1 /*
   2  * Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "jfr/jfrEvents.hpp"
  28 #include "jfr/support/jfrThreadId.hpp"
  29 #include "logging/log.hpp"
  30 #include "logging/logStream.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "oops/markWord.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "runtime/atomic.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/interfaceSupport.inline.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "runtime/objectMonitor.hpp"
  40 #include "runtime/objectMonitor.inline.hpp"
  41 #include "runtime/orderAccess.hpp"
  42 #include "runtime/osThread.hpp"
  43 #include "runtime/safepointMechanism.inline.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/stubRoutines.hpp"
  46 #include "runtime/thread.inline.hpp"
  47 #include "services/threadService.hpp"
  48 #include "utilities/dtrace.hpp"
  49 #include "utilities/macros.hpp"
  50 #include "utilities/preserveException.hpp"
  51 #if INCLUDE_JFR
  52 #include "jfr/support/jfrFlush.hpp"
  53 #endif
  54 
  55 #ifdef DTRACE_ENABLED
  56 
  57 // Only bother with this argument setup if dtrace is available
  58 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  59 
  60 
  61 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  62   char* bytes = NULL;                                                      \
  63   int len = 0;                                                             \
  64   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  65   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  66   if (klassname != NULL) {                                                 \
  67     bytes = (char*)klassname->bytes();                                     \
  68     len = klassname->utf8_length();                                        \
  69   }
  70 
  71 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  72   {                                                                        \
  73     if (DTraceMonitorProbes) {                                             \
  74       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  75       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  76                            (monitor), bytes, len, (millis));               \
  77     }                                                                      \
  78   }
  79 
  80 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  81 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  82 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  83 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  84 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  85 
  86 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  87   {                                                                        \
  88     if (DTraceMonitorProbes) {                                             \
  89       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  90       HOTSPOT_MONITOR_##probe(jtid,                                        \
  91                               (uintptr_t)(monitor), bytes, len);           \
  92     }                                                                      \
  93   }
  94 
  95 #else //  ndef DTRACE_ENABLED
  96 
  97 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  98 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
  99 
 100 #endif // ndef DTRACE_ENABLED
 101 
 102 // Tunables ...
 103 // The knob* variables are effectively final.  Once set they should
 104 // never be modified hence.  Consider using __read_mostly with GCC.
 105 
 106 int ObjectMonitor::Knob_SpinLimit    = 5000;    // derived by an external tool -
 107 
 108 static int Knob_Bonus               = 100;     // spin success bonus
 109 static int Knob_BonusB              = 100;     // spin success bonus
 110 static int Knob_Penalty             = 200;     // spin failure penalty
 111 static int Knob_Poverty             = 1000;
 112 static int Knob_FixedSpin           = 0;
 113 static int Knob_PreSpin             = 10;      // 20-100 likely better
 114 
 115 DEBUG_ONLY(static volatile bool InitDone = false;)
 116 
 117 // -----------------------------------------------------------------------------
 118 // Theory of operations -- Monitors lists, thread residency, etc:
 119 //
 120 // * A thread acquires ownership of a monitor by successfully
 121 //   CAS()ing the _owner field from null to non-null.
 122 //
 123 // * Invariant: A thread appears on at most one monitor list --
 124 //   cxq, EntryList or WaitSet -- at any one time.
 125 //
 126 // * Contending threads "push" themselves onto the cxq with CAS
 127 //   and then spin/park.
 128 //
 129 // * After a contending thread eventually acquires the lock it must
 130 //   dequeue itself from either the EntryList or the cxq.
 131 //
 132 // * The exiting thread identifies and unparks an "heir presumptive"
 133 //   tentative successor thread on the EntryList.  Critically, the
 134 //   exiting thread doesn't unlink the successor thread from the EntryList.
 135 //   After having been unparked, the wakee will recontend for ownership of
 136 //   the monitor.   The successor (wakee) will either acquire the lock or
 137 //   re-park itself.
 138 //
 139 //   Succession is provided for by a policy of competitive handoff.
 140 //   The exiting thread does _not_ grant or pass ownership to the
 141 //   successor thread.  (This is also referred to as "handoff" succession").
 142 //   Instead the exiting thread releases ownership and possibly wakes
 143 //   a successor, so the successor can (re)compete for ownership of the lock.
 144 //   If the EntryList is empty but the cxq is populated the exiting
 145 //   thread will drain the cxq into the EntryList.  It does so by
 146 //   by detaching the cxq (installing null with CAS) and folding
 147 //   the threads from the cxq into the EntryList.  The EntryList is
 148 //   doubly linked, while the cxq is singly linked because of the
 149 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 150 //
 151 // * Concurrency invariants:
 152 //
 153 //   -- only the monitor owner may access or mutate the EntryList.
 154 //      The mutex property of the monitor itself protects the EntryList
 155 //      from concurrent interference.
 156 //   -- Only the monitor owner may detach the cxq.
 157 //
 158 // * The monitor entry list operations avoid locks, but strictly speaking
 159 //   they're not lock-free.  Enter is lock-free, exit is not.
 160 //   For a description of 'Methods and apparatus providing non-blocking access
 161 //   to a resource,' see U.S. Pat. No. 7844973.
 162 //
 163 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 164 //   detaching thread.  This mechanism is immune from the ABA corruption.
 165 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 166 //
 167 // * Taken together, the cxq and the EntryList constitute or form a
 168 //   single logical queue of threads stalled trying to acquire the lock.
 169 //   We use two distinct lists to improve the odds of a constant-time
 170 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 171 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 172 //   A key desideratum is to minimize queue & monitor metadata manipulation
 173 //   that occurs while holding the monitor lock -- that is, we want to
 174 //   minimize monitor lock holds times.  Note that even a small amount of
 175 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 176 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 177 //   locks and monitor metadata.
 178 //
 179 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 180 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 181 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 182 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 183 //
 184 //   The EntryList is ordered by the prevailing queue discipline and
 185 //   can be organized in any convenient fashion, such as a doubly-linked list or
 186 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 187 //   to operate in constant-time.  If we need a priority queue then something akin
 188 //   to Solaris' sleepq would work nicely.  Viz.,
 189 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 190 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 191 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 192 //   EntryList accordingly.
 193 //
 194 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 195 //   somewhat similar to an elevator-scan.
 196 //
 197 // * The monitor synchronization subsystem avoids the use of native
 198 //   synchronization primitives except for the narrow platform-specific
 199 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 200 //   the semantics of park-unpark.  Put another way, this monitor implementation
 201 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 202 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 203 //   underlying OS manages the READY<->RUN transitions.
 204 //
 205 // * Waiting threads reside on the WaitSet list -- wait() puts
 206 //   the caller onto the WaitSet.
 207 //
 208 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 209 //   either the EntryList or cxq.  Subsequent exit() operations will
 210 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 211 //   it's likely the notifyee would simply impale itself on the lock held
 212 //   by the notifier.
 213 //
 214 // * An interesting alternative is to encode cxq as (List,LockByte) where
 215 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 216 //   variable, like _recursions, in the scheme.  The threads or Events that form
 217 //   the list would have to be aligned in 256-byte addresses.  A thread would
 218 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 219 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 220 //   Note that is is *not* word-tearing, but it does presume that full-word
 221 //   CAS operations are coherent with intermix with STB operations.  That's true
 222 //   on most common processors.
 223 //
 224 // * See also http://blogs.sun.com/dave
 225 
 226 
 227 void* ObjectMonitor::operator new (size_t size) throw() {
 228   return AllocateHeap(size, mtInternal);
 229 }
 230 void* ObjectMonitor::operator new[] (size_t size) throw() {
 231   return operator new (size);
 232 }
 233 void ObjectMonitor::operator delete(void* p) {
 234   FreeHeap(p);
 235 }
 236 void ObjectMonitor::operator delete[] (void *p) {
 237   operator delete(p);
 238 }
 239 
 240 // -----------------------------------------------------------------------------
 241 // Enter support
 242 
 243 bool ObjectMonitor::enter(TRAPS) {
 244   // The following code is ordered to check the most common cases first
 245   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 246   Thread * const Self = THREAD;
 247 
 248   void* cur = try_set_owner_from(NULL, Self);
 249   if (cur == NULL) {
 250     assert(_recursions == 0, "invariant");
 251     return true;
 252   }
 253 
 254   if (cur == Self) {
 255     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 256     _recursions++;
 257     return true;
 258   }
 259 
 260   if (Self->is_lock_owned((address)cur)) {
 261     assert(_recursions == 0, "internal state error");
 262     _recursions = 1;
 263     set_owner_from_BasicLock(cur, Self);  // Convert from BasicLock* to Thread*.
 264     return true;
 265   }
 266 
 267   // We've encountered genuine contention.
 268   assert(Self->_Stalled == 0, "invariant");
 269   Self->_Stalled = intptr_t(this);
 270 
 271   // Try one round of spinning *before* enqueueing Self
 272   // and before going through the awkward and expensive state
 273   // transitions.  The following spin is strictly optional ...
 274   // Note that if we acquire the monitor from an initial spin
 275   // we forgo posting JVMTI events and firing DTRACE probes.
 276   if (TrySpin(Self) > 0) {
 277     assert(_owner == Self, "must be Self: owner=" INTPTR_FORMAT, p2i(_owner));
 278     assert(_recursions == 0, "must be 0: recursions=" INTX_FORMAT, _recursions);
 279     assert(((oop)object())->mark() == markWord::encode(this),
 280            "object mark must match encoded this: mark=" INTPTR_FORMAT
 281            ", encoded this=" INTPTR_FORMAT, ((oop)object())->mark().value(),
 282            markWord::encode(this).value());
 283     Self->_Stalled = 0;
 284     return true;
 285   }
 286 
 287   assert(_owner != Self, "invariant");
 288   assert(_succ != Self, "invariant");
 289   assert(Self->is_Java_thread(), "invariant");
 290   JavaThread * jt = (JavaThread *) Self;
 291   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 292   assert(jt->thread_state() != _thread_blocked, "invariant");
 293   assert(AsyncDeflateIdleMonitors || this->object() != NULL, "invariant");
 294   assert(AsyncDeflateIdleMonitors || contentions() >= 0, "must not be negative: contentions=%d", contentions());
 295 
 296   // Keep track of contention for JVM/TI and M&M queries.
 297   add_to_contentions(1);
 298   if (is_being_async_deflated()) {
 299     // Async deflation is in progress and our contentions increment
 300     // above lost the race to async deflation. Undo the work and
 301     // force the caller to retry.
 302     const oop l_object = (oop)object();
 303     if (l_object != NULL) {
 304       // Attempt to restore the header/dmw to the object's header so that
 305       // we only retry once if the deflater thread happens to be slow.
 306       install_displaced_markword_in_object(l_object);
 307     }
 308     Self->_Stalled = 0;
 309     add_to_contentions(-1);
 310     return false;
 311   }
 312 
 313   JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(jt);)
 314   EventJavaMonitorEnter event;
 315   if (event.should_commit()) {
 316     event.set_monitorClass(((oop)this->object())->klass());
 317     event.set_address((uintptr_t)(this->object_addr()));
 318   }
 319 
 320   { // Change java thread status to indicate blocked on monitor enter.
 321     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 322 
 323     Self->set_current_pending_monitor(this);
 324 
 325     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 326     if (JvmtiExport::should_post_monitor_contended_enter()) {
 327       JvmtiExport::post_monitor_contended_enter(jt, this);
 328 
 329       // The current thread does not yet own the monitor and does not
 330       // yet appear on any queues that would get it made the successor.
 331       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 332       // handler cannot accidentally consume an unpark() meant for the
 333       // ParkEvent associated with this ObjectMonitor.
 334     }
 335 
 336     OSThreadContendState osts(Self->osthread());
 337     ThreadBlockInVM tbivm(jt);
 338 
 339     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 340     for (;;) {
 341       jt->set_suspend_equivalent();
 342       // cleared by handle_special_suspend_equivalent_condition()
 343       // or java_suspend_self()
 344 
 345       EnterI(THREAD);
 346 
 347       if (!ExitSuspendEquivalent(jt)) break;
 348 
 349       // We have acquired the contended monitor, but while we were
 350       // waiting another thread suspended us. We don't want to enter
 351       // the monitor while suspended because that would surprise the
 352       // thread that suspended us.
 353       //
 354       _recursions = 0;
 355       _succ = NULL;
 356       exit(false, Self);
 357 
 358       jt->java_suspend_self();
 359     }
 360     Self->set_current_pending_monitor(NULL);
 361 
 362     // We cleared the pending monitor info since we've just gotten past
 363     // the enter-check-for-suspend dance and we now own the monitor free
 364     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 365     // destructor can go to a safepoint at the end of this block. If we
 366     // do a thread dump during that safepoint, then this thread will show
 367     // as having "-locked" the monitor, but the OS and java.lang.Thread
 368     // states will still report that the thread is blocked trying to
 369     // acquire it.
 370   }
 371 
 372   add_to_contentions(-1);
 373   assert(contentions() >= 0, "must not be negative: contentions=%d", contentions());
 374   Self->_Stalled = 0;
 375 
 376   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 377   assert(_recursions == 0, "invariant");
 378   assert(_owner == Self, "invariant");
 379   assert(_succ != Self, "invariant");
 380   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
 381 
 382   // The thread -- now the owner -- is back in vm mode.
 383   // Report the glorious news via TI,DTrace and jvmstat.
 384   // The probe effect is non-trivial.  All the reportage occurs
 385   // while we hold the monitor, increasing the length of the critical
 386   // section.  Amdahl's parallel speedup law comes vividly into play.
 387   //
 388   // Another option might be to aggregate the events (thread local or
 389   // per-monitor aggregation) and defer reporting until a more opportune
 390   // time -- such as next time some thread encounters contention but has
 391   // yet to acquire the lock.  While spinning that thread could
 392   // spinning we could increment JVMStat counters, etc.
 393 
 394   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 395   if (JvmtiExport::should_post_monitor_contended_entered()) {
 396     JvmtiExport::post_monitor_contended_entered(jt, this);
 397 
 398     // The current thread already owns the monitor and is not going to
 399     // call park() for the remainder of the monitor enter protocol. So
 400     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 401     // event handler consumed an unpark() issued by the thread that
 402     // just exited the monitor.
 403   }
 404   if (event.should_commit()) {
 405     event.set_previousOwner((uintptr_t)_previous_owner_tid);
 406     event.commit();
 407   }
 408   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 409   return true;
 410 }
 411 
 412 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 413 // Callers must compensate as needed.
 414 
 415 int ObjectMonitor::TryLock(Thread * Self) {
 416   void * own = _owner;
 417   if (own != NULL) return 0;
 418   if (try_set_owner_from(NULL, Self) == NULL) {
 419     assert(_recursions == 0, "invariant");
 420     return 1;
 421   }
 422   // The lock had been free momentarily, but we lost the race to the lock.
 423   // Interference -- the CAS failed.
 424   // We can either return -1 or retry.
 425   // Retry doesn't make as much sense because the lock was just acquired.
 426   return -1;
 427 }
 428 
 429 // Install the displaced mark word (dmw) of a deflating ObjectMonitor
 430 // into the header of the object associated with the monitor. This
 431 // idempotent method is called by a thread that is deflating a
 432 // monitor and by other threads that have detected a race with the
 433 // deflation process.
 434 void ObjectMonitor::install_displaced_markword_in_object(const oop obj) {
 435   // This function must only be called when (owner == DEFLATER_MARKER
 436   // && contentions <= 0), but we can't guarantee that here because
 437   // those values could change when the ObjectMonitor gets moved from
 438   // the global free list to a per-thread free list.
 439 
 440   guarantee(obj != NULL, "must be non-NULL");
 441 
 442   // Separate loads in is_being_async_deflated(), which is almost always
 443   // called before this function, from the load of dmw/header below.
 444   if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
 445     // A non-multiple copy atomic (nMCA) machine needs a bigger
 446     // hammer to separate the loads before and the load below.
 447     OrderAccess::fence();
 448   } else {
 449     OrderAccess::loadload();
 450   }
 451 
 452   const oop l_object = (oop)object();
 453   if (l_object == NULL) {
 454     // ObjectMonitor's object ref has already been cleared by async
 455     // deflation so we're done here.
 456     return;
 457   }
 458   ADIM_guarantee(l_object == obj, "object=" INTPTR_FORMAT " must equal obj="
 459                  INTPTR_FORMAT, p2i(l_object), p2i(obj));
 460 
 461   markWord dmw = header();
 462   // The dmw has to be neutral (not NULL, not locked and not marked).
 463   ADIM_guarantee(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value());
 464 
 465   // Install displaced mark word if the object's header still points
 466   // to this ObjectMonitor. More than one racing caller to this function
 467   // can rarely reach this point, but only one can win.
 468   markWord res = obj->cas_set_mark(dmw, markWord::encode(this));
 469   if (res != markWord::encode(this)) {
 470     // This should be rare so log at the Info level when it happens.
 471     log_info(monitorinflation)("install_displaced_markword_in_object: "
 472                                "failed cas_set_mark: new_mark=" INTPTR_FORMAT
 473                                ", old_mark=" INTPTR_FORMAT ", res=" INTPTR_FORMAT,
 474                                dmw.value(), markWord::encode(this).value(),
 475                                res.value());
 476   }
 477 
 478   // Note: It does not matter which thread restored the header/dmw
 479   // into the object's header. The thread deflating the monitor just
 480   // wanted the object's header restored and it is. The threads that
 481   // detected a race with the deflation process also wanted the
 482   // object's header restored before they retry their operation and
 483   // because it is restored they will only retry once.
 484 }
 485 
 486 // Convert the fields used by is_busy() to a string that can be
 487 // used for diagnostic output.
 488 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) {
 489   ss->print("is_busy: waiters=%d, ", _waiters);
 490   if (!AsyncDeflateIdleMonitors) {
 491     ss->print("contentions=%d, ", contentions());
 492     ss->print("owner=" INTPTR_FORMAT, p2i(_owner));
 493   } else {
 494     if (contentions() > 0) {
 495       ss->print("contentions=%d, ", contentions());
 496     } else {
 497       ss->print("contentions=0");
 498     }
 499     if (_owner != DEFLATER_MARKER) {
 500       ss->print("owner=" INTPTR_FORMAT, p2i(_owner));
 501     } else {
 502       // We report NULL instead of DEFLATER_MARKER here because is_busy()
 503       // ignores DEFLATER_MARKER values.
 504       ss->print("owner=" INTPTR_FORMAT, NULL);
 505     }
 506   }
 507   ss->print(", cxq=" INTPTR_FORMAT ", EntryList=" INTPTR_FORMAT, p2i(_cxq),
 508             p2i(_EntryList));
 509   return ss->base();
 510 }
 511 
 512 #define MAX_RECHECK_INTERVAL 1000
 513 
 514 void ObjectMonitor::EnterI(TRAPS) {
 515   Thread * const Self = THREAD;
 516   assert(Self->is_Java_thread(), "invariant");
 517   assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant");
 518 
 519   // Try the lock - TATAS
 520   if (TryLock (Self) > 0) {
 521     assert(_succ != Self, "invariant");
 522     assert(_owner == Self, "invariant");
 523     assert(_Responsible != Self, "invariant");
 524     return;
 525   }
 526 
 527   if (AsyncDeflateIdleMonitors &&
 528       try_set_owner_from(DEFLATER_MARKER, Self) == DEFLATER_MARKER) {
 529     // The deflation protocol finished the first part (setting owner),
 530     // but it failed the second part (making contentions negative) and
 531     // bailed. Acquired the monitor.
 532     assert(_succ != Self, "invariant");
 533     assert(_Responsible != Self, "invariant");
 534     return;
 535   }
 536 
 537   assert(InitDone, "Unexpectedly not initialized");
 538 
 539   // We try one round of spinning *before* enqueueing Self.
 540   //
 541   // If the _owner is ready but OFFPROC we could use a YieldTo()
 542   // operation to donate the remainder of this thread's quantum
 543   // to the owner.  This has subtle but beneficial affinity
 544   // effects.
 545 
 546   if (TrySpin(Self) > 0) {
 547     assert(_owner == Self, "invariant");
 548     assert(_succ != Self, "invariant");
 549     assert(_Responsible != Self, "invariant");
 550     return;
 551   }
 552 
 553   // The Spin failed -- Enqueue and park the thread ...
 554   assert(_succ != Self, "invariant");
 555   assert(_owner != Self, "invariant");
 556   assert(_Responsible != Self, "invariant");
 557 
 558   // Enqueue "Self" on ObjectMonitor's _cxq.
 559   //
 560   // Node acts as a proxy for Self.
 561   // As an aside, if were to ever rewrite the synchronization code mostly
 562   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 563   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 564   // as well as eliminate a subset of ABA issues.
 565   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 566 
 567   ObjectWaiter node(Self);
 568   Self->_ParkEvent->reset();
 569   node._prev   = (ObjectWaiter *) 0xBAD;
 570   node.TState  = ObjectWaiter::TS_CXQ;
 571 
 572   // Push "Self" onto the front of the _cxq.
 573   // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 574   // Note that spinning tends to reduce the rate at which threads
 575   // enqueue and dequeue on EntryList|cxq.
 576   ObjectWaiter * nxt;
 577   for (;;) {
 578     node._next = nxt = _cxq;
 579     if (Atomic::cmpxchg(&_cxq, nxt, &node) == nxt) break;
 580 
 581     // Interference - the CAS failed because _cxq changed.  Just retry.
 582     // As an optional optimization we retry the lock.
 583     if (TryLock (Self) > 0) {
 584       assert(_succ != Self, "invariant");
 585       assert(_owner == Self, "invariant");
 586       assert(_Responsible != Self, "invariant");
 587       return;
 588     }
 589   }
 590 
 591   // Check for cxq|EntryList edge transition to non-null.  This indicates
 592   // the onset of contention.  While contention persists exiting threads
 593   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 594   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 595   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 596   // arrange for one of the contending thread to use a timed park() operations
 597   // to detect and recover from the race.  (Stranding is form of progress failure
 598   // where the monitor is unlocked but all the contending threads remain parked).
 599   // That is, at least one of the contended threads will periodically poll _owner.
 600   // One of the contending threads will become the designated "Responsible" thread.
 601   // The Responsible thread uses a timed park instead of a normal indefinite park
 602   // operation -- it periodically wakes and checks for and recovers from potential
 603   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 604   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 605   // be responsible for a monitor.
 606   //
 607   // Currently, one of the contended threads takes on the added role of "Responsible".
 608   // A viable alternative would be to use a dedicated "stranding checker" thread
 609   // that periodically iterated over all the threads (or active monitors) and unparked
 610   // successors where there was risk of stranding.  This would help eliminate the
 611   // timer scalability issues we see on some platforms as we'd only have one thread
 612   // -- the checker -- parked on a timer.
 613 
 614   if (nxt == NULL && _EntryList == NULL) {
 615     // Try to assume the role of responsible thread for the monitor.
 616     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 617     Atomic::replace_if_null(&_Responsible, Self);
 618   }
 619 
 620   // The lock might have been released while this thread was occupied queueing
 621   // itself onto _cxq.  To close the race and avoid "stranding" and
 622   // progress-liveness failure we must resample-retry _owner before parking.
 623   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 624   // In this case the ST-MEMBAR is accomplished with CAS().
 625   //
 626   // TODO: Defer all thread state transitions until park-time.
 627   // Since state transitions are heavy and inefficient we'd like
 628   // to defer the state transitions until absolutely necessary,
 629   // and in doing so avoid some transitions ...
 630 
 631   int nWakeups = 0;
 632   int recheckInterval = 1;
 633 
 634   for (;;) {
 635 
 636     if (TryLock(Self) > 0) break;
 637     assert(_owner != Self, "invariant");
 638 
 639     // park self
 640     if (_Responsible == Self) {
 641       Self->_ParkEvent->park((jlong) recheckInterval);
 642       // Increase the recheckInterval, but clamp the value.
 643       recheckInterval *= 8;
 644       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 645         recheckInterval = MAX_RECHECK_INTERVAL;
 646       }
 647     } else {
 648       Self->_ParkEvent->park();
 649     }
 650 
 651     if (TryLock(Self) > 0) break;
 652 
 653     if (AsyncDeflateIdleMonitors &&
 654         try_set_owner_from(DEFLATER_MARKER, Self) == DEFLATER_MARKER) {
 655       // The deflation protocol finished the first part (setting owner),
 656       // but it failed the second part (making contentions negative) and
 657       // bailed. Acquired the monitor.
 658       break;
 659     }
 660 
 661     // The lock is still contested.
 662     // Keep a tally of the # of futile wakeups.
 663     // Note that the counter is not protected by a lock or updated by atomics.
 664     // That is by design - we trade "lossy" counters which are exposed to
 665     // races during updates for a lower probe effect.
 666 
 667     // This PerfData object can be used in parallel with a safepoint.
 668     // See the work around in PerfDataManager::destroy().
 669     OM_PERFDATA_OP(FutileWakeups, inc());
 670     ++nWakeups;
 671 
 672     // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 673     // We can defer clearing _succ until after the spin completes
 674     // TrySpin() must tolerate being called with _succ == Self.
 675     // Try yet another round of adaptive spinning.
 676     if (TrySpin(Self) > 0) break;
 677 
 678     // We can find that we were unpark()ed and redesignated _succ while
 679     // we were spinning.  That's harmless.  If we iterate and call park(),
 680     // park() will consume the event and return immediately and we'll
 681     // just spin again.  This pattern can repeat, leaving _succ to simply
 682     // spin on a CPU.
 683 
 684     if (_succ == Self) _succ = NULL;
 685 
 686     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 687     OrderAccess::fence();
 688   }
 689 
 690   // Egress :
 691   // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 692   // Normally we'll find Self on the EntryList .
 693   // From the perspective of the lock owner (this thread), the
 694   // EntryList is stable and cxq is prepend-only.
 695   // The head of cxq is volatile but the interior is stable.
 696   // In addition, Self.TState is stable.
 697 
 698   assert(_owner == Self, "invariant");
 699   assert(object() != NULL, "invariant");
 700   // I'd like to write:
 701   //   guarantee (((oop)(object()))->mark() == markWord::encode(this), "invariant") ;
 702   // but as we're at a safepoint that's not safe.
 703 
 704   UnlinkAfterAcquire(Self, &node);
 705   if (_succ == Self) _succ = NULL;
 706 
 707   assert(_succ != Self, "invariant");
 708   if (_Responsible == Self) {
 709     _Responsible = NULL;
 710     OrderAccess::fence(); // Dekker pivot-point
 711 
 712     // We may leave threads on cxq|EntryList without a designated
 713     // "Responsible" thread.  This is benign.  When this thread subsequently
 714     // exits the monitor it can "see" such preexisting "old" threads --
 715     // threads that arrived on the cxq|EntryList before the fence, above --
 716     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 717     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 718     // non-null and elect a new "Responsible" timer thread.
 719     //
 720     // This thread executes:
 721     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 722     //    LD cxq|EntryList               (in subsequent exit)
 723     //
 724     // Entering threads in the slow/contended path execute:
 725     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 726     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 727     //
 728     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 729     // exit operation from floating above the ST Responsible=null.
 730   }
 731 
 732   // We've acquired ownership with CAS().
 733   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 734   // But since the CAS() this thread may have also stored into _succ,
 735   // EntryList, cxq or Responsible.  These meta-data updates must be
 736   // visible __before this thread subsequently drops the lock.
 737   // Consider what could occur if we didn't enforce this constraint --
 738   // STs to monitor meta-data and user-data could reorder with (become
 739   // visible after) the ST in exit that drops ownership of the lock.
 740   // Some other thread could then acquire the lock, but observe inconsistent
 741   // or old monitor meta-data and heap data.  That violates the JMM.
 742   // To that end, the 1-0 exit() operation must have at least STST|LDST
 743   // "release" barrier semantics.  Specifically, there must be at least a
 744   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 745   // the lock.   The barrier ensures that changes to monitor meta-data and data
 746   // protected by the lock will be visible before we release the lock, and
 747   // therefore before some other thread (CPU) has a chance to acquire the lock.
 748   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 749   //
 750   // Critically, any prior STs to _succ or EntryList must be visible before
 751   // the ST of null into _owner in the *subsequent* (following) corresponding
 752   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 753   // execute a serializing instruction.
 754 
 755   return;
 756 }
 757 
 758 // ReenterI() is a specialized inline form of the latter half of the
 759 // contended slow-path from EnterI().  We use ReenterI() only for
 760 // monitor reentry in wait().
 761 //
 762 // In the future we should reconcile EnterI() and ReenterI().
 763 
 764 void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) {
 765   assert(Self != NULL, "invariant");
 766   assert(SelfNode != NULL, "invariant");
 767   assert(SelfNode->_thread == Self, "invariant");
 768   assert(_waiters > 0, "invariant");
 769   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
 770   assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 771   JavaThread * jt = (JavaThread *) Self;
 772 
 773   int nWakeups = 0;
 774   for (;;) {
 775     ObjectWaiter::TStates v = SelfNode->TState;
 776     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 777     assert(_owner != Self, "invariant");
 778 
 779     if (TryLock(Self) > 0) break;
 780     if (TrySpin(Self) > 0) break;
 781 
 782     // State transition wrappers around park() ...
 783     // ReenterI() wisely defers state transitions until
 784     // it's clear we must park the thread.
 785     {
 786       OSThreadContendState osts(Self->osthread());
 787       ThreadBlockInVM tbivm(jt);
 788 
 789       // cleared by handle_special_suspend_equivalent_condition()
 790       // or java_suspend_self()
 791       jt->set_suspend_equivalent();
 792       Self->_ParkEvent->park();
 793 
 794       // were we externally suspended while we were waiting?
 795       for (;;) {
 796         if (!ExitSuspendEquivalent(jt)) break;
 797         if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 798         jt->java_suspend_self();
 799         jt->set_suspend_equivalent();
 800       }
 801     }
 802 
 803     // Try again, but just so we distinguish between futile wakeups and
 804     // successful wakeups.  The following test isn't algorithmically
 805     // necessary, but it helps us maintain sensible statistics.
 806     if (TryLock(Self) > 0) break;
 807 
 808     // The lock is still contested.
 809     // Keep a tally of the # of futile wakeups.
 810     // Note that the counter is not protected by a lock or updated by atomics.
 811     // That is by design - we trade "lossy" counters which are exposed to
 812     // races during updates for a lower probe effect.
 813     ++nWakeups;
 814 
 815     // Assuming this is not a spurious wakeup we'll normally
 816     // find that _succ == Self.
 817     if (_succ == Self) _succ = NULL;
 818 
 819     // Invariant: after clearing _succ a contending thread
 820     // *must* retry  _owner before parking.
 821     OrderAccess::fence();
 822 
 823     // This PerfData object can be used in parallel with a safepoint.
 824     // See the work around in PerfDataManager::destroy().
 825     OM_PERFDATA_OP(FutileWakeups, inc());
 826   }
 827 
 828   // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 829   // Normally we'll find Self on the EntryList.
 830   // Unlinking from the EntryList is constant-time and atomic-free.
 831   // From the perspective of the lock owner (this thread), the
 832   // EntryList is stable and cxq is prepend-only.
 833   // The head of cxq is volatile but the interior is stable.
 834   // In addition, Self.TState is stable.
 835 
 836   assert(_owner == Self, "invariant");
 837   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
 838   UnlinkAfterAcquire(Self, SelfNode);
 839   if (_succ == Self) _succ = NULL;
 840   assert(_succ != Self, "invariant");
 841   SelfNode->TState = ObjectWaiter::TS_RUN;
 842   OrderAccess::fence();      // see comments at the end of EnterI()
 843 }
 844 
 845 // By convention we unlink a contending thread from EntryList|cxq immediately
 846 // after the thread acquires the lock in ::enter().  Equally, we could defer
 847 // unlinking the thread until ::exit()-time.
 848 
 849 void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) {
 850   assert(_owner == Self, "invariant");
 851   assert(SelfNode->_thread == Self, "invariant");
 852 
 853   if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 854     // Normal case: remove Self from the DLL EntryList .
 855     // This is a constant-time operation.
 856     ObjectWaiter * nxt = SelfNode->_next;
 857     ObjectWaiter * prv = SelfNode->_prev;
 858     if (nxt != NULL) nxt->_prev = prv;
 859     if (prv != NULL) prv->_next = nxt;
 860     if (SelfNode == _EntryList) _EntryList = nxt;
 861     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
 862     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
 863   } else {
 864     assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
 865     // Inopportune interleaving -- Self is still on the cxq.
 866     // This usually means the enqueue of self raced an exiting thread.
 867     // Normally we'll find Self near the front of the cxq, so
 868     // dequeueing is typically fast.  If needbe we can accelerate
 869     // this with some MCS/CHL-like bidirectional list hints and advisory
 870     // back-links so dequeueing from the interior will normally operate
 871     // in constant-time.
 872     // Dequeue Self from either the head (with CAS) or from the interior
 873     // with a linear-time scan and normal non-atomic memory operations.
 874     // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 875     // and then unlink Self from EntryList.  We have to drain eventually,
 876     // so it might as well be now.
 877 
 878     ObjectWaiter * v = _cxq;
 879     assert(v != NULL, "invariant");
 880     if (v != SelfNode || Atomic::cmpxchg(&_cxq, v, SelfNode->_next) != v) {
 881       // The CAS above can fail from interference IFF a "RAT" arrived.
 882       // In that case Self must be in the interior and can no longer be
 883       // at the head of cxq.
 884       if (v == SelfNode) {
 885         assert(_cxq != v, "invariant");
 886         v = _cxq;          // CAS above failed - start scan at head of list
 887       }
 888       ObjectWaiter * p;
 889       ObjectWaiter * q = NULL;
 890       for (p = v; p != NULL && p != SelfNode; p = p->_next) {
 891         q = p;
 892         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
 893       }
 894       assert(v != SelfNode, "invariant");
 895       assert(p == SelfNode, "Node not found on cxq");
 896       assert(p != _cxq, "invariant");
 897       assert(q != NULL, "invariant");
 898       assert(q->_next == p, "invariant");
 899       q->_next = p->_next;
 900     }
 901   }
 902 
 903 #ifdef ASSERT
 904   // Diagnostic hygiene ...
 905   SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
 906   SelfNode->_next  = (ObjectWaiter *) 0xBAD;
 907   SelfNode->TState = ObjectWaiter::TS_RUN;
 908 #endif
 909 }
 910 
 911 // -----------------------------------------------------------------------------
 912 // Exit support
 913 //
 914 // exit()
 915 // ~~~~~~
 916 // Note that the collector can't reclaim the objectMonitor or deflate
 917 // the object out from underneath the thread calling ::exit() as the
 918 // thread calling ::exit() never transitions to a stable state.
 919 // This inhibits GC, which in turn inhibits asynchronous (and
 920 // inopportune) reclamation of "this".
 921 //
 922 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 923 // There's one exception to the claim above, however.  EnterI() can call
 924 // exit() to drop a lock if the acquirer has been externally suspended.
 925 // In that case exit() is called with _thread_state == _thread_blocked,
 926 // but the monitor's _contentions field is > 0, which inhibits reclamation.
 927 //
 928 // 1-0 exit
 929 // ~~~~~~~~
 930 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 931 // the fast-path operators have been optimized so the common ::exit()
 932 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
 933 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 934 // greatly improves latency -- MEMBAR and CAS having considerable local
 935 // latency on modern processors -- but at the cost of "stranding".  Absent the
 936 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 937 // ::enter() path, resulting in the entering thread being stranding
 938 // and a progress-liveness failure.   Stranding is extremely rare.
 939 // We use timers (timed park operations) & periodic polling to detect
 940 // and recover from stranding.  Potentially stranded threads periodically
 941 // wake up and poll the lock.  See the usage of the _Responsible variable.
 942 //
 943 // The CAS() in enter provides for safety and exclusion, while the CAS or
 944 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 945 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
 946 // We detect and recover from stranding with timers.
 947 //
 948 // If a thread transiently strands it'll park until (a) another
 949 // thread acquires the lock and then drops the lock, at which time the
 950 // exiting thread will notice and unpark the stranded thread, or, (b)
 951 // the timer expires.  If the lock is high traffic then the stranding latency
 952 // will be low due to (a).  If the lock is low traffic then the odds of
 953 // stranding are lower, although the worst-case stranding latency
 954 // is longer.  Critically, we don't want to put excessive load in the
 955 // platform's timer subsystem.  We want to minimize both the timer injection
 956 // rate (timers created/sec) as well as the number of timers active at
 957 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 958 // the integral of the # of active timers at any instant over time).
 959 // Both impinge on OS scalability.  Given that, at most one thread parked on
 960 // a monitor will use a timer.
 961 //
 962 // There is also the risk of a futile wake-up. If we drop the lock
 963 // another thread can reacquire the lock immediately, and we can
 964 // then wake a thread unnecessarily. This is benign, and we've
 965 // structured the code so the windows are short and the frequency
 966 // of such futile wakups is low.
 967 
 968 void ObjectMonitor::exit(bool not_suspended, TRAPS) {
 969   Thread* const Self = THREAD;
 970   void* cur = Atomic::load(&_owner);
 971   if (THREAD != cur) {
 972     if (THREAD->is_lock_owned((address)cur)) {
 973       assert(_recursions == 0, "invariant");
 974       set_owner_from_BasicLock(cur, Self);  // Convert from BasicLock* to Thread*.
 975       _recursions = 0;
 976     } else {
 977       // Apparent unbalanced locking ...
 978       // Naively we'd like to throw IllegalMonitorStateException.
 979       // As a practical matter we can neither allocate nor throw an
 980       // exception as ::exit() can be called from leaf routines.
 981       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
 982       // Upon deeper reflection, however, in a properly run JVM the only
 983       // way we should encounter this situation is in the presence of
 984       // unbalanced JNI locking. TODO: CheckJNICalls.
 985       // See also: CR4414101
 986 #ifdef ASSERT
 987       LogStreamHandle(Error, monitorinflation) lsh;
 988       lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT
 989                     " is exiting an ObjectMonitor it does not own.", p2i(THREAD));
 990       lsh.print_cr("The imbalance is possibly caused by JNI locking.");
 991       print_debug_style_on(&lsh);
 992 #endif
 993       assert(false, "Non-balanced monitor enter/exit!");
 994       return;
 995     }
 996   }
 997 
 998   if (_recursions != 0) {
 999     _recursions--;        // this is simple recursive enter
1000     return;
1001   }
1002 
1003   // Invariant: after setting Responsible=null an thread must execute
1004   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
1005   _Responsible = NULL;
1006 
1007 #if INCLUDE_JFR
1008   // get the owner's thread id for the MonitorEnter event
1009   // if it is enabled and the thread isn't suspended
1010   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
1011     _previous_owner_tid = JFR_THREAD_ID(Self);
1012   }
1013 #endif
1014 
1015   for (;;) {
1016     assert(THREAD == _owner, "invariant");
1017 
1018     // Drop the lock.
1019     // release semantics: prior loads and stores from within the critical section
1020     // must not float (reorder) past the following store that drops the lock.
1021     // Uses a storeload to separate release_store(owner) from the
1022     // successor check. The try_set_owner() below uses cmpxchg() so
1023     // we get the fence down there.
1024     release_clear_owner(Self);
1025     OrderAccess::storeload();
1026 
1027     if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1028       return;
1029     }
1030     // Other threads are blocked trying to acquire the lock.
1031 
1032     // Normally the exiting thread is responsible for ensuring succession,
1033     // but if other successors are ready or other entering threads are spinning
1034     // then this thread can simply store NULL into _owner and exit without
1035     // waking a successor.  The existence of spinners or ready successors
1036     // guarantees proper succession (liveness).  Responsibility passes to the
1037     // ready or running successors.  The exiting thread delegates the duty.
1038     // More precisely, if a successor already exists this thread is absolved
1039     // of the responsibility of waking (unparking) one.
1040     //
1041     // The _succ variable is critical to reducing futile wakeup frequency.
1042     // _succ identifies the "heir presumptive" thread that has been made
1043     // ready (unparked) but that has not yet run.  We need only one such
1044     // successor thread to guarantee progress.
1045     // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1046     // section 3.3 "Futile Wakeup Throttling" for details.
1047     //
1048     // Note that spinners in Enter() also set _succ non-null.
1049     // In the current implementation spinners opportunistically set
1050     // _succ so that exiting threads might avoid waking a successor.
1051     // Another less appealing alternative would be for the exiting thread
1052     // to drop the lock and then spin briefly to see if a spinner managed
1053     // to acquire the lock.  If so, the exiting thread could exit
1054     // immediately without waking a successor, otherwise the exiting
1055     // thread would need to dequeue and wake a successor.
1056     // (Note that we'd need to make the post-drop spin short, but no
1057     // shorter than the worst-case round-trip cache-line migration time.
1058     // The dropped lock needs to become visible to the spinner, and then
1059     // the acquisition of the lock by the spinner must become visible to
1060     // the exiting thread).
1061 
1062     // It appears that an heir-presumptive (successor) must be made ready.
1063     // Only the current lock owner can manipulate the EntryList or
1064     // drain _cxq, so we need to reacquire the lock.  If we fail
1065     // to reacquire the lock the responsibility for ensuring succession
1066     // falls to the new owner.
1067     //
1068     if (try_set_owner_from(NULL, Self) != NULL) {
1069       return;
1070     }
1071 
1072     guarantee(_owner == THREAD, "invariant");
1073 
1074     ObjectWaiter * w = NULL;
1075 
1076     w = _EntryList;
1077     if (w != NULL) {
1078       // I'd like to write: guarantee (w->_thread != Self).
1079       // But in practice an exiting thread may find itself on the EntryList.
1080       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1081       // then calls exit().  Exit release the lock by setting O._owner to NULL.
1082       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1083       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1084       // release the lock "O".  T2 resumes immediately after the ST of null into
1085       // _owner, above.  T2 notices that the EntryList is populated, so it
1086       // reacquires the lock and then finds itself on the EntryList.
1087       // Given all that, we have to tolerate the circumstance where "w" is
1088       // associated with Self.
1089       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1090       ExitEpilog(Self, w);
1091       return;
1092     }
1093 
1094     // If we find that both _cxq and EntryList are null then just
1095     // re-run the exit protocol from the top.
1096     w = _cxq;
1097     if (w == NULL) continue;
1098 
1099     // Drain _cxq into EntryList - bulk transfer.
1100     // First, detach _cxq.
1101     // The following loop is tantamount to: w = swap(&cxq, NULL)
1102     for (;;) {
1103       assert(w != NULL, "Invariant");
1104       ObjectWaiter * u = Atomic::cmpxchg(&_cxq, w, (ObjectWaiter*)NULL);
1105       if (u == w) break;
1106       w = u;
1107     }
1108 
1109     assert(w != NULL, "invariant");
1110     assert(_EntryList == NULL, "invariant");
1111 
1112     // Convert the LIFO SLL anchored by _cxq into a DLL.
1113     // The list reorganization step operates in O(LENGTH(w)) time.
1114     // It's critical that this step operate quickly as
1115     // "Self" still holds the outer-lock, restricting parallelism
1116     // and effectively lengthening the critical section.
1117     // Invariant: s chases t chases u.
1118     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1119     // we have faster access to the tail.
1120 
1121     _EntryList = w;
1122     ObjectWaiter * q = NULL;
1123     ObjectWaiter * p;
1124     for (p = w; p != NULL; p = p->_next) {
1125       guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1126       p->TState = ObjectWaiter::TS_ENTER;
1127       p->_prev = q;
1128       q = p;
1129     }
1130 
1131     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1132     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1133 
1134     // See if we can abdicate to a spinner instead of waking a thread.
1135     // A primary goal of the implementation is to reduce the
1136     // context-switch rate.
1137     if (_succ != NULL) continue;
1138 
1139     w = _EntryList;
1140     if (w != NULL) {
1141       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1142       ExitEpilog(Self, w);
1143       return;
1144     }
1145   }
1146 }
1147 
1148 // ExitSuspendEquivalent:
1149 // A faster alternate to handle_special_suspend_equivalent_condition()
1150 //
1151 // handle_special_suspend_equivalent_condition() unconditionally
1152 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1153 // operations have high latency.  Note that in ::enter() we call HSSEC
1154 // while holding the monitor, so we effectively lengthen the critical sections.
1155 //
1156 // There are a number of possible solutions:
1157 //
1158 // A.  To ameliorate the problem we might also defer state transitions
1159 //     to as late as possible -- just prior to parking.
1160 //     Given that, we'd call HSSEC after having returned from park(),
1161 //     but before attempting to acquire the monitor.  This is only a
1162 //     partial solution.  It avoids calling HSSEC while holding the
1163 //     monitor (good), but it still increases successor reacquisition latency --
1164 //     the interval between unparking a successor and the time the successor
1165 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1166 //     If we use this technique we can also avoid EnterI()-exit() loop
1167 //     in ::enter() where we iteratively drop the lock and then attempt
1168 //     to reacquire it after suspending.
1169 //
1170 // B.  In the future we might fold all the suspend bits into a
1171 //     composite per-thread suspend flag and then update it with CAS().
1172 //     Alternately, a Dekker-like mechanism with multiple variables
1173 //     would suffice:
1174 //       ST Self->_suspend_equivalent = false
1175 //       MEMBAR
1176 //       LD Self_>_suspend_flags
1177 
1178 bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) {
1179   return jSelf->handle_special_suspend_equivalent_condition();
1180 }
1181 
1182 
1183 void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {
1184   assert(_owner == Self, "invariant");
1185 
1186   // Exit protocol:
1187   // 1. ST _succ = wakee
1188   // 2. membar #loadstore|#storestore;
1189   // 2. ST _owner = NULL
1190   // 3. unpark(wakee)
1191 
1192   _succ = Wakee->_thread;
1193   ParkEvent * Trigger = Wakee->_event;
1194 
1195   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1196   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1197   // out-of-scope (non-extant).
1198   Wakee  = NULL;
1199 
1200   // Drop the lock.
1201   // Uses a fence to separate release_store(owner) from the LD in unpark().
1202   release_clear_owner(Self);
1203   OrderAccess::fence();
1204 
1205   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1206   Trigger->unpark();
1207 
1208   // Maintain stats and report events to JVMTI
1209   OM_PERFDATA_OP(Parks, inc());
1210 }
1211 
1212 
1213 // -----------------------------------------------------------------------------
1214 // Class Loader deadlock handling.
1215 //
1216 // complete_exit exits a lock returning recursion count
1217 // complete_exit/reenter operate as a wait without waiting
1218 // complete_exit requires an inflated monitor
1219 // The _owner field is not always the Thread addr even with an
1220 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1221 // thread due to contention.
1222 intx ObjectMonitor::complete_exit(TRAPS) {
1223   Thread * const Self = THREAD;
1224   assert(Self->is_Java_thread(), "Must be Java thread!");
1225   JavaThread *jt = (JavaThread *)THREAD;
1226 
1227   assert(InitDone, "Unexpectedly not initialized");
1228 
1229   void* cur = Atomic::load(&_owner);
1230   if (THREAD != cur) {
1231     if (THREAD->is_lock_owned((address)cur)) {
1232       assert(_recursions == 0, "internal state error");
1233       set_owner_from_BasicLock(cur, Self);  // Convert from BasicLock* to Thread*.
1234       _recursions = 0;
1235     }
1236   }
1237 
1238   guarantee(Self == _owner, "complete_exit not owner");
1239   intx save = _recursions; // record the old recursion count
1240   _recursions = 0;        // set the recursion level to be 0
1241   exit(true, Self);           // exit the monitor
1242   guarantee(_owner != Self, "invariant");
1243   return save;
1244 }
1245 
1246 // reenter() enters a lock and sets recursion count
1247 // complete_exit/reenter operate as a wait without waiting
1248 bool ObjectMonitor::reenter(intx recursions, TRAPS) {
1249   Thread * const Self = THREAD;
1250   assert(Self->is_Java_thread(), "Must be Java thread!");
1251   JavaThread *jt = (JavaThread *)THREAD;
1252 
1253   guarantee(_owner != Self, "reenter already owner");
1254   if (!enter(THREAD)) {
1255     return false;
1256   }
1257   // Entered the monitor.
1258   guarantee(_recursions == 0, "reenter recursion");
1259   _recursions = recursions;
1260   return true;
1261 }
1262 
1263 // Checks that the current THREAD owns this monitor and causes an
1264 // immediate return if it doesn't. We don't use the CHECK macro
1265 // because we want the IMSE to be the only exception that is thrown
1266 // from the call site when false is returned. Any other pending
1267 // exception is ignored.
1268 #define CHECK_OWNER()                                                  \
1269   do {                                                                 \
1270     if (!check_owner(THREAD)) {                                        \
1271        assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \
1272        return;                                                         \
1273      }                                                                 \
1274   } while (false)
1275 
1276 // Returns true if the specified thread owns the ObjectMonitor.
1277 // Otherwise returns false and throws IllegalMonitorStateException
1278 // (IMSE). If there is a pending exception and the specified thread
1279 // is not the owner, that exception will be replaced by the IMSE.
1280 bool ObjectMonitor::check_owner(Thread* THREAD) {
1281   void* cur = Atomic::load(&_owner);
1282   if (cur == THREAD) {
1283     return true;
1284   }
1285   if (THREAD->is_lock_owned((address)cur)) {
1286     set_owner_from_BasicLock(cur, THREAD);  // Convert from BasicLock* to Thread*.
1287     _recursions = 0;
1288     return true;
1289   }
1290   THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
1291              "current thread is not owner", false);
1292 }
1293 
1294 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1295                                     ObjectMonitor* monitor,
1296                                     jlong notifier_tid,
1297                                     jlong timeout,
1298                                     bool timedout) {
1299   assert(event != NULL, "invariant");
1300   assert(monitor != NULL, "invariant");
1301   event->set_monitorClass(((oop)monitor->object())->klass());
1302   event->set_timeout(timeout);
1303   event->set_address((uintptr_t)monitor->object_addr());
1304   event->set_notifier(notifier_tid);
1305   event->set_timedOut(timedout);
1306   event->commit();
1307 }
1308 
1309 // -----------------------------------------------------------------------------
1310 // Wait/Notify/NotifyAll
1311 //
1312 // Note: a subset of changes to ObjectMonitor::wait()
1313 // will need to be replicated in complete_exit
1314 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1315   Thread * const Self = THREAD;
1316   assert(Self->is_Java_thread(), "Must be Java thread!");
1317   JavaThread *jt = (JavaThread *)THREAD;
1318 
1319   assert(InitDone, "Unexpectedly not initialized");
1320 
1321   CHECK_OWNER();  // Throws IMSE if not owner.
1322 
1323   EventJavaMonitorWait event;
1324 
1325   // check for a pending interrupt
1326   if (interruptible && jt->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1327     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1328     if (JvmtiExport::should_post_monitor_waited()) {
1329       // Note: 'false' parameter is passed here because the
1330       // wait was not timed out due to thread interrupt.
1331       JvmtiExport::post_monitor_waited(jt, this, false);
1332 
1333       // In this short circuit of the monitor wait protocol, the
1334       // current thread never drops ownership of the monitor and
1335       // never gets added to the wait queue so the current thread
1336       // cannot be made the successor. This means that the
1337       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1338       // consume an unpark() meant for the ParkEvent associated with
1339       // this ObjectMonitor.
1340     }
1341     if (event.should_commit()) {
1342       post_monitor_wait_event(&event, this, 0, millis, false);
1343     }
1344     THROW(vmSymbols::java_lang_InterruptedException());
1345     return;
1346   }
1347 
1348   assert(Self->_Stalled == 0, "invariant");
1349   Self->_Stalled = intptr_t(this);
1350   jt->set_current_waiting_monitor(this);
1351 
1352   // create a node to be put into the queue
1353   // Critically, after we reset() the event but prior to park(), we must check
1354   // for a pending interrupt.
1355   ObjectWaiter node(Self);
1356   node.TState = ObjectWaiter::TS_WAIT;
1357   Self->_ParkEvent->reset();
1358   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1359 
1360   // Enter the waiting queue, which is a circular doubly linked list in this case
1361   // but it could be a priority queue or any data structure.
1362   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1363   // by the the owner of the monitor *except* in the case where park()
1364   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1365   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1366 
1367   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1368   AddWaiter(&node);
1369   Thread::SpinRelease(&_WaitSetLock);
1370 
1371   _Responsible = NULL;
1372 
1373   intx save = _recursions;     // record the old recursion count
1374   _waiters++;                  // increment the number of waiters
1375   _recursions = 0;             // set the recursion level to be 1
1376   exit(true, Self);                    // exit the monitor
1377   guarantee(_owner != Self, "invariant");
1378 
1379   // The thread is on the WaitSet list - now park() it.
1380   // On MP systems it's conceivable that a brief spin before we park
1381   // could be profitable.
1382   //
1383   // TODO-FIXME: change the following logic to a loop of the form
1384   //   while (!timeout && !interrupted && _notified == 0) park()
1385 
1386   int ret = OS_OK;
1387   int WasNotified = 0;
1388 
1389   // Need to check interrupt state whilst still _thread_in_vm
1390   bool interrupted = interruptible && jt->is_interrupted(false);
1391 
1392   { // State transition wrappers
1393     OSThread* osthread = Self->osthread();
1394     OSThreadWaitState osts(osthread, true);
1395     {
1396       ThreadBlockInVM tbivm(jt);
1397       // Thread is in thread_blocked state and oop access is unsafe.
1398       jt->set_suspend_equivalent();
1399 
1400       if (interrupted || HAS_PENDING_EXCEPTION) {
1401         // Intentionally empty
1402       } else if (node._notified == 0) {
1403         if (millis <= 0) {
1404           Self->_ParkEvent->park();
1405         } else {
1406           ret = Self->_ParkEvent->park(millis);
1407         }
1408       }
1409 
1410       // were we externally suspended while we were waiting?
1411       if (ExitSuspendEquivalent (jt)) {
1412         // TODO-FIXME: add -- if succ == Self then succ = null.
1413         jt->java_suspend_self();
1414       }
1415 
1416     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1417 
1418     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1419     // from the WaitSet to the EntryList.
1420     // See if we need to remove Node from the WaitSet.
1421     // We use double-checked locking to avoid grabbing _WaitSetLock
1422     // if the thread is not on the wait queue.
1423     //
1424     // Note that we don't need a fence before the fetch of TState.
1425     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1426     // written by the is thread. (perhaps the fetch might even be satisfied
1427     // by a look-aside into the processor's own store buffer, although given
1428     // the length of the code path between the prior ST and this load that's
1429     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1430     // then we'll acquire the lock and then re-fetch a fresh TState value.
1431     // That is, we fail toward safety.
1432 
1433     if (node.TState == ObjectWaiter::TS_WAIT) {
1434       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1435       if (node.TState == ObjectWaiter::TS_WAIT) {
1436         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1437         assert(node._notified == 0, "invariant");
1438         node.TState = ObjectWaiter::TS_RUN;
1439       }
1440       Thread::SpinRelease(&_WaitSetLock);
1441     }
1442 
1443     // The thread is now either on off-list (TS_RUN),
1444     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1445     // The Node's TState variable is stable from the perspective of this thread.
1446     // No other threads will asynchronously modify TState.
1447     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1448     OrderAccess::loadload();
1449     if (_succ == Self) _succ = NULL;
1450     WasNotified = node._notified;
1451 
1452     // Reentry phase -- reacquire the monitor.
1453     // re-enter contended monitor after object.wait().
1454     // retain OBJECT_WAIT state until re-enter successfully completes
1455     // Thread state is thread_in_vm and oop access is again safe,
1456     // although the raw address of the object may have changed.
1457     // (Don't cache naked oops over safepoints, of course).
1458 
1459     // post monitor waited event. Note that this is past-tense, we are done waiting.
1460     if (JvmtiExport::should_post_monitor_waited()) {
1461       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1462 
1463       if (node._notified != 0 && _succ == Self) {
1464         // In this part of the monitor wait-notify-reenter protocol it
1465         // is possible (and normal) for another thread to do a fastpath
1466         // monitor enter-exit while this thread is still trying to get
1467         // to the reenter portion of the protocol.
1468         //
1469         // The ObjectMonitor was notified and the current thread is
1470         // the successor which also means that an unpark() has already
1471         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1472         // consume the unpark() that was done when the successor was
1473         // set because the same ParkEvent is shared between Java
1474         // monitors and JVM/TI RawMonitors (for now).
1475         //
1476         // We redo the unpark() to ensure forward progress, i.e., we
1477         // don't want all pending threads hanging (parked) with none
1478         // entering the unlocked monitor.
1479         node._event->unpark();
1480       }
1481     }
1482 
1483     if (event.should_commit()) {
1484       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1485     }
1486 
1487     OrderAccess::fence();
1488 
1489     assert(Self->_Stalled != 0, "invariant");
1490     Self->_Stalled = 0;
1491 
1492     assert(_owner != Self, "invariant");
1493     ObjectWaiter::TStates v = node.TState;
1494     if (v == ObjectWaiter::TS_RUN) {
1495       enter(Self);
1496     } else {
1497       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1498       ReenterI(Self, &node);
1499       node.wait_reenter_end(this);
1500     }
1501 
1502     // Self has reacquired the lock.
1503     // Lifecycle - the node representing Self must not appear on any queues.
1504     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1505     // want residual elements associated with this thread left on any lists.
1506     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1507     assert(_owner == Self, "invariant");
1508     assert(_succ != Self, "invariant");
1509   } // OSThreadWaitState()
1510 
1511   jt->set_current_waiting_monitor(NULL);
1512 
1513   guarantee(_recursions == 0, "invariant");
1514   _recursions = save;     // restore the old recursion count
1515   _waiters--;             // decrement the number of waiters
1516 
1517   // Verify a few postconditions
1518   assert(_owner == Self, "invariant");
1519   assert(_succ != Self, "invariant");
1520   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
1521 
1522   // check if the notification happened
1523   if (!WasNotified) {
1524     // no, it could be timeout or Thread.interrupt() or both
1525     // check for interrupt event, otherwise it is timeout
1526     if (interruptible && jt->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1527       THROW(vmSymbols::java_lang_InterruptedException());
1528     }
1529   }
1530 
1531   // NOTE: Spurious wake up will be consider as timeout.
1532   // Monitor notify has precedence over thread interrupt.
1533 }
1534 
1535 
1536 // Consider:
1537 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1538 // then instead of transferring a thread from the WaitSet to the EntryList
1539 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1540 
1541 void ObjectMonitor::INotify(Thread * Self) {
1542   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1543   ObjectWaiter * iterator = DequeueWaiter();
1544   if (iterator != NULL) {
1545     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1546     guarantee(iterator->_notified == 0, "invariant");
1547     // Disposition - what might we do with iterator ?
1548     // a.  add it directly to the EntryList - either tail (policy == 1)
1549     //     or head (policy == 0).
1550     // b.  push it onto the front of the _cxq (policy == 2).
1551     // For now we use (b).
1552 
1553     iterator->TState = ObjectWaiter::TS_ENTER;
1554 
1555     iterator->_notified = 1;
1556     iterator->_notifier_tid = JFR_THREAD_ID(Self);
1557 
1558     ObjectWaiter * list = _EntryList;
1559     if (list != NULL) {
1560       assert(list->_prev == NULL, "invariant");
1561       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1562       assert(list != iterator, "invariant");
1563     }
1564 
1565     // prepend to cxq
1566     if (list == NULL) {
1567       iterator->_next = iterator->_prev = NULL;
1568       _EntryList = iterator;
1569     } else {
1570       iterator->TState = ObjectWaiter::TS_CXQ;
1571       for (;;) {
1572         ObjectWaiter * front = _cxq;
1573         iterator->_next = front;
1574         if (Atomic::cmpxchg(&_cxq, front, iterator) == front) {
1575           break;
1576         }
1577       }
1578     }
1579 
1580     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1581     // move the add-to-EntryList operation, above, outside the critical section
1582     // protected by _WaitSetLock.  In practice that's not useful.  With the
1583     // exception of  wait() timeouts and interrupts the monitor owner
1584     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1585     // on _WaitSetLock so it's not profitable to reduce the length of the
1586     // critical section.
1587 
1588     iterator->wait_reenter_begin(this);
1589   }
1590   Thread::SpinRelease(&_WaitSetLock);
1591 }
1592 
1593 // Consider: a not-uncommon synchronization bug is to use notify() when
1594 // notifyAll() is more appropriate, potentially resulting in stranded
1595 // threads; this is one example of a lost wakeup. A useful diagnostic
1596 // option is to force all notify() operations to behave as notifyAll().
1597 //
1598 // Note: We can also detect many such problems with a "minimum wait".
1599 // When the "minimum wait" is set to a small non-zero timeout value
1600 // and the program does not hang whereas it did absent "minimum wait",
1601 // that suggests a lost wakeup bug.
1602 
1603 void ObjectMonitor::notify(TRAPS) {
1604   CHECK_OWNER();  // Throws IMSE if not owner.
1605   if (_WaitSet == NULL) {
1606     return;
1607   }
1608   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1609   INotify(THREAD);
1610   OM_PERFDATA_OP(Notifications, inc(1));
1611 }
1612 
1613 
1614 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1615 // from the waitset to the EntryList. This could be done more efficiently with a
1616 // single bulk transfer but in practice it's not time-critical. Beware too,
1617 // that in prepend-mode we invert the order of the waiters. Let's say that the
1618 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1619 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1620 
1621 void ObjectMonitor::notifyAll(TRAPS) {
1622   CHECK_OWNER();  // Throws IMSE if not owner.
1623   if (_WaitSet == NULL) {
1624     return;
1625   }
1626 
1627   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1628   int tally = 0;
1629   while (_WaitSet != NULL) {
1630     tally++;
1631     INotify(THREAD);
1632   }
1633 
1634   OM_PERFDATA_OP(Notifications, inc(tally));
1635 }
1636 
1637 // -----------------------------------------------------------------------------
1638 // Adaptive Spinning Support
1639 //
1640 // Adaptive spin-then-block - rational spinning
1641 //
1642 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1643 // algorithm.  On high order SMP systems it would be better to start with
1644 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1645 // a contending thread could enqueue itself on the cxq and then spin locally
1646 // on a thread-specific variable such as its ParkEvent._Event flag.
1647 // That's left as an exercise for the reader.  Note that global spinning is
1648 // not problematic on Niagara, as the L2 cache serves the interconnect and
1649 // has both low latency and massive bandwidth.
1650 //
1651 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1652 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1653 // (duration) or we can fix the count at approximately the duration of
1654 // a context switch and vary the frequency.   Of course we could also
1655 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1656 // For a description of 'Adaptive spin-then-block mutual exclusion in
1657 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1658 //
1659 // This implementation varies the duration "D", where D varies with
1660 // the success rate of recent spin attempts. (D is capped at approximately
1661 // length of a round-trip context switch).  The success rate for recent
1662 // spin attempts is a good predictor of the success rate of future spin
1663 // attempts.  The mechanism adapts automatically to varying critical
1664 // section length (lock modality), system load and degree of parallelism.
1665 // D is maintained per-monitor in _SpinDuration and is initialized
1666 // optimistically.  Spin frequency is fixed at 100%.
1667 //
1668 // Note that _SpinDuration is volatile, but we update it without locks
1669 // or atomics.  The code is designed so that _SpinDuration stays within
1670 // a reasonable range even in the presence of races.  The arithmetic
1671 // operations on _SpinDuration are closed over the domain of legal values,
1672 // so at worst a race will install and older but still legal value.
1673 // At the very worst this introduces some apparent non-determinism.
1674 // We might spin when we shouldn't or vice-versa, but since the spin
1675 // count are relatively short, even in the worst case, the effect is harmless.
1676 //
1677 // Care must be taken that a low "D" value does not become an
1678 // an absorbing state.  Transient spinning failures -- when spinning
1679 // is overall profitable -- should not cause the system to converge
1680 // on low "D" values.  We want spinning to be stable and predictable
1681 // and fairly responsive to change and at the same time we don't want
1682 // it to oscillate, become metastable, be "too" non-deterministic,
1683 // or converge on or enter undesirable stable absorbing states.
1684 //
1685 // We implement a feedback-based control system -- using past behavior
1686 // to predict future behavior.  We face two issues: (a) if the
1687 // input signal is random then the spin predictor won't provide optimal
1688 // results, and (b) if the signal frequency is too high then the control
1689 // system, which has some natural response lag, will "chase" the signal.
1690 // (b) can arise from multimodal lock hold times.  Transient preemption
1691 // can also result in apparent bimodal lock hold times.
1692 // Although sub-optimal, neither condition is particularly harmful, as
1693 // in the worst-case we'll spin when we shouldn't or vice-versa.
1694 // The maximum spin duration is rather short so the failure modes aren't bad.
1695 // To be conservative, I've tuned the gain in system to bias toward
1696 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1697 // "rings" or oscillates between spinning and not spinning.  This happens
1698 // when spinning is just on the cusp of profitability, however, so the
1699 // situation is not dire.  The state is benign -- there's no need to add
1700 // hysteresis control to damp the transition rate between spinning and
1701 // not spinning.
1702 
1703 // Spinning: Fixed frequency (100%), vary duration
1704 int ObjectMonitor::TrySpin(Thread * Self) {
1705   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1706   int ctr = Knob_FixedSpin;
1707   if (ctr != 0) {
1708     while (--ctr >= 0) {
1709       if (TryLock(Self) > 0) return 1;
1710       SpinPause();
1711     }
1712     return 0;
1713   }
1714 
1715   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1716     if (TryLock(Self) > 0) {
1717       // Increase _SpinDuration ...
1718       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1719       // Raising _SpurDuration to the poverty line is key.
1720       int x = _SpinDuration;
1721       if (x < Knob_SpinLimit) {
1722         if (x < Knob_Poverty) x = Knob_Poverty;
1723         _SpinDuration = x + Knob_BonusB;
1724       }
1725       return 1;
1726     }
1727     SpinPause();
1728   }
1729 
1730   // Admission control - verify preconditions for spinning
1731   //
1732   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1733   // becoming an absorbing state.  Put another way, we spin briefly to
1734   // sample, just in case the system load, parallelism, contention, or lock
1735   // modality changed.
1736   //
1737   // Consider the following alternative:
1738   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1739   // spin attempt.  "Periodically" might mean after a tally of
1740   // the # of failed spin attempts (or iterations) reaches some threshold.
1741   // This takes us into the realm of 1-out-of-N spinning, where we
1742   // hold the duration constant but vary the frequency.
1743 
1744   ctr = _SpinDuration;
1745   if (ctr <= 0) return 0;
1746 
1747   if (NotRunnable(Self, (Thread *) _owner)) {
1748     return 0;
1749   }
1750 
1751   // We're good to spin ... spin ingress.
1752   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1753   // when preparing to LD...CAS _owner, etc and the CAS is likely
1754   // to succeed.
1755   if (_succ == NULL) {
1756     _succ = Self;
1757   }
1758   Thread * prv = NULL;
1759 
1760   // There are three ways to exit the following loop:
1761   // 1.  A successful spin where this thread has acquired the lock.
1762   // 2.  Spin failure with prejudice
1763   // 3.  Spin failure without prejudice
1764 
1765   while (--ctr >= 0) {
1766 
1767     // Periodic polling -- Check for pending GC
1768     // Threads may spin while they're unsafe.
1769     // We don't want spinning threads to delay the JVM from reaching
1770     // a stop-the-world safepoint or to steal cycles from GC.
1771     // If we detect a pending safepoint we abort in order that
1772     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1773     // this thread, if safe, doesn't steal cycles from GC.
1774     // This is in keeping with the "no loitering in runtime" rule.
1775     // We periodically check to see if there's a safepoint pending.
1776     if ((ctr & 0xFF) == 0) {
1777       if (SafepointMechanism::should_block(Self)) {
1778         goto Abort;           // abrupt spin egress
1779       }
1780       SpinPause();
1781     }
1782 
1783     // Probe _owner with TATAS
1784     // If this thread observes the monitor transition or flicker
1785     // from locked to unlocked to locked, then the odds that this
1786     // thread will acquire the lock in this spin attempt go down
1787     // considerably.  The same argument applies if the CAS fails
1788     // or if we observe _owner change from one non-null value to
1789     // another non-null value.   In such cases we might abort
1790     // the spin without prejudice or apply a "penalty" to the
1791     // spin count-down variable "ctr", reducing it by 100, say.
1792 
1793     Thread * ox = (Thread *) _owner;
1794     if (ox == NULL) {
1795       ox = (Thread*)try_set_owner_from(NULL, Self);
1796       if (ox == NULL) {
1797         // The CAS succeeded -- this thread acquired ownership
1798         // Take care of some bookkeeping to exit spin state.
1799         if (_succ == Self) {
1800           _succ = NULL;
1801         }
1802 
1803         // Increase _SpinDuration :
1804         // The spin was successful (profitable) so we tend toward
1805         // longer spin attempts in the future.
1806         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1807         // If we acquired the lock early in the spin cycle it
1808         // makes sense to increase _SpinDuration proportionally.
1809         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1810         int x = _SpinDuration;
1811         if (x < Knob_SpinLimit) {
1812           if (x < Knob_Poverty) x = Knob_Poverty;
1813           _SpinDuration = x + Knob_Bonus;
1814         }
1815         return 1;
1816       }
1817 
1818       // The CAS failed ... we can take any of the following actions:
1819       // * penalize: ctr -= CASPenalty
1820       // * exit spin with prejudice -- goto Abort;
1821       // * exit spin without prejudice.
1822       // * Since CAS is high-latency, retry again immediately.
1823       prv = ox;
1824       goto Abort;
1825     }
1826 
1827     // Did lock ownership change hands ?
1828     if (ox != prv && prv != NULL) {
1829       goto Abort;
1830     }
1831     prv = ox;
1832 
1833     // Abort the spin if the owner is not executing.
1834     // The owner must be executing in order to drop the lock.
1835     // Spinning while the owner is OFFPROC is idiocy.
1836     // Consider: ctr -= RunnablePenalty ;
1837     if (NotRunnable(Self, ox)) {
1838       goto Abort;
1839     }
1840     if (_succ == NULL) {
1841       _succ = Self;
1842     }
1843   }
1844 
1845   // Spin failed with prejudice -- reduce _SpinDuration.
1846   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
1847   // AIMD is globally stable.
1848   {
1849     int x = _SpinDuration;
1850     if (x > 0) {
1851       // Consider an AIMD scheme like: x -= (x >> 3) + 100
1852       // This is globally sample and tends to damp the response.
1853       x -= Knob_Penalty;
1854       if (x < 0) x = 0;
1855       _SpinDuration = x;
1856     }
1857   }
1858 
1859  Abort:
1860   if (_succ == Self) {
1861     _succ = NULL;
1862     // Invariant: after setting succ=null a contending thread
1863     // must recheck-retry _owner before parking.  This usually happens
1864     // in the normal usage of TrySpin(), but it's safest
1865     // to make TrySpin() as foolproof as possible.
1866     OrderAccess::fence();
1867     if (TryLock(Self) > 0) return 1;
1868   }
1869   return 0;
1870 }
1871 
1872 // NotRunnable() -- informed spinning
1873 //
1874 // Don't bother spinning if the owner is not eligible to drop the lock.
1875 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm.
1876 // The thread must be runnable in order to drop the lock in timely fashion.
1877 // If the _owner is not runnable then spinning will not likely be
1878 // successful (profitable).
1879 //
1880 // Beware -- the thread referenced by _owner could have died
1881 // so a simply fetch from _owner->_thread_state might trap.
1882 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
1883 // Because of the lifecycle issues, the _thread_state values
1884 // observed by NotRunnable() might be garbage.  NotRunnable must
1885 // tolerate this and consider the observed _thread_state value
1886 // as advisory.
1887 //
1888 // Beware too, that _owner is sometimes a BasicLock address and sometimes
1889 // a thread pointer.
1890 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
1891 // with the LSB of _owner.  Another option would be to probabilistically probe
1892 // the putative _owner->TypeTag value.
1893 //
1894 // Checking _thread_state isn't perfect.  Even if the thread is
1895 // in_java it might be blocked on a page-fault or have been preempted
1896 // and sitting on a ready/dispatch queue.
1897 //
1898 // The return value from NotRunnable() is *advisory* -- the
1899 // result is based on sampling and is not necessarily coherent.
1900 // The caller must tolerate false-negative and false-positive errors.
1901 // Spinning, in general, is probabilistic anyway.
1902 
1903 
1904 int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) {
1905   // Check ox->TypeTag == 2BAD.
1906   if (ox == NULL) return 0;
1907 
1908   // Avoid transitive spinning ...
1909   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
1910   // Immediately after T1 acquires L it's possible that T2, also
1911   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
1912   // This occurs transiently after T1 acquired L but before
1913   // T1 managed to clear T1.Stalled.  T2 does not need to abort
1914   // its spin in this circumstance.
1915   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
1916 
1917   if (BlockedOn == 1) return 1;
1918   if (BlockedOn != 0) {
1919     return BlockedOn != intptr_t(this) && _owner == ox;
1920   }
1921 
1922   assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
1923   int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
1924   // consider also: jst != _thread_in_Java -- but that's overspecific.
1925   return jst == _thread_blocked || jst == _thread_in_native;
1926 }
1927 
1928 
1929 // -----------------------------------------------------------------------------
1930 // WaitSet management ...
1931 
1932 ObjectWaiter::ObjectWaiter(Thread* thread) {
1933   _next     = NULL;
1934   _prev     = NULL;
1935   _notified = 0;
1936   _notifier_tid = 0;
1937   TState    = TS_RUN;
1938   _thread   = thread;
1939   _event    = thread->_ParkEvent;
1940   _active   = false;
1941   assert(_event != NULL, "invariant");
1942 }
1943 
1944 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
1945   JavaThread *jt = (JavaThread *)this->_thread;
1946   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
1947 }
1948 
1949 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
1950   JavaThread *jt = (JavaThread *)this->_thread;
1951   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
1952 }
1953 
1954 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
1955   assert(node != NULL, "should not add NULL node");
1956   assert(node->_prev == NULL, "node already in list");
1957   assert(node->_next == NULL, "node already in list");
1958   // put node at end of queue (circular doubly linked list)
1959   if (_WaitSet == NULL) {
1960     _WaitSet = node;
1961     node->_prev = node;
1962     node->_next = node;
1963   } else {
1964     ObjectWaiter* head = _WaitSet;
1965     ObjectWaiter* tail = head->_prev;
1966     assert(tail->_next == head, "invariant check");
1967     tail->_next = node;
1968     head->_prev = node;
1969     node->_next = head;
1970     node->_prev = tail;
1971   }
1972 }
1973 
1974 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
1975   // dequeue the very first waiter
1976   ObjectWaiter* waiter = _WaitSet;
1977   if (waiter) {
1978     DequeueSpecificWaiter(waiter);
1979   }
1980   return waiter;
1981 }
1982 
1983 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
1984   assert(node != NULL, "should not dequeue NULL node");
1985   assert(node->_prev != NULL, "node already removed from list");
1986   assert(node->_next != NULL, "node already removed from list");
1987   // when the waiter has woken up because of interrupt,
1988   // timeout or other spurious wake-up, dequeue the
1989   // waiter from waiting list
1990   ObjectWaiter* next = node->_next;
1991   if (next == node) {
1992     assert(node->_prev == node, "invariant check");
1993     _WaitSet = NULL;
1994   } else {
1995     ObjectWaiter* prev = node->_prev;
1996     assert(prev->_next == node, "invariant check");
1997     assert(next->_prev == node, "invariant check");
1998     next->_prev = prev;
1999     prev->_next = next;
2000     if (_WaitSet == node) {
2001       _WaitSet = next;
2002     }
2003   }
2004   node->_next = NULL;
2005   node->_prev = NULL;
2006 }
2007 
2008 // -----------------------------------------------------------------------------
2009 // PerfData support
2010 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
2011 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
2012 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
2013 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
2014 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
2015 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
2016 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
2017 
2018 // One-shot global initialization for the sync subsystem.
2019 // We could also defer initialization and initialize on-demand
2020 // the first time we call ObjectSynchronizer::inflate().
2021 // Initialization would be protected - like so many things - by
2022 // the MonitorCache_lock.
2023 
2024 void ObjectMonitor::Initialize() {
2025   assert(!InitDone, "invariant");
2026 
2027   if (!os::is_MP()) {
2028     Knob_SpinLimit = 0;
2029     Knob_PreSpin   = 0;
2030     Knob_FixedSpin = -1;
2031   }
2032 
2033   if (UsePerfData) {
2034     EXCEPTION_MARK;
2035 #define NEWPERFCOUNTER(n)                                                \
2036   {                                                                      \
2037     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2038                                         CHECK);                          \
2039   }
2040 #define NEWPERFVARIABLE(n)                                                \
2041   {                                                                       \
2042     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2043                                          CHECK);                          \
2044   }
2045     NEWPERFCOUNTER(_sync_Inflations);
2046     NEWPERFCOUNTER(_sync_Deflations);
2047     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2048     NEWPERFCOUNTER(_sync_FutileWakeups);
2049     NEWPERFCOUNTER(_sync_Parks);
2050     NEWPERFCOUNTER(_sync_Notifications);
2051     NEWPERFVARIABLE(_sync_MonExtant);
2052 #undef NEWPERFCOUNTER
2053 #undef NEWPERFVARIABLE
2054   }
2055 
2056   DEBUG_ONLY(InitDone = true;)
2057 }
2058 
2059 void ObjectMonitor::print_on(outputStream* st) const {
2060   // The minimal things to print for markWord printing, more can be added for debugging and logging.
2061   st->print("{contentions=0x%08x,waiters=0x%08x"
2062             ",recursions=" INTX_FORMAT ",owner=" INTPTR_FORMAT "}",
2063             contentions(), waiters(), recursions(),
2064             p2i(owner()));
2065 }
2066 void ObjectMonitor::print() const { print_on(tty); }
2067 
2068 #ifdef ASSERT
2069 // Print the ObjectMonitor like a debugger would:
2070 //
2071 // (ObjectMonitor) 0x00007fdfb6012e40 = {
2072 //   _header = 0x0000000000000001
2073 //   _object = 0x000000070ff45fd0
2074 //   _allocation_state = Old
2075 //   _pad_buf0 = {
2076 //     [0] = '\0'
2077 //     ...
2078 //     [43] = '\0'
2079 //   }
2080 //   _owner = 0x0000000000000000
2081 //   _previous_owner_tid = 0
2082 //   _pad_buf1 = {
2083 //     [0] = '\0'
2084 //     ...
2085 //     [47] = '\0'
2086 //   }
2087 //   _next_om = 0x0000000000000000
2088 //   _recursions = 0
2089 //   _EntryList = 0x0000000000000000
2090 //   _cxq = 0x0000000000000000
2091 //   _succ = 0x0000000000000000
2092 //   _Responsible = 0x0000000000000000
2093 //   _Spinner = 0
2094 //   _SpinDuration = 5000
2095 //   _contentions = 0
2096 //   _WaitSet = 0x0000700009756248
2097 //   _waiters = 1
2098 //   _WaitSetLock = 0
2099 // }
2100 //
2101 void ObjectMonitor::print_debug_style_on(outputStream* st) const {
2102   st->print_cr("(ObjectMonitor*) " INTPTR_FORMAT " = {", p2i(this));
2103   st->print_cr("  _header = " INTPTR_FORMAT, header().value());
2104   st->print_cr("  _object = " INTPTR_FORMAT, p2i(_object));
2105   st->print("  _allocation_state = ");
2106   if (is_free()) {
2107     st->print("Free");
2108   } else if (is_old()) {
2109     st->print("Old");
2110   } else if (is_new()) {
2111     st->print("New");
2112   } else {
2113     st->print("unknown=%d", _allocation_state);
2114   }
2115   st->cr();
2116   st->print_cr("  _pad_buf0 = {");
2117   st->print_cr("    [0] = '\\0'");
2118   st->print_cr("    ...");
2119   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf0) - 1);
2120   st->print_cr("  }");
2121   st->print_cr("  _owner = " INTPTR_FORMAT, p2i(_owner));
2122   st->print_cr("  _previous_owner_tid = " JLONG_FORMAT, _previous_owner_tid);
2123   st->print_cr("  _pad_buf1 = {");
2124   st->print_cr("    [0] = '\\0'");
2125   st->print_cr("    ...");
2126   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1);
2127   st->print_cr("  }");
2128   st->print_cr("  _next_om = " INTPTR_FORMAT, p2i(next_om()));
2129   st->print_cr("  _recursions = " INTX_FORMAT, _recursions);
2130   st->print_cr("  _EntryList = " INTPTR_FORMAT, p2i(_EntryList));
2131   st->print_cr("  _cxq = " INTPTR_FORMAT, p2i(_cxq));
2132   st->print_cr("  _succ = " INTPTR_FORMAT, p2i(_succ));
2133   st->print_cr("  _Responsible = " INTPTR_FORMAT, p2i(_Responsible));
2134   st->print_cr("  _Spinner = %d", _Spinner);
2135   st->print_cr("  _SpinDuration = %d", _SpinDuration);
2136   st->print_cr("  _contentions = %d", contentions());
2137   st->print_cr("  _WaitSet = " INTPTR_FORMAT, p2i(_WaitSet));
2138   st->print_cr("  _waiters = %d", _waiters);
2139   st->print_cr("  _WaitSetLock = %d", _WaitSetLock);
2140   st->print_cr("}");
2141 }
2142 #endif