1 /*
   2  * Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "logging/logStream.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/metaspaceShared.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/handles.inline.hpp"
  40 #include "runtime/handshake.hpp"
  41 #include "runtime/interfaceSupport.inline.hpp"
  42 #include "runtime/mutexLocker.hpp"
  43 #include "runtime/objectMonitor.hpp"
  44 #include "runtime/objectMonitor.inline.hpp"
  45 #include "runtime/osThread.hpp"
  46 #include "runtime/safepointMechanism.inline.hpp"
  47 #include "runtime/safepointVerifiers.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/synchronizer.hpp"
  51 #include "runtime/thread.inline.hpp"
  52 #include "runtime/timer.hpp"
  53 #include "runtime/vframe.hpp"
  54 #include "runtime/vmThread.hpp"
  55 #include "utilities/align.hpp"
  56 #include "utilities/dtrace.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/preserveException.hpp"
  59 
  60 // The "core" versions of monitor enter and exit reside in this file.
  61 // The interpreter and compilers contain specialized transliterated
  62 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  63 // for instance.  If you make changes here, make sure to modify the
  64 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  65 //
  66 // -----------------------------------------------------------------------------
  67 
  68 #ifdef DTRACE_ENABLED
  69 
  70 // Only bother with this argument setup if dtrace is available
  71 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  72 
  73 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  74   char* bytes = NULL;                                                      \
  75   int len = 0;                                                             \
  76   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  77   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  78   if (klassname != NULL) {                                                 \
  79     bytes = (char*)klassname->bytes();                                     \
  80     len = klassname->utf8_length();                                        \
  81   }
  82 
  83 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  84   {                                                                        \
  85     if (DTraceMonitorProbes) {                                             \
  86       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  87       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  88                            (uintptr_t)(monitor), bytes, len, (millis));    \
  89     }                                                                      \
  90   }
  91 
  92 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  93 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  94 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  95 
  96 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  97   {                                                                        \
  98     if (DTraceMonitorProbes) {                                             \
  99       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 100       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
 101                                     (uintptr_t)(monitor), bytes, len);     \
 102     }                                                                      \
 103   }
 104 
 105 #else //  ndef DTRACE_ENABLED
 106 
 107 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 108 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 109 
 110 #endif // ndef DTRACE_ENABLED
 111 
 112 // This exists only as a workaround of dtrace bug 6254741
 113 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 114   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 115   return 0;
 116 }
 117 
 118 #define NINFLATIONLOCKS 256
 119 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 120 
 121 // global list of blocks of monitors
 122 PaddedObjectMonitor* ObjectSynchronizer::g_block_list = NULL;
 123 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false;
 124 bool volatile ObjectSynchronizer::_is_special_deflation_requested = false;
 125 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0;
 126 
 127 struct ObjectMonitorListGlobals {
 128   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 129   // These are highly shared list related variables.
 130   // To avoid false-sharing they need to be the sole occupants of a cache line.
 131 
 132   // Global ObjectMonitor free list. Newly allocated and deflated
 133   // ObjectMonitors are prepended here.
 134   ObjectMonitor* _free_list;
 135   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(ObjectMonitor*));
 136 
 137   // Global ObjectMonitor in-use list. When a JavaThread is exiting,
 138   // ObjectMonitors on its per-thread in-use list are prepended here.
 139   ObjectMonitor* _in_use_list;
 140   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(ObjectMonitor*));
 141 
 142   // Global ObjectMonitor wait list. Deflated ObjectMonitors wait on
 143   // this list until after a handshake or a safepoint for platforms
 144   // that don't support handshakes. After the handshake or safepoint,
 145   // the deflated ObjectMonitors are prepended to free_list.
 146   ObjectMonitor* _wait_list;
 147   DEFINE_PAD_MINUS_SIZE(3, OM_CACHE_LINE_SIZE, sizeof(ObjectMonitor*));
 148 
 149   int _free_count;    // # on free_list
 150   DEFINE_PAD_MINUS_SIZE(4, OM_CACHE_LINE_SIZE, sizeof(int));
 151 
 152   int _in_use_count;  // # on in_use_list
 153   DEFINE_PAD_MINUS_SIZE(5, OM_CACHE_LINE_SIZE, sizeof(int));
 154 
 155   int _population;    // # Extant -- in circulation
 156   DEFINE_PAD_MINUS_SIZE(6, OM_CACHE_LINE_SIZE, sizeof(int));
 157 
 158   int _wait_count;    // # on wait_list
 159   DEFINE_PAD_MINUS_SIZE(7, OM_CACHE_LINE_SIZE, sizeof(int));
 160 };
 161 static ObjectMonitorListGlobals om_list_globals;
 162 
 163 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 164 
 165 
 166 // =====================> Spin-lock functions
 167 
 168 // ObjectMonitors are not lockable outside of this file. We use spin-locks
 169 // implemented using a bit in the _next_om field instead of the heavier
 170 // weight locking mechanisms for faster list management.
 171 
 172 #define OM_LOCK_BIT 0x1
 173 
 174 // Return true if the ObjectMonitor is locked.
 175 // Otherwise returns false.
 176 static bool is_locked(ObjectMonitor* om) {
 177   return ((intptr_t)om->next_om() & OM_LOCK_BIT) == OM_LOCK_BIT;
 178 }
 179 
 180 // Mark an ObjectMonitor* with OM_LOCK_BIT and return it.
 181 static ObjectMonitor* mark_om_ptr(ObjectMonitor* om) {
 182   return (ObjectMonitor*)((intptr_t)om | OM_LOCK_BIT);
 183 }
 184 
 185 // Return the unmarked next field in an ObjectMonitor. Note: the next
 186 // field may or may not have been marked with OM_LOCK_BIT originally.
 187 static ObjectMonitor* unmarked_next(ObjectMonitor* om) {
 188   return (ObjectMonitor*)((intptr_t)om->next_om() & ~OM_LOCK_BIT);
 189 }
 190 
 191 // Try to lock an ObjectMonitor. Returns true if locking was successful.
 192 // Otherwise returns false.
 193 static bool try_om_lock(ObjectMonitor* om) {
 194   // Get current next field without any OM_LOCK_BIT value.
 195   ObjectMonitor* next = unmarked_next(om);
 196   if (om->try_set_next_om(next, mark_om_ptr(next)) != next) {
 197     return false;  // Cannot lock the ObjectMonitor.
 198   }
 199   return true;
 200 }
 201 
 202 // Lock an ObjectMonitor.
 203 static void om_lock(ObjectMonitor* om) {
 204   while (true) {
 205     if (try_om_lock(om)) {
 206       return;
 207     }
 208   }
 209 }
 210 
 211 // Unlock an ObjectMonitor.
 212 static void om_unlock(ObjectMonitor* om) {
 213   ObjectMonitor* next = om->next_om();
 214   guarantee(((intptr_t)next & OM_LOCK_BIT) == OM_LOCK_BIT, "next=" INTPTR_FORMAT
 215             " must have OM_LOCK_BIT=%x set.", p2i(next), OM_LOCK_BIT);
 216 
 217   next = (ObjectMonitor*)((intptr_t)next & ~OM_LOCK_BIT);  // Clear OM_LOCK_BIT.
 218   om->set_next_om(next);
 219 }
 220 
 221 // Get the list head after locking it. Returns the list head or NULL
 222 // if the list is empty.
 223 static ObjectMonitor* get_list_head_locked(ObjectMonitor** list_p) {
 224   while (true) {
 225     ObjectMonitor* mid = Atomic::load(list_p);
 226     if (mid == NULL) {
 227       return NULL;  // The list is empty.
 228     }
 229     if (try_om_lock(mid)) {
 230       if (Atomic::load(list_p) != mid) {
 231         // The list head changed before we could lock it so we have to retry.
 232         om_unlock(mid);
 233         continue;
 234       }
 235       return mid;
 236     }
 237   }
 238 }
 239 
 240 #undef OM_LOCK_BIT
 241 
 242 
 243 // =====================> List Management functions
 244 
 245 // Prepend a list of ObjectMonitors to the specified *list_p. 'tail' is
 246 // the last ObjectMonitor in the list and there are 'count' on the list.
 247 // Also updates the specified *count_p.
 248 static void prepend_list_to_common(ObjectMonitor* list, ObjectMonitor* tail,
 249                                    int count, ObjectMonitor** list_p,
 250                                    int* count_p) {
 251   while (true) {
 252     ObjectMonitor* cur = Atomic::load(list_p);
 253     // Prepend list to *list_p.
 254     if (!try_om_lock(tail)) {
 255       // Failed to lock tail due to a list walker so try it all again.
 256       continue;
 257     }
 258     tail->set_next_om(cur);  // tail now points to cur (and unlocks tail)
 259     if (cur == NULL) {
 260       // No potential race with takers or other prependers since
 261       // *list_p is empty.
 262       if (Atomic::cmpxchg(list_p, cur, list) == cur) {
 263         // Successfully switched *list_p to the list value.
 264         Atomic::add(count_p, count);
 265         break;
 266       }
 267       // Implied else: try it all again
 268     } else {
 269       if (!try_om_lock(cur)) {
 270         continue;  // failed to lock cur so try it all again
 271       }
 272       // We locked cur so try to switch *list_p to the list value.
 273       if (Atomic::cmpxchg(list_p, cur, list) != cur) {
 274         // The list head has changed so unlock cur and try again:
 275         om_unlock(cur);
 276         continue;
 277       }
 278       Atomic::add(count_p, count);
 279       om_unlock(cur);
 280       break;
 281     }
 282   }
 283 }
 284 
 285 // Prepend a newly allocated block of ObjectMonitors to g_block_list and
 286 // om_list_globals._free_list. Also updates om_list_globals._population
 287 // and om_list_globals._free_count.
 288 void ObjectSynchronizer::prepend_block_to_lists(PaddedObjectMonitor* new_blk) {
 289   // First we handle g_block_list:
 290   while (true) {
 291     PaddedObjectMonitor* cur = Atomic::load(&g_block_list);
 292     // Prepend new_blk to g_block_list. The first ObjectMonitor in
 293     // a block is reserved for use as linkage to the next block.
 294     new_blk[0].set_next_om(cur);
 295     if (Atomic::cmpxchg(&g_block_list, cur, new_blk) == cur) {
 296       // Successfully switched g_block_list to the new_blk value.
 297       Atomic::add(&om_list_globals._population, _BLOCKSIZE - 1);
 298       break;
 299     }
 300     // Implied else: try it all again
 301   }
 302 
 303   // Second we handle om_list_globals._free_list:
 304   prepend_list_to_common(new_blk + 1, &new_blk[_BLOCKSIZE - 1], _BLOCKSIZE - 1,
 305                          &om_list_globals._free_list, &om_list_globals._free_count);
 306 }
 307 
 308 // Prepend a list of ObjectMonitors to om_list_globals._free_list.
 309 // 'tail' is the last ObjectMonitor in the list and there are 'count'
 310 // on the list. Also updates om_list_globals._free_count.
 311 static void prepend_list_to_global_free_list(ObjectMonitor* list,
 312                                              ObjectMonitor* tail, int count) {
 313   prepend_list_to_common(list, tail, count, &om_list_globals._free_list,
 314                          &om_list_globals._free_count);
 315 }
 316 
 317 // Prepend a list of ObjectMonitors to om_list_globals._wait_list.
 318 // 'tail' is the last ObjectMonitor in the list and there are 'count'
 319 // on the list. Also updates om_list_globals._wait_count.
 320 static void prepend_list_to_global_wait_list(ObjectMonitor* list,
 321                                              ObjectMonitor* tail, int count) {
 322   prepend_list_to_common(list, tail, count, &om_list_globals._wait_list,
 323                          &om_list_globals._wait_count);
 324 }
 325 
 326 // Prepend a list of ObjectMonitors to om_list_globals._in_use_list.
 327 // 'tail' is the last ObjectMonitor in the list and there are 'count'
 328 // on the list. Also updates om_list_globals._in_use_list.
 329 static void prepend_list_to_global_in_use_list(ObjectMonitor* list,
 330                                                ObjectMonitor* tail, int count) {
 331   prepend_list_to_common(list, tail, count, &om_list_globals._in_use_list,
 332                          &om_list_globals._in_use_count);
 333 }
 334 
 335 // Prepend an ObjectMonitor to the specified list. Also updates
 336 // the specified counter.
 337 static void prepend_to_common(ObjectMonitor* m, ObjectMonitor** list_p,
 338                               int* count_p) {
 339   while (true) {
 340     om_lock(m);  // Lock m so we can safely update its next field.
 341     ObjectMonitor* cur = NULL;
 342     // Lock the list head to guard against races with a list walker
 343     // or async deflater thread (which only races in om_in_use_list):
 344     if ((cur = get_list_head_locked(list_p)) != NULL) {
 345       // List head is now locked so we can safely switch it.
 346       m->set_next_om(cur);  // m now points to cur (and unlocks m)
 347       Atomic::store(list_p, m);  // Switch list head to unlocked m.
 348       om_unlock(cur);
 349       break;
 350     }
 351     // The list is empty so try to set the list head.
 352     assert(cur == NULL, "cur must be NULL: cur=" INTPTR_FORMAT, p2i(cur));
 353     m->set_next_om(cur);  // m now points to NULL (and unlocks m)
 354     if (Atomic::cmpxchg(list_p, cur, m) == cur) {
 355       // List head is now unlocked m.
 356       break;
 357     }
 358     // Implied else: try it all again
 359   }
 360   Atomic::inc(count_p);
 361 }
 362 
 363 // Prepend an ObjectMonitor to a per-thread om_free_list.
 364 // Also updates the per-thread om_free_count.
 365 static void prepend_to_om_free_list(Thread* self, ObjectMonitor* m) {
 366   prepend_to_common(m, &self->om_free_list, &self->om_free_count);
 367 }
 368 
 369 // Prepend an ObjectMonitor to a per-thread om_in_use_list.
 370 // Also updates the per-thread om_in_use_count.
 371 static void prepend_to_om_in_use_list(Thread* self, ObjectMonitor* m) {
 372   prepend_to_common(m, &self->om_in_use_list, &self->om_in_use_count);
 373 }
 374 
 375 // Take an ObjectMonitor from the start of the specified list. Also
 376 // decrements the specified counter. Returns NULL if none are available.
 377 static ObjectMonitor* take_from_start_of_common(ObjectMonitor** list_p,
 378                                                 int* count_p) {
 379   ObjectMonitor* take = NULL;
 380   // Lock the list head to guard against races with a list walker
 381   // or async deflater thread (which only races in om_list_globals._free_list):
 382   if ((take = get_list_head_locked(list_p)) == NULL) {
 383     return NULL;  // None are available.
 384   }
 385   ObjectMonitor* next = unmarked_next(take);
 386   // Switch locked list head to next (which unlocks the list head, but
 387   // leaves take locked):
 388   Atomic::store(list_p, next);
 389   Atomic::dec(count_p);
 390   // Unlock take, but leave the next value for any lagging list
 391   // walkers. It will get cleaned up when take is prepended to
 392   // the in-use list:
 393   om_unlock(take);
 394   return take;
 395 }
 396 
 397 // Take an ObjectMonitor from the start of the om_list_globals._free_list.
 398 // Also updates om_list_globals._free_count. Returns NULL if none are
 399 // available.
 400 static ObjectMonitor* take_from_start_of_global_free_list() {
 401   return take_from_start_of_common(&om_list_globals._free_list,
 402                                    &om_list_globals._free_count);
 403 }
 404 
 405 // Take an ObjectMonitor from the start of a per-thread free-list.
 406 // Also updates om_free_count. Returns NULL if none are available.
 407 static ObjectMonitor* take_from_start_of_om_free_list(Thread* self) {
 408   return take_from_start_of_common(&self->om_free_list, &self->om_free_count);
 409 }
 410 
 411 
 412 // =====================> Quick functions
 413 
 414 // The quick_* forms are special fast-path variants used to improve
 415 // performance.  In the simplest case, a "quick_*" implementation could
 416 // simply return false, in which case the caller will perform the necessary
 417 // state transitions and call the slow-path form.
 418 // The fast-path is designed to handle frequently arising cases in an efficient
 419 // manner and is just a degenerate "optimistic" variant of the slow-path.
 420 // returns true  -- to indicate the call was satisfied.
 421 // returns false -- to indicate the call needs the services of the slow-path.
 422 // A no-loitering ordinance is in effect for code in the quick_* family
 423 // operators: safepoints or indefinite blocking (blocking that might span a
 424 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 425 // entry.
 426 //
 427 // Consider: An interesting optimization is to have the JIT recognize the
 428 // following common idiom:
 429 //   synchronized (someobj) { .... ; notify(); }
 430 // That is, we find a notify() or notifyAll() call that immediately precedes
 431 // the monitorexit operation.  In that case the JIT could fuse the operations
 432 // into a single notifyAndExit() runtime primitive.
 433 
 434 bool ObjectSynchronizer::quick_notify(oopDesc* obj, Thread* self, bool all) {
 435   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 436   assert(self->is_Java_thread(), "invariant");
 437   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 438   NoSafepointVerifier nsv;
 439   if (obj == NULL) return false;  // slow-path for invalid obj
 440   const markWord mark = obj->mark();
 441 
 442   if (mark.has_locker() && self->is_lock_owned((address)mark.locker())) {
 443     // Degenerate notify
 444     // stack-locked by caller so by definition the implied waitset is empty.
 445     return true;
 446   }
 447 
 448   if (mark.has_monitor()) {
 449     ObjectMonitor* const mon = mark.monitor();
 450     assert(mon->object() == obj, "invariant");
 451     if (mon->owner() != self) return false;  // slow-path for IMS exception
 452 
 453     if (mon->first_waiter() != NULL) {
 454       // We have one or more waiters. Since this is an inflated monitor
 455       // that we own, we can transfer one or more threads from the waitset
 456       // to the entrylist here and now, avoiding the slow-path.
 457       if (all) {
 458         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
 459       } else {
 460         DTRACE_MONITOR_PROBE(notify, mon, obj, self);
 461       }
 462       int free_count = 0;
 463       do {
 464         mon->INotify(self);
 465         ++free_count;
 466       } while (mon->first_waiter() != NULL && all);
 467       OM_PERFDATA_OP(Notifications, inc(free_count));
 468     }
 469     return true;
 470   }
 471 
 472   // biased locking and any other IMS exception states take the slow-path
 473   return false;
 474 }
 475 
 476 
 477 // The LockNode emitted directly at the synchronization site would have
 478 // been too big if it were to have included support for the cases of inflated
 479 // recursive enter and exit, so they go here instead.
 480 // Note that we can't safely call AsyncPrintJavaStack() from within
 481 // quick_enter() as our thread state remains _in_Java.
 482 
 483 bool ObjectSynchronizer::quick_enter(oop obj, Thread* self,
 484                                      BasicLock * lock) {
 485   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 486   assert(self->is_Java_thread(), "invariant");
 487   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 488   NoSafepointVerifier nsv;
 489   if (obj == NULL) return false;       // Need to throw NPE
 490 
 491   const markWord mark = obj->mark();
 492 
 493   if (mark.has_monitor()) {
 494     ObjectMonitor* const m = mark.monitor();
 495     if (AsyncDeflateIdleMonitors) {
 496       // An async deflation can race us before we manage to make the
 497       // ObjectMonitor busy by setting the owner below. If we detect
 498       // that race we just bail out to the slow-path here.
 499       if (m->object() == NULL) {
 500         return false;
 501       }
 502     } else {
 503       assert(m->object() == obj, "invariant");
 504     }
 505     Thread* const owner = (Thread *) m->_owner;
 506 
 507     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 508     // and observability
 509     // Case: light contention possibly amenable to TLE
 510     // Case: TLE inimical operations such as nested/recursive synchronization
 511 
 512     if (owner == self) {
 513       m->_recursions++;
 514       return true;
 515     }
 516 
 517     // This Java Monitor is inflated so obj's header will never be
 518     // displaced to this thread's BasicLock. Make the displaced header
 519     // non-NULL so this BasicLock is not seen as recursive nor as
 520     // being locked. We do this unconditionally so that this thread's
 521     // BasicLock cannot be mis-interpreted by any stack walkers. For
 522     // performance reasons, stack walkers generally first check for
 523     // Biased Locking in the object's header, the second check is for
 524     // stack-locking in the object's header, the third check is for
 525     // recursive stack-locking in the displaced header in the BasicLock,
 526     // and last are the inflated Java Monitor (ObjectMonitor) checks.
 527     lock->set_displaced_header(markWord::unused_mark());
 528 
 529     if (owner == NULL && m->try_set_owner_from(NULL, self) == NULL) {
 530       assert(m->_recursions == 0, "invariant");
 531       return true;
 532     }
 533   }
 534 
 535   // Note that we could inflate in quick_enter.
 536   // This is likely a useful optimization
 537   // Critically, in quick_enter() we must not:
 538   // -- perform bias revocation, or
 539   // -- block indefinitely, or
 540   // -- reach a safepoint
 541 
 542   return false;        // revert to slow-path
 543 }
 544 
 545 // -----------------------------------------------------------------------------
 546 // Monitor Enter/Exit
 547 // The interpreter and compiler assembly code tries to lock using the fast path
 548 // of this algorithm. Make sure to update that code if the following function is
 549 // changed. The implementation is extremely sensitive to race condition. Be careful.
 550 
 551 void ObjectSynchronizer::enter(Handle obj, BasicLock* lock, TRAPS) {
 552   if (UseBiasedLocking) {
 553     if (!SafepointSynchronize::is_at_safepoint()) {
 554       BiasedLocking::revoke(obj, THREAD);
 555     } else {
 556       BiasedLocking::revoke_at_safepoint(obj);
 557     }
 558   }
 559 
 560   markWord mark = obj->mark();
 561   assert(!mark.has_bias_pattern(), "should not see bias pattern here");
 562 
 563   if (mark.is_neutral()) {
 564     // Anticipate successful CAS -- the ST of the displaced mark must
 565     // be visible <= the ST performed by the CAS.
 566     lock->set_displaced_header(mark);
 567     if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) {
 568       return;
 569     }
 570     // Fall through to inflate() ...
 571   } else if (mark.has_locker() &&
 572              THREAD->is_lock_owned((address)mark.locker())) {
 573     assert(lock != mark.locker(), "must not re-lock the same lock");
 574     assert(lock != (BasicLock*)obj->mark().value(), "don't relock with same BasicLock");
 575     lock->set_displaced_header(markWord::from_pointer(NULL));
 576     return;
 577   }
 578 
 579   // The object header will never be displaced to this lock,
 580   // so it does not matter what the value is, except that it
 581   // must be non-zero to avoid looking like a re-entrant lock,
 582   // and must not look locked either.
 583   lock->set_displaced_header(markWord::unused_mark());
 584   // An async deflation can race after the inflate() call and before
 585   // enter() can make the ObjectMonitor busy. enter() returns false if
 586   // we have lost the race to async deflation and we simply try again.
 587   while (true) {
 588     ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_monitor_enter);
 589     if (monitor->enter(THREAD)) {
 590       return;
 591     }
 592   }
 593 }
 594 
 595 void ObjectSynchronizer::exit(oop object, BasicLock* lock, TRAPS) {
 596   markWord mark = object->mark();
 597   // We cannot check for Biased Locking if we are racing an inflation.
 598   assert(mark == markWord::INFLATING() ||
 599          !mark.has_bias_pattern(), "should not see bias pattern here");
 600 
 601   markWord dhw = lock->displaced_header();
 602   if (dhw.value() == 0) {
 603     // If the displaced header is NULL, then this exit matches up with
 604     // a recursive enter. No real work to do here except for diagnostics.
 605 #ifndef PRODUCT
 606     if (mark != markWord::INFLATING()) {
 607       // Only do diagnostics if we are not racing an inflation. Simply
 608       // exiting a recursive enter of a Java Monitor that is being
 609       // inflated is safe; see the has_monitor() comment below.
 610       assert(!mark.is_neutral(), "invariant");
 611       assert(!mark.has_locker() ||
 612              THREAD->is_lock_owned((address)mark.locker()), "invariant");
 613       if (mark.has_monitor()) {
 614         // The BasicLock's displaced_header is marked as a recursive
 615         // enter and we have an inflated Java Monitor (ObjectMonitor).
 616         // This is a special case where the Java Monitor was inflated
 617         // after this thread entered the stack-lock recursively. When a
 618         // Java Monitor is inflated, we cannot safely walk the Java
 619         // Monitor owner's stack and update the BasicLocks because a
 620         // Java Monitor can be asynchronously inflated by a thread that
 621         // does not own the Java Monitor.
 622         ObjectMonitor* m = mark.monitor();
 623         assert(((oop)(m->object()))->mark() == mark, "invariant");
 624         assert(m->is_entered(THREAD), "invariant");
 625       }
 626     }
 627 #endif
 628     return;
 629   }
 630 
 631   if (mark == markWord::from_pointer(lock)) {
 632     // If the object is stack-locked by the current thread, try to
 633     // swing the displaced header from the BasicLock back to the mark.
 634     assert(dhw.is_neutral(), "invariant");
 635     if (object->cas_set_mark(dhw, mark) == mark) {
 636       return;
 637     }
 638   }
 639 
 640   // We have to take the slow-path of possible inflation and then exit.
 641   // The ObjectMonitor* can't be async deflated until ownership is
 642   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 643   ObjectMonitor* monitor = inflate(THREAD, object, inflate_cause_vm_internal);
 644   monitor->exit(true, THREAD);
 645 }
 646 
 647 // -----------------------------------------------------------------------------
 648 // Class Loader  support to workaround deadlocks on the class loader lock objects
 649 // Also used by GC
 650 // complete_exit()/reenter() are used to wait on a nested lock
 651 // i.e. to give up an outer lock completely and then re-enter
 652 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 653 //  1) complete_exit lock1 - saving recursion count
 654 //  2) wait on lock2
 655 //  3) when notified on lock2, unlock lock2
 656 //  4) reenter lock1 with original recursion count
 657 //  5) lock lock2
 658 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 659 intx ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 660   if (UseBiasedLocking) {
 661     BiasedLocking::revoke(obj, THREAD);
 662     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 663   }
 664 
 665   // The ObjectMonitor* can't be async deflated until ownership is
 666   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 667   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal);
 668   intptr_t ret_code = monitor->complete_exit(THREAD);
 669   return ret_code;
 670 }
 671 
 672 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 673 void ObjectSynchronizer::reenter(Handle obj, intx recursions, TRAPS) {
 674   if (UseBiasedLocking) {
 675     BiasedLocking::revoke(obj, THREAD);
 676     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 677   }
 678 
 679   // An async deflation can race after the inflate() call and before
 680   // reenter() -> enter() can make the ObjectMonitor busy. reenter() ->
 681   // enter() returns false if we have lost the race to async deflation
 682   // and we simply try again.
 683   while (true) {
 684     ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal);
 685     if (monitor->reenter(recursions, THREAD)) {
 686       return;
 687     }
 688   }
 689 }
 690 
 691 // -----------------------------------------------------------------------------
 692 // JNI locks on java objects
 693 // NOTE: must use heavy weight monitor to handle jni monitor enter
 694 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 695   // the current locking is from JNI instead of Java code
 696   if (UseBiasedLocking) {
 697     BiasedLocking::revoke(obj, THREAD);
 698     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 699   }
 700   THREAD->set_current_pending_monitor_is_from_java(false);
 701   // An async deflation can race after the inflate() call and before
 702   // enter() can make the ObjectMonitor busy. enter() returns false if
 703   // we have lost the race to async deflation and we simply try again.
 704   while (true) {
 705     ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_jni_enter);
 706     if (monitor->enter(THREAD)) {
 707       break;
 708     }
 709   }
 710   THREAD->set_current_pending_monitor_is_from_java(true);
 711 }
 712 
 713 // NOTE: must use heavy weight monitor to handle jni monitor exit
 714 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 715   if (UseBiasedLocking) {
 716     Handle h_obj(THREAD, obj);
 717     BiasedLocking::revoke(h_obj, THREAD);
 718     obj = h_obj();
 719   }
 720   assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 721 
 722   // The ObjectMonitor* can't be async deflated until ownership is
 723   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 724   ObjectMonitor* monitor = inflate(THREAD, obj, inflate_cause_jni_exit);
 725   // If this thread has locked the object, exit the monitor. We
 726   // intentionally do not use CHECK here because we must exit the
 727   // monitor even if an exception is pending.
 728   if (monitor->check_owner(THREAD)) {
 729     monitor->exit(true, THREAD);
 730   }
 731 }
 732 
 733 // -----------------------------------------------------------------------------
 734 // Internal VM locks on java objects
 735 // standard constructor, allows locking failures
 736 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool do_lock) {
 737   _dolock = do_lock;
 738   _thread = thread;
 739   _thread->check_for_valid_safepoint_state();
 740   _obj = obj;
 741 
 742   if (_dolock) {
 743     ObjectSynchronizer::enter(_obj, &_lock, _thread);
 744   }
 745 }
 746 
 747 ObjectLocker::~ObjectLocker() {
 748   if (_dolock) {
 749     ObjectSynchronizer::exit(_obj(), &_lock, _thread);
 750   }
 751 }
 752 
 753 
 754 // -----------------------------------------------------------------------------
 755 //  Wait/Notify/NotifyAll
 756 // NOTE: must use heavy weight monitor to handle wait()
 757 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 758   if (UseBiasedLocking) {
 759     BiasedLocking::revoke(obj, THREAD);
 760     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 761   }
 762   if (millis < 0) {
 763     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 764   }
 765   // The ObjectMonitor* can't be async deflated because the _waiters
 766   // field is incremented before ownership is dropped and decremented
 767   // after ownership is regained.
 768   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_wait);
 769 
 770   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 771   monitor->wait(millis, true, THREAD);
 772 
 773   // This dummy call is in place to get around dtrace bug 6254741.  Once
 774   // that's fixed we can uncomment the following line, remove the call
 775   // and change this function back into a "void" func.
 776   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 777   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 778   return ret_code;
 779 }
 780 
 781 void ObjectSynchronizer::wait_uninterruptibly(Handle obj, jlong millis, TRAPS) {
 782   if (UseBiasedLocking) {
 783     BiasedLocking::revoke(obj, THREAD);
 784     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 785   }
 786   if (millis < 0) {
 787     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 788   }
 789   // The ObjectMonitor* can't be async deflated because the _waiters
 790   // field is incremented before ownership is dropped and decremented
 791   // after ownership is regained.
 792   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_wait);
 793   monitor->wait(millis, false, THREAD);
 794 }
 795 
 796 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 797   if (UseBiasedLocking) {
 798     BiasedLocking::revoke(obj, THREAD);
 799     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 800   }
 801 
 802   markWord mark = obj->mark();
 803   if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) {
 804     return;
 805   }
 806   // The ObjectMonitor* can't be async deflated until ownership is
 807   // dropped by the calling thread.
 808   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_notify);
 809   monitor->notify(THREAD);
 810 }
 811 
 812 // NOTE: see comment of notify()
 813 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 814   if (UseBiasedLocking) {
 815     BiasedLocking::revoke(obj, THREAD);
 816     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 817   }
 818 
 819   markWord mark = obj->mark();
 820   if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) {
 821     return;
 822   }
 823   // The ObjectMonitor* can't be async deflated until ownership is
 824   // dropped by the calling thread.
 825   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_notify);
 826   monitor->notifyAll(THREAD);
 827 }
 828 
 829 // -----------------------------------------------------------------------------
 830 // Hash Code handling
 831 //
 832 // Performance concern:
 833 // OrderAccess::storestore() calls release() which at one time stored 0
 834 // into the global volatile OrderAccess::dummy variable. This store was
 835 // unnecessary for correctness. Many threads storing into a common location
 836 // causes considerable cache migration or "sloshing" on large SMP systems.
 837 // As such, I avoided using OrderAccess::storestore(). In some cases
 838 // OrderAccess::fence() -- which incurs local latency on the executing
 839 // processor -- is a better choice as it scales on SMP systems.
 840 //
 841 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 842 // a discussion of coherency costs. Note that all our current reference
 843 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 844 // x64, and SPARC.
 845 //
 846 // As a general policy we use "volatile" to control compiler-based reordering
 847 // and explicit fences (barriers) to control for architectural reordering
 848 // performed by the CPU(s) or platform.
 849 
 850 struct SharedGlobals {
 851   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 852   // These are highly shared mostly-read variables.
 853   // To avoid false-sharing they need to be the sole occupants of a cache line.
 854   volatile int stw_random;
 855   volatile int stw_cycle;
 856   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 857   // Hot RW variable -- Sequester to avoid false-sharing
 858   volatile int hc_sequence;
 859   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 860 };
 861 
 862 static SharedGlobals GVars;
 863 static int _forceMonitorScavenge = 0; // Scavenge required and pending
 864 
 865 static markWord read_stable_mark(oop obj) {
 866   markWord mark = obj->mark();
 867   if (!mark.is_being_inflated()) {
 868     return mark;       // normal fast-path return
 869   }
 870 
 871   int its = 0;
 872   for (;;) {
 873     markWord mark = obj->mark();
 874     if (!mark.is_being_inflated()) {
 875       return mark;    // normal fast-path return
 876     }
 877 
 878     // The object is being inflated by some other thread.
 879     // The caller of read_stable_mark() must wait for inflation to complete.
 880     // Avoid live-lock
 881     // TODO: consider calling SafepointSynchronize::do_call_back() while
 882     // spinning to see if there's a safepoint pending.  If so, immediately
 883     // yielding or blocking would be appropriate.  Avoid spinning while
 884     // there is a safepoint pending.
 885     // TODO: add inflation contention performance counters.
 886     // TODO: restrict the aggregate number of spinners.
 887 
 888     ++its;
 889     if (its > 10000 || !os::is_MP()) {
 890       if (its & 1) {
 891         os::naked_yield();
 892       } else {
 893         // Note that the following code attenuates the livelock problem but is not
 894         // a complete remedy.  A more complete solution would require that the inflating
 895         // thread hold the associated inflation lock.  The following code simply restricts
 896         // the number of spinners to at most one.  We'll have N-2 threads blocked
 897         // on the inflationlock, 1 thread holding the inflation lock and using
 898         // a yield/park strategy, and 1 thread in the midst of inflation.
 899         // A more refined approach would be to change the encoding of INFLATING
 900         // to allow encapsulation of a native thread pointer.  Threads waiting for
 901         // inflation to complete would use CAS to push themselves onto a singly linked
 902         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 903         // and calling park().  When inflation was complete the thread that accomplished inflation
 904         // would detach the list and set the markword to inflated with a single CAS and
 905         // then for each thread on the list, set the flag and unpark() the thread.
 906         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 907         // wakes at most one thread whereas we need to wake the entire list.
 908         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 909         int YieldThenBlock = 0;
 910         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 911         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 912         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 913         while (obj->mark() == markWord::INFLATING()) {
 914           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 915           // so we periodically call self->_ParkEvent->park(1).
 916           // We use a mixed spin/yield/block mechanism.
 917           if ((YieldThenBlock++) >= 16) {
 918             Thread::current()->_ParkEvent->park(1);
 919           } else {
 920             os::naked_yield();
 921           }
 922         }
 923         Thread::muxRelease(gInflationLocks + ix);
 924       }
 925     } else {
 926       SpinPause();       // SMP-polite spinning
 927     }
 928   }
 929 }
 930 
 931 // hashCode() generation :
 932 //
 933 // Possibilities:
 934 // * MD5Digest of {obj,stw_random}
 935 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function.
 936 // * A DES- or AES-style SBox[] mechanism
 937 // * One of the Phi-based schemes, such as:
 938 //   2654435761 = 2^32 * Phi (golden ratio)
 939 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ;
 940 // * A variation of Marsaglia's shift-xor RNG scheme.
 941 // * (obj ^ stw_random) is appealing, but can result
 942 //   in undesirable regularity in the hashCode values of adjacent objects
 943 //   (objects allocated back-to-back, in particular).  This could potentially
 944 //   result in hashtable collisions and reduced hashtable efficiency.
 945 //   There are simple ways to "diffuse" the middle address bits over the
 946 //   generated hashCode values:
 947 
 948 static inline intptr_t get_next_hash(Thread* self, oop obj) {
 949   intptr_t value = 0;
 950   if (hashCode == 0) {
 951     // This form uses global Park-Miller RNG.
 952     // On MP system we'll have lots of RW access to a global, so the
 953     // mechanism induces lots of coherency traffic.
 954     value = os::random();
 955   } else if (hashCode == 1) {
 956     // This variation has the property of being stable (idempotent)
 957     // between STW operations.  This can be useful in some of the 1-0
 958     // synchronization schemes.
 959     intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3;
 960     value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random;
 961   } else if (hashCode == 2) {
 962     value = 1;            // for sensitivity testing
 963   } else if (hashCode == 3) {
 964     value = ++GVars.hc_sequence;
 965   } else if (hashCode == 4) {
 966     value = cast_from_oop<intptr_t>(obj);
 967   } else {
 968     // Marsaglia's xor-shift scheme with thread-specific state
 969     // This is probably the best overall implementation -- we'll
 970     // likely make this the default in future releases.
 971     unsigned t = self->_hashStateX;
 972     t ^= (t << 11);
 973     self->_hashStateX = self->_hashStateY;
 974     self->_hashStateY = self->_hashStateZ;
 975     self->_hashStateZ = self->_hashStateW;
 976     unsigned v = self->_hashStateW;
 977     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 978     self->_hashStateW = v;
 979     value = v;
 980   }
 981 
 982   value &= markWord::hash_mask;
 983   if (value == 0) value = 0xBAD;
 984   assert(value != markWord::no_hash, "invariant");
 985   return value;
 986 }
 987 
 988 intptr_t ObjectSynchronizer::FastHashCode(Thread* self, oop obj) {
 989   if (UseBiasedLocking) {
 990     // NOTE: many places throughout the JVM do not expect a safepoint
 991     // to be taken here, in particular most operations on perm gen
 992     // objects. However, we only ever bias Java instances and all of
 993     // the call sites of identity_hash that might revoke biases have
 994     // been checked to make sure they can handle a safepoint. The
 995     // added check of the bias pattern is to avoid useless calls to
 996     // thread-local storage.
 997     if (obj->mark().has_bias_pattern()) {
 998       // Handle for oop obj in case of STW safepoint
 999       Handle hobj(self, obj);
1000       // Relaxing assertion for bug 6320749.
1001       assert(Universe::verify_in_progress() ||
1002              !SafepointSynchronize::is_at_safepoint(),
1003              "biases should not be seen by VM thread here");
1004       BiasedLocking::revoke(hobj, JavaThread::current());
1005       obj = hobj();
1006       assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
1007     }
1008   }
1009 
1010   // hashCode() is a heap mutator ...
1011   // Relaxing assertion for bug 6320749.
1012   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
1013          !SafepointSynchronize::is_at_safepoint(), "invariant");
1014   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
1015          self->is_Java_thread() , "invariant");
1016   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
1017          ((JavaThread *)self)->thread_state() != _thread_blocked, "invariant");
1018 
1019   while (true) {
1020     ObjectMonitor* monitor = NULL;
1021     markWord temp, test;
1022     intptr_t hash;
1023     markWord mark = read_stable_mark(obj);
1024 
1025     // object should remain ineligible for biased locking
1026     assert(!mark.has_bias_pattern(), "invariant");
1027 
1028     if (mark.is_neutral()) {            // if this is a normal header
1029       hash = mark.hash();
1030       if (hash != 0) {                  // if it has a hash, just return it
1031         return hash;
1032       }
1033       hash = get_next_hash(self, obj);  // get a new hash
1034       temp = mark.copy_set_hash(hash);  // merge the hash into header
1035                                         // try to install the hash
1036       test = obj->cas_set_mark(temp, mark);
1037       if (test == mark) {               // if the hash was installed, return it
1038         return hash;
1039       }
1040       // Failed to install the hash. It could be that another thread
1041       // installed the hash just before our attempt or inflation has
1042       // occurred or... so we fall thru to inflate the monitor for
1043       // stability and then install the hash.
1044     } else if (mark.has_monitor()) {
1045       // The first stage of a racing async deflation won't affect the
1046       // hash value if this ObjectMonitor happens to already have one.
1047       monitor = mark.monitor();
1048       temp = monitor->header();
1049       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1050       hash = temp.hash();
1051       if (hash != 0) {                  // if it has a hash, just return it
1052         return hash;
1053       }
1054       // Fall thru so we only have one place that installs the hash in
1055       // the ObjectMonitor.
1056     } else if (self->is_lock_owned((address)mark.locker())) {
1057       // This is a stack lock owned by the calling thread so fetch the
1058       // displaced markWord from the BasicLock on the stack.
1059       temp = mark.displaced_mark_helper();
1060       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1061       hash = temp.hash();
1062       if (hash != 0) {                  // if it has a hash, just return it
1063         return hash;
1064       }
1065       // WARNING:
1066       // The displaced header in the BasicLock on a thread's stack
1067       // is strictly immutable. It CANNOT be changed in ANY cases.
1068       // So we have to inflate the stack lock into an ObjectMonitor
1069       // even if the current thread owns the lock. The BasicLock on
1070       // a thread's stack can be asynchronously read by other threads
1071       // during an inflate() call so any change to that stack memory
1072       // may not propagate to other threads correctly.
1073     }
1074 
1075     // Inflate the monitor to set the hash.
1076 
1077     // An async deflation can race after the inflate() call and before we
1078     // can update the ObjectMonitor's header with the hash value below.
1079     monitor = inflate(self, obj, inflate_cause_hash_code);
1080     // Load ObjectMonitor's header/dmw field and see if it has a hash.
1081     mark = monitor->header();
1082     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1083     hash = mark.hash();
1084     if (hash == 0) {                    // if it does not have a hash
1085       hash = get_next_hash(self, obj);  // get a new hash
1086       temp = mark.copy_set_hash(hash);  // merge the hash into header
1087       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1088       uintptr_t v = Atomic::cmpxchg((volatile uintptr_t*)monitor->header_addr(), mark.value(), temp.value());
1089       test = markWord(v);
1090       if (test != mark) {
1091         // The attempt to update the ObjectMonitor's header/dmw field
1092         // did not work. This can happen if another thread managed to
1093         // merge in the hash just before our cmpxchg().
1094         // If we add any new usages of the header/dmw field, this code
1095         // will need to be updated.
1096         hash = test.hash();
1097         assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
1098         assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash");
1099       }
1100       if (monitor->is_being_async_deflated()) {
1101         // If we detect that async deflation has occurred, then we
1102         // simply retry so that the hash value can be stored in either
1103         // the object's header or in the re-inflated ObjectMonitor's
1104         // header as appropriate.
1105         continue;
1106       }
1107     }
1108     // We finally get the hash.
1109     return hash;
1110   }
1111 }
1112 
1113 // Deprecated -- use FastHashCode() instead.
1114 
1115 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
1116   return FastHashCode(Thread::current(), obj());
1117 }
1118 
1119 
1120 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
1121                                                    Handle h_obj) {
1122   if (UseBiasedLocking) {
1123     BiasedLocking::revoke(h_obj, thread);
1124     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
1125   }
1126 
1127   assert(thread == JavaThread::current(), "Can only be called on current thread");
1128   oop obj = h_obj();
1129 
1130   markWord mark = read_stable_mark(obj);
1131 
1132   // Uncontended case, header points to stack
1133   if (mark.has_locker()) {
1134     return thread->is_lock_owned((address)mark.locker());
1135   }
1136   // Contended case, header points to ObjectMonitor (tagged pointer)
1137   if (mark.has_monitor()) {
1138     // The first stage of async deflation does not affect any field
1139     // used by this comparison so the ObjectMonitor* is usable here.
1140     ObjectMonitor* monitor = mark.monitor();
1141     return monitor->is_entered(thread) != 0;
1142   }
1143   // Unlocked case, header in place
1144   assert(mark.is_neutral(), "sanity check");
1145   return false;
1146 }
1147 
1148 // Be aware of this method could revoke bias of the lock object.
1149 // This method queries the ownership of the lock handle specified by 'h_obj'.
1150 // If the current thread owns the lock, it returns owner_self. If no
1151 // thread owns the lock, it returns owner_none. Otherwise, it will return
1152 // owner_other.
1153 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
1154 (JavaThread *self, Handle h_obj) {
1155   // The caller must beware this method can revoke bias, and
1156   // revocation can result in a safepoint.
1157   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
1158   assert(self->thread_state() != _thread_blocked, "invariant");
1159 
1160   // Possible mark states: neutral, biased, stack-locked, inflated
1161 
1162   if (UseBiasedLocking && h_obj()->mark().has_bias_pattern()) {
1163     // CASE: biased
1164     BiasedLocking::revoke(h_obj, self);
1165     assert(!h_obj->mark().has_bias_pattern(),
1166            "biases should be revoked by now");
1167   }
1168 
1169   assert(self == JavaThread::current(), "Can only be called on current thread");
1170   oop obj = h_obj();
1171   markWord mark = read_stable_mark(obj);
1172 
1173   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
1174   if (mark.has_locker()) {
1175     return self->is_lock_owned((address)mark.locker()) ?
1176       owner_self : owner_other;
1177   }
1178 
1179   // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor.
1180   // The Object:ObjectMonitor relationship is stable as long as we're
1181   // not at a safepoint and AsyncDeflateIdleMonitors is false.
1182   if (mark.has_monitor()) {
1183     // The first stage of async deflation does not affect any field
1184     // used by this comparison so the ObjectMonitor* is usable here.
1185     ObjectMonitor* monitor = mark.monitor();
1186     void* owner = monitor->owner();
1187     if (owner == NULL) return owner_none;
1188     return (owner == self ||
1189             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
1190   }
1191 
1192   // CASE: neutral
1193   assert(mark.is_neutral(), "sanity check");
1194   return owner_none;           // it's unlocked
1195 }
1196 
1197 // FIXME: jvmti should call this
1198 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
1199   if (UseBiasedLocking) {
1200     if (SafepointSynchronize::is_at_safepoint()) {
1201       BiasedLocking::revoke_at_safepoint(h_obj);
1202     } else {
1203       BiasedLocking::revoke(h_obj, JavaThread::current());
1204     }
1205     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
1206   }
1207 
1208   oop obj = h_obj();
1209   address owner = NULL;
1210 
1211   markWord mark = read_stable_mark(obj);
1212 
1213   // Uncontended case, header points to stack
1214   if (mark.has_locker()) {
1215     owner = (address) mark.locker();
1216   }
1217 
1218   // Contended case, header points to ObjectMonitor (tagged pointer)
1219   else if (mark.has_monitor()) {
1220     // The first stage of async deflation does not affect any field
1221     // used by this comparison so the ObjectMonitor* is usable here.
1222     ObjectMonitor* monitor = mark.monitor();
1223     assert(monitor != NULL, "monitor should be non-null");
1224     owner = (address) monitor->owner();
1225   }
1226 
1227   if (owner != NULL) {
1228     // owning_thread_from_monitor_owner() may also return NULL here
1229     return Threads::owning_thread_from_monitor_owner(t_list, owner);
1230   }
1231 
1232   // Unlocked case, header in place
1233   // Cannot have assertion since this object may have been
1234   // locked by another thread when reaching here.
1235   // assert(mark.is_neutral(), "sanity check");
1236 
1237   return NULL;
1238 }
1239 
1240 // Visitors ...
1241 
1242 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
1243   PaddedObjectMonitor* block = Atomic::load(&g_block_list);
1244   while (block != NULL) {
1245     assert(block->object() == CHAINMARKER, "must be a block header");
1246     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
1247       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
1248       if (!mid->is_free() && mid->object() != NULL) {
1249         // Only process with closure if the object is set.
1250 
1251         // monitors_iterate() is only called at a safepoint or when the
1252         // target thread is suspended or when the target thread is
1253         // operating on itself. The closures are only interested in an
1254         // owned ObjectMonitor and ownership cannot be dropped under the
1255         // calling contexts so the ObjectMonitor cannot be async deflated.
1256         closure->do_monitor(mid);
1257       }
1258     }
1259     // unmarked_next() is not needed with g_block_list (no locking
1260     // used with block linkage _next_om fields).
1261     block = (PaddedObjectMonitor*)block->next_om();
1262   }
1263 }
1264 
1265 static bool monitors_used_above_threshold() {
1266   int population = Atomic::load(&om_list_globals._population);
1267   if (population == 0) {
1268     return false;
1269   }
1270   if (MonitorUsedDeflationThreshold > 0) {
1271     int monitors_used = population - Atomic::load(&om_list_globals._free_count) -
1272                         Atomic::load(&om_list_globals._wait_count);
1273     int monitor_usage = (monitors_used * 100LL) / population;
1274     return monitor_usage > MonitorUsedDeflationThreshold;
1275   }
1276   return false;
1277 }
1278 
1279 // Returns true if MonitorBound is set (> 0) and if the specified
1280 // cnt is > MonitorBound. Otherwise returns false.
1281 static bool is_MonitorBound_exceeded(const int cnt) {
1282   const int mx = MonitorBound;
1283   return mx > 0 && cnt > mx;
1284 }
1285 
1286 bool ObjectSynchronizer::is_async_deflation_needed() {
1287   if (!AsyncDeflateIdleMonitors) {
1288     return false;
1289   }
1290   if (is_async_deflation_requested()) {
1291     // Async deflation request.
1292     return true;
1293   }
1294   if (AsyncDeflationInterval > 0 &&
1295       time_since_last_async_deflation_ms() > AsyncDeflationInterval &&
1296       monitors_used_above_threshold()) {
1297     // It's been longer than our specified deflate interval and there
1298     // are too many monitors in use. We don't deflate more frequently
1299     // than AsyncDeflationInterval (unless is_async_deflation_requested)
1300     // in order to not swamp the ServiceThread.
1301     _last_async_deflation_time_ns = os::javaTimeNanos();
1302     return true;
1303   }
1304   int monitors_used = Atomic::load(&om_list_globals._population) -
1305                       Atomic::load(&om_list_globals._free_count) -
1306                       Atomic::load(&om_list_globals._wait_count);
1307   if (is_MonitorBound_exceeded(monitors_used)) {
1308     // Not enough ObjectMonitors on the global free list.
1309     return true;
1310   }
1311   return false;
1312 }
1313 
1314 bool ObjectSynchronizer::needs_monitor_scavenge() {
1315   if (Atomic::load(&_forceMonitorScavenge) == 1) {
1316     log_info(monitorinflation)("Monitor scavenge needed, triggering safepoint cleanup.");
1317     return true;
1318   }
1319   return false;
1320 }
1321 
1322 bool ObjectSynchronizer::is_safepoint_deflation_needed() {
1323   if (!AsyncDeflateIdleMonitors) {
1324     if (monitors_used_above_threshold()) {
1325       // Too many monitors in use.
1326       return true;
1327     }
1328     return needs_monitor_scavenge();
1329   }
1330   if (is_special_deflation_requested()) {
1331     // For AsyncDeflateIdleMonitors only do a safepoint deflation
1332     // if there is a special deflation request.
1333     return true;
1334   }
1335   return false;
1336 }
1337 
1338 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1339   return (os::javaTimeNanos() - _last_async_deflation_time_ns) / (NANOUNITS / MILLIUNITS);
1340 }
1341 
1342 void ObjectSynchronizer::oops_do(OopClosure* f) {
1343   // We only scan the global used list here (for moribund threads), and
1344   // the thread-local monitors in Thread::oops_do().
1345   global_used_oops_do(f);
1346 }
1347 
1348 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
1349   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1350   list_oops_do(Atomic::load(&om_list_globals._in_use_list), f);
1351 }
1352 
1353 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
1354   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1355   list_oops_do(thread->om_in_use_list, f);
1356 }
1357 
1358 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) {
1359   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1360   // The oops_do() phase does not overlap with monitor deflation
1361   // so no need to lock ObjectMonitors for the list traversal.
1362   for (ObjectMonitor* mid = list; mid != NULL; mid = unmarked_next(mid)) {
1363     if (mid->object() != NULL) {
1364       f->do_oop((oop*)mid->object_addr());
1365     }
1366   }
1367 }
1368 
1369 
1370 // -----------------------------------------------------------------------------
1371 // ObjectMonitor Lifecycle
1372 // -----------------------
1373 // Inflation unlinks monitors from om_list_globals._free_list or a per-thread
1374 // free list and associates them with objects. Deflation -- which occurs at
1375 // STW-time or asynchronously -- disassociates idle monitors from objects.
1376 // Such scavenged monitors are returned to the om_list_globals._free_list.
1377 //
1378 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
1379 //
1380 // Lifecycle:
1381 // --   unassigned and on the om_list_globals._free_list
1382 // --   unassigned and on a per-thread free list
1383 // --   assigned to an object.  The object is inflated and the mark refers
1384 //      to the ObjectMonitor.
1385 
1386 
1387 // Constraining monitor pool growth via MonitorBound ...
1388 //
1389 // If MonitorBound is not set (<= 0), MonitorBound checks are disabled.
1390 //
1391 // When safepoint deflation is being used (!AsyncDeflateIdleMonitors):
1392 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
1393 // the rate of scavenging is driven primarily by GC.  As such,  we can find
1394 // an inordinate number of monitors in circulation.
1395 // To avoid that scenario we can artificially induce a STW safepoint
1396 // if the pool appears to be growing past some reasonable bound.
1397 // Generally we favor time in space-time tradeoffs, but as there's no
1398 // natural back-pressure on the # of extant monitors we need to impose some
1399 // type of limit.  Beware that if MonitorBound is set to too low a value
1400 // we could just loop. In addition, if MonitorBound is set to a low value
1401 // we'll incur more safepoints, which are harmful to performance.
1402 // See also: GuaranteedSafepointInterval
1403 //
1404 // When safepoint deflation is being used and MonitorBound is set, the
1405 // boundry applies to
1406 //     (om_list_globals._population - om_list_globals._free_count)
1407 // i.e., if there are not enough ObjectMonitors on the global free list,
1408 // then a safepoint deflation is induced. Picking a good MonitorBound value
1409 // is non-trivial.
1410 //
1411 // When async deflation is being used:
1412 // The monitor pool is still grow-only. Async deflation is requested
1413 // by a safepoint's cleanup phase or by the ServiceThread at periodic
1414 // intervals when is_async_deflation_needed() returns true. In
1415 // addition to other policies that are checked, if there are not
1416 // enough ObjectMonitors on the global free list, then
1417 // is_async_deflation_needed() will return true. The ServiceThread
1418 // calls deflate_global_idle_monitors_using_JT() and also calls
1419 // deflate_per_thread_idle_monitors_using_JT() as needed.
1420 
1421 static void InduceScavenge(Thread* self, const char * Whence) {
1422   assert(!AsyncDeflateIdleMonitors, "is not used by async deflation");
1423 
1424   // Induce STW safepoint to trim monitors
1425   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1426   // More precisely, trigger a cleanup safepoint as the number
1427   // of active monitors passes the specified threshold.
1428   // TODO: assert thread state is reasonable
1429 
1430   if (Atomic::xchg(&_forceMonitorScavenge, 1) == 0) {
1431     VMThread::check_for_forced_cleanup();
1432   }
1433 }
1434 
1435 ObjectMonitor* ObjectSynchronizer::om_alloc(Thread* self) {
1436   // A large MAXPRIVATE value reduces both list lock contention
1437   // and list coherency traffic, but also tends to increase the
1438   // number of ObjectMonitors in circulation as well as the STW
1439   // scavenge costs.  As usual, we lean toward time in space-time
1440   // tradeoffs.
1441   const int MAXPRIVATE = 1024;
1442   NoSafepointVerifier nsv;
1443 
1444   for (;;) {
1445     ObjectMonitor* m;
1446 
1447     // 1: try to allocate from the thread's local om_free_list.
1448     // Threads will attempt to allocate first from their local list, then
1449     // from the global list, and only after those attempts fail will the
1450     // thread attempt to instantiate new monitors. Thread-local free lists
1451     // improve allocation latency, as well as reducing coherency traffic
1452     // on the shared global list.
1453     m = take_from_start_of_om_free_list(self);
1454     if (m != NULL) {
1455       guarantee(m->object() == NULL, "invariant");
1456       m->set_allocation_state(ObjectMonitor::New);
1457       prepend_to_om_in_use_list(self, m);
1458       return m;
1459     }
1460 
1461     // 2: try to allocate from the global om_list_globals._free_list
1462     // If we're using thread-local free lists then try
1463     // to reprovision the caller's free list.
1464     if (Atomic::load(&om_list_globals._free_list) != NULL) {
1465       // Reprovision the thread's om_free_list.
1466       // Use bulk transfers to reduce the allocation rate and heat
1467       // on various locks.
1468       for (int i = self->om_free_provision; --i >= 0;) {
1469         ObjectMonitor* take = take_from_start_of_global_free_list();
1470         if (take == NULL) {
1471           break;  // No more are available.
1472         }
1473         guarantee(take->object() == NULL, "invariant");
1474         if (AsyncDeflateIdleMonitors) {
1475           // We allowed 3 field values to linger during async deflation.
1476           // Clear or restore them as appropriate.
1477           take->set_header(markWord::zero());
1478           // DEFLATER_MARKER is the only non-NULL value we should see here.
1479           take->try_set_owner_from(DEFLATER_MARKER, NULL);
1480           if (take->contentions() < 0) {
1481             // Add back max_jint to restore the contentions field to its
1482             // proper value.
1483             Atomic::add(&take->_contentions, max_jint);
1484 
1485 #ifdef ASSERT
1486             jint l_contentions = take->contentions();
1487 #endif
1488             assert(l_contentions >= 0, "must not be negative: l_contentions=%d, contentions=%d",
1489                    l_contentions, take->contentions());
1490           }
1491         }
1492         take->Recycle();
1493         // Since we're taking from the global free-list, take must be Free.
1494         // om_release() also sets the allocation state to Free because it
1495         // is called from other code paths.
1496         assert(take->is_free(), "invariant");
1497         om_release(self, take, false);
1498       }
1499       self->om_free_provision += 1 + (self->om_free_provision / 2);
1500       if (self->om_free_provision > MAXPRIVATE) self->om_free_provision = MAXPRIVATE;
1501 
1502       if (!AsyncDeflateIdleMonitors &&
1503           is_MonitorBound_exceeded(Atomic::load(&om_list_globals._population) -
1504                                    Atomic::load(&om_list_globals._free_count))) {
1505         // Not enough ObjectMonitors on the global free list.
1506         // We can't safely induce a STW safepoint from om_alloc() as our thread
1507         // state may not be appropriate for such activities and callers may hold
1508         // naked oops, so instead we defer the action.
1509         InduceScavenge(self, "om_alloc");
1510       }
1511       continue;
1512     }
1513 
1514     // 3: allocate a block of new ObjectMonitors
1515     // Both the local and global free lists are empty -- resort to malloc().
1516     // In the current implementation ObjectMonitors are TSM - immortal.
1517     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1518     // each ObjectMonitor to start at the beginning of a cache line,
1519     // so we use align_up().
1520     // A better solution would be to use C++ placement-new.
1521     // BEWARE: As it stands currently, we don't run the ctors!
1522     assert(_BLOCKSIZE > 1, "invariant");
1523     size_t neededsize = sizeof(PaddedObjectMonitor) * _BLOCKSIZE;
1524     PaddedObjectMonitor* temp;
1525     size_t aligned_size = neededsize + (OM_CACHE_LINE_SIZE - 1);
1526     void* real_malloc_addr = NEW_C_HEAP_ARRAY(char, aligned_size, mtInternal);
1527     temp = (PaddedObjectMonitor*)align_up(real_malloc_addr, OM_CACHE_LINE_SIZE);
1528     (void)memset((void *) temp, 0, neededsize);
1529 
1530     // Format the block.
1531     // initialize the linked list, each monitor points to its next
1532     // forming the single linked free list, the very first monitor
1533     // will points to next block, which forms the block list.
1534     // The trick of using the 1st element in the block as g_block_list
1535     // linkage should be reconsidered.  A better implementation would
1536     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1537 
1538     for (int i = 1; i < _BLOCKSIZE; i++) {
1539       temp[i].set_next_om((ObjectMonitor*)&temp[i + 1]);
1540       assert(temp[i].is_free(), "invariant");
1541     }
1542 
1543     // terminate the last monitor as the end of list
1544     temp[_BLOCKSIZE - 1].set_next_om((ObjectMonitor*)NULL);
1545 
1546     // Element [0] is reserved for global list linkage
1547     temp[0].set_object(CHAINMARKER);
1548 
1549     // Consider carving out this thread's current request from the
1550     // block in hand.  This avoids some lock traffic and redundant
1551     // list activity.
1552 
1553     prepend_block_to_lists(temp);
1554   }
1555 }
1556 
1557 // Place "m" on the caller's private per-thread om_free_list.
1558 // In practice there's no need to clamp or limit the number of
1559 // monitors on a thread's om_free_list as the only non-allocation time
1560 // we'll call om_release() is to return a monitor to the free list after
1561 // a CAS attempt failed. This doesn't allow unbounded #s of monitors to
1562 // accumulate on a thread's free list.
1563 //
1564 // Key constraint: all ObjectMonitors on a thread's free list and the global
1565 // free list must have their object field set to null. This prevents the
1566 // scavenger -- deflate_monitor_list() or deflate_monitor_list_using_JT()
1567 // -- from reclaiming them while we are trying to release them.
1568 
1569 void ObjectSynchronizer::om_release(Thread* self, ObjectMonitor* m,
1570                                     bool from_per_thread_alloc) {
1571   guarantee(m->header().value() == 0, "invariant");
1572   guarantee(m->object() == NULL, "invariant");
1573   NoSafepointVerifier nsv;
1574 
1575   if ((m->is_busy() | m->_recursions) != 0) {
1576     stringStream ss;
1577     fatal("freeing in-use monitor: %s, recursions=" INTX_FORMAT,
1578           m->is_busy_to_string(&ss), m->_recursions);
1579   }
1580   m->set_allocation_state(ObjectMonitor::Free);
1581   // _next_om is used for both per-thread in-use and free lists so
1582   // we have to remove 'm' from the in-use list first (as needed).
1583   if (from_per_thread_alloc) {
1584     // Need to remove 'm' from om_in_use_list.
1585     ObjectMonitor* mid = NULL;
1586     ObjectMonitor* next = NULL;
1587 
1588     // This list walk can race with another list walker or with async
1589     // deflation so we have to worry about an ObjectMonitor being
1590     // removed from this list while we are walking it.
1591 
1592     // Lock the list head to avoid racing with another list walker
1593     // or with async deflation.
1594     if ((mid = get_list_head_locked(&self->om_in_use_list)) == NULL) {
1595       fatal("thread=" INTPTR_FORMAT " in-use list must not be empty.", p2i(self));
1596     }
1597     next = unmarked_next(mid);
1598     if (m == mid) {
1599       // First special case:
1600       // 'm' matches mid, is the list head and is locked. Switch the list
1601       // head to next which unlocks the list head, but leaves the extracted
1602       // mid locked:
1603       Atomic::store(&self->om_in_use_list, next);
1604     } else if (m == next) {
1605       // Second special case:
1606       // 'm' matches next after the list head and we already have the list
1607       // head locked so set mid to what we are extracting:
1608       mid = next;
1609       // Lock mid to prevent races with a list walker or an async
1610       // deflater thread that's ahead of us. The locked list head
1611       // prevents races from behind us.
1612       om_lock(mid);
1613       // Update next to what follows mid (if anything):
1614       next = unmarked_next(mid);
1615       // Switch next after the list head to new next which unlocks the
1616       // list head, but leaves the extracted mid locked:
1617       self->om_in_use_list->set_next_om(next);
1618     } else {
1619       // We have to search the list to find 'm'.
1620       guarantee(next != NULL, "thread=" INTPTR_FORMAT ": om_in_use_list=" INTPTR_FORMAT
1621                 " is too short.", p2i(self), p2i(self->om_in_use_list));
1622       // Our starting anchor is next after the list head which is the
1623       // last ObjectMonitor we checked:
1624       ObjectMonitor* anchor = next;
1625       // Lock anchor to prevent races with a list walker or an async
1626       // deflater thread that's ahead of us. The locked list head
1627       // prevents races from behind us.
1628       om_lock(anchor);
1629       om_unlock(mid);  // Unlock the list head now that anchor is locked.
1630       while ((mid = unmarked_next(anchor)) != NULL) {
1631         if (m == mid) {
1632           // We found 'm' on the per-thread in-use list so extract it.
1633           // Update next to what follows mid (if anything):
1634           next = unmarked_next(mid);
1635           // Switch next after the anchor to new next which unlocks the
1636           // anchor, but leaves the extracted mid locked:
1637           anchor->set_next_om(next);
1638           break;
1639         } else {
1640           // Lock the next anchor to prevent races with a list walker
1641           // or an async deflater thread that's ahead of us. The locked
1642           // current anchor prevents races from behind us.
1643           om_lock(mid);
1644           // Unlock current anchor now that next anchor is locked:
1645           om_unlock(anchor);
1646           anchor = mid;  // Advance to new anchor and try again.
1647         }
1648       }
1649     }
1650 
1651     if (mid == NULL) {
1652       // Reached end of the list and didn't find 'm' so:
1653       fatal("thread=" INTPTR_FORMAT " must find m=" INTPTR_FORMAT "on om_in_use_list="
1654             INTPTR_FORMAT, p2i(self), p2i(m), p2i(self->om_in_use_list));
1655     }
1656 
1657     // At this point mid is disconnected from the in-use list so
1658     // its lock no longer has any effects on the in-use list.
1659     Atomic::dec(&self->om_in_use_count);
1660     // Unlock mid, but leave the next value for any lagging list
1661     // walkers. It will get cleaned up when mid is prepended to
1662     // the thread's free list:
1663     om_unlock(mid);
1664   }
1665 
1666   prepend_to_om_free_list(self, m);
1667   guarantee(m->is_free(), "invariant");
1668 }
1669 
1670 // Return ObjectMonitors on a moribund thread's free and in-use
1671 // lists to the appropriate global lists. The ObjectMonitors on the
1672 // per-thread in-use list may still be in use by other threads.
1673 //
1674 // We currently call om_flush() from Threads::remove() before the
1675 // thread has been excised from the thread list and is no longer a
1676 // mutator. This means that om_flush() cannot run concurrently with
1677 // a safepoint and interleave with deflate_idle_monitors(). In
1678 // particular, this ensures that the thread's in-use monitors are
1679 // scanned by a GC safepoint, either via Thread::oops_do() (before
1680 // om_flush() is called) or via ObjectSynchronizer::oops_do() (after
1681 // om_flush() is called).
1682 //
1683 // With AsyncDeflateIdleMonitors, deflate_global_idle_monitors_using_JT()
1684 // and deflate_per_thread_idle_monitors_using_JT() (in another thread) can
1685 // run at the same time as om_flush() so we have to follow a careful
1686 // protocol to prevent list corruption.
1687 
1688 void ObjectSynchronizer::om_flush(Thread* self) {
1689   // Process the per-thread in-use list first to be consistent.
1690   int in_use_count = 0;
1691   ObjectMonitor* in_use_list = NULL;
1692   ObjectMonitor* in_use_tail = NULL;
1693   NoSafepointVerifier nsv;
1694 
1695   // This function can race with a list walker or with an async
1696   // deflater thread so we lock the list head to prevent confusion.
1697   // An async deflater thread checks to see if the target thread
1698   // is exiting, but if it has made it past that check before we
1699   // started exiting, then it is racing to get to the in-use list.
1700   if ((in_use_list = get_list_head_locked(&self->om_in_use_list)) != NULL) {
1701     // At this point, we have locked the in-use list head so a racing
1702     // thread cannot come in after us. However, a racing thread could
1703     // be ahead of us; we'll detect that and delay to let it finish.
1704     //
1705     // The thread is going away, however the ObjectMonitors on the
1706     // om_in_use_list may still be in-use by other threads. Link
1707     // them to in_use_tail, which will be linked into the global
1708     // in-use list (om_list_globals._in_use_list) below.
1709     //
1710     // Account for the in-use list head before the loop since it is
1711     // already locked (by this thread):
1712     in_use_tail = in_use_list;
1713     in_use_count++;
1714     for (ObjectMonitor* cur_om = unmarked_next(in_use_list); cur_om != NULL;) {
1715       if (is_locked(cur_om)) {
1716         // cur_om is locked so there must be a racing walker or async
1717         // deflater thread ahead of us so we'll give it a chance to finish.
1718         while (is_locked(cur_om)) {
1719           os::naked_short_sleep(1);
1720         }
1721         // Refetch the possibly changed next field and try again.
1722         cur_om = unmarked_next(in_use_tail);
1723         continue;
1724       }
1725       if (cur_om->is_free()) {
1726         // cur_om was deflated and the allocation state was changed
1727         // to Free while it was locked. We happened to see it just
1728         // after it was unlocked (and added to the free list).
1729         // Refetch the possibly changed next field and try again.
1730         cur_om = unmarked_next(in_use_tail);
1731         continue;
1732       }
1733       in_use_tail = cur_om;
1734       in_use_count++;
1735       cur_om = unmarked_next(cur_om);
1736     }
1737     guarantee(in_use_tail != NULL, "invariant");
1738     int l_om_in_use_count = Atomic::load(&self->om_in_use_count);
1739     ADIM_guarantee(l_om_in_use_count == in_use_count, "in-use counts don't match: "
1740                    "l_om_in_use_count=%d, in_use_count=%d", l_om_in_use_count, in_use_count);
1741     Atomic::store(&self->om_in_use_count, 0);
1742     // Clear the in-use list head (which also unlocks it):
1743     Atomic::store(&self->om_in_use_list, (ObjectMonitor*)NULL);
1744     om_unlock(in_use_list);
1745   }
1746 
1747   int free_count = 0;
1748   ObjectMonitor* free_list = NULL;
1749   ObjectMonitor* free_tail = NULL;
1750   // This function can race with a list walker thread so we lock the
1751   // list head to prevent confusion.
1752   if ((free_list = get_list_head_locked(&self->om_free_list)) != NULL) {
1753     // At this point, we have locked the free list head so a racing
1754     // thread cannot come in after us. However, a racing thread could
1755     // be ahead of us; we'll detect that and delay to let it finish.
1756     //
1757     // The thread is going away. Set 'free_tail' to the last per-thread free
1758     // monitor which will be linked to om_list_globals._free_list below.
1759     //
1760     // Account for the free list head before the loop since it is
1761     // already locked (by this thread):
1762     free_tail = free_list;
1763     free_count++;
1764     for (ObjectMonitor* s = unmarked_next(free_list); s != NULL; s = unmarked_next(s)) {
1765       if (is_locked(s)) {
1766         // s is locked so there must be a racing walker thread ahead
1767         // of us so we'll give it a chance to finish.
1768         while (is_locked(s)) {
1769           os::naked_short_sleep(1);
1770         }
1771       }
1772       free_tail = s;
1773       free_count++;
1774       guarantee(s->object() == NULL, "invariant");
1775       if (s->is_busy()) {
1776         stringStream ss;
1777         fatal("must be !is_busy: %s", s->is_busy_to_string(&ss));
1778       }
1779     }
1780     guarantee(free_tail != NULL, "invariant");
1781     int l_om_free_count = Atomic::load(&self->om_free_count);
1782     ADIM_guarantee(l_om_free_count == free_count, "free counts don't match: "
1783                    "l_om_free_count=%d, free_count=%d", l_om_free_count, free_count);
1784     Atomic::store(&self->om_free_count, 0);
1785     Atomic::store(&self->om_free_list, (ObjectMonitor*)NULL);
1786     om_unlock(free_list);
1787   }
1788 
1789   if (free_tail != NULL) {
1790     prepend_list_to_global_free_list(free_list, free_tail, free_count);
1791   }
1792 
1793   if (in_use_tail != NULL) {
1794     prepend_list_to_global_in_use_list(in_use_list, in_use_tail, in_use_count);
1795   }
1796 
1797   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1798   LogStreamHandle(Info, monitorinflation) lsh_info;
1799   LogStream* ls = NULL;
1800   if (log_is_enabled(Debug, monitorinflation)) {
1801     ls = &lsh_debug;
1802   } else if ((free_count != 0 || in_use_count != 0) &&
1803              log_is_enabled(Info, monitorinflation)) {
1804     ls = &lsh_info;
1805   }
1806   if (ls != NULL) {
1807     ls->print_cr("om_flush: jt=" INTPTR_FORMAT ", free_count=%d"
1808                  ", in_use_count=%d" ", om_free_provision=%d",
1809                  p2i(self), free_count, in_use_count, self->om_free_provision);
1810   }
1811 }
1812 
1813 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1814                                        const oop obj,
1815                                        ObjectSynchronizer::InflateCause cause) {
1816   assert(event != NULL, "invariant");
1817   assert(event->should_commit(), "invariant");
1818   event->set_monitorClass(obj->klass());
1819   event->set_address((uintptr_t)(void*)obj);
1820   event->set_cause((u1)cause);
1821   event->commit();
1822 }
1823 
1824 // Fast path code shared by multiple functions
1825 void ObjectSynchronizer::inflate_helper(oop obj) {
1826   markWord mark = obj->mark();
1827   if (mark.has_monitor()) {
1828     ObjectMonitor* monitor = mark.monitor();
1829     assert(ObjectSynchronizer::verify_objmon_isinpool(monitor), "monitor=" INTPTR_FORMAT " is invalid", p2i(monitor));
1830     markWord dmw = monitor->header();
1831     assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value());
1832     return;
1833   }
1834   (void)inflate(Thread::current(), obj, inflate_cause_vm_internal);
1835 }
1836 
1837 ObjectMonitor* ObjectSynchronizer::inflate(Thread* self, oop object,
1838                                            const InflateCause cause) {
1839   // Inflate mutates the heap ...
1840   // Relaxing assertion for bug 6320749.
1841   assert(Universe::verify_in_progress() ||
1842          !SafepointSynchronize::is_at_safepoint(), "invariant");
1843 
1844   EventJavaMonitorInflate event;
1845 
1846   for (;;) {
1847     const markWord mark = object->mark();
1848     assert(!mark.has_bias_pattern(), "invariant");
1849 
1850     // The mark can be in one of the following states:
1851     // *  Inflated     - just return
1852     // *  Stack-locked - coerce it to inflated
1853     // *  INFLATING    - busy wait for conversion to complete
1854     // *  Neutral      - aggressively inflate the object.
1855     // *  BIASED       - Illegal.  We should never see this
1856 
1857     // CASE: inflated
1858     if (mark.has_monitor()) {
1859       ObjectMonitor* inf = mark.monitor();
1860       markWord dmw = inf->header();
1861       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1862       assert(AsyncDeflateIdleMonitors || inf->object() == object, "invariant");
1863       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1864       return inf;
1865     }
1866 
1867     // CASE: inflation in progress - inflating over a stack-lock.
1868     // Some other thread is converting from stack-locked to inflated.
1869     // Only that thread can complete inflation -- other threads must wait.
1870     // The INFLATING value is transient.
1871     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1872     // We could always eliminate polling by parking the thread on some auxiliary list.
1873     if (mark == markWord::INFLATING()) {
1874       read_stable_mark(object);
1875       continue;
1876     }
1877 
1878     // CASE: stack-locked
1879     // Could be stack-locked either by this thread or by some other thread.
1880     //
1881     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1882     // to install INFLATING into the mark word.  We originally installed INFLATING,
1883     // allocated the objectmonitor, and then finally STed the address of the
1884     // objectmonitor into the mark.  This was correct, but artificially lengthened
1885     // the interval in which INFLATED appeared in the mark, thus increasing
1886     // the odds of inflation contention.
1887     //
1888     // We now use per-thread private objectmonitor free lists.
1889     // These list are reprovisioned from the global free list outside the
1890     // critical INFLATING...ST interval.  A thread can transfer
1891     // multiple objectmonitors en-mass from the global free list to its local free list.
1892     // This reduces coherency traffic and lock contention on the global free list.
1893     // Using such local free lists, it doesn't matter if the om_alloc() call appears
1894     // before or after the CAS(INFLATING) operation.
1895     // See the comments in om_alloc().
1896 
1897     LogStreamHandle(Trace, monitorinflation) lsh;
1898 
1899     if (mark.has_locker()) {
1900       ObjectMonitor* m = om_alloc(self);
1901       // Optimistically prepare the objectmonitor - anticipate successful CAS
1902       // We do this before the CAS in order to minimize the length of time
1903       // in which INFLATING appears in the mark.
1904       m->Recycle();
1905       m->_Responsible  = NULL;
1906       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1907 
1908       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1909       if (cmp != mark) {
1910         // om_release() will reset the allocation state from New to Free.
1911         om_release(self, m, true);
1912         continue;       // Interference -- just retry
1913       }
1914 
1915       // We've successfully installed INFLATING (0) into the mark-word.
1916       // This is the only case where 0 will appear in a mark-word.
1917       // Only the singular thread that successfully swings the mark-word
1918       // to 0 can perform (or more precisely, complete) inflation.
1919       //
1920       // Why do we CAS a 0 into the mark-word instead of just CASing the
1921       // mark-word from the stack-locked value directly to the new inflated state?
1922       // Consider what happens when a thread unlocks a stack-locked object.
1923       // It attempts to use CAS to swing the displaced header value from the
1924       // on-stack BasicLock back into the object header.  Recall also that the
1925       // header value (hash code, etc) can reside in (a) the object header, or
1926       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1927       // header in an ObjectMonitor.  The inflate() routine must copy the header
1928       // value from the BasicLock on the owner's stack to the ObjectMonitor, all
1929       // the while preserving the hashCode stability invariants.  If the owner
1930       // decides to release the lock while the value is 0, the unlock will fail
1931       // and control will eventually pass from slow_exit() to inflate.  The owner
1932       // will then spin, waiting for the 0 value to disappear.   Put another way,
1933       // the 0 causes the owner to stall if the owner happens to try to
1934       // drop the lock (restoring the header from the BasicLock to the object)
1935       // while inflation is in-progress.  This protocol avoids races that might
1936       // would otherwise permit hashCode values to change or "flicker" for an object.
1937       // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable.
1938       // 0 serves as a "BUSY" inflate-in-progress indicator.
1939 
1940 
1941       // fetch the displaced mark from the owner's stack.
1942       // The owner can't die or unwind past the lock while our INFLATING
1943       // object is in the mark.  Furthermore the owner can't complete
1944       // an unlock on the object, either.
1945       markWord dmw = mark.displaced_mark_helper();
1946       // Catch if the object's header is not neutral (not locked and
1947       // not marked is what we care about here).
1948       ADIM_guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1949 
1950       // Setup monitor fields to proper values -- prepare the monitor
1951       m->set_header(dmw);
1952 
1953       // Optimization: if the mark.locker stack address is associated
1954       // with this thread we could simply set m->_owner = self.
1955       // Note that a thread can inflate an object
1956       // that it has stack-locked -- as might happen in wait() -- directly
1957       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1958       if (AsyncDeflateIdleMonitors) {
1959         m->set_owner_from(NULL, DEFLATER_MARKER, mark.locker());
1960       } else {
1961         m->set_owner_from(NULL, mark.locker());
1962       }
1963       m->set_object(object);
1964       // TODO-FIXME: assert BasicLock->dhw != 0.
1965 
1966       // Must preserve store ordering. The monitor state must
1967       // be stable at the time of publishing the monitor address.
1968       guarantee(object->mark() == markWord::INFLATING(), "invariant");
1969       object->release_set_mark(markWord::encode(m));
1970 
1971       // Once ObjectMonitor is configured and the object is associated
1972       // with the ObjectMonitor, it is safe to allow async deflation:
1973       assert(m->is_new(), "freshly allocated monitor must be new");
1974       m->set_allocation_state(ObjectMonitor::Old);
1975 
1976       // Hopefully the performance counters are allocated on distinct cache lines
1977       // to avoid false sharing on MP systems ...
1978       OM_PERFDATA_OP(Inflations, inc());
1979       if (log_is_enabled(Trace, monitorinflation)) {
1980         ResourceMark rm(self);
1981         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1982                      INTPTR_FORMAT ", type='%s'", p2i(object),
1983                      object->mark().value(), object->klass()->external_name());
1984       }
1985       if (event.should_commit()) {
1986         post_monitor_inflate_event(&event, object, cause);
1987       }
1988       return m;
1989     }
1990 
1991     // CASE: neutral
1992     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1993     // If we know we're inflating for entry it's better to inflate by swinging a
1994     // pre-locked ObjectMonitor pointer into the object header.   A successful
1995     // CAS inflates the object *and* confers ownership to the inflating thread.
1996     // In the current implementation we use a 2-step mechanism where we CAS()
1997     // to inflate and then CAS() again to try to swing _owner from NULL to self.
1998     // An inflateTry() method that we could call from enter() would be useful.
1999 
2000     // Catch if the object's header is not neutral (not locked and
2001     // not marked is what we care about here).
2002     ADIM_guarantee(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
2003     ObjectMonitor* m = om_alloc(self);
2004     // prepare m for installation - set monitor to initial state
2005     m->Recycle();
2006     m->set_header(mark);
2007     if (AsyncDeflateIdleMonitors) {
2008       // DEFLATER_MARKER is the only non-NULL value we should see here.
2009       m->try_set_owner_from(DEFLATER_MARKER, NULL);
2010     }
2011     m->set_object(object);
2012     m->_Responsible  = NULL;
2013     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
2014 
2015     if (object->cas_set_mark(markWord::encode(m), mark) != mark) {
2016       m->set_header(markWord::zero());
2017       m->set_object(NULL);
2018       m->Recycle();
2019       // om_release() will reset the allocation state from New to Free.
2020       om_release(self, m, true);
2021       m = NULL;
2022       continue;
2023       // interference - the markword changed - just retry.
2024       // The state-transitions are one-way, so there's no chance of
2025       // live-lock -- "Inflated" is an absorbing state.
2026     }
2027 
2028     // Once the ObjectMonitor is configured and object is associated
2029     // with the ObjectMonitor, it is safe to allow async deflation:
2030     assert(m->is_new(), "freshly allocated monitor must be new");
2031     m->set_allocation_state(ObjectMonitor::Old);
2032 
2033     // Hopefully the performance counters are allocated on distinct
2034     // cache lines to avoid false sharing on MP systems ...
2035     OM_PERFDATA_OP(Inflations, inc());
2036     if (log_is_enabled(Trace, monitorinflation)) {
2037       ResourceMark rm(self);
2038       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
2039                    INTPTR_FORMAT ", type='%s'", p2i(object),
2040                    object->mark().value(), object->klass()->external_name());
2041     }
2042     if (event.should_commit()) {
2043       post_monitor_inflate_event(&event, object, cause);
2044     }
2045     return m;
2046   }
2047 }
2048 
2049 
2050 // We maintain a list of in-use monitors for each thread.
2051 //
2052 // For safepoint based deflation:
2053 // deflate_thread_local_monitors() scans a single thread's in-use list, while
2054 // deflate_idle_monitors() scans only a global list of in-use monitors which
2055 // is populated only as a thread dies (see om_flush()).
2056 //
2057 // These operations are called at all safepoints, immediately after mutators
2058 // are stopped, but before any objects have moved. Collectively they traverse
2059 // the population of in-use monitors, deflating where possible. The scavenged
2060 // monitors are returned to the global monitor free list.
2061 //
2062 // Beware that we scavenge at *every* stop-the-world point. Having a large
2063 // number of monitors in-use could negatively impact performance. We also want
2064 // to minimize the total # of monitors in circulation, as they incur a small
2065 // footprint penalty.
2066 //
2067 // Perversely, the heap size -- and thus the STW safepoint rate --
2068 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
2069 // which in turn can mean large(r) numbers of ObjectMonitors in circulation.
2070 // This is an unfortunate aspect of this design.
2071 //
2072 // For async deflation:
2073 // If a special deflation request is made, then the safepoint based
2074 // deflation mechanism is used. Otherwise, an async deflation request
2075 // is registered with the ServiceThread and it is notified.
2076 
2077 void ObjectSynchronizer::do_safepoint_work(DeflateMonitorCounters* counters) {
2078   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2079 
2080   // The per-thread in-use lists are handled in
2081   // ParallelSPCleanupThreadClosure::do_thread().
2082 
2083   if (!AsyncDeflateIdleMonitors || is_special_deflation_requested()) {
2084     // Use the older mechanism for the global in-use list or if a
2085     // special deflation has been requested before the safepoint.
2086     ObjectSynchronizer::deflate_idle_monitors(counters);
2087     return;
2088   }
2089 
2090   log_debug(monitorinflation)("requesting async deflation of idle monitors.");
2091   // Request deflation of idle monitors by the ServiceThread:
2092   set_is_async_deflation_requested(true);
2093   MonitorLocker ml(Service_lock, Mutex::_no_safepoint_check_flag);
2094   ml.notify_all();
2095 
2096   if (log_is_enabled(Debug, monitorinflation)) {
2097     // exit_globals()'s call to audit_and_print_stats() is done
2098     // at the Info level and not at a safepoint.
2099     // For safepoint based deflation, audit_and_print_stats() is called
2100     // in ObjectSynchronizer::finish_deflate_idle_monitors() at the
2101     // Debug level at a safepoint.
2102     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2103   }
2104 }
2105 
2106 // Deflate a single monitor if not in-use
2107 // Return true if deflated, false if in-use
2108 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
2109                                          ObjectMonitor** free_head_p,
2110                                          ObjectMonitor** free_tail_p) {
2111   bool deflated;
2112   // Normal case ... The monitor is associated with obj.
2113   const markWord mark = obj->mark();
2114   guarantee(mark == markWord::encode(mid), "should match: mark="
2115             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, mark.value(),
2116             markWord::encode(mid).value());
2117   // Make sure that mark.monitor() and markWord::encode() agree:
2118   guarantee(mark.monitor() == mid, "should match: monitor()=" INTPTR_FORMAT
2119             ", mid=" INTPTR_FORMAT, p2i(mark.monitor()), p2i(mid));
2120   const markWord dmw = mid->header();
2121   guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
2122 
2123   if (mid->is_busy()) {
2124     // Easy checks are first - the ObjectMonitor is busy so no deflation.
2125     deflated = false;
2126   } else {
2127     // Deflate the monitor if it is no longer being used
2128     // It's idle - scavenge and return to the global free list
2129     // plain old deflation ...
2130     if (log_is_enabled(Trace, monitorinflation)) {
2131       ResourceMark rm;
2132       log_trace(monitorinflation)("deflate_monitor: "
2133                                   "object=" INTPTR_FORMAT ", mark="
2134                                   INTPTR_FORMAT ", type='%s'", p2i(obj),
2135                                   mark.value(), obj->klass()->external_name());
2136     }
2137 
2138     // Restore the header back to obj
2139     obj->release_set_mark(dmw);
2140     if (AsyncDeflateIdleMonitors) {
2141       // clear() expects the owner field to be NULL.
2142       // DEFLATER_MARKER is the only non-NULL value we should see here.
2143       mid->try_set_owner_from(DEFLATER_MARKER, NULL);
2144     }
2145     mid->clear();
2146 
2147     assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT,
2148            p2i(mid->object()));
2149     assert(mid->is_free(), "invariant");
2150 
2151     // Move the deflated ObjectMonitor to the working free list
2152     // defined by free_head_p and free_tail_p.
2153     if (*free_head_p == NULL) *free_head_p = mid;
2154     if (*free_tail_p != NULL) {
2155       // We append to the list so the caller can use mid->_next_om
2156       // to fix the linkages in its context.
2157       ObjectMonitor* prevtail = *free_tail_p;
2158       // Should have been cleaned up by the caller:
2159       // Note: Should not have to lock prevtail here since we're at a
2160       // safepoint and ObjectMonitors on the local free list should
2161       // not be accessed in parallel.
2162 #ifdef ASSERT
2163       ObjectMonitor* l_next_om = prevtail->next_om();
2164 #endif
2165       assert(l_next_om == NULL, "must be NULL: _next_om=" INTPTR_FORMAT, p2i(l_next_om));
2166       prevtail->set_next_om(mid);
2167     }
2168     *free_tail_p = mid;
2169     // At this point, mid->_next_om still refers to its current
2170     // value and another ObjectMonitor's _next_om field still
2171     // refers to this ObjectMonitor. Those linkages have to be
2172     // cleaned up by the caller who has the complete context.
2173     deflated = true;
2174   }
2175   return deflated;
2176 }
2177 
2178 // Deflate the specified ObjectMonitor if not in-use using a JavaThread.
2179 // Returns true if it was deflated and false otherwise.
2180 //
2181 // The async deflation protocol sets owner to DEFLATER_MARKER and
2182 // makes contentions negative as signals to contending threads that
2183 // an async deflation is in progress. There are a number of checks
2184 // as part of the protocol to make sure that the calling thread has
2185 // not lost the race to a contending thread.
2186 //
2187 // The ObjectMonitor has been successfully async deflated when:
2188 // (owner == DEFLATER_MARKER && contentions < 0)
2189 // Contending threads that see those values know to retry their operation.
2190 //
2191 bool ObjectSynchronizer::deflate_monitor_using_JT(ObjectMonitor* mid,
2192                                                   ObjectMonitor** free_head_p,
2193                                                   ObjectMonitor** free_tail_p) {
2194   assert(AsyncDeflateIdleMonitors, "sanity check");
2195   assert(Thread::current()->is_Java_thread(), "precondition");
2196   // A newly allocated ObjectMonitor should not be seen here so we
2197   // avoid an endless inflate/deflate cycle.
2198   assert(mid->is_old(), "must be old: allocation_state=%d",
2199          (int) mid->allocation_state());
2200 
2201   if (mid->is_busy()) {
2202     // Easy checks are first - the ObjectMonitor is busy so no deflation.
2203     return false;
2204   }
2205 
2206   // Set a NULL owner to DEFLATER_MARKER to force any contending thread
2207   // through the slow path. This is just the first part of the async
2208   // deflation dance.
2209   if (mid->try_set_owner_from(NULL, DEFLATER_MARKER) != NULL) {
2210     // The owner field is no longer NULL so we lost the race since the
2211     // ObjectMonitor is now busy.
2212     return false;
2213   }
2214 
2215   if (mid->contentions() > 0 || mid->_waiters != 0) {
2216     // Another thread has raced to enter the ObjectMonitor after
2217     // mid->is_busy() above or has already entered and waited on
2218     // it which makes it busy so no deflation. Restore owner to
2219     // NULL if it is still DEFLATER_MARKER.
2220     mid->try_set_owner_from(DEFLATER_MARKER, NULL);
2221     return false;
2222   }
2223 
2224   // Make contentions negative to force any contending threads to
2225   // retry. This is the second part of the async deflation dance.
2226   if (Atomic::cmpxchg(&mid->_contentions, (jint)0, -max_jint) != 0) {
2227     // The contentions was no longer 0 so we lost the race since the
2228     // ObjectMonitor is now busy. Restore owner to NULL if it is
2229     // still DEFLATER_MARKER:
2230     mid->try_set_owner_from(DEFLATER_MARKER, NULL);
2231     return false;
2232   }
2233 
2234   // If owner is still DEFLATER_MARKER, then we have successfully
2235   // signaled any contending threads to retry.
2236   if (!mid->owner_is_DEFLATER_MARKER()) {
2237     // If it is not, then we have lost the race to an entering thread
2238     // and the ObjectMonitor is now busy. This is the third and final
2239     // part of the async deflation dance.
2240     // Note: This owner check solves the ABA problem with contentions
2241     // where another thread acquired the ObjectMonitor, finished
2242     // using it and restored contentions to zero.
2243 
2244     // Add back max_jint to restore the contentions field to its
2245     // proper value (which may not be what we saw above):
2246     Atomic::add(&mid->_contentions, max_jint);
2247 
2248 #ifdef ASSERT
2249     jint l_contentions = mid->contentions();
2250 #endif
2251     assert(l_contentions >= 0, "must not be negative: l_contentions=%d, contentions=%d",
2252            l_contentions, mid->contentions());
2253     return false;
2254   }
2255 
2256   // Sanity checks for the races:
2257   guarantee(mid->contentions() < 0, "must be negative: contentions=%d",
2258             mid->contentions());
2259   guarantee(mid->_waiters == 0, "must be 0: waiters=%d", mid->_waiters);
2260   guarantee(mid->_cxq == NULL, "must be no contending threads: cxq="
2261             INTPTR_FORMAT, p2i(mid->_cxq));
2262   guarantee(mid->_EntryList == NULL,
2263             "must be no entering threads: EntryList=" INTPTR_FORMAT,
2264             p2i(mid->_EntryList));
2265 
2266   const oop obj = (oop) mid->object();
2267   if (log_is_enabled(Trace, monitorinflation)) {
2268     ResourceMark rm;
2269     log_trace(monitorinflation)("deflate_monitor_using_JT: "
2270                                 "object=" INTPTR_FORMAT ", mark="
2271                                 INTPTR_FORMAT ", type='%s'",
2272                                 p2i(obj), obj->mark().value(),
2273                                 obj->klass()->external_name());
2274   }
2275 
2276   // Install the old mark word if nobody else has already done it.
2277   mid->install_displaced_markword_in_object(obj);
2278   mid->clear_using_JT();
2279 
2280   assert(mid->object() == NULL, "must be NULL: object=" INTPTR_FORMAT,
2281          p2i(mid->object()));
2282   assert(mid->is_free(), "must be free: allocation_state=%d",
2283          (int)mid->allocation_state());
2284 
2285   // Move the deflated ObjectMonitor to the working free list
2286   // defined by free_head_p and free_tail_p.
2287   if (*free_head_p == NULL) {
2288     // First one on the list.
2289     *free_head_p = mid;
2290   }
2291   if (*free_tail_p != NULL) {
2292     // We append to the list so the caller can use mid->_next_om
2293     // to fix the linkages in its context.
2294     ObjectMonitor* prevtail = *free_tail_p;
2295     // prevtail should have been cleaned up by the caller:
2296 #ifdef ASSERT
2297     ObjectMonitor* l_next_om = unmarked_next(prevtail);
2298 #endif
2299     assert(l_next_om == NULL, "must be NULL: _next_om=" INTPTR_FORMAT, p2i(l_next_om));
2300     om_lock(prevtail);
2301     prevtail->set_next_om(mid);  // prevtail now points to mid (and is unlocked)
2302   }
2303   *free_tail_p = mid;
2304 
2305   // At this point, mid->_next_om still refers to its current
2306   // value and another ObjectMonitor's _next_om field still
2307   // refers to this ObjectMonitor. Those linkages have to be
2308   // cleaned up by the caller who has the complete context.
2309 
2310   // We leave owner == DEFLATER_MARKER and contentions < 0
2311   // to force any racing threads to retry.
2312   return true;  // Success, ObjectMonitor has been deflated.
2313 }
2314 
2315 // Walk a given monitor list, and deflate idle monitors.
2316 // The given list could be a per-thread list or a global list.
2317 //
2318 // In the case of parallel processing of thread local monitor lists,
2319 // work is done by Threads::parallel_threads_do() which ensures that
2320 // each Java thread is processed by exactly one worker thread, and
2321 // thus avoid conflicts that would arise when worker threads would
2322 // process the same monitor lists concurrently.
2323 //
2324 // See also ParallelSPCleanupTask and
2325 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
2326 // Threads::parallel_java_threads_do() in thread.cpp.
2327 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** list_p,
2328                                              int* count_p,
2329                                              ObjectMonitor** free_head_p,
2330                                              ObjectMonitor** free_tail_p) {
2331   ObjectMonitor* cur_mid_in_use = NULL;
2332   ObjectMonitor* mid = NULL;
2333   ObjectMonitor* next = NULL;
2334   int deflated_count = 0;
2335 
2336   // This list walk executes at a safepoint and does not race with any
2337   // other list walkers.
2338 
2339   for (mid = Atomic::load(list_p); mid != NULL; mid = next) {
2340     next = unmarked_next(mid);
2341     oop obj = (oop) mid->object();
2342     if (obj != NULL && deflate_monitor(mid, obj, free_head_p, free_tail_p)) {
2343       // Deflation succeeded and already updated free_head_p and
2344       // free_tail_p as needed. Finish the move to the local free list
2345       // by unlinking mid from the global or per-thread in-use list.
2346       if (cur_mid_in_use == NULL) {
2347         // mid is the list head so switch the list head to next:
2348         Atomic::store(list_p, next);
2349       } else {
2350         // Switch cur_mid_in_use's next field to next:
2351         cur_mid_in_use->set_next_om(next);
2352       }
2353       // At this point mid is disconnected from the in-use list.
2354       deflated_count++;
2355       Atomic::dec(count_p);
2356       // mid is current tail in the free_head_p list so NULL terminate it:
2357       mid->set_next_om(NULL);
2358     } else {
2359       cur_mid_in_use = mid;
2360     }
2361   }
2362   return deflated_count;
2363 }
2364 
2365 // Walk a given ObjectMonitor list and deflate idle ObjectMonitors using
2366 // a JavaThread. Returns the number of deflated ObjectMonitors. The given
2367 // list could be a per-thread in-use list or the global in-use list.
2368 // If a safepoint has started, then we save state via saved_mid_in_use_p
2369 // and return to the caller to honor the safepoint.
2370 //
2371 int ObjectSynchronizer::deflate_monitor_list_using_JT(ObjectMonitor** list_p,
2372                                                       int* count_p,
2373                                                       ObjectMonitor** free_head_p,
2374                                                       ObjectMonitor** free_tail_p,
2375                                                       ObjectMonitor** saved_mid_in_use_p) {
2376   assert(AsyncDeflateIdleMonitors, "sanity check");
2377   JavaThread* self = JavaThread::current();
2378 
2379   ObjectMonitor* cur_mid_in_use = NULL;
2380   ObjectMonitor* mid = NULL;
2381   ObjectMonitor* next = NULL;
2382   ObjectMonitor* next_next = NULL;
2383   int deflated_count = 0;
2384   NoSafepointVerifier nsv;
2385 
2386   // We use the more complicated lock-cur_mid_in_use-and-mid-as-we-go
2387   // protocol because om_release() can do list deletions in parallel;
2388   // this also prevents races with a list walker thread. We also
2389   // lock-next-next-as-we-go to prevent an om_flush() that is behind
2390   // this thread from passing us.
2391   if (*saved_mid_in_use_p == NULL) {
2392     // No saved state so start at the beginning.
2393     // Lock the list head so we can possibly deflate it:
2394     if ((mid = get_list_head_locked(list_p)) == NULL) {
2395       return 0;  // The list is empty so nothing to deflate.
2396     }
2397     next = unmarked_next(mid);
2398   } else {
2399     // We're restarting after a safepoint so restore the necessary state
2400     // before we resume.
2401     cur_mid_in_use = *saved_mid_in_use_p;
2402     // Lock cur_mid_in_use so we can possibly update its
2403     // next field to extract a deflated ObjectMonitor.
2404     om_lock(cur_mid_in_use);
2405     mid = unmarked_next(cur_mid_in_use);
2406     if (mid == NULL) {
2407       om_unlock(cur_mid_in_use);
2408       *saved_mid_in_use_p = NULL;
2409       return 0;  // The remainder is empty so nothing more to deflate.
2410     }
2411     // Lock mid so we can possibly deflate it:
2412     om_lock(mid);
2413     next = unmarked_next(mid);
2414   }
2415 
2416   while (true) {
2417     // The current mid is locked at this point. If we have a
2418     // cur_mid_in_use, then it is also locked at this point.
2419 
2420     if (next != NULL) {
2421       // We lock next so that an om_flush() thread that is behind us
2422       // cannot pass us when we unlock the current mid.
2423       om_lock(next);
2424       next_next = unmarked_next(next);
2425     }
2426 
2427     // Only try to deflate if there is an associated Java object and if
2428     // mid is old (is not newly allocated and is not newly freed).
2429     if (mid->object() != NULL && mid->is_old() &&
2430         deflate_monitor_using_JT(mid, free_head_p, free_tail_p)) {
2431       // Deflation succeeded and already updated free_head_p and
2432       // free_tail_p as needed. Finish the move to the local free list
2433       // by unlinking mid from the global or per-thread in-use list.
2434       if (cur_mid_in_use == NULL) {
2435         // mid is the list head and it is locked. Switch the list head
2436         // to next which is also locked (if not NULL) and also leave
2437         // mid locked:
2438         Atomic::store(list_p, next);
2439       } else {
2440         ObjectMonitor* locked_next = mark_om_ptr(next);
2441         // mid and cur_mid_in_use are locked. Switch cur_mid_in_use's
2442         // next field to locked_next and also leave mid locked:
2443         cur_mid_in_use->set_next_om(locked_next);
2444       }
2445       // At this point mid is disconnected from the in-use list so
2446       // its lock longer has any effects on in-use list.
2447       deflated_count++;
2448       Atomic::dec(count_p);
2449       // mid is current tail in the free_head_p list so NULL terminate it
2450       // (which also unlocks it):
2451       mid->set_next_om(NULL);
2452 
2453       // All the list management is done so move on to the next one:
2454       mid = next;  // mid keeps non-NULL next's locked state
2455       next = next_next;
2456     } else {
2457       // mid is considered in-use if it does not have an associated
2458       // Java object or mid is not old or deflation did not succeed.
2459       // A mid->is_new() node can be seen here when it is freshly
2460       // returned by om_alloc() (and skips the deflation code path).
2461       // A mid->is_old() node can be seen here when deflation failed.
2462       // A mid->is_free() node can be seen here when a fresh node from
2463       // om_alloc() is released by om_release() due to losing the race
2464       // in inflate().
2465 
2466       // All the list management is done so move on to the next one:
2467       if (cur_mid_in_use != NULL) {
2468         om_unlock(cur_mid_in_use);
2469       }
2470       // The next cur_mid_in_use keeps mid's lock state so
2471       // that it is stable for a possible next field change. It
2472       // cannot be modified by om_release() while it is locked.
2473       cur_mid_in_use = mid;
2474       mid = next;  // mid keeps non-NULL next's locked state
2475       next = next_next;
2476 
2477       if (SafepointMechanism::should_block(self) &&
2478           cur_mid_in_use != Atomic::load(list_p) && cur_mid_in_use->is_old()) {
2479         // If a safepoint has started and cur_mid_in_use is not the list
2480         // head and is old, then it is safe to use as saved state. Return
2481         // to the caller before blocking.
2482         *saved_mid_in_use_p = cur_mid_in_use;
2483         om_unlock(cur_mid_in_use);
2484         if (mid != NULL) {
2485           om_unlock(mid);
2486         }
2487         return deflated_count;
2488       }
2489     }
2490     if (mid == NULL) {
2491       if (cur_mid_in_use != NULL) {
2492         om_unlock(cur_mid_in_use);
2493       }
2494       break;  // Reached end of the list so nothing more to deflate.
2495     }
2496 
2497     // The current mid's next field is locked at this point. If we have
2498     // a cur_mid_in_use, then it is also locked at this point.
2499   }
2500   // We finished the list without a safepoint starting so there's
2501   // no need to save state.
2502   *saved_mid_in_use_p = NULL;
2503   return deflated_count;
2504 }
2505 
2506 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2507   counters->n_in_use = 0;              // currently associated with objects
2508   counters->n_in_circulation = 0;      // extant
2509   counters->n_scavenged = 0;           // reclaimed (global and per-thread)
2510   counters->per_thread_scavenged = 0;  // per-thread scavenge total
2511   counters->per_thread_times = 0.0;    // per-thread scavenge times
2512 }
2513 
2514 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
2515   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2516 
2517   if (AsyncDeflateIdleMonitors) {
2518     // Nothing to do when global idle ObjectMonitors are deflated using
2519     // a JavaThread unless a special deflation has been requested.
2520     if (!is_special_deflation_requested()) {
2521       return;
2522     }
2523   }
2524 
2525   bool deflated = false;
2526 
2527   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
2528   ObjectMonitor* free_tail_p = NULL;
2529   elapsedTimer timer;
2530 
2531   if (log_is_enabled(Info, monitorinflation)) {
2532     timer.start();
2533   }
2534 
2535   // Note: the thread-local monitors lists get deflated in
2536   // a separate pass. See deflate_thread_local_monitors().
2537 
2538   // For moribund threads, scan om_list_globals._in_use_list
2539   int deflated_count = 0;
2540   if (Atomic::load(&om_list_globals._in_use_list) != NULL) {
2541     // Update n_in_circulation before om_list_globals._in_use_count is
2542     // updated by deflation.
2543     Atomic::add(&counters->n_in_circulation,
2544                 Atomic::load(&om_list_globals._in_use_count));
2545 
2546     deflated_count = deflate_monitor_list(&om_list_globals._in_use_list,
2547                                           &om_list_globals._in_use_count,
2548                                           &free_head_p, &free_tail_p);
2549     Atomic::add(&counters->n_in_use, Atomic::load(&om_list_globals._in_use_count));
2550   }
2551 
2552   if (free_head_p != NULL) {
2553     // Move the deflated ObjectMonitors back to the global free list.
2554     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
2555 #ifdef ASSERT
2556     ObjectMonitor* l_next_om = free_tail_p->next_om();
2557 #endif
2558     assert(l_next_om == NULL, "must be NULL: _next_om=" INTPTR_FORMAT, p2i(l_next_om));
2559     prepend_list_to_global_free_list(free_head_p, free_tail_p, deflated_count);
2560     Atomic::add(&counters->n_scavenged, deflated_count);
2561   }
2562   timer.stop();
2563 
2564   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2565   LogStreamHandle(Info, monitorinflation) lsh_info;
2566   LogStream* ls = NULL;
2567   if (log_is_enabled(Debug, monitorinflation)) {
2568     ls = &lsh_debug;
2569   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2570     ls = &lsh_info;
2571   }
2572   if (ls != NULL) {
2573     ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2574   }
2575 }
2576 
2577 class HandshakeForDeflation : public HandshakeClosure {
2578  public:
2579   HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {}
2580 
2581   void do_thread(Thread* thread) {
2582     log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread="
2583                                 INTPTR_FORMAT, p2i(thread));
2584   }
2585 };
2586 
2587 void ObjectSynchronizer::deflate_idle_monitors_using_JT() {
2588   assert(AsyncDeflateIdleMonitors, "sanity check");
2589 
2590   // Deflate any global idle monitors.
2591   deflate_global_idle_monitors_using_JT();
2592 
2593   int count = 0;
2594   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2595     if (Atomic::load(&jt->om_in_use_count) > 0 && !jt->is_exiting()) {
2596       // This JavaThread is using ObjectMonitors so deflate any that
2597       // are idle unless this JavaThread is exiting; do not race with
2598       // ObjectSynchronizer::om_flush().
2599       deflate_per_thread_idle_monitors_using_JT(jt);
2600       count++;
2601     }
2602   }
2603   if (count > 0) {
2604     log_debug(monitorinflation)("did async deflation of idle monitors for %d thread(s).", count);
2605   }
2606 
2607   log_info(monitorinflation)("async global_population=%d, global_in_use_count=%d, "
2608                              "global_free_count=%d, global_wait_count=%d",
2609                              Atomic::load(&om_list_globals._population),
2610                              Atomic::load(&om_list_globals._in_use_count),
2611                              Atomic::load(&om_list_globals._free_count),
2612                              Atomic::load(&om_list_globals._wait_count));
2613 
2614   // The ServiceThread's async deflation request has been processed.
2615   set_is_async_deflation_requested(false);
2616 
2617   if (Atomic::load(&om_list_globals._wait_count) > 0) {
2618     // There are deflated ObjectMonitors waiting for a handshake
2619     // (or a safepoint) for safety.
2620 
2621     ObjectMonitor* list = Atomic::load(&om_list_globals._wait_list);
2622     ADIM_guarantee(list != NULL, "om_list_globals._wait_list must not be NULL");
2623     int count = Atomic::load(&om_list_globals._wait_count);
2624     Atomic::store(&om_list_globals._wait_count, 0);
2625     Atomic::store(&om_list_globals._wait_list, (ObjectMonitor*)NULL);
2626 
2627     // Find the tail for prepend_list_to_common(). No need to mark
2628     // ObjectMonitors for this list walk since only the deflater
2629     // thread manages the wait list.
2630     int l_count = 0;
2631     ObjectMonitor* tail = NULL;
2632     for (ObjectMonitor* n = list; n != NULL; n = unmarked_next(n)) {
2633       tail = n;
2634       l_count++;
2635     }
2636     ADIM_guarantee(count == l_count, "count=%d != l_count=%d", count, l_count);
2637 
2638     // Will execute a safepoint if !ThreadLocalHandshakes:
2639     HandshakeForDeflation hfd_hc;
2640     Handshake::execute(&hfd_hc);
2641 
2642     prepend_list_to_common(list, tail, count, &om_list_globals._free_list,
2643                            &om_list_globals._free_count);
2644 
2645     log_info(monitorinflation)("moved %d idle monitors from global waiting list to global free list", count);
2646   }
2647 }
2648 
2649 // Deflate global idle ObjectMonitors using a JavaThread.
2650 //
2651 void ObjectSynchronizer::deflate_global_idle_monitors_using_JT() {
2652   assert(AsyncDeflateIdleMonitors, "sanity check");
2653   assert(Thread::current()->is_Java_thread(), "precondition");
2654   JavaThread* self = JavaThread::current();
2655 
2656   deflate_common_idle_monitors_using_JT(true /* is_global */, self);
2657 }
2658 
2659 // Deflate the specified JavaThread's idle ObjectMonitors using a JavaThread.
2660 //
2661 void ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT(JavaThread* target) {
2662   assert(AsyncDeflateIdleMonitors, "sanity check");
2663   assert(Thread::current()->is_Java_thread(), "precondition");
2664 
2665   deflate_common_idle_monitors_using_JT(false /* !is_global */, target);
2666 }
2667 
2668 // Deflate global or per-thread idle ObjectMonitors using a JavaThread.
2669 //
2670 void ObjectSynchronizer::deflate_common_idle_monitors_using_JT(bool is_global, JavaThread* target) {
2671   JavaThread* self = JavaThread::current();
2672 
2673   int deflated_count = 0;
2674   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged ObjectMonitors
2675   ObjectMonitor* free_tail_p = NULL;
2676   ObjectMonitor* saved_mid_in_use_p = NULL;
2677   elapsedTimer timer;
2678 
2679   if (log_is_enabled(Info, monitorinflation)) {
2680     timer.start();
2681   }
2682 
2683   if (is_global) {
2684     OM_PERFDATA_OP(MonExtant, set_value(Atomic::load(&om_list_globals._in_use_count)));
2685   } else {
2686     OM_PERFDATA_OP(MonExtant, inc(Atomic::load(&target->om_in_use_count)));
2687   }
2688 
2689   do {
2690     int local_deflated_count;
2691     if (is_global) {
2692       local_deflated_count =
2693           deflate_monitor_list_using_JT(&om_list_globals._in_use_list,
2694                                         &om_list_globals._in_use_count,
2695                                         &free_head_p, &free_tail_p,
2696                                         &saved_mid_in_use_p);
2697     } else {
2698       local_deflated_count =
2699           deflate_monitor_list_using_JT(&target->om_in_use_list,
2700                                         &target->om_in_use_count, &free_head_p,
2701                                         &free_tail_p, &saved_mid_in_use_p);
2702     }
2703     deflated_count += local_deflated_count;
2704 
2705     if (free_head_p != NULL) {
2706       // Move the deflated ObjectMonitors to the global free list.
2707       guarantee(free_tail_p != NULL && local_deflated_count > 0, "free_tail_p=" INTPTR_FORMAT ", local_deflated_count=%d", p2i(free_tail_p), local_deflated_count);
2708       // Note: The target thread can be doing an om_alloc() that
2709       // is trying to prepend an ObjectMonitor on its in-use list
2710       // at the same time that we have deflated the current in-use
2711       // list head and put it on the local free list. prepend_to_common()
2712       // will detect the race and retry which avoids list corruption,
2713       // but the next field in free_tail_p can flicker to marked
2714       // and then unmarked while prepend_to_common() is sorting it
2715       // all out.
2716 #ifdef ASSERT
2717       ObjectMonitor* l_next_om = unmarked_next(free_tail_p);
2718 #endif
2719       assert(l_next_om == NULL, "must be NULL: _next_om=" INTPTR_FORMAT, p2i(l_next_om));
2720 
2721       prepend_list_to_global_wait_list(free_head_p, free_tail_p, local_deflated_count);
2722 
2723       OM_PERFDATA_OP(Deflations, inc(local_deflated_count));
2724     }
2725 
2726     if (saved_mid_in_use_p != NULL) {
2727       // deflate_monitor_list_using_JT() detected a safepoint starting.
2728       timer.stop();
2729       {
2730         if (is_global) {
2731           log_debug(monitorinflation)("pausing deflation of global idle monitors for a safepoint.");
2732         } else {
2733           log_debug(monitorinflation)("jt=" INTPTR_FORMAT ": pausing deflation of per-thread idle monitors for a safepoint.", p2i(target));
2734         }
2735         assert(SafepointMechanism::should_block(self), "sanity check");
2736         ThreadBlockInVM blocker(self);
2737       }
2738       // Prepare for another loop after the safepoint.
2739       free_head_p = NULL;
2740       free_tail_p = NULL;
2741       if (log_is_enabled(Info, monitorinflation)) {
2742         timer.start();
2743       }
2744     }
2745   } while (saved_mid_in_use_p != NULL);
2746   timer.stop();
2747 
2748   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2749   LogStreamHandle(Info, monitorinflation) lsh_info;
2750   LogStream* ls = NULL;
2751   if (log_is_enabled(Debug, monitorinflation)) {
2752     ls = &lsh_debug;
2753   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2754     ls = &lsh_info;
2755   }
2756   if (ls != NULL) {
2757     if (is_global) {
2758       ls->print_cr("async-deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2759     } else {
2760       ls->print_cr("jt=" INTPTR_FORMAT ": async-deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(target), timer.seconds(), deflated_count);
2761     }
2762   }
2763 }
2764 
2765 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2766   // Report the cumulative time for deflating each thread's idle
2767   // monitors. Note: if the work is split among more than one
2768   // worker thread, then the reported time will likely be more
2769   // than a beginning to end measurement of the phase.
2770   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d", counters->per_thread_times, counters->per_thread_scavenged);
2771 
2772   bool needs_special_deflation = is_special_deflation_requested();
2773   if (AsyncDeflateIdleMonitors && !needs_special_deflation) {
2774     // Nothing to do when idle ObjectMonitors are deflated using
2775     // a JavaThread unless a special deflation has been requested.
2776     return;
2777   }
2778 
2779   if (log_is_enabled(Debug, monitorinflation)) {
2780     // exit_globals()'s call to audit_and_print_stats() is done
2781     // at the Info level and not at a safepoint.
2782     // For async deflation, audit_and_print_stats() is called in
2783     // ObjectSynchronizer::do_safepoint_work() at the Debug level
2784     // at a safepoint.
2785     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2786   } else if (log_is_enabled(Info, monitorinflation)) {
2787     log_info(monitorinflation)("global_population=%d, global_in_use_count=%d, "
2788                                "global_free_count=%d, global_wait_count=%d",
2789                                Atomic::load(&om_list_globals._population),
2790                                Atomic::load(&om_list_globals._in_use_count),
2791                                Atomic::load(&om_list_globals._free_count),
2792                                Atomic::load(&om_list_globals._wait_count));
2793   }
2794 
2795   Atomic::store(&_forceMonitorScavenge, 0);    // Reset
2796 
2797   OM_PERFDATA_OP(Deflations, inc(counters->n_scavenged));
2798   OM_PERFDATA_OP(MonExtant, set_value(counters->n_in_circulation));
2799 
2800   GVars.stw_random = os::random();
2801   GVars.stw_cycle++;
2802 
2803   if (needs_special_deflation) {
2804     set_is_special_deflation_requested(false);  // special deflation is done
2805   }
2806 }
2807 
2808 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
2809   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2810 
2811   if (AsyncDeflateIdleMonitors && !is_special_deflation_requested()) {
2812     // Nothing to do if a special deflation has NOT been requested.
2813     return;
2814   }
2815 
2816   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
2817   ObjectMonitor* free_tail_p = NULL;
2818   elapsedTimer timer;
2819 
2820   if (log_is_enabled(Info, safepoint, cleanup) ||
2821       log_is_enabled(Info, monitorinflation)) {
2822     timer.start();
2823   }
2824 
2825   // Update n_in_circulation before om_in_use_count is updated by deflation.
2826   Atomic::add(&counters->n_in_circulation, Atomic::load(&thread->om_in_use_count));
2827 
2828   int deflated_count = deflate_monitor_list(&thread->om_in_use_list, &thread->om_in_use_count, &free_head_p, &free_tail_p);
2829   Atomic::add(&counters->n_in_use, Atomic::load(&thread->om_in_use_count));
2830 
2831   if (free_head_p != NULL) {
2832     // Move the deflated ObjectMonitors back to the global free list.
2833     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
2834 #ifdef ASSERT
2835     ObjectMonitor* l_next_om = free_tail_p->next_om();
2836 #endif
2837     assert(l_next_om == NULL, "must be NULL: _next_om=" INTPTR_FORMAT, p2i(l_next_om));
2838     prepend_list_to_global_free_list(free_head_p, free_tail_p, deflated_count);
2839     Atomic::add(&counters->n_scavenged, deflated_count);
2840     Atomic::add(&counters->per_thread_scavenged, deflated_count);
2841   }
2842 
2843   timer.stop();
2844   counters->per_thread_times += timer.seconds();
2845 
2846   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2847   LogStreamHandle(Info, monitorinflation) lsh_info;
2848   LogStream* ls = NULL;
2849   if (log_is_enabled(Debug, monitorinflation)) {
2850     ls = &lsh_debug;
2851   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2852     ls = &lsh_info;
2853   }
2854   if (ls != NULL) {
2855     ls->print_cr("jt=" INTPTR_FORMAT ": deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(thread), timer.seconds(), deflated_count);
2856   }
2857 }
2858 
2859 // Monitor cleanup on JavaThread::exit
2860 
2861 // Iterate through monitor cache and attempt to release thread's monitors
2862 // Gives up on a particular monitor if an exception occurs, but continues
2863 // the overall iteration, swallowing the exception.
2864 class ReleaseJavaMonitorsClosure: public MonitorClosure {
2865  private:
2866   TRAPS;
2867 
2868  public:
2869   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
2870   void do_monitor(ObjectMonitor* mid) {
2871     if (mid->owner() == THREAD) {
2872       (void)mid->complete_exit(CHECK);
2873     }
2874   }
2875 };
2876 
2877 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
2878 // ignored.  This is meant to be called during JNI thread detach which assumes
2879 // all remaining monitors are heavyweight.  All exceptions are swallowed.
2880 // Scanning the extant monitor list can be time consuming.
2881 // A simple optimization is to add a per-thread flag that indicates a thread
2882 // called jni_monitorenter() during its lifetime.
2883 //
2884 // Instead of No_Savepoint_Verifier it might be cheaper to
2885 // use an idiom of the form:
2886 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
2887 //   <code that must not run at safepoint>
2888 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
2889 // Since the tests are extremely cheap we could leave them enabled
2890 // for normal product builds.
2891 
2892 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
2893   assert(THREAD == JavaThread::current(), "must be current Java thread");
2894   NoSafepointVerifier nsv;
2895   ReleaseJavaMonitorsClosure rjmc(THREAD);
2896   ObjectSynchronizer::monitors_iterate(&rjmc);
2897   THREAD->clear_pending_exception();
2898 }
2899 
2900 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
2901   switch (cause) {
2902     case inflate_cause_vm_internal:    return "VM Internal";
2903     case inflate_cause_monitor_enter:  return "Monitor Enter";
2904     case inflate_cause_wait:           return "Monitor Wait";
2905     case inflate_cause_notify:         return "Monitor Notify";
2906     case inflate_cause_hash_code:      return "Monitor Hash Code";
2907     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
2908     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
2909     default:
2910       ShouldNotReachHere();
2911   }
2912   return "Unknown";
2913 }
2914 
2915 //------------------------------------------------------------------------------
2916 // Debugging code
2917 
2918 u_char* ObjectSynchronizer::get_gvars_addr() {
2919   return (u_char*)&GVars;
2920 }
2921 
2922 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() {
2923   return (u_char*)&GVars.hc_sequence;
2924 }
2925 
2926 size_t ObjectSynchronizer::get_gvars_size() {
2927   return sizeof(SharedGlobals);
2928 }
2929 
2930 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() {
2931   return (u_char*)&GVars.stw_random;
2932 }
2933 
2934 // This function can be called at a safepoint or it can be called when
2935 // we are trying to exit the VM. When we are trying to exit the VM, the
2936 // list walker functions can run in parallel with the other list
2937 // operations so spin-locking is used for safety.
2938 //
2939 // Calls to this function can be added in various places as a debugging
2940 // aid; pass 'true' for the 'on_exit' parameter to have in-use monitor
2941 // details logged at the Info level and 'false' for the 'on_exit'
2942 // parameter to have in-use monitor details logged at the Trace level.
2943 // deflate_monitor_list() no longer uses spin-locking so be careful
2944 // when adding audit_and_print_stats() calls at a safepoint.
2945 //
2946 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) {
2947   assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant");
2948 
2949   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2950   LogStreamHandle(Info, monitorinflation) lsh_info;
2951   LogStreamHandle(Trace, monitorinflation) lsh_trace;
2952   LogStream* ls = NULL;
2953   if (log_is_enabled(Trace, monitorinflation)) {
2954     ls = &lsh_trace;
2955   } else if (log_is_enabled(Debug, monitorinflation)) {
2956     ls = &lsh_debug;
2957   } else if (log_is_enabled(Info, monitorinflation)) {
2958     ls = &lsh_info;
2959   }
2960   assert(ls != NULL, "sanity check");
2961 
2962   // Log counts for the global and per-thread monitor lists:
2963   int chk_om_population = log_monitor_list_counts(ls);
2964   int error_cnt = 0;
2965 
2966   ls->print_cr("Checking global lists:");
2967 
2968   // Check om_list_globals._population:
2969   if (Atomic::load(&om_list_globals._population) == chk_om_population) {
2970     ls->print_cr("global_population=%d equals chk_om_population=%d",
2971                  Atomic::load(&om_list_globals._population), chk_om_population);
2972   } else {
2973     // With fine grained locks on the monitor lists, it is possible for
2974     // log_monitor_list_counts() to return a value that doesn't match
2975     // om_list_globals._population. So far a higher value has been
2976     // seen in testing so something is being double counted by
2977     // log_monitor_list_counts().
2978     ls->print_cr("WARNING: global_population=%d is not equal to "
2979                  "chk_om_population=%d",
2980                  Atomic::load(&om_list_globals._population), chk_om_population);
2981   }
2982 
2983   // Check om_list_globals._in_use_list and om_list_globals._in_use_count:
2984   chk_global_in_use_list_and_count(ls, &error_cnt);
2985 
2986   // Check om_list_globals._free_list and om_list_globals._free_count:
2987   chk_global_free_list_and_count(ls, &error_cnt);
2988 
2989   // Check om_list_globals._wait_list and om_list_globals._wait_count:
2990   chk_global_wait_list_and_count(ls, &error_cnt);
2991 
2992   ls->print_cr("Checking per-thread lists:");
2993 
2994   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2995     // Check om_in_use_list and om_in_use_count:
2996     chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt);
2997 
2998     // Check om_free_list and om_free_count:
2999     chk_per_thread_free_list_and_count(jt, ls, &error_cnt);
3000   }
3001 
3002   if (error_cnt == 0) {
3003     ls->print_cr("No errors found in monitor list checks.");
3004   } else {
3005     log_error(monitorinflation)("found monitor list errors: error_cnt=%d", error_cnt);
3006   }
3007 
3008   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
3009       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
3010     // When exiting this log output is at the Info level. When called
3011     // at a safepoint, this log output is at the Trace level since
3012     // there can be a lot of it.
3013     log_in_use_monitor_details(ls);
3014   }
3015 
3016   ls->flush();
3017 
3018   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
3019 }
3020 
3021 // Check a free monitor entry; log any errors.
3022 void ObjectSynchronizer::chk_free_entry(JavaThread* jt, ObjectMonitor* n,
3023                                         outputStream * out, int *error_cnt_p) {
3024   stringStream ss;
3025   if (n->is_busy()) {
3026     if (jt != NULL) {
3027       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3028                     ": free per-thread monitor must not be busy: %s", p2i(jt),
3029                     p2i(n), n->is_busy_to_string(&ss));
3030     } else {
3031       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
3032                     "must not be busy: %s", p2i(n), n->is_busy_to_string(&ss));
3033     }
3034     *error_cnt_p = *error_cnt_p + 1;
3035   }
3036   if (n->header().value() != 0) {
3037     if (jt != NULL) {
3038       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3039                     ": free per-thread monitor must have NULL _header "
3040                     "field: _header=" INTPTR_FORMAT, p2i(jt), p2i(n),
3041                     n->header().value());
3042       *error_cnt_p = *error_cnt_p + 1;
3043     } else if (!AsyncDeflateIdleMonitors) {
3044       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
3045                     "must have NULL _header field: _header=" INTPTR_FORMAT,
3046                     p2i(n), n->header().value());
3047       *error_cnt_p = *error_cnt_p + 1;
3048     }
3049   }
3050   if (n->object() != NULL) {
3051     if (jt != NULL) {
3052       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3053                     ": free per-thread monitor must have NULL _object "
3054                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
3055                     p2i(n->object()));
3056     } else {
3057       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
3058                     "must have NULL _object field: _object=" INTPTR_FORMAT,
3059                     p2i(n), p2i(n->object()));
3060     }
3061     *error_cnt_p = *error_cnt_p + 1;
3062   }
3063 }
3064 
3065 // Lock the next ObjectMonitor for traversal and unlock the current
3066 // ObjectMonitor. Returns the next ObjectMonitor if there is one.
3067 // Otherwise returns NULL (after unlocking the current ObjectMonitor).
3068 // This function is used by the various list walker functions to
3069 // safely walk a list without allowing an ObjectMonitor to be moved
3070 // to another list in the middle of a walk.
3071 static ObjectMonitor* lock_next_for_traversal(ObjectMonitor* cur) {
3072   assert(is_locked(cur), "cur=" INTPTR_FORMAT " must be locked", p2i(cur));
3073   ObjectMonitor* next = unmarked_next(cur);
3074   if (next == NULL) {  // Reached the end of the list.
3075     om_unlock(cur);
3076     return NULL;
3077   }
3078   om_lock(next);   // Lock next before unlocking current to keep
3079   om_unlock(cur);  // from being by-passed by another thread.
3080   return next;
3081 }
3082 
3083 // Check the global free list and count; log the results of the checks.
3084 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
3085                                                         int *error_cnt_p) {
3086   int chk_om_free_count = 0;
3087   ObjectMonitor* cur = NULL;
3088   if ((cur = get_list_head_locked(&om_list_globals._free_list)) != NULL) {
3089     // Marked the global free list head so process the list.
3090     while (true) {
3091       chk_free_entry(NULL /* jt */, cur, out, error_cnt_p);
3092       chk_om_free_count++;
3093 
3094       cur = lock_next_for_traversal(cur);
3095       if (cur == NULL) {
3096         break;
3097       }
3098     }
3099   }
3100   int l_free_count = Atomic::load(&om_list_globals._free_count);
3101   if (l_free_count == chk_om_free_count) {
3102     out->print_cr("global_free_count=%d equals chk_om_free_count=%d",
3103                   l_free_count, chk_om_free_count);
3104   } else {
3105     // With fine grained locks on om_list_globals._free_list, it
3106     // is possible for an ObjectMonitor to be prepended to
3107     // om_list_globals._free_list after we started calculating
3108     // chk_om_free_count so om_list_globals._free_count may not
3109     // match anymore.
3110     out->print_cr("WARNING: global_free_count=%d is not equal to "
3111                   "chk_om_free_count=%d", l_free_count, chk_om_free_count);
3112   }
3113 }
3114 
3115 // Check the global wait list and count; log the results of the checks.
3116 void ObjectSynchronizer::chk_global_wait_list_and_count(outputStream * out,
3117                                                         int *error_cnt_p) {
3118   int chk_om_wait_count = 0;
3119   ObjectMonitor* cur = NULL;
3120   if ((cur = get_list_head_locked(&om_list_globals._wait_list)) != NULL) {
3121     // Marked the global wait list head so process the list.
3122     while (true) {
3123       // Rules for om_list_globals._wait_list are the same as for
3124       // om_list_globals._free_list:
3125       chk_free_entry(NULL /* jt */, cur, out, error_cnt_p);
3126       chk_om_wait_count++;
3127 
3128       cur = lock_next_for_traversal(cur);
3129       if (cur == NULL) {
3130         break;
3131       }
3132     }
3133   }
3134   if (Atomic::load(&om_list_globals._wait_count) == chk_om_wait_count) {
3135     out->print_cr("global_wait_count=%d equals chk_om_wait_count=%d",
3136                   Atomic::load(&om_list_globals._wait_count), chk_om_wait_count);
3137   } else {
3138     out->print_cr("ERROR: global_wait_count=%d is not equal to "
3139                   "chk_om_wait_count=%d",
3140                   Atomic::load(&om_list_globals._wait_count), chk_om_wait_count);
3141     *error_cnt_p = *error_cnt_p + 1;
3142   }
3143 }
3144 
3145 // Check the global in-use list and count; log the results of the checks.
3146 void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out,
3147                                                           int *error_cnt_p) {
3148   int chk_om_in_use_count = 0;
3149   ObjectMonitor* cur = NULL;
3150   if ((cur = get_list_head_locked(&om_list_globals._in_use_list)) != NULL) {
3151     // Marked the global in-use list head so process the list.
3152     while (true) {
3153       chk_in_use_entry(NULL /* jt */, cur, out, error_cnt_p);
3154       chk_om_in_use_count++;
3155 
3156       cur = lock_next_for_traversal(cur);
3157       if (cur == NULL) {
3158         break;
3159       }
3160     }
3161   }
3162   int l_in_use_count = Atomic::load(&om_list_globals._in_use_count);
3163   if (l_in_use_count == chk_om_in_use_count) {
3164     out->print_cr("global_in_use_count=%d equals chk_om_in_use_count=%d",
3165                   l_in_use_count, chk_om_in_use_count);
3166   } else {
3167     // With fine grained locks on the monitor lists, it is possible for
3168     // an exiting JavaThread to put its in-use ObjectMonitors on the
3169     // global in-use list after chk_om_in_use_count is calculated above.
3170     out->print_cr("WARNING: global_in_use_count=%d is not equal to chk_om_in_use_count=%d",
3171                   l_in_use_count, chk_om_in_use_count);
3172   }
3173 }
3174 
3175 // Check an in-use monitor entry; log any errors.
3176 void ObjectSynchronizer::chk_in_use_entry(JavaThread* jt, ObjectMonitor* n,
3177                                           outputStream * out, int *error_cnt_p) {
3178   if (n->header().value() == 0) {
3179     if (jt != NULL) {
3180       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3181                     ": in-use per-thread monitor must have non-NULL _header "
3182                     "field.", p2i(jt), p2i(n));
3183     } else {
3184       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
3185                     "must have non-NULL _header field.", p2i(n));
3186     }
3187     *error_cnt_p = *error_cnt_p + 1;
3188   }
3189   if (n->object() == NULL) {
3190     if (jt != NULL) {
3191       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3192                     ": in-use per-thread monitor must have non-NULL _object "
3193                     "field.", p2i(jt), p2i(n));
3194     } else {
3195       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
3196                     "must have non-NULL _object field.", p2i(n));
3197     }
3198     *error_cnt_p = *error_cnt_p + 1;
3199   }
3200   const oop obj = (oop)n->object();
3201   const markWord mark = obj->mark();
3202   if (!mark.has_monitor()) {
3203     if (jt != NULL) {
3204       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3205                     ": in-use per-thread monitor's object does not think "
3206                     "it has a monitor: obj=" INTPTR_FORMAT ", mark="
3207                     INTPTR_FORMAT,  p2i(jt), p2i(n), p2i(obj), mark.value());
3208     } else {
3209       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
3210                     "monitor's object does not think it has a monitor: obj="
3211                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
3212                     p2i(obj), mark.value());
3213     }
3214     *error_cnt_p = *error_cnt_p + 1;
3215   }
3216   ObjectMonitor* const obj_mon = mark.monitor();
3217   if (n != obj_mon) {
3218     if (jt != NULL) {
3219       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3220                     ": in-use per-thread monitor's object does not refer "
3221                     "to the same monitor: obj=" INTPTR_FORMAT ", mark="
3222                     INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt),
3223                     p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
3224     } else {
3225       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
3226                     "monitor's object does not refer to the same monitor: obj="
3227                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
3228                     INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
3229     }
3230     *error_cnt_p = *error_cnt_p + 1;
3231   }
3232 }
3233 
3234 // Check the thread's free list and count; log the results of the checks.
3235 void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt,
3236                                                             outputStream * out,
3237                                                             int *error_cnt_p) {
3238   int chk_om_free_count = 0;
3239   ObjectMonitor* cur = NULL;
3240   if ((cur = get_list_head_locked(&jt->om_free_list)) != NULL) {
3241     // Marked the per-thread free list head so process the list.
3242     while (true) {
3243       chk_free_entry(jt, cur, out, error_cnt_p);
3244       chk_om_free_count++;
3245 
3246       cur = lock_next_for_traversal(cur);
3247       if (cur == NULL) {
3248         break;
3249       }
3250     }
3251   }
3252   int l_om_free_count = Atomic::load(&jt->om_free_count);
3253   if (l_om_free_count == chk_om_free_count) {
3254     out->print_cr("jt=" INTPTR_FORMAT ": om_free_count=%d equals "
3255                   "chk_om_free_count=%d", p2i(jt), l_om_free_count, chk_om_free_count);
3256   } else {
3257     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_free_count=%d is not "
3258                   "equal to chk_om_free_count=%d", p2i(jt), l_om_free_count,
3259                   chk_om_free_count);
3260     *error_cnt_p = *error_cnt_p + 1;
3261   }
3262 }
3263 
3264 // Check the thread's in-use list and count; log the results of the checks.
3265 void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt,
3266                                                               outputStream * out,
3267                                                               int *error_cnt_p) {
3268   int chk_om_in_use_count = 0;
3269   ObjectMonitor* cur = NULL;
3270   if ((cur = get_list_head_locked(&jt->om_in_use_list)) != NULL) {
3271     // Marked the per-thread in-use list head so process the list.
3272     while (true) {
3273       chk_in_use_entry(jt, cur, out, error_cnt_p);
3274       chk_om_in_use_count++;
3275 
3276       cur = lock_next_for_traversal(cur);
3277       if (cur == NULL) {
3278         break;
3279       }
3280     }
3281   }
3282   int l_om_in_use_count = Atomic::load(&jt->om_in_use_count);
3283   if (l_om_in_use_count == chk_om_in_use_count) {
3284     out->print_cr("jt=" INTPTR_FORMAT ": om_in_use_count=%d equals "
3285                   "chk_om_in_use_count=%d", p2i(jt), l_om_in_use_count,
3286                   chk_om_in_use_count);
3287   } else {
3288     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_in_use_count=%d is not "
3289                   "equal to chk_om_in_use_count=%d", p2i(jt), l_om_in_use_count,
3290                   chk_om_in_use_count);
3291     *error_cnt_p = *error_cnt_p + 1;
3292   }
3293 }
3294 
3295 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
3296 // flags indicate why the entry is in-use, 'object' and 'object type'
3297 // indicate the associated object and its type.
3298 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out) {
3299   stringStream ss;
3300   if (Atomic::load(&om_list_globals._in_use_count) > 0) {
3301     out->print_cr("In-use global monitor info:");
3302     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
3303     out->print_cr("%18s  %s  %18s  %18s",
3304                   "monitor", "BHL", "object", "object type");
3305     out->print_cr("==================  ===  ==================  ==================");
3306     ObjectMonitor* cur = NULL;
3307     if ((cur = get_list_head_locked(&om_list_globals._in_use_list)) != NULL) {
3308       // Marked the global in-use list head so process the list.
3309       while (true) {
3310         const oop obj = (oop) cur->object();
3311         const markWord mark = cur->header();
3312         ResourceMark rm;
3313         out->print(INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT "  %s", p2i(cur),
3314                    cur->is_busy() != 0, mark.hash() != 0, cur->owner() != NULL,
3315                    p2i(obj), obj->klass()->external_name());
3316         if (cur->is_busy() != 0) {
3317           out->print(" (%s)", cur->is_busy_to_string(&ss));
3318           ss.reset();
3319         }
3320         out->cr();
3321 
3322         cur = lock_next_for_traversal(cur);
3323         if (cur == NULL) {
3324           break;
3325         }
3326       }
3327     }
3328   }
3329 
3330   out->print_cr("In-use per-thread monitor info:");
3331   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
3332   out->print_cr("%18s  %18s  %s  %18s  %18s",
3333                 "jt", "monitor", "BHL", "object", "object type");
3334   out->print_cr("==================  ==================  ===  ==================  ==================");
3335   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
3336     ObjectMonitor* cur = NULL;
3337     if ((cur = get_list_head_locked(&jt->om_in_use_list)) != NULL) {
3338       // Marked the global in-use list head so process the list.
3339       while (true) {
3340         const oop obj = (oop) cur->object();
3341         const markWord mark = cur->header();
3342         ResourceMark rm;
3343         out->print(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT
3344                    "  %s", p2i(jt), p2i(cur), cur->is_busy() != 0,
3345                    mark.hash() != 0, cur->owner() != NULL, p2i(obj),
3346                    obj->klass()->external_name());
3347         if (cur->is_busy() != 0) {
3348           out->print(" (%s)", cur->is_busy_to_string(&ss));
3349           ss.reset();
3350         }
3351         out->cr();
3352 
3353         cur = lock_next_for_traversal(cur);
3354         if (cur == NULL) {
3355           break;
3356         }
3357       }
3358     }
3359   }
3360 
3361   out->flush();
3362 }
3363 
3364 // Log counts for the global and per-thread monitor lists and return
3365 // the population count.
3366 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
3367   int pop_count = 0;
3368   out->print_cr("%18s  %10s  %10s  %10s  %10s",
3369                 "Global Lists:", "InUse", "Free", "Wait", "Total");
3370   out->print_cr("==================  ==========  ==========  ==========  ==========");
3371   int l_in_use_count = Atomic::load(&om_list_globals._in_use_count);
3372   int l_free_count = Atomic::load(&om_list_globals._free_count);
3373   int l_wait_count = Atomic::load(&om_list_globals._wait_count);
3374   out->print_cr("%18s  %10d  %10d  %10d  %10d", "", l_in_use_count,
3375                 l_free_count, l_wait_count,
3376                 Atomic::load(&om_list_globals._population));
3377   pop_count += l_in_use_count + l_free_count + l_wait_count;
3378 
3379   out->print_cr("%18s  %10s  %10s  %10s",
3380                 "Per-Thread Lists:", "InUse", "Free", "Provision");
3381   out->print_cr("==================  ==========  ==========  ==========");
3382 
3383   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
3384     int l_om_in_use_count = Atomic::load(&jt->om_in_use_count);
3385     int l_om_free_count = Atomic::load(&jt->om_free_count);
3386     out->print_cr(INTPTR_FORMAT "  %10d  %10d  %10d", p2i(jt),
3387                   l_om_in_use_count, l_om_free_count, jt->om_free_provision);
3388     pop_count += l_om_in_use_count + l_om_free_count;
3389   }
3390   return pop_count;
3391 }
3392 
3393 #ifndef PRODUCT
3394 
3395 // Check if monitor belongs to the monitor cache
3396 // The list is grow-only so it's *relatively* safe to traverse
3397 // the list of extant blocks without taking a lock.
3398 
3399 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
3400   PaddedObjectMonitor* block = Atomic::load(&g_block_list);
3401   while (block != NULL) {
3402     assert(block->object() == CHAINMARKER, "must be a block header");
3403     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
3404       address mon = (address)monitor;
3405       address blk = (address)block;
3406       size_t diff = mon - blk;
3407       assert((diff % sizeof(PaddedObjectMonitor)) == 0, "must be aligned");
3408       return 1;
3409     }
3410     // unmarked_next() is not needed with g_block_list (no locking
3411     // used with block linkage _next_om fields).
3412     block = (PaddedObjectMonitor*)block->next_om();
3413   }
3414   return 0;
3415 }
3416 
3417 #endif