenter already owner");
1249   enter(THREAD);
1250   // Entered the monitor.
1251   guarantee(_recursions == 0, "reenter recursion");
1252   _recursions = recursions;
1253 }
1254 
1255 // Checks that the current THREAD owns this monitor and causes an
1256 // immediate return if it doesn't. We don't use the CHECK macro
1257 // because we want the IMSE to be the only exception that is thrown
1258 // from the call site when false is returned. Any other pending
1259 // exception is ignored.
1260 #define CHECK_OWNER()                                                  \
1261   do {                                                                 \
1262     if (!check_owner(THREAD)) {                                        \
1263        assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \
1264        return;                                                         \
1265      }                                                                 \
1266   } while (false)
1267 
1268 // Returns true if the specified thread owns the ObjectMonitor.
1269 // Otherwise returns false and throws IllegalMonitorStateException
1270 // (IMSE). If there is a pending exception and the specified thread
1271 // is not the owner, that exception will be replaced by the IMSE.
1272 bool ObjectMonitor::check_owner(Thread* THREAD) {
1273   void* cur = Atomic::load(&_owner);
1274   if (cur == THREAD) {
1275     return true;
1276   }
1277   if (THREAD->is_lock_owned((address)cur)) {
1278     set_owner_from_BasicLock(cur, THREAD);  // Convert from BasicLock* to Thread*.
1279     _recursions = 0;
1280     return true;
1281   }
1282   THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
1283              "current thread is not owner", false);
1284 }
1285 
1286 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1287                                     ObjectMonitor* monitor,
1288                                     jlong notifier_tid,
1289                                     jlong timeout,
1290                                     bool timedout) {
1291   assert(event != NULL, "invariant");
1292   assert(monitor != NULL, "invariant");
1293   event->set_monitorClass(((oop)monitor->object())->klass());
1294   event->set_timeout(timeout);
1295   event->set_address((uintptr_t)monitor->object_addr());
1296   event->set_notifier(notifier_tid);
1297   event->set_timedOut(timedout);
1298   event->commit();
1299 }
1300 
1301 // -----------------------------------------------------------------------------
1302 // Wait/Notify/NotifyAll
1303 //
1304 // Note: a subset of changes to ObjectMonitor::wait()
1305 // will need to be replicated in complete_exit
1306 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1307   Thread * const Self = THREAD;
1308   assert(Self->is_Java_thread(), "Must be Java thread!");
1309   JavaThread *jt = (JavaThread *)THREAD;
1310 
1311   assert(InitDone, "Unexpectedly not initialized");
1312 
1313   CHECK_OWNER();  // Throws IMSE if not owner.
1314 
1315   EventJavaMonitorWait event;
1316 
1317   // check for a pending interrupt
1318   if (interruptible && jt->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1319     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1320     if (JvmtiExport::should_post_monitor_waited()) {
1321       // Note: 'false' parameter is passed here because the
1322       // wait was not timed out due to thread interrupt.
1323       JvmtiExport::post_monitor_waited(jt, this, false);
1324 
1325       // In this short circuit of the monitor wait protocol, the
1326       // current thread never drops ownership of the monitor and
1327       // never gets added to the wait queue so the current thread
1328       // cannot be made the successor. This means that the
1329       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1330       // consume an unpark() meant for the ParkEvent associated with
1331       // this ObjectMonitor.
1332     }
1333     if (event.should_commit()) {
1334       post_monitor_wait_event(&event, this, 0, millis, false);
1335     }
1336     THROW(vmSymbols::java_lang_InterruptedException());
1337     return;
1338   }
1339 
1340   assert(Self->_Stalled == 0, "invariant");
1341   Self->_Stalled = intptr_t(this);
1342   jt->set_current_waiting_monitor(this);
1343 
1344   // create a node to be put into the queue
1345   // Critically, after we reset() the event but prior to park(), we must check
1346   // for a pending interrupt.
1347   ObjectWaiter node(Self);
1348   node.TState = ObjectWaiter::TS_WAIT;
1349   Self->_ParkEvent->reset();
1350   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1351 
1352   // Enter the waiting queue, which is a circular doubly linked list in this case
1353   // but it could be a priority queue or any data structure.
1354   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1355   // by the the owner of the monitor *except* in the case where park()
1356   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1357   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1358 
1359   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1360   AddWaiter(&node);
1361   Thread::SpinRelease(&_WaitSetLock);
1362 
1363   _Responsible = NULL;
1364 
1365   intx save = _recursions;     // record the old recursion count
1366   _waiters++;                  // increment the number of waiters
1367   _recursions = 0;             // set the recursion level to be 1
1368   exit(true, Self);                    // exit the monitor
1369   guarantee(_owner != Self, "invariant");
1370 
1371   // The thread is on the WaitSet list - now park() it.
1372   // On MP systems it's conceivable that a brief spin before we park
1373   // could be profitable.
1374   //
1375   // TODO-FIXME: change the following logic to a loop of the form
1376   //   while (!timeout && !interrupted && _notified == 0) park()
1377 
1378   int ret = OS_OK;
1379   int WasNotified = 0;
1380 
1381   // Need to check interrupt state whilst still _thread_in_vm
1382   bool interrupted = interruptible && jt->is_interrupted(false);
1383 
1384   { // State transition wrappers
1385     OSThread* osthread = Self->osthread();
1386     OSThreadWaitState osts(osthread, true);
1387     {
1388       ThreadBlockInVM tbivm(jt);
1389       // Thread is in thread_blocked state and oop access is unsafe.
1390       jt->set_suspend_equivalent();
1391 
1392       if (interrupted || HAS_PENDING_EXCEPTION) {
1393         // Intentionally empty
1394       } else if (node._notified == 0) {
1395         if (millis <= 0) {
1396           Self->_ParkEvent->park();
1397         } else {
1398           ret = Self->_ParkEvent->park(millis);
1399         }
1400       }
1401 
1402       // were we externally suspended while we were waiting?
1403       if (ExitSuspendEquivalent (jt)) {
1404         // TODO-FIXME: add -- if succ == Self then succ = null.
1405         jt->java_suspend_self();
1406       }
1407 
1408     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1409 
1410     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1411     // from the WaitSet to the EntryList.
1412     // See if we need to remove Node from the WaitSet.
1413     // We use double-checked locking to avoid grabbing _WaitSetLock
1414     // if the thread is not on the wait queue.
1415     //
1416     // Note that we don't need a fence before the fetch of TState.
1417     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1418     // written by the is thread. (perhaps the fetch might even be satisfied
1419     // by a look-aside into the processor's own store buffer, although given
1420     // the length of the code path between the prior ST and this load that's
1421     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1422     // then we'll acquire the lock and then re-fetch a fresh TState value.
1423     // That is, we fail toward safety.
1424 
1425     if (node.TState == ObjectWaiter::TS_WAIT) {
1426       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1427       if (node.TState == ObjectWaiter::TS_WAIT) {
1428         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1429         assert(node._notified == 0, "invariant");
1430         node.TState = ObjectWaiter::TS_RUN;
1431       }
1432       Thread::SpinRelease(&_WaitSetLock);
1433     }
1434 
1435     // The thread is now either on off-list (TS_RUN),
1436     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1437     // The Node's TState variable is stable from the perspective of this thread.
1438     // No other threads will asynchronously modify TState.
1439     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1440     OrderAccess::loadload();
1441     if (_succ == Self) _succ = NULL;
1442     WasNotified = node._notified;
1443 
1444     // Reentry phase -- reacquire the monitor.
1445     // re-enter contended monitor after object.wait().
1446     // retain OBJECT_WAIT state until re-enter successfully completes
1447     // Thread state is thread_in_vm and oop access is again safe,
1448     // although the raw address of the object may have changed.
1449     // (Don't cache naked oops over safepoints, of course).
1450 
1451     // post monitor waited event. Note that this is past-tense, we are done waiting.
1452     if (JvmtiExport::should_post_monitor_waited()) {
1453       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1454 
1455       if (node._notified != 0 && _succ == Self) {
1456         // In this part of the monitor wait-notify-reenter protocol it
1457         // is possible (and normal) for another thread to do a fastpath
1458         // monitor enter-exit while this thread is still trying to get
1459         // to the reenter portion of the protocol.
1460         //
1461         // The ObjectMonitor was notified and the current thread is
1462         // the successor which also means that an unpark() has already
1463         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1464         // consume the unpark() that was done when the successor was
1465         // set because the same ParkEvent is shared between Java
1466         // monitors and JVM/TI RawMonitors (for now).
1467         //
1468         // We redo the unpark() to ensure forward progress, i.e., we
1469         // don't want all pending threads hanging (parked) with none
1470         // entering the unlocked monitor.
1471         node._event->unpark();
1472       }
1473     }
1474 
1475     if (event.should_commit()) {
1476       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1477     }
1478 
1479     OrderAccess::fence();
1480 
1481     assert(Self->_Stalled != 0, "invariant");
1482     Self->_Stalled = 0;
1483 
1484     assert(_owner != Self, "invariant");
1485     ObjectWaiter::TStates v = node.TState;
1486     if (v == ObjectWaiter::TS_RUN) {
1487       enter(Self);
1488     } else {
1489       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1490       ReenterI(Self, &node);
1491       node.wait_reenter_end(this);
1492     }
1493 
1494     // Self has reacquired the lock.
1495     // Lifecycle - the node representing Self must not appear on any queues.
1496     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1497     // want residual elements associated with this thread left on any lists.
1498     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1499     assert(_owner == Self, "invariant");
1500     assert(_succ != Self, "invariant");
1501   } // OSThreadWaitState()
1502 
1503   jt->set_current_waiting_monitor(NULL);
1504 
1505   guarantee(_recursions == 0, "invariant");
1506   _recursions = save;     // restore the old recursion count
1507   _waiters--;             // decrement the number of waiters
1508 
1509   // Verify a few postconditions
1510   assert(_owner == Self, "invariant");
1511   assert(_succ != Self, "invariant");
1512   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
1513 
1514   // check if the notification happened
1515   if (!WasNotified) {
1516     // no, it could be timeout or Thread.interrupt() or both
1517     // check for interrupt event, otherwise it is timeout
1518     if (interruptible && jt->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1519       THROW(vmSymbols::java_lang_InterruptedException());
1520     }
1521   }
1522 
1523   // NOTE: Spurious wake up will be consider as timeout.
1524   // Monitor notify has precedence over thread interrupt.
1525 }
1526 
1527 
1528 // Consider:
1529 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1530 // then instead of transferring a thread from the WaitSet to the EntryList
1531 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1532 
1533 void ObjectMonitor::INotify(Thread * Self) {
1534   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1535   ObjectWaiter * iterator = DequeueWaiter();
1536   if (iterator != NULL) {
1537     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1538     guarantee(iterator->_notified == 0, "invariant");
1539     // Disposition - what might we do with iterator ?
1540     // a.  add it directly to the EntryList - either tail (policy == 1)
1541     //     or head (policy == 0).
1542     // b.  push it onto the front of the _cxq (policy == 2).
1543     // For now we use (b).
1544 
1545     iterator->TState = ObjectWaiter::TS_ENTER;
1546 
1547     iterator->_notified = 1;
1548     iterator->_notifier_tid = JFR_THREAD_ID(Self);
1549 
1550     ObjectWaiter * list = _EntryList;
1551     if (list != NULL) {
1552       assert(list->_prev == NULL, "invariant");
1553       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1554       assert(list != iterator, "invariant");
1555     }
1556 
1557     // prepend to cxq
1558     if (list == NULL) {
1559       iterator->_next = iterator->_prev = NULL;
1560       _EntryList = iterator;
1561     } else {
1562       iterator->TState = ObjectWaiter::TS_CXQ;
1563       for (;;) {
1564         ObjectWaiter * front = _cxq;
1565         iterator->_next = front;
1566         if (Atomic::cmpxchg(&_cxq, front, iterator) == front) {
1567           break;
1568         }
1569       }
1570     }
1571 
1572     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1573     // move the add-to-EntryList operation, above, outside the critical section
1574     // protected by _WaitSetLock.  In practice that's not useful.  With the
1575     // exception of  wait() timeouts and interrupts the monitor owner
1576     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1577     // on _WaitSetLock so it's not profitable to reduce the length of the
1578     // critical section.
1579 
1580     iterator->wait_reenter_begin(this);
1581   }
1582   Thread::SpinRelease(&_WaitSetLock);
1583 }
1584 
1585 // Consider: a not-uncommon synchronization bug is to use notify() when
1586 // notifyAll() is more appropriate, potentially resulting in stranded
1587 // threads; this is one example of a lost wakeup. A useful diagnostic
1588 // option is to force all notify() operations to behave as notifyAll().
1589 //
1590 // Note: We can also detect many such problems with a "minimum wait".
1591 // When the "minimum wait" is set to a small non-zero timeout value
1592 // and the program does not hang whereas it did absent "minimum wait",
1593 // that suggests a lost wakeup bug.
1594 
1595 void ObjectMonitor::notify(TRAPS) {
1596   CHECK_OWNER();  // Throws IMSE if not owner.
1597   if (_WaitSet == NULL) {
1598     return;
1599   }
1600   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1601   INotify(THREAD);
1602   OM_PERFDATA_OP(Notifications, inc(1));
1603 }
1604 
1605 
1606 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1607 // from the waitset to the EntryList. This could be done more efficiently with a
1608 // single bulk transfer but in practice it's not time-critical. Beware too,
1609 // that in prepend-mode we invert the order of the waiters. Let's say that the
1610 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1611 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1612 
1613 void ObjectMonitor::notifyAll(TRAPS) {
1614   CHECK_OWNER();  // Throws IMSE if not owner.
1615   if (_WaitSet == NULL) {
1616     return;
1617   }
1618 
1619   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1620   int tally = 0;
1621   while (_WaitSet != NULL) {
1622     tally++;
1623     INotify(THREAD);
1624   }
1625 
1626   OM_PERFDATA_OP(Notifications, inc(tally));
1627 }
1628 
1629 // -----------------------------------------------------------------------------
1630 // Adaptive Spinning Support
1631 //
1632 // Adaptive spin-then-block - rational spinning
1633 //
1634 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1635 // algorithm.  On high order SMP systems it would be better to start with
1636 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1637 // a contending thread could enqueue itself on the cxq and then spin locally
1638 // on a thread-specific variable such as its ParkEvent._Event flag.
1639 // That's left as an exercise for the reader.  Note that global spinning is
1640 // not problematic on Niagara, as the L2 cache serves the interconnect and
1641 // has both low latency and massive bandwidth.
1642 //
1643 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1644 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1645 // (duration) or we can fix the count at approximately the duration of
1646 // a context switch and vary the frequency.   Of course we could also
1647 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1648 // For a description of 'Adaptive spin-then-block mutual exclusion in
1649 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1650 //
1651 // This implementation varies the duration "D", where D varies with
1652 // the success rate of recent spin attempts. (D is capped at approximately
1653 // length of a round-trip context switch).  The success rate for recent
1654 // spin attempts is a good predictor of the success rate of future spin
1655 // attempts.  The mechanism adapts automatically to varying critical
1656 // section length (lock modality), system load and degree of parallelism.
1657 // D is maintained per-monitor in _SpinDuration and is initialized
1658 // optimistically.  Spin frequency is fixed at 100%.
1659 //
1660 // Note that _SpinDuration is volatile, but we update it without locks
1661 // or atomics.  The code is designed so that _SpinDuration stays within
1662 // a reasonable range even in the presence of races.  The arithmetic
1663 // operations on _SpinDuration are closed over the domain of legal values,
1664 // so at worst a race will install and older but still legal value.
1665 // At the very worst this introduces some apparent non-determinism.
1666 // We might spin when we shouldn't or vice-versa, but since the spin
1667 // count are relatively short, even in the worst case, the effect is harmless.
1668 //
1669 // Care must be taken that a low "D" value does not become an
1670 // an absorbing state.  Transient spinning failures -- when spinning
1671 // is overall profitable -- should not cause the system to converge
1672 // on low "D" values.  We want spinning to be stable and predictable
1673 // and fairly responsive to change and at the same time we don't want
1674 // it to oscillate, become metastable, be "too" non-deterministic,
1675 // or converge on or enter undesirable stable absorbing states.
1676 //
1677 // We implement a feedback-based control system -- using past behavior
1678 // to predict future behavior.  We face two issues: (a) if the
1679 // input signal is random then the spin predictor won't provide optimal
1680 // results, and (b) if the signal frequency is too high then the control
1681 // system, which has some natural response lag, will "chase" the signal.
1682 // (b) can arise from multimodal lock hold times.  Transient preemption
1683 // can also result in apparent bimodal lock hold times.
1684 // Although sub-optimal, neither condition is particularly harmful, as
1685 // in the worst-case we'll spin when we shouldn't or vice-versa.
1686 // The maximum spin duration is rather short so the failure modes aren't bad.
1687 // To be conservative, I've tuned the gain in system to bias toward
1688 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1689 // "rings" or oscillates between spinning and not spinning.  This happens
1690 // when spinning is just on the cusp of profitability, however, so the
1691 // situation is not dire.  The state is benign -- there's no need to add
1692 // hysteresis control to damp the transition rate between spinning and
1693 // not spinning.
1694 
1695 // Spinning: Fixed frequency (100%), vary duration
1696 int ObjectMonitor::TrySpin(Thread * Self) {
1697   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1698   int ctr = Knob_FixedSpin;
1699   if (ctr != 0) {
1700     while (--ctr >= 0) {
1701       if (TryLock(Self) > 0) return 1;
1702       SpinPause();
1703     }
1704     return 0;
1705   }
1706 
1707   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1708     if (TryLock(Self) > 0) {
1709       // Increase _SpinDuration ...
1710       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1711       // Raising _SpurDuration to the poverty line is key.
1712       int x = _SpinDuration;
1713       if (x < Knob_SpinLimit) {
1714         if (x < Knob_Poverty) x = Knob_Poverty;
1715         _SpinDuration = x + Knob_BonusB;
1716       }
1717       return 1;
1718     }
1719     SpinPause();
1720   }
1721 
1722   // Admission control - verify preconditions for spinning
1723   //
1724   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1725   // becoming an absorbing state.  Put another way, we spin briefly to
1726   // sample, just in case the system load, parallelism, contention, or lock
1727   // modality changed.
1728   //
1729   // Consider the following alternative:
1730   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1731   // spin attempt.  "Periodically" might mean after a tally of
1732   // the # of failed spin attempts (or iterations) reaches some threshold.
1733   // This takes us into the realm of 1-out-of-N spinning, where we
1734   // hold the duration constant but vary the frequency.
1735 
1736   ctr = _SpinDuration;
1737   if (ctr <= 0) return 0;
1738 
1739   if (NotRunnable(Self, (Thread *) _owner)) {
1740     return 0;
1741   }
1742 
1743   // We're good to spin ... spin ingress.
1744   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1745   // when preparing to LD...CAS _owner, etc and the CAS is likely
1746   // to succeed.
1747   if (_succ == NULL) {
1748     _succ = Self;
1749   }
1750   Thread * prv = NULL;
1751 
1752   // There are three ways to exit the following loop:
1753   // 1.  A successful spin where this thread has acquired the lock.
1754   // 2.  Spin failure with prejudice
1755   // 3.  Spin failure without prejudice
1756 
1757   while (--ctr >= 0) {
1758 
1759     // Periodic polling -- Check for pending GC
1760     // Threads may spin while they're unsafe.
1761     // We don't want spinning threads to delay the JVM from reaching
1762     // a stop-the-world safepoint or to steal cycles from GC.
1763     // If we detect a pending safepoint we abort in order that
1764     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1765     // this thread, if safe, doesn't steal cycles from GC.
1766     // This is in keeping with the "no loitering in runtime" rule.
1767     // We periodically check to see if there's a safepoint pending.
1768     if ((ctr & 0xFF) == 0) {
1769       if (SafepointMechanism::should_block(Self)) {
1770         goto Abort;           // abrupt spin egress
1771       }
1772       SpinPause();
1773     }
1774 
1775     // Probe _owner with TATAS
1776     // If this thread observes the monitor transition or flicker
1777     // from locked to unlocked to locked, then the odds that this
1778     // thread will acquire the lock in this spin attempt go down
1779     // considerably.  The same argument applies if the CAS fails
1780     // or if we observe _owner change from one non-null value to
1781     // another non-null value.   In such cases we might abort
1782     // the spin without prejudice or apply a "penalty" to the
1783     // spin count-down variable "ctr", reducing it by 100, say.
1784 
1785     Thread * ox = (Thread *) _owner;
1786     if (ox == NULL) {
1787       ox = (Thread*)try_set_owner_from(NULL, Self);
1788       if (ox == NULL) {
1789         // The CAS succeeded -- this thread acquired ownership
1790         // Take care of some bookkeeping to exit spin state.
1791         if (_succ == Self) {
1792           _succ = NULL;
1793         }
1794 
1795         // Increase _SpinDuration :
1796         // The spin was successful (profitable) so we tend toward
1797         // longer spin attempts in the future.
1798         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1799         // If we acquired the lock early in the spin cycle it
1800         // makes sense to increase _SpinDuration proportionally.
1801         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1802         int x = _SpinDuration;
1803         if (x < Knob_SpinLimit) {
1804           if (x < Knob_Poverty) x = Knob_Poverty;
1805           _SpinDuration = x + Knob_Bonus;
1806         }
1807         return 1;
1808       }
1809 
1810       // The CAS failed ... we can take any of the following actions:
1811       // * penalize: ctr -= CASPenalty
1812       // * exit spin with prejudice -- goto Abort;
1813       // * exit spin without prejudice.
1814       // * Since CAS is high-latency, retry again immediately.
1815       prv = ox;
1816       goto Abort;
1817     }
1818 
1819     // Did lock ownership change hands ?
1820     if (ox != prv && prv != NULL) {
1821       goto Abort;
1822     }
1823     prv = ox;
1824 
1825     // Abort the spin if the owner is not executing.
1826     // The owner must be executing in order to drop the lock.
1827     // Spinning while the owner is OFFPROC is idiocy.
1828     // Consider: ctr -= RunnablePenalty ;
1829     if (NotRunnable(Self, ox)) {
1830       goto Abort;
1831     }
1832     if (_succ == NULL) {
1833       _succ = Self;
1834     }
1835   }
1836 
1837   // Spin failed with prejudice -- reduce _SpinDuration.
1838   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
1839   // AIMD is globally stable.
1840   {
1841     int x = _SpinDuration;
1842     if (x > 0) {
1843       // Consider an AIMD scheme like: x -= (x >> 3) + 100
1844       // This is globally sample and tends to damp the response.
1845       x -= Knob_Penalty;
1846       if (x < 0) x = 0;
1847       _SpinDuration = x;
1848     }
1849   }
1850 
1851  Abort:
1852   if (_succ == Self) {
1853     _succ = NULL;
1854     // Invariant: after setting succ=null a contending thread
1855     // must recheck-retry _owner before parking.  This usually happens
1856     // in the normal usage of TrySpin(), but it's safest
1857     // to make TrySpin() as foolproof as possible.
1858     OrderAccess::fence();
1859     if (TryLock(Self) > 0) return 1;
1860   }
1861   return 0;
1862 }
1863 
1864 // NotRunnable() -- informed spinning
1865 //
1866 // Don't bother spinning if the owner is not eligible to drop the lock.
1867 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm.
1868 // The thread must be runnable in order to drop the lock in timely fashion.
1869 // If the _owner is not runnable then spinning will not likely be
1870 // successful (profitable).
1871 //
1872 // Beware -- the thread referenced by _owner could have died
1873 // so a simply fetch from _owner->_thread_state might trap.
1874 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
1875 // Because of the lifecycle issues, the _thread_state values
1876 // observed by NotRunnable() might be garbage.  NotRunnable must
1877 // tolerate this and consider the observed _thread_state value
1878 // as advisory.
1879 //
1880 // Beware too, that _owner is sometimes a BasicLock address and sometimes
1881 // a thread pointer.
1882 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
1883 // with the LSB of _owner.  Another option would be to probabilistically probe
1884 // the putative _owner->TypeTag value.
1885 //
1886 // Checking _thread_state isn't perfect.  Even if the thread is
1887 // in_java it might be blocked on a page-fault or have been preempted
1888 // and sitting on a ready/dispatch queue.
1889 //
1890 // The return value from NotRunnable() is *advisory* -- the
1891 // result is based on sampling and is not necessarily coherent.
1892 // The caller must tolerate false-negative and false-positive errors.
1893 // Spinning, in general, is probabilistic anyway.
1894 
1895 
1896 int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) {
1897   // Check ox->TypeTag == 2BAD.
1898   if (ox == NULL) return 0;
1899 
1900   // Avoid transitive spinning ...
1901   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
1902   // Immediately after T1 acquires L it's possible that T2, also
1903   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
1904   // This occurs transiently after T1 acquired L but before
1905   // T1 managed to clear T1.Stalled.  T2 does not need to abort
1906   // its spin in this circumstance.
1907   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
1908 
1909   if (BlockedOn == 1) return 1;
1910   if (BlockedOn != 0) {
1911     return BlockedOn != intptr_t(this) && _owner == ox;
1912   }
1913 
1914   assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
1915   int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
1916   // consider also: jst != _thread_in_Java -- but that's overspecific.
1917   return jst == _thread_blocked || jst == _thread_in_native;
1918 }
1919 
1920 
1921 // -----------------------------------------------------------------------------
1922 // WaitSet management ...
1923 
1924 ObjectWaiter::ObjectWaiter(Thread* thread) {
1925   _next     = NULL;
1926   _prev     = NULL;
1927   _notified = 0;
1928   _notifier_tid = 0;
1929   TState    = TS_RUN;
1930   _thread   = thread;
1931   _event    = thread->_ParkEvent;
1932   _active   = false;
1933   assert(_event != NULL, "invariant");
1934 }
1935 
1936 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
1937   JavaThread *jt = (JavaThread *)this->_thread;
1938   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
1939 }
1940 
1941 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
1942   JavaThread *jt = (JavaThread *)this->_thread;
1943   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
1944 }
1945 
1946 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
1947   assert(node != NULL, "should not add NULL node");
1948   assert(node->_prev == NULL, "node already in list");
1949   assert(node->_next == NULL, "node already in list");
1950   // put node at end of queue (circular doubly linked list)
1951   if (_WaitSet == NULL) {
1952     _WaitSet = node;
1953     node->_prev = node;
1954     node->_next = node;
1955   } else {
1956     ObjectWaiter* head = _WaitSet;
1957     ObjectWaiter* tail = head->_prev;
1958     assert(tail->_next == head, "invariant check");
1959     tail->_next = node;
1960     head->_prev = node;
1961     node->_next = head;
1962     node->_prev = tail;
1963   }
1964 }
1965 
1966 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
1967   // dequeue the very first waiter
1968   ObjectWaiter* waiter = _WaitSet;
1969   if (waiter) {
1970     DequeueSpecificWaiter(waiter);
1971   }
1972   return waiter;
1973 }
1974 
1975 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
1976   assert(node != NULL, "should not dequeue NULL node");
1977   assert(node->_prev != NULL, "node already removed from list");
1978   assert(node->_next != NULL, "node already removed from list");
1979   // when the waiter has woken up because of interrupt,
1980   // timeout or other spurious wake-up, dequeue the
1981   // waiter from waiting list
1982   ObjectWaiter* next = node->_next;
1983   if (next == node) {
1984     assert(node->_prev == node, "invariant check");
1985     _WaitSet = NULL;
1986   } else {
1987     ObjectWaiter* prev = node->_prev;
1988     assert(prev->_next == node, "invariant check");
1989     assert(next->_prev == node, "invariant check");
1990     next->_prev = prev;
1991     prev->_next = next;
1992     if (_WaitSet == node) {
1993       _WaitSet = next;
1994     }
1995   }
1996   node->_next = NULL;
1997   node->_prev = NULL;
1998 }
1999 
2000 // -----------------------------------------------------------------------------
2001 // PerfData support
2002 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
2003 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
2004 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
2005 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
2006 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
2007 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
2008 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
2009 
2010 // One-shot global initialization for the sync subsystem.
2011 // We could also defer initialization and initialize on-demand
2012 // the first time we call ObjectSynchronizer::inflate().
2013 // Initialization would be protected - like so many things - by
2014 // the MonitorCache_lock.
2015 
2016 void ObjectMonitor::Initialize() {
2017   assert(!InitDone, "invariant");
2018 
2019   if (!os::is_MP()) {
2020     Knob_SpinLimit = 0;
2021     Knob_PreSpin   = 0;
2022     Knob_FixedSpin = -1;
2023   }
2024 
2025   if (UsePerfData) {
2026     EXCEPTION_MARK;
2027 #define NEWPERFCOUNTER(n)                                                \
2028   {                                                                      \
2029     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2030                                         CHECK);                          \
2031   }
2032 #define NEWPERFVARIABLE(n)                                                \
2033   {                                                                       \
2034     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2035                                          CHECK);                          \
2036   }
2037     NEWPERFCOUNTER(_sync_Inflations);
2038     NEWPERFCOUNTER(_sync_Deflations);
2039     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2040     NEWPERFCOUNTER(_sync_FutileWakeups);
2041     NEWPERFCOUNTER(_sync_Parks);
2042     NEWPERFCOUNTER(_sync_Notifications);
2043     NEWPERFVARIABLE(_sync_MonExtant);
2044 #undef NEWPERFCOUNTER
2045 #undef NEWPERFVARIABLE
2046   }
2047 
2048   DEBUG_ONLY(InitDone = true;)
2049 }
2050 
2051 ObjectMonitorHandle::~ObjectMonitorHandle() {
2052   if (_om_ptr != NULL) {
2053     _om_ptr->dec_ref_count();
2054     _om_ptr = NULL;
2055   }
2056 }
2057 
2058 // Save the ObjectMonitor* associated with the specified markWord and
2059 // increment the ref_count. This function should only be called if
2060 // the caller has verified mark.has_monitor() == true. The object
2061 // parameter is needed to verify that ObjectMonitor* has not been
2062 // deflated and reused for another object.
2063 //
2064 // This function returns true if the ObjectMonitor* has been safely
2065 // saved. This function returns false if we have lost a race with
2066 // async deflation; the caller should retry as appropriate.
2067 //
2068 bool ObjectMonitorHandle::save_om_ptr(oop object, markWord mark) {
2069   // is_marked() is a superset of has_monitor() so make sure we
2070   // are called with the proper markWord value.
2071   guarantee(mark.has_monitor() && !mark.is_marked(), "sanity check: mark="
2072             INTPTR_FORMAT, mark.value());
2073 
2074   ObjectMonitor* om_ptr = mark.monitor();
2075   om_ptr->inc_ref_count();
2076 
2077   if (AsyncDeflateIdleMonitors) {
2078     // Race here if monitor is not owned! The above ref_count bump
2079     // will cause subsequent async deflation to skip it. However,
2080     // previous or concurrent async deflation is a race.
2081     if (om_ptr->owner_is_DEFLATER_MARKER() && om_ptr->ref_count() <= 0) {
2082       // Async deflation is in progress and our ref_count increment
2083       // above lost the race to async deflation. Attempt to restore
2084       // the header/dmw to the object's header so that we only retry
2085       // once if the deflater thread happens to be slow.
2086       om_ptr->install_displaced_markword_in_object(object);
2087       om_ptr->dec_ref_count();
2088       return false;
2089     }
2090     if (om_ptr->ref_count() <= 0) {
2091       // Async deflation is in the process of bailing out, but has not
2092       // yet restored the ref_count field so we return false to force
2093       // a retry. We want a positive ref_count value for a true return.
2094       om_ptr->dec_ref_count();
2095       return false;
2096     }
2097     // The ObjectMonitor could have been deflated and reused for
2098     // another object before we bumped the ref_count so make sure
2099     // our object still refers to this ObjectMonitor.
2100     // Note: With handshakes after deflation is this race even
2101     // possible anymore?
2102     const markWord tmp = object->mark();
2103     if (!tmp.has_monitor() || tmp.monitor() != om_ptr) {
2104       // Async deflation and reuse won the race so we have to retry.
2105       // Skip object header restoration since that's already done.
2106       om_ptr->dec_ref_count();
2107       return false;
2108     }
2109   }
2110 
2111   ADIM_guarantee(_om_ptr == NULL, "sanity check: _om_ptr=" INTPTR_FORMAT,
2112                  p2i(_om_ptr));
2113   _om_ptr = om_ptr;
2114   return true;
2115 }
2116 
2117 // For internal use by ObjectSynchronizer::inflate().
2118 // This function is only used when we don't have to worry about async
2119 // deflation of the specified ObjectMonitor*.
2120 void ObjectMonitorHandle::set_om_ptr(ObjectMonitor* om_ptr) {
2121   if (_om_ptr == NULL) {
2122     ADIM_guarantee(om_ptr != NULL, "cannot clear an unset om_ptr");
2123     om_ptr->inc_ref_count();
2124     _om_ptr = om_ptr;
2125   } else {
2126     ADIM_guarantee(om_ptr == NULL, "can only clear a set om_ptr");
2127     _om_ptr->dec_ref_count();
2128     _om_ptr = NULL;
2129   }
2130 }
2131 
2132 // Save the specified ObjectMonitor* if it is safe, i.e., not being
2133 // async deflated.
2134 //
2135 // This function returns true if the ObjectMonitor* has been safely
2136 // saved. This function returns false if the specified ObjectMonitor*
2137 // is NULL or if we have lost a race with async deflation; the caller
2138 // can retry as appropriate.
2139 bool ObjectMonitorHandle::save_om_ptr_if_safe(ObjectMonitor* om_ptr) {
2140   if (om_ptr == NULL) {
2141     return false;  // Nothing to save if input is NULL
2142   }
2143 
2144   om_ptr->inc_ref_count();
2145 
2146   if (AsyncDeflateIdleMonitors) {
2147     if (om_ptr->owner_is_DEFLATER_MARKER() && om_ptr->ref_count() <= 0) {
2148       // Async deflation is in progress and our ref_count increment
2149       // above lost the race to async deflation.
2150       om_ptr->dec_ref_count();
2151       return false;
2152     }
2153     if (om_ptr->ref_count() <= 0) {
2154       // Async deflation is in the process of bailing out, but has not
2155       // yet restored the ref_count field so we return false to force
2156       // a retry. We want a positive ref_count value for a true return.
2157       om_ptr->dec_ref_count();
2158       return false;
2159     }
2160     // Unlike save_om_ptr(), we don't have context to determine if
2161     // the ObjectMonitor has been deflated and reused for another
2162     // object.
2163   }
2164 
2165   ADIM_guarantee(_om_ptr == NULL, "sanity check: _om_ptr=" INTPTR_FORMAT,
2166                  p2i(_om_ptr));
2167   _om_ptr = om_ptr;
2168   return true;
2169 }
2170 
2171 // Unset the _om_ptr field and decrement the ref_count field.
2172 void ObjectMonitorHandle::unset_om_ptr() {
2173   ADIM_guarantee(_om_ptr != NULL, "_om_ptr must not be NULL");
2174   _om_ptr->dec_ref_count();
2175   _om_ptr = NULL;
2176 }
2177 
2178 void ObjectMonitor::print_on(outputStream* st) const {
2179   // The minimal things to print for markWord printing, more can be added for debugging and logging.
2180   st->print("{contentions=0x%08x,waiters=0x%08x"
2181             ",recursions=" INTX_FORMAT ",owner=" INTPTR_FORMAT "}",
2182             contentions(), waiters(), recursions(),
2183             p2i(owner()));
2184 }
2185 void ObjectMonitor::print() const { print_on(tty); }
2186 
2187 #ifdef ASSERT
2188 // Print the ObjectMonitor like a debugger would:
2189 //
2190 // (ObjectMonitor) 0x00007fdfb6012e40 = {
2191 //   _header = 0x0000000000000001
2192 //   _object = 0x000000070ff45fd0
2193 //   _allocation_state = Old
2194 //   _pad_buf0 = {
2195 //     [0] = '\0'
2196 //     ...
2197 //     [43] = '\0'
2198 //   }
2199 //   _owner = 0x0000000000000000
2200 //   _previous_owner_tid = 0
2201 //   _pad_buf1 = {
2202 //     [0] = '\0'
2203 //     ...
2204 //     [47] = '\0'
2205 //   }
2206 //   _ref_count = 1
2207 //   _pad_buf2 = {
2208 //     [0] = '\0'
2209 //     ...
2210 //     [47] = '\0'
2211 //   }
2212 //   _next_om = 0x0000000000000000
2213 //   _recursions = 0
2214 //   _EntryList = 0x0000000000000000
2215 //   _cxq = 0x0000000000000000
2216 //   _succ = 0x0000000000000000
2217 //   _Responsible = 0x0000000000000000
2218 //   _Spinner = 0
2219 //   _SpinDuration = 5000
2220 //   _contentions = 0
2221 //   _WaitSet = 0x0000700009756248
2222 //   _waiters = 1
2223 //   _WaitSetLock = 0
2224 // }
2225 //
2226 void ObjectMonitor::print_debug_style_on(outputStream* st) const {
2227   st->print_cr("(ObjectMonitor*) " INTPTR_FORMAT " = {", p2i(this));
2228   st->print_cr("  _header = " INTPTR_FORMAT, header().value());
2229   st->print_cr("  _object = " INTPTR_FORMAT, p2i(_object));
2230   st->print("  _allocation_state = ");
2231   if (is_free()) {
2232     st->print("Free");
2233   } else if (is_old()) {
2234     st->print("Old");
2235   } else if (is_new()) {
2236     st->print("New");
2237   } else {
2238     st->print("unknown=%d", _allocation_state);
2239   }
2240   st->cr();
2241   st->print_cr("  _pad_buf0 = {");
2242   st->print_cr("    [0] = '\\0'");
2243   st->print_cr("    ...");
2244   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf0) - 1);
2245   st->print_cr("  }");
2246   st->print_cr("  _owner = " INTPTR_FORMAT, p2i(_owner));
2247   st->print_cr("  _previous_owner_tid = " JLONG_FORMAT, _previous_owner_tid);
2248   st->print_cr("  _pad_buf1 = {");
2249   st->print_cr("    [0] = '\\0'");
2250   st->print_cr("    ...");
2251   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1);
2252   st->print_cr("  }");
2253   st->print_cr("  _ref_count = %d", ref_count());
2254   st->print_cr("  _pad_buf2 = {");
2255   st->print_cr("    [0] = '\\0'");
2256   st->print_cr("    ...");
2257   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf2) - 1);
2258   st->print_cr("  }");
2259   st->print_cr("  _next_om = " INTPTR_FORMAT, p2i(next_om()));
2260   st->print_cr("  _recursions = " INTX_FORMAT, _recursions);
2261   st->print_cr("  _EntryList = " INTPTR_FORMAT, p2i(_EntryList));
2262   st->print_cr("  _cxq = " INTPTR_FORMAT, p2i(_cxq));
2263   st->print_cr("  _succ = " INTPTR_FORMAT, p2i(_succ));
2264   st->print_cr("  _Responsible = " INTPTR_FORMAT, p2i(_Responsible));
2265   st->print_cr("  _Spinner = %d", _Spinner);
2266   st->print_cr("  _SpinDuration = %d", _SpinDuration);
2267   st->print_cr("  _contentions = %d", _contentions);
2268   st->print_cr("  _WaitSet = " INTPTR_FORMAT, p2i(_WaitSet));
2269   st->print_cr("  _waiters = %d", _waiters);
2270   st->print_cr("  _WaitSetLock = %d", _WaitSetLock);
2271   st->print_cr("}");
2272 }
2273 #endif