1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "jfr/jfrEvents.hpp"
  28 #include "jfr/support/jfrThreadId.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/atomic.hpp"
  34 #include "runtime/handles.inline.hpp"
  35 #include "runtime/interfaceSupport.inline.hpp"
  36 #include "runtime/mutexLocker.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/objectMonitor.inline.hpp"
  39 #include "runtime/orderAccess.hpp"
  40 #include "runtime/osThread.hpp"
  41 #include "runtime/safepointMechanism.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/thread.inline.hpp"
  45 #include "services/threadService.hpp"
  46 #include "utilities/dtrace.hpp"
  47 #include "utilities/macros.hpp"
  48 #include "utilities/preserveException.hpp"
  49 #if INCLUDE_JFR
  50 #include "jfr/support/jfrFlush.hpp"
  51 #endif
  52 
  53 #ifdef DTRACE_ENABLED
  54 
  55 // Only bother with this argument setup if dtrace is available
  56 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  57 
  58 
  59 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  60   char* bytes = NULL;                                                      \
  61   int len = 0;                                                             \
  62   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  63   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  64   if (klassname != NULL) {                                                 \
  65     bytes = (char*)klassname->bytes();                                     \
  66     len = klassname->utf8_length();                                        \
  67   }
  68 
  69 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  70   {                                                                        \
  71     if (DTraceMonitorProbes) {                                             \
  72       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  73       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  74                            (monitor), bytes, len, (millis));               \
  75     }                                                                      \
  76   }
  77 
  78 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  79 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  80 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  81 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  82 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  83 
  84 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  85   {                                                                        \
  86     if (DTraceMonitorProbes) {                                             \
  87       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  88       HOTSPOT_MONITOR_##probe(jtid,                                        \
  89                               (uintptr_t)(monitor), bytes, len);           \
  90     }                                                                      \
  91   }
  92 
  93 #else //  ndef DTRACE_ENABLED
  94 
  95 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  96 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
  97 
  98 #endif // ndef DTRACE_ENABLED
  99 
 100 // Tunables ...
 101 // The knob* variables are effectively final.  Once set they should
 102 // never be modified hence.  Consider using __read_mostly with GCC.
 103 
 104 int ObjectMonitor::Knob_SpinLimit    = 5000;    // derived by an external tool -
 105 
 106 static int Knob_Bonus               = 100;     // spin success bonus
 107 static int Knob_BonusB              = 100;     // spin success bonus
 108 static int Knob_Penalty             = 200;     // spin failure penalty
 109 static int Knob_Poverty             = 1000;
 110 static int Knob_FixedSpin           = 0;
 111 static int Knob_PreSpin             = 10;      // 20-100 likely better
 112 
 113 DEBUG_ONLY(static volatile bool InitDone = false;)
 114 
 115 // -----------------------------------------------------------------------------
 116 // Theory of operations -- Monitors lists, thread residency, etc:
 117 //
 118 // * A thread acquires ownership of a monitor by successfully
 119 //   CAS()ing the _owner field from null to non-null.
 120 //
 121 // * Invariant: A thread appears on at most one monitor list --
 122 //   cxq, EntryList or WaitSet -- at any one time.
 123 //
 124 // * Contending threads "push" themselves onto the cxq with CAS
 125 //   and then spin/park.
 126 //
 127 // * After a contending thread eventually acquires the lock it must
 128 //   dequeue itself from either the EntryList or the cxq.
 129 //
 130 // * The exiting thread identifies and unparks an "heir presumptive"
 131 //   tentative successor thread on the EntryList.  Critically, the
 132 //   exiting thread doesn't unlink the successor thread from the EntryList.
 133 //   After having been unparked, the wakee will recontend for ownership of
 134 //   the monitor.   The successor (wakee) will either acquire the lock or
 135 //   re-park itself.
 136 //
 137 //   Succession is provided for by a policy of competitive handoff.
 138 //   The exiting thread does _not_ grant or pass ownership to the
 139 //   successor thread.  (This is also referred to as "handoff" succession").
 140 //   Instead the exiting thread releases ownership and possibly wakes
 141 //   a successor, so the successor can (re)compete for ownership of the lock.
 142 //   If the EntryList is empty but the cxq is populated the exiting
 143 //   thread will drain the cxq into the EntryList.  It does so by
 144 //   by detaching the cxq (installing null with CAS) and folding
 145 //   the threads from the cxq into the EntryList.  The EntryList is
 146 //   doubly linked, while the cxq is singly linked because of the
 147 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 148 //
 149 // * Concurrency invariants:
 150 //
 151 //   -- only the monitor owner may access or mutate the EntryList.
 152 //      The mutex property of the monitor itself protects the EntryList
 153 //      from concurrent interference.
 154 //   -- Only the monitor owner may detach the cxq.
 155 //
 156 // * The monitor entry list operations avoid locks, but strictly speaking
 157 //   they're not lock-free.  Enter is lock-free, exit is not.
 158 //   For a description of 'Methods and apparatus providing non-blocking access
 159 //   to a resource,' see U.S. Pat. No. 7844973.
 160 //
 161 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 162 //   detaching thread.  This mechanism is immune from the ABA corruption.
 163 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 164 //
 165 // * Taken together, the cxq and the EntryList constitute or form a
 166 //   single logical queue of threads stalled trying to acquire the lock.
 167 //   We use two distinct lists to improve the odds of a constant-time
 168 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 169 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 170 //   A key desideratum is to minimize queue & monitor metadata manipulation
 171 //   that occurs while holding the monitor lock -- that is, we want to
 172 //   minimize monitor lock holds times.  Note that even a small amount of
 173 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 174 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 175 //   locks and monitor metadata.
 176 //
 177 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 178 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 179 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 180 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 181 //
 182 //   The EntryList is ordered by the prevailing queue discipline and
 183 //   can be organized in any convenient fashion, such as a doubly-linked list or
 184 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 185 //   to operate in constant-time.  If we need a priority queue then something akin
 186 //   to Solaris' sleepq would work nicely.  Viz.,
 187 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 188 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 189 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 190 //   EntryList accordingly.
 191 //
 192 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 193 //   somewhat similar to an elevator-scan.
 194 //
 195 // * The monitor synchronization subsystem avoids the use of native
 196 //   synchronization primitives except for the narrow platform-specific
 197 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 198 //   the semantics of park-unpark.  Put another way, this monitor implementation
 199 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 200 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 201 //   underlying OS manages the READY<->RUN transitions.
 202 //
 203 // * Waiting threads reside on the WaitSet list -- wait() puts
 204 //   the caller onto the WaitSet.
 205 //
 206 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 207 //   either the EntryList or cxq.  Subsequent exit() operations will
 208 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 209 //   it's likely the notifyee would simply impale itself on the lock held
 210 //   by the notifier.
 211 //
 212 // * An interesting alternative is to encode cxq as (List,LockByte) where
 213 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 214 //   variable, like _recursions, in the scheme.  The threads or Events that form
 215 //   the list would have to be aligned in 256-byte addresses.  A thread would
 216 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 217 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 218 //   Note that is is *not* word-tearing, but it does presume that full-word
 219 //   CAS operations are coherent with intermix with STB operations.  That's true
 220 //   on most common processors.
 221 //
 222 // * See also http://blogs.sun.com/dave
 223 
 224 
 225 void* ObjectMonitor::operator new (size_t size) throw() {
 226   return AllocateHeap(size, mtInternal);
 227 }
 228 void* ObjectMonitor::operator new[] (size_t size) throw() {
 229   return operator new (size);
 230 }
 231 void ObjectMonitor::operator delete(void* p) {
 232   FreeHeap(p);
 233 }
 234 void ObjectMonitor::operator delete[] (void *p) {
 235   operator delete(p);
 236 }
 237 
 238 // -----------------------------------------------------------------------------
 239 // Enter support
 240 
 241 bool ObjectMonitor::enter(TRAPS) {
 242   // The following code is ordered to check the most common cases first
 243   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 244   Thread * const Self = THREAD;
 245 
 246   void * cur = Atomic::cmpxchg(Self, &_owner, (void*)NULL);
 247   if (cur == NULL) {
 248     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 249     assert(_recursions == 0, "invariant");
 250     assert(_owner == Self, "invariant");
 251     return true;
 252   }
 253 
 254   if (cur == Self) {
 255     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 256     _recursions++;
 257     return true;
 258   }
 259 
 260   if (Self->is_lock_owned ((address)cur)) {
 261     assert(_recursions == 0, "internal state error");
 262     _recursions = 1;
 263     // Commute owner from a thread-specific on-stack BasicLockObject address to
 264     // a full-fledged "Thread *".
 265     _owner = Self;
 266     return true;
 267   }
 268 
 269   // We've encountered genuine contention.
 270   assert(Self->_Stalled == 0, "invariant");
 271   Self->_Stalled = intptr_t(this);
 272 
 273   // Try one round of spinning *before* enqueueing Self
 274   // and before going through the awkward and expensive state
 275   // transitions.  The following spin is strictly optional ...
 276   // Note that if we acquire the monitor from an initial spin
 277   // we forgo posting JVMTI events and firing DTRACE probes.
 278   if (TrySpin(Self) > 0) {
 279     assert(_owner == Self, "invariant");
 280     assert(_recursions == 0, "invariant");
 281     assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 282     Self->_Stalled = 0;
 283     return true;
 284   }
 285 
 286   assert(_owner != Self, "invariant");
 287   assert(_succ != Self, "invariant");
 288   assert(Self->is_Java_thread(), "invariant");
 289   JavaThread * jt = (JavaThread *) Self;
 290   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 291   assert(jt->thread_state() != _thread_blocked, "invariant");
 292   assert(AsyncDeflateIdleMonitors || this->object() != NULL, "invariant");
 293   assert(AsyncDeflateIdleMonitors || _count >= 0, "invariant");
 294 
 295   // Prevent deflation. See ObjectSynchronizer::deflate_monitor() and is_busy().
 296   // Ensure the object-monitor relationship remains stable while there's contention.
 297   const jint count = Atomic::add(1, &_count);
 298   if (count <= 0 && _owner == DEFLATER_MARKER) {
 299     // Async deflation in progress. Help deflater thread install
 300     // the mark word (in case deflater thread is slow).
 301     install_displaced_markword_in_object();
 302     Self->_Stalled = 0;
 303     return false;  // Caller should retry. Never mind about _count as this monitor has been deflated.
 304   }
 305   // The deflater thread will not deflate this monitor and the monitor is contended, continue.
 306 
 307   JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(jt);)
 308   EventJavaMonitorEnter event;
 309   if (event.should_commit()) {
 310     event.set_monitorClass(((oop)this->object())->klass());
 311     event.set_address((uintptr_t)(this->object_addr()));
 312   }
 313 
 314   { // Change java thread status to indicate blocked on monitor enter.
 315     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 316 
 317     Self->set_current_pending_monitor(this);
 318 
 319     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 320     if (JvmtiExport::should_post_monitor_contended_enter()) {
 321       JvmtiExport::post_monitor_contended_enter(jt, this);
 322 
 323       // The current thread does not yet own the monitor and does not
 324       // yet appear on any queues that would get it made the successor.
 325       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 326       // handler cannot accidentally consume an unpark() meant for the
 327       // ParkEvent associated with this ObjectMonitor.
 328     }
 329 
 330     OSThreadContendState osts(Self->osthread());
 331     ThreadBlockInVM tbivm(jt);
 332 
 333     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 334     for (;;) {
 335       jt->set_suspend_equivalent();
 336       // cleared by handle_special_suspend_equivalent_condition()
 337       // or java_suspend_self()
 338 
 339       EnterI(THREAD);
 340 
 341       if (!ExitSuspendEquivalent(jt)) break;
 342 
 343       // We have acquired the contended monitor, but while we were
 344       // waiting another thread suspended us. We don't want to enter
 345       // the monitor while suspended because that would surprise the
 346       // thread that suspended us.
 347       //
 348       _recursions = 0;
 349       _succ = NULL;
 350       exit(false, Self);
 351 
 352       jt->java_suspend_self();
 353     }
 354     Self->set_current_pending_monitor(NULL);
 355 
 356     // We cleared the pending monitor info since we've just gotten past
 357     // the enter-check-for-suspend dance and we now own the monitor free
 358     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 359     // destructor can go to a safepoint at the end of this block. If we
 360     // do a thread dump during that safepoint, then this thread will show
 361     // as having "-locked" the monitor, but the OS and java.lang.Thread
 362     // states will still report that the thread is blocked trying to
 363     // acquire it.
 364   }
 365 
 366   Atomic::dec(&_count);
 367   assert(AsyncDeflateIdleMonitors || _count >= 0, "invariant");
 368   Self->_Stalled = 0;
 369 
 370   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 371   assert(_recursions == 0, "invariant");
 372   assert(_owner == Self, "invariant");
 373   assert(_succ != Self, "invariant");
 374   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 375 
 376   // The thread -- now the owner -- is back in vm mode.
 377   // Report the glorious news via TI,DTrace and jvmstat.
 378   // The probe effect is non-trivial.  All the reportage occurs
 379   // while we hold the monitor, increasing the length of the critical
 380   // section.  Amdahl's parallel speedup law comes vividly into play.
 381   //
 382   // Another option might be to aggregate the events (thread local or
 383   // per-monitor aggregation) and defer reporting until a more opportune
 384   // time -- such as next time some thread encounters contention but has
 385   // yet to acquire the lock.  While spinning that thread could
 386   // spinning we could increment JVMStat counters, etc.
 387 
 388   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 389   if (JvmtiExport::should_post_monitor_contended_entered()) {
 390     JvmtiExport::post_monitor_contended_entered(jt, this);
 391 
 392     // The current thread already owns the monitor and is not going to
 393     // call park() for the remainder of the monitor enter protocol. So
 394     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 395     // event handler consumed an unpark() issued by the thread that
 396     // just exited the monitor.
 397   }
 398   if (event.should_commit()) {
 399     event.set_previousOwner((uintptr_t)_previous_owner_tid);
 400     event.commit();
 401   }
 402   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 403   return true;
 404 }
 405 
 406 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 407 // Callers must compensate as needed.
 408 
 409 int ObjectMonitor::TryLock(Thread * Self) {
 410   void * own = _owner;
 411   if (own != NULL) return 0;
 412   if (Atomic::replace_if_null(Self, &_owner)) {
 413     // Either guarantee _recursions == 0 or set _recursions = 0.
 414     assert(_recursions == 0, "invariant");
 415     assert(_owner == Self, "invariant");
 416     return 1;
 417   }
 418   // The lock had been free momentarily, but we lost the race to the lock.
 419   // Interference -- the CAS failed.
 420   // We can either return -1 or retry.
 421   // Retry doesn't make as much sense because the lock was just acquired.
 422   return -1;
 423 }
 424 
 425 // Install the displaced markword of a deflated monitor into the object
 426 // associated with the monitor.
 427 // This method is idempotent and is executed by both mutators wanting to
 428 // acquire a monitor for an object and the thread deflating monitors.
 429 // A mutator trying to install a hash in the monitor's _header field can
 430 // also run in parallel to this method.
 431 void ObjectMonitor::install_displaced_markword_in_object() {
 432   markOop dmw = header();
 433   if (dmw == NULL) {
 434     // The thread deflating monitors has won the race so we
 435     // have nothing to do.
 436     return;
 437   }
 438 
 439   // A non-NULL dmw has to be either neutral or is participating in
 440   // this restoration protocol.
 441   assert(dmw->is_neutral() || (dmw->is_marked() && dmw->hash() == 0),
 442          "failed precondition: is_neutral=%d, is_marked=%d, hash="
 443          INTPTR_FORMAT, dmw->is_neutral(), dmw->is_marked(), dmw->hash());
 444 
 445   if (!dmw->is_marked() && dmw->hash() == 0) {
 446     // This dmw is neutral and has not yet started the restoration
 447     // protocol so we mark a copy of the dmw to begin the protocol.
 448     markOop marked_dmw = dmw->set_marked();
 449     assert(marked_dmw->is_marked() && marked_dmw->hash() == 0,
 450            "sanity_check: is_marked=%d, hash=" INTPTR_FORMAT,
 451            marked_dmw->is_marked(), marked_dmw->hash());
 452 
 453     // There can be three different racers trying to update the _header
 454     // field and the return dmw value will tell us what cleanup needs
 455     // to be done (if any) after the race winner:
 456     //   1)  A mutator trying to install a hash in the object.
 457     //       Note: That mutator is not executing this code, but it is
 458     //       trying to update the _header field.
 459     //       If winner: dmw will contain the hash and be unmarked
 460     //   2a) A mutator trying to acquire the monitor via enter():
 461     //       If winner: dmw is marked and hash() == 0
 462     //   2b) The thread deflating the monitor via deflate_monitor_using_JT():
 463     //       If winner: dmw is marked and hash() == 0
 464     dmw = (markOop) Atomic::cmpxchg(marked_dmw, &_header, dmw);
 465   }
 466 
 467   if (dmw->is_marked()) {
 468     // The dmw copy is marked which means a hash was not set by a racing
 469     // thread. Clear the mark from the copy in preparation for possible
 470     // restoration from this thread.
 471     assert(dmw->hash() == 0, "must be 0: hash=" INTPTR_FORMAT, dmw->hash());
 472     dmw = dmw->set_unmarked();
 473   }
 474   assert(dmw->is_neutral(), "must be a neutral markword");
 475 
 476   oop const obj = (oop) object();
 477   // Install displaced markword if object markword still points to this
 478   // monitor. Both the mutator trying to enter() and the thread deflating
 479   // the monitor will reach this point, but only one can win.
 480   // Note: If a mutator won the cmpxchg() race above and installed a hash
 481   // in _header, then the updated dmw contains that hash and we'll install
 482   // it in the object's markword here.
 483   obj->cas_set_mark(dmw, markOopDesc::encode(this));
 484 }
 485 
 486 #define MAX_RECHECK_INTERVAL 1000
 487 
 488 void ObjectMonitor::EnterI(TRAPS) {
 489   Thread * const Self = THREAD;
 490   assert(Self->is_Java_thread(), "invariant");
 491   assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant");
 492 
 493   // Try the lock - TATAS
 494   if (TryLock (Self) > 0) {
 495     assert(_succ != Self, "invariant");
 496     assert(_owner == Self, "invariant");
 497     assert(_Responsible != Self, "invariant");
 498     return;
 499   }
 500 
 501   if (_owner == DEFLATER_MARKER) {
 502     guarantee(0 < _count, "_owner == DEFLATER_MARKER && _count <= 0 should have been handled by the caller");
 503     // Deflater thread tried to lock this monitor, but it failed to make _count negative and gave up.
 504     // Try to acquire monitor.
 505     if (Atomic::cmpxchg(Self, &_owner, DEFLATER_MARKER) == DEFLATER_MARKER) {
 506       assert(_succ != Self, "invariant");
 507       assert(_owner == Self, "invariant");
 508       assert(_Responsible != Self, "invariant");
 509       return;
 510     }
 511   }
 512 
 513   assert(InitDone, "Unexpectedly not initialized");
 514 
 515   // We try one round of spinning *before* enqueueing Self.
 516   //
 517   // If the _owner is ready but OFFPROC we could use a YieldTo()
 518   // operation to donate the remainder of this thread's quantum
 519   // to the owner.  This has subtle but beneficial affinity
 520   // effects.
 521 
 522   if (TrySpin(Self) > 0) {
 523     assert(_owner == Self, "invariant");
 524     assert(_succ != Self, "invariant");
 525     assert(_Responsible != Self, "invariant");
 526     return;
 527   }
 528 
 529   // The Spin failed -- Enqueue and park the thread ...
 530   assert(_succ != Self, "invariant");
 531   assert(_owner != Self, "invariant");
 532   assert(_Responsible != Self, "invariant");
 533 
 534   // Enqueue "Self" on ObjectMonitor's _cxq.
 535   //
 536   // Node acts as a proxy for Self.
 537   // As an aside, if were to ever rewrite the synchronization code mostly
 538   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 539   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 540   // as well as eliminate a subset of ABA issues.
 541   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 542 
 543   ObjectWaiter node(Self);
 544   Self->_ParkEvent->reset();
 545   node._prev   = (ObjectWaiter *) 0xBAD;
 546   node.TState  = ObjectWaiter::TS_CXQ;
 547 
 548   // Push "Self" onto the front of the _cxq.
 549   // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 550   // Note that spinning tends to reduce the rate at which threads
 551   // enqueue and dequeue on EntryList|cxq.
 552   ObjectWaiter * nxt;
 553   for (;;) {
 554     node._next = nxt = _cxq;
 555     if (Atomic::cmpxchg(&node, &_cxq, nxt) == nxt) break;
 556 
 557     // Interference - the CAS failed because _cxq changed.  Just retry.
 558     // As an optional optimization we retry the lock.
 559     if (TryLock (Self) > 0) {
 560       assert(_succ != Self, "invariant");
 561       assert(_owner == Self, "invariant");
 562       assert(_Responsible != Self, "invariant");
 563       return;
 564     }
 565   }
 566 
 567   // Check for cxq|EntryList edge transition to non-null.  This indicates
 568   // the onset of contention.  While contention persists exiting threads
 569   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 570   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 571   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 572   // arrange for one of the contending thread to use a timed park() operations
 573   // to detect and recover from the race.  (Stranding is form of progress failure
 574   // where the monitor is unlocked but all the contending threads remain parked).
 575   // That is, at least one of the contended threads will periodically poll _owner.
 576   // One of the contending threads will become the designated "Responsible" thread.
 577   // The Responsible thread uses a timed park instead of a normal indefinite park
 578   // operation -- it periodically wakes and checks for and recovers from potential
 579   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 580   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 581   // be responsible for a monitor.
 582   //
 583   // Currently, one of the contended threads takes on the added role of "Responsible".
 584   // A viable alternative would be to use a dedicated "stranding checker" thread
 585   // that periodically iterated over all the threads (or active monitors) and unparked
 586   // successors where there was risk of stranding.  This would help eliminate the
 587   // timer scalability issues we see on some platforms as we'd only have one thread
 588   // -- the checker -- parked on a timer.
 589 
 590   if (nxt == NULL && _EntryList == NULL) {
 591     // Try to assume the role of responsible thread for the monitor.
 592     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 593     Atomic::replace_if_null(Self, &_Responsible);
 594   }
 595 
 596   // The lock might have been released while this thread was occupied queueing
 597   // itself onto _cxq.  To close the race and avoid "stranding" and
 598   // progress-liveness failure we must resample-retry _owner before parking.
 599   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 600   // In this case the ST-MEMBAR is accomplished with CAS().
 601   //
 602   // TODO: Defer all thread state transitions until park-time.
 603   // Since state transitions are heavy and inefficient we'd like
 604   // to defer the state transitions until absolutely necessary,
 605   // and in doing so avoid some transitions ...
 606 
 607   int nWakeups = 0;
 608   int recheckInterval = 1;
 609 
 610   for (;;) {
 611 
 612     if (TryLock(Self) > 0) break;
 613     assert(_owner != Self, "invariant");
 614 
 615     // park self
 616     if (_Responsible == Self) {
 617       Self->_ParkEvent->park((jlong) recheckInterval);
 618       // Increase the recheckInterval, but clamp the value.
 619       recheckInterval *= 8;
 620       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 621         recheckInterval = MAX_RECHECK_INTERVAL;
 622       }
 623     } else {
 624       Self->_ParkEvent->park();
 625     }
 626 
 627     if (TryLock(Self) > 0) break;
 628 
 629     if (_owner == DEFLATER_MARKER) {
 630       guarantee(0 < _count, "_owner == DEFLATER_MARKER && _count <= 0 should have been handled by the caller");
 631       // Deflater thread tried to lock this monitor, but it failed to make _count negative and gave up.
 632       if (Atomic::cmpxchg(Self, &_owner, DEFLATER_MARKER) == DEFLATER_MARKER) {
 633         // Acquired the monitor.
 634         break;
 635       }
 636     }
 637 
 638     // The lock is still contested.
 639     // Keep a tally of the # of futile wakeups.
 640     // Note that the counter is not protected by a lock or updated by atomics.
 641     // That is by design - we trade "lossy" counters which are exposed to
 642     // races during updates for a lower probe effect.
 643 
 644     // This PerfData object can be used in parallel with a safepoint.
 645     // See the work around in PerfDataManager::destroy().
 646     OM_PERFDATA_OP(FutileWakeups, inc());
 647     ++nWakeups;
 648 
 649     // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 650     // We can defer clearing _succ until after the spin completes
 651     // TrySpin() must tolerate being called with _succ == Self.
 652     // Try yet another round of adaptive spinning.
 653     if (TrySpin(Self) > 0) break;
 654 
 655     // We can find that we were unpark()ed and redesignated _succ while
 656     // we were spinning.  That's harmless.  If we iterate and call park(),
 657     // park() will consume the event and return immediately and we'll
 658     // just spin again.  This pattern can repeat, leaving _succ to simply
 659     // spin on a CPU.
 660 
 661     if (_succ == Self) _succ = NULL;
 662 
 663     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 664     OrderAccess::fence();
 665   }
 666 
 667   // Egress :
 668   // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 669   // Normally we'll find Self on the EntryList .
 670   // From the perspective of the lock owner (this thread), the
 671   // EntryList is stable and cxq is prepend-only.
 672   // The head of cxq is volatile but the interior is stable.
 673   // In addition, Self.TState is stable.
 674 
 675   assert(_owner == Self, "invariant");
 676   assert(object() != NULL, "invariant");
 677   // I'd like to write:
 678   //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 679   // but as we're at a safepoint that's not safe.
 680 
 681   UnlinkAfterAcquire(Self, &node);
 682   if (_succ == Self) _succ = NULL;
 683 
 684   assert(_succ != Self, "invariant");
 685   if (_Responsible == Self) {
 686     _Responsible = NULL;
 687     OrderAccess::fence(); // Dekker pivot-point
 688 
 689     // We may leave threads on cxq|EntryList without a designated
 690     // "Responsible" thread.  This is benign.  When this thread subsequently
 691     // exits the monitor it can "see" such preexisting "old" threads --
 692     // threads that arrived on the cxq|EntryList before the fence, above --
 693     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 694     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 695     // non-null and elect a new "Responsible" timer thread.
 696     //
 697     // This thread executes:
 698     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 699     //    LD cxq|EntryList               (in subsequent exit)
 700     //
 701     // Entering threads in the slow/contended path execute:
 702     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 703     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 704     //
 705     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 706     // exit operation from floating above the ST Responsible=null.
 707   }
 708 
 709   // We've acquired ownership with CAS().
 710   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 711   // But since the CAS() this thread may have also stored into _succ,
 712   // EntryList, cxq or Responsible.  These meta-data updates must be
 713   // visible __before this thread subsequently drops the lock.
 714   // Consider what could occur if we didn't enforce this constraint --
 715   // STs to monitor meta-data and user-data could reorder with (become
 716   // visible after) the ST in exit that drops ownership of the lock.
 717   // Some other thread could then acquire the lock, but observe inconsistent
 718   // or old monitor meta-data and heap data.  That violates the JMM.
 719   // To that end, the 1-0 exit() operation must have at least STST|LDST
 720   // "release" barrier semantics.  Specifically, there must be at least a
 721   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 722   // the lock.   The barrier ensures that changes to monitor meta-data and data
 723   // protected by the lock will be visible before we release the lock, and
 724   // therefore before some other thread (CPU) has a chance to acquire the lock.
 725   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 726   //
 727   // Critically, any prior STs to _succ or EntryList must be visible before
 728   // the ST of null into _owner in the *subsequent* (following) corresponding
 729   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 730   // execute a serializing instruction.
 731 
 732   return;
 733 }
 734 
 735 // ReenterI() is a specialized inline form of the latter half of the
 736 // contended slow-path from EnterI().  We use ReenterI() only for
 737 // monitor reentry in wait().
 738 //
 739 // In the future we should reconcile EnterI() and ReenterI().
 740 
 741 void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) {
 742   assert(Self != NULL, "invariant");
 743   assert(SelfNode != NULL, "invariant");
 744   assert(SelfNode->_thread == Self, "invariant");
 745   assert(_waiters > 0, "invariant");
 746   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 747   assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 748   JavaThread * jt = (JavaThread *) Self;
 749 
 750   int nWakeups = 0;
 751   for (;;) {
 752     ObjectWaiter::TStates v = SelfNode->TState;
 753     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 754     assert(_owner != Self, "invariant");
 755 
 756     if (TryLock(Self) > 0) break;
 757     if (TrySpin(Self) > 0) break;
 758 
 759     if (_owner == DEFLATER_MARKER) {
 760       guarantee(0 <= _count, "Impossible: _owner == DEFLATER_MARKER && _count < 0, monitor must not be owned by deflater thread here");
 761       if (Atomic::cmpxchg(Self, &_owner, DEFLATER_MARKER) == DEFLATER_MARKER) {
 762         // Acquired the monitor.
 763         break;
 764       }
 765     }
 766 
 767     // State transition wrappers around park() ...
 768     // ReenterI() wisely defers state transitions until
 769     // it's clear we must park the thread.
 770     {
 771       OSThreadContendState osts(Self->osthread());
 772       ThreadBlockInVM tbivm(jt);
 773 
 774       // cleared by handle_special_suspend_equivalent_condition()
 775       // or java_suspend_self()
 776       jt->set_suspend_equivalent();
 777       Self->_ParkEvent->park();
 778 
 779       // were we externally suspended while we were waiting?
 780       for (;;) {
 781         if (!ExitSuspendEquivalent(jt)) break;
 782         if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 783         jt->java_suspend_self();
 784         jt->set_suspend_equivalent();
 785       }
 786     }
 787 
 788     // Try again, but just so we distinguish between futile wakeups and
 789     // successful wakeups.  The following test isn't algorithmically
 790     // necessary, but it helps us maintain sensible statistics.
 791     if (TryLock(Self) > 0) break;
 792 
 793     // The lock is still contested.
 794     // Keep a tally of the # of futile wakeups.
 795     // Note that the counter is not protected by a lock or updated by atomics.
 796     // That is by design - we trade "lossy" counters which are exposed to
 797     // races during updates for a lower probe effect.
 798     ++nWakeups;
 799 
 800     // Assuming this is not a spurious wakeup we'll normally
 801     // find that _succ == Self.
 802     if (_succ == Self) _succ = NULL;
 803 
 804     // Invariant: after clearing _succ a contending thread
 805     // *must* retry  _owner before parking.
 806     OrderAccess::fence();
 807 
 808     // This PerfData object can be used in parallel with a safepoint.
 809     // See the work around in PerfDataManager::destroy().
 810     OM_PERFDATA_OP(FutileWakeups, inc());
 811   }
 812 
 813   // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 814   // Normally we'll find Self on the EntryList.
 815   // Unlinking from the EntryList is constant-time and atomic-free.
 816   // From the perspective of the lock owner (this thread), the
 817   // EntryList is stable and cxq is prepend-only.
 818   // The head of cxq is volatile but the interior is stable.
 819   // In addition, Self.TState is stable.
 820 
 821   assert(_owner == Self, "invariant");
 822   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 823   UnlinkAfterAcquire(Self, SelfNode);
 824   if (_succ == Self) _succ = NULL;
 825   assert(_succ != Self, "invariant");
 826   SelfNode->TState = ObjectWaiter::TS_RUN;
 827   OrderAccess::fence();      // see comments at the end of EnterI()
 828 }
 829 
 830 // By convention we unlink a contending thread from EntryList|cxq immediately
 831 // after the thread acquires the lock in ::enter().  Equally, we could defer
 832 // unlinking the thread until ::exit()-time.
 833 
 834 void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) {
 835   assert(_owner == Self, "invariant");
 836   assert(SelfNode->_thread == Self, "invariant");
 837 
 838   if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 839     // Normal case: remove Self from the DLL EntryList .
 840     // This is a constant-time operation.
 841     ObjectWaiter * nxt = SelfNode->_next;
 842     ObjectWaiter * prv = SelfNode->_prev;
 843     if (nxt != NULL) nxt->_prev = prv;
 844     if (prv != NULL) prv->_next = nxt;
 845     if (SelfNode == _EntryList) _EntryList = nxt;
 846     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
 847     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
 848   } else {
 849     assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
 850     // Inopportune interleaving -- Self is still on the cxq.
 851     // This usually means the enqueue of self raced an exiting thread.
 852     // Normally we'll find Self near the front of the cxq, so
 853     // dequeueing is typically fast.  If needbe we can accelerate
 854     // this with some MCS/CHL-like bidirectional list hints and advisory
 855     // back-links so dequeueing from the interior will normally operate
 856     // in constant-time.
 857     // Dequeue Self from either the head (with CAS) or from the interior
 858     // with a linear-time scan and normal non-atomic memory operations.
 859     // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 860     // and then unlink Self from EntryList.  We have to drain eventually,
 861     // so it might as well be now.
 862 
 863     ObjectWaiter * v = _cxq;
 864     assert(v != NULL, "invariant");
 865     if (v != SelfNode || Atomic::cmpxchg(SelfNode->_next, &_cxq, v) != v) {
 866       // The CAS above can fail from interference IFF a "RAT" arrived.
 867       // In that case Self must be in the interior and can no longer be
 868       // at the head of cxq.
 869       if (v == SelfNode) {
 870         assert(_cxq != v, "invariant");
 871         v = _cxq;          // CAS above failed - start scan at head of list
 872       }
 873       ObjectWaiter * p;
 874       ObjectWaiter * q = NULL;
 875       for (p = v; p != NULL && p != SelfNode; p = p->_next) {
 876         q = p;
 877         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
 878       }
 879       assert(v != SelfNode, "invariant");
 880       assert(p == SelfNode, "Node not found on cxq");
 881       assert(p != _cxq, "invariant");
 882       assert(q != NULL, "invariant");
 883       assert(q->_next == p, "invariant");
 884       q->_next = p->_next;
 885     }
 886   }
 887 
 888 #ifdef ASSERT
 889   // Diagnostic hygiene ...
 890   SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
 891   SelfNode->_next  = (ObjectWaiter *) 0xBAD;
 892   SelfNode->TState = ObjectWaiter::TS_RUN;
 893 #endif
 894 }
 895 
 896 // -----------------------------------------------------------------------------
 897 // Exit support
 898 //
 899 // exit()
 900 // ~~~~~~
 901 // Note that the collector can't reclaim the objectMonitor or deflate
 902 // the object out from underneath the thread calling ::exit() as the
 903 // thread calling ::exit() never transitions to a stable state.
 904 // This inhibits GC, which in turn inhibits asynchronous (and
 905 // inopportune) reclamation of "this".
 906 //
 907 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 908 // There's one exception to the claim above, however.  EnterI() can call
 909 // exit() to drop a lock if the acquirer has been externally suspended.
 910 // In that case exit() is called with _thread_state as _thread_blocked,
 911 // but the monitor's _count field is > 0, which inhibits reclamation.
 912 //
 913 // 1-0 exit
 914 // ~~~~~~~~
 915 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 916 // the fast-path operators have been optimized so the common ::exit()
 917 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
 918 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 919 // greatly improves latency -- MEMBAR and CAS having considerable local
 920 // latency on modern processors -- but at the cost of "stranding".  Absent the
 921 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 922 // ::enter() path, resulting in the entering thread being stranding
 923 // and a progress-liveness failure.   Stranding is extremely rare.
 924 // We use timers (timed park operations) & periodic polling to detect
 925 // and recover from stranding.  Potentially stranded threads periodically
 926 // wake up and poll the lock.  See the usage of the _Responsible variable.
 927 //
 928 // The CAS() in enter provides for safety and exclusion, while the CAS or
 929 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 930 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
 931 // We detect and recover from stranding with timers.
 932 //
 933 // If a thread transiently strands it'll park until (a) another
 934 // thread acquires the lock and then drops the lock, at which time the
 935 // exiting thread will notice and unpark the stranded thread, or, (b)
 936 // the timer expires.  If the lock is high traffic then the stranding latency
 937 // will be low due to (a).  If the lock is low traffic then the odds of
 938 // stranding are lower, although the worst-case stranding latency
 939 // is longer.  Critically, we don't want to put excessive load in the
 940 // platform's timer subsystem.  We want to minimize both the timer injection
 941 // rate (timers created/sec) as well as the number of timers active at
 942 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 943 // the integral of the # of active timers at any instant over time).
 944 // Both impinge on OS scalability.  Given that, at most one thread parked on
 945 // a monitor will use a timer.
 946 //
 947 // There is also the risk of a futile wake-up. If we drop the lock
 948 // another thread can reacquire the lock immediately, and we can
 949 // then wake a thread unnecessarily. This is benign, and we've
 950 // structured the code so the windows are short and the frequency
 951 // of such futile wakups is low.
 952 
 953 void ObjectMonitor::exit(bool not_suspended, TRAPS) {
 954   Thread * const Self = THREAD;
 955   if (THREAD != _owner) {
 956     if (THREAD->is_lock_owned((address) _owner)) {
 957       // Transmute _owner from a BasicLock pointer to a Thread address.
 958       // We don't need to hold _mutex for this transition.
 959       // Non-null to Non-null is safe as long as all readers can
 960       // tolerate either flavor.
 961       assert(_recursions == 0, "invariant");
 962       _owner = THREAD;
 963       _recursions = 0;
 964     } else {
 965       // Apparent unbalanced locking ...
 966       // Naively we'd like to throw IllegalMonitorStateException.
 967       // As a practical matter we can neither allocate nor throw an
 968       // exception as ::exit() can be called from leaf routines.
 969       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
 970       // Upon deeper reflection, however, in a properly run JVM the only
 971       // way we should encounter this situation is in the presence of
 972       // unbalanced JNI locking. TODO: CheckJNICalls.
 973       // See also: CR4414101
 974       assert(false, "Non-balanced monitor enter/exit! Likely JNI locking");
 975       return;
 976     }
 977   }
 978 
 979   if (_recursions != 0) {
 980     _recursions--;        // this is simple recursive enter
 981     return;
 982   }
 983 
 984   // Invariant: after setting Responsible=null an thread must execute
 985   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 986   _Responsible = NULL;
 987 
 988 #if INCLUDE_JFR
 989   // get the owner's thread id for the MonitorEnter event
 990   // if it is enabled and the thread isn't suspended
 991   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
 992     _previous_owner_tid = JFR_THREAD_ID(Self);
 993   }
 994 #endif
 995 
 996   for (;;) {
 997     assert(THREAD == _owner, "invariant");
 998 
 999     // release semantics: prior loads and stores from within the critical section
1000     // must not float (reorder) past the following store that drops the lock.
1001     // On SPARC that requires MEMBAR #loadstore|#storestore.
1002     // But of course in TSO #loadstore|#storestore is not required.
1003     OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
1004     OrderAccess::storeload();                        // See if we need to wake a successor
1005     if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1006       return;
1007     }
1008     // Other threads are blocked trying to acquire the lock.
1009 
1010     // Normally the exiting thread is responsible for ensuring succession,
1011     // but if other successors are ready or other entering threads are spinning
1012     // then this thread can simply store NULL into _owner and exit without
1013     // waking a successor.  The existence of spinners or ready successors
1014     // guarantees proper succession (liveness).  Responsibility passes to the
1015     // ready or running successors.  The exiting thread delegates the duty.
1016     // More precisely, if a successor already exists this thread is absolved
1017     // of the responsibility of waking (unparking) one.
1018     //
1019     // The _succ variable is critical to reducing futile wakeup frequency.
1020     // _succ identifies the "heir presumptive" thread that has been made
1021     // ready (unparked) but that has not yet run.  We need only one such
1022     // successor thread to guarantee progress.
1023     // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1024     // section 3.3 "Futile Wakeup Throttling" for details.
1025     //
1026     // Note that spinners in Enter() also set _succ non-null.
1027     // In the current implementation spinners opportunistically set
1028     // _succ so that exiting threads might avoid waking a successor.
1029     // Another less appealing alternative would be for the exiting thread
1030     // to drop the lock and then spin briefly to see if a spinner managed
1031     // to acquire the lock.  If so, the exiting thread could exit
1032     // immediately without waking a successor, otherwise the exiting
1033     // thread would need to dequeue and wake a successor.
1034     // (Note that we'd need to make the post-drop spin short, but no
1035     // shorter than the worst-case round-trip cache-line migration time.
1036     // The dropped lock needs to become visible to the spinner, and then
1037     // the acquisition of the lock by the spinner must become visible to
1038     // the exiting thread).
1039 
1040     // It appears that an heir-presumptive (successor) must be made ready.
1041     // Only the current lock owner can manipulate the EntryList or
1042     // drain _cxq, so we need to reacquire the lock.  If we fail
1043     // to reacquire the lock the responsibility for ensuring succession
1044     // falls to the new owner.
1045     //
1046     if (!Atomic::replace_if_null(THREAD, &_owner)) {
1047       return;
1048     }
1049 
1050     guarantee(_owner == THREAD, "invariant");
1051 
1052     ObjectWaiter * w = NULL;
1053 
1054     w = _EntryList;
1055     if (w != NULL) {
1056       // I'd like to write: guarantee (w->_thread != Self).
1057       // But in practice an exiting thread may find itself on the EntryList.
1058       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1059       // then calls exit().  Exit release the lock by setting O._owner to NULL.
1060       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1061       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1062       // release the lock "O".  T2 resumes immediately after the ST of null into
1063       // _owner, above.  T2 notices that the EntryList is populated, so it
1064       // reacquires the lock and then finds itself on the EntryList.
1065       // Given all that, we have to tolerate the circumstance where "w" is
1066       // associated with Self.
1067       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1068       ExitEpilog(Self, w);
1069       return;
1070     }
1071 
1072     // If we find that both _cxq and EntryList are null then just
1073     // re-run the exit protocol from the top.
1074     w = _cxq;
1075     if (w == NULL) continue;
1076 
1077     // Drain _cxq into EntryList - bulk transfer.
1078     // First, detach _cxq.
1079     // The following loop is tantamount to: w = swap(&cxq, NULL)
1080     for (;;) {
1081       assert(w != NULL, "Invariant");
1082       ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1083       if (u == w) break;
1084       w = u;
1085     }
1086 
1087     assert(w != NULL, "invariant");
1088     assert(_EntryList == NULL, "invariant");
1089 
1090     // Convert the LIFO SLL anchored by _cxq into a DLL.
1091     // The list reorganization step operates in O(LENGTH(w)) time.
1092     // It's critical that this step operate quickly as
1093     // "Self" still holds the outer-lock, restricting parallelism
1094     // and effectively lengthening the critical section.
1095     // Invariant: s chases t chases u.
1096     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1097     // we have faster access to the tail.
1098 
1099     _EntryList = w;
1100     ObjectWaiter * q = NULL;
1101     ObjectWaiter * p;
1102     for (p = w; p != NULL; p = p->_next) {
1103       guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1104       p->TState = ObjectWaiter::TS_ENTER;
1105       p->_prev = q;
1106       q = p;
1107     }
1108 
1109     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1110     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1111 
1112     // See if we can abdicate to a spinner instead of waking a thread.
1113     // A primary goal of the implementation is to reduce the
1114     // context-switch rate.
1115     if (_succ != NULL) continue;
1116 
1117     w = _EntryList;
1118     if (w != NULL) {
1119       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1120       ExitEpilog(Self, w);
1121       return;
1122     }
1123   }
1124 }
1125 
1126 // ExitSuspendEquivalent:
1127 // A faster alternate to handle_special_suspend_equivalent_condition()
1128 //
1129 // handle_special_suspend_equivalent_condition() unconditionally
1130 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1131 // operations have high latency.  Note that in ::enter() we call HSSEC
1132 // while holding the monitor, so we effectively lengthen the critical sections.
1133 //
1134 // There are a number of possible solutions:
1135 //
1136 // A.  To ameliorate the problem we might also defer state transitions
1137 //     to as late as possible -- just prior to parking.
1138 //     Given that, we'd call HSSEC after having returned from park(),
1139 //     but before attempting to acquire the monitor.  This is only a
1140 //     partial solution.  It avoids calling HSSEC while holding the
1141 //     monitor (good), but it still increases successor reacquisition latency --
1142 //     the interval between unparking a successor and the time the successor
1143 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1144 //     If we use this technique we can also avoid EnterI()-exit() loop
1145 //     in ::enter() where we iteratively drop the lock and then attempt
1146 //     to reacquire it after suspending.
1147 //
1148 // B.  In the future we might fold all the suspend bits into a
1149 //     composite per-thread suspend flag and then update it with CAS().
1150 //     Alternately, a Dekker-like mechanism with multiple variables
1151 //     would suffice:
1152 //       ST Self->_suspend_equivalent = false
1153 //       MEMBAR
1154 //       LD Self_>_suspend_flags
1155 
1156 bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) {
1157   return jSelf->handle_special_suspend_equivalent_condition();
1158 }
1159 
1160 
1161 void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {
1162   assert(_owner == Self, "invariant");
1163 
1164   // Exit protocol:
1165   // 1. ST _succ = wakee
1166   // 2. membar #loadstore|#storestore;
1167   // 2. ST _owner = NULL
1168   // 3. unpark(wakee)
1169 
1170   _succ = Wakee->_thread;
1171   ParkEvent * Trigger = Wakee->_event;
1172 
1173   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1174   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1175   // out-of-scope (non-extant).
1176   Wakee  = NULL;
1177 
1178   // Drop the lock
1179   OrderAccess::release_store(&_owner, (void*)NULL);
1180   OrderAccess::fence();                               // ST _owner vs LD in unpark()
1181 
1182   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1183   Trigger->unpark();
1184 
1185   // Maintain stats and report events to JVMTI
1186   OM_PERFDATA_OP(Parks, inc());
1187 }
1188 
1189 
1190 // -----------------------------------------------------------------------------
1191 // Class Loader deadlock handling.
1192 //
1193 // complete_exit exits a lock returning recursion count
1194 // complete_exit/reenter operate as a wait without waiting
1195 // complete_exit requires an inflated monitor
1196 // The _owner field is not always the Thread addr even with an
1197 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1198 // thread due to contention.
1199 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1200   Thread * const Self = THREAD;
1201   assert(Self->is_Java_thread(), "Must be Java thread!");
1202   JavaThread *jt = (JavaThread *)THREAD;
1203 
1204   assert(InitDone, "Unexpectedly not initialized");
1205 
1206   if (THREAD != _owner) {
1207     if (THREAD->is_lock_owned ((address)_owner)) {
1208       assert(_recursions == 0, "internal state error");
1209       _owner = THREAD;   // Convert from basiclock addr to Thread addr
1210       _recursions = 0;
1211     }
1212   }
1213 
1214   guarantee(Self == _owner, "complete_exit not owner");
1215   intptr_t save = _recursions; // record the old recursion count
1216   _recursions = 0;        // set the recursion level to be 0
1217   exit(true, Self);           // exit the monitor
1218   guarantee(_owner != Self, "invariant");
1219   return save;
1220 }
1221 
1222 // reenter() enters a lock and sets recursion count
1223 // complete_exit/reenter operate as a wait without waiting
1224 bool ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1225   Thread * const Self = THREAD;
1226   assert(Self->is_Java_thread(), "Must be Java thread!");
1227   JavaThread *jt = (JavaThread *)THREAD;
1228 
1229   guarantee(_owner != Self, "reenter already owner");
1230   if (!enter(THREAD)) {
1231     // Failed to enter the monitor so return for a retry.
1232     return false;
1233   }
1234   // Entered the monitor.
1235   guarantee(_recursions == 0, "reenter recursion");
1236   _recursions = recursions;
1237   return true;
1238 }
1239 
1240 
1241 // -----------------------------------------------------------------------------
1242 // A macro is used below because there may already be a pending
1243 // exception which should not abort the execution of the routines
1244 // which use this (which is why we don't put this into check_slow and
1245 // call it with a CHECK argument).
1246 
1247 #define CHECK_OWNER()                                                       \
1248   do {                                                                      \
1249     if (THREAD != _owner) {                                                 \
1250       if (THREAD->is_lock_owned((address) _owner)) {                        \
1251         _owner = THREAD;  /* Convert from basiclock addr to Thread addr */  \
1252         _recursions = 0;                                                    \
1253       } else {                                                              \
1254         THROW(vmSymbols::java_lang_IllegalMonitorStateException());         \
1255       }                                                                     \
1256     }                                                                       \
1257   } while (false)
1258 
1259 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1260 // TODO-FIXME: remove check_slow() -- it's likely dead.
1261 
1262 void ObjectMonitor::check_slow(TRAPS) {
1263   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1264   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1265 }
1266 
1267 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1268                                     ObjectMonitor* monitor,
1269                                     jlong notifier_tid,
1270                                     jlong timeout,
1271                                     bool timedout) {
1272   assert(event != NULL, "invariant");
1273   assert(monitor != NULL, "invariant");
1274   event->set_monitorClass(((oop)monitor->object())->klass());
1275   event->set_timeout(timeout);
1276   event->set_address((uintptr_t)monitor->object_addr());
1277   event->set_notifier(notifier_tid);
1278   event->set_timedOut(timedout);
1279   event->commit();
1280 }
1281 
1282 // -----------------------------------------------------------------------------
1283 // Wait/Notify/NotifyAll
1284 //
1285 // Note: a subset of changes to ObjectMonitor::wait()
1286 // will need to be replicated in complete_exit
1287 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1288   Thread * const Self = THREAD;
1289   assert(Self->is_Java_thread(), "Must be Java thread!");
1290   JavaThread *jt = (JavaThread *)THREAD;
1291 
1292   assert(InitDone, "Unexpectedly not initialized");
1293 
1294   // Throw IMSX or IEX.
1295   CHECK_OWNER();
1296 
1297   EventJavaMonitorWait event;
1298 
1299   // check for a pending interrupt
1300   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1301     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1302     if (JvmtiExport::should_post_monitor_waited()) {
1303       // Note: 'false' parameter is passed here because the
1304       // wait was not timed out due to thread interrupt.
1305       JvmtiExport::post_monitor_waited(jt, this, false);
1306 
1307       // In this short circuit of the monitor wait protocol, the
1308       // current thread never drops ownership of the monitor and
1309       // never gets added to the wait queue so the current thread
1310       // cannot be made the successor. This means that the
1311       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1312       // consume an unpark() meant for the ParkEvent associated with
1313       // this ObjectMonitor.
1314     }
1315     if (event.should_commit()) {
1316       post_monitor_wait_event(&event, this, 0, millis, false);
1317     }
1318     THROW(vmSymbols::java_lang_InterruptedException());
1319     return;
1320   }
1321 
1322   assert(Self->_Stalled == 0, "invariant");
1323   Self->_Stalled = intptr_t(this);
1324   jt->set_current_waiting_monitor(this);
1325 
1326   // create a node to be put into the queue
1327   // Critically, after we reset() the event but prior to park(), we must check
1328   // for a pending interrupt.
1329   ObjectWaiter node(Self);
1330   node.TState = ObjectWaiter::TS_WAIT;
1331   Self->_ParkEvent->reset();
1332   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1333 
1334   // Enter the waiting queue, which is a circular doubly linked list in this case
1335   // but it could be a priority queue or any data structure.
1336   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1337   // by the the owner of the monitor *except* in the case where park()
1338   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1339   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1340 
1341   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1342   AddWaiter(&node);
1343   Thread::SpinRelease(&_WaitSetLock);
1344 
1345   _Responsible = NULL;
1346 
1347   intptr_t save = _recursions; // record the old recursion count
1348   _waiters++;                  // increment the number of waiters
1349   _recursions = 0;             // set the recursion level to be 1
1350   exit(true, Self);                    // exit the monitor
1351   guarantee(_owner != Self, "invariant");
1352 
1353   // The thread is on the WaitSet list - now park() it.
1354   // On MP systems it's conceivable that a brief spin before we park
1355   // could be profitable.
1356   //
1357   // TODO-FIXME: change the following logic to a loop of the form
1358   //   while (!timeout && !interrupted && _notified == 0) park()
1359 
1360   int ret = OS_OK;
1361   int WasNotified = 0;
1362   { // State transition wrappers
1363     OSThread* osthread = Self->osthread();
1364     OSThreadWaitState osts(osthread, true);
1365     {
1366       ThreadBlockInVM tbivm(jt);
1367       // Thread is in thread_blocked state and oop access is unsafe.
1368       jt->set_suspend_equivalent();
1369 
1370       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1371         // Intentionally empty
1372       } else if (node._notified == 0) {
1373         if (millis <= 0) {
1374           Self->_ParkEvent->park();
1375         } else {
1376           ret = Self->_ParkEvent->park(millis);
1377         }
1378       }
1379 
1380       // were we externally suspended while we were waiting?
1381       if (ExitSuspendEquivalent (jt)) {
1382         // TODO-FIXME: add -- if succ == Self then succ = null.
1383         jt->java_suspend_self();
1384       }
1385 
1386     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1387 
1388     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1389     // from the WaitSet to the EntryList.
1390     // See if we need to remove Node from the WaitSet.
1391     // We use double-checked locking to avoid grabbing _WaitSetLock
1392     // if the thread is not on the wait queue.
1393     //
1394     // Note that we don't need a fence before the fetch of TState.
1395     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1396     // written by the is thread. (perhaps the fetch might even be satisfied
1397     // by a look-aside into the processor's own store buffer, although given
1398     // the length of the code path between the prior ST and this load that's
1399     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1400     // then we'll acquire the lock and then re-fetch a fresh TState value.
1401     // That is, we fail toward safety.
1402 
1403     if (node.TState == ObjectWaiter::TS_WAIT) {
1404       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1405       if (node.TState == ObjectWaiter::TS_WAIT) {
1406         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1407         assert(node._notified == 0, "invariant");
1408         node.TState = ObjectWaiter::TS_RUN;
1409       }
1410       Thread::SpinRelease(&_WaitSetLock);
1411     }
1412 
1413     // The thread is now either on off-list (TS_RUN),
1414     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1415     // The Node's TState variable is stable from the perspective of this thread.
1416     // No other threads will asynchronously modify TState.
1417     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1418     OrderAccess::loadload();
1419     if (_succ == Self) _succ = NULL;
1420     WasNotified = node._notified;
1421 
1422     // Reentry phase -- reacquire the monitor.
1423     // re-enter contended monitor after object.wait().
1424     // retain OBJECT_WAIT state until re-enter successfully completes
1425     // Thread state is thread_in_vm and oop access is again safe,
1426     // although the raw address of the object may have changed.
1427     // (Don't cache naked oops over safepoints, of course).
1428 
1429     // post monitor waited event. Note that this is past-tense, we are done waiting.
1430     if (JvmtiExport::should_post_monitor_waited()) {
1431       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1432 
1433       if (node._notified != 0 && _succ == Self) {
1434         // In this part of the monitor wait-notify-reenter protocol it
1435         // is possible (and normal) for another thread to do a fastpath
1436         // monitor enter-exit while this thread is still trying to get
1437         // to the reenter portion of the protocol.
1438         //
1439         // The ObjectMonitor was notified and the current thread is
1440         // the successor which also means that an unpark() has already
1441         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1442         // consume the unpark() that was done when the successor was
1443         // set because the same ParkEvent is shared between Java
1444         // monitors and JVM/TI RawMonitors (for now).
1445         //
1446         // We redo the unpark() to ensure forward progress, i.e., we
1447         // don't want all pending threads hanging (parked) with none
1448         // entering the unlocked monitor.
1449         node._event->unpark();
1450       }
1451     }
1452 
1453     if (event.should_commit()) {
1454       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1455     }
1456 
1457     OrderAccess::fence();
1458 
1459     assert(Self->_Stalled != 0, "invariant");
1460     Self->_Stalled = 0;
1461 
1462     assert(_owner != Self, "invariant");
1463     ObjectWaiter::TStates v = node.TState;
1464     if (v == ObjectWaiter::TS_RUN) {
1465       const bool success = enter(Self);
1466       guarantee(success, "enter signaled for a retry, but monitor should not have been deflated as waiters > 0");
1467     } else {
1468       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1469       ReenterI(Self, &node);
1470       node.wait_reenter_end(this);
1471     }
1472 
1473     // Self has reacquired the lock.
1474     // Lifecycle - the node representing Self must not appear on any queues.
1475     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1476     // want residual elements associated with this thread left on any lists.
1477     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1478     assert(_owner == Self, "invariant");
1479     assert(_succ != Self, "invariant");
1480   } // OSThreadWaitState()
1481 
1482   jt->set_current_waiting_monitor(NULL);
1483 
1484   guarantee(_recursions == 0, "invariant");
1485   _recursions = save;     // restore the old recursion count
1486   _waiters--;             // decrement the number of waiters
1487 
1488   // Verify a few postconditions
1489   assert(_owner == Self, "invariant");
1490   assert(_succ != Self, "invariant");
1491   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
1492 
1493   // check if the notification happened
1494   if (!WasNotified) {
1495     // no, it could be timeout or Thread.interrupt() or both
1496     // check for interrupt event, otherwise it is timeout
1497     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1498       THROW(vmSymbols::java_lang_InterruptedException());
1499     }
1500   }
1501 
1502   // NOTE: Spurious wake up will be consider as timeout.
1503   // Monitor notify has precedence over thread interrupt.
1504 }
1505 
1506 
1507 // Consider:
1508 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1509 // then instead of transferring a thread from the WaitSet to the EntryList
1510 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1511 
1512 void ObjectMonitor::INotify(Thread * Self) {
1513   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1514   ObjectWaiter * iterator = DequeueWaiter();
1515   if (iterator != NULL) {
1516     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1517     guarantee(iterator->_notified == 0, "invariant");
1518     // Disposition - what might we do with iterator ?
1519     // a.  add it directly to the EntryList - either tail (policy == 1)
1520     //     or head (policy == 0).
1521     // b.  push it onto the front of the _cxq (policy == 2).
1522     // For now we use (b).
1523 
1524     iterator->TState = ObjectWaiter::TS_ENTER;
1525 
1526     iterator->_notified = 1;
1527     iterator->_notifier_tid = JFR_THREAD_ID(Self);
1528 
1529     ObjectWaiter * list = _EntryList;
1530     if (list != NULL) {
1531       assert(list->_prev == NULL, "invariant");
1532       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1533       assert(list != iterator, "invariant");
1534     }
1535 
1536     // prepend to cxq
1537     if (list == NULL) {
1538       iterator->_next = iterator->_prev = NULL;
1539       _EntryList = iterator;
1540     } else {
1541       iterator->TState = ObjectWaiter::TS_CXQ;
1542       for (;;) {
1543         ObjectWaiter * front = _cxq;
1544         iterator->_next = front;
1545         if (Atomic::cmpxchg(iterator, &_cxq, front) == front) {
1546           break;
1547         }
1548       }
1549     }
1550 
1551     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1552     // move the add-to-EntryList operation, above, outside the critical section
1553     // protected by _WaitSetLock.  In practice that's not useful.  With the
1554     // exception of  wait() timeouts and interrupts the monitor owner
1555     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1556     // on _WaitSetLock so it's not profitable to reduce the length of the
1557     // critical section.
1558 
1559     iterator->wait_reenter_begin(this);
1560   }
1561   Thread::SpinRelease(&_WaitSetLock);
1562 }
1563 
1564 // Consider: a not-uncommon synchronization bug is to use notify() when
1565 // notifyAll() is more appropriate, potentially resulting in stranded
1566 // threads; this is one example of a lost wakeup. A useful diagnostic
1567 // option is to force all notify() operations to behave as notifyAll().
1568 //
1569 // Note: We can also detect many such problems with a "minimum wait".
1570 // When the "minimum wait" is set to a small non-zero timeout value
1571 // and the program does not hang whereas it did absent "minimum wait",
1572 // that suggests a lost wakeup bug.
1573 
1574 void ObjectMonitor::notify(TRAPS) {
1575   CHECK_OWNER();
1576   if (_WaitSet == NULL) {
1577     return;
1578   }
1579   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1580   INotify(THREAD);
1581   OM_PERFDATA_OP(Notifications, inc(1));
1582 }
1583 
1584 
1585 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1586 // from the waitset to the EntryList. This could be done more efficiently with a
1587 // single bulk transfer but in practice it's not time-critical. Beware too,
1588 // that in prepend-mode we invert the order of the waiters. Let's say that the
1589 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1590 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1591 
1592 void ObjectMonitor::notifyAll(TRAPS) {
1593   CHECK_OWNER();
1594   if (_WaitSet == NULL) {
1595     return;
1596   }
1597 
1598   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1599   int tally = 0;
1600   while (_WaitSet != NULL) {
1601     tally++;
1602     INotify(THREAD);
1603   }
1604 
1605   OM_PERFDATA_OP(Notifications, inc(tally));
1606 }
1607 
1608 // -----------------------------------------------------------------------------
1609 // Adaptive Spinning Support
1610 //
1611 // Adaptive spin-then-block - rational spinning
1612 //
1613 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1614 // algorithm.  On high order SMP systems it would be better to start with
1615 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1616 // a contending thread could enqueue itself on the cxq and then spin locally
1617 // on a thread-specific variable such as its ParkEvent._Event flag.
1618 // That's left as an exercise for the reader.  Note that global spinning is
1619 // not problematic on Niagara, as the L2 cache serves the interconnect and
1620 // has both low latency and massive bandwidth.
1621 //
1622 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1623 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1624 // (duration) or we can fix the count at approximately the duration of
1625 // a context switch and vary the frequency.   Of course we could also
1626 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1627 // For a description of 'Adaptive spin-then-block mutual exclusion in
1628 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1629 //
1630 // This implementation varies the duration "D", where D varies with
1631 // the success rate of recent spin attempts. (D is capped at approximately
1632 // length of a round-trip context switch).  The success rate for recent
1633 // spin attempts is a good predictor of the success rate of future spin
1634 // attempts.  The mechanism adapts automatically to varying critical
1635 // section length (lock modality), system load and degree of parallelism.
1636 // D is maintained per-monitor in _SpinDuration and is initialized
1637 // optimistically.  Spin frequency is fixed at 100%.
1638 //
1639 // Note that _SpinDuration is volatile, but we update it without locks
1640 // or atomics.  The code is designed so that _SpinDuration stays within
1641 // a reasonable range even in the presence of races.  The arithmetic
1642 // operations on _SpinDuration are closed over the domain of legal values,
1643 // so at worst a race will install and older but still legal value.
1644 // At the very worst this introduces some apparent non-determinism.
1645 // We might spin when we shouldn't or vice-versa, but since the spin
1646 // count are relatively short, even in the worst case, the effect is harmless.
1647 //
1648 // Care must be taken that a low "D" value does not become an
1649 // an absorbing state.  Transient spinning failures -- when spinning
1650 // is overall profitable -- should not cause the system to converge
1651 // on low "D" values.  We want spinning to be stable and predictable
1652 // and fairly responsive to change and at the same time we don't want
1653 // it to oscillate, become metastable, be "too" non-deterministic,
1654 // or converge on or enter undesirable stable absorbing states.
1655 //
1656 // We implement a feedback-based control system -- using past behavior
1657 // to predict future behavior.  We face two issues: (a) if the
1658 // input signal is random then the spin predictor won't provide optimal
1659 // results, and (b) if the signal frequency is too high then the control
1660 // system, which has some natural response lag, will "chase" the signal.
1661 // (b) can arise from multimodal lock hold times.  Transient preemption
1662 // can also result in apparent bimodal lock hold times.
1663 // Although sub-optimal, neither condition is particularly harmful, as
1664 // in the worst-case we'll spin when we shouldn't or vice-versa.
1665 // The maximum spin duration is rather short so the failure modes aren't bad.
1666 // To be conservative, I've tuned the gain in system to bias toward
1667 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1668 // "rings" or oscillates between spinning and not spinning.  This happens
1669 // when spinning is just on the cusp of profitability, however, so the
1670 // situation is not dire.  The state is benign -- there's no need to add
1671 // hysteresis control to damp the transition rate between spinning and
1672 // not spinning.
1673 
1674 // Spinning: Fixed frequency (100%), vary duration
1675 int ObjectMonitor::TrySpin(Thread * Self) {
1676   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1677   int ctr = Knob_FixedSpin;
1678   if (ctr != 0) {
1679     while (--ctr >= 0) {
1680       if (TryLock(Self) > 0) return 1;
1681       SpinPause();
1682     }
1683     return 0;
1684   }
1685 
1686   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1687     if (TryLock(Self) > 0) {
1688       // Increase _SpinDuration ...
1689       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1690       // Raising _SpurDuration to the poverty line is key.
1691       int x = _SpinDuration;
1692       if (x < Knob_SpinLimit) {
1693         if (x < Knob_Poverty) x = Knob_Poverty;
1694         _SpinDuration = x + Knob_BonusB;
1695       }
1696       return 1;
1697     }
1698     SpinPause();
1699   }
1700 
1701   // Admission control - verify preconditions for spinning
1702   //
1703   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1704   // becoming an absorbing state.  Put another way, we spin briefly to
1705   // sample, just in case the system load, parallelism, contention, or lock
1706   // modality changed.
1707   //
1708   // Consider the following alternative:
1709   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1710   // spin attempt.  "Periodically" might mean after a tally of
1711   // the # of failed spin attempts (or iterations) reaches some threshold.
1712   // This takes us into the realm of 1-out-of-N spinning, where we
1713   // hold the duration constant but vary the frequency.
1714 
1715   ctr = _SpinDuration;
1716   if (ctr <= 0) return 0;
1717 
1718   if (NotRunnable(Self, (Thread *) _owner)) {
1719     return 0;
1720   }
1721 
1722   // We're good to spin ... spin ingress.
1723   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1724   // when preparing to LD...CAS _owner, etc and the CAS is likely
1725   // to succeed.
1726   if (_succ == NULL) {
1727     _succ = Self;
1728   }
1729   Thread * prv = NULL;
1730 
1731   // There are three ways to exit the following loop:
1732   // 1.  A successful spin where this thread has acquired the lock.
1733   // 2.  Spin failure with prejudice
1734   // 3.  Spin failure without prejudice
1735 
1736   while (--ctr >= 0) {
1737 
1738     // Periodic polling -- Check for pending GC
1739     // Threads may spin while they're unsafe.
1740     // We don't want spinning threads to delay the JVM from reaching
1741     // a stop-the-world safepoint or to steal cycles from GC.
1742     // If we detect a pending safepoint we abort in order that
1743     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1744     // this thread, if safe, doesn't steal cycles from GC.
1745     // This is in keeping with the "no loitering in runtime" rule.
1746     // We periodically check to see if there's a safepoint pending.
1747     if ((ctr & 0xFF) == 0) {
1748       if (SafepointMechanism::should_block(Self)) {
1749         goto Abort;           // abrupt spin egress
1750       }
1751       SpinPause();
1752     }
1753 
1754     // Probe _owner with TATAS
1755     // If this thread observes the monitor transition or flicker
1756     // from locked to unlocked to locked, then the odds that this
1757     // thread will acquire the lock in this spin attempt go down
1758     // considerably.  The same argument applies if the CAS fails
1759     // or if we observe _owner change from one non-null value to
1760     // another non-null value.   In such cases we might abort
1761     // the spin without prejudice or apply a "penalty" to the
1762     // spin count-down variable "ctr", reducing it by 100, say.
1763 
1764     Thread * ox = (Thread *) _owner;
1765     if (ox == NULL) {
1766       ox = (Thread*)Atomic::cmpxchg(Self, &_owner, (void*)NULL);
1767       if (ox == NULL) {
1768         // The CAS succeeded -- this thread acquired ownership
1769         // Take care of some bookkeeping to exit spin state.
1770         if (_succ == Self) {
1771           _succ = NULL;
1772         }
1773 
1774         // Increase _SpinDuration :
1775         // The spin was successful (profitable) so we tend toward
1776         // longer spin attempts in the future.
1777         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1778         // If we acquired the lock early in the spin cycle it
1779         // makes sense to increase _SpinDuration proportionally.
1780         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1781         int x = _SpinDuration;
1782         if (x < Knob_SpinLimit) {
1783           if (x < Knob_Poverty) x = Knob_Poverty;
1784           _SpinDuration = x + Knob_Bonus;
1785         }
1786         return 1;
1787       }
1788 
1789       // The CAS failed ... we can take any of the following actions:
1790       // * penalize: ctr -= CASPenalty
1791       // * exit spin with prejudice -- goto Abort;
1792       // * exit spin without prejudice.
1793       // * Since CAS is high-latency, retry again immediately.
1794       prv = ox;
1795       goto Abort;
1796     }
1797 
1798     // Did lock ownership change hands ?
1799     if (ox != prv && prv != NULL) {
1800       goto Abort;
1801     }
1802     prv = ox;
1803 
1804     // Abort the spin if the owner is not executing.
1805     // The owner must be executing in order to drop the lock.
1806     // Spinning while the owner is OFFPROC is idiocy.
1807     // Consider: ctr -= RunnablePenalty ;
1808     if (NotRunnable(Self, ox)) {
1809       goto Abort;
1810     }
1811     if (_succ == NULL) {
1812       _succ = Self;
1813     }
1814   }
1815 
1816   // Spin failed with prejudice -- reduce _SpinDuration.
1817   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
1818   // AIMD is globally stable.
1819   {
1820     int x = _SpinDuration;
1821     if (x > 0) {
1822       // Consider an AIMD scheme like: x -= (x >> 3) + 100
1823       // This is globally sample and tends to damp the response.
1824       x -= Knob_Penalty;
1825       if (x < 0) x = 0;
1826       _SpinDuration = x;
1827     }
1828   }
1829 
1830  Abort:
1831   if (_succ == Self) {
1832     _succ = NULL;
1833     // Invariant: after setting succ=null a contending thread
1834     // must recheck-retry _owner before parking.  This usually happens
1835     // in the normal usage of TrySpin(), but it's safest
1836     // to make TrySpin() as foolproof as possible.
1837     OrderAccess::fence();
1838     if (TryLock(Self) > 0) return 1;
1839   }
1840   return 0;
1841 }
1842 
1843 // NotRunnable() -- informed spinning
1844 //
1845 // Don't bother spinning if the owner is not eligible to drop the lock.
1846 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm.
1847 // The thread must be runnable in order to drop the lock in timely fashion.
1848 // If the _owner is not runnable then spinning will not likely be
1849 // successful (profitable).
1850 //
1851 // Beware -- the thread referenced by _owner could have died
1852 // so a simply fetch from _owner->_thread_state might trap.
1853 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
1854 // Because of the lifecycle issues, the _thread_state values
1855 // observed by NotRunnable() might be garbage.  NotRunnable must
1856 // tolerate this and consider the observed _thread_state value
1857 // as advisory.
1858 //
1859 // Beware too, that _owner is sometimes a BasicLock address and sometimes
1860 // a thread pointer.
1861 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
1862 // with the LSB of _owner.  Another option would be to probabilistically probe
1863 // the putative _owner->TypeTag value.
1864 //
1865 // Checking _thread_state isn't perfect.  Even if the thread is
1866 // in_java it might be blocked on a page-fault or have been preempted
1867 // and sitting on a ready/dispatch queue.
1868 //
1869 // The return value from NotRunnable() is *advisory* -- the
1870 // result is based on sampling and is not necessarily coherent.
1871 // The caller must tolerate false-negative and false-positive errors.
1872 // Spinning, in general, is probabilistic anyway.
1873 
1874 
1875 int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) {
1876   // Check ox->TypeTag == 2BAD.
1877   if (ox == NULL) return 0;
1878 
1879   // Avoid transitive spinning ...
1880   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
1881   // Immediately after T1 acquires L it's possible that T2, also
1882   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
1883   // This occurs transiently after T1 acquired L but before
1884   // T1 managed to clear T1.Stalled.  T2 does not need to abort
1885   // its spin in this circumstance.
1886   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
1887 
1888   if (BlockedOn == 1) return 1;
1889   if (BlockedOn != 0) {
1890     return BlockedOn != intptr_t(this) && _owner == ox;
1891   }
1892 
1893   assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
1894   int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
1895   // consider also: jst != _thread_in_Java -- but that's overspecific.
1896   return jst == _thread_blocked || jst == _thread_in_native;
1897 }
1898 
1899 
1900 // -----------------------------------------------------------------------------
1901 // WaitSet management ...
1902 
1903 ObjectWaiter::ObjectWaiter(Thread* thread) {
1904   _next     = NULL;
1905   _prev     = NULL;
1906   _notified = 0;
1907   _notifier_tid = 0;
1908   TState    = TS_RUN;
1909   _thread   = thread;
1910   _event    = thread->_ParkEvent;
1911   _active   = false;
1912   assert(_event != NULL, "invariant");
1913 }
1914 
1915 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
1916   JavaThread *jt = (JavaThread *)this->_thread;
1917   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
1918 }
1919 
1920 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
1921   JavaThread *jt = (JavaThread *)this->_thread;
1922   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
1923 }
1924 
1925 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
1926   assert(node != NULL, "should not add NULL node");
1927   assert(node->_prev == NULL, "node already in list");
1928   assert(node->_next == NULL, "node already in list");
1929   // put node at end of queue (circular doubly linked list)
1930   if (_WaitSet == NULL) {
1931     _WaitSet = node;
1932     node->_prev = node;
1933     node->_next = node;
1934   } else {
1935     ObjectWaiter* head = _WaitSet;
1936     ObjectWaiter* tail = head->_prev;
1937     assert(tail->_next == head, "invariant check");
1938     tail->_next = node;
1939     head->_prev = node;
1940     node->_next = head;
1941     node->_prev = tail;
1942   }
1943 }
1944 
1945 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
1946   // dequeue the very first waiter
1947   ObjectWaiter* waiter = _WaitSet;
1948   if (waiter) {
1949     DequeueSpecificWaiter(waiter);
1950   }
1951   return waiter;
1952 }
1953 
1954 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
1955   assert(node != NULL, "should not dequeue NULL node");
1956   assert(node->_prev != NULL, "node already removed from list");
1957   assert(node->_next != NULL, "node already removed from list");
1958   // when the waiter has woken up because of interrupt,
1959   // timeout or other spurious wake-up, dequeue the
1960   // waiter from waiting list
1961   ObjectWaiter* next = node->_next;
1962   if (next == node) {
1963     assert(node->_prev == node, "invariant check");
1964     _WaitSet = NULL;
1965   } else {
1966     ObjectWaiter* prev = node->_prev;
1967     assert(prev->_next == node, "invariant check");
1968     assert(next->_prev == node, "invariant check");
1969     next->_prev = prev;
1970     prev->_next = next;
1971     if (_WaitSet == node) {
1972       _WaitSet = next;
1973     }
1974   }
1975   node->_next = NULL;
1976   node->_prev = NULL;
1977 }
1978 
1979 // -----------------------------------------------------------------------------
1980 // PerfData support
1981 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
1982 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
1983 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
1984 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
1985 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
1986 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
1987 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
1988 
1989 // One-shot global initialization for the sync subsystem.
1990 // We could also defer initialization and initialize on-demand
1991 // the first time we call ObjectSynchronizer::inflate().
1992 // Initialization would be protected - like so many things - by
1993 // the MonitorCache_lock.
1994 
1995 void ObjectMonitor::Initialize() {
1996   assert(!InitDone, "invariant");
1997 
1998   if (!os::is_MP()) {
1999     Knob_SpinLimit = 0;
2000     Knob_PreSpin   = 0;
2001     Knob_FixedSpin = -1;
2002   }
2003 
2004   if (UsePerfData) {
2005     EXCEPTION_MARK;
2006 #define NEWPERFCOUNTER(n)                                                \
2007   {                                                                      \
2008     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2009                                         CHECK);                          \
2010   }
2011 #define NEWPERFVARIABLE(n)                                                \
2012   {                                                                       \
2013     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2014                                          CHECK);                          \
2015   }
2016     NEWPERFCOUNTER(_sync_Inflations);
2017     NEWPERFCOUNTER(_sync_Deflations);
2018     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2019     NEWPERFCOUNTER(_sync_FutileWakeups);
2020     NEWPERFCOUNTER(_sync_Parks);
2021     NEWPERFCOUNTER(_sync_Notifications);
2022     NEWPERFVARIABLE(_sync_MonExtant);
2023 #undef NEWPERFCOUNTER
2024 #undef NEWPERFVARIABLE
2025   }
2026 
2027   DEBUG_ONLY(InitDone = true;)
2028 }
2029 
2030 // For internal used by ObjectSynchronizer::monitors_iterate().
2031 ObjectMonitorHandle::ObjectMonitorHandle(ObjectMonitor * om_ptr) {
2032   om_ptr->inc_ref_count();
2033   _om_ptr = om_ptr;
2034 }
2035 
2036 ObjectMonitorHandle::~ObjectMonitorHandle() {
2037   if (_om_ptr != NULL) {
2038     _om_ptr->dec_ref_count();
2039     _om_ptr = NULL;
2040   }
2041 }
2042 
2043 // Save the ObjectMonitor* associated with the specified markOop and
2044 // increment the ref_count. This function should only be called if
2045 // the caller has verified mark->has_monitor() == true. The object
2046 // parameter is needed to verify that ObjectMonitor* has not been
2047 // deflated and reused for another object.
2048 //
2049 // This function returns true if the ObjectMonitor* has been safely
2050 // saved. This function returns false if we have lost a race with
2051 // async deflation; the caller should retry as appropriate.
2052 //
2053 bool ObjectMonitorHandle::save_om_ptr(oop object, markOop mark) {
2054   guarantee(mark->has_monitor(), "sanity check: mark=" INTPTR_FORMAT,
2055             p2i((address)mark));
2056 
2057   ObjectMonitor * om_ptr = mark->monitor();
2058   om_ptr->inc_ref_count();
2059 
2060   if (AsyncDeflateIdleMonitors) {
2061     // Race here if monitor is not owned! The above ref_count bump
2062     // will cause subsequent async deflation to skip it. However,
2063     // previous or concurrent async deflation is a race.
2064     if (om_ptr->_owner == DEFLATER_MARKER) {
2065       // Async deflation won the race so we have to retry.
2066       om_ptr->dec_ref_count();
2067       return false;
2068     }
2069     // The ObjectMonitor could have been deflated and reused for
2070     // another object before we bumped the ref_count so make sure
2071     // our object still refers to this ObjectMonitor.
2072     const markOop tmp = object->mark();
2073     if (!tmp->has_monitor() || tmp->monitor() != om_ptr) {
2074       // Async deflation and reuse won the race so we have to retry.
2075       om_ptr->dec_ref_count();
2076       return false;
2077     }
2078   }
2079 
2080   guarantee(_om_ptr == NULL, "sanity check: _om_ptr=" INTPTR_FORMAT,
2081             p2i(_om_ptr));
2082   _om_ptr = om_ptr;
2083   return true;
2084 }
2085 
2086 // For internal use by ObjectSynchronizer::inflate().
2087 void ObjectMonitorHandle::set_om_ptr(ObjectMonitor * om_ptr) {
2088   // Cannot guarantee() is_new() here. As soon as the ObjectMonitor*
2089   // is attached to the object in inflate(), it can be used by other
2090   // JavaThreads.
2091   // guarantee(om_ptr->is_new(), "sanity check: allocation_state=%d",
2092   //           int(om_ptr->allocation_state()));
2093   om_ptr->inc_ref_count();
2094   _om_ptr = om_ptr;
2095 }