1 /*
   2  * Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "logging/logStream.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/metaspaceShared.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/handles.inline.hpp"
  40 #include "runtime/handshake.hpp"
  41 #include "runtime/interfaceSupport.inline.hpp"
  42 #include "runtime/mutexLocker.hpp"
  43 #include "runtime/objectMonitor.hpp"
  44 #include "runtime/objectMonitor.inline.hpp"
  45 #include "runtime/osThread.hpp"
  46 #include "runtime/safepointMechanism.inline.hpp"
  47 #include "runtime/safepointVerifiers.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/synchronizer.hpp"
  51 #include "runtime/thread.inline.hpp"
  52 #include "runtime/timer.hpp"
  53 #include "runtime/vframe.hpp"
  54 #include "runtime/vmThread.hpp"
  55 #include "utilities/align.hpp"
  56 #include "utilities/dtrace.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/preserveException.hpp"
  59 
  60 // The "core" versions of monitor enter and exit reside in this file.
  61 // The interpreter and compilers contain specialized transliterated
  62 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  63 // for instance.  If you make changes here, make sure to modify the
  64 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  65 //
  66 // -----------------------------------------------------------------------------
  67 
  68 #ifdef DTRACE_ENABLED
  69 
  70 // Only bother with this argument setup if dtrace is available
  71 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  72 
  73 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  74   char* bytes = NULL;                                                      \
  75   int len = 0;                                                             \
  76   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  77   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  78   if (klassname != NULL) {                                                 \
  79     bytes = (char*)klassname->bytes();                                     \
  80     len = klassname->utf8_length();                                        \
  81   }
  82 
  83 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  84   {                                                                        \
  85     if (DTraceMonitorProbes) {                                             \
  86       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  87       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  88                            (uintptr_t)(monitor), bytes, len, (millis));    \
  89     }                                                                      \
  90   }
  91 
  92 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  93 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  94 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  95 
  96 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  97   {                                                                        \
  98     if (DTraceMonitorProbes) {                                             \
  99       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 100       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
 101                                     (uintptr_t)(monitor), bytes, len);     \
 102     }                                                                      \
 103   }
 104 
 105 #else //  ndef DTRACE_ENABLED
 106 
 107 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 108 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 109 
 110 #endif // ndef DTRACE_ENABLED
 111 
 112 // This exists only as a workaround of dtrace bug 6254741
 113 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 114   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 115   return 0;
 116 }
 117 
 118 #define NINFLATIONLOCKS 256
 119 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 120 
 121 // global list of blocks of monitors
 122 PaddedObjectMonitor* ObjectSynchronizer::g_block_list = NULL;
 123 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false;
 124 bool volatile ObjectSynchronizer::_is_special_deflation_requested = false;
 125 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0;
 126 
 127 struct ObjectMonitorListGlobals {
 128   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 129   // These are highly shared list related variables.
 130   // To avoid false-sharing they need to be the sole occupants of a cache line.
 131 
 132   // Global ObjectMonitor free list. Newly allocated and deflated
 133   // ObjectMonitors are prepended here.
 134   ObjectMonitor* _free_list;
 135   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(ObjectMonitor*));
 136 
 137   // Global ObjectMonitor in-use list. When a JavaThread is exiting,
 138   // ObjectMonitors on its per-thread in-use list are prepended here.
 139   ObjectMonitor* _in_use_list;
 140   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(ObjectMonitor*));
 141 
 142   // Global ObjectMonitor wait list. Deflated ObjectMonitors wait on
 143   // this list until after a handshake or a safepoint for platforms
 144   // that don't support handshakes. After the handshake or safepoint,
 145   // the deflated ObjectMonitors are prepended to free_list.
 146   ObjectMonitor* _wait_list;
 147   DEFINE_PAD_MINUS_SIZE(3, OM_CACHE_LINE_SIZE, sizeof(ObjectMonitor*));
 148 
 149   int _free_count;    // # on free_list
 150   DEFINE_PAD_MINUS_SIZE(4, OM_CACHE_LINE_SIZE, sizeof(int));
 151 
 152   int _in_use_count;  // # on in_use_list
 153   DEFINE_PAD_MINUS_SIZE(5, OM_CACHE_LINE_SIZE, sizeof(int));
 154 
 155   int _population;    // # Extant -- in circulation
 156   DEFINE_PAD_MINUS_SIZE(6, OM_CACHE_LINE_SIZE, sizeof(int));
 157 
 158   int _wait_count;    // # on wait_list
 159   DEFINE_PAD_MINUS_SIZE(7, OM_CACHE_LINE_SIZE, sizeof(int));
 160 };
 161 static ObjectMonitorListGlobals om_list_globals;
 162 
 163 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 164 
 165 
 166 // =====================> Spin-lock functions
 167 
 168 // ObjectMonitors are not lockable outside of this file. We use spin-locks
 169 // implemented using a bit in the _next_om field instead of the heavier
 170 // weight locking mechanisms for faster list management.
 171 
 172 #define OM_LOCK_BIT 0x1
 173 
 174 // Return true if the ObjectMonitor is locked.
 175 // Otherwise returns false.
 176 static bool is_locked(ObjectMonitor* om) {
 177   return ((intptr_t)om->next_om() & OM_LOCK_BIT) == OM_LOCK_BIT;
 178 }
 179 
 180 // Mark an ObjectMonitor* with OM_LOCK_BIT and return it.
 181 static ObjectMonitor* mark_om_ptr(ObjectMonitor* om) {
 182   return (ObjectMonitor*)((intptr_t)om | OM_LOCK_BIT);
 183 }
 184 
 185 // Return the unmarked next field in an ObjectMonitor. Note: the next
 186 // field may or may not have been marked with OM_LOCK_BIT originally.
 187 static ObjectMonitor* unmarked_next(ObjectMonitor* om) {
 188   return (ObjectMonitor*)((intptr_t)om->next_om() & ~OM_LOCK_BIT);
 189 }
 190 
 191 // Try to lock an ObjectMonitor. Returns true if locking was successful.
 192 // Otherwise returns false.
 193 static bool try_om_lock(ObjectMonitor* om) {
 194   // Get current next field without any OM_LOCK_BIT value.
 195   ObjectMonitor* next = unmarked_next(om);
 196   if (om->try_set_next_om(next, mark_om_ptr(next)) != next) {
 197     return false;  // Cannot lock the ObjectMonitor.
 198   }
 199   return true;
 200 }
 201 
 202 // Lock an ObjectMonitor.
 203 static void om_lock(ObjectMonitor* om) {
 204   while (true) {
 205     if (try_om_lock(om)) {
 206       return;
 207     }
 208   }
 209 }
 210 
 211 // Unlock an ObjectMonitor.
 212 static void om_unlock(ObjectMonitor* om) {
 213   ObjectMonitor* next = om->next_om();
 214   guarantee(((intptr_t)next & OM_LOCK_BIT) == OM_LOCK_BIT, "next=" INTPTR_FORMAT
 215             " must have OM_LOCK_BIT=%x set.", p2i(next), OM_LOCK_BIT);
 216 
 217   next = (ObjectMonitor*)((intptr_t)next & ~OM_LOCK_BIT);  // Clear OM_LOCK_BIT.
 218   om->set_next_om(next);
 219 }
 220 
 221 // Get the list head after locking it. Returns the list head or NULL
 222 // if the list is empty.
 223 static ObjectMonitor* get_list_head_locked(ObjectMonitor** list_p) {
 224   while (true) {
 225     ObjectMonitor* mid = Atomic::load(list_p);
 226     if (mid == NULL) {
 227       return NULL;  // The list is empty.
 228     }
 229     if (try_om_lock(mid)) {
 230       if (Atomic::load(list_p) != mid) {
 231         // The list head changed before we could lock it so we have to retry.
 232         om_unlock(mid);
 233         continue;
 234       }
 235       return mid;
 236     }
 237   }
 238 }
 239 
 240 #undef OM_LOCK_BIT
 241 
 242 
 243 // =====================> List Management functions
 244 
 245 // Prepend a list of ObjectMonitors to the specified *list_p. 'tail' is
 246 // the last ObjectMonitor in the list and there are 'count' on the list.
 247 // Also updates the specified *count_p.
 248 static void prepend_list_to_common(ObjectMonitor* list, ObjectMonitor* tail,
 249                                    int count, ObjectMonitor** list_p,
 250                                    int* count_p) {
 251   while (true) {
 252     ObjectMonitor* cur = Atomic::load(list_p);
 253     // Prepend list to *list_p.
 254     if (!try_om_lock(tail)) {
 255       // Failed to lock tail due to a list walker so try it all again.
 256       continue;
 257     }
 258     tail->set_next_om(cur);  // tail now points to cur (and unlocks tail)
 259     if (cur == NULL) {
 260       // No potential race with takers or other prependers since
 261       // *list_p is empty.
 262       if (Atomic::cmpxchg(list_p, cur, list) == cur) {
 263         // Successfully switched *list_p to the list value.
 264         Atomic::add(count_p, count);
 265         break;
 266       }
 267       // Implied else: try it all again
 268     } else {
 269       if (!try_om_lock(cur)) {
 270         continue;  // failed to lock cur so try it all again
 271       }
 272       // We locked cur so try to switch *list_p to the list value.
 273       if (Atomic::cmpxchg(list_p, cur, list) != cur) {
 274         // The list head has changed so unlock cur and try again:
 275         om_unlock(cur);
 276         continue;
 277       }
 278       Atomic::add(count_p, count);
 279       om_unlock(cur);
 280       break;
 281     }
 282   }
 283 }
 284 
 285 // Prepend a newly allocated block of ObjectMonitors to g_block_list and
 286 // om_list_globals._free_list. Also updates om_list_globals._population
 287 // and om_list_globals._free_count.
 288 void ObjectSynchronizer::prepend_block_to_lists(PaddedObjectMonitor* new_blk) {
 289   // First we handle g_block_list:
 290   while (true) {
 291     PaddedObjectMonitor* cur = Atomic::load(&g_block_list);
 292     // Prepend new_blk to g_block_list. The first ObjectMonitor in
 293     // a block is reserved for use as linkage to the next block.
 294     new_blk[0].set_next_om(cur);
 295     if (Atomic::cmpxchg(&g_block_list, cur, new_blk) == cur) {
 296       // Successfully switched g_block_list to the new_blk value.
 297       Atomic::add(&om_list_globals._population, _BLOCKSIZE - 1);
 298       break;
 299     }
 300     // Implied else: try it all again
 301   }
 302 
 303   // Second we handle om_list_globals._free_list:
 304   prepend_list_to_common(new_blk + 1, &new_blk[_BLOCKSIZE - 1], _BLOCKSIZE - 1,
 305                          &om_list_globals._free_list, &om_list_globals._free_count);
 306 }
 307 
 308 // Prepend a list of ObjectMonitors to om_list_globals._free_list.
 309 // 'tail' is the last ObjectMonitor in the list and there are 'count'
 310 // on the list. Also updates om_list_globals._free_count.
 311 static void prepend_list_to_global_free_list(ObjectMonitor* list,
 312                                              ObjectMonitor* tail, int count) {
 313   prepend_list_to_common(list, tail, count, &om_list_globals._free_list,
 314                          &om_list_globals._free_count);
 315 }
 316 
 317 // Prepend a list of ObjectMonitors to om_list_globals._wait_list.
 318 // 'tail' is the last ObjectMonitor in the list and there are 'count'
 319 // on the list. Also updates om_list_globals._wait_count.
 320 static void prepend_list_to_global_wait_list(ObjectMonitor* list,
 321                                              ObjectMonitor* tail, int count) {
 322   prepend_list_to_common(list, tail, count, &om_list_globals._wait_list,
 323                          &om_list_globals._wait_count);
 324 }
 325 
 326 // Prepend a list of ObjectMonitors to om_list_globals._in_use_list.
 327 // 'tail' is the last ObjectMonitor in the list and there are 'count'
 328 // on the list. Also updates om_list_globals._in_use_list.
 329 static void prepend_list_to_global_in_use_list(ObjectMonitor* list,
 330                                                ObjectMonitor* tail, int count) {
 331   prepend_list_to_common(list, tail, count, &om_list_globals._in_use_list,
 332                          &om_list_globals._in_use_count);
 333 }
 334 
 335 // Prepend an ObjectMonitor to the specified list. Also updates
 336 // the specified counter.
 337 static void prepend_to_common(ObjectMonitor* m, ObjectMonitor** list_p,
 338                               int* count_p) {
 339   while (true) {
 340     om_lock(m);  // Lock m so we can safely update its next field.
 341     ObjectMonitor* cur = NULL;
 342     // Lock the list head to guard against races with a list walker
 343     // or async deflater thread (which only races in om_in_use_list):
 344     if ((cur = get_list_head_locked(list_p)) != NULL) {
 345       // List head is now locked so we can safely switch it.
 346       m->set_next_om(cur);  // m now points to cur (and unlocks m)
 347       Atomic::store(list_p, m);  // Switch list head to unlocked m.
 348       om_unlock(cur);
 349       break;
 350     }
 351     // The list is empty so try to set the list head.
 352     assert(cur == NULL, "cur must be NULL: cur=" INTPTR_FORMAT, p2i(cur));
 353     m->set_next_om(cur);  // m now points to NULL (and unlocks m)
 354     if (Atomic::cmpxchg(list_p, cur, m) == cur) {
 355       // List head is now unlocked m.
 356       break;
 357     }
 358     // Implied else: try it all again
 359   }
 360   Atomic::inc(count_p);
 361 }
 362 
 363 // Prepend an ObjectMonitor to a per-thread om_free_list.
 364 // Also updates the per-thread om_free_count.
 365 static void prepend_to_om_free_list(Thread* self, ObjectMonitor* m) {
 366   prepend_to_common(m, &self->om_free_list, &self->om_free_count);
 367 }
 368 
 369 // Prepend an ObjectMonitor to a per-thread om_in_use_list.
 370 // Also updates the per-thread om_in_use_count.
 371 static void prepend_to_om_in_use_list(Thread* self, ObjectMonitor* m) {
 372   prepend_to_common(m, &self->om_in_use_list, &self->om_in_use_count);
 373 }
 374 
 375 // Take an ObjectMonitor from the start of the specified list. Also
 376 // decrements the specified counter. Returns NULL if none are available.
 377 static ObjectMonitor* take_from_start_of_common(ObjectMonitor** list_p,
 378                                                 int* count_p) {
 379   ObjectMonitor* take = NULL;
 380   // Lock the list head to guard against races with a list walker
 381   // or async deflater thread (which only races in om_list_globals._free_list):
 382   if ((take = get_list_head_locked(list_p)) == NULL) {
 383     return NULL;  // None are available.
 384   }
 385   ObjectMonitor* next = unmarked_next(take);
 386   // Switch locked list head to next (which unlocks the list head, but
 387   // leaves take locked):
 388   Atomic::store(list_p, next);
 389   Atomic::dec(count_p);
 390   // Unlock take, but leave the next value for any lagging list
 391   // walkers. It will get cleaned up when take is prepended to
 392   // the in-use list:
 393   om_unlock(take);
 394   return take;
 395 }
 396 
 397 // Take an ObjectMonitor from the start of the om_list_globals._free_list.
 398 // Also updates om_list_globals._free_count. Returns NULL if none are
 399 // available.
 400 static ObjectMonitor* take_from_start_of_global_free_list() {
 401   return take_from_start_of_common(&om_list_globals._free_list,
 402                                    &om_list_globals._free_count);
 403 }
 404 
 405 // Take an ObjectMonitor from the start of a per-thread free-list.
 406 // Also updates om_free_count. Returns NULL if none are available.
 407 static ObjectMonitor* take_from_start_of_om_free_list(Thread* self) {
 408   return take_from_start_of_common(&self->om_free_list, &self->om_free_count);
 409 }
 410 
 411 
 412 // =====================> Quick functions
 413 
 414 // The quick_* forms are special fast-path variants used to improve
 415 // performance.  In the simplest case, a "quick_*" implementation could
 416 // simply return false, in which case the caller will perform the necessary
 417 // state transitions and call the slow-path form.
 418 // The fast-path is designed to handle frequently arising cases in an efficient
 419 // manner and is just a degenerate "optimistic" variant of the slow-path.
 420 // returns true  -- to indicate the call was satisfied.
 421 // returns false -- to indicate the call needs the services of the slow-path.
 422 // A no-loitering ordinance is in effect for code in the quick_* family
 423 // operators: safepoints or indefinite blocking (blocking that might span a
 424 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 425 // entry.
 426 //
 427 // Consider: An interesting optimization is to have the JIT recognize the
 428 // following common idiom:
 429 //   synchronized (someobj) { .... ; notify(); }
 430 // That is, we find a notify() or notifyAll() call that immediately precedes
 431 // the monitorexit operation.  In that case the JIT could fuse the operations
 432 // into a single notifyAndExit() runtime primitive.
 433 
 434 bool ObjectSynchronizer::quick_notify(oopDesc* obj, Thread* self, bool all) {
 435   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 436   assert(self->is_Java_thread(), "invariant");
 437   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 438   NoSafepointVerifier nsv;
 439   if (obj == NULL) return false;  // slow-path for invalid obj
 440   const markWord mark = obj->mark();
 441 
 442   if (mark.has_locker() && self->is_lock_owned((address)mark.locker())) {
 443     // Degenerate notify
 444     // stack-locked by caller so by definition the implied waitset is empty.
 445     return true;
 446   }
 447 
 448   if (mark.has_monitor()) {
 449     ObjectMonitor* const mon = mark.monitor();
 450     assert(mon->object() == obj, "invariant");
 451     if (mon->owner() != self) return false;  // slow-path for IMS exception
 452 
 453     if (mon->first_waiter() != NULL) {
 454       // We have one or more waiters. Since this is an inflated monitor
 455       // that we own, we can transfer one or more threads from the waitset
 456       // to the entrylist here and now, avoiding the slow-path.
 457       if (all) {
 458         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
 459       } else {
 460         DTRACE_MONITOR_PROBE(notify, mon, obj, self);
 461       }
 462       int free_count = 0;
 463       do {
 464         mon->INotify(self);
 465         ++free_count;
 466       } while (mon->first_waiter() != NULL && all);
 467       OM_PERFDATA_OP(Notifications, inc(free_count));
 468     }
 469     return true;
 470   }
 471 
 472   // biased locking and any other IMS exception states take the slow-path
 473   return false;
 474 }
 475 
 476 
 477 // The LockNode emitted directly at the synchronization site would have
 478 // been too big if it were to have included support for the cases of inflated
 479 // recursive enter and exit, so they go here instead.
 480 // Note that we can't safely call AsyncPrintJavaStack() from within
 481 // quick_enter() as our thread state remains _in_Java.
 482 
 483 bool ObjectSynchronizer::quick_enter(oop obj, Thread* self,
 484                                      BasicLock * lock) {
 485   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 486   assert(self->is_Java_thread(), "invariant");
 487   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 488   NoSafepointVerifier nsv;
 489   if (obj == NULL) return false;       // Need to throw NPE
 490 
 491   const markWord mark = obj->mark();
 492 
 493   if (mark.has_monitor()) {
 494     ObjectMonitor* const m = mark.monitor();
 495     if (AsyncDeflateIdleMonitors) {
 496       // An async deflation can race us before we manage to make the
 497       // ObjectMonitor busy by setting the owner below. If we detect
 498       // that race we just bail out to the slow-path here.
 499       if (m->object() == NULL) {
 500         return false;
 501       }
 502     } else {
 503       assert(m->object() == obj, "invariant");
 504     }
 505     Thread* const owner = (Thread *) m->_owner;
 506 
 507     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 508     // and observability
 509     // Case: light contention possibly amenable to TLE
 510     // Case: TLE inimical operations such as nested/recursive synchronization
 511 
 512     if (owner == self) {
 513       m->_recursions++;
 514       return true;
 515     }
 516 
 517     // This Java Monitor is inflated so obj's header will never be
 518     // displaced to this thread's BasicLock. Make the displaced header
 519     // non-NULL so this BasicLock is not seen as recursive nor as
 520     // being locked. We do this unconditionally so that this thread's
 521     // BasicLock cannot be mis-interpreted by any stack walkers. For
 522     // performance reasons, stack walkers generally first check for
 523     // Biased Locking in the object's header, the second check is for
 524     // stack-locking in the object's header, the third check is for
 525     // recursive stack-locking in the displaced header in the BasicLock,
 526     // and last are the inflated Java Monitor (ObjectMonitor) checks.
 527     lock->set_displaced_header(markWord::unused_mark());
 528 
 529     if (owner == NULL && m->try_set_owner_from(NULL, self) == NULL) {
 530       assert(m->_recursions == 0, "invariant");
 531       return true;
 532     }
 533   }
 534 
 535   // Note that we could inflate in quick_enter.
 536   // This is likely a useful optimization
 537   // Critically, in quick_enter() we must not:
 538   // -- perform bias revocation, or
 539   // -- block indefinitely, or
 540   // -- reach a safepoint
 541 
 542   return false;        // revert to slow-path
 543 }
 544 
 545 // -----------------------------------------------------------------------------
 546 // Monitor Enter/Exit
 547 // The interpreter and compiler assembly code tries to lock using the fast path
 548 // of this algorithm. Make sure to update that code if the following function is
 549 // changed. The implementation is extremely sensitive to race condition. Be careful.
 550 
 551 void ObjectSynchronizer::enter(Handle obj, BasicLock* lock, TRAPS) {
 552   if (UseBiasedLocking) {
 553     if (!SafepointSynchronize::is_at_safepoint()) {
 554       BiasedLocking::revoke(obj, THREAD);
 555     } else {
 556       BiasedLocking::revoke_at_safepoint(obj);
 557     }
 558   }
 559 
 560   markWord mark = obj->mark();
 561   assert(!mark.has_bias_pattern(), "should not see bias pattern here");
 562 
 563   if (mark.is_neutral()) {
 564     // Anticipate successful CAS -- the ST of the displaced mark must
 565     // be visible <= the ST performed by the CAS.
 566     lock->set_displaced_header(mark);
 567     if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) {
 568       return;
 569     }
 570     // Fall through to inflate() ...
 571   } else if (mark.has_locker() &&
 572              THREAD->is_lock_owned((address)mark.locker())) {
 573     assert(lock != mark.locker(), "must not re-lock the same lock");
 574     assert(lock != (BasicLock*)obj->mark().value(), "don't relock with same BasicLock");
 575     lock->set_displaced_header(markWord::from_pointer(NULL));
 576     return;
 577   }
 578 
 579   // The object header will never be displaced to this lock,
 580   // so it does not matter what the value is, except that it
 581   // must be non-zero to avoid looking like a re-entrant lock,
 582   // and must not look locked either.
 583   lock->set_displaced_header(markWord::unused_mark());
 584   // An async deflation can race after the inflate() call and before
 585   // enter() can make the ObjectMonitor busy. enter() returns false if
 586   // we have lost the race to async deflation and we simply try again.
 587   while (true) {
 588     ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_monitor_enter);
 589     if (monitor->enter(THREAD)) {
 590       return;
 591     }
 592   }
 593 }
 594 
 595 void ObjectSynchronizer::exit(oop object, BasicLock* lock, TRAPS) {
 596   markWord mark = object->mark();
 597   // We cannot check for Biased Locking if we are racing an inflation.
 598   assert(mark == markWord::INFLATING() ||
 599          !mark.has_bias_pattern(), "should not see bias pattern here");
 600 
 601   markWord dhw = lock->displaced_header();
 602   if (dhw.value() == 0) {
 603     // If the displaced header is NULL, then this exit matches up with
 604     // a recursive enter. No real work to do here except for diagnostics.
 605 #ifndef PRODUCT
 606     if (mark != markWord::INFLATING()) {
 607       // Only do diagnostics if we are not racing an inflation. Simply
 608       // exiting a recursive enter of a Java Monitor that is being
 609       // inflated is safe; see the has_monitor() comment below.
 610       assert(!mark.is_neutral(), "invariant");
 611       assert(!mark.has_locker() ||
 612              THREAD->is_lock_owned((address)mark.locker()), "invariant");
 613       if (mark.has_monitor()) {
 614         // The BasicLock's displaced_header is marked as a recursive
 615         // enter and we have an inflated Java Monitor (ObjectMonitor).
 616         // This is a special case where the Java Monitor was inflated
 617         // after this thread entered the stack-lock recursively. When a
 618         // Java Monitor is inflated, we cannot safely walk the Java
 619         // Monitor owner's stack and update the BasicLocks because a
 620         // Java Monitor can be asynchronously inflated by a thread that
 621         // does not own the Java Monitor.
 622         ObjectMonitor* m = mark.monitor();
 623         assert(((oop)(m->object()))->mark() == mark, "invariant");
 624         assert(m->is_entered(THREAD), "invariant");
 625       }
 626     }
 627 #endif
 628     return;
 629   }
 630 
 631   if (mark == markWord::from_pointer(lock)) {
 632     // If the object is stack-locked by the current thread, try to
 633     // swing the displaced header from the BasicLock back to the mark.
 634     assert(dhw.is_neutral(), "invariant");
 635     if (object->cas_set_mark(dhw, mark) == mark) {
 636       return;
 637     }
 638   }
 639 
 640   // We have to take the slow-path of possible inflation and then exit.
 641   // The ObjectMonitor* can't be async deflated until ownership is
 642   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 643   ObjectMonitor* monitor = inflate(THREAD, object, inflate_cause_vm_internal);
 644   monitor->exit(true, THREAD);
 645 }
 646 
 647 // -----------------------------------------------------------------------------
 648 // Class Loader  support to workaround deadlocks on the class loader lock objects
 649 // Also used by GC
 650 // complete_exit()/reenter() are used to wait on a nested lock
 651 // i.e. to give up an outer lock completely and then re-enter
 652 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 653 //  1) complete_exit lock1 - saving recursion count
 654 //  2) wait on lock2
 655 //  3) when notified on lock2, unlock lock2
 656 //  4) reenter lock1 with original recursion count
 657 //  5) lock lock2
 658 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 659 intx ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 660   if (UseBiasedLocking) {
 661     BiasedLocking::revoke(obj, THREAD);
 662     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 663   }
 664 
 665   // The ObjectMonitor* can't be async deflated until ownership is
 666   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 667   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal);
 668   intptr_t ret_code = monitor->complete_exit(THREAD);
 669   return ret_code;
 670 }
 671 
 672 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 673 void ObjectSynchronizer::reenter(Handle obj, intx recursions, TRAPS) {
 674   if (UseBiasedLocking) {
 675     BiasedLocking::revoke(obj, THREAD);
 676     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 677   }
 678 
 679   // An async deflation can race after the inflate() call and before
 680   // reenter() -> enter() can make the ObjectMonitor busy. reenter() ->
 681   // enter() returns false if we have lost the race to async deflation
 682   // and we simply try again.
 683   while (true) {
 684     ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal);
 685     if (monitor->reenter(recursions, THREAD)) {
 686       return;
 687     }
 688   }
 689 }
 690 
 691 // -----------------------------------------------------------------------------
 692 // JNI locks on java objects
 693 // NOTE: must use heavy weight monitor to handle jni monitor enter
 694 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 695   // the current locking is from JNI instead of Java code
 696   if (UseBiasedLocking) {
 697     BiasedLocking::revoke(obj, THREAD);
 698     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 699   }
 700   THREAD->set_current_pending_monitor_is_from_java(false);
 701   // An async deflation can race after the inflate() call and before
 702   // enter() can make the ObjectMonitor busy. enter() returns false if
 703   // we have lost the race to async deflation and we simply try again.
 704   while (true) {
 705     ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_jni_enter);
 706     if (monitor->enter(THREAD)) {
 707       break;
 708     }
 709   }
 710   THREAD->set_current_pending_monitor_is_from_java(true);
 711 }
 712 
 713 // NOTE: must use heavy weight monitor to handle jni monitor exit
 714 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 715   if (UseBiasedLocking) {
 716     Handle h_obj(THREAD, obj);
 717     BiasedLocking::revoke(h_obj, THREAD);
 718     obj = h_obj();
 719   }
 720   assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 721 
 722   // The ObjectMonitor* can't be async deflated until ownership is
 723   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 724   ObjectMonitor* monitor = inflate(THREAD, obj, inflate_cause_jni_exit);
 725   // If this thread has locked the object, exit the monitor. We
 726   // intentionally do not use CHECK here because we must exit the
 727   // monitor even if an exception is pending.
 728   if (monitor->check_owner(THREAD)) {
 729     monitor->exit(true, THREAD);
 730   }
 731 }
 732 
 733 // -----------------------------------------------------------------------------
 734 // Internal VM locks on java objects
 735 // standard constructor, allows locking failures
 736 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool do_lock) {
 737   _dolock = do_lock;
 738   _thread = thread;
 739   _thread->check_for_valid_safepoint_state();
 740   _obj = obj;
 741 
 742   if (_dolock) {
 743     ObjectSynchronizer::enter(_obj, &_lock, _thread);
 744   }
 745 }
 746 
 747 ObjectLocker::~ObjectLocker() {
 748   if (_dolock) {
 749     ObjectSynchronizer::exit(_obj(), &_lock, _thread);
 750   }
 751 }
 752 
 753 
 754 // -----------------------------------------------------------------------------
 755 //  Wait/Notify/NotifyAll
 756 // NOTE: must use heavy weight monitor to handle wait()
 757 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 758   if (UseBiasedLocking) {
 759     BiasedLocking::revoke(obj, THREAD);
 760     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 761   }
 762   if (millis < 0) {
 763     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 764   }
 765   // The ObjectMonitor* can't be async deflated because the _waiters
 766   // field is incremented before ownership is dropped and decremented
 767   // after ownership is regained.
 768   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_wait);
 769 
 770   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 771   monitor->wait(millis, true, THREAD);
 772 
 773   // This dummy call is in place to get around dtrace bug 6254741.  Once
 774   // that's fixed we can uncomment the following line, remove the call
 775   // and change this function back into a "void" func.
 776   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 777   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 778   return ret_code;
 779 }
 780 
 781 void ObjectSynchronizer::wait_uninterruptibly(Handle obj, jlong millis, TRAPS) {
 782   if (UseBiasedLocking) {
 783     BiasedLocking::revoke(obj, THREAD);
 784     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 785   }
 786   if (millis < 0) {
 787     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 788   }
 789   // The ObjectMonitor* can't be async deflated because the _waiters
 790   // field is incremented before ownership is dropped and decremented
 791   // after ownership is regained.
 792   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_wait);
 793   monitor->wait(millis, false, THREAD);
 794 }
 795 
 796 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 797   if (UseBiasedLocking) {
 798     BiasedLocking::revoke(obj, THREAD);
 799     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 800   }
 801 
 802   markWord mark = obj->mark();
 803   if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) {
 804     return;
 805   }
 806   // The ObjectMonitor* can't be async deflated until ownership is
 807   // dropped by the calling thread.
 808   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_notify);
 809   monitor->notify(THREAD);
 810 }
 811 
 812 // NOTE: see comment of notify()
 813 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 814   if (UseBiasedLocking) {
 815     BiasedLocking::revoke(obj, THREAD);
 816     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 817   }
 818 
 819   markWord mark = obj->mark();
 820   if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) {
 821     return;
 822   }
 823   // The ObjectMonitor* can't be async deflated until ownership is
 824   // dropped by the calling thread.
 825   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_notify);
 826   monitor->notifyAll(THREAD);
 827 }
 828 
 829 // -----------------------------------------------------------------------------
 830 // Hash Code handling
 831 //
 832 // Performance concern:
 833 // OrderAccess::storestore() calls release() which at one time stored 0
 834 // into the global volatile OrderAccess::dummy variable. This store was
 835 // unnecessary for correctness. Many threads storing into a common location
 836 // causes considerable cache migration or "sloshing" on large SMP systems.
 837 // As such, I avoided using OrderAccess::storestore(). In some cases
 838 // OrderAccess::fence() -- which incurs local latency on the executing
 839 // processor -- is a better choice as it scales on SMP systems.
 840 //
 841 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 842 // a discussion of coherency costs. Note that all our current reference
 843 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 844 // x64, and SPARC.
 845 //
 846 // As a general policy we use "volatile" to control compiler-based reordering
 847 // and explicit fences (barriers) to control for architectural reordering
 848 // performed by the CPU(s) or platform.
 849 
 850 struct SharedGlobals {
 851   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 852   // These are highly shared mostly-read variables.
 853   // To avoid false-sharing they need to be the sole occupants of a cache line.
 854   volatile int stw_random;
 855   volatile int stw_cycle;
 856   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 857   // Hot RW variable -- Sequester to avoid false-sharing
 858   volatile int hc_sequence;
 859   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 860 };
 861 
 862 static SharedGlobals GVars;
 863 
 864 static markWord read_stable_mark(oop obj) {
 865   markWord mark = obj->mark();
 866   if (!mark.is_being_inflated()) {
 867     return mark;       // normal fast-path return
 868   }
 869 
 870   int its = 0;
 871   for (;;) {
 872     markWord mark = obj->mark();
 873     if (!mark.is_being_inflated()) {
 874       return mark;    // normal fast-path return
 875     }
 876 
 877     // The object is being inflated by some other thread.
 878     // The caller of read_stable_mark() must wait for inflation to complete.
 879     // Avoid live-lock
 880     // TODO: consider calling SafepointSynchronize::do_call_back() while
 881     // spinning to see if there's a safepoint pending.  If so, immediately
 882     // yielding or blocking would be appropriate.  Avoid spinning while
 883     // there is a safepoint pending.
 884     // TODO: add inflation contention performance counters.
 885     // TODO: restrict the aggregate number of spinners.
 886 
 887     ++its;
 888     if (its > 10000 || !os::is_MP()) {
 889       if (its & 1) {
 890         os::naked_yield();
 891       } else {
 892         // Note that the following code attenuates the livelock problem but is not
 893         // a complete remedy.  A more complete solution would require that the inflating
 894         // thread hold the associated inflation lock.  The following code simply restricts
 895         // the number of spinners to at most one.  We'll have N-2 threads blocked
 896         // on the inflationlock, 1 thread holding the inflation lock and using
 897         // a yield/park strategy, and 1 thread in the midst of inflation.
 898         // A more refined approach would be to change the encoding of INFLATING
 899         // to allow encapsulation of a native thread pointer.  Threads waiting for
 900         // inflation to complete would use CAS to push themselves onto a singly linked
 901         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 902         // and calling park().  When inflation was complete the thread that accomplished inflation
 903         // would detach the list and set the markword to inflated with a single CAS and
 904         // then for each thread on the list, set the flag and unpark() the thread.
 905         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 906         // wakes at most one thread whereas we need to wake the entire list.
 907         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 908         int YieldThenBlock = 0;
 909         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 910         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 911         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 912         while (obj->mark() == markWord::INFLATING()) {
 913           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 914           // so we periodically call self->_ParkEvent->park(1).
 915           // We use a mixed spin/yield/block mechanism.
 916           if ((YieldThenBlock++) >= 16) {
 917             Thread::current()->_ParkEvent->park(1);
 918           } else {
 919             os::naked_yield();
 920           }
 921         }
 922         Thread::muxRelease(gInflationLocks + ix);
 923       }
 924     } else {
 925       SpinPause();       // SMP-polite spinning
 926     }
 927   }
 928 }
 929 
 930 // hashCode() generation :
 931 //
 932 // Possibilities:
 933 // * MD5Digest of {obj,stw_random}
 934 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function.
 935 // * A DES- or AES-style SBox[] mechanism
 936 // * One of the Phi-based schemes, such as:
 937 //   2654435761 = 2^32 * Phi (golden ratio)
 938 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ;
 939 // * A variation of Marsaglia's shift-xor RNG scheme.
 940 // * (obj ^ stw_random) is appealing, but can result
 941 //   in undesirable regularity in the hashCode values of adjacent objects
 942 //   (objects allocated back-to-back, in particular).  This could potentially
 943 //   result in hashtable collisions and reduced hashtable efficiency.
 944 //   There are simple ways to "diffuse" the middle address bits over the
 945 //   generated hashCode values:
 946 
 947 static inline intptr_t get_next_hash(Thread* self, oop obj) {
 948   intptr_t value = 0;
 949   if (hashCode == 0) {
 950     // This form uses global Park-Miller RNG.
 951     // On MP system we'll have lots of RW access to a global, so the
 952     // mechanism induces lots of coherency traffic.
 953     value = os::random();
 954   } else if (hashCode == 1) {
 955     // This variation has the property of being stable (idempotent)
 956     // between STW operations.  This can be useful in some of the 1-0
 957     // synchronization schemes.
 958     intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3;
 959     value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random;
 960   } else if (hashCode == 2) {
 961     value = 1;            // for sensitivity testing
 962   } else if (hashCode == 3) {
 963     value = ++GVars.hc_sequence;
 964   } else if (hashCode == 4) {
 965     value = cast_from_oop<intptr_t>(obj);
 966   } else {
 967     // Marsaglia's xor-shift scheme with thread-specific state
 968     // This is probably the best overall implementation -- we'll
 969     // likely make this the default in future releases.
 970     unsigned t = self->_hashStateX;
 971     t ^= (t << 11);
 972     self->_hashStateX = self->_hashStateY;
 973     self->_hashStateY = self->_hashStateZ;
 974     self->_hashStateZ = self->_hashStateW;
 975     unsigned v = self->_hashStateW;
 976     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 977     self->_hashStateW = v;
 978     value = v;
 979   }
 980 
 981   value &= markWord::hash_mask;
 982   if (value == 0) value = 0xBAD;
 983   assert(value != markWord::no_hash, "invariant");
 984   return value;
 985 }
 986 
 987 intptr_t ObjectSynchronizer::FastHashCode(Thread* self, oop obj) {
 988   if (UseBiasedLocking) {
 989     // NOTE: many places throughout the JVM do not expect a safepoint
 990     // to be taken here, in particular most operations on perm gen
 991     // objects. However, we only ever bias Java instances and all of
 992     // the call sites of identity_hash that might revoke biases have
 993     // been checked to make sure they can handle a safepoint. The
 994     // added check of the bias pattern is to avoid useless calls to
 995     // thread-local storage.
 996     if (obj->mark().has_bias_pattern()) {
 997       // Handle for oop obj in case of STW safepoint
 998       Handle hobj(self, obj);
 999       // Relaxing assertion for bug 6320749.
1000       assert(Universe::verify_in_progress() ||
1001              !SafepointSynchronize::is_at_safepoint(),
1002              "biases should not be seen by VM thread here");
1003       BiasedLocking::revoke(hobj, JavaThread::current());
1004       obj = hobj();
1005       assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
1006     }
1007   }
1008 
1009   // hashCode() is a heap mutator ...
1010   // Relaxing assertion for bug 6320749.
1011   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
1012          !SafepointSynchronize::is_at_safepoint(), "invariant");
1013   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
1014          self->is_Java_thread() , "invariant");
1015   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
1016          ((JavaThread *)self)->thread_state() != _thread_blocked, "invariant");
1017 
1018   while (true) {
1019     ObjectMonitor* monitor = NULL;
1020     markWord temp, test;
1021     intptr_t hash;
1022     markWord mark = read_stable_mark(obj);
1023 
1024     // object should remain ineligible for biased locking
1025     assert(!mark.has_bias_pattern(), "invariant");
1026 
1027     if (mark.is_neutral()) {            // if this is a normal header
1028       hash = mark.hash();
1029       if (hash != 0) {                  // if it has a hash, just return it
1030         return hash;
1031       }
1032       hash = get_next_hash(self, obj);  // get a new hash
1033       temp = mark.copy_set_hash(hash);  // merge the hash into header
1034                                         // try to install the hash
1035       test = obj->cas_set_mark(temp, mark);
1036       if (test == mark) {               // if the hash was installed, return it
1037         return hash;
1038       }
1039       // Failed to install the hash. It could be that another thread
1040       // installed the hash just before our attempt or inflation has
1041       // occurred or... so we fall thru to inflate the monitor for
1042       // stability and then install the hash.
1043     } else if (mark.has_monitor()) {
1044       monitor = mark.monitor();
1045       temp = monitor->header();
1046       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1047       hash = temp.hash();
1048       if (hash != 0) {
1049         // It has a hash.
1050 
1051         // Separate load of dmw/header above from the loads in
1052         // is_being_async_deflated().
1053         if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
1054           // A non-multiple copy atomic (nMCA) machine needs a bigger
1055           // hammer to make sure that the load above and the loads
1056           // below all see non-stale memory values.
1057           OrderAccess::fence();
1058         } else {
1059           OrderAccess::loadload();
1060         }
1061         if (monitor->is_being_async_deflated()) {
1062           // But we can't safely use the hash if we detect that async
1063           // deflation has occurred. So we attempt to restore the
1064           // header/dmw to the object's header so that we only retry
1065           // once if the deflater thread happens to be slow.
1066           monitor->install_displaced_markword_in_object(obj);
1067           continue;
1068         }
1069         return hash;
1070       }
1071       // Fall thru so we only have one place that installs the hash in
1072       // the ObjectMonitor.
1073     } else if (self->is_lock_owned((address)mark.locker())) {
1074       // This is a stack lock owned by the calling thread so fetch the
1075       // displaced markWord from the BasicLock on the stack.
1076       temp = mark.displaced_mark_helper();
1077       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1078       hash = temp.hash();
1079       if (hash != 0) {                  // if it has a hash, just return it
1080         return hash;
1081       }
1082       // WARNING:
1083       // The displaced header in the BasicLock on a thread's stack
1084       // is strictly immutable. It CANNOT be changed in ANY cases.
1085       // So we have to inflate the stack lock into an ObjectMonitor
1086       // even if the current thread owns the lock. The BasicLock on
1087       // a thread's stack can be asynchronously read by other threads
1088       // during an inflate() call so any change to that stack memory
1089       // may not propagate to other threads correctly.
1090     }
1091 
1092     // Inflate the monitor to set the hash.
1093 
1094     // An async deflation can race after the inflate() call and before we
1095     // can update the ObjectMonitor's header with the hash value below.
1096     monitor = inflate(self, obj, inflate_cause_hash_code);
1097     // Load ObjectMonitor's header/dmw field and see if it has a hash.
1098     mark = monitor->header();
1099     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1100     hash = mark.hash();
1101     if (hash == 0) {                    // if it does not have a hash
1102       hash = get_next_hash(self, obj);  // get a new hash
1103       temp = mark.copy_set_hash(hash);  // merge the hash into header
1104       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1105       uintptr_t v = Atomic::cmpxchg((volatile uintptr_t*)monitor->header_addr(), mark.value(), temp.value());
1106       test = markWord(v);
1107       if (test != mark) {
1108         // The attempt to update the ObjectMonitor's header/dmw field
1109         // did not work. This can happen if another thread managed to
1110         // merge in the hash just before our cmpxchg().
1111         // If we add any new usages of the header/dmw field, this code
1112         // will need to be updated.
1113         hash = test.hash();
1114         assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
1115         assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash");
1116       }
1117       if (monitor->is_being_async_deflated()) {
1118         // If we detect that async deflation has occurred, then we
1119         // attempt to restore the header/dmw to the object's header
1120         // so that we only retry once if the deflater thread happens
1121         // to be slow.
1122         monitor->install_displaced_markword_in_object(obj);
1123         continue;
1124       }
1125     }
1126     // We finally get the hash.
1127     return hash;
1128   }
1129 }
1130 
1131 // Deprecated -- use FastHashCode() instead.
1132 
1133 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
1134   return FastHashCode(Thread::current(), obj());
1135 }
1136 
1137 
1138 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
1139                                                    Handle h_obj) {
1140   if (UseBiasedLocking) {
1141     BiasedLocking::revoke(h_obj, thread);
1142     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
1143   }
1144 
1145   assert(thread == JavaThread::current(), "Can only be called on current thread");
1146   oop obj = h_obj();
1147 
1148   markWord mark = read_stable_mark(obj);
1149 
1150   // Uncontended case, header points to stack
1151   if (mark.has_locker()) {
1152     return thread->is_lock_owned((address)mark.locker());
1153   }
1154   // Contended case, header points to ObjectMonitor (tagged pointer)
1155   if (mark.has_monitor()) {
1156     // The first stage of async deflation does not affect any field
1157     // used by this comparison so the ObjectMonitor* is usable here.
1158     ObjectMonitor* monitor = mark.monitor();
1159     return monitor->is_entered(thread) != 0;
1160   }
1161   // Unlocked case, header in place
1162   assert(mark.is_neutral(), "sanity check");
1163   return false;
1164 }
1165 
1166 // Be aware of this method could revoke bias of the lock object.
1167 // This method queries the ownership of the lock handle specified by 'h_obj'.
1168 // If the current thread owns the lock, it returns owner_self. If no
1169 // thread owns the lock, it returns owner_none. Otherwise, it will return
1170 // owner_other.
1171 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
1172 (JavaThread *self, Handle h_obj) {
1173   // The caller must beware this method can revoke bias, and
1174   // revocation can result in a safepoint.
1175   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
1176   assert(self->thread_state() != _thread_blocked, "invariant");
1177 
1178   // Possible mark states: neutral, biased, stack-locked, inflated
1179 
1180   if (UseBiasedLocking && h_obj()->mark().has_bias_pattern()) {
1181     // CASE: biased
1182     BiasedLocking::revoke(h_obj, self);
1183     assert(!h_obj->mark().has_bias_pattern(),
1184            "biases should be revoked by now");
1185   }
1186 
1187   assert(self == JavaThread::current(), "Can only be called on current thread");
1188   oop obj = h_obj();
1189   markWord mark = read_stable_mark(obj);
1190 
1191   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
1192   if (mark.has_locker()) {
1193     return self->is_lock_owned((address)mark.locker()) ?
1194       owner_self : owner_other;
1195   }
1196 
1197   // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor.
1198   // The Object:ObjectMonitor relationship is stable as long as we're
1199   // not at a safepoint and AsyncDeflateIdleMonitors is false.
1200   if (mark.has_monitor()) {
1201     // The first stage of async deflation does not affect any field
1202     // used by this comparison so the ObjectMonitor* is usable here.
1203     ObjectMonitor* monitor = mark.monitor();
1204     void* owner = monitor->owner();
1205     if (owner == NULL) return owner_none;
1206     return (owner == self ||
1207             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
1208   }
1209 
1210   // CASE: neutral
1211   assert(mark.is_neutral(), "sanity check");
1212   return owner_none;           // it's unlocked
1213 }
1214 
1215 // FIXME: jvmti should call this
1216 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
1217   if (UseBiasedLocking) {
1218     if (SafepointSynchronize::is_at_safepoint()) {
1219       BiasedLocking::revoke_at_safepoint(h_obj);
1220     } else {
1221       BiasedLocking::revoke(h_obj, JavaThread::current());
1222     }
1223     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
1224   }
1225 
1226   oop obj = h_obj();
1227   address owner = NULL;
1228 
1229   markWord mark = read_stable_mark(obj);
1230 
1231   // Uncontended case, header points to stack
1232   if (mark.has_locker()) {
1233     owner = (address) mark.locker();
1234   }
1235 
1236   // Contended case, header points to ObjectMonitor (tagged pointer)
1237   else if (mark.has_monitor()) {
1238     // The first stage of async deflation does not affect any field
1239     // used by this comparison so the ObjectMonitor* is usable here.
1240     ObjectMonitor* monitor = mark.monitor();
1241     assert(monitor != NULL, "monitor should be non-null");
1242     owner = (address) monitor->owner();
1243   }
1244 
1245   if (owner != NULL) {
1246     // owning_thread_from_monitor_owner() may also return NULL here
1247     return Threads::owning_thread_from_monitor_owner(t_list, owner);
1248   }
1249 
1250   // Unlocked case, header in place
1251   // Cannot have assertion since this object may have been
1252   // locked by another thread when reaching here.
1253   // assert(mark.is_neutral(), "sanity check");
1254 
1255   return NULL;
1256 }
1257 
1258 // Visitors ...
1259 
1260 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
1261   PaddedObjectMonitor* block = Atomic::load(&g_block_list);
1262   while (block != NULL) {
1263     assert(block->object() == CHAINMARKER, "must be a block header");
1264     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
1265       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
1266       if (mid->object() != NULL) {
1267         // Only process with closure if the object is set.
1268 
1269         // monitors_iterate() is only called at a safepoint or when the
1270         // target thread is suspended or when the target thread is
1271         // operating on itself. The current closures in use today are
1272         // only interested in an owned ObjectMonitor and ownership
1273         // cannot be dropped under the calling contexts so the
1274         // ObjectMonitor cannot be async deflated.
1275         closure->do_monitor(mid);
1276       }
1277     }
1278     // unmarked_next() is not needed with g_block_list (no locking
1279     // used with block linkage _next_om fields).
1280     block = (PaddedObjectMonitor*)block->next_om();
1281   }
1282 }
1283 
1284 static bool monitors_used_above_threshold() {
1285   int population = Atomic::load(&om_list_globals._population);
1286   if (population == 0) {
1287     return false;
1288   }
1289   if (MonitorUsedDeflationThreshold > 0) {
1290     int monitors_used = population - Atomic::load(&om_list_globals._free_count) -
1291                         Atomic::load(&om_list_globals._wait_count);
1292     int monitor_usage = (monitors_used * 100LL) / population;
1293     return monitor_usage > MonitorUsedDeflationThreshold;
1294   }
1295   return false;
1296 }
1297 
1298 bool ObjectSynchronizer::is_async_deflation_needed() {
1299   if (!AsyncDeflateIdleMonitors) {
1300     return false;
1301   }
1302   if (is_async_deflation_requested()) {
1303     // Async deflation request.
1304     return true;
1305   }
1306   if (AsyncDeflationInterval > 0 &&
1307       time_since_last_async_deflation_ms() > AsyncDeflationInterval &&
1308       monitors_used_above_threshold()) {
1309     // It's been longer than our specified deflate interval and there
1310     // are too many monitors in use. We don't deflate more frequently
1311     // than AsyncDeflationInterval (unless is_async_deflation_requested)
1312     // in order to not swamp the ServiceThread.
1313     _last_async_deflation_time_ns = os::javaTimeNanos();
1314     return true;
1315   }
1316   return false;
1317 }
1318 
1319 bool ObjectSynchronizer::is_safepoint_deflation_needed() {
1320   if (!AsyncDeflateIdleMonitors) {
1321     if (monitors_used_above_threshold()) {
1322       // Too many monitors in use.
1323       return true;
1324     }
1325     return false;
1326   }
1327   if (is_special_deflation_requested()) {
1328     // For AsyncDeflateIdleMonitors only do a safepoint deflation
1329     // if there is a special deflation request.
1330     return true;
1331   }
1332   return false;
1333 }
1334 
1335 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1336   return (os::javaTimeNanos() - _last_async_deflation_time_ns) / (NANOUNITS / MILLIUNITS);
1337 }
1338 
1339 void ObjectSynchronizer::oops_do(OopClosure* f) {
1340   // We only scan the global used list here (for moribund threads), and
1341   // the thread-local monitors in Thread::oops_do().
1342   global_used_oops_do(f);
1343 }
1344 
1345 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
1346   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1347   list_oops_do(Atomic::load(&om_list_globals._in_use_list), f);
1348 }
1349 
1350 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
1351   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1352   list_oops_do(thread->om_in_use_list, f);
1353 }
1354 
1355 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) {
1356   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1357   // The oops_do() phase does not overlap with monitor deflation
1358   // so no need to lock ObjectMonitors for the list traversal.
1359   for (ObjectMonitor* mid = list; mid != NULL; mid = unmarked_next(mid)) {
1360     if (mid->object() != NULL) {
1361       f->do_oop((oop*)mid->object_addr());
1362     }
1363   }
1364 }
1365 
1366 
1367 // -----------------------------------------------------------------------------
1368 // ObjectMonitor Lifecycle
1369 // -----------------------
1370 // Inflation unlinks monitors from om_list_globals._free_list or a per-thread
1371 // free list and associates them with objects. Deflation -- which occurs at
1372 // STW-time or asynchronously -- disassociates idle monitors from objects.
1373 // Such scavenged monitors are returned to the om_list_globals._free_list.
1374 //
1375 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
1376 //
1377 // Lifecycle:
1378 // --   unassigned and on the om_list_globals._free_list
1379 // --   unassigned and on a per-thread free list
1380 // --   assigned to an object.  The object is inflated and the mark refers
1381 //      to the ObjectMonitor.
1382 
1383 ObjectMonitor* ObjectSynchronizer::om_alloc(Thread* self) {
1384   // A large MAXPRIVATE value reduces both list lock contention
1385   // and list coherency traffic, but also tends to increase the
1386   // number of ObjectMonitors in circulation as well as the STW
1387   // scavenge costs.  As usual, we lean toward time in space-time
1388   // tradeoffs.
1389   const int MAXPRIVATE = 1024;
1390   NoSafepointVerifier nsv;
1391 
1392   for (;;) {
1393     ObjectMonitor* m;
1394 
1395     // 1: try to allocate from the thread's local om_free_list.
1396     // Threads will attempt to allocate first from their local list, then
1397     // from the global list, and only after those attempts fail will the
1398     // thread attempt to instantiate new monitors. Thread-local free lists
1399     // improve allocation latency, as well as reducing coherency traffic
1400     // on the shared global list.
1401     m = take_from_start_of_om_free_list(self);
1402     if (m != NULL) {
1403       guarantee(m->object() == NULL, "invariant");
1404       m->set_allocation_state(ObjectMonitor::New);
1405       prepend_to_om_in_use_list(self, m);
1406       return m;
1407     }
1408 
1409     // 2: try to allocate from the global om_list_globals._free_list
1410     // If we're using thread-local free lists then try
1411     // to reprovision the caller's free list.
1412     if (Atomic::load(&om_list_globals._free_list) != NULL) {
1413       // Reprovision the thread's om_free_list.
1414       // Use bulk transfers to reduce the allocation rate and heat
1415       // on various locks.
1416       for (int i = self->om_free_provision; --i >= 0;) {
1417         ObjectMonitor* take = take_from_start_of_global_free_list();
1418         if (take == NULL) {
1419           break;  // No more are available.
1420         }
1421         guarantee(take->object() == NULL, "invariant");
1422         if (AsyncDeflateIdleMonitors) {
1423           // We allowed 3 field values to linger during async deflation.
1424           // Clear or restore them as appropriate.
1425           take->set_header(markWord::zero());
1426           // DEFLATER_MARKER is the only non-NULL value we should see here.
1427           take->try_set_owner_from(DEFLATER_MARKER, NULL);
1428           if (take->contentions() < 0) {
1429             // Add back max_jint to restore the contentions field to its
1430             // proper value.
1431             take->add_to_contentions(max_jint);
1432 
1433 #ifdef ASSERT
1434             jint l_contentions = take->contentions();
1435 #endif
1436             assert(l_contentions >= 0, "must not be negative: l_contentions=%d, contentions=%d",
1437                    l_contentions, take->contentions());
1438           }
1439         }
1440         take->Recycle();
1441         // Since we're taking from the global free-list, take must be Free.
1442         // om_release() also sets the allocation state to Free because it
1443         // is called from other code paths.
1444         assert(take->is_free(), "invariant");
1445         om_release(self, take, false);
1446       }
1447       self->om_free_provision += 1 + (self->om_free_provision / 2);
1448       if (self->om_free_provision > MAXPRIVATE) self->om_free_provision = MAXPRIVATE;
1449       continue;
1450     }
1451 
1452     // 3: allocate a block of new ObjectMonitors
1453     // Both the local and global free lists are empty -- resort to malloc().
1454     // In the current implementation ObjectMonitors are TSM - immortal.
1455     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1456     // each ObjectMonitor to start at the beginning of a cache line,
1457     // so we use align_up().
1458     // A better solution would be to use C++ placement-new.
1459     // BEWARE: As it stands currently, we don't run the ctors!
1460     assert(_BLOCKSIZE > 1, "invariant");
1461     size_t neededsize = sizeof(PaddedObjectMonitor) * _BLOCKSIZE;
1462     PaddedObjectMonitor* temp;
1463     size_t aligned_size = neededsize + (OM_CACHE_LINE_SIZE - 1);
1464     void* real_malloc_addr = NEW_C_HEAP_ARRAY(char, aligned_size, mtInternal);
1465     temp = (PaddedObjectMonitor*)align_up(real_malloc_addr, OM_CACHE_LINE_SIZE);
1466     (void)memset((void *) temp, 0, neededsize);
1467 
1468     // Format the block.
1469     // initialize the linked list, each monitor points to its next
1470     // forming the single linked free list, the very first monitor
1471     // will points to next block, which forms the block list.
1472     // The trick of using the 1st element in the block as g_block_list
1473     // linkage should be reconsidered.  A better implementation would
1474     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1475 
1476     for (int i = 1; i < _BLOCKSIZE; i++) {
1477       temp[i].set_next_om((ObjectMonitor*)&temp[i + 1]);
1478       assert(temp[i].is_free(), "invariant");
1479     }
1480 
1481     // terminate the last monitor as the end of list
1482     temp[_BLOCKSIZE - 1].set_next_om((ObjectMonitor*)NULL);
1483 
1484     // Element [0] is reserved for global list linkage
1485     temp[0].set_object(CHAINMARKER);
1486 
1487     // Consider carving out this thread's current request from the
1488     // block in hand.  This avoids some lock traffic and redundant
1489     // list activity.
1490 
1491     prepend_block_to_lists(temp);
1492   }
1493 }
1494 
1495 // Place "m" on the caller's private per-thread om_free_list.
1496 // In practice there's no need to clamp or limit the number of
1497 // monitors on a thread's om_free_list as the only non-allocation time
1498 // we'll call om_release() is to return a monitor to the free list after
1499 // a CAS attempt failed. This doesn't allow unbounded #s of monitors to
1500 // accumulate on a thread's free list.
1501 //
1502 // Key constraint: all ObjectMonitors on a thread's free list and the global
1503 // free list must have their object field set to null. This prevents the
1504 // scavenger -- deflate_monitor_list() or deflate_monitor_list_using_JT()
1505 // -- from reclaiming them while we are trying to release them.
1506 
1507 void ObjectSynchronizer::om_release(Thread* self, ObjectMonitor* m,
1508                                     bool from_per_thread_alloc) {
1509   guarantee(m->header().value() == 0, "invariant");
1510   guarantee(m->object() == NULL, "invariant");
1511   NoSafepointVerifier nsv;
1512 
1513   if ((m->is_busy() | m->_recursions) != 0) {
1514     stringStream ss;
1515     fatal("freeing in-use monitor: %s, recursions=" INTX_FORMAT,
1516           m->is_busy_to_string(&ss), m->_recursions);
1517   }
1518   m->set_allocation_state(ObjectMonitor::Free);
1519   // _next_om is used for both per-thread in-use and free lists so
1520   // we have to remove 'm' from the in-use list first (as needed).
1521   if (from_per_thread_alloc) {
1522     // Need to remove 'm' from om_in_use_list.
1523     ObjectMonitor* mid = NULL;
1524     ObjectMonitor* next = NULL;
1525 
1526     // This list walk can race with another list walker or with async
1527     // deflation so we have to worry about an ObjectMonitor being
1528     // removed from this list while we are walking it.
1529 
1530     // Lock the list head to avoid racing with another list walker
1531     // or with async deflation.
1532     if ((mid = get_list_head_locked(&self->om_in_use_list)) == NULL) {
1533       fatal("thread=" INTPTR_FORMAT " in-use list must not be empty.", p2i(self));
1534     }
1535     next = unmarked_next(mid);
1536     if (m == mid) {
1537       // First special case:
1538       // 'm' matches mid, is the list head and is locked. Switch the list
1539       // head to next which unlocks the list head, but leaves the extracted
1540       // mid locked:
1541       Atomic::store(&self->om_in_use_list, next);
1542     } else if (m == next) {
1543       // Second special case:
1544       // 'm' matches next after the list head and we already have the list
1545       // head locked so set mid to what we are extracting:
1546       mid = next;
1547       // Lock mid to prevent races with a list walker or an async
1548       // deflater thread that's ahead of us. The locked list head
1549       // prevents races from behind us.
1550       om_lock(mid);
1551       // Update next to what follows mid (if anything):
1552       next = unmarked_next(mid);
1553       // Switch next after the list head to new next which unlocks the
1554       // list head, but leaves the extracted mid locked:
1555       self->om_in_use_list->set_next_om(next);
1556     } else {
1557       // We have to search the list to find 'm'.
1558       guarantee(next != NULL, "thread=" INTPTR_FORMAT ": om_in_use_list=" INTPTR_FORMAT
1559                 " is too short.", p2i(self), p2i(self->om_in_use_list));
1560       // Our starting anchor is next after the list head which is the
1561       // last ObjectMonitor we checked:
1562       ObjectMonitor* anchor = next;
1563       // Lock anchor to prevent races with a list walker or an async
1564       // deflater thread that's ahead of us. The locked list head
1565       // prevents races from behind us.
1566       om_lock(anchor);
1567       om_unlock(mid);  // Unlock the list head now that anchor is locked.
1568       while ((mid = unmarked_next(anchor)) != NULL) {
1569         if (m == mid) {
1570           // We found 'm' on the per-thread in-use list so extract it.
1571           // Update next to what follows mid (if anything):
1572           next = unmarked_next(mid);
1573           // Switch next after the anchor to new next which unlocks the
1574           // anchor, but leaves the extracted mid locked:
1575           anchor->set_next_om(next);
1576           break;
1577         } else {
1578           // Lock the next anchor to prevent races with a list walker
1579           // or an async deflater thread that's ahead of us. The locked
1580           // current anchor prevents races from behind us.
1581           om_lock(mid);
1582           // Unlock current anchor now that next anchor is locked:
1583           om_unlock(anchor);
1584           anchor = mid;  // Advance to new anchor and try again.
1585         }
1586       }
1587     }
1588 
1589     if (mid == NULL) {
1590       // Reached end of the list and didn't find 'm' so:
1591       fatal("thread=" INTPTR_FORMAT " must find m=" INTPTR_FORMAT "on om_in_use_list="
1592             INTPTR_FORMAT, p2i(self), p2i(m), p2i(self->om_in_use_list));
1593     }
1594 
1595     // At this point mid is disconnected from the in-use list so
1596     // its lock no longer has any effects on the in-use list.
1597     Atomic::dec(&self->om_in_use_count);
1598     // Unlock mid, but leave the next value for any lagging list
1599     // walkers. It will get cleaned up when mid is prepended to
1600     // the thread's free list:
1601     om_unlock(mid);
1602   }
1603 
1604   prepend_to_om_free_list(self, m);
1605   guarantee(m->is_free(), "invariant");
1606 }
1607 
1608 // Return ObjectMonitors on a moribund thread's free and in-use
1609 // lists to the appropriate global lists. The ObjectMonitors on the
1610 // per-thread in-use list may still be in use by other threads.
1611 //
1612 // We currently call om_flush() from Threads::remove() before the
1613 // thread has been excised from the thread list and is no longer a
1614 // mutator. This means that om_flush() cannot run concurrently with
1615 // a safepoint and interleave with deflate_idle_monitors(). In
1616 // particular, this ensures that the thread's in-use monitors are
1617 // scanned by a GC safepoint, either via Thread::oops_do() (before
1618 // om_flush() is called) or via ObjectSynchronizer::oops_do() (after
1619 // om_flush() is called).
1620 //
1621 // With AsyncDeflateIdleMonitors, deflate_global_idle_monitors_using_JT()
1622 // and deflate_per_thread_idle_monitors_using_JT() (in another thread) can
1623 // run at the same time as om_flush() so we have to follow a careful
1624 // protocol to prevent list corruption.
1625 
1626 void ObjectSynchronizer::om_flush(Thread* self) {
1627   // Process the per-thread in-use list first to be consistent.
1628   int in_use_count = 0;
1629   ObjectMonitor* in_use_list = NULL;
1630   ObjectMonitor* in_use_tail = NULL;
1631   NoSafepointVerifier nsv;
1632 
1633   // This function can race with a list walker or with an async
1634   // deflater thread so we lock the list head to prevent confusion.
1635   // An async deflater thread checks to see if the target thread
1636   // is exiting, but if it has made it past that check before we
1637   // started exiting, then it is racing to get to the in-use list.
1638   if ((in_use_list = get_list_head_locked(&self->om_in_use_list)) != NULL) {
1639     // At this point, we have locked the in-use list head so a racing
1640     // thread cannot come in after us. However, a racing thread could
1641     // be ahead of us; we'll detect that and delay to let it finish.
1642     //
1643     // The thread is going away, however the ObjectMonitors on the
1644     // om_in_use_list may still be in-use by other threads. Link
1645     // them to in_use_tail, which will be linked into the global
1646     // in-use list (om_list_globals._in_use_list) below.
1647     //
1648     // Account for the in-use list head before the loop since it is
1649     // already locked (by this thread):
1650     in_use_tail = in_use_list;
1651     in_use_count++;
1652     for (ObjectMonitor* cur_om = unmarked_next(in_use_list); cur_om != NULL;) {
1653       if (is_locked(cur_om)) {
1654         // cur_om is locked so there must be a racing walker or async
1655         // deflater thread ahead of us so we'll give it a chance to finish.
1656         while (is_locked(cur_om)) {
1657           os::naked_short_sleep(1);
1658         }
1659         // Refetch the possibly changed next field and try again.
1660         cur_om = unmarked_next(in_use_tail);
1661         continue;
1662       }
1663       if (cur_om->object() == NULL) {
1664         // cur_om was deflated and the object ref was cleared while it
1665         // was locked. We happened to see it just after it was unlocked
1666         // (and added to the free list). Refetch the possibly changed
1667         // next field and try again.
1668         cur_om = unmarked_next(in_use_tail);
1669         continue;
1670       }
1671       in_use_tail = cur_om;
1672       in_use_count++;
1673       cur_om = unmarked_next(cur_om);
1674     }
1675     guarantee(in_use_tail != NULL, "invariant");
1676     int l_om_in_use_count = Atomic::load(&self->om_in_use_count);
1677     ADIM_guarantee(l_om_in_use_count == in_use_count, "in-use counts don't match: "
1678                    "l_om_in_use_count=%d, in_use_count=%d", l_om_in_use_count, in_use_count);
1679     Atomic::store(&self->om_in_use_count, 0);
1680     // Clear the in-use list head (which also unlocks it):
1681     Atomic::store(&self->om_in_use_list, (ObjectMonitor*)NULL);
1682     om_unlock(in_use_list);
1683   }
1684 
1685   int free_count = 0;
1686   ObjectMonitor* free_list = NULL;
1687   ObjectMonitor* free_tail = NULL;
1688   // This function can race with a list walker thread so we lock the
1689   // list head to prevent confusion.
1690   if ((free_list = get_list_head_locked(&self->om_free_list)) != NULL) {
1691     // At this point, we have locked the free list head so a racing
1692     // thread cannot come in after us. However, a racing thread could
1693     // be ahead of us; we'll detect that and delay to let it finish.
1694     //
1695     // The thread is going away. Set 'free_tail' to the last per-thread free
1696     // monitor which will be linked to om_list_globals._free_list below.
1697     //
1698     // Account for the free list head before the loop since it is
1699     // already locked (by this thread):
1700     free_tail = free_list;
1701     free_count++;
1702     for (ObjectMonitor* s = unmarked_next(free_list); s != NULL; s = unmarked_next(s)) {
1703       if (is_locked(s)) {
1704         // s is locked so there must be a racing walker thread ahead
1705         // of us so we'll give it a chance to finish.
1706         while (is_locked(s)) {
1707           os::naked_short_sleep(1);
1708         }
1709       }
1710       free_tail = s;
1711       free_count++;
1712       guarantee(s->object() == NULL, "invariant");
1713       if (s->is_busy()) {
1714         stringStream ss;
1715         fatal("must be !is_busy: %s", s->is_busy_to_string(&ss));
1716       }
1717     }
1718     guarantee(free_tail != NULL, "invariant");
1719     int l_om_free_count = Atomic::load(&self->om_free_count);
1720     ADIM_guarantee(l_om_free_count == free_count, "free counts don't match: "
1721                    "l_om_free_count=%d, free_count=%d", l_om_free_count, free_count);
1722     Atomic::store(&self->om_free_count, 0);
1723     Atomic::store(&self->om_free_list, (ObjectMonitor*)NULL);
1724     om_unlock(free_list);
1725   }
1726 
1727   if (free_tail != NULL) {
1728     prepend_list_to_global_free_list(free_list, free_tail, free_count);
1729   }
1730 
1731   if (in_use_tail != NULL) {
1732     prepend_list_to_global_in_use_list(in_use_list, in_use_tail, in_use_count);
1733   }
1734 
1735   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1736   LogStreamHandle(Info, monitorinflation) lsh_info;
1737   LogStream* ls = NULL;
1738   if (log_is_enabled(Debug, monitorinflation)) {
1739     ls = &lsh_debug;
1740   } else if ((free_count != 0 || in_use_count != 0) &&
1741              log_is_enabled(Info, monitorinflation)) {
1742     ls = &lsh_info;
1743   }
1744   if (ls != NULL) {
1745     ls->print_cr("om_flush: jt=" INTPTR_FORMAT ", free_count=%d"
1746                  ", in_use_count=%d" ", om_free_provision=%d",
1747                  p2i(self), free_count, in_use_count, self->om_free_provision);
1748   }
1749 }
1750 
1751 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1752                                        const oop obj,
1753                                        ObjectSynchronizer::InflateCause cause) {
1754   assert(event != NULL, "invariant");
1755   assert(event->should_commit(), "invariant");
1756   event->set_monitorClass(obj->klass());
1757   event->set_address((uintptr_t)(void*)obj);
1758   event->set_cause((u1)cause);
1759   event->commit();
1760 }
1761 
1762 // Fast path code shared by multiple functions
1763 void ObjectSynchronizer::inflate_helper(oop obj) {
1764   markWord mark = obj->mark();
1765   if (mark.has_monitor()) {
1766     ObjectMonitor* monitor = mark.monitor();
1767     assert(ObjectSynchronizer::verify_objmon_isinpool(monitor), "monitor=" INTPTR_FORMAT " is invalid", p2i(monitor));
1768     markWord dmw = monitor->header();
1769     assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value());
1770     return;
1771   }
1772   (void)inflate(Thread::current(), obj, inflate_cause_vm_internal);
1773 }
1774 
1775 ObjectMonitor* ObjectSynchronizer::inflate(Thread* self, oop object,
1776                                            const InflateCause cause) {
1777   // Inflate mutates the heap ...
1778   // Relaxing assertion for bug 6320749.
1779   assert(Universe::verify_in_progress() ||
1780          !SafepointSynchronize::is_at_safepoint(), "invariant");
1781 
1782   EventJavaMonitorInflate event;
1783 
1784   for (;;) {
1785     const markWord mark = object->mark();
1786     assert(!mark.has_bias_pattern(), "invariant");
1787 
1788     // The mark can be in one of the following states:
1789     // *  Inflated     - just return
1790     // *  Stack-locked - coerce it to inflated
1791     // *  INFLATING    - busy wait for conversion to complete
1792     // *  Neutral      - aggressively inflate the object.
1793     // *  BIASED       - Illegal.  We should never see this
1794 
1795     // CASE: inflated
1796     if (mark.has_monitor()) {
1797       ObjectMonitor* inf = mark.monitor();
1798       markWord dmw = inf->header();
1799       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1800       assert(AsyncDeflateIdleMonitors || inf->object() == object, "invariant");
1801       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1802       return inf;
1803     }
1804 
1805     // CASE: inflation in progress - inflating over a stack-lock.
1806     // Some other thread is converting from stack-locked to inflated.
1807     // Only that thread can complete inflation -- other threads must wait.
1808     // The INFLATING value is transient.
1809     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1810     // We could always eliminate polling by parking the thread on some auxiliary list.
1811     if (mark == markWord::INFLATING()) {
1812       read_stable_mark(object);
1813       continue;
1814     }
1815 
1816     // CASE: stack-locked
1817     // Could be stack-locked either by this thread or by some other thread.
1818     //
1819     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1820     // to install INFLATING into the mark word.  We originally installed INFLATING,
1821     // allocated the objectmonitor, and then finally STed the address of the
1822     // objectmonitor into the mark.  This was correct, but artificially lengthened
1823     // the interval in which INFLATED appeared in the mark, thus increasing
1824     // the odds of inflation contention.
1825     //
1826     // We now use per-thread private objectmonitor free lists.
1827     // These list are reprovisioned from the global free list outside the
1828     // critical INFLATING...ST interval.  A thread can transfer
1829     // multiple objectmonitors en-mass from the global free list to its local free list.
1830     // This reduces coherency traffic and lock contention on the global free list.
1831     // Using such local free lists, it doesn't matter if the om_alloc() call appears
1832     // before or after the CAS(INFLATING) operation.
1833     // See the comments in om_alloc().
1834 
1835     LogStreamHandle(Trace, monitorinflation) lsh;
1836 
1837     if (mark.has_locker()) {
1838       ObjectMonitor* m = om_alloc(self);
1839       // Optimistically prepare the objectmonitor - anticipate successful CAS
1840       // We do this before the CAS in order to minimize the length of time
1841       // in which INFLATING appears in the mark.
1842       m->Recycle();
1843       m->_Responsible  = NULL;
1844       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1845 
1846       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1847       if (cmp != mark) {
1848         // om_release() will reset the allocation state from New to Free.
1849         om_release(self, m, true);
1850         continue;       // Interference -- just retry
1851       }
1852 
1853       // We've successfully installed INFLATING (0) into the mark-word.
1854       // This is the only case where 0 will appear in a mark-word.
1855       // Only the singular thread that successfully swings the mark-word
1856       // to 0 can perform (or more precisely, complete) inflation.
1857       //
1858       // Why do we CAS a 0 into the mark-word instead of just CASing the
1859       // mark-word from the stack-locked value directly to the new inflated state?
1860       // Consider what happens when a thread unlocks a stack-locked object.
1861       // It attempts to use CAS to swing the displaced header value from the
1862       // on-stack BasicLock back into the object header.  Recall also that the
1863       // header value (hash code, etc) can reside in (a) the object header, or
1864       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1865       // header in an ObjectMonitor.  The inflate() routine must copy the header
1866       // value from the BasicLock on the owner's stack to the ObjectMonitor, all
1867       // the while preserving the hashCode stability invariants.  If the owner
1868       // decides to release the lock while the value is 0, the unlock will fail
1869       // and control will eventually pass from slow_exit() to inflate.  The owner
1870       // will then spin, waiting for the 0 value to disappear.   Put another way,
1871       // the 0 causes the owner to stall if the owner happens to try to
1872       // drop the lock (restoring the header from the BasicLock to the object)
1873       // while inflation is in-progress.  This protocol avoids races that might
1874       // would otherwise permit hashCode values to change or "flicker" for an object.
1875       // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable.
1876       // 0 serves as a "BUSY" inflate-in-progress indicator.
1877 
1878 
1879       // fetch the displaced mark from the owner's stack.
1880       // The owner can't die or unwind past the lock while our INFLATING
1881       // object is in the mark.  Furthermore the owner can't complete
1882       // an unlock on the object, either.
1883       markWord dmw = mark.displaced_mark_helper();
1884       // Catch if the object's header is not neutral (not locked and
1885       // not marked is what we care about here).
1886       ADIM_guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1887 
1888       // Setup monitor fields to proper values -- prepare the monitor
1889       m->set_header(dmw);
1890 
1891       // Optimization: if the mark.locker stack address is associated
1892       // with this thread we could simply set m->_owner = self.
1893       // Note that a thread can inflate an object
1894       // that it has stack-locked -- as might happen in wait() -- directly
1895       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1896       if (AsyncDeflateIdleMonitors) {
1897         m->set_owner_from(NULL, DEFLATER_MARKER, mark.locker());
1898       } else {
1899         m->set_owner_from(NULL, mark.locker());
1900       }
1901       m->set_object(object);
1902       // TODO-FIXME: assert BasicLock->dhw != 0.
1903 
1904       // Must preserve store ordering. The monitor state must
1905       // be stable at the time of publishing the monitor address.
1906       guarantee(object->mark() == markWord::INFLATING(), "invariant");
1907       object->release_set_mark(markWord::encode(m));
1908 
1909       // Once ObjectMonitor is configured and the object is associated
1910       // with the ObjectMonitor, it is safe to allow async deflation:
1911       assert(m->is_new(), "freshly allocated monitor must be new");
1912       m->set_allocation_state(ObjectMonitor::Old);
1913 
1914       // Hopefully the performance counters are allocated on distinct cache lines
1915       // to avoid false sharing on MP systems ...
1916       OM_PERFDATA_OP(Inflations, inc());
1917       if (log_is_enabled(Trace, monitorinflation)) {
1918         ResourceMark rm(self);
1919         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1920                      INTPTR_FORMAT ", type='%s'", p2i(object),
1921                      object->mark().value(), object->klass()->external_name());
1922       }
1923       if (event.should_commit()) {
1924         post_monitor_inflate_event(&event, object, cause);
1925       }
1926       return m;
1927     }
1928 
1929     // CASE: neutral
1930     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1931     // If we know we're inflating for entry it's better to inflate by swinging a
1932     // pre-locked ObjectMonitor pointer into the object header.   A successful
1933     // CAS inflates the object *and* confers ownership to the inflating thread.
1934     // In the current implementation we use a 2-step mechanism where we CAS()
1935     // to inflate and then CAS() again to try to swing _owner from NULL to self.
1936     // An inflateTry() method that we could call from enter() would be useful.
1937 
1938     // Catch if the object's header is not neutral (not locked and
1939     // not marked is what we care about here).
1940     ADIM_guarantee(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1941     ObjectMonitor* m = om_alloc(self);
1942     // prepare m for installation - set monitor to initial state
1943     m->Recycle();
1944     m->set_header(mark);
1945     if (AsyncDeflateIdleMonitors) {
1946       // DEFLATER_MARKER is the only non-NULL value we should see here.
1947       m->try_set_owner_from(DEFLATER_MARKER, NULL);
1948     }
1949     m->set_object(object);
1950     m->_Responsible  = NULL;
1951     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1952 
1953     if (object->cas_set_mark(markWord::encode(m), mark) != mark) {
1954       m->set_header(markWord::zero());
1955       m->set_object(NULL);
1956       m->Recycle();
1957       // om_release() will reset the allocation state from New to Free.
1958       om_release(self, m, true);
1959       m = NULL;
1960       continue;
1961       // interference - the markword changed - just retry.
1962       // The state-transitions are one-way, so there's no chance of
1963       // live-lock -- "Inflated" is an absorbing state.
1964     }
1965 
1966     // Once the ObjectMonitor is configured and object is associated
1967     // with the ObjectMonitor, it is safe to allow async deflation:
1968     assert(m->is_new(), "freshly allocated monitor must be new");
1969     m->set_allocation_state(ObjectMonitor::Old);
1970 
1971     // Hopefully the performance counters are allocated on distinct
1972     // cache lines to avoid false sharing on MP systems ...
1973     OM_PERFDATA_OP(Inflations, inc());
1974     if (log_is_enabled(Trace, monitorinflation)) {
1975       ResourceMark rm(self);
1976       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
1977                    INTPTR_FORMAT ", type='%s'", p2i(object),
1978                    object->mark().value(), object->klass()->external_name());
1979     }
1980     if (event.should_commit()) {
1981       post_monitor_inflate_event(&event, object, cause);
1982     }
1983     return m;
1984   }
1985 }
1986 
1987 
1988 // We maintain a list of in-use monitors for each thread.
1989 //
1990 // For safepoint based deflation:
1991 // deflate_thread_local_monitors() scans a single thread's in-use list, while
1992 // deflate_idle_monitors() scans only a global list of in-use monitors which
1993 // is populated only as a thread dies (see om_flush()).
1994 //
1995 // These operations are called at all safepoints, immediately after mutators
1996 // are stopped, but before any objects have moved. Collectively they traverse
1997 // the population of in-use monitors, deflating where possible. The scavenged
1998 // monitors are returned to the global monitor free list.
1999 //
2000 // Beware that we scavenge at *every* stop-the-world point. Having a large
2001 // number of monitors in-use could negatively impact performance. We also want
2002 // to minimize the total # of monitors in circulation, as they incur a small
2003 // footprint penalty.
2004 //
2005 // Perversely, the heap size -- and thus the STW safepoint rate --
2006 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
2007 // which in turn can mean large(r) numbers of ObjectMonitors in circulation.
2008 // This is an unfortunate aspect of this design.
2009 //
2010 // For async deflation:
2011 // If a special deflation request is made, then the safepoint based
2012 // deflation mechanism is used. Otherwise, an async deflation request
2013 // is registered with the ServiceThread and it is notified.
2014 
2015 void ObjectSynchronizer::do_safepoint_work(DeflateMonitorCounters* counters) {
2016   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2017 
2018   // The per-thread in-use lists are handled in
2019   // ParallelSPCleanupThreadClosure::do_thread().
2020 
2021   if (!AsyncDeflateIdleMonitors || is_special_deflation_requested()) {
2022     // Use the older mechanism for the global in-use list or if a
2023     // special deflation has been requested before the safepoint.
2024     ObjectSynchronizer::deflate_idle_monitors(counters);
2025     return;
2026   }
2027 
2028   log_debug(monitorinflation)("requesting async deflation of idle monitors.");
2029   // Request deflation of idle monitors by the ServiceThread:
2030   set_is_async_deflation_requested(true);
2031   MonitorLocker ml(Service_lock, Mutex::_no_safepoint_check_flag);
2032   ml.notify_all();
2033 
2034   if (log_is_enabled(Debug, monitorinflation)) {
2035     // exit_globals()'s call to audit_and_print_stats() is done
2036     // at the Info level and not at a safepoint.
2037     // For safepoint based deflation, audit_and_print_stats() is called
2038     // in ObjectSynchronizer::finish_deflate_idle_monitors() at the
2039     // Debug level at a safepoint.
2040     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2041   }
2042 }
2043 
2044 // Deflate a single monitor if not in-use
2045 // Return true if deflated, false if in-use
2046 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
2047                                          ObjectMonitor** free_head_p,
2048                                          ObjectMonitor** free_tail_p) {
2049   bool deflated;
2050   // Normal case ... The monitor is associated with obj.
2051   const markWord mark = obj->mark();
2052   guarantee(mark == markWord::encode(mid), "should match: mark="
2053             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, mark.value(),
2054             markWord::encode(mid).value());
2055   // Make sure that mark.monitor() and markWord::encode() agree:
2056   guarantee(mark.monitor() == mid, "should match: monitor()=" INTPTR_FORMAT
2057             ", mid=" INTPTR_FORMAT, p2i(mark.monitor()), p2i(mid));
2058   const markWord dmw = mid->header();
2059   guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
2060 
2061   if (mid->is_busy()) {
2062     // Easy checks are first - the ObjectMonitor is busy so no deflation.
2063     deflated = false;
2064   } else {
2065     // Deflate the monitor if it is no longer being used
2066     // It's idle - scavenge and return to the global free list
2067     // plain old deflation ...
2068     if (log_is_enabled(Trace, monitorinflation)) {
2069       ResourceMark rm;
2070       log_trace(monitorinflation)("deflate_monitor: "
2071                                   "object=" INTPTR_FORMAT ", mark="
2072                                   INTPTR_FORMAT ", type='%s'", p2i(obj),
2073                                   mark.value(), obj->klass()->external_name());
2074     }
2075 
2076     // Restore the header back to obj
2077     obj->release_set_mark(dmw);
2078     if (AsyncDeflateIdleMonitors) {
2079       // clear() expects the owner field to be NULL.
2080       // DEFLATER_MARKER is the only non-NULL value we should see here.
2081       mid->try_set_owner_from(DEFLATER_MARKER, NULL);
2082     }
2083     mid->clear();
2084 
2085     assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT,
2086            p2i(mid->object()));
2087     assert(mid->is_free(), "invariant");
2088 
2089     // Move the deflated ObjectMonitor to the working free list
2090     // defined by free_head_p and free_tail_p.
2091     if (*free_head_p == NULL) *free_head_p = mid;
2092     if (*free_tail_p != NULL) {
2093       // We append to the list so the caller can use mid->_next_om
2094       // to fix the linkages in its context.
2095       ObjectMonitor* prevtail = *free_tail_p;
2096       // Should have been cleaned up by the caller:
2097       // Note: Should not have to lock prevtail here since we're at a
2098       // safepoint and ObjectMonitors on the local free list should
2099       // not be accessed in parallel.
2100 #ifdef ASSERT
2101       ObjectMonitor* l_next_om = prevtail->next_om();
2102 #endif
2103       assert(l_next_om == NULL, "must be NULL: _next_om=" INTPTR_FORMAT, p2i(l_next_om));
2104       prevtail->set_next_om(mid);
2105     }
2106     *free_tail_p = mid;
2107     // At this point, mid->_next_om still refers to its current
2108     // value and another ObjectMonitor's _next_om field still
2109     // refers to this ObjectMonitor. Those linkages have to be
2110     // cleaned up by the caller who has the complete context.
2111     deflated = true;
2112   }
2113   return deflated;
2114 }
2115 
2116 // Deflate the specified ObjectMonitor if not in-use using a JavaThread.
2117 // Returns true if it was deflated and false otherwise.
2118 //
2119 // The async deflation protocol sets owner to DEFLATER_MARKER and
2120 // makes contentions negative as signals to contending threads that
2121 // an async deflation is in progress. There are a number of checks
2122 // as part of the protocol to make sure that the calling thread has
2123 // not lost the race to a contending thread.
2124 //
2125 // The ObjectMonitor has been successfully async deflated when:
2126 // (owner == DEFLATER_MARKER && contentions < 0)
2127 // Contending threads that see those values know to retry their operation.
2128 //
2129 bool ObjectSynchronizer::deflate_monitor_using_JT(ObjectMonitor* mid,
2130                                                   ObjectMonitor** free_head_p,
2131                                                   ObjectMonitor** free_tail_p) {
2132   assert(AsyncDeflateIdleMonitors, "sanity check");
2133   assert(Thread::current()->is_Java_thread(), "precondition");
2134   // A newly allocated ObjectMonitor should not be seen here so we
2135   // avoid an endless inflate/deflate cycle.
2136   assert(mid->is_old(), "must be old: allocation_state=%d",
2137          (int) mid->allocation_state());
2138 
2139   if (mid->is_busy()) {
2140     // Easy checks are first - the ObjectMonitor is busy so no deflation.
2141     return false;
2142   }
2143 
2144   // Set a NULL owner to DEFLATER_MARKER to force any contending thread
2145   // through the slow path. This is just the first part of the async
2146   // deflation dance.
2147   if (mid->try_set_owner_from(NULL, DEFLATER_MARKER) != NULL) {
2148     // The owner field is no longer NULL so we lost the race since the
2149     // ObjectMonitor is now busy.
2150     return false;
2151   }
2152 
2153   if (mid->contentions() > 0 || mid->_waiters != 0) {
2154     // Another thread has raced to enter the ObjectMonitor after
2155     // mid->is_busy() above or has already entered and waited on
2156     // it which makes it busy so no deflation. Restore owner to
2157     // NULL if it is still DEFLATER_MARKER.
2158     mid->try_set_owner_from(DEFLATER_MARKER, NULL);
2159     return false;
2160   }
2161 
2162   // Make a zero contentions field negative to force any contending threads
2163   // to retry. This is the second part of the async deflation dance.
2164   if (Atomic::cmpxchg(&mid->_contentions, (jint)0, -max_jint) != 0) {
2165     // Contentions was no longer 0 so we lost the race since the
2166     // ObjectMonitor is now busy. Restore owner to NULL if it is
2167     // still DEFLATER_MARKER:
2168     mid->try_set_owner_from(DEFLATER_MARKER, NULL);
2169     return false;
2170   }
2171 
2172   // If owner is still DEFLATER_MARKER, then we have successfully
2173   // signaled any contending threads to retry.
2174   if (!mid->owner_is_DEFLATER_MARKER()) {
2175     // If it is not, then we have lost the race to an entering thread
2176     // and the ObjectMonitor is now busy. This is the third and final
2177     // part of the async deflation dance.
2178     // Note: This owner check solves the ABA problem with contentions
2179     // where another thread acquired the ObjectMonitor, finished
2180     // using it and restored contentions to zero.
2181 
2182     // Add back max_jint to restore the contentions field to its
2183     // proper value (which may not be what we saw above):
2184     mid->add_to_contentions(max_jint);
2185 
2186 #ifdef ASSERT
2187     jint l_contentions = mid->contentions();
2188 #endif
2189     assert(l_contentions >= 0, "must not be negative: l_contentions=%d, contentions=%d",
2190            l_contentions, mid->contentions());
2191     return false;
2192   }
2193 
2194   // Sanity checks for the races:
2195   guarantee(mid->contentions() < 0, "must be negative: contentions=%d",
2196             mid->contentions());
2197   guarantee(mid->_waiters == 0, "must be 0: waiters=%d", mid->_waiters);
2198   guarantee(mid->_cxq == NULL, "must be no contending threads: cxq="
2199             INTPTR_FORMAT, p2i(mid->_cxq));
2200   guarantee(mid->_EntryList == NULL,
2201             "must be no entering threads: EntryList=" INTPTR_FORMAT,
2202             p2i(mid->_EntryList));
2203 
2204   const oop obj = (oop) mid->object();
2205   if (log_is_enabled(Trace, monitorinflation)) {
2206     ResourceMark rm;
2207     log_trace(monitorinflation)("deflate_monitor_using_JT: "
2208                                 "object=" INTPTR_FORMAT ", mark="
2209                                 INTPTR_FORMAT ", type='%s'",
2210                                 p2i(obj), obj->mark().value(),
2211                                 obj->klass()->external_name());
2212   }
2213 
2214   // Install the old mark word if nobody else has already done it.
2215   mid->install_displaced_markword_in_object(obj);
2216   mid->clear_common();
2217 
2218   assert(mid->object() == NULL, "must be NULL: object=" INTPTR_FORMAT,
2219          p2i(mid->object()));
2220   assert(mid->is_free(), "must be free: allocation_state=%d",
2221          (int)mid->allocation_state());
2222 
2223   // Move the deflated ObjectMonitor to the working free list
2224   // defined by free_head_p and free_tail_p.
2225   if (*free_head_p == NULL) {
2226     // First one on the list.
2227     *free_head_p = mid;
2228   }
2229   if (*free_tail_p != NULL) {
2230     // We append to the list so the caller can use mid->_next_om
2231     // to fix the linkages in its context.
2232     ObjectMonitor* prevtail = *free_tail_p;
2233     // prevtail should have been cleaned up by the caller:
2234 #ifdef ASSERT
2235     ObjectMonitor* l_next_om = unmarked_next(prevtail);
2236 #endif
2237     assert(l_next_om == NULL, "must be NULL: _next_om=" INTPTR_FORMAT, p2i(l_next_om));
2238     om_lock(prevtail);
2239     prevtail->set_next_om(mid);  // prevtail now points to mid (and is unlocked)
2240   }
2241   *free_tail_p = mid;
2242 
2243   // At this point, mid->_next_om still refers to its current
2244   // value and another ObjectMonitor's _next_om field still
2245   // refers to this ObjectMonitor. Those linkages have to be
2246   // cleaned up by the caller who has the complete context.
2247 
2248   // We leave owner == DEFLATER_MARKER and contentions < 0
2249   // to force any racing threads to retry.
2250   return true;  // Success, ObjectMonitor has been deflated.
2251 }
2252 
2253 // Walk a given monitor list, and deflate idle monitors.
2254 // The given list could be a per-thread list or a global list.
2255 //
2256 // In the case of parallel processing of thread local monitor lists,
2257 // work is done by Threads::parallel_threads_do() which ensures that
2258 // each Java thread is processed by exactly one worker thread, and
2259 // thus avoid conflicts that would arise when worker threads would
2260 // process the same monitor lists concurrently.
2261 //
2262 // See also ParallelSPCleanupTask and
2263 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
2264 // Threads::parallel_java_threads_do() in thread.cpp.
2265 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** list_p,
2266                                              int* count_p,
2267                                              ObjectMonitor** free_head_p,
2268                                              ObjectMonitor** free_tail_p) {
2269   ObjectMonitor* cur_mid_in_use = NULL;
2270   ObjectMonitor* mid = NULL;
2271   ObjectMonitor* next = NULL;
2272   int deflated_count = 0;
2273 
2274   // This list walk executes at a safepoint and does not race with any
2275   // other list walkers.
2276 
2277   for (mid = Atomic::load(list_p); mid != NULL; mid = next) {
2278     next = unmarked_next(mid);
2279     oop obj = (oop) mid->object();
2280     if (obj != NULL && deflate_monitor(mid, obj, free_head_p, free_tail_p)) {
2281       // Deflation succeeded and already updated free_head_p and
2282       // free_tail_p as needed. Finish the move to the local free list
2283       // by unlinking mid from the global or per-thread in-use list.
2284       if (cur_mid_in_use == NULL) {
2285         // mid is the list head so switch the list head to next:
2286         Atomic::store(list_p, next);
2287       } else {
2288         // Switch cur_mid_in_use's next field to next:
2289         cur_mid_in_use->set_next_om(next);
2290       }
2291       // At this point mid is disconnected from the in-use list.
2292       deflated_count++;
2293       Atomic::dec(count_p);
2294       // mid is current tail in the free_head_p list so NULL terminate it:
2295       mid->set_next_om(NULL);
2296     } else {
2297       cur_mid_in_use = mid;
2298     }
2299   }
2300   return deflated_count;
2301 }
2302 
2303 // Walk a given ObjectMonitor list and deflate idle ObjectMonitors using
2304 // a JavaThread. Returns the number of deflated ObjectMonitors. The given
2305 // list could be a per-thread in-use list or the global in-use list.
2306 // If a safepoint has started, then we save state via saved_mid_in_use_p
2307 // and return to the caller to honor the safepoint.
2308 //
2309 int ObjectSynchronizer::deflate_monitor_list_using_JT(ObjectMonitor** list_p,
2310                                                       int* count_p,
2311                                                       ObjectMonitor** free_head_p,
2312                                                       ObjectMonitor** free_tail_p,
2313                                                       ObjectMonitor** saved_mid_in_use_p) {
2314   assert(AsyncDeflateIdleMonitors, "sanity check");
2315   JavaThread* self = JavaThread::current();
2316 
2317   ObjectMonitor* cur_mid_in_use = NULL;
2318   ObjectMonitor* mid = NULL;
2319   ObjectMonitor* next = NULL;
2320   ObjectMonitor* next_next = NULL;
2321   int deflated_count = 0;
2322   NoSafepointVerifier nsv;
2323 
2324   // We use the more complicated lock-cur_mid_in_use-and-mid-as-we-go
2325   // protocol because om_release() can do list deletions in parallel;
2326   // this also prevents races with a list walker thread. We also
2327   // lock-next-next-as-we-go to prevent an om_flush() that is behind
2328   // this thread from passing us.
2329   if (*saved_mid_in_use_p == NULL) {
2330     // No saved state so start at the beginning.
2331     // Lock the list head so we can possibly deflate it:
2332     if ((mid = get_list_head_locked(list_p)) == NULL) {
2333       return 0;  // The list is empty so nothing to deflate.
2334     }
2335     next = unmarked_next(mid);
2336   } else {
2337     // We're restarting after a safepoint so restore the necessary state
2338     // before we resume.
2339     cur_mid_in_use = *saved_mid_in_use_p;
2340     // Lock cur_mid_in_use so we can possibly update its
2341     // next field to extract a deflated ObjectMonitor.
2342     om_lock(cur_mid_in_use);
2343     mid = unmarked_next(cur_mid_in_use);
2344     if (mid == NULL) {
2345       om_unlock(cur_mid_in_use);
2346       *saved_mid_in_use_p = NULL;
2347       return 0;  // The remainder is empty so nothing more to deflate.
2348     }
2349     // Lock mid so we can possibly deflate it:
2350     om_lock(mid);
2351     next = unmarked_next(mid);
2352   }
2353 
2354   while (true) {
2355     // The current mid is locked at this point. If we have a
2356     // cur_mid_in_use, then it is also locked at this point.
2357 
2358     if (next != NULL) {
2359       // We lock next so that an om_flush() thread that is behind us
2360       // cannot pass us when we unlock the current mid.
2361       om_lock(next);
2362       next_next = unmarked_next(next);
2363     }
2364 
2365     // Only try to deflate if there is an associated Java object and if
2366     // mid is old (is not newly allocated and is not newly freed).
2367     if (mid->object() != NULL && mid->is_old() &&
2368         deflate_monitor_using_JT(mid, free_head_p, free_tail_p)) {
2369       // Deflation succeeded and already updated free_head_p and
2370       // free_tail_p as needed. Finish the move to the local free list
2371       // by unlinking mid from the global or per-thread in-use list.
2372       if (cur_mid_in_use == NULL) {
2373         // mid is the list head and it is locked. Switch the list head
2374         // to next which is also locked (if not NULL) and also leave
2375         // mid locked:
2376         Atomic::store(list_p, next);
2377       } else {
2378         ObjectMonitor* locked_next = mark_om_ptr(next);
2379         // mid and cur_mid_in_use are locked. Switch cur_mid_in_use's
2380         // next field to locked_next and also leave mid locked:
2381         cur_mid_in_use->set_next_om(locked_next);
2382       }
2383       // At this point mid is disconnected from the in-use list so
2384       // its lock longer has any effects on in-use list.
2385       deflated_count++;
2386       Atomic::dec(count_p);
2387       // mid is current tail in the free_head_p list so NULL terminate it
2388       // (which also unlocks it):
2389       mid->set_next_om(NULL);
2390 
2391       // All the list management is done so move on to the next one:
2392       mid = next;  // mid keeps non-NULL next's locked state
2393       next = next_next;
2394     } else {
2395       // mid is considered in-use if it does not have an associated
2396       // Java object or mid is not old or deflation did not succeed.
2397       // A mid->is_new() node can be seen here when it is freshly
2398       // returned by om_alloc() (and skips the deflation code path).
2399       // A mid->is_old() node can be seen here when deflation failed.
2400       // A mid->is_free() node can be seen here when a fresh node from
2401       // om_alloc() is released by om_release() due to losing the race
2402       // in inflate().
2403 
2404       // All the list management is done so move on to the next one:
2405       if (cur_mid_in_use != NULL) {
2406         om_unlock(cur_mid_in_use);
2407       }
2408       // The next cur_mid_in_use keeps mid's lock state so
2409       // that it is stable for a possible next field change. It
2410       // cannot be modified by om_release() while it is locked.
2411       cur_mid_in_use = mid;
2412       mid = next;  // mid keeps non-NULL next's locked state
2413       next = next_next;
2414 
2415       if (SafepointMechanism::should_block(self) &&
2416           cur_mid_in_use != Atomic::load(list_p) && cur_mid_in_use->is_old()) {
2417         // If a safepoint has started and cur_mid_in_use is not the list
2418         // head and is old, then it is safe to use as saved state. Return
2419         // to the caller before blocking.
2420         *saved_mid_in_use_p = cur_mid_in_use;
2421         om_unlock(cur_mid_in_use);
2422         if (mid != NULL) {
2423           om_unlock(mid);
2424         }
2425         return deflated_count;
2426       }
2427     }
2428     if (mid == NULL) {
2429       if (cur_mid_in_use != NULL) {
2430         om_unlock(cur_mid_in_use);
2431       }
2432       break;  // Reached end of the list so nothing more to deflate.
2433     }
2434 
2435     // The current mid's next field is locked at this point. If we have
2436     // a cur_mid_in_use, then it is also locked at this point.
2437   }
2438   // We finished the list without a safepoint starting so there's
2439   // no need to save state.
2440   *saved_mid_in_use_p = NULL;
2441   return deflated_count;
2442 }
2443 
2444 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2445   counters->n_in_use = 0;              // currently associated with objects
2446   counters->n_in_circulation = 0;      // extant
2447   counters->n_scavenged = 0;           // reclaimed (global and per-thread)
2448   counters->per_thread_scavenged = 0;  // per-thread scavenge total
2449   counters->per_thread_times = 0.0;    // per-thread scavenge times
2450 }
2451 
2452 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
2453   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2454 
2455   if (AsyncDeflateIdleMonitors) {
2456     // Nothing to do when global idle ObjectMonitors are deflated using
2457     // a JavaThread unless a special deflation has been requested.
2458     if (!is_special_deflation_requested()) {
2459       return;
2460     }
2461   }
2462 
2463   bool deflated = false;
2464 
2465   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
2466   ObjectMonitor* free_tail_p = NULL;
2467   elapsedTimer timer;
2468 
2469   if (log_is_enabled(Info, monitorinflation)) {
2470     timer.start();
2471   }
2472 
2473   // Note: the thread-local monitors lists get deflated in
2474   // a separate pass. See deflate_thread_local_monitors().
2475 
2476   // For moribund threads, scan om_list_globals._in_use_list
2477   int deflated_count = 0;
2478   if (Atomic::load(&om_list_globals._in_use_list) != NULL) {
2479     // Update n_in_circulation before om_list_globals._in_use_count is
2480     // updated by deflation.
2481     Atomic::add(&counters->n_in_circulation,
2482                 Atomic::load(&om_list_globals._in_use_count));
2483 
2484     deflated_count = deflate_monitor_list(&om_list_globals._in_use_list,
2485                                           &om_list_globals._in_use_count,
2486                                           &free_head_p, &free_tail_p);
2487     Atomic::add(&counters->n_in_use, Atomic::load(&om_list_globals._in_use_count));
2488   }
2489 
2490   if (free_head_p != NULL) {
2491     // Move the deflated ObjectMonitors back to the global free list.
2492     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
2493 #ifdef ASSERT
2494     ObjectMonitor* l_next_om = free_tail_p->next_om();
2495 #endif
2496     assert(l_next_om == NULL, "must be NULL: _next_om=" INTPTR_FORMAT, p2i(l_next_om));
2497     prepend_list_to_global_free_list(free_head_p, free_tail_p, deflated_count);
2498     Atomic::add(&counters->n_scavenged, deflated_count);
2499   }
2500   timer.stop();
2501 
2502   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2503   LogStreamHandle(Info, monitorinflation) lsh_info;
2504   LogStream* ls = NULL;
2505   if (log_is_enabled(Debug, monitorinflation)) {
2506     ls = &lsh_debug;
2507   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2508     ls = &lsh_info;
2509   }
2510   if (ls != NULL) {
2511     ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2512   }
2513 }
2514 
2515 class HandshakeForDeflation : public HandshakeClosure {
2516  public:
2517   HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {}
2518 
2519   void do_thread(Thread* thread) {
2520     log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread="
2521                                 INTPTR_FORMAT, p2i(thread));
2522   }
2523 };
2524 
2525 void ObjectSynchronizer::deflate_idle_monitors_using_JT() {
2526   assert(AsyncDeflateIdleMonitors, "sanity check");
2527 
2528   // Deflate any global idle monitors.
2529   deflate_global_idle_monitors_using_JT();
2530 
2531   int count = 0;
2532   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2533     if (Atomic::load(&jt->om_in_use_count) > 0 && !jt->is_exiting()) {
2534       // This JavaThread is using ObjectMonitors so deflate any that
2535       // are idle unless this JavaThread is exiting; do not race with
2536       // ObjectSynchronizer::om_flush().
2537       deflate_per_thread_idle_monitors_using_JT(jt);
2538       count++;
2539     }
2540   }
2541   if (count > 0) {
2542     log_debug(monitorinflation)("did async deflation of idle monitors for %d thread(s).", count);
2543   }
2544 
2545   log_info(monitorinflation)("async global_population=%d, global_in_use_count=%d, "
2546                              "global_free_count=%d, global_wait_count=%d",
2547                              Atomic::load(&om_list_globals._population),
2548                              Atomic::load(&om_list_globals._in_use_count),
2549                              Atomic::load(&om_list_globals._free_count),
2550                              Atomic::load(&om_list_globals._wait_count));
2551 
2552   // The ServiceThread's async deflation request has been processed.
2553   set_is_async_deflation_requested(false);
2554 
2555   if (Atomic::load(&om_list_globals._wait_count) > 0) {
2556     // There are deflated ObjectMonitors waiting for a handshake
2557     // (or a safepoint) for safety.
2558 
2559     ObjectMonitor* list = Atomic::load(&om_list_globals._wait_list);
2560     ADIM_guarantee(list != NULL, "om_list_globals._wait_list must not be NULL");
2561     int count = Atomic::load(&om_list_globals._wait_count);
2562     Atomic::store(&om_list_globals._wait_count, 0);
2563     Atomic::store(&om_list_globals._wait_list, (ObjectMonitor*)NULL);
2564 
2565     // Find the tail for prepend_list_to_common(). No need to mark
2566     // ObjectMonitors for this list walk since only the deflater
2567     // thread manages the wait list.
2568     int l_count = 0;
2569     ObjectMonitor* tail = NULL;
2570     for (ObjectMonitor* n = list; n != NULL; n = unmarked_next(n)) {
2571       tail = n;
2572       l_count++;
2573     }
2574     ADIM_guarantee(count == l_count, "count=%d != l_count=%d", count, l_count);
2575 
2576     // Will execute a safepoint if !ThreadLocalHandshakes:
2577     HandshakeForDeflation hfd_hc;
2578     Handshake::execute(&hfd_hc);
2579 
2580     prepend_list_to_common(list, tail, count, &om_list_globals._free_list,
2581                            &om_list_globals._free_count);
2582 
2583     log_info(monitorinflation)("moved %d idle monitors from global waiting list to global free list", count);
2584   }
2585 }
2586 
2587 // Deflate global idle ObjectMonitors using a JavaThread.
2588 //
2589 void ObjectSynchronizer::deflate_global_idle_monitors_using_JT() {
2590   assert(AsyncDeflateIdleMonitors, "sanity check");
2591   assert(Thread::current()->is_Java_thread(), "precondition");
2592   JavaThread* self = JavaThread::current();
2593 
2594   deflate_common_idle_monitors_using_JT(true /* is_global */, self);
2595 }
2596 
2597 // Deflate the specified JavaThread's idle ObjectMonitors using a JavaThread.
2598 //
2599 void ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT(JavaThread* target) {
2600   assert(AsyncDeflateIdleMonitors, "sanity check");
2601   assert(Thread::current()->is_Java_thread(), "precondition");
2602 
2603   deflate_common_idle_monitors_using_JT(false /* !is_global */, target);
2604 }
2605 
2606 // Deflate global or per-thread idle ObjectMonitors using a JavaThread.
2607 //
2608 void ObjectSynchronizer::deflate_common_idle_monitors_using_JT(bool is_global, JavaThread* target) {
2609   JavaThread* self = JavaThread::current();
2610 
2611   int deflated_count = 0;
2612   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged ObjectMonitors
2613   ObjectMonitor* free_tail_p = NULL;
2614   ObjectMonitor* saved_mid_in_use_p = NULL;
2615   elapsedTimer timer;
2616 
2617   if (log_is_enabled(Info, monitorinflation)) {
2618     timer.start();
2619   }
2620 
2621   if (is_global) {
2622     OM_PERFDATA_OP(MonExtant, set_value(Atomic::load(&om_list_globals._in_use_count)));
2623   } else {
2624     OM_PERFDATA_OP(MonExtant, inc(Atomic::load(&target->om_in_use_count)));
2625   }
2626 
2627   do {
2628     if (saved_mid_in_use_p != NULL) {
2629       // We looped around because deflate_monitor_list_using_JT()
2630       // detected a pending safepoint. Honoring the safepoint is good,
2631       // but as long as is_special_deflation_requested() is supported,
2632       // we can't safely restart using saved_mid_in_use_p. That saved
2633       // ObjectMonitor could have been deflated by safepoint based
2634       // deflation and would no longer be on the in-use list where we
2635       // originally found it.
2636       saved_mid_in_use_p = NULL;
2637     }
2638     int local_deflated_count;
2639     if (is_global) {
2640       local_deflated_count =
2641           deflate_monitor_list_using_JT(&om_list_globals._in_use_list,
2642                                         &om_list_globals._in_use_count,
2643                                         &free_head_p, &free_tail_p,
2644                                         &saved_mid_in_use_p);
2645     } else {
2646       local_deflated_count =
2647           deflate_monitor_list_using_JT(&target->om_in_use_list,
2648                                         &target->om_in_use_count, &free_head_p,
2649                                         &free_tail_p, &saved_mid_in_use_p);
2650     }
2651     deflated_count += local_deflated_count;
2652 
2653     if (free_head_p != NULL) {
2654       // Move the deflated ObjectMonitors to the global free list.
2655       guarantee(free_tail_p != NULL && local_deflated_count > 0, "free_tail_p=" INTPTR_FORMAT ", local_deflated_count=%d", p2i(free_tail_p), local_deflated_count);
2656       // Note: The target thread can be doing an om_alloc() that
2657       // is trying to prepend an ObjectMonitor on its in-use list
2658       // at the same time that we have deflated the current in-use
2659       // list head and put it on the local free list. prepend_to_common()
2660       // will detect the race and retry which avoids list corruption,
2661       // but the next field in free_tail_p can flicker to marked
2662       // and then unmarked while prepend_to_common() is sorting it
2663       // all out.
2664 #ifdef ASSERT
2665       ObjectMonitor* l_next_om = unmarked_next(free_tail_p);
2666 #endif
2667       assert(l_next_om == NULL, "must be NULL: _next_om=" INTPTR_FORMAT, p2i(l_next_om));
2668 
2669       prepend_list_to_global_wait_list(free_head_p, free_tail_p, local_deflated_count);
2670 
2671       OM_PERFDATA_OP(Deflations, inc(local_deflated_count));
2672     }
2673 
2674     if (saved_mid_in_use_p != NULL) {
2675       // deflate_monitor_list_using_JT() detected a safepoint starting.
2676       timer.stop();
2677       {
2678         if (is_global) {
2679           log_debug(monitorinflation)("pausing deflation of global idle monitors for a safepoint.");
2680         } else {
2681           log_debug(monitorinflation)("jt=" INTPTR_FORMAT ": pausing deflation of per-thread idle monitors for a safepoint.", p2i(target));
2682         }
2683         assert(SafepointMechanism::should_block(self), "sanity check");
2684         ThreadBlockInVM blocker(self);
2685       }
2686       // Prepare for another loop after the safepoint.
2687       free_head_p = NULL;
2688       free_tail_p = NULL;
2689       if (log_is_enabled(Info, monitorinflation)) {
2690         timer.start();
2691       }
2692     }
2693   } while (saved_mid_in_use_p != NULL);
2694   timer.stop();
2695 
2696   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2697   LogStreamHandle(Info, monitorinflation) lsh_info;
2698   LogStream* ls = NULL;
2699   if (log_is_enabled(Debug, monitorinflation)) {
2700     ls = &lsh_debug;
2701   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2702     ls = &lsh_info;
2703   }
2704   if (ls != NULL) {
2705     if (is_global) {
2706       ls->print_cr("async-deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2707     } else {
2708       ls->print_cr("jt=" INTPTR_FORMAT ": async-deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(target), timer.seconds(), deflated_count);
2709     }
2710   }
2711 }
2712 
2713 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2714   // Report the cumulative time for deflating each thread's idle
2715   // monitors. Note: if the work is split among more than one
2716   // worker thread, then the reported time will likely be more
2717   // than a beginning to end measurement of the phase.
2718   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d", counters->per_thread_times, counters->per_thread_scavenged);
2719 
2720   bool needs_special_deflation = is_special_deflation_requested();
2721   if (AsyncDeflateIdleMonitors && !needs_special_deflation) {
2722     // Nothing to do when idle ObjectMonitors are deflated using
2723     // a JavaThread unless a special deflation has been requested.
2724     return;
2725   }
2726 
2727   if (log_is_enabled(Debug, monitorinflation)) {
2728     // exit_globals()'s call to audit_and_print_stats() is done
2729     // at the Info level and not at a safepoint.
2730     // For async deflation, audit_and_print_stats() is called in
2731     // ObjectSynchronizer::do_safepoint_work() at the Debug level
2732     // at a safepoint.
2733     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2734   } else if (log_is_enabled(Info, monitorinflation)) {
2735     log_info(monitorinflation)("global_population=%d, global_in_use_count=%d, "
2736                                "global_free_count=%d, global_wait_count=%d",
2737                                Atomic::load(&om_list_globals._population),
2738                                Atomic::load(&om_list_globals._in_use_count),
2739                                Atomic::load(&om_list_globals._free_count),
2740                                Atomic::load(&om_list_globals._wait_count));
2741   }
2742 
2743   OM_PERFDATA_OP(Deflations, inc(counters->n_scavenged));
2744   OM_PERFDATA_OP(MonExtant, set_value(counters->n_in_circulation));
2745 
2746   GVars.stw_random = os::random();
2747   GVars.stw_cycle++;
2748 
2749   if (needs_special_deflation) {
2750     set_is_special_deflation_requested(false);  // special deflation is done
2751   }
2752 }
2753 
2754 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
2755   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2756 
2757   if (AsyncDeflateIdleMonitors && !is_special_deflation_requested()) {
2758     // Nothing to do if a special deflation has NOT been requested.
2759     return;
2760   }
2761 
2762   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
2763   ObjectMonitor* free_tail_p = NULL;
2764   elapsedTimer timer;
2765 
2766   if (log_is_enabled(Info, safepoint, cleanup) ||
2767       log_is_enabled(Info, monitorinflation)) {
2768     timer.start();
2769   }
2770 
2771   // Update n_in_circulation before om_in_use_count is updated by deflation.
2772   Atomic::add(&counters->n_in_circulation, Atomic::load(&thread->om_in_use_count));
2773 
2774   int deflated_count = deflate_monitor_list(&thread->om_in_use_list, &thread->om_in_use_count, &free_head_p, &free_tail_p);
2775   Atomic::add(&counters->n_in_use, Atomic::load(&thread->om_in_use_count));
2776 
2777   if (free_head_p != NULL) {
2778     // Move the deflated ObjectMonitors back to the global free list.
2779     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
2780 #ifdef ASSERT
2781     ObjectMonitor* l_next_om = free_tail_p->next_om();
2782 #endif
2783     assert(l_next_om == NULL, "must be NULL: _next_om=" INTPTR_FORMAT, p2i(l_next_om));
2784     prepend_list_to_global_free_list(free_head_p, free_tail_p, deflated_count);
2785     Atomic::add(&counters->n_scavenged, deflated_count);
2786     Atomic::add(&counters->per_thread_scavenged, deflated_count);
2787   }
2788 
2789   timer.stop();
2790   counters->per_thread_times += timer.seconds();
2791 
2792   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2793   LogStreamHandle(Info, monitorinflation) lsh_info;
2794   LogStream* ls = NULL;
2795   if (log_is_enabled(Debug, monitorinflation)) {
2796     ls = &lsh_debug;
2797   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2798     ls = &lsh_info;
2799   }
2800   if (ls != NULL) {
2801     ls->print_cr("jt=" INTPTR_FORMAT ": deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(thread), timer.seconds(), deflated_count);
2802   }
2803 }
2804 
2805 // Monitor cleanup on JavaThread::exit
2806 
2807 // Iterate through monitor cache and attempt to release thread's monitors
2808 // Gives up on a particular monitor if an exception occurs, but continues
2809 // the overall iteration, swallowing the exception.
2810 class ReleaseJavaMonitorsClosure: public MonitorClosure {
2811  private:
2812   TRAPS;
2813 
2814  public:
2815   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
2816   void do_monitor(ObjectMonitor* mid) {
2817     if (mid->owner() == THREAD) {
2818       (void)mid->complete_exit(CHECK);
2819     }
2820   }
2821 };
2822 
2823 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
2824 // ignored.  This is meant to be called during JNI thread detach which assumes
2825 // all remaining monitors are heavyweight.  All exceptions are swallowed.
2826 // Scanning the extant monitor list can be time consuming.
2827 // A simple optimization is to add a per-thread flag that indicates a thread
2828 // called jni_monitorenter() during its lifetime.
2829 //
2830 // Instead of No_Savepoint_Verifier it might be cheaper to
2831 // use an idiom of the form:
2832 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
2833 //   <code that must not run at safepoint>
2834 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
2835 // Since the tests are extremely cheap we could leave them enabled
2836 // for normal product builds.
2837 
2838 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
2839   assert(THREAD == JavaThread::current(), "must be current Java thread");
2840   NoSafepointVerifier nsv;
2841   ReleaseJavaMonitorsClosure rjmc(THREAD);
2842   ObjectSynchronizer::monitors_iterate(&rjmc);
2843   THREAD->clear_pending_exception();
2844 }
2845 
2846 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
2847   switch (cause) {
2848     case inflate_cause_vm_internal:    return "VM Internal";
2849     case inflate_cause_monitor_enter:  return "Monitor Enter";
2850     case inflate_cause_wait:           return "Monitor Wait";
2851     case inflate_cause_notify:         return "Monitor Notify";
2852     case inflate_cause_hash_code:      return "Monitor Hash Code";
2853     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
2854     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
2855     default:
2856       ShouldNotReachHere();
2857   }
2858   return "Unknown";
2859 }
2860 
2861 //------------------------------------------------------------------------------
2862 // Debugging code
2863 
2864 u_char* ObjectSynchronizer::get_gvars_addr() {
2865   return (u_char*)&GVars;
2866 }
2867 
2868 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() {
2869   return (u_char*)&GVars.hc_sequence;
2870 }
2871 
2872 size_t ObjectSynchronizer::get_gvars_size() {
2873   return sizeof(SharedGlobals);
2874 }
2875 
2876 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() {
2877   return (u_char*)&GVars.stw_random;
2878 }
2879 
2880 // This function can be called at a safepoint or it can be called when
2881 // we are trying to exit the VM. When we are trying to exit the VM, the
2882 // list walker functions can run in parallel with the other list
2883 // operations so spin-locking is used for safety.
2884 //
2885 // Calls to this function can be added in various places as a debugging
2886 // aid; pass 'true' for the 'on_exit' parameter to have in-use monitor
2887 // details logged at the Info level and 'false' for the 'on_exit'
2888 // parameter to have in-use monitor details logged at the Trace level.
2889 // deflate_monitor_list() no longer uses spin-locking so be careful
2890 // when adding audit_and_print_stats() calls at a safepoint.
2891 //
2892 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) {
2893   assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant");
2894 
2895   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2896   LogStreamHandle(Info, monitorinflation) lsh_info;
2897   LogStreamHandle(Trace, monitorinflation) lsh_trace;
2898   LogStream* ls = NULL;
2899   if (log_is_enabled(Trace, monitorinflation)) {
2900     ls = &lsh_trace;
2901   } else if (log_is_enabled(Debug, monitorinflation)) {
2902     ls = &lsh_debug;
2903   } else if (log_is_enabled(Info, monitorinflation)) {
2904     ls = &lsh_info;
2905   }
2906   assert(ls != NULL, "sanity check");
2907 
2908   // Log counts for the global and per-thread monitor lists:
2909   int chk_om_population = log_monitor_list_counts(ls);
2910   int error_cnt = 0;
2911 
2912   ls->print_cr("Checking global lists:");
2913 
2914   // Check om_list_globals._population:
2915   if (Atomic::load(&om_list_globals._population) == chk_om_population) {
2916     ls->print_cr("global_population=%d equals chk_om_population=%d",
2917                  Atomic::load(&om_list_globals._population), chk_om_population);
2918   } else {
2919     // With fine grained locks on the monitor lists, it is possible for
2920     // log_monitor_list_counts() to return a value that doesn't match
2921     // om_list_globals._population. So far a higher value has been
2922     // seen in testing so something is being double counted by
2923     // log_monitor_list_counts().
2924     ls->print_cr("WARNING: global_population=%d is not equal to "
2925                  "chk_om_population=%d",
2926                  Atomic::load(&om_list_globals._population), chk_om_population);
2927   }
2928 
2929   // Check om_list_globals._in_use_list and om_list_globals._in_use_count:
2930   chk_global_in_use_list_and_count(ls, &error_cnt);
2931 
2932   // Check om_list_globals._free_list and om_list_globals._free_count:
2933   chk_global_free_list_and_count(ls, &error_cnt);
2934 
2935   // Check om_list_globals._wait_list and om_list_globals._wait_count:
2936   chk_global_wait_list_and_count(ls, &error_cnt);
2937 
2938   ls->print_cr("Checking per-thread lists:");
2939 
2940   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2941     // Check om_in_use_list and om_in_use_count:
2942     chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt);
2943 
2944     // Check om_free_list and om_free_count:
2945     chk_per_thread_free_list_and_count(jt, ls, &error_cnt);
2946   }
2947 
2948   if (error_cnt == 0) {
2949     ls->print_cr("No errors found in monitor list checks.");
2950   } else {
2951     log_error(monitorinflation)("found monitor list errors: error_cnt=%d", error_cnt);
2952   }
2953 
2954   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
2955       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
2956     // When exiting this log output is at the Info level. When called
2957     // at a safepoint, this log output is at the Trace level since
2958     // there can be a lot of it.
2959     log_in_use_monitor_details(ls);
2960   }
2961 
2962   ls->flush();
2963 
2964   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
2965 }
2966 
2967 // Check a free monitor entry; log any errors.
2968 void ObjectSynchronizer::chk_free_entry(JavaThread* jt, ObjectMonitor* n,
2969                                         outputStream * out, int *error_cnt_p) {
2970   stringStream ss;
2971   if (n->is_busy()) {
2972     if (jt != NULL) {
2973       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2974                     ": free per-thread monitor must not be busy: %s", p2i(jt),
2975                     p2i(n), n->is_busy_to_string(&ss));
2976     } else {
2977       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2978                     "must not be busy: %s", p2i(n), n->is_busy_to_string(&ss));
2979     }
2980     *error_cnt_p = *error_cnt_p + 1;
2981   }
2982   if (n->header().value() != 0) {
2983     if (jt != NULL) {
2984       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2985                     ": free per-thread monitor must have NULL _header "
2986                     "field: _header=" INTPTR_FORMAT, p2i(jt), p2i(n),
2987                     n->header().value());
2988       *error_cnt_p = *error_cnt_p + 1;
2989     } else if (!AsyncDeflateIdleMonitors) {
2990       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2991                     "must have NULL _header field: _header=" INTPTR_FORMAT,
2992                     p2i(n), n->header().value());
2993       *error_cnt_p = *error_cnt_p + 1;
2994     }
2995   }
2996   if (n->object() != NULL) {
2997     if (jt != NULL) {
2998       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2999                     ": free per-thread monitor must have NULL _object "
3000                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
3001                     p2i(n->object()));
3002     } else {
3003       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
3004                     "must have NULL _object field: _object=" INTPTR_FORMAT,
3005                     p2i(n), p2i(n->object()));
3006     }
3007     *error_cnt_p = *error_cnt_p + 1;
3008   }
3009 }
3010 
3011 // Lock the next ObjectMonitor for traversal and unlock the current
3012 // ObjectMonitor. Returns the next ObjectMonitor if there is one.
3013 // Otherwise returns NULL (after unlocking the current ObjectMonitor).
3014 // This function is used by the various list walker functions to
3015 // safely walk a list without allowing an ObjectMonitor to be moved
3016 // to another list in the middle of a walk.
3017 static ObjectMonitor* lock_next_for_traversal(ObjectMonitor* cur) {
3018   assert(is_locked(cur), "cur=" INTPTR_FORMAT " must be locked", p2i(cur));
3019   ObjectMonitor* next = unmarked_next(cur);
3020   if (next == NULL) {  // Reached the end of the list.
3021     om_unlock(cur);
3022     return NULL;
3023   }
3024   om_lock(next);   // Lock next before unlocking current to keep
3025   om_unlock(cur);  // from being by-passed by another thread.
3026   return next;
3027 }
3028 
3029 // Check the global free list and count; log the results of the checks.
3030 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
3031                                                         int *error_cnt_p) {
3032   int chk_om_free_count = 0;
3033   ObjectMonitor* cur = NULL;
3034   if ((cur = get_list_head_locked(&om_list_globals._free_list)) != NULL) {
3035     // Marked the global free list head so process the list.
3036     while (true) {
3037       chk_free_entry(NULL /* jt */, cur, out, error_cnt_p);
3038       chk_om_free_count++;
3039 
3040       cur = lock_next_for_traversal(cur);
3041       if (cur == NULL) {
3042         break;
3043       }
3044     }
3045   }
3046   int l_free_count = Atomic::load(&om_list_globals._free_count);
3047   if (l_free_count == chk_om_free_count) {
3048     out->print_cr("global_free_count=%d equals chk_om_free_count=%d",
3049                   l_free_count, chk_om_free_count);
3050   } else {
3051     // With fine grained locks on om_list_globals._free_list, it
3052     // is possible for an ObjectMonitor to be prepended to
3053     // om_list_globals._free_list after we started calculating
3054     // chk_om_free_count so om_list_globals._free_count may not
3055     // match anymore.
3056     out->print_cr("WARNING: global_free_count=%d is not equal to "
3057                   "chk_om_free_count=%d", l_free_count, chk_om_free_count);
3058   }
3059 }
3060 
3061 // Check the global wait list and count; log the results of the checks.
3062 void ObjectSynchronizer::chk_global_wait_list_and_count(outputStream * out,
3063                                                         int *error_cnt_p) {
3064   int chk_om_wait_count = 0;
3065   ObjectMonitor* cur = NULL;
3066   if ((cur = get_list_head_locked(&om_list_globals._wait_list)) != NULL) {
3067     // Marked the global wait list head so process the list.
3068     while (true) {
3069       // Rules for om_list_globals._wait_list are the same as for
3070       // om_list_globals._free_list:
3071       chk_free_entry(NULL /* jt */, cur, out, error_cnt_p);
3072       chk_om_wait_count++;
3073 
3074       cur = lock_next_for_traversal(cur);
3075       if (cur == NULL) {
3076         break;
3077       }
3078     }
3079   }
3080   if (Atomic::load(&om_list_globals._wait_count) == chk_om_wait_count) {
3081     out->print_cr("global_wait_count=%d equals chk_om_wait_count=%d",
3082                   Atomic::load(&om_list_globals._wait_count), chk_om_wait_count);
3083   } else {
3084     out->print_cr("ERROR: global_wait_count=%d is not equal to "
3085                   "chk_om_wait_count=%d",
3086                   Atomic::load(&om_list_globals._wait_count), chk_om_wait_count);
3087     *error_cnt_p = *error_cnt_p + 1;
3088   }
3089 }
3090 
3091 // Check the global in-use list and count; log the results of the checks.
3092 void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out,
3093                                                           int *error_cnt_p) {
3094   int chk_om_in_use_count = 0;
3095   ObjectMonitor* cur = NULL;
3096   if ((cur = get_list_head_locked(&om_list_globals._in_use_list)) != NULL) {
3097     // Marked the global in-use list head so process the list.
3098     while (true) {
3099       chk_in_use_entry(NULL /* jt */, cur, out, error_cnt_p);
3100       chk_om_in_use_count++;
3101 
3102       cur = lock_next_for_traversal(cur);
3103       if (cur == NULL) {
3104         break;
3105       }
3106     }
3107   }
3108   int l_in_use_count = Atomic::load(&om_list_globals._in_use_count);
3109   if (l_in_use_count == chk_om_in_use_count) {
3110     out->print_cr("global_in_use_count=%d equals chk_om_in_use_count=%d",
3111                   l_in_use_count, chk_om_in_use_count);
3112   } else {
3113     // With fine grained locks on the monitor lists, it is possible for
3114     // an exiting JavaThread to put its in-use ObjectMonitors on the
3115     // global in-use list after chk_om_in_use_count is calculated above.
3116     out->print_cr("WARNING: global_in_use_count=%d is not equal to chk_om_in_use_count=%d",
3117                   l_in_use_count, chk_om_in_use_count);
3118   }
3119 }
3120 
3121 // Check an in-use monitor entry; log any errors.
3122 void ObjectSynchronizer::chk_in_use_entry(JavaThread* jt, ObjectMonitor* n,
3123                                           outputStream * out, int *error_cnt_p) {
3124   if (n->header().value() == 0) {
3125     if (jt != NULL) {
3126       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3127                     ": in-use per-thread monitor must have non-NULL _header "
3128                     "field.", p2i(jt), p2i(n));
3129     } else {
3130       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
3131                     "must have non-NULL _header field.", p2i(n));
3132     }
3133     *error_cnt_p = *error_cnt_p + 1;
3134   }
3135   if (n->object() == NULL) {
3136     if (jt != NULL) {
3137       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3138                     ": in-use per-thread monitor must have non-NULL _object "
3139                     "field.", p2i(jt), p2i(n));
3140     } else {
3141       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
3142                     "must have non-NULL _object field.", p2i(n));
3143     }
3144     *error_cnt_p = *error_cnt_p + 1;
3145   }
3146   const oop obj = (oop)n->object();
3147   const markWord mark = obj->mark();
3148   if (!mark.has_monitor()) {
3149     if (jt != NULL) {
3150       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3151                     ": in-use per-thread monitor's object does not think "
3152                     "it has a monitor: obj=" INTPTR_FORMAT ", mark="
3153                     INTPTR_FORMAT,  p2i(jt), p2i(n), p2i(obj), mark.value());
3154     } else {
3155       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
3156                     "monitor's object does not think it has a monitor: obj="
3157                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
3158                     p2i(obj), mark.value());
3159     }
3160     *error_cnt_p = *error_cnt_p + 1;
3161   }
3162   ObjectMonitor* const obj_mon = mark.monitor();
3163   if (n != obj_mon) {
3164     if (jt != NULL) {
3165       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3166                     ": in-use per-thread monitor's object does not refer "
3167                     "to the same monitor: obj=" INTPTR_FORMAT ", mark="
3168                     INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt),
3169                     p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
3170     } else {
3171       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
3172                     "monitor's object does not refer to the same monitor: obj="
3173                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
3174                     INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
3175     }
3176     *error_cnt_p = *error_cnt_p + 1;
3177   }
3178 }
3179 
3180 // Check the thread's free list and count; log the results of the checks.
3181 void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt,
3182                                                             outputStream * out,
3183                                                             int *error_cnt_p) {
3184   int chk_om_free_count = 0;
3185   ObjectMonitor* cur = NULL;
3186   if ((cur = get_list_head_locked(&jt->om_free_list)) != NULL) {
3187     // Marked the per-thread free list head so process the list.
3188     while (true) {
3189       chk_free_entry(jt, cur, out, error_cnt_p);
3190       chk_om_free_count++;
3191 
3192       cur = lock_next_for_traversal(cur);
3193       if (cur == NULL) {
3194         break;
3195       }
3196     }
3197   }
3198   int l_om_free_count = Atomic::load(&jt->om_free_count);
3199   if (l_om_free_count == chk_om_free_count) {
3200     out->print_cr("jt=" INTPTR_FORMAT ": om_free_count=%d equals "
3201                   "chk_om_free_count=%d", p2i(jt), l_om_free_count, chk_om_free_count);
3202   } else {
3203     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_free_count=%d is not "
3204                   "equal to chk_om_free_count=%d", p2i(jt), l_om_free_count,
3205                   chk_om_free_count);
3206     *error_cnt_p = *error_cnt_p + 1;
3207   }
3208 }
3209 
3210 // Check the thread's in-use list and count; log the results of the checks.
3211 void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt,
3212                                                               outputStream * out,
3213                                                               int *error_cnt_p) {
3214   int chk_om_in_use_count = 0;
3215   ObjectMonitor* cur = NULL;
3216   if ((cur = get_list_head_locked(&jt->om_in_use_list)) != NULL) {
3217     // Marked the per-thread in-use list head so process the list.
3218     while (true) {
3219       chk_in_use_entry(jt, cur, out, error_cnt_p);
3220       chk_om_in_use_count++;
3221 
3222       cur = lock_next_for_traversal(cur);
3223       if (cur == NULL) {
3224         break;
3225       }
3226     }
3227   }
3228   int l_om_in_use_count = Atomic::load(&jt->om_in_use_count);
3229   if (l_om_in_use_count == chk_om_in_use_count) {
3230     out->print_cr("jt=" INTPTR_FORMAT ": om_in_use_count=%d equals "
3231                   "chk_om_in_use_count=%d", p2i(jt), l_om_in_use_count,
3232                   chk_om_in_use_count);
3233   } else {
3234     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_in_use_count=%d is not "
3235                   "equal to chk_om_in_use_count=%d", p2i(jt), l_om_in_use_count,
3236                   chk_om_in_use_count);
3237     *error_cnt_p = *error_cnt_p + 1;
3238   }
3239 }
3240 
3241 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
3242 // flags indicate why the entry is in-use, 'object' and 'object type'
3243 // indicate the associated object and its type.
3244 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out) {
3245   stringStream ss;
3246   if (Atomic::load(&om_list_globals._in_use_count) > 0) {
3247     out->print_cr("In-use global monitor info:");
3248     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
3249     out->print_cr("%18s  %s  %18s  %18s",
3250                   "monitor", "BHL", "object", "object type");
3251     out->print_cr("==================  ===  ==================  ==================");
3252     ObjectMonitor* cur = NULL;
3253     if ((cur = get_list_head_locked(&om_list_globals._in_use_list)) != NULL) {
3254       // Marked the global in-use list head so process the list.
3255       while (true) {
3256         const oop obj = (oop) cur->object();
3257         const markWord mark = cur->header();
3258         ResourceMark rm;
3259         out->print(INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT "  %s", p2i(cur),
3260                    cur->is_busy() != 0, mark.hash() != 0, cur->owner() != NULL,
3261                    p2i(obj), obj->klass()->external_name());
3262         if (cur->is_busy() != 0) {
3263           out->print(" (%s)", cur->is_busy_to_string(&ss));
3264           ss.reset();
3265         }
3266         out->cr();
3267 
3268         cur = lock_next_for_traversal(cur);
3269         if (cur == NULL) {
3270           break;
3271         }
3272       }
3273     }
3274   }
3275 
3276   out->print_cr("In-use per-thread monitor info:");
3277   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
3278   out->print_cr("%18s  %18s  %s  %18s  %18s",
3279                 "jt", "monitor", "BHL", "object", "object type");
3280   out->print_cr("==================  ==================  ===  ==================  ==================");
3281   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
3282     ObjectMonitor* cur = NULL;
3283     if ((cur = get_list_head_locked(&jt->om_in_use_list)) != NULL) {
3284       // Marked the global in-use list head so process the list.
3285       while (true) {
3286         const oop obj = (oop) cur->object();
3287         const markWord mark = cur->header();
3288         ResourceMark rm;
3289         out->print(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT
3290                    "  %s", p2i(jt), p2i(cur), cur->is_busy() != 0,
3291                    mark.hash() != 0, cur->owner() != NULL, p2i(obj),
3292                    obj->klass()->external_name());
3293         if (cur->is_busy() != 0) {
3294           out->print(" (%s)", cur->is_busy_to_string(&ss));
3295           ss.reset();
3296         }
3297         out->cr();
3298 
3299         cur = lock_next_for_traversal(cur);
3300         if (cur == NULL) {
3301           break;
3302         }
3303       }
3304     }
3305   }
3306 
3307   out->flush();
3308 }
3309 
3310 // Log counts for the global and per-thread monitor lists and return
3311 // the population count.
3312 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
3313   int pop_count = 0;
3314   out->print_cr("%18s  %10s  %10s  %10s  %10s",
3315                 "Global Lists:", "InUse", "Free", "Wait", "Total");
3316   out->print_cr("==================  ==========  ==========  ==========  ==========");
3317   int l_in_use_count = Atomic::load(&om_list_globals._in_use_count);
3318   int l_free_count = Atomic::load(&om_list_globals._free_count);
3319   int l_wait_count = Atomic::load(&om_list_globals._wait_count);
3320   out->print_cr("%18s  %10d  %10d  %10d  %10d", "", l_in_use_count,
3321                 l_free_count, l_wait_count,
3322                 Atomic::load(&om_list_globals._population));
3323   pop_count += l_in_use_count + l_free_count + l_wait_count;
3324 
3325   out->print_cr("%18s  %10s  %10s  %10s",
3326                 "Per-Thread Lists:", "InUse", "Free", "Provision");
3327   out->print_cr("==================  ==========  ==========  ==========");
3328 
3329   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
3330     int l_om_in_use_count = Atomic::load(&jt->om_in_use_count);
3331     int l_om_free_count = Atomic::load(&jt->om_free_count);
3332     out->print_cr(INTPTR_FORMAT "  %10d  %10d  %10d", p2i(jt),
3333                   l_om_in_use_count, l_om_free_count, jt->om_free_provision);
3334     pop_count += l_om_in_use_count + l_om_free_count;
3335   }
3336   return pop_count;
3337 }
3338 
3339 #ifndef PRODUCT
3340 
3341 // Check if monitor belongs to the monitor cache
3342 // The list is grow-only so it's *relatively* safe to traverse
3343 // the list of extant blocks without taking a lock.
3344 
3345 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
3346   PaddedObjectMonitor* block = Atomic::load(&g_block_list);
3347   while (block != NULL) {
3348     assert(block->object() == CHAINMARKER, "must be a block header");
3349     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
3350       address mon = (address)monitor;
3351       address blk = (address)block;
3352       size_t diff = mon - blk;
3353       assert((diff % sizeof(PaddedObjectMonitor)) == 0, "must be aligned");
3354       return 1;
3355     }
3356     // unmarked_next() is not needed with g_block_list (no locking
3357     // used with block linkage _next_om fields).
3358     block = (PaddedObjectMonitor*)block->next_om();
3359   }
3360   return 0;
3361 }
3362 
3363 #endif