1 /*
   2  * Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "jfr/jfrEvents.hpp"
  28 #include "jfr/support/jfrThreadId.hpp"
  29 #include "logging/log.hpp"
  30 #include "logging/logStream.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "oops/markWord.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "runtime/atomic.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/interfaceSupport.inline.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "runtime/objectMonitor.hpp"
  40 #include "runtime/objectMonitor.inline.hpp"
  41 #include "runtime/orderAccess.hpp"
  42 #include "runtime/osThread.hpp"
  43 #include "runtime/safepointMechanism.inline.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/stubRoutines.hpp"
  46 #include "runtime/thread.inline.hpp"
  47 #include "services/threadService.hpp"
  48 #include "utilities/dtrace.hpp"
  49 #include "utilities/macros.hpp"
  50 #include "utilities/preserveException.hpp"
  51 #if INCLUDE_JFR
  52 #include "jfr/support/jfrFlush.hpp"
  53 #endif
  54 
  55 #ifdef DTRACE_ENABLED
  56 
  57 // Only bother with this argument setup if dtrace is available
  58 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  59 
  60 
  61 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  62   char* bytes = NULL;                                                      \
  63   int len = 0;                                                             \
  64   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  65   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  66   if (klassname != NULL) {                                                 \
  67     bytes = (char*)klassname->bytes();                                     \
  68     len = klassname->utf8_length();                                        \
  69   }
  70 
  71 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  72   {                                                                        \
  73     if (DTraceMonitorProbes) {                                             \
  74       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  75       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  76                            (monitor), bytes, len, (millis));               \
  77     }                                                                      \
  78   }
  79 
  80 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  81 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  82 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  83 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  84 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  85 
  86 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  87   {                                                                        \
  88     if (DTraceMonitorProbes) {                                             \
  89       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  90       HOTSPOT_MONITOR_##probe(jtid,                                        \
  91                               (uintptr_t)(monitor), bytes, len);           \
  92     }                                                                      \
  93   }
  94 
  95 #else //  ndef DTRACE_ENABLED
  96 
  97 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  98 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
  99 
 100 #endif // ndef DTRACE_ENABLED
 101 
 102 // Tunables ...
 103 // The knob* variables are effectively final.  Once set they should
 104 // never be modified hence.  Consider using __read_mostly with GCC.
 105 
 106 int ObjectMonitor::Knob_SpinLimit    = 5000;    // derived by an external tool -
 107 
 108 static int Knob_Bonus               = 100;     // spin success bonus
 109 static int Knob_BonusB              = 100;     // spin success bonus
 110 static int Knob_Penalty             = 200;     // spin failure penalty
 111 static int Knob_Poverty             = 1000;
 112 static int Knob_FixedSpin           = 0;
 113 static int Knob_PreSpin             = 10;      // 20-100 likely better
 114 
 115 DEBUG_ONLY(static volatile bool InitDone = false;)
 116 
 117 // -----------------------------------------------------------------------------
 118 // Theory of operations -- Monitors lists, thread residency, etc:
 119 //
 120 // * A thread acquires ownership of a monitor by successfully
 121 //   CAS()ing the _owner field from null to non-null.
 122 //
 123 // * Invariant: A thread appears on at most one monitor list --
 124 //   cxq, EntryList or WaitSet -- at any one time.
 125 //
 126 // * Contending threads "push" themselves onto the cxq with CAS
 127 //   and then spin/park.
 128 //
 129 // * After a contending thread eventually acquires the lock it must
 130 //   dequeue itself from either the EntryList or the cxq.
 131 //
 132 // * The exiting thread identifies and unparks an "heir presumptive"
 133 //   tentative successor thread on the EntryList.  Critically, the
 134 //   exiting thread doesn't unlink the successor thread from the EntryList.
 135 //   After having been unparked, the wakee will recontend for ownership of
 136 //   the monitor.   The successor (wakee) will either acquire the lock or
 137 //   re-park itself.
 138 //
 139 //   Succession is provided for by a policy of competitive handoff.
 140 //   The exiting thread does _not_ grant or pass ownership to the
 141 //   successor thread.  (This is also referred to as "handoff" succession").
 142 //   Instead the exiting thread releases ownership and possibly wakes
 143 //   a successor, so the successor can (re)compete for ownership of the lock.
 144 //   If the EntryList is empty but the cxq is populated the exiting
 145 //   thread will drain the cxq into the EntryList.  It does so by
 146 //   by detaching the cxq (installing null with CAS) and folding
 147 //   the threads from the cxq into the EntryList.  The EntryList is
 148 //   doubly linked, while the cxq is singly linked because of the
 149 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 150 //
 151 // * Concurrency invariants:
 152 //
 153 //   -- only the monitor owner may access or mutate the EntryList.
 154 //      The mutex property of the monitor itself protects the EntryList
 155 //      from concurrent interference.
 156 //   -- Only the monitor owner may detach the cxq.
 157 //
 158 // * The monitor entry list operations avoid locks, but strictly speaking
 159 //   they're not lock-free.  Enter is lock-free, exit is not.
 160 //   For a description of 'Methods and apparatus providing non-blocking access
 161 //   to a resource,' see U.S. Pat. No. 7844973.
 162 //
 163 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 164 //   detaching thread.  This mechanism is immune from the ABA corruption.
 165 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 166 //
 167 // * Taken together, the cxq and the EntryList constitute or form a
 168 //   single logical queue of threads stalled trying to acquire the lock.
 169 //   We use two distinct lists to improve the odds of a constant-time
 170 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 171 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 172 //   A key desideratum is to minimize queue & monitor metadata manipulation
 173 //   that occurs while holding the monitor lock -- that is, we want to
 174 //   minimize monitor lock holds times.  Note that even a small amount of
 175 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 176 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 177 //   locks and monitor metadata.
 178 //
 179 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 180 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 181 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 182 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 183 //
 184 //   The EntryList is ordered by the prevailing queue discipline and
 185 //   can be organized in any convenient fashion, such as a doubly-linked list or
 186 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 187 //   to operate in constant-time.  If we need a priority queue then something akin
 188 //   to Solaris' sleepq would work nicely.  Viz.,
 189 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 190 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 191 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 192 //   EntryList accordingly.
 193 //
 194 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 195 //   somewhat similar to an elevator-scan.
 196 //
 197 // * The monitor synchronization subsystem avoids the use of native
 198 //   synchronization primitives except for the narrow platform-specific
 199 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 200 //   the semantics of park-unpark.  Put another way, this monitor implementation
 201 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 202 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 203 //   underlying OS manages the READY<->RUN transitions.
 204 //
 205 // * Waiting threads reside on the WaitSet list -- wait() puts
 206 //   the caller onto the WaitSet.
 207 //
 208 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 209 //   either the EntryList or cxq.  Subsequent exit() operations will
 210 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 211 //   it's likely the notifyee would simply impale itself on the lock held
 212 //   by the notifier.
 213 //
 214 // * An interesting alternative is to encode cxq as (List,LockByte) where
 215 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 216 //   variable, like _recursions, in the scheme.  The threads or Events that form
 217 //   the list would have to be aligned in 256-byte addresses.  A thread would
 218 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 219 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 220 //   Note that is is *not* word-tearing, but it does presume that full-word
 221 //   CAS operations are coherent with intermix with STB operations.  That's true
 222 //   on most common processors.
 223 //
 224 // * See also http://blogs.sun.com/dave
 225 
 226 
 227 void* ObjectMonitor::operator new (size_t size) throw() {
 228   return AllocateHeap(size, mtInternal);
 229 }
 230 void* ObjectMonitor::operator new[] (size_t size) throw() {
 231   return operator new (size);
 232 }
 233 void ObjectMonitor::operator delete(void* p) {
 234   FreeHeap(p);
 235 }
 236 void ObjectMonitor::operator delete[] (void *p) {
 237   operator delete(p);
 238 }
 239 
 240 // -----------------------------------------------------------------------------
 241 // Enter support
 242 
 243 bool ObjectMonitor::enter(TRAPS) {
 244   // The following code is ordered to check the most common cases first
 245   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 246   Thread * const Self = THREAD;
 247 
 248   void* cur = try_set_owner_from(NULL, Self);
 249   if (cur == NULL) {
 250     assert(_recursions == 0, "invariant");
 251     return true;
 252   }
 253 
 254   if (cur == Self) {
 255     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 256     _recursions++;
 257     return true;
 258   }
 259 
 260   if (Self->is_lock_owned((address)cur)) {
 261     assert(_recursions == 0, "internal state error");
 262     _recursions = 1;
 263     set_owner_from_BasicLock(cur, Self);  // Convert from BasicLock* to Thread*.
 264     return true;
 265   }
 266 
 267   // We've encountered genuine contention.
 268   assert(Self->_Stalled == 0, "invariant");
 269   Self->_Stalled = intptr_t(this);
 270 
 271   // Try one round of spinning *before* enqueueing Self
 272   // and before going through the awkward and expensive state
 273   // transitions.  The following spin is strictly optional ...
 274   // Note that if we acquire the monitor from an initial spin
 275   // we forgo posting JVMTI events and firing DTRACE probes.
 276   if (TrySpin(Self) > 0) {
 277     assert(_owner == Self, "must be Self: owner=" INTPTR_FORMAT, p2i(_owner));
 278     assert(_recursions == 0, "must be 0: recursions=" INTX_FORMAT, _recursions);
 279     assert(((oop)object())->mark() == markWord::encode(this),
 280            "object mark must match encoded this: mark=" INTPTR_FORMAT
 281            ", encoded this=" INTPTR_FORMAT, ((oop)object())->mark().value(),
 282            markWord::encode(this).value());
 283     Self->_Stalled = 0;
 284     return true;
 285   }
 286 
 287   assert(_owner != Self, "invariant");
 288   assert(_succ != Self, "invariant");
 289   assert(Self->is_Java_thread(), "invariant");
 290   JavaThread * jt = (JavaThread *) Self;
 291   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 292   assert(jt->thread_state() != _thread_blocked, "invariant");
 293   assert(AsyncDeflateIdleMonitors || this->object() != NULL, "invariant");
 294   assert(AsyncDeflateIdleMonitors || contentions() >= 0, "must not be negative: contentions=%d", contentions());
 295 
 296   // Keep track of contention for JVM/TI and M&M queries.
 297   Atomic::inc(&_contentions);
 298   if (AsyncDeflateIdleMonitors && is_being_async_deflated()) {
 299     // Async deflation is in progress and our contentions increment
 300     // above lost the race to async deflation. Undo the work and
 301     // force the caller to retry.
 302     const oop l_object = (oop)object();
 303     if (l_object != NULL) {
 304       // Attempt to restore the header/dmw to the object's header so that
 305       // we only retry once if the deflater thread happens to be slow.
 306       install_displaced_markword_in_object(l_object);
 307     }
 308     Self->_Stalled = 0;
 309     Atomic::dec(&_contentions);
 310     return false;
 311   }
 312 
 313   JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(jt);)
 314   EventJavaMonitorEnter event;
 315   if (event.should_commit()) {
 316     event.set_monitorClass(((oop)this->object())->klass());
 317     event.set_address((uintptr_t)(this->object_addr()));
 318   }
 319 
 320   { // Change java thread status to indicate blocked on monitor enter.
 321     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 322 
 323     Self->set_current_pending_monitor(this);
 324 
 325     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 326     if (JvmtiExport::should_post_monitor_contended_enter()) {
 327       JvmtiExport::post_monitor_contended_enter(jt, this);
 328 
 329       // The current thread does not yet own the monitor and does not
 330       // yet appear on any queues that would get it made the successor.
 331       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 332       // handler cannot accidentally consume an unpark() meant for the
 333       // ParkEvent associated with this ObjectMonitor.
 334     }
 335 
 336     OSThreadContendState osts(Self->osthread());
 337     ThreadBlockInVM tbivm(jt);
 338 
 339     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 340     for (;;) {
 341       jt->set_suspend_equivalent();
 342       // cleared by handle_special_suspend_equivalent_condition()
 343       // or java_suspend_self()
 344 
 345       EnterI(THREAD);
 346 
 347       if (!ExitSuspendEquivalent(jt)) break;
 348 
 349       // We have acquired the contended monitor, but while we were
 350       // waiting another thread suspended us. We don't want to enter
 351       // the monitor while suspended because that would surprise the
 352       // thread that suspended us.
 353       //
 354       _recursions = 0;
 355       _succ = NULL;
 356       exit(false, Self);
 357 
 358       jt->java_suspend_self();
 359     }
 360     Self->set_current_pending_monitor(NULL);
 361 
 362     // We cleared the pending monitor info since we've just gotten past
 363     // the enter-check-for-suspend dance and we now own the monitor free
 364     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 365     // destructor can go to a safepoint at the end of this block. If we
 366     // do a thread dump during that safepoint, then this thread will show
 367     // as having "-locked" the monitor, but the OS and java.lang.Thread
 368     // states will still report that the thread is blocked trying to
 369     // acquire it.
 370   }
 371 
 372   Atomic::dec(&_contentions);
 373   assert(contentions() >= 0, "must not be negative: contentions=%d", contentions());
 374   Self->_Stalled = 0;
 375 
 376   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 377   assert(_recursions == 0, "invariant");
 378   assert(_owner == Self, "invariant");
 379   assert(_succ != Self, "invariant");
 380   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
 381 
 382   // The thread -- now the owner -- is back in vm mode.
 383   // Report the glorious news via TI,DTrace and jvmstat.
 384   // The probe effect is non-trivial.  All the reportage occurs
 385   // while we hold the monitor, increasing the length of the critical
 386   // section.  Amdahl's parallel speedup law comes vividly into play.
 387   //
 388   // Another option might be to aggregate the events (thread local or
 389   // per-monitor aggregation) and defer reporting until a more opportune
 390   // time -- such as next time some thread encounters contention but has
 391   // yet to acquire the lock.  While spinning that thread could
 392   // spinning we could increment JVMStat counters, etc.
 393 
 394   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 395   if (JvmtiExport::should_post_monitor_contended_entered()) {
 396     JvmtiExport::post_monitor_contended_entered(jt, this);
 397 
 398     // The current thread already owns the monitor and is not going to
 399     // call park() for the remainder of the monitor enter protocol. So
 400     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 401     // event handler consumed an unpark() issued by the thread that
 402     // just exited the monitor.
 403   }
 404   if (event.should_commit()) {
 405     event.set_previousOwner((uintptr_t)_previous_owner_tid);
 406     event.commit();
 407   }
 408   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 409   return true;
 410 }
 411 
 412 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 413 // Callers must compensate as needed.
 414 
 415 int ObjectMonitor::TryLock(Thread * Self) {
 416   void * own = _owner;
 417   if (own != NULL) return 0;
 418   if (try_set_owner_from(NULL, Self) == NULL) {
 419     assert(_recursions == 0, "invariant");
 420     return 1;
 421   }
 422   // The lock had been free momentarily, but we lost the race to the lock.
 423   // Interference -- the CAS failed.
 424   // We can either return -1 or retry.
 425   // Retry doesn't make as much sense because the lock was just acquired.
 426   return -1;
 427 }
 428 
 429 // Install the displaced mark word (dmw) of a deflating ObjectMonitor
 430 // into the header of the object associated with the monitor. This
 431 // idempotent method is called by a thread that is deflating a
 432 // monitor and by other threads that have detected a race with the
 433 // deflation process.
 434 void ObjectMonitor::install_displaced_markword_in_object(const oop obj) {
 435   // This function must only be called when (owner == DEFLATER_MARKER
 436   // && contentions <= 0), but we can't guarantee that here because
 437   // those values could change when the ObjectMonitor gets moved from
 438   // the global free list to a per-thread free list.
 439 
 440   guarantee(obj != NULL, "must be non-NULL");
 441 
 442   const oop l_object = (oop)object();
 443   if (l_object == NULL) {
 444     // ObjectMonitor's object ref has already been cleared by async
 445     // deflation so we're done here.
 446     return;
 447   }
 448   ADIM_guarantee(l_object == obj, "object=" INTPTR_FORMAT " must equal obj="
 449                  INTPTR_FORMAT, p2i(l_object), p2i(obj));
 450 
 451   markWord dmw = header();
 452   // The dmw has to be neutral (not NULL, not locked and not marked).
 453   ADIM_guarantee(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value());
 454 
 455   // Install displaced mark word if the object's header still points
 456   // to this ObjectMonitor. All racing callers to this function will
 457   // reach this point, but only one can win.
 458   markWord res = obj->cas_set_mark(dmw, markWord::encode(this));
 459   if (res != markWord::encode(this)) {
 460     // This should be rare so log at the Info level when it happens.
 461     log_info(monitorinflation)("install_displaced_markword_in_object: "
 462                                "failed cas_set_mark: new_mark=" INTPTR_FORMAT
 463                                ", old_mark=" INTPTR_FORMAT ", res=" INTPTR_FORMAT,
 464                                dmw.value(), markWord::encode(this).value(),
 465                                res.value());
 466   }
 467 
 468   // Note: It does not matter which thread restored the header/dmw
 469   // into the object's header. The thread deflating the monitor just
 470   // wanted the object's header restored and it is. The threads that
 471   // detected a race with the deflation process also wanted the
 472   // object's header restored before they retry their operation and
 473   // because it is restored they will only retry once.
 474 }
 475 
 476 // Convert the fields used by is_busy() to a string that can be
 477 // used for diagnostic output.
 478 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) {
 479   ss->print("is_busy: waiters=%d, ", _waiters);
 480   if (!AsyncDeflateIdleMonitors) {
 481     ss->print("contentions=%d, ", contentions());
 482     ss->print("owner=" INTPTR_FORMAT, p2i(_owner));
 483   } else {
 484     if (contentions() > 0) {
 485       ss->print("contentions=%d, ", contentions());
 486     } else {
 487       ss->print("contentions=0");
 488     }
 489     if (_owner != DEFLATER_MARKER) {
 490       ss->print("owner=" INTPTR_FORMAT, p2i(_owner));
 491     } else {
 492       // We report NULL instead of DEFLATER_MARKER here because is_busy()
 493       // ignores DEFLATER_MARKER values.
 494       ss->print("owner=" INTPTR_FORMAT, NULL);
 495     }
 496   }
 497   ss->print(", cxq=" INTPTR_FORMAT ", EntryList=" INTPTR_FORMAT, p2i(_cxq),
 498             p2i(_EntryList));
 499   return ss->base();
 500 }
 501 
 502 #define MAX_RECHECK_INTERVAL 1000
 503 
 504 void ObjectMonitor::EnterI(TRAPS) {
 505   Thread * const Self = THREAD;
 506   assert(Self->is_Java_thread(), "invariant");
 507   assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant");
 508 
 509   // Try the lock - TATAS
 510   if (TryLock (Self) > 0) {
 511     assert(_succ != Self, "invariant");
 512     assert(_owner == Self, "invariant");
 513     assert(_Responsible != Self, "invariant");
 514     return;
 515   }
 516 
 517   if (AsyncDeflateIdleMonitors &&
 518       try_set_owner_from(DEFLATER_MARKER, Self) == DEFLATER_MARKER) {
 519     // The deflation protocol finished the first part (setting owner),
 520     // but it failed the second part (making contentions negative) and
 521     // bailed. Acquired the monitor.
 522     assert(_succ != Self, "invariant");
 523     assert(_Responsible != Self, "invariant");
 524     return;
 525   }
 526 
 527   assert(InitDone, "Unexpectedly not initialized");
 528 
 529   // We try one round of spinning *before* enqueueing Self.
 530   //
 531   // If the _owner is ready but OFFPROC we could use a YieldTo()
 532   // operation to donate the remainder of this thread's quantum
 533   // to the owner.  This has subtle but beneficial affinity
 534   // effects.
 535 
 536   if (TrySpin(Self) > 0) {
 537     assert(_owner == Self, "invariant");
 538     assert(_succ != Self, "invariant");
 539     assert(_Responsible != Self, "invariant");
 540     return;
 541   }
 542 
 543   // The Spin failed -- Enqueue and park the thread ...
 544   assert(_succ != Self, "invariant");
 545   assert(_owner != Self, "invariant");
 546   assert(_Responsible != Self, "invariant");
 547 
 548   // Enqueue "Self" on ObjectMonitor's _cxq.
 549   //
 550   // Node acts as a proxy for Self.
 551   // As an aside, if were to ever rewrite the synchronization code mostly
 552   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 553   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 554   // as well as eliminate a subset of ABA issues.
 555   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 556 
 557   ObjectWaiter node(Self);
 558   Self->_ParkEvent->reset();
 559   node._prev   = (ObjectWaiter *) 0xBAD;
 560   node.TState  = ObjectWaiter::TS_CXQ;
 561 
 562   // Push "Self" onto the front of the _cxq.
 563   // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 564   // Note that spinning tends to reduce the rate at which threads
 565   // enqueue and dequeue on EntryList|cxq.
 566   ObjectWaiter * nxt;
 567   for (;;) {
 568     node._next = nxt = _cxq;
 569     if (Atomic::cmpxchg(&_cxq, nxt, &node) == nxt) break;
 570 
 571     // Interference - the CAS failed because _cxq changed.  Just retry.
 572     // As an optional optimization we retry the lock.
 573     if (TryLock (Self) > 0) {
 574       assert(_succ != Self, "invariant");
 575       assert(_owner == Self, "invariant");
 576       assert(_Responsible != Self, "invariant");
 577       return;
 578     }
 579   }
 580 
 581   // Check for cxq|EntryList edge transition to non-null.  This indicates
 582   // the onset of contention.  While contention persists exiting threads
 583   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 584   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 585   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 586   // arrange for one of the contending thread to use a timed park() operations
 587   // to detect and recover from the race.  (Stranding is form of progress failure
 588   // where the monitor is unlocked but all the contending threads remain parked).
 589   // That is, at least one of the contended threads will periodically poll _owner.
 590   // One of the contending threads will become the designated "Responsible" thread.
 591   // The Responsible thread uses a timed park instead of a normal indefinite park
 592   // operation -- it periodically wakes and checks for and recovers from potential
 593   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 594   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 595   // be responsible for a monitor.
 596   //
 597   // Currently, one of the contended threads takes on the added role of "Responsible".
 598   // A viable alternative would be to use a dedicated "stranding checker" thread
 599   // that periodically iterated over all the threads (or active monitors) and unparked
 600   // successors where there was risk of stranding.  This would help eliminate the
 601   // timer scalability issues we see on some platforms as we'd only have one thread
 602   // -- the checker -- parked on a timer.
 603 
 604   if (nxt == NULL && _EntryList == NULL) {
 605     // Try to assume the role of responsible thread for the monitor.
 606     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 607     Atomic::replace_if_null(&_Responsible, Self);
 608   }
 609 
 610   // The lock might have been released while this thread was occupied queueing
 611   // itself onto _cxq.  To close the race and avoid "stranding" and
 612   // progress-liveness failure we must resample-retry _owner before parking.
 613   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 614   // In this case the ST-MEMBAR is accomplished with CAS().
 615   //
 616   // TODO: Defer all thread state transitions until park-time.
 617   // Since state transitions are heavy and inefficient we'd like
 618   // to defer the state transitions until absolutely necessary,
 619   // and in doing so avoid some transitions ...
 620 
 621   int nWakeups = 0;
 622   int recheckInterval = 1;
 623 
 624   for (;;) {
 625 
 626     if (TryLock(Self) > 0) break;
 627     assert(_owner != Self, "invariant");
 628 
 629     // park self
 630     if (_Responsible == Self) {
 631       Self->_ParkEvent->park((jlong) recheckInterval);
 632       // Increase the recheckInterval, but clamp the value.
 633       recheckInterval *= 8;
 634       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 635         recheckInterval = MAX_RECHECK_INTERVAL;
 636       }
 637     } else {
 638       Self->_ParkEvent->park();
 639     }
 640 
 641     if (TryLock(Self) > 0) break;
 642 
 643     if (AsyncDeflateIdleMonitors &&
 644         try_set_owner_from(DEFLATER_MARKER, Self) == DEFLATER_MARKER) {
 645       // The deflation protocol finished the first part (setting owner),
 646       // but it failed the second part (making contentions negative) and
 647       // bailed. Acquired the monitor.
 648       break;
 649     }
 650 
 651     // The lock is still contested.
 652     // Keep a tally of the # of futile wakeups.
 653     // Note that the counter is not protected by a lock or updated by atomics.
 654     // That is by design - we trade "lossy" counters which are exposed to
 655     // races during updates for a lower probe effect.
 656 
 657     // This PerfData object can be used in parallel with a safepoint.
 658     // See the work around in PerfDataManager::destroy().
 659     OM_PERFDATA_OP(FutileWakeups, inc());
 660     ++nWakeups;
 661 
 662     // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 663     // We can defer clearing _succ until after the spin completes
 664     // TrySpin() must tolerate being called with _succ == Self.
 665     // Try yet another round of adaptive spinning.
 666     if (TrySpin(Self) > 0) break;
 667 
 668     // We can find that we were unpark()ed and redesignated _succ while
 669     // we were spinning.  That's harmless.  If we iterate and call park(),
 670     // park() will consume the event and return immediately and we'll
 671     // just spin again.  This pattern can repeat, leaving _succ to simply
 672     // spin on a CPU.
 673 
 674     if (_succ == Self) _succ = NULL;
 675 
 676     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 677     OrderAccess::fence();
 678   }
 679 
 680   // Egress :
 681   // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 682   // Normally we'll find Self on the EntryList .
 683   // From the perspective of the lock owner (this thread), the
 684   // EntryList is stable and cxq is prepend-only.
 685   // The head of cxq is volatile but the interior is stable.
 686   // In addition, Self.TState is stable.
 687 
 688   assert(_owner == Self, "invariant");
 689   assert(object() != NULL, "invariant");
 690   // I'd like to write:
 691   //   guarantee (((oop)(object()))->mark() == markWord::encode(this), "invariant") ;
 692   // but as we're at a safepoint that's not safe.
 693 
 694   UnlinkAfterAcquire(Self, &node);
 695   if (_succ == Self) _succ = NULL;
 696 
 697   assert(_succ != Self, "invariant");
 698   if (_Responsible == Self) {
 699     _Responsible = NULL;
 700     OrderAccess::fence(); // Dekker pivot-point
 701 
 702     // We may leave threads on cxq|EntryList without a designated
 703     // "Responsible" thread.  This is benign.  When this thread subsequently
 704     // exits the monitor it can "see" such preexisting "old" threads --
 705     // threads that arrived on the cxq|EntryList before the fence, above --
 706     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 707     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 708     // non-null and elect a new "Responsible" timer thread.
 709     //
 710     // This thread executes:
 711     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 712     //    LD cxq|EntryList               (in subsequent exit)
 713     //
 714     // Entering threads in the slow/contended path execute:
 715     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 716     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 717     //
 718     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 719     // exit operation from floating above the ST Responsible=null.
 720   }
 721 
 722   // We've acquired ownership with CAS().
 723   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 724   // But since the CAS() this thread may have also stored into _succ,
 725   // EntryList, cxq or Responsible.  These meta-data updates must be
 726   // visible __before this thread subsequently drops the lock.
 727   // Consider what could occur if we didn't enforce this constraint --
 728   // STs to monitor meta-data and user-data could reorder with (become
 729   // visible after) the ST in exit that drops ownership of the lock.
 730   // Some other thread could then acquire the lock, but observe inconsistent
 731   // or old monitor meta-data and heap data.  That violates the JMM.
 732   // To that end, the 1-0 exit() operation must have at least STST|LDST
 733   // "release" barrier semantics.  Specifically, there must be at least a
 734   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 735   // the lock.   The barrier ensures that changes to monitor meta-data and data
 736   // protected by the lock will be visible before we release the lock, and
 737   // therefore before some other thread (CPU) has a chance to acquire the lock.
 738   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 739   //
 740   // Critically, any prior STs to _succ or EntryList must be visible before
 741   // the ST of null into _owner in the *subsequent* (following) corresponding
 742   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 743   // execute a serializing instruction.
 744 
 745   return;
 746 }
 747 
 748 // ReenterI() is a specialized inline form of the latter half of the
 749 // contended slow-path from EnterI().  We use ReenterI() only for
 750 // monitor reentry in wait().
 751 //
 752 // In the future we should reconcile EnterI() and ReenterI().
 753 
 754 void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) {
 755   assert(Self != NULL, "invariant");
 756   assert(SelfNode != NULL, "invariant");
 757   assert(SelfNode->_thread == Self, "invariant");
 758   assert(_waiters > 0, "invariant");
 759   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
 760   assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 761   JavaThread * jt = (JavaThread *) Self;
 762 
 763   int nWakeups = 0;
 764   for (;;) {
 765     ObjectWaiter::TStates v = SelfNode->TState;
 766     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 767     assert(_owner != Self, "invariant");
 768 
 769     if (TryLock(Self) > 0) break;
 770     if (TrySpin(Self) > 0) break;
 771 
 772     // State transition wrappers around park() ...
 773     // ReenterI() wisely defers state transitions until
 774     // it's clear we must park the thread.
 775     {
 776       OSThreadContendState osts(Self->osthread());
 777       ThreadBlockInVM tbivm(jt);
 778 
 779       // cleared by handle_special_suspend_equivalent_condition()
 780       // or java_suspend_self()
 781       jt->set_suspend_equivalent();
 782       Self->_ParkEvent->park();
 783 
 784       // were we externally suspended while we were waiting?
 785       for (;;) {
 786         if (!ExitSuspendEquivalent(jt)) break;
 787         if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 788         jt->java_suspend_self();
 789         jt->set_suspend_equivalent();
 790       }
 791     }
 792 
 793     // Try again, but just so we distinguish between futile wakeups and
 794     // successful wakeups.  The following test isn't algorithmically
 795     // necessary, but it helps us maintain sensible statistics.
 796     if (TryLock(Self) > 0) break;
 797 
 798     // The lock is still contested.
 799     // Keep a tally of the # of futile wakeups.
 800     // Note that the counter is not protected by a lock or updated by atomics.
 801     // That is by design - we trade "lossy" counters which are exposed to
 802     // races during updates for a lower probe effect.
 803     ++nWakeups;
 804 
 805     // Assuming this is not a spurious wakeup we'll normally
 806     // find that _succ == Self.
 807     if (_succ == Self) _succ = NULL;
 808 
 809     // Invariant: after clearing _succ a contending thread
 810     // *must* retry  _owner before parking.
 811     OrderAccess::fence();
 812 
 813     // This PerfData object can be used in parallel with a safepoint.
 814     // See the work around in PerfDataManager::destroy().
 815     OM_PERFDATA_OP(FutileWakeups, inc());
 816   }
 817 
 818   // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 819   // Normally we'll find Self on the EntryList.
 820   // Unlinking from the EntryList is constant-time and atomic-free.
 821   // From the perspective of the lock owner (this thread), the
 822   // EntryList is stable and cxq is prepend-only.
 823   // The head of cxq is volatile but the interior is stable.
 824   // In addition, Self.TState is stable.
 825 
 826   assert(_owner == Self, "invariant");
 827   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
 828   UnlinkAfterAcquire(Self, SelfNode);
 829   if (_succ == Self) _succ = NULL;
 830   assert(_succ != Self, "invariant");
 831   SelfNode->TState = ObjectWaiter::TS_RUN;
 832   OrderAccess::fence();      // see comments at the end of EnterI()
 833 }
 834 
 835 // By convention we unlink a contending thread from EntryList|cxq immediately
 836 // after the thread acquires the lock in ::enter().  Equally, we could defer
 837 // unlinking the thread until ::exit()-time.
 838 
 839 void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) {
 840   assert(_owner == Self, "invariant");
 841   assert(SelfNode->_thread == Self, "invariant");
 842 
 843   if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 844     // Normal case: remove Self from the DLL EntryList .
 845     // This is a constant-time operation.
 846     ObjectWaiter * nxt = SelfNode->_next;
 847     ObjectWaiter * prv = SelfNode->_prev;
 848     if (nxt != NULL) nxt->_prev = prv;
 849     if (prv != NULL) prv->_next = nxt;
 850     if (SelfNode == _EntryList) _EntryList = nxt;
 851     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
 852     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
 853   } else {
 854     assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
 855     // Inopportune interleaving -- Self is still on the cxq.
 856     // This usually means the enqueue of self raced an exiting thread.
 857     // Normally we'll find Self near the front of the cxq, so
 858     // dequeueing is typically fast.  If needbe we can accelerate
 859     // this with some MCS/CHL-like bidirectional list hints and advisory
 860     // back-links so dequeueing from the interior will normally operate
 861     // in constant-time.
 862     // Dequeue Self from either the head (with CAS) or from the interior
 863     // with a linear-time scan and normal non-atomic memory operations.
 864     // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 865     // and then unlink Self from EntryList.  We have to drain eventually,
 866     // so it might as well be now.
 867 
 868     ObjectWaiter * v = _cxq;
 869     assert(v != NULL, "invariant");
 870     if (v != SelfNode || Atomic::cmpxchg(&_cxq, v, SelfNode->_next) != v) {
 871       // The CAS above can fail from interference IFF a "RAT" arrived.
 872       // In that case Self must be in the interior and can no longer be
 873       // at the head of cxq.
 874       if (v == SelfNode) {
 875         assert(_cxq != v, "invariant");
 876         v = _cxq;          // CAS above failed - start scan at head of list
 877       }
 878       ObjectWaiter * p;
 879       ObjectWaiter * q = NULL;
 880       for (p = v; p != NULL && p != SelfNode; p = p->_next) {
 881         q = p;
 882         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
 883       }
 884       assert(v != SelfNode, "invariant");
 885       assert(p == SelfNode, "Node not found on cxq");
 886       assert(p != _cxq, "invariant");
 887       assert(q != NULL, "invariant");
 888       assert(q->_next == p, "invariant");
 889       q->_next = p->_next;
 890     }
 891   }
 892 
 893 #ifdef ASSERT
 894   // Diagnostic hygiene ...
 895   SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
 896   SelfNode->_next  = (ObjectWaiter *) 0xBAD;
 897   SelfNode->TState = ObjectWaiter::TS_RUN;
 898 #endif
 899 }
 900 
 901 // -----------------------------------------------------------------------------
 902 // Exit support
 903 //
 904 // exit()
 905 // ~~~~~~
 906 // Note that the collector can't reclaim the objectMonitor or deflate
 907 // the object out from underneath the thread calling ::exit() as the
 908 // thread calling ::exit() never transitions to a stable state.
 909 // This inhibits GC, which in turn inhibits asynchronous (and
 910 // inopportune) reclamation of "this".
 911 //
 912 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 913 // There's one exception to the claim above, however.  EnterI() can call
 914 // exit() to drop a lock if the acquirer has been externally suspended.
 915 // In that case exit() is called with _thread_state == _thread_blocked,
 916 // but the monitor's _contentions field is > 0, which inhibits reclamation.
 917 //
 918 // 1-0 exit
 919 // ~~~~~~~~
 920 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 921 // the fast-path operators have been optimized so the common ::exit()
 922 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
 923 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 924 // greatly improves latency -- MEMBAR and CAS having considerable local
 925 // latency on modern processors -- but at the cost of "stranding".  Absent the
 926 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 927 // ::enter() path, resulting in the entering thread being stranding
 928 // and a progress-liveness failure.   Stranding is extremely rare.
 929 // We use timers (timed park operations) & periodic polling to detect
 930 // and recover from stranding.  Potentially stranded threads periodically
 931 // wake up and poll the lock.  See the usage of the _Responsible variable.
 932 //
 933 // The CAS() in enter provides for safety and exclusion, while the CAS or
 934 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 935 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
 936 // We detect and recover from stranding with timers.
 937 //
 938 // If a thread transiently strands it'll park until (a) another
 939 // thread acquires the lock and then drops the lock, at which time the
 940 // exiting thread will notice and unpark the stranded thread, or, (b)
 941 // the timer expires.  If the lock is high traffic then the stranding latency
 942 // will be low due to (a).  If the lock is low traffic then the odds of
 943 // stranding are lower, although the worst-case stranding latency
 944 // is longer.  Critically, we don't want to put excessive load in the
 945 // platform's timer subsystem.  We want to minimize both the timer injection
 946 // rate (timers created/sec) as well as the number of timers active at
 947 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 948 // the integral of the # of active timers at any instant over time).
 949 // Both impinge on OS scalability.  Given that, at most one thread parked on
 950 // a monitor will use a timer.
 951 //
 952 // There is also the risk of a futile wake-up. If we drop the lock
 953 // another thread can reacquire the lock immediately, and we can
 954 // then wake a thread unnecessarily. This is benign, and we've
 955 // structured the code so the windows are short and the frequency
 956 // of such futile wakups is low.
 957 
 958 void ObjectMonitor::exit(bool not_suspended, TRAPS) {
 959   Thread* const Self = THREAD;
 960   void* cur = Atomic::load(&_owner);
 961   if (THREAD != cur) {
 962     if (THREAD->is_lock_owned((address)cur)) {
 963       assert(_recursions == 0, "invariant");
 964       set_owner_from_BasicLock(cur, Self);  // Convert from BasicLock* to Thread*.
 965       _recursions = 0;
 966     } else {
 967       // Apparent unbalanced locking ...
 968       // Naively we'd like to throw IllegalMonitorStateException.
 969       // As a practical matter we can neither allocate nor throw an
 970       // exception as ::exit() can be called from leaf routines.
 971       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
 972       // Upon deeper reflection, however, in a properly run JVM the only
 973       // way we should encounter this situation is in the presence of
 974       // unbalanced JNI locking. TODO: CheckJNICalls.
 975       // See also: CR4414101
 976 #ifdef ASSERT
 977       LogStreamHandle(Error, monitorinflation) lsh;
 978       lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT
 979                     " is exiting an ObjectMonitor it does not own.", p2i(THREAD));
 980       lsh.print_cr("The imbalance is possibly caused by JNI locking.");
 981       print_debug_style_on(&lsh);
 982 #endif
 983       assert(false, "Non-balanced monitor enter/exit!");
 984       return;
 985     }
 986   }
 987 
 988   if (_recursions != 0) {
 989     _recursions--;        // this is simple recursive enter
 990     return;
 991   }
 992 
 993   // Invariant: after setting Responsible=null an thread must execute
 994   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 995   _Responsible = NULL;
 996 
 997 #if INCLUDE_JFR
 998   // get the owner's thread id for the MonitorEnter event
 999   // if it is enabled and the thread isn't suspended
1000   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
1001     _previous_owner_tid = JFR_THREAD_ID(Self);
1002   }
1003 #endif
1004 
1005   for (;;) {
1006     assert(THREAD == _owner, "invariant");
1007 
1008     // Drop the lock.
1009     // release semantics: prior loads and stores from within the critical section
1010     // must not float (reorder) past the following store that drops the lock.
1011     // Uses a storeload to separate release_store(owner) from the
1012     // successor check. The try_set_owner() below uses cmpxchg() so
1013     // we get the fence down there.
1014     release_clear_owner(Self);
1015     OrderAccess::storeload();
1016 
1017     if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1018       return;
1019     }
1020     // Other threads are blocked trying to acquire the lock.
1021 
1022     // Normally the exiting thread is responsible for ensuring succession,
1023     // but if other successors are ready or other entering threads are spinning
1024     // then this thread can simply store NULL into _owner and exit without
1025     // waking a successor.  The existence of spinners or ready successors
1026     // guarantees proper succession (liveness).  Responsibility passes to the
1027     // ready or running successors.  The exiting thread delegates the duty.
1028     // More precisely, if a successor already exists this thread is absolved
1029     // of the responsibility of waking (unparking) one.
1030     //
1031     // The _succ variable is critical to reducing futile wakeup frequency.
1032     // _succ identifies the "heir presumptive" thread that has been made
1033     // ready (unparked) but that has not yet run.  We need only one such
1034     // successor thread to guarantee progress.
1035     // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1036     // section 3.3 "Futile Wakeup Throttling" for details.
1037     //
1038     // Note that spinners in Enter() also set _succ non-null.
1039     // In the current implementation spinners opportunistically set
1040     // _succ so that exiting threads might avoid waking a successor.
1041     // Another less appealing alternative would be for the exiting thread
1042     // to drop the lock and then spin briefly to see if a spinner managed
1043     // to acquire the lock.  If so, the exiting thread could exit
1044     // immediately without waking a successor, otherwise the exiting
1045     // thread would need to dequeue and wake a successor.
1046     // (Note that we'd need to make the post-drop spin short, but no
1047     // shorter than the worst-case round-trip cache-line migration time.
1048     // The dropped lock needs to become visible to the spinner, and then
1049     // the acquisition of the lock by the spinner must become visible to
1050     // the exiting thread).
1051 
1052     // It appears that an heir-presumptive (successor) must be made ready.
1053     // Only the current lock owner can manipulate the EntryList or
1054     // drain _cxq, so we need to reacquire the lock.  If we fail
1055     // to reacquire the lock the responsibility for ensuring succession
1056     // falls to the new owner.
1057     //
1058     if (try_set_owner_from(NULL, Self) != NULL) {
1059       return;
1060     }
1061 
1062     guarantee(_owner == THREAD, "invariant");
1063 
1064     ObjectWaiter * w = NULL;
1065 
1066     w = _EntryList;
1067     if (w != NULL) {
1068       // I'd like to write: guarantee (w->_thread != Self).
1069       // But in practice an exiting thread may find itself on the EntryList.
1070       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1071       // then calls exit().  Exit release the lock by setting O._owner to NULL.
1072       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1073       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1074       // release the lock "O".  T2 resumes immediately after the ST of null into
1075       // _owner, above.  T2 notices that the EntryList is populated, so it
1076       // reacquires the lock and then finds itself on the EntryList.
1077       // Given all that, we have to tolerate the circumstance where "w" is
1078       // associated with Self.
1079       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1080       ExitEpilog(Self, w);
1081       return;
1082     }
1083 
1084     // If we find that both _cxq and EntryList are null then just
1085     // re-run the exit protocol from the top.
1086     w = _cxq;
1087     if (w == NULL) continue;
1088 
1089     // Drain _cxq into EntryList - bulk transfer.
1090     // First, detach _cxq.
1091     // The following loop is tantamount to: w = swap(&cxq, NULL)
1092     for (;;) {
1093       assert(w != NULL, "Invariant");
1094       ObjectWaiter * u = Atomic::cmpxchg(&_cxq, w, (ObjectWaiter*)NULL);
1095       if (u == w) break;
1096       w = u;
1097     }
1098 
1099     assert(w != NULL, "invariant");
1100     assert(_EntryList == NULL, "invariant");
1101 
1102     // Convert the LIFO SLL anchored by _cxq into a DLL.
1103     // The list reorganization step operates in O(LENGTH(w)) time.
1104     // It's critical that this step operate quickly as
1105     // "Self" still holds the outer-lock, restricting parallelism
1106     // and effectively lengthening the critical section.
1107     // Invariant: s chases t chases u.
1108     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1109     // we have faster access to the tail.
1110 
1111     _EntryList = w;
1112     ObjectWaiter * q = NULL;
1113     ObjectWaiter * p;
1114     for (p = w; p != NULL; p = p->_next) {
1115       guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1116       p->TState = ObjectWaiter::TS_ENTER;
1117       p->_prev = q;
1118       q = p;
1119     }
1120 
1121     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1122     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1123 
1124     // See if we can abdicate to a spinner instead of waking a thread.
1125     // A primary goal of the implementation is to reduce the
1126     // context-switch rate.
1127     if (_succ != NULL) continue;
1128 
1129     w = _EntryList;
1130     if (w != NULL) {
1131       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1132       ExitEpilog(Self, w);
1133       return;
1134     }
1135   }
1136 }
1137 
1138 // ExitSuspendEquivalent:
1139 // A faster alternate to handle_special_suspend_equivalent_condition()
1140 //
1141 // handle_special_suspend_equivalent_condition() unconditionally
1142 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1143 // operations have high latency.  Note that in ::enter() we call HSSEC
1144 // while holding the monitor, so we effectively lengthen the critical sections.
1145 //
1146 // There are a number of possible solutions:
1147 //
1148 // A.  To ameliorate the problem we might also defer state transitions
1149 //     to as late as possible -- just prior to parking.
1150 //     Given that, we'd call HSSEC after having returned from park(),
1151 //     but before attempting to acquire the monitor.  This is only a
1152 //     partial solution.  It avoids calling HSSEC while holding the
1153 //     monitor (good), but it still increases successor reacquisition latency --
1154 //     the interval between unparking a successor and the time the successor
1155 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1156 //     If we use this technique we can also avoid EnterI()-exit() loop
1157 //     in ::enter() where we iteratively drop the lock and then attempt
1158 //     to reacquire it after suspending.
1159 //
1160 // B.  In the future we might fold all the suspend bits into a
1161 //     composite per-thread suspend flag and then update it with CAS().
1162 //     Alternately, a Dekker-like mechanism with multiple variables
1163 //     would suffice:
1164 //       ST Self->_suspend_equivalent = false
1165 //       MEMBAR
1166 //       LD Self_>_suspend_flags
1167 
1168 bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) {
1169   return jSelf->handle_special_suspend_equivalent_condition();
1170 }
1171 
1172 
1173 void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {
1174   assert(_owner == Self, "invariant");
1175 
1176   // Exit protocol:
1177   // 1. ST _succ = wakee
1178   // 2. membar #loadstore|#storestore;
1179   // 2. ST _owner = NULL
1180   // 3. unpark(wakee)
1181 
1182   _succ = Wakee->_thread;
1183   ParkEvent * Trigger = Wakee->_event;
1184 
1185   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1186   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1187   // out-of-scope (non-extant).
1188   Wakee  = NULL;
1189 
1190   // Drop the lock.
1191   // Uses a fence to separate release_store(owner) from the LD in unpark().
1192   release_clear_owner(Self);
1193   OrderAccess::fence();
1194 
1195   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1196   Trigger->unpark();
1197 
1198   // Maintain stats and report events to JVMTI
1199   OM_PERFDATA_OP(Parks, inc());
1200 }
1201 
1202 
1203 // -----------------------------------------------------------------------------
1204 // Class Loader deadlock handling.
1205 //
1206 // complete_exit exits a lock returning recursion count
1207 // complete_exit/reenter operate as a wait without waiting
1208 // complete_exit requires an inflated monitor
1209 // The _owner field is not always the Thread addr even with an
1210 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1211 // thread due to contention.
1212 intx ObjectMonitor::complete_exit(TRAPS) {
1213   Thread * const Self = THREAD;
1214   assert(Self->is_Java_thread(), "Must be Java thread!");
1215   JavaThread *jt = (JavaThread *)THREAD;
1216 
1217   assert(InitDone, "Unexpectedly not initialized");
1218 
1219   void* cur = Atomic::load(&_owner);
1220   if (THREAD != cur) {
1221     if (THREAD->is_lock_owned((address)cur)) {
1222       assert(_recursions == 0, "internal state error");
1223       set_owner_from_BasicLock(cur, Self);  // Convert from BasicLock* to Thread*.
1224       _recursions = 0;
1225     }
1226   }
1227 
1228   guarantee(Self == _owner, "complete_exit not owner");
1229   intx save = _recursions; // record the old recursion count
1230   _recursions = 0;        // set the recursion level to be 0
1231   exit(true, Self);           // exit the monitor
1232   guarantee(_owner != Self, "invariant");
1233   return save;
1234 }
1235 
1236 // reenter() enters a lock and sets recursion count
1237 // complete_exit/reenter operate as a wait without waiting
1238 bool ObjectMonitor::reenter(intx recursions, TRAPS) {
1239   Thread * const Self = THREAD;
1240   assert(Self->is_Java_thread(), "Must be Java thread!");
1241   JavaThread *jt = (JavaThread *)THREAD;
1242 
1243   guarantee(_owner != Self, "reenter already owner");
1244   if (!enter(THREAD)) {
1245     return false;
1246   }
1247   // Entered the monitor.
1248   guarantee(_recursions == 0, "reenter recursion");
1249   _recursions = recursions;
1250   return true;
1251 }
1252 
1253 // Checks that the current THREAD owns this monitor and causes an
1254 // immediate return if it doesn't. We don't use the CHECK macro
1255 // because we want the IMSE to be the only exception that is thrown
1256 // from the call site when false is returned. Any other pending
1257 // exception is ignored.
1258 #define CHECK_OWNER()                                                  \
1259   do {                                                                 \
1260     if (!check_owner(THREAD)) {                                        \
1261        assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \
1262        return;                                                         \
1263      }                                                                 \
1264   } while (false)
1265 
1266 // Returns true if the specified thread owns the ObjectMonitor.
1267 // Otherwise returns false and throws IllegalMonitorStateException
1268 // (IMSE). If there is a pending exception and the specified thread
1269 // is not the owner, that exception will be replaced by the IMSE.
1270 bool ObjectMonitor::check_owner(Thread* THREAD) {
1271   void* cur = Atomic::load(&_owner);
1272   if (cur == THREAD) {
1273     return true;
1274   }
1275   if (THREAD->is_lock_owned((address)cur)) {
1276     set_owner_from_BasicLock(cur, THREAD);  // Convert from BasicLock* to Thread*.
1277     _recursions = 0;
1278     return true;
1279   }
1280   THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
1281              "current thread is not owner", false);
1282 }
1283 
1284 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1285                                     ObjectMonitor* monitor,
1286                                     jlong notifier_tid,
1287                                     jlong timeout,
1288                                     bool timedout) {
1289   assert(event != NULL, "invariant");
1290   assert(monitor != NULL, "invariant");
1291   event->set_monitorClass(((oop)monitor->object())->klass());
1292   event->set_timeout(timeout);
1293   event->set_address((uintptr_t)monitor->object_addr());
1294   event->set_notifier(notifier_tid);
1295   event->set_timedOut(timedout);
1296   event->commit();
1297 }
1298 
1299 // -----------------------------------------------------------------------------
1300 // Wait/Notify/NotifyAll
1301 //
1302 // Note: a subset of changes to ObjectMonitor::wait()
1303 // will need to be replicated in complete_exit
1304 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1305   Thread * const Self = THREAD;
1306   assert(Self->is_Java_thread(), "Must be Java thread!");
1307   JavaThread *jt = (JavaThread *)THREAD;
1308 
1309   assert(InitDone, "Unexpectedly not initialized");
1310 
1311   CHECK_OWNER();  // Throws IMSE if not owner.
1312 
1313   EventJavaMonitorWait event;
1314 
1315   // check for a pending interrupt
1316   if (interruptible && jt->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1317     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1318     if (JvmtiExport::should_post_monitor_waited()) {
1319       // Note: 'false' parameter is passed here because the
1320       // wait was not timed out due to thread interrupt.
1321       JvmtiExport::post_monitor_waited(jt, this, false);
1322 
1323       // In this short circuit of the monitor wait protocol, the
1324       // current thread never drops ownership of the monitor and
1325       // never gets added to the wait queue so the current thread
1326       // cannot be made the successor. This means that the
1327       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1328       // consume an unpark() meant for the ParkEvent associated with
1329       // this ObjectMonitor.
1330     }
1331     if (event.should_commit()) {
1332       post_monitor_wait_event(&event, this, 0, millis, false);
1333     }
1334     THROW(vmSymbols::java_lang_InterruptedException());
1335     return;
1336   }
1337 
1338   assert(Self->_Stalled == 0, "invariant");
1339   Self->_Stalled = intptr_t(this);
1340   jt->set_current_waiting_monitor(this);
1341 
1342   // create a node to be put into the queue
1343   // Critically, after we reset() the event but prior to park(), we must check
1344   // for a pending interrupt.
1345   ObjectWaiter node(Self);
1346   node.TState = ObjectWaiter::TS_WAIT;
1347   Self->_ParkEvent->reset();
1348   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1349 
1350   // Enter the waiting queue, which is a circular doubly linked list in this case
1351   // but it could be a priority queue or any data structure.
1352   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1353   // by the the owner of the monitor *except* in the case where park()
1354   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1355   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1356 
1357   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1358   AddWaiter(&node);
1359   Thread::SpinRelease(&_WaitSetLock);
1360 
1361   _Responsible = NULL;
1362 
1363   intx save = _recursions;     // record the old recursion count
1364   _waiters++;                  // increment the number of waiters
1365   _recursions = 0;             // set the recursion level to be 1
1366   exit(true, Self);                    // exit the monitor
1367   guarantee(_owner != Self, "invariant");
1368 
1369   // The thread is on the WaitSet list - now park() it.
1370   // On MP systems it's conceivable that a brief spin before we park
1371   // could be profitable.
1372   //
1373   // TODO-FIXME: change the following logic to a loop of the form
1374   //   while (!timeout && !interrupted && _notified == 0) park()
1375 
1376   int ret = OS_OK;
1377   int WasNotified = 0;
1378 
1379   // Need to check interrupt state whilst still _thread_in_vm
1380   bool interrupted = interruptible && jt->is_interrupted(false);
1381 
1382   { // State transition wrappers
1383     OSThread* osthread = Self->osthread();
1384     OSThreadWaitState osts(osthread, true);
1385     {
1386       ThreadBlockInVM tbivm(jt);
1387       // Thread is in thread_blocked state and oop access is unsafe.
1388       jt->set_suspend_equivalent();
1389 
1390       if (interrupted || HAS_PENDING_EXCEPTION) {
1391         // Intentionally empty
1392       } else if (node._notified == 0) {
1393         if (millis <= 0) {
1394           Self->_ParkEvent->park();
1395         } else {
1396           ret = Self->_ParkEvent->park(millis);
1397         }
1398       }
1399 
1400       // were we externally suspended while we were waiting?
1401       if (ExitSuspendEquivalent (jt)) {
1402         // TODO-FIXME: add -- if succ == Self then succ = null.
1403         jt->java_suspend_self();
1404       }
1405 
1406     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1407 
1408     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1409     // from the WaitSet to the EntryList.
1410     // See if we need to remove Node from the WaitSet.
1411     // We use double-checked locking to avoid grabbing _WaitSetLock
1412     // if the thread is not on the wait queue.
1413     //
1414     // Note that we don't need a fence before the fetch of TState.
1415     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1416     // written by the is thread. (perhaps the fetch might even be satisfied
1417     // by a look-aside into the processor's own store buffer, although given
1418     // the length of the code path between the prior ST and this load that's
1419     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1420     // then we'll acquire the lock and then re-fetch a fresh TState value.
1421     // That is, we fail toward safety.
1422 
1423     if (node.TState == ObjectWaiter::TS_WAIT) {
1424       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1425       if (node.TState == ObjectWaiter::TS_WAIT) {
1426         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1427         assert(node._notified == 0, "invariant");
1428         node.TState = ObjectWaiter::TS_RUN;
1429       }
1430       Thread::SpinRelease(&_WaitSetLock);
1431     }
1432 
1433     // The thread is now either on off-list (TS_RUN),
1434     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1435     // The Node's TState variable is stable from the perspective of this thread.
1436     // No other threads will asynchronously modify TState.
1437     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1438     OrderAccess::loadload();
1439     if (_succ == Self) _succ = NULL;
1440     WasNotified = node._notified;
1441 
1442     // Reentry phase -- reacquire the monitor.
1443     // re-enter contended monitor after object.wait().
1444     // retain OBJECT_WAIT state until re-enter successfully completes
1445     // Thread state is thread_in_vm and oop access is again safe,
1446     // although the raw address of the object may have changed.
1447     // (Don't cache naked oops over safepoints, of course).
1448 
1449     // post monitor waited event. Note that this is past-tense, we are done waiting.
1450     if (JvmtiExport::should_post_monitor_waited()) {
1451       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1452 
1453       if (node._notified != 0 && _succ == Self) {
1454         // In this part of the monitor wait-notify-reenter protocol it
1455         // is possible (and normal) for another thread to do a fastpath
1456         // monitor enter-exit while this thread is still trying to get
1457         // to the reenter portion of the protocol.
1458         //
1459         // The ObjectMonitor was notified and the current thread is
1460         // the successor which also means that an unpark() has already
1461         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1462         // consume the unpark() that was done when the successor was
1463         // set because the same ParkEvent is shared between Java
1464         // monitors and JVM/TI RawMonitors (for now).
1465         //
1466         // We redo the unpark() to ensure forward progress, i.e., we
1467         // don't want all pending threads hanging (parked) with none
1468         // entering the unlocked monitor.
1469         node._event->unpark();
1470       }
1471     }
1472 
1473     if (event.should_commit()) {
1474       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1475     }
1476 
1477     OrderAccess::fence();
1478 
1479     assert(Self->_Stalled != 0, "invariant");
1480     Self->_Stalled = 0;
1481 
1482     assert(_owner != Self, "invariant");
1483     ObjectWaiter::TStates v = node.TState;
1484     if (v == ObjectWaiter::TS_RUN) {
1485       enter(Self);
1486     } else {
1487       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1488       ReenterI(Self, &node);
1489       node.wait_reenter_end(this);
1490     }
1491 
1492     // Self has reacquired the lock.
1493     // Lifecycle - the node representing Self must not appear on any queues.
1494     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1495     // want residual elements associated with this thread left on any lists.
1496     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1497     assert(_owner == Self, "invariant");
1498     assert(_succ != Self, "invariant");
1499   } // OSThreadWaitState()
1500 
1501   jt->set_current_waiting_monitor(NULL);
1502 
1503   guarantee(_recursions == 0, "invariant");
1504   _recursions = save;     // restore the old recursion count
1505   _waiters--;             // decrement the number of waiters
1506 
1507   // Verify a few postconditions
1508   assert(_owner == Self, "invariant");
1509   assert(_succ != Self, "invariant");
1510   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
1511 
1512   // check if the notification happened
1513   if (!WasNotified) {
1514     // no, it could be timeout or Thread.interrupt() or both
1515     // check for interrupt event, otherwise it is timeout
1516     if (interruptible && jt->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1517       THROW(vmSymbols::java_lang_InterruptedException());
1518     }
1519   }
1520 
1521   // NOTE: Spurious wake up will be consider as timeout.
1522   // Monitor notify has precedence over thread interrupt.
1523 }
1524 
1525 
1526 // Consider:
1527 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1528 // then instead of transferring a thread from the WaitSet to the EntryList
1529 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1530 
1531 void ObjectMonitor::INotify(Thread * Self) {
1532   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1533   ObjectWaiter * iterator = DequeueWaiter();
1534   if (iterator != NULL) {
1535     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1536     guarantee(iterator->_notified == 0, "invariant");
1537     // Disposition - what might we do with iterator ?
1538     // a.  add it directly to the EntryList - either tail (policy == 1)
1539     //     or head (policy == 0).
1540     // b.  push it onto the front of the _cxq (policy == 2).
1541     // For now we use (b).
1542 
1543     iterator->TState = ObjectWaiter::TS_ENTER;
1544 
1545     iterator->_notified = 1;
1546     iterator->_notifier_tid = JFR_THREAD_ID(Self);
1547 
1548     ObjectWaiter * list = _EntryList;
1549     if (list != NULL) {
1550       assert(list->_prev == NULL, "invariant");
1551       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1552       assert(list != iterator, "invariant");
1553     }
1554 
1555     // prepend to cxq
1556     if (list == NULL) {
1557       iterator->_next = iterator->_prev = NULL;
1558       _EntryList = iterator;
1559     } else {
1560       iterator->TState = ObjectWaiter::TS_CXQ;
1561       for (;;) {
1562         ObjectWaiter * front = _cxq;
1563         iterator->_next = front;
1564         if (Atomic::cmpxchg(&_cxq, front, iterator) == front) {
1565           break;
1566         }
1567       }
1568     }
1569 
1570     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1571     // move the add-to-EntryList operation, above, outside the critical section
1572     // protected by _WaitSetLock.  In practice that's not useful.  With the
1573     // exception of  wait() timeouts and interrupts the monitor owner
1574     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1575     // on _WaitSetLock so it's not profitable to reduce the length of the
1576     // critical section.
1577 
1578     iterator->wait_reenter_begin(this);
1579   }
1580   Thread::SpinRelease(&_WaitSetLock);
1581 }
1582 
1583 // Consider: a not-uncommon synchronization bug is to use notify() when
1584 // notifyAll() is more appropriate, potentially resulting in stranded
1585 // threads; this is one example of a lost wakeup. A useful diagnostic
1586 // option is to force all notify() operations to behave as notifyAll().
1587 //
1588 // Note: We can also detect many such problems with a "minimum wait".
1589 // When the "minimum wait" is set to a small non-zero timeout value
1590 // and the program does not hang whereas it did absent "minimum wait",
1591 // that suggests a lost wakeup bug.
1592 
1593 void ObjectMonitor::notify(TRAPS) {
1594   CHECK_OWNER();  // Throws IMSE if not owner.
1595   if (_WaitSet == NULL) {
1596     return;
1597   }
1598   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1599   INotify(THREAD);
1600   OM_PERFDATA_OP(Notifications, inc(1));
1601 }
1602 
1603 
1604 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1605 // from the waitset to the EntryList. This could be done more efficiently with a
1606 // single bulk transfer but in practice it's not time-critical. Beware too,
1607 // that in prepend-mode we invert the order of the waiters. Let's say that the
1608 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1609 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1610 
1611 void ObjectMonitor::notifyAll(TRAPS) {
1612   CHECK_OWNER();  // Throws IMSE if not owner.
1613   if (_WaitSet == NULL) {
1614     return;
1615   }
1616 
1617   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1618   int tally = 0;
1619   while (_WaitSet != NULL) {
1620     tally++;
1621     INotify(THREAD);
1622   }
1623 
1624   OM_PERFDATA_OP(Notifications, inc(tally));
1625 }
1626 
1627 // -----------------------------------------------------------------------------
1628 // Adaptive Spinning Support
1629 //
1630 // Adaptive spin-then-block - rational spinning
1631 //
1632 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1633 // algorithm.  On high order SMP systems it would be better to start with
1634 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1635 // a contending thread could enqueue itself on the cxq and then spin locally
1636 // on a thread-specific variable such as its ParkEvent._Event flag.
1637 // That's left as an exercise for the reader.  Note that global spinning is
1638 // not problematic on Niagara, as the L2 cache serves the interconnect and
1639 // has both low latency and massive bandwidth.
1640 //
1641 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1642 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1643 // (duration) or we can fix the count at approximately the duration of
1644 // a context switch and vary the frequency.   Of course we could also
1645 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1646 // For a description of 'Adaptive spin-then-block mutual exclusion in
1647 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1648 //
1649 // This implementation varies the duration "D", where D varies with
1650 // the success rate of recent spin attempts. (D is capped at approximately
1651 // length of a round-trip context switch).  The success rate for recent
1652 // spin attempts is a good predictor of the success rate of future spin
1653 // attempts.  The mechanism adapts automatically to varying critical
1654 // section length (lock modality), system load and degree of parallelism.
1655 // D is maintained per-monitor in _SpinDuration and is initialized
1656 // optimistically.  Spin frequency is fixed at 100%.
1657 //
1658 // Note that _SpinDuration is volatile, but we update it without locks
1659 // or atomics.  The code is designed so that _SpinDuration stays within
1660 // a reasonable range even in the presence of races.  The arithmetic
1661 // operations on _SpinDuration are closed over the domain of legal values,
1662 // so at worst a race will install and older but still legal value.
1663 // At the very worst this introduces some apparent non-determinism.
1664 // We might spin when we shouldn't or vice-versa, but since the spin
1665 // count are relatively short, even in the worst case, the effect is harmless.
1666 //
1667 // Care must be taken that a low "D" value does not become an
1668 // an absorbing state.  Transient spinning failures -- when spinning
1669 // is overall profitable -- should not cause the system to converge
1670 // on low "D" values.  We want spinning to be stable and predictable
1671 // and fairly responsive to change and at the same time we don't want
1672 // it to oscillate, become metastable, be "too" non-deterministic,
1673 // or converge on or enter undesirable stable absorbing states.
1674 //
1675 // We implement a feedback-based control system -- using past behavior
1676 // to predict future behavior.  We face two issues: (a) if the
1677 // input signal is random then the spin predictor won't provide optimal
1678 // results, and (b) if the signal frequency is too high then the control
1679 // system, which has some natural response lag, will "chase" the signal.
1680 // (b) can arise from multimodal lock hold times.  Transient preemption
1681 // can also result in apparent bimodal lock hold times.
1682 // Although sub-optimal, neither condition is particularly harmful, as
1683 // in the worst-case we'll spin when we shouldn't or vice-versa.
1684 // The maximum spin duration is rather short so the failure modes aren't bad.
1685 // To be conservative, I've tuned the gain in system to bias toward
1686 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1687 // "rings" or oscillates between spinning and not spinning.  This happens
1688 // when spinning is just on the cusp of profitability, however, so the
1689 // situation is not dire.  The state is benign -- there's no need to add
1690 // hysteresis control to damp the transition rate between spinning and
1691 // not spinning.
1692 
1693 // Spinning: Fixed frequency (100%), vary duration
1694 int ObjectMonitor::TrySpin(Thread * Self) {
1695   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1696   int ctr = Knob_FixedSpin;
1697   if (ctr != 0) {
1698     while (--ctr >= 0) {
1699       if (TryLock(Self) > 0) return 1;
1700       SpinPause();
1701     }
1702     return 0;
1703   }
1704 
1705   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1706     if (TryLock(Self) > 0) {
1707       // Increase _SpinDuration ...
1708       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1709       // Raising _SpurDuration to the poverty line is key.
1710       int x = _SpinDuration;
1711       if (x < Knob_SpinLimit) {
1712         if (x < Knob_Poverty) x = Knob_Poverty;
1713         _SpinDuration = x + Knob_BonusB;
1714       }
1715       return 1;
1716     }
1717     SpinPause();
1718   }
1719 
1720   // Admission control - verify preconditions for spinning
1721   //
1722   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1723   // becoming an absorbing state.  Put another way, we spin briefly to
1724   // sample, just in case the system load, parallelism, contention, or lock
1725   // modality changed.
1726   //
1727   // Consider the following alternative:
1728   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1729   // spin attempt.  "Periodically" might mean after a tally of
1730   // the # of failed spin attempts (or iterations) reaches some threshold.
1731   // This takes us into the realm of 1-out-of-N spinning, where we
1732   // hold the duration constant but vary the frequency.
1733 
1734   ctr = _SpinDuration;
1735   if (ctr <= 0) return 0;
1736 
1737   if (NotRunnable(Self, (Thread *) _owner)) {
1738     return 0;
1739   }
1740 
1741   // We're good to spin ... spin ingress.
1742   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1743   // when preparing to LD...CAS _owner, etc and the CAS is likely
1744   // to succeed.
1745   if (_succ == NULL) {
1746     _succ = Self;
1747   }
1748   Thread * prv = NULL;
1749 
1750   // There are three ways to exit the following loop:
1751   // 1.  A successful spin where this thread has acquired the lock.
1752   // 2.  Spin failure with prejudice
1753   // 3.  Spin failure without prejudice
1754 
1755   while (--ctr >= 0) {
1756 
1757     // Periodic polling -- Check for pending GC
1758     // Threads may spin while they're unsafe.
1759     // We don't want spinning threads to delay the JVM from reaching
1760     // a stop-the-world safepoint or to steal cycles from GC.
1761     // If we detect a pending safepoint we abort in order that
1762     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1763     // this thread, if safe, doesn't steal cycles from GC.
1764     // This is in keeping with the "no loitering in runtime" rule.
1765     // We periodically check to see if there's a safepoint pending.
1766     if ((ctr & 0xFF) == 0) {
1767       if (SafepointMechanism::should_block(Self)) {
1768         goto Abort;           // abrupt spin egress
1769       }
1770       SpinPause();
1771     }
1772 
1773     // Probe _owner with TATAS
1774     // If this thread observes the monitor transition or flicker
1775     // from locked to unlocked to locked, then the odds that this
1776     // thread will acquire the lock in this spin attempt go down
1777     // considerably.  The same argument applies if the CAS fails
1778     // or if we observe _owner change from one non-null value to
1779     // another non-null value.   In such cases we might abort
1780     // the spin without prejudice or apply a "penalty" to the
1781     // spin count-down variable "ctr", reducing it by 100, say.
1782 
1783     Thread * ox = (Thread *) _owner;
1784     if (ox == NULL) {
1785       ox = (Thread*)try_set_owner_from(NULL, Self);
1786       if (ox == NULL) {
1787         // The CAS succeeded -- this thread acquired ownership
1788         // Take care of some bookkeeping to exit spin state.
1789         if (_succ == Self) {
1790           _succ = NULL;
1791         }
1792 
1793         // Increase _SpinDuration :
1794         // The spin was successful (profitable) so we tend toward
1795         // longer spin attempts in the future.
1796         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1797         // If we acquired the lock early in the spin cycle it
1798         // makes sense to increase _SpinDuration proportionally.
1799         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1800         int x = _SpinDuration;
1801         if (x < Knob_SpinLimit) {
1802           if (x < Knob_Poverty) x = Knob_Poverty;
1803           _SpinDuration = x + Knob_Bonus;
1804         }
1805         return 1;
1806       }
1807 
1808       // The CAS failed ... we can take any of the following actions:
1809       // * penalize: ctr -= CASPenalty
1810       // * exit spin with prejudice -- goto Abort;
1811       // * exit spin without prejudice.
1812       // * Since CAS is high-latency, retry again immediately.
1813       prv = ox;
1814       goto Abort;
1815     }
1816 
1817     // Did lock ownership change hands ?
1818     if (ox != prv && prv != NULL) {
1819       goto Abort;
1820     }
1821     prv = ox;
1822 
1823     // Abort the spin if the owner is not executing.
1824     // The owner must be executing in order to drop the lock.
1825     // Spinning while the owner is OFFPROC is idiocy.
1826     // Consider: ctr -= RunnablePenalty ;
1827     if (NotRunnable(Self, ox)) {
1828       goto Abort;
1829     }
1830     if (_succ == NULL) {
1831       _succ = Self;
1832     }
1833   }
1834 
1835   // Spin failed with prejudice -- reduce _SpinDuration.
1836   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
1837   // AIMD is globally stable.
1838   {
1839     int x = _SpinDuration;
1840     if (x > 0) {
1841       // Consider an AIMD scheme like: x -= (x >> 3) + 100
1842       // This is globally sample and tends to damp the response.
1843       x -= Knob_Penalty;
1844       if (x < 0) x = 0;
1845       _SpinDuration = x;
1846     }
1847   }
1848 
1849  Abort:
1850   if (_succ == Self) {
1851     _succ = NULL;
1852     // Invariant: after setting succ=null a contending thread
1853     // must recheck-retry _owner before parking.  This usually happens
1854     // in the normal usage of TrySpin(), but it's safest
1855     // to make TrySpin() as foolproof as possible.
1856     OrderAccess::fence();
1857     if (TryLock(Self) > 0) return 1;
1858   }
1859   return 0;
1860 }
1861 
1862 // NotRunnable() -- informed spinning
1863 //
1864 // Don't bother spinning if the owner is not eligible to drop the lock.
1865 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm.
1866 // The thread must be runnable in order to drop the lock in timely fashion.
1867 // If the _owner is not runnable then spinning will not likely be
1868 // successful (profitable).
1869 //
1870 // Beware -- the thread referenced by _owner could have died
1871 // so a simply fetch from _owner->_thread_state might trap.
1872 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
1873 // Because of the lifecycle issues, the _thread_state values
1874 // observed by NotRunnable() might be garbage.  NotRunnable must
1875 // tolerate this and consider the observed _thread_state value
1876 // as advisory.
1877 //
1878 // Beware too, that _owner is sometimes a BasicLock address and sometimes
1879 // a thread pointer.
1880 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
1881 // with the LSB of _owner.  Another option would be to probabilistically probe
1882 // the putative _owner->TypeTag value.
1883 //
1884 // Checking _thread_state isn't perfect.  Even if the thread is
1885 // in_java it might be blocked on a page-fault or have been preempted
1886 // and sitting on a ready/dispatch queue.
1887 //
1888 // The return value from NotRunnable() is *advisory* -- the
1889 // result is based on sampling and is not necessarily coherent.
1890 // The caller must tolerate false-negative and false-positive errors.
1891 // Spinning, in general, is probabilistic anyway.
1892 
1893 
1894 int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) {
1895   // Check ox->TypeTag == 2BAD.
1896   if (ox == NULL) return 0;
1897 
1898   // Avoid transitive spinning ...
1899   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
1900   // Immediately after T1 acquires L it's possible that T2, also
1901   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
1902   // This occurs transiently after T1 acquired L but before
1903   // T1 managed to clear T1.Stalled.  T2 does not need to abort
1904   // its spin in this circumstance.
1905   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
1906 
1907   if (BlockedOn == 1) return 1;
1908   if (BlockedOn != 0) {
1909     return BlockedOn != intptr_t(this) && _owner == ox;
1910   }
1911 
1912   assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
1913   int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
1914   // consider also: jst != _thread_in_Java -- but that's overspecific.
1915   return jst == _thread_blocked || jst == _thread_in_native;
1916 }
1917 
1918 
1919 // -----------------------------------------------------------------------------
1920 // WaitSet management ...
1921 
1922 ObjectWaiter::ObjectWaiter(Thread* thread) {
1923   _next     = NULL;
1924   _prev     = NULL;
1925   _notified = 0;
1926   _notifier_tid = 0;
1927   TState    = TS_RUN;
1928   _thread   = thread;
1929   _event    = thread->_ParkEvent;
1930   _active   = false;
1931   assert(_event != NULL, "invariant");
1932 }
1933 
1934 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
1935   JavaThread *jt = (JavaThread *)this->_thread;
1936   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
1937 }
1938 
1939 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
1940   JavaThread *jt = (JavaThread *)this->_thread;
1941   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
1942 }
1943 
1944 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
1945   assert(node != NULL, "should not add NULL node");
1946   assert(node->_prev == NULL, "node already in list");
1947   assert(node->_next == NULL, "node already in list");
1948   // put node at end of queue (circular doubly linked list)
1949   if (_WaitSet == NULL) {
1950     _WaitSet = node;
1951     node->_prev = node;
1952     node->_next = node;
1953   } else {
1954     ObjectWaiter* head = _WaitSet;
1955     ObjectWaiter* tail = head->_prev;
1956     assert(tail->_next == head, "invariant check");
1957     tail->_next = node;
1958     head->_prev = node;
1959     node->_next = head;
1960     node->_prev = tail;
1961   }
1962 }
1963 
1964 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
1965   // dequeue the very first waiter
1966   ObjectWaiter* waiter = _WaitSet;
1967   if (waiter) {
1968     DequeueSpecificWaiter(waiter);
1969   }
1970   return waiter;
1971 }
1972 
1973 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
1974   assert(node != NULL, "should not dequeue NULL node");
1975   assert(node->_prev != NULL, "node already removed from list");
1976   assert(node->_next != NULL, "node already removed from list");
1977   // when the waiter has woken up because of interrupt,
1978   // timeout or other spurious wake-up, dequeue the
1979   // waiter from waiting list
1980   ObjectWaiter* next = node->_next;
1981   if (next == node) {
1982     assert(node->_prev == node, "invariant check");
1983     _WaitSet = NULL;
1984   } else {
1985     ObjectWaiter* prev = node->_prev;
1986     assert(prev->_next == node, "invariant check");
1987     assert(next->_prev == node, "invariant check");
1988     next->_prev = prev;
1989     prev->_next = next;
1990     if (_WaitSet == node) {
1991       _WaitSet = next;
1992     }
1993   }
1994   node->_next = NULL;
1995   node->_prev = NULL;
1996 }
1997 
1998 // -----------------------------------------------------------------------------
1999 // PerfData support
2000 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
2001 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
2002 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
2003 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
2004 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
2005 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
2006 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
2007 
2008 // One-shot global initialization for the sync subsystem.
2009 // We could also defer initialization and initialize on-demand
2010 // the first time we call ObjectSynchronizer::inflate().
2011 // Initialization would be protected - like so many things - by
2012 // the MonitorCache_lock.
2013 
2014 void ObjectMonitor::Initialize() {
2015   assert(!InitDone, "invariant");
2016 
2017   if (!os::is_MP()) {
2018     Knob_SpinLimit = 0;
2019     Knob_PreSpin   = 0;
2020     Knob_FixedSpin = -1;
2021   }
2022 
2023   if (UsePerfData) {
2024     EXCEPTION_MARK;
2025 #define NEWPERFCOUNTER(n)                                                \
2026   {                                                                      \
2027     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2028                                         CHECK);                          \
2029   }
2030 #define NEWPERFVARIABLE(n)                                                \
2031   {                                                                       \
2032     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2033                                          CHECK);                          \
2034   }
2035     NEWPERFCOUNTER(_sync_Inflations);
2036     NEWPERFCOUNTER(_sync_Deflations);
2037     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2038     NEWPERFCOUNTER(_sync_FutileWakeups);
2039     NEWPERFCOUNTER(_sync_Parks);
2040     NEWPERFCOUNTER(_sync_Notifications);
2041     NEWPERFVARIABLE(_sync_MonExtant);
2042 #undef NEWPERFCOUNTER
2043 #undef NEWPERFVARIABLE
2044   }
2045 
2046   DEBUG_ONLY(InitDone = true;)
2047 }
2048 
2049 void ObjectMonitor::print_on(outputStream* st) const {
2050   // The minimal things to print for markWord printing, more can be added for debugging and logging.
2051   st->print("{contentions=0x%08x,waiters=0x%08x"
2052             ",recursions=" INTX_FORMAT ",owner=" INTPTR_FORMAT "}",
2053             contentions(), waiters(), recursions(),
2054             p2i(owner()));
2055 }
2056 void ObjectMonitor::print() const { print_on(tty); }
2057 
2058 #ifdef ASSERT
2059 // Print the ObjectMonitor like a debugger would:
2060 //
2061 // (ObjectMonitor) 0x00007fdfb6012e40 = {
2062 //   _header = 0x0000000000000001
2063 //   _object = 0x000000070ff45fd0
2064 //   _allocation_state = Old
2065 //   _pad_buf0 = {
2066 //     [0] = '\0'
2067 //     ...
2068 //     [43] = '\0'
2069 //   }
2070 //   _owner = 0x0000000000000000
2071 //   _previous_owner_tid = 0
2072 //   _pad_buf1 = {
2073 //     [0] = '\0'
2074 //     ...
2075 //     [47] = '\0'
2076 //   }
2077 //   _next_om = 0x0000000000000000
2078 //   _recursions = 0
2079 //   _EntryList = 0x0000000000000000
2080 //   _cxq = 0x0000000000000000
2081 //   _succ = 0x0000000000000000
2082 //   _Responsible = 0x0000000000000000
2083 //   _Spinner = 0
2084 //   _SpinDuration = 5000
2085 //   _contentions = 0
2086 //   _WaitSet = 0x0000700009756248
2087 //   _waiters = 1
2088 //   _WaitSetLock = 0
2089 // }
2090 //
2091 void ObjectMonitor::print_debug_style_on(outputStream* st) const {
2092   st->print_cr("(ObjectMonitor*) " INTPTR_FORMAT " = {", p2i(this));
2093   st->print_cr("  _header = " INTPTR_FORMAT, header().value());
2094   st->print_cr("  _object = " INTPTR_FORMAT, p2i(_object));
2095   st->print("  _allocation_state = ");
2096   if (is_free()) {
2097     st->print("Free");
2098   } else if (is_old()) {
2099     st->print("Old");
2100   } else if (is_new()) {
2101     st->print("New");
2102   } else {
2103     st->print("unknown=%d", _allocation_state);
2104   }
2105   st->cr();
2106   st->print_cr("  _pad_buf0 = {");
2107   st->print_cr("    [0] = '\\0'");
2108   st->print_cr("    ...");
2109   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf0) - 1);
2110   st->print_cr("  }");
2111   st->print_cr("  _owner = " INTPTR_FORMAT, p2i(_owner));
2112   st->print_cr("  _previous_owner_tid = " JLONG_FORMAT, _previous_owner_tid);
2113   st->print_cr("  _pad_buf1 = {");
2114   st->print_cr("    [0] = '\\0'");
2115   st->print_cr("    ...");
2116   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1);
2117   st->print_cr("  }");
2118   st->print_cr("  _next_om = " INTPTR_FORMAT, p2i(next_om()));
2119   st->print_cr("  _recursions = " INTX_FORMAT, _recursions);
2120   st->print_cr("  _EntryList = " INTPTR_FORMAT, p2i(_EntryList));
2121   st->print_cr("  _cxq = " INTPTR_FORMAT, p2i(_cxq));
2122   st->print_cr("  _succ = " INTPTR_FORMAT, p2i(_succ));
2123   st->print_cr("  _Responsible = " INTPTR_FORMAT, p2i(_Responsible));
2124   st->print_cr("  _Spinner = %d", _Spinner);
2125   st->print_cr("  _SpinDuration = %d", _SpinDuration);
2126   st->print_cr("  _contentions = %d", contentions());
2127   st->print_cr("  _WaitSet = " INTPTR_FORMAT, p2i(_WaitSet));
2128   st->print_cr("  _waiters = %d", _waiters);
2129   st->print_cr("  _WaitSetLock = %d", _WaitSetLock);
2130   st->print_cr("}");
2131 }
2132 #endif