1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/moduleEntry.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/gcId.hpp"
  38 #include "gc/shared/gcLocker.inline.hpp"
  39 #include "gc/shared/workgroup.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/linkResolver.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "jvmtifiles/jvmtiEnv.hpp"
  45 #include "logging/log.hpp"
  46 #include "logging/logConfiguration.hpp"
  47 #include "logging/logStream.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/metaspaceShared.hpp"
  50 #include "memory/oopFactory.hpp"
  51 #include "memory/resourceArea.hpp"
  52 #include "memory/universe.hpp"
  53 #include "oops/access.inline.hpp"
  54 #include "oops/instanceKlass.hpp"
  55 #include "oops/objArrayOop.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/symbol.hpp"
  58 #include "oops/typeArrayOop.inline.hpp"
  59 #include "oops/verifyOopClosure.hpp"
  60 #include "prims/jvm_misc.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "prims/jvmtiThreadState.hpp"
  63 #include "runtime/arguments.hpp"
  64 #include "runtime/atomic.hpp"
  65 #include "runtime/biasedLocking.hpp"
  66 #include "runtime/fieldDescriptor.inline.hpp"
  67 #include "runtime/flags/jvmFlagConstraintList.hpp"
  68 #include "runtime/flags/jvmFlagRangeList.hpp"
  69 #include "runtime/flags/jvmFlagWriteableList.hpp"
  70 #include "runtime/deoptimization.hpp"
  71 #include "runtime/frame.inline.hpp"
  72 #include "runtime/handles.inline.hpp"
  73 #include "runtime/handshake.hpp"
  74 #include "runtime/init.hpp"
  75 #include "runtime/interfaceSupport.inline.hpp"
  76 #include "runtime/java.hpp"
  77 #include "runtime/javaCalls.hpp"
  78 #include "runtime/jniHandles.inline.hpp"
  79 #include "runtime/jniPeriodicChecker.hpp"
  80 #include "runtime/memprofiler.hpp"
  81 #include "runtime/mutexLocker.hpp"
  82 #include "runtime/objectMonitor.hpp"
  83 #include "runtime/orderAccess.hpp"
  84 #include "runtime/osThread.hpp"
  85 #include "runtime/prefetch.inline.hpp"
  86 #include "runtime/safepoint.hpp"
  87 #include "runtime/safepointMechanism.inline.hpp"
  88 #include "runtime/safepointVerifiers.hpp"
  89 #include "runtime/sharedRuntime.hpp"
  90 #include "runtime/statSampler.hpp"
  91 #include "runtime/stubRoutines.hpp"
  92 #include "runtime/sweeper.hpp"
  93 #include "runtime/task.hpp"
  94 #include "runtime/thread.inline.hpp"
  95 #include "runtime/threadCritical.hpp"
  96 #include "runtime/threadSMR.inline.hpp"
  97 #include "runtime/threadStatisticalInfo.hpp"
  98 #include "runtime/timer.hpp"
  99 #include "runtime/timerTrace.hpp"
 100 #include "runtime/vframe.inline.hpp"
 101 #include "runtime/vframeArray.hpp"
 102 #include "runtime/vframe_hp.hpp"
 103 #include "runtime/vmThread.hpp"
 104 #include "runtime/vmOperations.hpp"
 105 #include "runtime/vm_version.hpp"
 106 #include "services/attachListener.hpp"
 107 #include "services/management.hpp"
 108 #include "services/memTracker.hpp"
 109 #include "services/threadService.hpp"
 110 #include "utilities/align.hpp"
 111 #include "utilities/copy.hpp"
 112 #include "utilities/defaultStream.hpp"
 113 #include "utilities/dtrace.hpp"
 114 #include "utilities/events.hpp"
 115 #include "utilities/macros.hpp"
 116 #include "utilities/preserveException.hpp"
 117 #include "utilities/singleWriterSynchronizer.hpp"
 118 #include "utilities/vmError.hpp"
 119 #if INCLUDE_JVMCI
 120 #include "jvmci/jvmciCompiler.hpp"
 121 #include "jvmci/jvmciRuntime.hpp"
 122 #include "logging/logHandle.hpp"
 123 #endif
 124 #ifdef COMPILER1
 125 #include "c1/c1_Compiler.hpp"
 126 #endif
 127 #ifdef COMPILER2
 128 #include "opto/c2compiler.hpp"
 129 #include "opto/idealGraphPrinter.hpp"
 130 #endif
 131 #if INCLUDE_RTM_OPT
 132 #include "runtime/rtmLocking.hpp"
 133 #endif
 134 #if INCLUDE_JFR
 135 #include "jfr/jfr.hpp"
 136 #endif
 137 
 138 // Initialization after module runtime initialization
 139 void universe_post_module_init();  // must happen after call_initPhase2
 140 
 141 #ifdef DTRACE_ENABLED
 142 
 143 // Only bother with this argument setup if dtrace is available
 144 
 145   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 146   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 147 
 148   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 149     {                                                                      \
 150       ResourceMark rm(this);                                               \
 151       int len = 0;                                                         \
 152       const char* name = (javathread)->get_thread_name();                  \
 153       len = strlen(name);                                                  \
 154       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 155         (char *) name, len,                                                \
 156         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 157         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 158         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 159     }
 160 
 161 #else //  ndef DTRACE_ENABLED
 162 
 163   #define DTRACE_THREAD_PROBE(probe, javathread)
 164 
 165 #endif // ndef DTRACE_ENABLED
 166 
 167 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 168 // Current thread is maintained as a thread-local variable
 169 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 170 #endif
 171 
 172 // ======= Thread ========
 173 // Support for forcing alignment of thread objects for biased locking
 174 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 175   if (UseBiasedLocking) {
 176     const int alignment = markOopDesc::biased_lock_alignment;
 177     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 178     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 179                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 180                                                          AllocFailStrategy::RETURN_NULL);
 181     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 182     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 183            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 184            "JavaThread alignment code overflowed allocated storage");
 185     if (aligned_addr != real_malloc_addr) {
 186       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 187                               p2i(real_malloc_addr),
 188                               p2i(aligned_addr));
 189     }
 190     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 191     return aligned_addr;
 192   } else {
 193     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 194                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 195   }
 196 }
 197 
 198 void Thread::operator delete(void* p) {
 199   if (UseBiasedLocking) {
 200     FreeHeap(((Thread*) p)->_real_malloc_address);
 201   } else {
 202     FreeHeap(p);
 203   }
 204 }
 205 
 206 void JavaThread::smr_delete() {
 207   if (_on_thread_list) {
 208     ThreadsSMRSupport::smr_delete(this);
 209   } else {
 210     delete this;
 211   }
 212 }
 213 
 214 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 215 // JavaThread
 216 
 217 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 218 
 219 Thread::Thread() {
 220 
 221   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 222 
 223   // stack and get_thread
 224   set_stack_base(NULL);
 225   set_stack_size(0);
 226   set_self_raw_id(0);
 227   set_lgrp_id(-1);
 228   DEBUG_ONLY(clear_suspendible_thread();)
 229 
 230   // allocated data structures
 231   set_osthread(NULL);
 232   set_resource_area(new (mtThread)ResourceArea());
 233   DEBUG_ONLY(_current_resource_mark = NULL;)
 234   set_handle_area(new (mtThread) HandleArea(NULL));
 235   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 236   set_active_handles(NULL);
 237   set_free_handle_block(NULL);
 238   set_last_handle_mark(NULL);
 239   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 240 
 241   // Initial value of zero ==> never claimed.
 242   _threads_do_token = 0;
 243   _threads_hazard_ptr = NULL;
 244   _threads_list_ptr = NULL;
 245   _nested_threads_hazard_ptr_cnt = 0;
 246   _rcu_counter = 0;
 247 
 248   // the handle mark links itself to last_handle_mark
 249   new HandleMark(this);
 250 
 251   // plain initialization
 252   debug_only(_owned_locks = NULL;)
 253   debug_only(_allow_allocation_count = 0;)
 254   NOT_PRODUCT(_allow_safepoint_count = 0;)
 255   NOT_PRODUCT(_skip_gcalot = false;)
 256   _jvmti_env_iteration_count = 0;
 257   set_allocated_bytes(0);
 258   _vm_operation_started_count = 0;
 259   _vm_operation_completed_count = 0;
 260   _current_pending_monitor = NULL;
 261   _current_pending_monitor_is_from_java = true;
 262   _current_waiting_monitor = NULL;
 263   _num_nested_signal = 0;
 264   omFreeList = NULL;
 265   omFreeCount = 0;
 266   omFreeProvision = 32;
 267   omInUseList = NULL;
 268   omInUseCount = 0;
 269   omShouldDeflateIdleMonitors = false;
 270 
 271 #ifdef ASSERT
 272   _visited_for_critical_count = false;
 273 #endif
 274 
 275   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 276                          Monitor::_safepoint_check_sometimes);
 277   _suspend_flags = 0;
 278 
 279   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 280   _hashStateX = os::random();
 281   _hashStateY = 842502087;
 282   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 283   _hashStateW = 273326509;
 284 
 285   _OnTrap   = 0;
 286   _Stalled  = 0;
 287   _TypeTag  = 0x2BAD;
 288 
 289   // Many of the following fields are effectively final - immutable
 290   // Note that nascent threads can't use the Native Monitor-Mutex
 291   // construct until the _MutexEvent is initialized ...
 292   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 293   // we might instead use a stack of ParkEvents that we could provision on-demand.
 294   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 295   // and ::Release()
 296   _ParkEvent   = ParkEvent::Allocate(this);
 297   _SleepEvent  = ParkEvent::Allocate(this);
 298   _MuxEvent    = ParkEvent::Allocate(this);
 299 
 300 #ifdef CHECK_UNHANDLED_OOPS
 301   if (CheckUnhandledOops) {
 302     _unhandled_oops = new UnhandledOops(this);
 303   }
 304 #endif // CHECK_UNHANDLED_OOPS
 305 #ifdef ASSERT
 306   if (UseBiasedLocking) {
 307     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 308     assert(this == _real_malloc_address ||
 309            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 310            "bug in forced alignment of thread objects");
 311   }
 312 #endif // ASSERT
 313 
 314   // Notify the barrier set that a thread is being created. The initial
 315   // thread is created before the barrier set is available.  The call to
 316   // BarrierSet::on_thread_create() for this thread is therefore deferred
 317   // to BarrierSet::set_barrier_set().
 318   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 319   if (barrier_set != NULL) {
 320     barrier_set->on_thread_create(this);
 321   } else {
 322     // Only the main thread should be created before the barrier set
 323     // and that happens just before Thread::current is set. No other thread
 324     // can attach as the VM is not created yet, so they can't execute this code.
 325     // If the main thread creates other threads before the barrier set that is an error.
 326     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 327   }
 328 }
 329 
 330 void Thread::initialize_thread_current() {
 331 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 332   assert(_thr_current == NULL, "Thread::current already initialized");
 333   _thr_current = this;
 334 #endif
 335   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 336   ThreadLocalStorage::set_thread(this);
 337   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 338 }
 339 
 340 void Thread::clear_thread_current() {
 341   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 342 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 343   _thr_current = NULL;
 344 #endif
 345   ThreadLocalStorage::set_thread(NULL);
 346 }
 347 
 348 void Thread::record_stack_base_and_size() {
 349   // Note: at this point, Thread object is not yet initialized. Do not rely on
 350   // any members being initialized. Do not rely on Thread::current() being set.
 351   // If possible, refrain from doing anything which may crash or assert since
 352   // quite probably those crash dumps will be useless.
 353   set_stack_base(os::current_stack_base());
 354   set_stack_size(os::current_stack_size());
 355 
 356 #ifdef SOLARIS
 357   if (os::is_primordial_thread()) {
 358     os::Solaris::correct_stack_boundaries_for_primordial_thread(this);
 359   }
 360 #endif
 361 
 362   // Set stack limits after thread is initialized.
 363   if (is_Java_thread()) {
 364     ((JavaThread*) this)->set_stack_overflow_limit();
 365     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 366   }
 367 }
 368 
 369 #if INCLUDE_NMT
 370 void Thread::register_thread_stack_with_NMT() {
 371   MemTracker::record_thread_stack(stack_end(), stack_size());
 372 }
 373 #endif // INCLUDE_NMT
 374 
 375 void Thread::call_run() {
 376   DEBUG_ONLY(_run_state = CALL_RUN;)
 377 
 378   // At this point, Thread object should be fully initialized and
 379   // Thread::current() should be set.
 380 
 381   assert(Thread::current_or_null() != NULL, "current thread is unset");
 382   assert(Thread::current_or_null() == this, "current thread is wrong");
 383 
 384   // Perform common initialization actions
 385 
 386   register_thread_stack_with_NMT();
 387 
 388   JFR_ONLY(Jfr::on_thread_start(this);)
 389 
 390   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 391     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 392     os::current_thread_id(), p2i(stack_base() - stack_size()),
 393     p2i(stack_base()), stack_size()/1024);
 394 
 395   // Perform <ChildClass> initialization actions
 396   DEBUG_ONLY(_run_state = PRE_RUN;)
 397   this->pre_run();
 398 
 399   // Invoke <ChildClass>::run()
 400   DEBUG_ONLY(_run_state = RUN;)
 401   this->run();
 402   // Returned from <ChildClass>::run(). Thread finished.
 403 
 404   // Perform common tear-down actions
 405 
 406   assert(Thread::current_or_null() != NULL, "current thread is unset");
 407   assert(Thread::current_or_null() == this, "current thread is wrong");
 408 
 409   // Perform <ChildClass> tear-down actions
 410   DEBUG_ONLY(_run_state = POST_RUN;)
 411   this->post_run();
 412 
 413   // Note: at this point the thread object may already have deleted itself,
 414   // so from here on do not dereference *this*. Not all thread types currently
 415   // delete themselves when they terminate. But no thread should ever be deleted
 416   // asynchronously with respect to its termination - that is what _run_state can
 417   // be used to check.
 418 
 419   assert(Thread::current_or_null() == NULL, "current thread still present");
 420 }
 421 
 422 Thread::~Thread() {
 423 
 424   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 425   // get started due to errors etc. Any active thread should at least reach post_run
 426   // before it is deleted (usually in post_run()).
 427   assert(_run_state == PRE_CALL_RUN ||
 428          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 429          "_run_state=%d", (int)_run_state);
 430 
 431   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 432   // set might not be available if we encountered errors during bootstrapping.
 433   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 434   if (barrier_set != NULL) {
 435     barrier_set->on_thread_destroy(this);
 436   }
 437 
 438   // stack_base can be NULL if the thread is never started or exited before
 439   // record_stack_base_and_size called. Although, we would like to ensure
 440   // that all started threads do call record_stack_base_and_size(), there is
 441   // not proper way to enforce that.
 442 #if INCLUDE_NMT
 443   if (_stack_base != NULL) {
 444     MemTracker::release_thread_stack(stack_end(), stack_size());
 445 #ifdef ASSERT
 446     set_stack_base(NULL);
 447 #endif
 448   }
 449 #endif // INCLUDE_NMT
 450 
 451   // deallocate data structures
 452   delete resource_area();
 453   // since the handle marks are using the handle area, we have to deallocated the root
 454   // handle mark before deallocating the thread's handle area,
 455   assert(last_handle_mark() != NULL, "check we have an element");
 456   delete last_handle_mark();
 457   assert(last_handle_mark() == NULL, "check we have reached the end");
 458 
 459   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 460   // We NULL out the fields for good hygiene.
 461   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 462   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 463   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 464 
 465   delete handle_area();
 466   delete metadata_handles();
 467 
 468   // SR_handler uses this as a termination indicator -
 469   // needs to happen before os::free_thread()
 470   delete _SR_lock;
 471   _SR_lock = NULL;
 472 
 473   // osthread() can be NULL, if creation of thread failed.
 474   if (osthread() != NULL) os::free_thread(osthread());
 475 
 476   // Clear Thread::current if thread is deleting itself and it has not
 477   // already been done. This must be done before the memory is deallocated.
 478   // Needed to ensure JNI correctly detects non-attached threads.
 479   if (this == Thread::current_or_null()) {
 480     Thread::clear_thread_current();
 481   }
 482 
 483   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 484 }
 485 
 486 #ifdef ASSERT
 487 // A JavaThread is considered "dangling" if it is not the current
 488 // thread, has been added the Threads list, the system is not at a
 489 // safepoint and the Thread is not "protected".
 490 //
 491 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 492   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 493          !((JavaThread *) thread)->on_thread_list() ||
 494          SafepointSynchronize::is_at_safepoint() ||
 495          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 496          "possibility of dangling Thread pointer");
 497 }
 498 #endif
 499 
 500 ThreadPriority Thread::get_priority(const Thread* const thread) {
 501   ThreadPriority priority;
 502   // Can return an error!
 503   (void)os::get_priority(thread, priority);
 504   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 505   return priority;
 506 }
 507 
 508 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 509   debug_only(check_for_dangling_thread_pointer(thread);)
 510   // Can return an error!
 511   (void)os::set_priority(thread, priority);
 512 }
 513 
 514 
 515 void Thread::start(Thread* thread) {
 516   // Start is different from resume in that its safety is guaranteed by context or
 517   // being called from a Java method synchronized on the Thread object.
 518   if (!DisableStartThread) {
 519     if (thread->is_Java_thread()) {
 520       // Initialize the thread state to RUNNABLE before starting this thread.
 521       // Can not set it after the thread started because we do not know the
 522       // exact thread state at that time. It could be in MONITOR_WAIT or
 523       // in SLEEPING or some other state.
 524       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 525                                           java_lang_Thread::RUNNABLE);
 526     }
 527     os::start_thread(thread);
 528   }
 529 }
 530 
 531 // Enqueue a VM_Operation to do the job for us - sometime later
 532 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 533   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 534   VMThread::execute(vm_stop);
 535 }
 536 
 537 
 538 // Check if an external suspend request has completed (or has been
 539 // cancelled). Returns true if the thread is externally suspended and
 540 // false otherwise.
 541 //
 542 // The bits parameter returns information about the code path through
 543 // the routine. Useful for debugging:
 544 //
 545 // set in is_ext_suspend_completed():
 546 // 0x00000001 - routine was entered
 547 // 0x00000010 - routine return false at end
 548 // 0x00000100 - thread exited (return false)
 549 // 0x00000200 - suspend request cancelled (return false)
 550 // 0x00000400 - thread suspended (return true)
 551 // 0x00001000 - thread is in a suspend equivalent state (return true)
 552 // 0x00002000 - thread is native and walkable (return true)
 553 // 0x00004000 - thread is native_trans and walkable (needed retry)
 554 //
 555 // set in wait_for_ext_suspend_completion():
 556 // 0x00010000 - routine was entered
 557 // 0x00020000 - suspend request cancelled before loop (return false)
 558 // 0x00040000 - thread suspended before loop (return true)
 559 // 0x00080000 - suspend request cancelled in loop (return false)
 560 // 0x00100000 - thread suspended in loop (return true)
 561 // 0x00200000 - suspend not completed during retry loop (return false)
 562 
 563 // Helper class for tracing suspend wait debug bits.
 564 //
 565 // 0x00000100 indicates that the target thread exited before it could
 566 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 567 // 0x00080000 each indicate a cancelled suspend request so they don't
 568 // count as wait failures either.
 569 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 570 
 571 class TraceSuspendDebugBits : public StackObj {
 572  private:
 573   JavaThread * jt;
 574   bool         is_wait;
 575   bool         called_by_wait;  // meaningful when !is_wait
 576   uint32_t *   bits;
 577 
 578  public:
 579   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 580                         uint32_t *_bits) {
 581     jt             = _jt;
 582     is_wait        = _is_wait;
 583     called_by_wait = _called_by_wait;
 584     bits           = _bits;
 585   }
 586 
 587   ~TraceSuspendDebugBits() {
 588     if (!is_wait) {
 589 #if 1
 590       // By default, don't trace bits for is_ext_suspend_completed() calls.
 591       // That trace is very chatty.
 592       return;
 593 #else
 594       if (!called_by_wait) {
 595         // If tracing for is_ext_suspend_completed() is enabled, then only
 596         // trace calls to it from wait_for_ext_suspend_completion()
 597         return;
 598       }
 599 #endif
 600     }
 601 
 602     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 603       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 604         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 605         ResourceMark rm;
 606 
 607         tty->print_cr(
 608                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 609                       jt->get_thread_name(), *bits);
 610 
 611         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 612       }
 613     }
 614   }
 615 };
 616 #undef DEBUG_FALSE_BITS
 617 
 618 
 619 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 620                                           uint32_t *bits) {
 621   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 622 
 623   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 624   bool do_trans_retry;           // flag to force the retry
 625 
 626   *bits |= 0x00000001;
 627 
 628   do {
 629     do_trans_retry = false;
 630 
 631     if (is_exiting()) {
 632       // Thread is in the process of exiting. This is always checked
 633       // first to reduce the risk of dereferencing a freed JavaThread.
 634       *bits |= 0x00000100;
 635       return false;
 636     }
 637 
 638     if (!is_external_suspend()) {
 639       // Suspend request is cancelled. This is always checked before
 640       // is_ext_suspended() to reduce the risk of a rogue resume
 641       // confusing the thread that made the suspend request.
 642       *bits |= 0x00000200;
 643       return false;
 644     }
 645 
 646     if (is_ext_suspended()) {
 647       // thread is suspended
 648       *bits |= 0x00000400;
 649       return true;
 650     }
 651 
 652     // Now that we no longer do hard suspends of threads running
 653     // native code, the target thread can be changing thread state
 654     // while we are in this routine:
 655     //
 656     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 657     //
 658     // We save a copy of the thread state as observed at this moment
 659     // and make our decision about suspend completeness based on the
 660     // copy. This closes the race where the thread state is seen as
 661     // _thread_in_native_trans in the if-thread_blocked check, but is
 662     // seen as _thread_blocked in if-thread_in_native_trans check.
 663     JavaThreadState save_state = thread_state();
 664 
 665     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 666       // If the thread's state is _thread_blocked and this blocking
 667       // condition is known to be equivalent to a suspend, then we can
 668       // consider the thread to be externally suspended. This means that
 669       // the code that sets _thread_blocked has been modified to do
 670       // self-suspension if the blocking condition releases. We also
 671       // used to check for CONDVAR_WAIT here, but that is now covered by
 672       // the _thread_blocked with self-suspension check.
 673       //
 674       // Return true since we wouldn't be here unless there was still an
 675       // external suspend request.
 676       *bits |= 0x00001000;
 677       return true;
 678     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 679       // Threads running native code will self-suspend on native==>VM/Java
 680       // transitions. If its stack is walkable (should always be the case
 681       // unless this function is called before the actual java_suspend()
 682       // call), then the wait is done.
 683       *bits |= 0x00002000;
 684       return true;
 685     } else if (!called_by_wait && !did_trans_retry &&
 686                save_state == _thread_in_native_trans &&
 687                frame_anchor()->walkable()) {
 688       // The thread is transitioning from thread_in_native to another
 689       // thread state. check_safepoint_and_suspend_for_native_trans()
 690       // will force the thread to self-suspend. If it hasn't gotten
 691       // there yet we may have caught the thread in-between the native
 692       // code check above and the self-suspend. Lucky us. If we were
 693       // called by wait_for_ext_suspend_completion(), then it
 694       // will be doing the retries so we don't have to.
 695       //
 696       // Since we use the saved thread state in the if-statement above,
 697       // there is a chance that the thread has already transitioned to
 698       // _thread_blocked by the time we get here. In that case, we will
 699       // make a single unnecessary pass through the logic below. This
 700       // doesn't hurt anything since we still do the trans retry.
 701 
 702       *bits |= 0x00004000;
 703 
 704       // Once the thread leaves thread_in_native_trans for another
 705       // thread state, we break out of this retry loop. We shouldn't
 706       // need this flag to prevent us from getting back here, but
 707       // sometimes paranoia is good.
 708       did_trans_retry = true;
 709 
 710       // We wait for the thread to transition to a more usable state.
 711       for (int i = 1; i <= SuspendRetryCount; i++) {
 712         // We used to do an "os::yield_all(i)" call here with the intention
 713         // that yielding would increase on each retry. However, the parameter
 714         // is ignored on Linux which means the yield didn't scale up. Waiting
 715         // on the SR_lock below provides a much more predictable scale up for
 716         // the delay. It also provides a simple/direct point to check for any
 717         // safepoint requests from the VMThread
 718 
 719         // temporarily drops SR_lock while doing wait with safepoint check
 720         // (if we're a JavaThread - the WatcherThread can also call this)
 721         // and increase delay with each retry
 722         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 723 
 724         // check the actual thread state instead of what we saved above
 725         if (thread_state() != _thread_in_native_trans) {
 726           // the thread has transitioned to another thread state so
 727           // try all the checks (except this one) one more time.
 728           do_trans_retry = true;
 729           break;
 730         }
 731       } // end retry loop
 732 
 733 
 734     }
 735   } while (do_trans_retry);
 736 
 737   *bits |= 0x00000010;
 738   return false;
 739 }
 740 
 741 // Wait for an external suspend request to complete (or be cancelled).
 742 // Returns true if the thread is externally suspended and false otherwise.
 743 //
 744 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 745                                                  uint32_t *bits) {
 746   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 747                              false /* !called_by_wait */, bits);
 748 
 749   // local flag copies to minimize SR_lock hold time
 750   bool is_suspended;
 751   bool pending;
 752   uint32_t reset_bits;
 753 
 754   // set a marker so is_ext_suspend_completed() knows we are the caller
 755   *bits |= 0x00010000;
 756 
 757   // We use reset_bits to reinitialize the bits value at the top of
 758   // each retry loop. This allows the caller to make use of any
 759   // unused bits for their own marking purposes.
 760   reset_bits = *bits;
 761 
 762   {
 763     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 764     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 765                                             delay, bits);
 766     pending = is_external_suspend();
 767   }
 768   // must release SR_lock to allow suspension to complete
 769 
 770   if (!pending) {
 771     // A cancelled suspend request is the only false return from
 772     // is_ext_suspend_completed() that keeps us from entering the
 773     // retry loop.
 774     *bits |= 0x00020000;
 775     return false;
 776   }
 777 
 778   if (is_suspended) {
 779     *bits |= 0x00040000;
 780     return true;
 781   }
 782 
 783   for (int i = 1; i <= retries; i++) {
 784     *bits = reset_bits;  // reinit to only track last retry
 785 
 786     // We used to do an "os::yield_all(i)" call here with the intention
 787     // that yielding would increase on each retry. However, the parameter
 788     // is ignored on Linux which means the yield didn't scale up. Waiting
 789     // on the SR_lock below provides a much more predictable scale up for
 790     // the delay. It also provides a simple/direct point to check for any
 791     // safepoint requests from the VMThread
 792 
 793     {
 794       MutexLocker ml(SR_lock());
 795       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 796       // can also call this)  and increase delay with each retry
 797       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 798 
 799       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 800                                               delay, bits);
 801 
 802       // It is possible for the external suspend request to be cancelled
 803       // (by a resume) before the actual suspend operation is completed.
 804       // Refresh our local copy to see if we still need to wait.
 805       pending = is_external_suspend();
 806     }
 807 
 808     if (!pending) {
 809       // A cancelled suspend request is the only false return from
 810       // is_ext_suspend_completed() that keeps us from staying in the
 811       // retry loop.
 812       *bits |= 0x00080000;
 813       return false;
 814     }
 815 
 816     if (is_suspended) {
 817       *bits |= 0x00100000;
 818       return true;
 819     }
 820   } // end retry loop
 821 
 822   // thread did not suspend after all our retries
 823   *bits |= 0x00200000;
 824   return false;
 825 }
 826 
 827 // Called from API entry points which perform stack walking. If the
 828 // associated JavaThread is the current thread, then wait_for_suspend
 829 // is not used. Otherwise, it determines if we should wait for the
 830 // "other" thread to complete external suspension. (NOTE: in future
 831 // releases the suspension mechanism should be reimplemented so this
 832 // is not necessary.)
 833 //
 834 bool
 835 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 836   if (this != JavaThread::current()) {
 837     // "other" threads require special handling.
 838     if (wait_for_suspend) {
 839       // We are allowed to wait for the external suspend to complete
 840       // so give the other thread a chance to get suspended.
 841       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 842                                            SuspendRetryDelay, bits)) {
 843         // Didn't make it so let the caller know.
 844         return false;
 845       }
 846     }
 847     // We aren't allowed to wait for the external suspend to complete
 848     // so if the other thread isn't externally suspended we need to
 849     // let the caller know.
 850     else if (!is_ext_suspend_completed_with_lock(bits)) {
 851       return false;
 852     }
 853   }
 854 
 855   return true;
 856 }
 857 
 858 #ifndef PRODUCT
 859 void JavaThread::record_jump(address target, address instr, const char* file,
 860                              int line) {
 861 
 862   // This should not need to be atomic as the only way for simultaneous
 863   // updates is via interrupts. Even then this should be rare or non-existent
 864   // and we don't care that much anyway.
 865 
 866   int index = _jmp_ring_index;
 867   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 868   _jmp_ring[index]._target = (intptr_t) target;
 869   _jmp_ring[index]._instruction = (intptr_t) instr;
 870   _jmp_ring[index]._file = file;
 871   _jmp_ring[index]._line = line;
 872 }
 873 #endif // PRODUCT
 874 
 875 void Thread::interrupt(Thread* thread) {
 876   debug_only(check_for_dangling_thread_pointer(thread);)
 877   os::interrupt(thread);
 878 }
 879 
 880 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 881   debug_only(check_for_dangling_thread_pointer(thread);)
 882   // Note:  If clear_interrupted==false, this simply fetches and
 883   // returns the value of the field osthread()->interrupted().
 884   return os::is_interrupted(thread, clear_interrupted);
 885 }
 886 
 887 
 888 // GC Support
 889 bool Thread::claim_par_threads_do(uintx claim_token) {
 890   uintx token = _threads_do_token;
 891   if (token != claim_token) {
 892     uintx res = Atomic::cmpxchg(claim_token, &_threads_do_token, token);
 893     if (res == token) {
 894       return true;
 895     }
 896     guarantee(res == claim_token, "invariant");
 897   }
 898   return false;
 899 }
 900 
 901 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 902   active_handles()->oops_do(f);
 903   // Do oop for ThreadShadow
 904   f->do_oop((oop*)&_pending_exception);
 905   handle_area()->oops_do(f);
 906 
 907   // We scan thread local monitor lists here, and the remaining global
 908   // monitors in ObjectSynchronizer::oops_do().
 909   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 910 }
 911 
 912 void Thread::metadata_handles_do(void f(Metadata*)) {
 913   // Only walk the Handles in Thread.
 914   if (metadata_handles() != NULL) {
 915     for (int i = 0; i< metadata_handles()->length(); i++) {
 916       f(metadata_handles()->at(i));
 917     }
 918   }
 919 }
 920 
 921 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 922   // get_priority assumes osthread initialized
 923   if (osthread() != NULL) {
 924     int os_prio;
 925     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 926       st->print("os_prio=%d ", os_prio);
 927     }
 928 
 929     st->print("cpu=%.2fms ",
 930               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 931               );
 932     st->print("elapsed=%.2fs ",
 933               _statistical_info.getElapsedTime() / 1000.0
 934               );
 935     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 936       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 937       st->print("allocated=" SIZE_FORMAT "%s ",
 938                 byte_size_in_proper_unit(allocated_bytes),
 939                 proper_unit_for_byte_size(allocated_bytes)
 940                 );
 941       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 942     }
 943 
 944     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 945     osthread()->print_on(st);
 946   }
 947   ThreadsSMRSupport::print_info_on(this, st);
 948   st->print(" ");
 949   debug_only(if (WizardMode) print_owned_locks_on(st);)
 950 }
 951 
 952 // Thread::print_on_error() is called by fatal error handler. Don't use
 953 // any lock or allocate memory.
 954 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 955   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 956 
 957   if (is_VM_thread())                 { st->print("VMThread"); }
 958   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 959   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 960   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 961   else                                { st->print("Thread"); }
 962 
 963   if (is_Named_thread()) {
 964     st->print(" \"%s\"", name());
 965   }
 966 
 967   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 968             p2i(stack_end()), p2i(stack_base()));
 969 
 970   if (osthread()) {
 971     st->print(" [id=%d]", osthread()->thread_id());
 972   }
 973 
 974   ThreadsSMRSupport::print_info_on(this, st);
 975 }
 976 
 977 void Thread::print_value_on(outputStream* st) const {
 978   if (is_Named_thread()) {
 979     st->print(" \"%s\" ", name());
 980   }
 981   st->print(INTPTR_FORMAT, p2i(this));   // print address
 982 }
 983 
 984 #ifdef ASSERT
 985 void Thread::print_owned_locks_on(outputStream* st) const {
 986   Monitor *cur = _owned_locks;
 987   if (cur == NULL) {
 988     st->print(" (no locks) ");
 989   } else {
 990     st->print_cr(" Locks owned:");
 991     while (cur) {
 992       cur->print_on(st);
 993       cur = cur->next();
 994     }
 995   }
 996 }
 997 
 998 static int ref_use_count  = 0;
 999 
1000 bool Thread::owns_locks_but_compiled_lock() const {
1001   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
1002     if (cur != Compile_lock) return true;
1003   }
1004   return false;
1005 }
1006 
1007 
1008 #endif
1009 
1010 #ifndef PRODUCT
1011 
1012 // The flag: potential_vm_operation notifies if this particular safepoint state could potentially
1013 // invoke the vm-thread (e.g., an oop allocation). In that case, we also have to make sure that
1014 // no locks which allow_vm_block's are held
1015 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
1016   // Check if current thread is allowed to block at a safepoint
1017   if (!(_allow_safepoint_count == 0)) {
1018     fatal("Possible safepoint reached by thread that does not allow it");
1019   }
1020   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
1021     fatal("LEAF method calling lock?");
1022   }
1023 
1024 #ifdef ASSERT
1025   if (potential_vm_operation && is_Java_thread()
1026       && !Universe::is_bootstrapping()) {
1027     // Make sure we do not hold any locks that the VM thread also uses.
1028     // This could potentially lead to deadlocks
1029     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
1030       // Threads_lock is special, since the safepoint synchronization will not start before this is
1031       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
1032       // since it is used to transfer control between JavaThreads and the VMThread
1033       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
1034       if ((cur->allow_vm_block() &&
1035            cur != Threads_lock &&
1036            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
1037            cur != VMOperationRequest_lock &&
1038            cur != VMOperationQueue_lock) ||
1039            cur->rank() == Mutex::special) {
1040         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
1041       }
1042     }
1043   }
1044 
1045   if (GCALotAtAllSafepoints) {
1046     // We could enter a safepoint here and thus have a gc
1047     InterfaceSupport::check_gc_alot();
1048   }
1049 #endif
1050 }
1051 #endif
1052 
1053 bool Thread::is_in_stack(address adr) const {
1054   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1055   address end = os::current_stack_pointer();
1056   // Allow non Java threads to call this without stack_base
1057   if (_stack_base == NULL) return true;
1058   if (stack_base() >= adr && adr >= end) return true;
1059 
1060   return false;
1061 }
1062 
1063 bool Thread::is_in_usable_stack(address adr) const {
1064   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1065   size_t usable_stack_size = _stack_size - stack_guard_size;
1066 
1067   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1068 }
1069 
1070 
1071 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1072 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1073 // used for compilation in the future. If that change is made, the need for these methods
1074 // should be revisited, and they should be removed if possible.
1075 
1076 bool Thread::is_lock_owned(address adr) const {
1077   return on_local_stack(adr);
1078 }
1079 
1080 bool Thread::set_as_starting_thread() {
1081   assert(_starting_thread == NULL, "already initialized: "
1082          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1083   // NOTE: this must be called inside the main thread.
1084   DEBUG_ONLY(_starting_thread = this;)
1085   return os::create_main_thread((JavaThread*)this);
1086 }
1087 
1088 static void initialize_class(Symbol* class_name, TRAPS) {
1089   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1090   InstanceKlass::cast(klass)->initialize(CHECK);
1091 }
1092 
1093 
1094 // Creates the initial ThreadGroup
1095 static Handle create_initial_thread_group(TRAPS) {
1096   Handle system_instance = JavaCalls::construct_new_instance(
1097                             SystemDictionary::ThreadGroup_klass(),
1098                             vmSymbols::void_method_signature(),
1099                             CHECK_NH);
1100   Universe::set_system_thread_group(system_instance());
1101 
1102   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1103   Handle main_instance = JavaCalls::construct_new_instance(
1104                             SystemDictionary::ThreadGroup_klass(),
1105                             vmSymbols::threadgroup_string_void_signature(),
1106                             system_instance,
1107                             string,
1108                             CHECK_NH);
1109   return main_instance;
1110 }
1111 
1112 // Creates the initial Thread
1113 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1114                                  TRAPS) {
1115   InstanceKlass* ik = SystemDictionary::Thread_klass();
1116   assert(ik->is_initialized(), "must be");
1117   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1118 
1119   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1120   // constructor calls Thread.current(), which must be set here for the
1121   // initial thread.
1122   java_lang_Thread::set_thread(thread_oop(), thread);
1123   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1124   thread->set_threadObj(thread_oop());
1125 
1126   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1127 
1128   JavaValue result(T_VOID);
1129   JavaCalls::call_special(&result, thread_oop,
1130                           ik,
1131                           vmSymbols::object_initializer_name(),
1132                           vmSymbols::threadgroup_string_void_signature(),
1133                           thread_group,
1134                           string,
1135                           CHECK_NULL);
1136   return thread_oop();
1137 }
1138 
1139 char java_runtime_name[128] = "";
1140 char java_runtime_version[128] = "";
1141 
1142 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1143 static const char* get_java_runtime_name(TRAPS) {
1144   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1145                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1146   fieldDescriptor fd;
1147   bool found = k != NULL &&
1148                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1149                                                         vmSymbols::string_signature(), &fd);
1150   if (found) {
1151     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1152     if (name_oop == NULL) {
1153       return NULL;
1154     }
1155     const char* name = java_lang_String::as_utf8_string(name_oop,
1156                                                         java_runtime_name,
1157                                                         sizeof(java_runtime_name));
1158     return name;
1159   } else {
1160     return NULL;
1161   }
1162 }
1163 
1164 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1165 static const char* get_java_runtime_version(TRAPS) {
1166   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1167                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1168   fieldDescriptor fd;
1169   bool found = k != NULL &&
1170                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1171                                                         vmSymbols::string_signature(), &fd);
1172   if (found) {
1173     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1174     if (name_oop == NULL) {
1175       return NULL;
1176     }
1177     const char* name = java_lang_String::as_utf8_string(name_oop,
1178                                                         java_runtime_version,
1179                                                         sizeof(java_runtime_version));
1180     return name;
1181   } else {
1182     return NULL;
1183   }
1184 }
1185 
1186 // General purpose hook into Java code, run once when the VM is initialized.
1187 // The Java library method itself may be changed independently from the VM.
1188 static void call_postVMInitHook(TRAPS) {
1189   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1190   if (klass != NULL) {
1191     JavaValue result(T_VOID);
1192     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1193                            vmSymbols::void_method_signature(),
1194                            CHECK);
1195   }
1196 }
1197 
1198 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1199                                     bool daemon, TRAPS) {
1200   assert(thread_group.not_null(), "thread group should be specified");
1201   assert(threadObj() == NULL, "should only create Java thread object once");
1202 
1203   InstanceKlass* ik = SystemDictionary::Thread_klass();
1204   assert(ik->is_initialized(), "must be");
1205   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1206 
1207   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1208   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1209   // constructor calls Thread.current(), which must be set here.
1210   java_lang_Thread::set_thread(thread_oop(), this);
1211   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1212   set_threadObj(thread_oop());
1213 
1214   JavaValue result(T_VOID);
1215   if (thread_name != NULL) {
1216     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1217     // Thread gets assigned specified name and null target
1218     JavaCalls::call_special(&result,
1219                             thread_oop,
1220                             ik,
1221                             vmSymbols::object_initializer_name(),
1222                             vmSymbols::threadgroup_string_void_signature(),
1223                             thread_group,
1224                             name,
1225                             THREAD);
1226   } else {
1227     // Thread gets assigned name "Thread-nnn" and null target
1228     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1229     JavaCalls::call_special(&result,
1230                             thread_oop,
1231                             ik,
1232                             vmSymbols::object_initializer_name(),
1233                             vmSymbols::threadgroup_runnable_void_signature(),
1234                             thread_group,
1235                             Handle(),
1236                             THREAD);
1237   }
1238 
1239 
1240   if (daemon) {
1241     java_lang_Thread::set_daemon(thread_oop());
1242   }
1243 
1244   if (HAS_PENDING_EXCEPTION) {
1245     return;
1246   }
1247 
1248   Klass* group =  SystemDictionary::ThreadGroup_klass();
1249   Handle threadObj(THREAD, this->threadObj());
1250 
1251   JavaCalls::call_special(&result,
1252                           thread_group,
1253                           group,
1254                           vmSymbols::add_method_name(),
1255                           vmSymbols::thread_void_signature(),
1256                           threadObj,          // Arg 1
1257                           THREAD);
1258 }
1259 
1260 // List of all NonJavaThreads and safe iteration over that list.
1261 
1262 class NonJavaThread::List {
1263 public:
1264   NonJavaThread* volatile _head;
1265   SingleWriterSynchronizer _protect;
1266 
1267   List() : _head(NULL), _protect() {}
1268 };
1269 
1270 NonJavaThread::List NonJavaThread::_the_list;
1271 
1272 NonJavaThread::Iterator::Iterator() :
1273   _protect_enter(_the_list._protect.enter()),
1274   _current(OrderAccess::load_acquire(&_the_list._head))
1275 {}
1276 
1277 NonJavaThread::Iterator::~Iterator() {
1278   _the_list._protect.exit(_protect_enter);
1279 }
1280 
1281 void NonJavaThread::Iterator::step() {
1282   assert(!end(), "precondition");
1283   _current = OrderAccess::load_acquire(&_current->_next);
1284 }
1285 
1286 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1287   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1288 }
1289 
1290 NonJavaThread::~NonJavaThread() { }
1291 
1292 void NonJavaThread::add_to_the_list() {
1293   MutexLockerEx ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1294   // Initialize BarrierSet-related data before adding to list.
1295   BarrierSet::barrier_set()->on_thread_attach(this);
1296   OrderAccess::release_store(&_next, _the_list._head);
1297   OrderAccess::release_store(&_the_list._head, this);
1298 }
1299 
1300 void NonJavaThread::remove_from_the_list() {
1301   {
1302     MutexLockerEx ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1303     // Cleanup BarrierSet-related data before removing from list.
1304     BarrierSet::barrier_set()->on_thread_detach(this);
1305     NonJavaThread* volatile* p = &_the_list._head;
1306     for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1307       if (t == this) {
1308         *p = _next;
1309         break;
1310       }
1311     }
1312   }
1313   // Wait for any in-progress iterators.  Concurrent synchronize is not
1314   // allowed, so do it while holding a dedicated lock.  Outside and distinct
1315   // from NJTList_lock in case an iteration attempts to lock it.
1316   MutexLockerEx ml(NonJavaThreadsListSync_lock, Mutex::_no_safepoint_check_flag);
1317   _the_list._protect.synchronize();
1318   _next = NULL;                 // Safe to drop the link now.
1319 }
1320 
1321 void NonJavaThread::pre_run() {
1322   add_to_the_list();
1323 
1324   // This is slightly odd in that NamedThread is a subclass, but
1325   // in fact name() is defined in Thread
1326   assert(this->name() != NULL, "thread name was not set before it was started");
1327   this->set_native_thread_name(this->name());
1328 }
1329 
1330 void NonJavaThread::post_run() {
1331   JFR_ONLY(Jfr::on_thread_exit(this);)
1332   remove_from_the_list();
1333   // Ensure thread-local-storage is cleared before termination.
1334   Thread::clear_thread_current();
1335 }
1336 
1337 // NamedThread --  non-JavaThread subclasses with multiple
1338 // uniquely named instances should derive from this.
1339 NamedThread::NamedThread() :
1340   NonJavaThread(),
1341   _name(NULL),
1342   _processed_thread(NULL),
1343   _gc_id(GCId::undefined())
1344 {}
1345 
1346 NamedThread::~NamedThread() {
1347   if (_name != NULL) {
1348     FREE_C_HEAP_ARRAY(char, _name);
1349     _name = NULL;
1350   }
1351 }
1352 
1353 void NamedThread::set_name(const char* format, ...) {
1354   guarantee(_name == NULL, "Only get to set name once.");
1355   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1356   guarantee(_name != NULL, "alloc failure");
1357   va_list ap;
1358   va_start(ap, format);
1359   jio_vsnprintf(_name, max_name_len, format, ap);
1360   va_end(ap);
1361 }
1362 
1363 void NamedThread::print_on(outputStream* st) const {
1364   st->print("\"%s\" ", name());
1365   Thread::print_on(st);
1366   st->cr();
1367 }
1368 
1369 
1370 // ======= WatcherThread ========
1371 
1372 // The watcher thread exists to simulate timer interrupts.  It should
1373 // be replaced by an abstraction over whatever native support for
1374 // timer interrupts exists on the platform.
1375 
1376 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1377 bool WatcherThread::_startable = false;
1378 volatile bool  WatcherThread::_should_terminate = false;
1379 
1380 WatcherThread::WatcherThread() : NonJavaThread() {
1381   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1382   if (os::create_thread(this, os::watcher_thread)) {
1383     _watcher_thread = this;
1384 
1385     // Set the watcher thread to the highest OS priority which should not be
1386     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1387     // is created. The only normal thread using this priority is the reference
1388     // handler thread, which runs for very short intervals only.
1389     // If the VMThread's priority is not lower than the WatcherThread profiling
1390     // will be inaccurate.
1391     os::set_priority(this, MaxPriority);
1392     if (!DisableStartThread) {
1393       os::start_thread(this);
1394     }
1395   }
1396 }
1397 
1398 int WatcherThread::sleep() const {
1399   // The WatcherThread does not participate in the safepoint protocol
1400   // for the PeriodicTask_lock because it is not a JavaThread.
1401   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1402 
1403   if (_should_terminate) {
1404     // check for termination before we do any housekeeping or wait
1405     return 0;  // we did not sleep.
1406   }
1407 
1408   // remaining will be zero if there are no tasks,
1409   // causing the WatcherThread to sleep until a task is
1410   // enrolled
1411   int remaining = PeriodicTask::time_to_wait();
1412   int time_slept = 0;
1413 
1414   // we expect this to timeout - we only ever get unparked when
1415   // we should terminate or when a new task has been enrolled
1416   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1417 
1418   jlong time_before_loop = os::javaTimeNanos();
1419 
1420   while (true) {
1421     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1422                                             remaining);
1423     jlong now = os::javaTimeNanos();
1424 
1425     if (remaining == 0) {
1426       // if we didn't have any tasks we could have waited for a long time
1427       // consider the time_slept zero and reset time_before_loop
1428       time_slept = 0;
1429       time_before_loop = now;
1430     } else {
1431       // need to recalculate since we might have new tasks in _tasks
1432       time_slept = (int) ((now - time_before_loop) / 1000000);
1433     }
1434 
1435     // Change to task list or spurious wakeup of some kind
1436     if (timedout || _should_terminate) {
1437       break;
1438     }
1439 
1440     remaining = PeriodicTask::time_to_wait();
1441     if (remaining == 0) {
1442       // Last task was just disenrolled so loop around and wait until
1443       // another task gets enrolled
1444       continue;
1445     }
1446 
1447     remaining -= time_slept;
1448     if (remaining <= 0) {
1449       break;
1450     }
1451   }
1452 
1453   return time_slept;
1454 }
1455 
1456 void WatcherThread::run() {
1457   assert(this == watcher_thread(), "just checking");
1458 
1459   this->set_active_handles(JNIHandleBlock::allocate_block());
1460   while (true) {
1461     assert(watcher_thread() == Thread::current(), "thread consistency check");
1462     assert(watcher_thread() == this, "thread consistency check");
1463 
1464     // Calculate how long it'll be until the next PeriodicTask work
1465     // should be done, and sleep that amount of time.
1466     int time_waited = sleep();
1467 
1468     if (VMError::is_error_reported()) {
1469       // A fatal error has happened, the error handler(VMError::report_and_die)
1470       // should abort JVM after creating an error log file. However in some
1471       // rare cases, the error handler itself might deadlock. Here periodically
1472       // check for error reporting timeouts, and if it happens, just proceed to
1473       // abort the VM.
1474 
1475       // This code is in WatcherThread because WatcherThread wakes up
1476       // periodically so the fatal error handler doesn't need to do anything;
1477       // also because the WatcherThread is less likely to crash than other
1478       // threads.
1479 
1480       for (;;) {
1481         // Note: we use naked sleep in this loop because we want to avoid using
1482         // any kind of VM infrastructure which may be broken at this point.
1483         if (VMError::check_timeout()) {
1484           // We hit error reporting timeout. Error reporting was interrupted and
1485           // will be wrapping things up now (closing files etc). Give it some more
1486           // time, then quit the VM.
1487           os::naked_short_sleep(200);
1488           // Print a message to stderr.
1489           fdStream err(defaultStream::output_fd());
1490           err.print_raw_cr("# [ timer expired, abort... ]");
1491           // skip atexit/vm_exit/vm_abort hooks
1492           os::die();
1493         }
1494 
1495         // Wait a second, then recheck for timeout.
1496         os::naked_short_sleep(999);
1497       }
1498     }
1499 
1500     if (_should_terminate) {
1501       // check for termination before posting the next tick
1502       break;
1503     }
1504 
1505     PeriodicTask::real_time_tick(time_waited);
1506   }
1507 
1508   // Signal that it is terminated
1509   {
1510     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1511     _watcher_thread = NULL;
1512     Terminator_lock->notify_all();
1513   }
1514 }
1515 
1516 void WatcherThread::start() {
1517   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1518 
1519   if (watcher_thread() == NULL && _startable) {
1520     _should_terminate = false;
1521     // Create the single instance of WatcherThread
1522     new WatcherThread();
1523   }
1524 }
1525 
1526 void WatcherThread::make_startable() {
1527   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1528   _startable = true;
1529 }
1530 
1531 void WatcherThread::stop() {
1532   {
1533     // Follow normal safepoint aware lock enter protocol since the
1534     // WatcherThread is stopped by another JavaThread.
1535     MutexLocker ml(PeriodicTask_lock);
1536     _should_terminate = true;
1537 
1538     WatcherThread* watcher = watcher_thread();
1539     if (watcher != NULL) {
1540       // unpark the WatcherThread so it can see that it should terminate
1541       watcher->unpark();
1542     }
1543   }
1544 
1545   MutexLocker mu(Terminator_lock);
1546 
1547   while (watcher_thread() != NULL) {
1548     // This wait should make safepoint checks, wait without a timeout,
1549     // and wait as a suspend-equivalent condition.
1550     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1551                           Mutex::_as_suspend_equivalent_flag);
1552   }
1553 }
1554 
1555 void WatcherThread::unpark() {
1556   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1557   PeriodicTask_lock->notify();
1558 }
1559 
1560 void WatcherThread::print_on(outputStream* st) const {
1561   st->print("\"%s\" ", name());
1562   Thread::print_on(st);
1563   st->cr();
1564 }
1565 
1566 // ======= JavaThread ========
1567 
1568 #if INCLUDE_JVMCI
1569 
1570 jlong* JavaThread::_jvmci_old_thread_counters;
1571 
1572 bool jvmci_counters_include(JavaThread* thread) {
1573   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1574 }
1575 
1576 void JavaThread::collect_counters(typeArrayOop array) {
1577   if (JVMCICounterSize > 0) {
1578     JavaThreadIteratorWithHandle jtiwh;
1579     for (int i = 0; i < array->length(); i++) {
1580       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1581     }
1582     for (; JavaThread *tp = jtiwh.next(); ) {
1583       if (jvmci_counters_include(tp)) {
1584         for (int i = 0; i < array->length(); i++) {
1585           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1586         }
1587       }
1588     }
1589   }
1590 }
1591 
1592 #endif // INCLUDE_JVMCI
1593 
1594 // A JavaThread is a normal Java thread
1595 
1596 void JavaThread::initialize() {
1597   // Initialize fields
1598 
1599   set_saved_exception_pc(NULL);
1600   set_threadObj(NULL);
1601   _anchor.clear();
1602   set_entry_point(NULL);
1603   set_jni_functions(jni_functions());
1604   set_callee_target(NULL);
1605   set_vm_result(NULL);
1606   set_vm_result_2(NULL);
1607   set_vframe_array_head(NULL);
1608   set_vframe_array_last(NULL);
1609   set_deferred_locals(NULL);
1610   set_deopt_mark(NULL);
1611   set_deopt_compiled_method(NULL);
1612   clear_must_deopt_id();
1613   set_monitor_chunks(NULL);
1614   set_next(NULL);
1615   _on_thread_list = false;
1616   set_thread_state(_thread_new);
1617   _terminated = _not_terminated;
1618   _array_for_gc = NULL;
1619   _suspend_equivalent = false;
1620   _in_deopt_handler = 0;
1621   _doing_unsafe_access = false;
1622   _stack_guard_state = stack_guard_unused;
1623 #if INCLUDE_JVMCI
1624   _pending_monitorenter = false;
1625   _pending_deoptimization = -1;
1626   _pending_failed_speculation = 0;
1627   _pending_transfer_to_interpreter = false;
1628   _adjusting_comp_level = false;
1629   _in_retryable_allocation = false;
1630   _jvmci._alternate_call_target = NULL;
1631   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1632   if (JVMCICounterSize > 0) {
1633     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1634     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1635   } else {
1636     _jvmci_counters = NULL;
1637   }
1638 #endif // INCLUDE_JVMCI
1639   _reserved_stack_activation = NULL;  // stack base not known yet
1640   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1641   _exception_pc  = 0;
1642   _exception_handler_pc = 0;
1643   _is_method_handle_return = 0;
1644   _jvmti_thread_state= NULL;
1645   _should_post_on_exceptions_flag = JNI_FALSE;
1646   _interp_only_mode    = 0;
1647   _special_runtime_exit_condition = _no_async_condition;
1648   _pending_async_exception = NULL;
1649   _thread_stat = NULL;
1650   _thread_stat = new ThreadStatistics();
1651   _blocked_on_compilation = false;
1652   _jni_active_critical = 0;
1653   _pending_jni_exception_check_fn = NULL;
1654   _do_not_unlock_if_synchronized = false;
1655   _cached_monitor_info = NULL;
1656   _parker = Parker::Allocate(this);
1657 
1658 #ifndef PRODUCT
1659   _jmp_ring_index = 0;
1660   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1661     record_jump(NULL, NULL, NULL, 0);
1662   }
1663 #endif // PRODUCT
1664 
1665   // Setup safepoint state info for this thread
1666   ThreadSafepointState::create(this);
1667 
1668   debug_only(_java_call_counter = 0);
1669 
1670   // JVMTI PopFrame support
1671   _popframe_condition = popframe_inactive;
1672   _popframe_preserved_args = NULL;
1673   _popframe_preserved_args_size = 0;
1674   _frames_to_pop_failed_realloc = 0;
1675 
1676   if (SafepointMechanism::uses_thread_local_poll()) {
1677     SafepointMechanism::initialize_header(this);
1678   }
1679 
1680   _class_to_be_initialized = NULL;
1681 
1682   pd_initialize();
1683 }
1684 
1685 JavaThread::JavaThread(bool is_attaching_via_jni) :
1686                        Thread() {
1687   initialize();
1688   if (is_attaching_via_jni) {
1689     _jni_attach_state = _attaching_via_jni;
1690   } else {
1691     _jni_attach_state = _not_attaching_via_jni;
1692   }
1693   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1694 }
1695 
1696 bool JavaThread::reguard_stack(address cur_sp) {
1697   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1698       && _stack_guard_state != stack_guard_reserved_disabled) {
1699     return true; // Stack already guarded or guard pages not needed.
1700   }
1701 
1702   if (register_stack_overflow()) {
1703     // For those architectures which have separate register and
1704     // memory stacks, we must check the register stack to see if
1705     // it has overflowed.
1706     return false;
1707   }
1708 
1709   // Java code never executes within the yellow zone: the latter is only
1710   // there to provoke an exception during stack banging.  If java code
1711   // is executing there, either StackShadowPages should be larger, or
1712   // some exception code in c1, c2 or the interpreter isn't unwinding
1713   // when it should.
1714   guarantee(cur_sp > stack_reserved_zone_base(),
1715             "not enough space to reguard - increase StackShadowPages");
1716   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1717     enable_stack_yellow_reserved_zone();
1718     if (reserved_stack_activation() != stack_base()) {
1719       set_reserved_stack_activation(stack_base());
1720     }
1721   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1722     set_reserved_stack_activation(stack_base());
1723     enable_stack_reserved_zone();
1724   }
1725   return true;
1726 }
1727 
1728 bool JavaThread::reguard_stack(void) {
1729   return reguard_stack(os::current_stack_pointer());
1730 }
1731 
1732 
1733 void JavaThread::block_if_vm_exited() {
1734   if (_terminated == _vm_exited) {
1735     // _vm_exited is set at safepoint, and Threads_lock is never released
1736     // we will block here forever
1737     Threads_lock->lock_without_safepoint_check();
1738     ShouldNotReachHere();
1739   }
1740 }
1741 
1742 
1743 // Remove this ifdef when C1 is ported to the compiler interface.
1744 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1745 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1746 
1747 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1748                        Thread() {
1749   initialize();
1750   _jni_attach_state = _not_attaching_via_jni;
1751   set_entry_point(entry_point);
1752   // Create the native thread itself.
1753   // %note runtime_23
1754   os::ThreadType thr_type = os::java_thread;
1755   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1756                                                      os::java_thread;
1757   os::create_thread(this, thr_type, stack_sz);
1758   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1759   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1760   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1761   // the exception consists of creating the exception object & initializing it, initialization
1762   // will leave the VM via a JavaCall and then all locks must be unlocked).
1763   //
1764   // The thread is still suspended when we reach here. Thread must be explicit started
1765   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1766   // by calling Threads:add. The reason why this is not done here, is because the thread
1767   // object must be fully initialized (take a look at JVM_Start)
1768 }
1769 
1770 JavaThread::~JavaThread() {
1771 
1772   // JSR166 -- return the parker to the free list
1773   Parker::Release(_parker);
1774   _parker = NULL;
1775 
1776   // Free any remaining  previous UnrollBlock
1777   vframeArray* old_array = vframe_array_last();
1778 
1779   if (old_array != NULL) {
1780     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1781     old_array->set_unroll_block(NULL);
1782     delete old_info;
1783     delete old_array;
1784   }
1785 
1786   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1787   if (deferred != NULL) {
1788     // This can only happen if thread is destroyed before deoptimization occurs.
1789     assert(deferred->length() != 0, "empty array!");
1790     do {
1791       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1792       deferred->remove_at(0);
1793       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1794       delete dlv;
1795     } while (deferred->length() != 0);
1796     delete deferred;
1797   }
1798 
1799   // All Java related clean up happens in exit
1800   ThreadSafepointState::destroy(this);
1801   if (_thread_stat != NULL) delete _thread_stat;
1802 
1803 #if INCLUDE_JVMCI
1804   if (JVMCICounterSize > 0) {
1805     if (jvmci_counters_include(this)) {
1806       for (int i = 0; i < JVMCICounterSize; i++) {
1807         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1808       }
1809     }
1810     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1811   }
1812 #endif // INCLUDE_JVMCI
1813 }
1814 
1815 
1816 // First JavaThread specific code executed by a new Java thread.
1817 void JavaThread::pre_run() {
1818   // empty - see comments in run()
1819 }
1820 
1821 // The main routine called by a new Java thread. This isn't overridden
1822 // by subclasses, instead different subclasses define a different "entry_point"
1823 // which defines the actual logic for that kind of thread.
1824 void JavaThread::run() {
1825   // initialize thread-local alloc buffer related fields
1826   this->initialize_tlab();
1827 
1828   // Used to test validity of stack trace backs.
1829   // This can't be moved into pre_run() else we invalidate
1830   // the requirement that thread_main_inner is lower on
1831   // the stack. Consequently all the initialization logic
1832   // stays here in run() rather than pre_run().
1833   this->record_base_of_stack_pointer();
1834 
1835   this->create_stack_guard_pages();
1836 
1837   this->cache_global_variables();
1838 
1839   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1840   // in the VM. Change thread state from _thread_new to _thread_in_vm
1841   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1842   // Before a thread is on the threads list it is always safe, so after leaving the
1843   // _thread_new we should emit a instruction barrier. The distance to modified code
1844   // from here is probably far enough, but this is consistent and safe.
1845   OrderAccess::cross_modify_fence();
1846 
1847   assert(JavaThread::current() == this, "sanity check");
1848   assert(!Thread::current()->owns_locks(), "sanity check");
1849 
1850   DTRACE_THREAD_PROBE(start, this);
1851 
1852   // This operation might block. We call that after all safepoint checks for a new thread has
1853   // been completed.
1854   this->set_active_handles(JNIHandleBlock::allocate_block());
1855 
1856   if (JvmtiExport::should_post_thread_life()) {
1857     JvmtiExport::post_thread_start(this);
1858 
1859   }
1860 
1861   // We call another function to do the rest so we are sure that the stack addresses used
1862   // from there will be lower than the stack base just computed.
1863   thread_main_inner();
1864 }
1865 
1866 void JavaThread::thread_main_inner() {
1867   assert(JavaThread::current() == this, "sanity check");
1868   assert(this->threadObj() != NULL, "just checking");
1869 
1870   // Execute thread entry point unless this thread has a pending exception
1871   // or has been stopped before starting.
1872   // Note: Due to JVM_StopThread we can have pending exceptions already!
1873   if (!this->has_pending_exception() &&
1874       !java_lang_Thread::is_stillborn(this->threadObj())) {
1875     {
1876       ResourceMark rm(this);
1877       this->set_native_thread_name(this->get_thread_name());
1878     }
1879     HandleMark hm(this);
1880     this->entry_point()(this, this);
1881   }
1882 
1883   DTRACE_THREAD_PROBE(stop, this);
1884 
1885   // Cleanup is handled in post_run()
1886 }
1887 
1888 // Shared teardown for all JavaThreads
1889 void JavaThread::post_run() {
1890   this->exit(false);
1891   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1892   // for any shared tear-down.
1893   this->smr_delete();
1894 }
1895 
1896 static void ensure_join(JavaThread* thread) {
1897   // We do not need to grab the Threads_lock, since we are operating on ourself.
1898   Handle threadObj(thread, thread->threadObj());
1899   assert(threadObj.not_null(), "java thread object must exist");
1900   ObjectLocker lock(threadObj, thread);
1901   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1902   thread->clear_pending_exception();
1903   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1904   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1905   // Clear the native thread instance - this makes isAlive return false and allows the join()
1906   // to complete once we've done the notify_all below
1907   java_lang_Thread::set_thread(threadObj(), NULL);
1908   lock.notify_all(thread);
1909   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1910   thread->clear_pending_exception();
1911 }
1912 
1913 static bool is_daemon(oop threadObj) {
1914   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
1915 }
1916 
1917 // For any new cleanup additions, please check to see if they need to be applied to
1918 // cleanup_failed_attach_current_thread as well.
1919 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1920   assert(this == JavaThread::current(), "thread consistency check");
1921 
1922   elapsedTimer _timer_exit_phase1;
1923   elapsedTimer _timer_exit_phase2;
1924   elapsedTimer _timer_exit_phase3;
1925   elapsedTimer _timer_exit_phase4;
1926 
1927   if (log_is_enabled(Debug, os, thread, timer)) {
1928     _timer_exit_phase1.start();
1929   }
1930 
1931   HandleMark hm(this);
1932   Handle uncaught_exception(this, this->pending_exception());
1933   this->clear_pending_exception();
1934   Handle threadObj(this, this->threadObj());
1935   assert(threadObj.not_null(), "Java thread object should be created");
1936 
1937   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1938   {
1939     EXCEPTION_MARK;
1940 
1941     CLEAR_PENDING_EXCEPTION;
1942   }
1943   if (!destroy_vm) {
1944     if (uncaught_exception.not_null()) {
1945       EXCEPTION_MARK;
1946       // Call method Thread.dispatchUncaughtException().
1947       Klass* thread_klass = SystemDictionary::Thread_klass();
1948       JavaValue result(T_VOID);
1949       JavaCalls::call_virtual(&result,
1950                               threadObj, thread_klass,
1951                               vmSymbols::dispatchUncaughtException_name(),
1952                               vmSymbols::throwable_void_signature(),
1953                               uncaught_exception,
1954                               THREAD);
1955       if (HAS_PENDING_EXCEPTION) {
1956         ResourceMark rm(this);
1957         jio_fprintf(defaultStream::error_stream(),
1958                     "\nException: %s thrown from the UncaughtExceptionHandler"
1959                     " in thread \"%s\"\n",
1960                     pending_exception()->klass()->external_name(),
1961                     get_thread_name());
1962         CLEAR_PENDING_EXCEPTION;
1963       }
1964     }
1965     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
1966 
1967     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1968     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1969     // is deprecated anyhow.
1970     if (!is_Compiler_thread()) {
1971       int count = 3;
1972       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1973         EXCEPTION_MARK;
1974         JavaValue result(T_VOID);
1975         Klass* thread_klass = SystemDictionary::Thread_klass();
1976         JavaCalls::call_virtual(&result,
1977                                 threadObj, thread_klass,
1978                                 vmSymbols::exit_method_name(),
1979                                 vmSymbols::void_method_signature(),
1980                                 THREAD);
1981         CLEAR_PENDING_EXCEPTION;
1982       }
1983     }
1984     // notify JVMTI
1985     if (JvmtiExport::should_post_thread_life()) {
1986       JvmtiExport::post_thread_end(this);
1987     }
1988 
1989     // We have notified the agents that we are exiting, before we go on,
1990     // we must check for a pending external suspend request and honor it
1991     // in order to not surprise the thread that made the suspend request.
1992     while (true) {
1993       {
1994         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1995         if (!is_external_suspend()) {
1996           set_terminated(_thread_exiting);
1997           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
1998           break;
1999         }
2000         // Implied else:
2001         // Things get a little tricky here. We have a pending external
2002         // suspend request, but we are holding the SR_lock so we
2003         // can't just self-suspend. So we temporarily drop the lock
2004         // and then self-suspend.
2005       }
2006 
2007       ThreadBlockInVM tbivm(this);
2008       java_suspend_self();
2009 
2010       // We're done with this suspend request, but we have to loop around
2011       // and check again. Eventually we will get SR_lock without a pending
2012       // external suspend request and will be able to mark ourselves as
2013       // exiting.
2014     }
2015     // no more external suspends are allowed at this point
2016   } else {
2017     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2018     // before_exit() has already posted JVMTI THREAD_END events
2019   }
2020 
2021   if (log_is_enabled(Debug, os, thread, timer)) {
2022     _timer_exit_phase1.stop();
2023     _timer_exit_phase2.start();
2024   }
2025   // Notify waiters on thread object. This has to be done after exit() is called
2026   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2027   // group should have the destroyed bit set before waiters are notified).
2028   ensure_join(this);
2029   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2030 
2031   if (log_is_enabled(Debug, os, thread, timer)) {
2032     _timer_exit_phase2.stop();
2033     _timer_exit_phase3.start();
2034   }
2035   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2036   // held by this thread must be released. The spec does not distinguish
2037   // between JNI-acquired and regular Java monitors. We can only see
2038   // regular Java monitors here if monitor enter-exit matching is broken.
2039   //
2040   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2041   // ObjectSynchronizer::release_monitors_owned_by_thread().
2042   if (exit_type == jni_detach) {
2043     // Sanity check even though JNI DetachCurrentThread() would have
2044     // returned JNI_ERR if there was a Java frame. JavaThread exit
2045     // should be done executing Java code by the time we get here.
2046     assert(!this->has_last_Java_frame(),
2047            "should not have a Java frame when detaching or exiting");
2048     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2049     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2050   }
2051 
2052   // These things needs to be done while we are still a Java Thread. Make sure that thread
2053   // is in a consistent state, in case GC happens
2054   JFR_ONLY(Jfr::on_thread_exit(this);)
2055 
2056   if (active_handles() != NULL) {
2057     JNIHandleBlock* block = active_handles();
2058     set_active_handles(NULL);
2059     JNIHandleBlock::release_block(block);
2060   }
2061 
2062   if (free_handle_block() != NULL) {
2063     JNIHandleBlock* block = free_handle_block();
2064     set_free_handle_block(NULL);
2065     JNIHandleBlock::release_block(block);
2066   }
2067 
2068   // These have to be removed while this is still a valid thread.
2069   remove_stack_guard_pages();
2070 
2071   if (UseTLAB) {
2072     tlab().retire();
2073   }
2074 
2075   if (JvmtiEnv::environments_might_exist()) {
2076     JvmtiExport::cleanup_thread(this);
2077   }
2078 
2079   // We must flush any deferred card marks and other various GC barrier
2080   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2081   // before removing a thread from the list of active threads.
2082   BarrierSet::barrier_set()->on_thread_detach(this);
2083 
2084   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2085     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2086     os::current_thread_id());
2087 
2088   if (log_is_enabled(Debug, os, thread, timer)) {
2089     _timer_exit_phase3.stop();
2090     _timer_exit_phase4.start();
2091   }
2092   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2093   Threads::remove(this);
2094 
2095   if (log_is_enabled(Debug, os, thread, timer)) {
2096     _timer_exit_phase4.stop();
2097     ResourceMark rm(this);
2098     log_debug(os, thread, timer)("name='%s'"
2099                                  ", exit-phase1=" JLONG_FORMAT
2100                                  ", exit-phase2=" JLONG_FORMAT
2101                                  ", exit-phase3=" JLONG_FORMAT
2102                                  ", exit-phase4=" JLONG_FORMAT,
2103                                  get_thread_name(),
2104                                  _timer_exit_phase1.milliseconds(),
2105                                  _timer_exit_phase2.milliseconds(),
2106                                  _timer_exit_phase3.milliseconds(),
2107                                  _timer_exit_phase4.milliseconds());
2108   }
2109 }
2110 
2111 void JavaThread::cleanup_failed_attach_current_thread() {
2112   if (active_handles() != NULL) {
2113     JNIHandleBlock* block = active_handles();
2114     set_active_handles(NULL);
2115     JNIHandleBlock::release_block(block);
2116   }
2117 
2118   if (free_handle_block() != NULL) {
2119     JNIHandleBlock* block = free_handle_block();
2120     set_free_handle_block(NULL);
2121     JNIHandleBlock::release_block(block);
2122   }
2123 
2124   // These have to be removed while this is still a valid thread.
2125   remove_stack_guard_pages();
2126 
2127   if (UseTLAB) {
2128     tlab().retire();
2129   }
2130 
2131   BarrierSet::barrier_set()->on_thread_detach(this);
2132 
2133   Threads::remove(this);
2134   this->smr_delete();
2135 }
2136 
2137 JavaThread* JavaThread::active() {
2138   Thread* thread = Thread::current();
2139   if (thread->is_Java_thread()) {
2140     return (JavaThread*) thread;
2141   } else {
2142     assert(thread->is_VM_thread(), "this must be a vm thread");
2143     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2144     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2145     assert(ret->is_Java_thread(), "must be a Java thread");
2146     return ret;
2147   }
2148 }
2149 
2150 bool JavaThread::is_lock_owned(address adr) const {
2151   if (Thread::is_lock_owned(adr)) return true;
2152 
2153   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2154     if (chunk->contains(adr)) return true;
2155   }
2156 
2157   return false;
2158 }
2159 
2160 
2161 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2162   chunk->set_next(monitor_chunks());
2163   set_monitor_chunks(chunk);
2164 }
2165 
2166 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2167   guarantee(monitor_chunks() != NULL, "must be non empty");
2168   if (monitor_chunks() == chunk) {
2169     set_monitor_chunks(chunk->next());
2170   } else {
2171     MonitorChunk* prev = monitor_chunks();
2172     while (prev->next() != chunk) prev = prev->next();
2173     prev->set_next(chunk->next());
2174   }
2175 }
2176 
2177 // JVM support.
2178 
2179 // Note: this function shouldn't block if it's called in
2180 // _thread_in_native_trans state (such as from
2181 // check_special_condition_for_native_trans()).
2182 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2183 
2184   if (has_last_Java_frame() && has_async_condition()) {
2185     // If we are at a polling page safepoint (not a poll return)
2186     // then we must defer async exception because live registers
2187     // will be clobbered by the exception path. Poll return is
2188     // ok because the call we a returning from already collides
2189     // with exception handling registers and so there is no issue.
2190     // (The exception handling path kills call result registers but
2191     //  this is ok since the exception kills the result anyway).
2192 
2193     if (is_at_poll_safepoint()) {
2194       // if the code we are returning to has deoptimized we must defer
2195       // the exception otherwise live registers get clobbered on the
2196       // exception path before deoptimization is able to retrieve them.
2197       //
2198       RegisterMap map(this, false);
2199       frame caller_fr = last_frame().sender(&map);
2200       assert(caller_fr.is_compiled_frame(), "what?");
2201       if (caller_fr.is_deoptimized_frame()) {
2202         log_info(exceptions)("deferred async exception at compiled safepoint");
2203         return;
2204       }
2205     }
2206   }
2207 
2208   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2209   if (condition == _no_async_condition) {
2210     // Conditions have changed since has_special_runtime_exit_condition()
2211     // was called:
2212     // - if we were here only because of an external suspend request,
2213     //   then that was taken care of above (or cancelled) so we are done
2214     // - if we were here because of another async request, then it has
2215     //   been cleared between the has_special_runtime_exit_condition()
2216     //   and now so again we are done
2217     return;
2218   }
2219 
2220   // Check for pending async. exception
2221   if (_pending_async_exception != NULL) {
2222     // Only overwrite an already pending exception, if it is not a threadDeath.
2223     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2224 
2225       // We cannot call Exceptions::_throw(...) here because we cannot block
2226       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2227 
2228       LogTarget(Info, exceptions) lt;
2229       if (lt.is_enabled()) {
2230         ResourceMark rm;
2231         LogStream ls(lt);
2232         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2233           if (has_last_Java_frame()) {
2234             frame f = last_frame();
2235            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2236           }
2237         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2238       }
2239       _pending_async_exception = NULL;
2240       clear_has_async_exception();
2241     }
2242   }
2243 
2244   if (check_unsafe_error &&
2245       condition == _async_unsafe_access_error && !has_pending_exception()) {
2246     condition = _no_async_condition;  // done
2247     switch (thread_state()) {
2248     case _thread_in_vm: {
2249       JavaThread* THREAD = this;
2250       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2251     }
2252     case _thread_in_native: {
2253       ThreadInVMfromNative tiv(this);
2254       JavaThread* THREAD = this;
2255       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2256     }
2257     case _thread_in_Java: {
2258       ThreadInVMfromJava tiv(this);
2259       JavaThread* THREAD = this;
2260       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2261     }
2262     default:
2263       ShouldNotReachHere();
2264     }
2265   }
2266 
2267   assert(condition == _no_async_condition || has_pending_exception() ||
2268          (!check_unsafe_error && condition == _async_unsafe_access_error),
2269          "must have handled the async condition, if no exception");
2270 }
2271 
2272 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2273   //
2274   // Check for pending external suspend.
2275   // If JNIEnv proxies are allowed, don't self-suspend if the target
2276   // thread is not the current thread. In older versions of jdbx, jdbx
2277   // threads could call into the VM with another thread's JNIEnv so we
2278   // can be here operating on behalf of a suspended thread (4432884).
2279   bool do_self_suspend = is_external_suspend_with_lock();
2280   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2281     frame_anchor()->make_walkable(this);
2282     java_suspend_self_with_safepoint_check();
2283   }
2284 
2285   // We might be here for reasons in addition to the self-suspend request
2286   // so check for other async requests.
2287   if (check_asyncs) {
2288     check_and_handle_async_exceptions();
2289   }
2290 
2291   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2292 }
2293 
2294 void JavaThread::send_thread_stop(oop java_throwable)  {
2295   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2296   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2297   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2298 
2299   // Do not throw asynchronous exceptions against the compiler thread
2300   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2301   if (!can_call_java()) return;
2302 
2303   {
2304     // Actually throw the Throwable against the target Thread - however
2305     // only if there is no thread death exception installed already.
2306     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2307       // If the topmost frame is a runtime stub, then we are calling into
2308       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2309       // must deoptimize the caller before continuing, as the compiled  exception handler table
2310       // may not be valid
2311       if (has_last_Java_frame()) {
2312         frame f = last_frame();
2313         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2314           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2315           RegisterMap reg_map(this, UseBiasedLocking);
2316           frame compiled_frame = f.sender(&reg_map);
2317           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2318             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2319           }
2320         }
2321       }
2322 
2323       // Set async. pending exception in thread.
2324       set_pending_async_exception(java_throwable);
2325 
2326       if (log_is_enabled(Info, exceptions)) {
2327          ResourceMark rm;
2328         log_info(exceptions)("Pending Async. exception installed of type: %s",
2329                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2330       }
2331       // for AbortVMOnException flag
2332       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2333     }
2334   }
2335 
2336 
2337   // Interrupt thread so it will wake up from a potential wait()
2338   Thread::interrupt(this);
2339 }
2340 
2341 // External suspension mechanism.
2342 //
2343 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2344 // to any VM_locks and it is at a transition
2345 // Self-suspension will happen on the transition out of the vm.
2346 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2347 //
2348 // Guarantees on return:
2349 //   + Target thread will not execute any new bytecode (that's why we need to
2350 //     force a safepoint)
2351 //   + Target thread will not enter any new monitors
2352 //
2353 void JavaThread::java_suspend() {
2354   ThreadsListHandle tlh;
2355   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2356     return;
2357   }
2358 
2359   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2360     if (!is_external_suspend()) {
2361       // a racing resume has cancelled us; bail out now
2362       return;
2363     }
2364 
2365     // suspend is done
2366     uint32_t debug_bits = 0;
2367     // Warning: is_ext_suspend_completed() may temporarily drop the
2368     // SR_lock to allow the thread to reach a stable thread state if
2369     // it is currently in a transient thread state.
2370     if (is_ext_suspend_completed(false /* !called_by_wait */,
2371                                  SuspendRetryDelay, &debug_bits)) {
2372       return;
2373     }
2374   }
2375 
2376   if (Thread::current() == this) {
2377     // Safely self-suspend.
2378     // If we don't do this explicitly it will implicitly happen
2379     // before we transition back to Java, and on some other thread-state
2380     // transition paths, but not as we exit a JVM TI SuspendThread call.
2381     // As SuspendThread(current) must not return (until resumed) we must
2382     // self-suspend here.
2383     ThreadBlockInVM tbivm(this);
2384     java_suspend_self();
2385   } else {
2386     VM_ThreadSuspend vm_suspend;
2387     VMThread::execute(&vm_suspend);
2388   }
2389 }
2390 
2391 // Part II of external suspension.
2392 // A JavaThread self suspends when it detects a pending external suspend
2393 // request. This is usually on transitions. It is also done in places
2394 // where continuing to the next transition would surprise the caller,
2395 // e.g., monitor entry.
2396 //
2397 // Returns the number of times that the thread self-suspended.
2398 //
2399 // Note: DO NOT call java_suspend_self() when you just want to block current
2400 //       thread. java_suspend_self() is the second stage of cooperative
2401 //       suspension for external suspend requests and should only be used
2402 //       to complete an external suspend request.
2403 //
2404 int JavaThread::java_suspend_self() {
2405   assert(thread_state() == _thread_blocked, "wrong state for java_suspend_self()");
2406   int ret = 0;
2407 
2408   // we are in the process of exiting so don't suspend
2409   if (is_exiting()) {
2410     clear_external_suspend();
2411     return ret;
2412   }
2413 
2414   assert(_anchor.walkable() ||
2415          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2416          "must have walkable stack");
2417 
2418   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2419 
2420   assert(!this->is_ext_suspended(),
2421          "a thread trying to self-suspend should not already be suspended");
2422 
2423   if (this->is_suspend_equivalent()) {
2424     // If we are self-suspending as a result of the lifting of a
2425     // suspend equivalent condition, then the suspend_equivalent
2426     // flag is not cleared until we set the ext_suspended flag so
2427     // that wait_for_ext_suspend_completion() returns consistent
2428     // results.
2429     this->clear_suspend_equivalent();
2430   }
2431 
2432   // A racing resume may have cancelled us before we grabbed SR_lock
2433   // above. Or another external suspend request could be waiting for us
2434   // by the time we return from SR_lock()->wait(). The thread
2435   // that requested the suspension may already be trying to walk our
2436   // stack and if we return now, we can change the stack out from under
2437   // it. This would be a "bad thing (TM)" and cause the stack walker
2438   // to crash. We stay self-suspended until there are no more pending
2439   // external suspend requests.
2440   while (is_external_suspend()) {
2441     ret++;
2442     this->set_ext_suspended();
2443 
2444     // _ext_suspended flag is cleared by java_resume()
2445     while (is_ext_suspended()) {
2446       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2447     }
2448   }
2449   return ret;
2450 }
2451 
2452 // Helper routine to set up the correct thread state before calling java_suspend_self.
2453 // This is called when regular thread-state transition helpers can't be used because
2454 // we can be in various states, in particular _thread_in_native_trans.
2455 // Because this thread is external suspended the safepoint code will count it as at
2456 // a safepoint, regardless of what its actual current thread-state is. But
2457 // is_ext_suspend_completed() may be waiting to see a thread transition from
2458 // _thread_in_native_trans to _thread_blocked. So we set the thread state directly
2459 // to _thread_blocked. The problem with setting thread state directly is that a
2460 // safepoint could happen just after java_suspend_self() returns after being resumed,
2461 // and the VM thread will see the _thread_blocked state. So we must check for a safepoint
2462 // after restoring the state to make sure we won't leave while a safepoint is in progress.
2463 // However, not all initial-states are allowed when performing a safepoint check, as we
2464 // should never be blocking at a safepoint whilst in those states. Of these 'bad' states
2465 // only _thread_in_native is possible when executing this code (based on our two callers).
2466 // A thread that is _thread_in_native is already safepoint-safe and so it doesn't matter
2467 // whether the VMThread sees the _thread_blocked state, or the _thread_in_native state,
2468 // and so we don't need the explicit safepoint check.
2469 
2470 void JavaThread::java_suspend_self_with_safepoint_check() {
2471   assert(this == Thread::current(), "invariant");
2472   JavaThreadState state = thread_state();
2473   set_thread_state(_thread_blocked);
2474   java_suspend_self();
2475   set_thread_state(state);
2476   // Since we are not using a regular thread-state transition helper here,
2477   // we must manually emit the instruction barrier after leaving a safe state.
2478   OrderAccess::cross_modify_fence();
2479   InterfaceSupport::serialize_thread_state_with_handler(this);
2480   if (state != _thread_in_native) {
2481     SafepointMechanism::block_if_requested(this);
2482   }
2483 }
2484 
2485 #ifdef ASSERT
2486 // Verify the JavaThread has not yet been published in the Threads::list, and
2487 // hence doesn't need protection from concurrent access at this stage.
2488 void JavaThread::verify_not_published() {
2489   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2490   // since an unpublished JavaThread doesn't participate in the
2491   // Thread-SMR protocol for keeping a ThreadsList alive.
2492   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2493 }
2494 #endif
2495 
2496 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2497 // progress or when _suspend_flags is non-zero.
2498 // Current thread needs to self-suspend if there is a suspend request and/or
2499 // block if a safepoint is in progress.
2500 // Async exception ISN'T checked.
2501 // Note only the ThreadInVMfromNative transition can call this function
2502 // directly and when thread state is _thread_in_native_trans
2503 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2504   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2505 
2506   JavaThread *curJT = JavaThread::current();
2507   bool do_self_suspend = thread->is_external_suspend();
2508 
2509   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2510 
2511   // If JNIEnv proxies are allowed, don't self-suspend if the target
2512   // thread is not the current thread. In older versions of jdbx, jdbx
2513   // threads could call into the VM with another thread's JNIEnv so we
2514   // can be here operating on behalf of a suspended thread (4432884).
2515   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2516     thread->java_suspend_self_with_safepoint_check();
2517   } else {
2518     SafepointMechanism::block_if_requested(curJT);
2519   }
2520 
2521   if (thread->is_deopt_suspend()) {
2522     thread->clear_deopt_suspend();
2523     RegisterMap map(thread, false);
2524     frame f = thread->last_frame();
2525     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2526       f = f.sender(&map);
2527     }
2528     if (f.id() == thread->must_deopt_id()) {
2529       thread->clear_must_deopt_id();
2530       f.deoptimize(thread);
2531     } else {
2532       fatal("missed deoptimization!");
2533     }
2534   }
2535 
2536   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2537 }
2538 
2539 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2540 // progress or when _suspend_flags is non-zero.
2541 // Current thread needs to self-suspend if there is a suspend request and/or
2542 // block if a safepoint is in progress.
2543 // Also check for pending async exception (not including unsafe access error).
2544 // Note only the native==>VM/Java barriers can call this function and when
2545 // thread state is _thread_in_native_trans.
2546 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2547   check_safepoint_and_suspend_for_native_trans(thread);
2548 
2549   if (thread->has_async_exception()) {
2550     // We are in _thread_in_native_trans state, don't handle unsafe
2551     // access error since that may block.
2552     thread->check_and_handle_async_exceptions(false);
2553   }
2554 }
2555 
2556 // This is a variant of the normal
2557 // check_special_condition_for_native_trans with slightly different
2558 // semantics for use by critical native wrappers.  It does all the
2559 // normal checks but also performs the transition back into
2560 // thread_in_Java state.  This is required so that critical natives
2561 // can potentially block and perform a GC if they are the last thread
2562 // exiting the GCLocker.
2563 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2564   check_special_condition_for_native_trans(thread);
2565 
2566   // Finish the transition
2567   thread->set_thread_state(_thread_in_Java);
2568 
2569   if (thread->do_critical_native_unlock()) {
2570     ThreadInVMfromJavaNoAsyncException tiv(thread);
2571     GCLocker::unlock_critical(thread);
2572     thread->clear_critical_native_unlock();
2573   }
2574 }
2575 
2576 // We need to guarantee the Threads_lock here, since resumes are not
2577 // allowed during safepoint synchronization
2578 // Can only resume from an external suspension
2579 void JavaThread::java_resume() {
2580   assert_locked_or_safepoint(Threads_lock);
2581 
2582   // Sanity check: thread is gone, has started exiting or the thread
2583   // was not externally suspended.
2584   ThreadsListHandle tlh;
2585   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2586     return;
2587   }
2588 
2589   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2590 
2591   clear_external_suspend();
2592 
2593   if (is_ext_suspended()) {
2594     clear_ext_suspended();
2595     SR_lock()->notify_all();
2596   }
2597 }
2598 
2599 size_t JavaThread::_stack_red_zone_size = 0;
2600 size_t JavaThread::_stack_yellow_zone_size = 0;
2601 size_t JavaThread::_stack_reserved_zone_size = 0;
2602 size_t JavaThread::_stack_shadow_zone_size = 0;
2603 
2604 void JavaThread::create_stack_guard_pages() {
2605   if (!os::uses_stack_guard_pages() ||
2606       _stack_guard_state != stack_guard_unused ||
2607       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2608       log_info(os, thread)("Stack guard page creation for thread "
2609                            UINTX_FORMAT " disabled", os::current_thread_id());
2610     return;
2611   }
2612   address low_addr = stack_end();
2613   size_t len = stack_guard_zone_size();
2614 
2615   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2616   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2617 
2618   int must_commit = os::must_commit_stack_guard_pages();
2619   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2620 
2621   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2622     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2623     return;
2624   }
2625 
2626   if (os::guard_memory((char *) low_addr, len)) {
2627     _stack_guard_state = stack_guard_enabled;
2628   } else {
2629     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2630       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2631     if (os::uncommit_memory((char *) low_addr, len)) {
2632       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2633     }
2634     return;
2635   }
2636 
2637   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2638     PTR_FORMAT "-" PTR_FORMAT ".",
2639     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2640 }
2641 
2642 void JavaThread::remove_stack_guard_pages() {
2643   assert(Thread::current() == this, "from different thread");
2644   if (_stack_guard_state == stack_guard_unused) return;
2645   address low_addr = stack_end();
2646   size_t len = stack_guard_zone_size();
2647 
2648   if (os::must_commit_stack_guard_pages()) {
2649     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2650       _stack_guard_state = stack_guard_unused;
2651     } else {
2652       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2653         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2654       return;
2655     }
2656   } else {
2657     if (_stack_guard_state == stack_guard_unused) return;
2658     if (os::unguard_memory((char *) low_addr, len)) {
2659       _stack_guard_state = stack_guard_unused;
2660     } else {
2661       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2662         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2663       return;
2664     }
2665   }
2666 
2667   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2668     PTR_FORMAT "-" PTR_FORMAT ".",
2669     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2670 }
2671 
2672 void JavaThread::enable_stack_reserved_zone() {
2673   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2674 
2675   // The base notation is from the stack's point of view, growing downward.
2676   // We need to adjust it to work correctly with guard_memory()
2677   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2678 
2679   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2680   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2681 
2682   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2683     _stack_guard_state = stack_guard_enabled;
2684   } else {
2685     warning("Attempt to guard stack reserved zone failed.");
2686   }
2687   enable_register_stack_guard();
2688 }
2689 
2690 void JavaThread::disable_stack_reserved_zone() {
2691   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2692 
2693   // Simply return if called for a thread that does not use guard pages.
2694   if (_stack_guard_state != stack_guard_enabled) return;
2695 
2696   // The base notation is from the stack's point of view, growing downward.
2697   // We need to adjust it to work correctly with guard_memory()
2698   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2699 
2700   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2701     _stack_guard_state = stack_guard_reserved_disabled;
2702   } else {
2703     warning("Attempt to unguard stack reserved zone failed.");
2704   }
2705   disable_register_stack_guard();
2706 }
2707 
2708 void JavaThread::enable_stack_yellow_reserved_zone() {
2709   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2710   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2711 
2712   // The base notation is from the stacks point of view, growing downward.
2713   // We need to adjust it to work correctly with guard_memory()
2714   address base = stack_red_zone_base();
2715 
2716   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2717   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2718 
2719   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2720     _stack_guard_state = stack_guard_enabled;
2721   } else {
2722     warning("Attempt to guard stack yellow zone failed.");
2723   }
2724   enable_register_stack_guard();
2725 }
2726 
2727 void JavaThread::disable_stack_yellow_reserved_zone() {
2728   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2729   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2730 
2731   // Simply return if called for a thread that does not use guard pages.
2732   if (_stack_guard_state == stack_guard_unused) return;
2733 
2734   // The base notation is from the stacks point of view, growing downward.
2735   // We need to adjust it to work correctly with guard_memory()
2736   address base = stack_red_zone_base();
2737 
2738   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2739     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2740   } else {
2741     warning("Attempt to unguard stack yellow zone failed.");
2742   }
2743   disable_register_stack_guard();
2744 }
2745 
2746 void JavaThread::enable_stack_red_zone() {
2747   // The base notation is from the stacks point of view, growing downward.
2748   // We need to adjust it to work correctly with guard_memory()
2749   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2750   address base = stack_red_zone_base() - stack_red_zone_size();
2751 
2752   guarantee(base < stack_base(), "Error calculating stack red zone");
2753   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2754 
2755   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2756     warning("Attempt to guard stack red zone failed.");
2757   }
2758 }
2759 
2760 void JavaThread::disable_stack_red_zone() {
2761   // The base notation is from the stacks point of view, growing downward.
2762   // We need to adjust it to work correctly with guard_memory()
2763   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2764   address base = stack_red_zone_base() - stack_red_zone_size();
2765   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2766     warning("Attempt to unguard stack red zone failed.");
2767   }
2768 }
2769 
2770 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2771   // ignore is there is no stack
2772   if (!has_last_Java_frame()) return;
2773   // traverse the stack frames. Starts from top frame.
2774   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2775     frame* fr = fst.current();
2776     f(fr, fst.register_map());
2777   }
2778 }
2779 
2780 
2781 #ifndef PRODUCT
2782 // Deoptimization
2783 // Function for testing deoptimization
2784 void JavaThread::deoptimize() {
2785   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2786   StackFrameStream fst(this, UseBiasedLocking);
2787   bool deopt = false;           // Dump stack only if a deopt actually happens.
2788   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2789   // Iterate over all frames in the thread and deoptimize
2790   for (; !fst.is_done(); fst.next()) {
2791     if (fst.current()->can_be_deoptimized()) {
2792 
2793       if (only_at) {
2794         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2795         // consists of comma or carriage return separated numbers so
2796         // search for the current bci in that string.
2797         address pc = fst.current()->pc();
2798         nmethod* nm =  (nmethod*) fst.current()->cb();
2799         ScopeDesc* sd = nm->scope_desc_at(pc);
2800         char buffer[8];
2801         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2802         size_t len = strlen(buffer);
2803         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2804         while (found != NULL) {
2805           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2806               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2807             // Check that the bci found is bracketed by terminators.
2808             break;
2809           }
2810           found = strstr(found + 1, buffer);
2811         }
2812         if (!found) {
2813           continue;
2814         }
2815       }
2816 
2817       if (DebugDeoptimization && !deopt) {
2818         deopt = true; // One-time only print before deopt
2819         tty->print_cr("[BEFORE Deoptimization]");
2820         trace_frames();
2821         trace_stack();
2822       }
2823       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2824     }
2825   }
2826 
2827   if (DebugDeoptimization && deopt) {
2828     tty->print_cr("[AFTER Deoptimization]");
2829     trace_frames();
2830   }
2831 }
2832 
2833 
2834 // Make zombies
2835 void JavaThread::make_zombies() {
2836   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2837     if (fst.current()->can_be_deoptimized()) {
2838       // it is a Java nmethod
2839       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2840       nm->make_not_entrant();
2841     }
2842   }
2843 }
2844 #endif // PRODUCT
2845 
2846 
2847 void JavaThread::deoptimized_wrt_marked_nmethods() {
2848   if (!has_last_Java_frame()) return;
2849   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2850   StackFrameStream fst(this, UseBiasedLocking);
2851   for (; !fst.is_done(); fst.next()) {
2852     if (fst.current()->should_be_deoptimized()) {
2853       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2854     }
2855   }
2856 }
2857 
2858 
2859 // If the caller is a NamedThread, then remember, in the current scope,
2860 // the given JavaThread in its _processed_thread field.
2861 class RememberProcessedThread: public StackObj {
2862   NamedThread* _cur_thr;
2863  public:
2864   RememberProcessedThread(JavaThread* jthr) {
2865     Thread* thread = Thread::current();
2866     if (thread->is_Named_thread()) {
2867       _cur_thr = (NamedThread *)thread;
2868       _cur_thr->set_processed_thread(jthr);
2869     } else {
2870       _cur_thr = NULL;
2871     }
2872   }
2873 
2874   ~RememberProcessedThread() {
2875     if (_cur_thr) {
2876       _cur_thr->set_processed_thread(NULL);
2877     }
2878   }
2879 };
2880 
2881 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2882   // Verify that the deferred card marks have been flushed.
2883   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2884 
2885   // Traverse the GCHandles
2886   Thread::oops_do(f, cf);
2887 
2888   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2889          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2890 
2891   if (has_last_Java_frame()) {
2892     // Record JavaThread to GC thread
2893     RememberProcessedThread rpt(this);
2894 
2895     // traverse the registered growable array
2896     if (_array_for_gc != NULL) {
2897       for (int index = 0; index < _array_for_gc->length(); index++) {
2898         f->do_oop(_array_for_gc->adr_at(index));
2899       }
2900     }
2901 
2902     // Traverse the monitor chunks
2903     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2904       chunk->oops_do(f);
2905     }
2906 
2907     // Traverse the execution stack
2908     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2909       fst.current()->oops_do(f, cf, fst.register_map());
2910     }
2911   }
2912 
2913   // callee_target is never live across a gc point so NULL it here should
2914   // it still contain a methdOop.
2915 
2916   set_callee_target(NULL);
2917 
2918   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2919   // If we have deferred set_locals there might be oops waiting to be
2920   // written
2921   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2922   if (list != NULL) {
2923     for (int i = 0; i < list->length(); i++) {
2924       list->at(i)->oops_do(f);
2925     }
2926   }
2927 
2928   // Traverse instance variables at the end since the GC may be moving things
2929   // around using this function
2930   f->do_oop((oop*) &_threadObj);
2931   f->do_oop((oop*) &_vm_result);
2932   f->do_oop((oop*) &_exception_oop);
2933   f->do_oop((oop*) &_pending_async_exception);
2934 
2935   if (jvmti_thread_state() != NULL) {
2936     jvmti_thread_state()->oops_do(f);
2937   }
2938 }
2939 
2940 #ifdef ASSERT
2941 void JavaThread::verify_states_for_handshake() {
2942   // This checks that the thread has a correct frame state during a handshake.
2943   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2944          (has_last_Java_frame() && java_call_counter() > 0),
2945          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2946          has_last_Java_frame(), java_call_counter());
2947 }
2948 #endif
2949 
2950 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2951   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2952          (has_last_Java_frame() && java_call_counter() > 0),
2953          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2954          has_last_Java_frame(), java_call_counter());
2955 
2956   if (has_last_Java_frame()) {
2957     // Traverse the execution stack
2958     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2959       fst.current()->nmethods_do(cf);
2960     }
2961   }
2962 }
2963 
2964 void JavaThread::metadata_do(MetadataClosure* f) {
2965   if (has_last_Java_frame()) {
2966     // Traverse the execution stack to call f() on the methods in the stack
2967     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2968       fst.current()->metadata_do(f);
2969     }
2970   } else if (is_Compiler_thread()) {
2971     // need to walk ciMetadata in current compile tasks to keep alive.
2972     CompilerThread* ct = (CompilerThread*)this;
2973     if (ct->env() != NULL) {
2974       ct->env()->metadata_do(f);
2975     }
2976     CompileTask* task = ct->task();
2977     if (task != NULL) {
2978       task->metadata_do(f);
2979     }
2980   }
2981 }
2982 
2983 // Printing
2984 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2985   switch (_thread_state) {
2986   case _thread_uninitialized:     return "_thread_uninitialized";
2987   case _thread_new:               return "_thread_new";
2988   case _thread_new_trans:         return "_thread_new_trans";
2989   case _thread_in_native:         return "_thread_in_native";
2990   case _thread_in_native_trans:   return "_thread_in_native_trans";
2991   case _thread_in_vm:             return "_thread_in_vm";
2992   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2993   case _thread_in_Java:           return "_thread_in_Java";
2994   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2995   case _thread_blocked:           return "_thread_blocked";
2996   case _thread_blocked_trans:     return "_thread_blocked_trans";
2997   default:                        return "unknown thread state";
2998   }
2999 }
3000 
3001 #ifndef PRODUCT
3002 void JavaThread::print_thread_state_on(outputStream *st) const {
3003   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
3004 };
3005 void JavaThread::print_thread_state() const {
3006   print_thread_state_on(tty);
3007 }
3008 #endif // PRODUCT
3009 
3010 // Called by Threads::print() for VM_PrintThreads operation
3011 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3012   st->print_raw("\"");
3013   st->print_raw(get_thread_name());
3014   st->print_raw("\" ");
3015   oop thread_oop = threadObj();
3016   if (thread_oop != NULL) {
3017     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3018     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3019     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3020   }
3021   Thread::print_on(st, print_extended_info);
3022   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3023   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3024   if (thread_oop != NULL) {
3025     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3026   }
3027 #ifndef PRODUCT
3028   _safepoint_state->print_on(st);
3029 #endif // PRODUCT
3030   if (is_Compiler_thread()) {
3031     CompileTask *task = ((CompilerThread*)this)->task();
3032     if (task != NULL) {
3033       st->print("   Compiling: ");
3034       task->print(st, NULL, true, false);
3035     } else {
3036       st->print("   No compile task");
3037     }
3038     st->cr();
3039   }
3040 }
3041 
3042 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3043   st->print("%s", get_thread_name_string(buf, buflen));
3044 }
3045 
3046 // Called by fatal error handler. The difference between this and
3047 // JavaThread::print() is that we can't grab lock or allocate memory.
3048 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3049   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3050   oop thread_obj = threadObj();
3051   if (thread_obj != NULL) {
3052     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3053   }
3054   st->print(" [");
3055   st->print("%s", _get_thread_state_name(_thread_state));
3056   if (osthread()) {
3057     st->print(", id=%d", osthread()->thread_id());
3058   }
3059   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3060             p2i(stack_end()), p2i(stack_base()));
3061   st->print("]");
3062 
3063   ThreadsSMRSupport::print_info_on(this, st);
3064   return;
3065 }
3066 
3067 // Verification
3068 
3069 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3070 
3071 void JavaThread::verify() {
3072   // Verify oops in the thread.
3073   oops_do(&VerifyOopClosure::verify_oop, NULL);
3074 
3075   // Verify the stack frames.
3076   frames_do(frame_verify);
3077 }
3078 
3079 // CR 6300358 (sub-CR 2137150)
3080 // Most callers of this method assume that it can't return NULL but a
3081 // thread may not have a name whilst it is in the process of attaching to
3082 // the VM - see CR 6412693, and there are places where a JavaThread can be
3083 // seen prior to having it's threadObj set (eg JNI attaching threads and
3084 // if vm exit occurs during initialization). These cases can all be accounted
3085 // for such that this method never returns NULL.
3086 const char* JavaThread::get_thread_name() const {
3087 #ifdef ASSERT
3088   // early safepoints can hit while current thread does not yet have TLS
3089   if (!SafepointSynchronize::is_at_safepoint()) {
3090     Thread *cur = Thread::current();
3091     if (!(cur->is_Java_thread() && cur == this)) {
3092       // Current JavaThreads are allowed to get their own name without
3093       // the Threads_lock.
3094       assert_locked_or_safepoint(Threads_lock);
3095     }
3096   }
3097 #endif // ASSERT
3098   return get_thread_name_string();
3099 }
3100 
3101 // Returns a non-NULL representation of this thread's name, or a suitable
3102 // descriptive string if there is no set name
3103 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3104   const char* name_str;
3105   oop thread_obj = threadObj();
3106   if (thread_obj != NULL) {
3107     oop name = java_lang_Thread::name(thread_obj);
3108     if (name != NULL) {
3109       if (buf == NULL) {
3110         name_str = java_lang_String::as_utf8_string(name);
3111       } else {
3112         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3113       }
3114     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3115       name_str = "<no-name - thread is attaching>";
3116     } else {
3117       name_str = Thread::name();
3118     }
3119   } else {
3120     name_str = Thread::name();
3121   }
3122   assert(name_str != NULL, "unexpected NULL thread name");
3123   return name_str;
3124 }
3125 
3126 
3127 const char* JavaThread::get_threadgroup_name() const {
3128   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3129   oop thread_obj = threadObj();
3130   if (thread_obj != NULL) {
3131     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3132     if (thread_group != NULL) {
3133       // ThreadGroup.name can be null
3134       return java_lang_ThreadGroup::name(thread_group);
3135     }
3136   }
3137   return NULL;
3138 }
3139 
3140 const char* JavaThread::get_parent_name() const {
3141   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3142   oop thread_obj = threadObj();
3143   if (thread_obj != NULL) {
3144     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3145     if (thread_group != NULL) {
3146       oop parent = java_lang_ThreadGroup::parent(thread_group);
3147       if (parent != NULL) {
3148         // ThreadGroup.name can be null
3149         return java_lang_ThreadGroup::name(parent);
3150       }
3151     }
3152   }
3153   return NULL;
3154 }
3155 
3156 ThreadPriority JavaThread::java_priority() const {
3157   oop thr_oop = threadObj();
3158   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3159   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3160   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3161   return priority;
3162 }
3163 
3164 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3165 
3166   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3167   // Link Java Thread object <-> C++ Thread
3168 
3169   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3170   // and put it into a new Handle.  The Handle "thread_oop" can then
3171   // be used to pass the C++ thread object to other methods.
3172 
3173   // Set the Java level thread object (jthread) field of the
3174   // new thread (a JavaThread *) to C++ thread object using the
3175   // "thread_oop" handle.
3176 
3177   // Set the thread field (a JavaThread *) of the
3178   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3179 
3180   Handle thread_oop(Thread::current(),
3181                     JNIHandles::resolve_non_null(jni_thread));
3182   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3183          "must be initialized");
3184   set_threadObj(thread_oop());
3185   java_lang_Thread::set_thread(thread_oop(), this);
3186 
3187   if (prio == NoPriority) {
3188     prio = java_lang_Thread::priority(thread_oop());
3189     assert(prio != NoPriority, "A valid priority should be present");
3190   }
3191 
3192   // Push the Java priority down to the native thread; needs Threads_lock
3193   Thread::set_priority(this, prio);
3194 
3195   // Add the new thread to the Threads list and set it in motion.
3196   // We must have threads lock in order to call Threads::add.
3197   // It is crucial that we do not block before the thread is
3198   // added to the Threads list for if a GC happens, then the java_thread oop
3199   // will not be visited by GC.
3200   Threads::add(this);
3201 }
3202 
3203 oop JavaThread::current_park_blocker() {
3204   // Support for JSR-166 locks
3205   oop thread_oop = threadObj();
3206   if (thread_oop != NULL &&
3207       JDK_Version::current().supports_thread_park_blocker()) {
3208     return java_lang_Thread::park_blocker(thread_oop);
3209   }
3210   return NULL;
3211 }
3212 
3213 
3214 void JavaThread::print_stack_on(outputStream* st) {
3215   if (!has_last_Java_frame()) return;
3216   ResourceMark rm;
3217   HandleMark   hm;
3218 
3219   RegisterMap reg_map(this);
3220   vframe* start_vf = last_java_vframe(&reg_map);
3221   int count = 0;
3222   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3223     if (f->is_java_frame()) {
3224       javaVFrame* jvf = javaVFrame::cast(f);
3225       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3226 
3227       // Print out lock information
3228       if (JavaMonitorsInStackTrace) {
3229         jvf->print_lock_info_on(st, count);
3230       }
3231     } else {
3232       // Ignore non-Java frames
3233     }
3234 
3235     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3236     count++;
3237     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3238   }
3239 }
3240 
3241 
3242 // JVMTI PopFrame support
3243 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3244   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3245   if (in_bytes(size_in_bytes) != 0) {
3246     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3247     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3248     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3249   }
3250 }
3251 
3252 void* JavaThread::popframe_preserved_args() {
3253   return _popframe_preserved_args;
3254 }
3255 
3256 ByteSize JavaThread::popframe_preserved_args_size() {
3257   return in_ByteSize(_popframe_preserved_args_size);
3258 }
3259 
3260 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3261   int sz = in_bytes(popframe_preserved_args_size());
3262   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3263   return in_WordSize(sz / wordSize);
3264 }
3265 
3266 void JavaThread::popframe_free_preserved_args() {
3267   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3268   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3269   _popframe_preserved_args = NULL;
3270   _popframe_preserved_args_size = 0;
3271 }
3272 
3273 #ifndef PRODUCT
3274 
3275 void JavaThread::trace_frames() {
3276   tty->print_cr("[Describe stack]");
3277   int frame_no = 1;
3278   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3279     tty->print("  %d. ", frame_no++);
3280     fst.current()->print_value_on(tty, this);
3281     tty->cr();
3282   }
3283 }
3284 
3285 class PrintAndVerifyOopClosure: public OopClosure {
3286  protected:
3287   template <class T> inline void do_oop_work(T* p) {
3288     oop obj = RawAccess<>::oop_load(p);
3289     if (obj == NULL) return;
3290     tty->print(INTPTR_FORMAT ": ", p2i(p));
3291     if (oopDesc::is_oop_or_null(obj)) {
3292       if (obj->is_objArray()) {
3293         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3294       } else {
3295         obj->print();
3296       }
3297     } else {
3298       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3299     }
3300     tty->cr();
3301   }
3302  public:
3303   virtual void do_oop(oop* p) { do_oop_work(p); }
3304   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3305 };
3306 
3307 
3308 static void oops_print(frame* f, const RegisterMap *map) {
3309   PrintAndVerifyOopClosure print;
3310   f->print_value();
3311   f->oops_do(&print, NULL, (RegisterMap*)map);
3312 }
3313 
3314 // Print our all the locations that contain oops and whether they are
3315 // valid or not.  This useful when trying to find the oldest frame
3316 // where an oop has gone bad since the frame walk is from youngest to
3317 // oldest.
3318 void JavaThread::trace_oops() {
3319   tty->print_cr("[Trace oops]");
3320   frames_do(oops_print);
3321 }
3322 
3323 
3324 #ifdef ASSERT
3325 // Print or validate the layout of stack frames
3326 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3327   ResourceMark rm;
3328   PRESERVE_EXCEPTION_MARK;
3329   FrameValues values;
3330   int frame_no = 0;
3331   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3332     fst.current()->describe(values, ++frame_no);
3333     if (depth == frame_no) break;
3334   }
3335   if (validate_only) {
3336     values.validate();
3337   } else {
3338     tty->print_cr("[Describe stack layout]");
3339     values.print(this);
3340   }
3341 }
3342 #endif
3343 
3344 void JavaThread::trace_stack_from(vframe* start_vf) {
3345   ResourceMark rm;
3346   int vframe_no = 1;
3347   for (vframe* f = start_vf; f; f = f->sender()) {
3348     if (f->is_java_frame()) {
3349       javaVFrame::cast(f)->print_activation(vframe_no++);
3350     } else {
3351       f->print();
3352     }
3353     if (vframe_no > StackPrintLimit) {
3354       tty->print_cr("...<more frames>...");
3355       return;
3356     }
3357   }
3358 }
3359 
3360 
3361 void JavaThread::trace_stack() {
3362   if (!has_last_Java_frame()) return;
3363   ResourceMark rm;
3364   HandleMark   hm;
3365   RegisterMap reg_map(this);
3366   trace_stack_from(last_java_vframe(&reg_map));
3367 }
3368 
3369 
3370 #endif // PRODUCT
3371 
3372 
3373 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3374   assert(reg_map != NULL, "a map must be given");
3375   frame f = last_frame();
3376   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3377     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3378   }
3379   return NULL;
3380 }
3381 
3382 
3383 Klass* JavaThread::security_get_caller_class(int depth) {
3384   vframeStream vfst(this);
3385   vfst.security_get_caller_frame(depth);
3386   if (!vfst.at_end()) {
3387     return vfst.method()->method_holder();
3388   }
3389   return NULL;
3390 }
3391 
3392 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3393   assert(thread->is_Compiler_thread(), "must be compiler thread");
3394   CompileBroker::compiler_thread_loop();
3395 }
3396 
3397 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3398   NMethodSweeper::sweeper_loop();
3399 }
3400 
3401 // Create a CompilerThread
3402 CompilerThread::CompilerThread(CompileQueue* queue,
3403                                CompilerCounters* counters)
3404                                : JavaThread(&compiler_thread_entry) {
3405   _env   = NULL;
3406   _log   = NULL;
3407   _task  = NULL;
3408   _queue = queue;
3409   _counters = counters;
3410   _buffer_blob = NULL;
3411   _compiler = NULL;
3412 
3413   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3414   resource_area()->bias_to(mtCompiler);
3415 
3416 #ifndef PRODUCT
3417   _ideal_graph_printer = NULL;
3418 #endif
3419 }
3420 
3421 CompilerThread::~CompilerThread() {
3422   // Delete objects which were allocated on heap.
3423   delete _counters;
3424 }
3425 
3426 bool CompilerThread::can_call_java() const {
3427   return _compiler != NULL && _compiler->is_jvmci();
3428 }
3429 
3430 // Create sweeper thread
3431 CodeCacheSweeperThread::CodeCacheSweeperThread()
3432 : JavaThread(&sweeper_thread_entry) {
3433   _scanned_compiled_method = NULL;
3434 }
3435 
3436 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3437   JavaThread::oops_do(f, cf);
3438   if (_scanned_compiled_method != NULL && cf != NULL) {
3439     // Safepoints can occur when the sweeper is scanning an nmethod so
3440     // process it here to make sure it isn't unloaded in the middle of
3441     // a scan.
3442     cf->do_code_blob(_scanned_compiled_method);
3443   }
3444 }
3445 
3446 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3447   JavaThread::nmethods_do(cf);
3448   if (_scanned_compiled_method != NULL && cf != NULL) {
3449     // Safepoints can occur when the sweeper is scanning an nmethod so
3450     // process it here to make sure it isn't unloaded in the middle of
3451     // a scan.
3452     cf->do_code_blob(_scanned_compiled_method);
3453   }
3454 }
3455 
3456 
3457 // ======= Threads ========
3458 
3459 // The Threads class links together all active threads, and provides
3460 // operations over all threads. It is protected by the Threads_lock,
3461 // which is also used in other global contexts like safepointing.
3462 // ThreadsListHandles are used to safely perform operations on one
3463 // or more threads without the risk of the thread exiting during the
3464 // operation.
3465 //
3466 // Note: The Threads_lock is currently more widely used than we
3467 // would like. We are actively migrating Threads_lock uses to other
3468 // mechanisms in order to reduce Threads_lock contention.
3469 
3470 JavaThread* Threads::_thread_list = NULL;
3471 int         Threads::_number_of_threads = 0;
3472 int         Threads::_number_of_non_daemon_threads = 0;
3473 int         Threads::_return_code = 0;
3474 uintx       Threads::_thread_claim_token = 1; // Never zero.
3475 size_t      JavaThread::_stack_size_at_create = 0;
3476 
3477 #ifdef ASSERT
3478 bool        Threads::_vm_complete = false;
3479 #endif
3480 
3481 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3482   Prefetch::read((void*)addr, prefetch_interval);
3483   return *addr;
3484 }
3485 
3486 // Possibly the ugliest for loop the world has seen. C++ does not allow
3487 // multiple types in the declaration section of the for loop. In this case
3488 // we are only dealing with pointers and hence can cast them. It looks ugly
3489 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3490 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3491     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3492              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3493              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3494              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3495              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3496          MACRO_current_p != MACRO_end;                                                                                    \
3497          MACRO_current_p++,                                                                                               \
3498              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3499 
3500 // All JavaThreads
3501 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3502 
3503 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3504 void Threads::non_java_threads_do(ThreadClosure* tc) {
3505   NoSafepointVerifier nsv(!SafepointSynchronize::is_at_safepoint(), false);
3506   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3507     tc->do_thread(njti.current());
3508   }
3509 }
3510 
3511 // All JavaThreads
3512 void Threads::java_threads_do(ThreadClosure* tc) {
3513   assert_locked_or_safepoint(Threads_lock);
3514   // ALL_JAVA_THREADS iterates through all JavaThreads.
3515   ALL_JAVA_THREADS(p) {
3516     tc->do_thread(p);
3517   }
3518 }
3519 
3520 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3521   assert_locked_or_safepoint(Threads_lock);
3522   java_threads_do(tc);
3523   tc->do_thread(VMThread::vm_thread());
3524 }
3525 
3526 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3527 void Threads::threads_do(ThreadClosure* tc) {
3528   assert_locked_or_safepoint(Threads_lock);
3529   java_threads_do(tc);
3530   non_java_threads_do(tc);
3531 }
3532 
3533 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3534   uintx claim_token = Threads::thread_claim_token();
3535   ALL_JAVA_THREADS(p) {
3536     if (p->claim_threads_do(is_par, claim_token)) {
3537       tc->do_thread(p);
3538     }
3539   }
3540   VMThread* vmt = VMThread::vm_thread();
3541   if (vmt->claim_threads_do(is_par, claim_token)) {
3542     tc->do_thread(vmt);
3543   }
3544 }
3545 
3546 // The system initialization in the library has three phases.
3547 //
3548 // Phase 1: java.lang.System class initialization
3549 //     java.lang.System is a primordial class loaded and initialized
3550 //     by the VM early during startup.  java.lang.System.<clinit>
3551 //     only does registerNatives and keeps the rest of the class
3552 //     initialization work later until thread initialization completes.
3553 //
3554 //     System.initPhase1 initializes the system properties, the static
3555 //     fields in, out, and err. Set up java signal handlers, OS-specific
3556 //     system settings, and thread group of the main thread.
3557 static void call_initPhase1(TRAPS) {
3558   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3559   JavaValue result(T_VOID);
3560   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3561                                          vmSymbols::void_method_signature(), CHECK);
3562 }
3563 
3564 // Phase 2. Module system initialization
3565 //     This will initialize the module system.  Only java.base classes
3566 //     can be loaded until phase 2 completes.
3567 //
3568 //     Call System.initPhase2 after the compiler initialization and jsr292
3569 //     classes get initialized because module initialization runs a lot of java
3570 //     code, that for performance reasons, should be compiled.  Also, this will
3571 //     enable the startup code to use lambda and other language features in this
3572 //     phase and onward.
3573 //
3574 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3575 static void call_initPhase2(TRAPS) {
3576   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3577 
3578   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3579 
3580   JavaValue result(T_INT);
3581   JavaCallArguments args;
3582   args.push_int(DisplayVMOutputToStderr);
3583   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3584   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3585                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3586   if (result.get_jint() != JNI_OK) {
3587     vm_exit_during_initialization(); // no message or exception
3588   }
3589 
3590   universe_post_module_init();
3591 }
3592 
3593 // Phase 3. final setup - set security manager, system class loader and TCCL
3594 //
3595 //     This will instantiate and set the security manager, set the system class
3596 //     loader as well as the thread context class loader.  The security manager
3597 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3598 //     other modules or the application's classpath.
3599 static void call_initPhase3(TRAPS) {
3600   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3601   JavaValue result(T_VOID);
3602   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3603                                          vmSymbols::void_method_signature(), CHECK);
3604 }
3605 
3606 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3607   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3608 
3609   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3610     create_vm_init_libraries();
3611   }
3612 
3613   initialize_class(vmSymbols::java_lang_String(), CHECK);
3614 
3615   // Inject CompactStrings value after the static initializers for String ran.
3616   java_lang_String::set_compact_strings(CompactStrings);
3617 
3618   // Initialize java_lang.System (needed before creating the thread)
3619   initialize_class(vmSymbols::java_lang_System(), CHECK);
3620   // The VM creates & returns objects of this class. Make sure it's initialized.
3621   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3622   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3623   Handle thread_group = create_initial_thread_group(CHECK);
3624   Universe::set_main_thread_group(thread_group());
3625   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3626   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3627   main_thread->set_threadObj(thread_object);
3628   // Set thread status to running since main thread has
3629   // been started and running.
3630   java_lang_Thread::set_thread_status(thread_object,
3631                                       java_lang_Thread::RUNNABLE);
3632 
3633   // The VM creates objects of this class.
3634   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3635 
3636   // The VM preresolves methods to these classes. Make sure that they get initialized
3637   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3638   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3639 
3640   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3641   call_initPhase1(CHECK);
3642 
3643   // get the Java runtime name after java.lang.System is initialized
3644   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3645   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3646 
3647   // an instance of OutOfMemory exception has been allocated earlier
3648   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3649   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3650   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3651   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3652   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3653   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3654   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3655   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3656 }
3657 
3658 void Threads::initialize_jsr292_core_classes(TRAPS) {
3659   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3660 
3661   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3662   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3663   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3664   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3665 }
3666 
3667 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3668   extern void JDK_Version_init();
3669 
3670   // Preinitialize version info.
3671   VM_Version::early_initialize();
3672 
3673   // Check version
3674   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3675 
3676   // Initialize library-based TLS
3677   ThreadLocalStorage::init();
3678 
3679   // Initialize the output stream module
3680   ostream_init();
3681 
3682   // Process java launcher properties.
3683   Arguments::process_sun_java_launcher_properties(args);
3684 
3685   // Initialize the os module
3686   os::init();
3687 
3688   // Record VM creation timing statistics
3689   TraceVmCreationTime create_vm_timer;
3690   create_vm_timer.start();
3691 
3692   // Initialize system properties.
3693   Arguments::init_system_properties();
3694 
3695   // So that JDK version can be used as a discriminator when parsing arguments
3696   JDK_Version_init();
3697 
3698   // Update/Initialize System properties after JDK version number is known
3699   Arguments::init_version_specific_system_properties();
3700 
3701   // Make sure to initialize log configuration *before* parsing arguments
3702   LogConfiguration::initialize(create_vm_timer.begin_time());
3703 
3704   // Parse arguments
3705   // Note: this internally calls os::init_container_support()
3706   jint parse_result = Arguments::parse(args);
3707   if (parse_result != JNI_OK) return parse_result;
3708 
3709   os::init_before_ergo();
3710 
3711   jint ergo_result = Arguments::apply_ergo();
3712   if (ergo_result != JNI_OK) return ergo_result;
3713 
3714   // Final check of all ranges after ergonomics which may change values.
3715   if (!JVMFlagRangeList::check_ranges()) {
3716     return JNI_EINVAL;
3717   }
3718 
3719   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3720   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3721   if (!constraint_result) {
3722     return JNI_EINVAL;
3723   }
3724 
3725   JVMFlagWriteableList::mark_startup();
3726 
3727   if (PauseAtStartup) {
3728     os::pause();
3729   }
3730 
3731   HOTSPOT_VM_INIT_BEGIN();
3732 
3733   // Timing (must come after argument parsing)
3734   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3735 
3736   // Initialize the os module after parsing the args
3737   jint os_init_2_result = os::init_2();
3738   if (os_init_2_result != JNI_OK) return os_init_2_result;
3739 
3740 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3741   // Initialize assert poison page mechanism.
3742   if (ShowRegistersOnAssert) {
3743     initialize_assert_poison();
3744   }
3745 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3746 
3747   SafepointMechanism::initialize();
3748 
3749   jint adjust_after_os_result = Arguments::adjust_after_os();
3750   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3751 
3752   // Initialize output stream logging
3753   ostream_init_log();
3754 
3755   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3756   // Must be before create_vm_init_agents()
3757   if (Arguments::init_libraries_at_startup()) {
3758     convert_vm_init_libraries_to_agents();
3759   }
3760 
3761   // Launch -agentlib/-agentpath and converted -Xrun agents
3762   if (Arguments::init_agents_at_startup()) {
3763     create_vm_init_agents();
3764   }
3765 
3766   // Initialize Threads state
3767   _thread_list = NULL;
3768   _number_of_threads = 0;
3769   _number_of_non_daemon_threads = 0;
3770 
3771   // Initialize global data structures and create system classes in heap
3772   vm_init_globals();
3773 
3774 #if INCLUDE_JVMCI
3775   if (JVMCICounterSize > 0) {
3776     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3777     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3778   } else {
3779     JavaThread::_jvmci_old_thread_counters = NULL;
3780   }
3781 #endif // INCLUDE_JVMCI
3782 
3783   // Attach the main thread to this os thread
3784   JavaThread* main_thread = new JavaThread();
3785   main_thread->set_thread_state(_thread_in_vm);
3786   main_thread->initialize_thread_current();
3787   // must do this before set_active_handles
3788   main_thread->record_stack_base_and_size();
3789   main_thread->register_thread_stack_with_NMT();
3790   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3791 
3792   if (!main_thread->set_as_starting_thread()) {
3793     vm_shutdown_during_initialization(
3794                                       "Failed necessary internal allocation. Out of swap space");
3795     main_thread->smr_delete();
3796     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3797     return JNI_ENOMEM;
3798   }
3799 
3800   // Enable guard page *after* os::create_main_thread(), otherwise it would
3801   // crash Linux VM, see notes in os_linux.cpp.
3802   main_thread->create_stack_guard_pages();
3803 
3804   // Initialize Java-Level synchronization subsystem
3805   ObjectMonitor::Initialize();
3806 
3807   // Initialize global modules
3808   jint status = init_globals();
3809   if (status != JNI_OK) {
3810     main_thread->smr_delete();
3811     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3812     return status;
3813   }
3814 
3815   JFR_ONLY(Jfr::on_vm_init();)
3816 
3817   // Should be done after the heap is fully created
3818   main_thread->cache_global_variables();
3819 
3820   HandleMark hm;
3821 
3822   { MutexLocker mu(Threads_lock);
3823     Threads::add(main_thread);
3824   }
3825 
3826   // Any JVMTI raw monitors entered in onload will transition into
3827   // real raw monitor. VM is setup enough here for raw monitor enter.
3828   JvmtiExport::transition_pending_onload_raw_monitors();
3829 
3830   // Create the VMThread
3831   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3832 
3833   VMThread::create();
3834     Thread* vmthread = VMThread::vm_thread();
3835 
3836     if (!os::create_thread(vmthread, os::vm_thread)) {
3837       vm_exit_during_initialization("Cannot create VM thread. "
3838                                     "Out of system resources.");
3839     }
3840 
3841     // Wait for the VM thread to become ready, and VMThread::run to initialize
3842     // Monitors can have spurious returns, must always check another state flag
3843     {
3844       MutexLocker ml(Notify_lock);
3845       os::start_thread(vmthread);
3846       while (vmthread->active_handles() == NULL) {
3847         Notify_lock->wait();
3848       }
3849     }
3850   }
3851 
3852   assert(Universe::is_fully_initialized(), "not initialized");
3853   if (VerifyDuringStartup) {
3854     // Make sure we're starting with a clean slate.
3855     VM_Verify verify_op;
3856     VMThread::execute(&verify_op);
3857   }
3858 
3859   // We need this to update the java.vm.info property in case any flags used
3860   // to initially define it have been changed. This is needed for both CDS and
3861   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3862   // is initially computed. See Abstract_VM_Version::vm_info_string().
3863   // This update must happen before we initialize the java classes, but
3864   // after any initialization logic that might modify the flags.
3865   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3866 
3867   Thread* THREAD = Thread::current();
3868 
3869   // Always call even when there are not JVMTI environments yet, since environments
3870   // may be attached late and JVMTI must track phases of VM execution
3871   JvmtiExport::enter_early_start_phase();
3872 
3873   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3874   JvmtiExport::post_early_vm_start();
3875 
3876   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3877 
3878   quicken_jni_functions();
3879 
3880   // No more stub generation allowed after that point.
3881   StubCodeDesc::freeze();
3882 
3883   // Set flag that basic initialization has completed. Used by exceptions and various
3884   // debug stuff, that does not work until all basic classes have been initialized.
3885   set_init_completed();
3886 
3887   LogConfiguration::post_initialize();
3888   Metaspace::post_initialize();
3889 
3890   HOTSPOT_VM_INIT_END();
3891 
3892   // record VM initialization completion time
3893 #if INCLUDE_MANAGEMENT
3894   Management::record_vm_init_completed();
3895 #endif // INCLUDE_MANAGEMENT
3896 
3897   // Signal Dispatcher needs to be started before VMInit event is posted
3898   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3899 
3900   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3901   if (!DisableAttachMechanism) {
3902     AttachListener::vm_start();
3903     if (StartAttachListener || AttachListener::init_at_startup()) {
3904       AttachListener::init();
3905     }
3906   }
3907 
3908   // Launch -Xrun agents
3909   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3910   // back-end can launch with -Xdebug -Xrunjdwp.
3911   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3912     create_vm_init_libraries();
3913   }
3914 
3915   if (CleanChunkPoolAsync) {
3916     Chunk::start_chunk_pool_cleaner_task();
3917   }
3918 
3919   // initialize compiler(s)
3920 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3921 #if INCLUDE_JVMCI
3922   bool force_JVMCI_intialization = false;
3923   if (EnableJVMCI) {
3924     // Initialize JVMCI eagerly when it is explicitly requested.
3925     // Or when JVMCIPrintProperties is enabled.
3926     // The JVMCI Java initialization code will read this flag and
3927     // do the printing if it's set.
3928     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties;
3929 
3930     if (!force_JVMCI_intialization) {
3931       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3932       // compilations via JVMCI will not actually block until JVMCI is initialized.
3933       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3934     }
3935   }
3936 #endif
3937   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
3938   // Postpone completion of compiler initialization to after JVMCI
3939   // is initialized to avoid timeouts of blocking compilations.
3940   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
3941     CompileBroker::compilation_init_phase2();
3942   }
3943 #endif
3944 
3945   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3946   // It is done after compilers are initialized, because otherwise compilations of
3947   // signature polymorphic MH intrinsics can be missed
3948   // (see SystemDictionary::find_method_handle_intrinsic).
3949   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3950 
3951   // This will initialize the module system.  Only java.base classes can be
3952   // loaded until phase 2 completes
3953   call_initPhase2(CHECK_JNI_ERR);
3954 
3955   // Always call even when there are not JVMTI environments yet, since environments
3956   // may be attached late and JVMTI must track phases of VM execution
3957   JvmtiExport::enter_start_phase();
3958 
3959   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3960   JvmtiExport::post_vm_start();
3961 
3962   // Final system initialization including security manager and system class loader
3963   call_initPhase3(CHECK_JNI_ERR);
3964 
3965   // cache the system and platform class loaders
3966   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3967 
3968 #if INCLUDE_CDS
3969   if (DumpSharedSpaces) {
3970     // capture the module path info from the ModuleEntryTable
3971     ClassLoader::initialize_module_path(THREAD);
3972   }
3973 #endif
3974 
3975 #if INCLUDE_JVMCI
3976   if (force_JVMCI_intialization) {
3977     JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3978     CompileBroker::compilation_init_phase2();
3979   }
3980 #endif
3981 
3982   // Always call even when there are not JVMTI environments yet, since environments
3983   // may be attached late and JVMTI must track phases of VM execution
3984   JvmtiExport::enter_live_phase();
3985 
3986   // Make perfmemory accessible
3987   PerfMemory::set_accessible(true);
3988 
3989   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3990   JvmtiExport::post_vm_initialized();
3991 
3992   JFR_ONLY(Jfr::on_vm_start();)
3993 
3994 #if INCLUDE_MANAGEMENT
3995   Management::initialize(THREAD);
3996 
3997   if (HAS_PENDING_EXCEPTION) {
3998     // management agent fails to start possibly due to
3999     // configuration problem and is responsible for printing
4000     // stack trace if appropriate. Simply exit VM.
4001     vm_exit(1);
4002   }
4003 #endif // INCLUDE_MANAGEMENT
4004 
4005   if (MemProfiling)                   MemProfiler::engage();
4006   StatSampler::engage();
4007   if (CheckJNICalls)                  JniPeriodicChecker::engage();
4008 
4009   BiasedLocking::init();
4010 
4011 #if INCLUDE_RTM_OPT
4012   RTMLockingCounters::init();
4013 #endif
4014 
4015   if (JDK_Version::current().post_vm_init_hook_enabled()) {
4016     call_postVMInitHook(THREAD);
4017     // The Java side of PostVMInitHook.run must deal with all
4018     // exceptions and provide means of diagnosis.
4019     if (HAS_PENDING_EXCEPTION) {
4020       CLEAR_PENDING_EXCEPTION;
4021     }
4022   }
4023 
4024   {
4025     MutexLocker ml(PeriodicTask_lock);
4026     // Make sure the WatcherThread can be started by WatcherThread::start()
4027     // or by dynamic enrollment.
4028     WatcherThread::make_startable();
4029     // Start up the WatcherThread if there are any periodic tasks
4030     // NOTE:  All PeriodicTasks should be registered by now. If they
4031     //   aren't, late joiners might appear to start slowly (we might
4032     //   take a while to process their first tick).
4033     if (PeriodicTask::num_tasks() > 0) {
4034       WatcherThread::start();
4035     }
4036   }
4037 
4038   create_vm_timer.end();
4039 #ifdef ASSERT
4040   _vm_complete = true;
4041 #endif
4042 
4043   if (DumpSharedSpaces) {
4044     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4045     ShouldNotReachHere();
4046   }
4047 
4048   return JNI_OK;
4049 }
4050 
4051 // type for the Agent_OnLoad and JVM_OnLoad entry points
4052 extern "C" {
4053   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4054 }
4055 // Find a command line agent library and return its entry point for
4056 //         -agentlib:  -agentpath:   -Xrun
4057 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4058 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4059                                     const char *on_load_symbols[],
4060                                     size_t num_symbol_entries) {
4061   OnLoadEntry_t on_load_entry = NULL;
4062   void *library = NULL;
4063 
4064   if (!agent->valid()) {
4065     char buffer[JVM_MAXPATHLEN];
4066     char ebuf[1024] = "";
4067     const char *name = agent->name();
4068     const char *msg = "Could not find agent library ";
4069 
4070     // First check to see if agent is statically linked into executable
4071     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4072       library = agent->os_lib();
4073     } else if (agent->is_absolute_path()) {
4074       library = os::dll_load(name, ebuf, sizeof ebuf);
4075       if (library == NULL) {
4076         const char *sub_msg = " in absolute path, with error: ";
4077         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4078         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4079         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4080         // If we can't find the agent, exit.
4081         vm_exit_during_initialization(buf, NULL);
4082         FREE_C_HEAP_ARRAY(char, buf);
4083       }
4084     } else {
4085       // Try to load the agent from the standard dll directory
4086       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4087                              name)) {
4088         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4089       }
4090       if (library == NULL) { // Try the library path directory.
4091         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4092           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4093         }
4094         if (library == NULL) {
4095           const char *sub_msg = " on the library path, with error: ";
4096           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4097 
4098           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4099                        strlen(ebuf) + strlen(sub_msg2) + 1;
4100           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4101           if (!agent->is_instrument_lib()) {
4102             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4103           } else {
4104             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4105           }
4106           // If we can't find the agent, exit.
4107           vm_exit_during_initialization(buf, NULL);
4108           FREE_C_HEAP_ARRAY(char, buf);
4109         }
4110       }
4111     }
4112     agent->set_os_lib(library);
4113     agent->set_valid();
4114   }
4115 
4116   // Find the OnLoad function.
4117   on_load_entry =
4118     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4119                                                           false,
4120                                                           on_load_symbols,
4121                                                           num_symbol_entries));
4122   return on_load_entry;
4123 }
4124 
4125 // Find the JVM_OnLoad entry point
4126 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4127   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4128   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4129 }
4130 
4131 // Find the Agent_OnLoad entry point
4132 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4133   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4134   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4135 }
4136 
4137 // For backwards compatibility with -Xrun
4138 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4139 // treated like -agentpath:
4140 // Must be called before agent libraries are created
4141 void Threads::convert_vm_init_libraries_to_agents() {
4142   AgentLibrary* agent;
4143   AgentLibrary* next;
4144 
4145   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4146     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4147     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4148 
4149     // If there is an JVM_OnLoad function it will get called later,
4150     // otherwise see if there is an Agent_OnLoad
4151     if (on_load_entry == NULL) {
4152       on_load_entry = lookup_agent_on_load(agent);
4153       if (on_load_entry != NULL) {
4154         // switch it to the agent list -- so that Agent_OnLoad will be called,
4155         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4156         Arguments::convert_library_to_agent(agent);
4157       } else {
4158         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4159       }
4160     }
4161   }
4162 }
4163 
4164 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4165 // Invokes Agent_OnLoad
4166 // Called very early -- before JavaThreads exist
4167 void Threads::create_vm_init_agents() {
4168   extern struct JavaVM_ main_vm;
4169   AgentLibrary* agent;
4170 
4171   JvmtiExport::enter_onload_phase();
4172 
4173   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4174     // CDS dumping does not support native JVMTI agent.
4175     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4176     if (DumpSharedSpaces) {
4177       if(!agent->is_instrument_lib()) {
4178         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4179       } else if (!AllowArchivingWithJavaAgent) {
4180         vm_exit_during_cds_dumping(
4181           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4182       }
4183     }
4184 
4185     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4186 
4187     if (on_load_entry != NULL) {
4188       // Invoke the Agent_OnLoad function
4189       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4190       if (err != JNI_OK) {
4191         vm_exit_during_initialization("agent library failed to init", agent->name());
4192       }
4193     } else {
4194       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4195     }
4196   }
4197 
4198   JvmtiExport::enter_primordial_phase();
4199 }
4200 
4201 extern "C" {
4202   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4203 }
4204 
4205 void Threads::shutdown_vm_agents() {
4206   // Send any Agent_OnUnload notifications
4207   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4208   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4209   extern struct JavaVM_ main_vm;
4210   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4211 
4212     // Find the Agent_OnUnload function.
4213     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4214                                                    os::find_agent_function(agent,
4215                                                    false,
4216                                                    on_unload_symbols,
4217                                                    num_symbol_entries));
4218 
4219     // Invoke the Agent_OnUnload function
4220     if (unload_entry != NULL) {
4221       JavaThread* thread = JavaThread::current();
4222       ThreadToNativeFromVM ttn(thread);
4223       HandleMark hm(thread);
4224       (*unload_entry)(&main_vm);
4225     }
4226   }
4227 }
4228 
4229 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4230 // Invokes JVM_OnLoad
4231 void Threads::create_vm_init_libraries() {
4232   extern struct JavaVM_ main_vm;
4233   AgentLibrary* agent;
4234 
4235   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4236     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4237 
4238     if (on_load_entry != NULL) {
4239       // Invoke the JVM_OnLoad function
4240       JavaThread* thread = JavaThread::current();
4241       ThreadToNativeFromVM ttn(thread);
4242       HandleMark hm(thread);
4243       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4244       if (err != JNI_OK) {
4245         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4246       }
4247     } else {
4248       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4249     }
4250   }
4251 }
4252 
4253 
4254 // Last thread running calls java.lang.Shutdown.shutdown()
4255 void JavaThread::invoke_shutdown_hooks() {
4256   HandleMark hm(this);
4257 
4258   // We could get here with a pending exception, if so clear it now.
4259   if (this->has_pending_exception()) {
4260     this->clear_pending_exception();
4261   }
4262 
4263   EXCEPTION_MARK;
4264   Klass* shutdown_klass =
4265     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4266                                       THREAD);
4267   if (shutdown_klass != NULL) {
4268     // SystemDictionary::resolve_or_null will return null if there was
4269     // an exception.  If we cannot load the Shutdown class, just don't
4270     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4271     // won't be run.  Note that if a shutdown hook was registered,
4272     // the Shutdown class would have already been loaded
4273     // (Runtime.addShutdownHook will load it).
4274     JavaValue result(T_VOID);
4275     JavaCalls::call_static(&result,
4276                            shutdown_klass,
4277                            vmSymbols::shutdown_method_name(),
4278                            vmSymbols::void_method_signature(),
4279                            THREAD);
4280   }
4281   CLEAR_PENDING_EXCEPTION;
4282 }
4283 
4284 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4285 // the program falls off the end of main(). Another VM exit path is through
4286 // vm_exit() when the program calls System.exit() to return a value or when
4287 // there is a serious error in VM. The two shutdown paths are not exactly
4288 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4289 // and VM_Exit op at VM level.
4290 //
4291 // Shutdown sequence:
4292 //   + Shutdown native memory tracking if it is on
4293 //   + Wait until we are the last non-daemon thread to execute
4294 //     <-- every thing is still working at this moment -->
4295 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4296 //        shutdown hooks
4297 //   + Call before_exit(), prepare for VM exit
4298 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4299 //        currently the only user of this mechanism is File.deleteOnExit())
4300 //      > stop StatSampler, watcher thread, CMS threads,
4301 //        post thread end and vm death events to JVMTI,
4302 //        stop signal thread
4303 //   + Call JavaThread::exit(), it will:
4304 //      > release JNI handle blocks, remove stack guard pages
4305 //      > remove this thread from Threads list
4306 //     <-- no more Java code from this thread after this point -->
4307 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4308 //     the compiler threads at safepoint
4309 //     <-- do not use anything that could get blocked by Safepoint -->
4310 //   + Disable tracing at JNI/JVM barriers
4311 //   + Set _vm_exited flag for threads that are still running native code
4312 //   + Call exit_globals()
4313 //      > deletes tty
4314 //      > deletes PerfMemory resources
4315 //   + Delete this thread
4316 //   + Return to caller
4317 
4318 bool Threads::destroy_vm() {
4319   JavaThread* thread = JavaThread::current();
4320 
4321 #ifdef ASSERT
4322   _vm_complete = false;
4323 #endif
4324   // Wait until we are the last non-daemon thread to execute
4325   { MutexLocker nu(Threads_lock);
4326     while (Threads::number_of_non_daemon_threads() > 1)
4327       // This wait should make safepoint checks, wait without a timeout,
4328       // and wait as a suspend-equivalent condition.
4329       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4330                          Mutex::_as_suspend_equivalent_flag);
4331   }
4332 
4333   EventShutdown e;
4334   if (e.should_commit()) {
4335     e.set_reason("No remaining non-daemon Java threads");
4336     e.commit();
4337   }
4338 
4339   // Hang forever on exit if we are reporting an error.
4340   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4341     os::infinite_sleep();
4342   }
4343   os::wait_for_keypress_at_exit();
4344 
4345   // run Java level shutdown hooks
4346   thread->invoke_shutdown_hooks();
4347 
4348   before_exit(thread);
4349 
4350   thread->exit(true);
4351 
4352   // Stop VM thread.
4353   {
4354     // 4945125 The vm thread comes to a safepoint during exit.
4355     // GC vm_operations can get caught at the safepoint, and the
4356     // heap is unparseable if they are caught. Grab the Heap_lock
4357     // to prevent this. The GC vm_operations will not be able to
4358     // queue until after the vm thread is dead. After this point,
4359     // we'll never emerge out of the safepoint before the VM exits.
4360 
4361     MutexLockerEx ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4362 
4363     VMThread::wait_for_vm_thread_exit();
4364     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4365     VMThread::destroy();
4366   }
4367 
4368   // Now, all Java threads are gone except daemon threads. Daemon threads
4369   // running Java code or in VM are stopped by the Safepoint. However,
4370   // daemon threads executing native code are still running.  But they
4371   // will be stopped at native=>Java/VM barriers. Note that we can't
4372   // simply kill or suspend them, as it is inherently deadlock-prone.
4373 
4374   VM_Exit::set_vm_exited();
4375 
4376   // Clean up ideal graph printers after the VMThread has started
4377   // the final safepoint which will block all the Compiler threads.
4378   // Note that this Thread has already logically exited so the
4379   // clean_up() function's use of a JavaThreadIteratorWithHandle
4380   // would be a problem except set_vm_exited() has remembered the
4381   // shutdown thread which is granted a policy exception.
4382 #if defined(COMPILER2) && !defined(PRODUCT)
4383   IdealGraphPrinter::clean_up();
4384 #endif
4385 
4386   notify_vm_shutdown();
4387 
4388   // exit_globals() will delete tty
4389   exit_globals();
4390 
4391   // We are after VM_Exit::set_vm_exited() so we can't call
4392   // thread->smr_delete() or we will block on the Threads_lock.
4393   // Deleting the shutdown thread here is safe because another
4394   // JavaThread cannot have an active ThreadsListHandle for
4395   // this JavaThread.
4396   delete thread;
4397 
4398 #if INCLUDE_JVMCI
4399   if (JVMCICounterSize > 0) {
4400     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4401   }
4402 #endif
4403 
4404   LogConfiguration::finalize();
4405 
4406   return true;
4407 }
4408 
4409 
4410 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4411   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4412   return is_supported_jni_version(version);
4413 }
4414 
4415 
4416 jboolean Threads::is_supported_jni_version(jint version) {
4417   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4418   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4419   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4420   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4421   if (version == JNI_VERSION_9) return JNI_TRUE;
4422   if (version == JNI_VERSION_10) return JNI_TRUE;
4423   return JNI_FALSE;
4424 }
4425 
4426 
4427 void Threads::add(JavaThread* p, bool force_daemon) {
4428   // The threads lock must be owned at this point
4429   assert(Threads_lock->owned_by_self(), "must have threads lock");
4430 
4431   BarrierSet::barrier_set()->on_thread_attach(p);
4432 
4433   p->set_next(_thread_list);
4434   _thread_list = p;
4435 
4436   // Once a JavaThread is added to the Threads list, smr_delete() has
4437   // to be used to delete it. Otherwise we can just delete it directly.
4438   p->set_on_thread_list();
4439 
4440   _number_of_threads++;
4441   oop threadObj = p->threadObj();
4442   bool daemon = true;
4443   // Bootstrapping problem: threadObj can be null for initial
4444   // JavaThread (or for threads attached via JNI)
4445   if ((!force_daemon) && !is_daemon((threadObj))) {
4446     _number_of_non_daemon_threads++;
4447     daemon = false;
4448   }
4449 
4450   ThreadService::add_thread(p, daemon);
4451 
4452   // Maintain fast thread list
4453   ThreadsSMRSupport::add_thread(p);
4454 
4455   // Possible GC point.
4456   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4457 }
4458 
4459 void Threads::remove(JavaThread* p) {
4460 
4461   // Reclaim the ObjectMonitors from the omInUseList and omFreeList of the moribund thread.
4462   ObjectSynchronizer::omFlush(p);
4463 
4464   // Extra scope needed for Thread_lock, so we can check
4465   // that we do not remove thread without safepoint code notice
4466   { MutexLocker ml(Threads_lock);
4467 
4468     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4469 
4470     // Maintain fast thread list
4471     ThreadsSMRSupport::remove_thread(p);
4472 
4473     JavaThread* current = _thread_list;
4474     JavaThread* prev    = NULL;
4475 
4476     while (current != p) {
4477       prev    = current;
4478       current = current->next();
4479     }
4480 
4481     if (prev) {
4482       prev->set_next(current->next());
4483     } else {
4484       _thread_list = p->next();
4485     }
4486 
4487     _number_of_threads--;
4488     oop threadObj = p->threadObj();
4489     bool daemon = true;
4490     if (!is_daemon(threadObj)) {
4491       _number_of_non_daemon_threads--;
4492       daemon = false;
4493 
4494       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4495       // on destroy_vm will wake up.
4496       if (number_of_non_daemon_threads() == 1) {
4497         Threads_lock->notify_all();
4498       }
4499     }
4500     ThreadService::remove_thread(p, daemon);
4501 
4502     // Make sure that safepoint code disregard this thread. This is needed since
4503     // the thread might mess around with locks after this point. This can cause it
4504     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4505     // of this thread since it is removed from the queue.
4506     p->set_terminated_value();
4507   } // unlock Threads_lock
4508 
4509   // Since Events::log uses a lock, we grab it outside the Threads_lock
4510   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4511 }
4512 
4513 // Operations on the Threads list for GC.  These are not explicitly locked,
4514 // but the garbage collector must provide a safe context for them to run.
4515 // In particular, these things should never be called when the Threads_lock
4516 // is held by some other thread. (Note: the Safepoint abstraction also
4517 // uses the Threads_lock to guarantee this property. It also makes sure that
4518 // all threads gets blocked when exiting or starting).
4519 
4520 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4521   ALL_JAVA_THREADS(p) {
4522     p->oops_do(f, cf);
4523   }
4524   VMThread::vm_thread()->oops_do(f, cf);
4525 }
4526 
4527 void Threads::change_thread_claim_token() {
4528   if (++_thread_claim_token == 0) {
4529     // On overflow of the token counter, there is a risk of future
4530     // collisions between a new global token value and a stale token
4531     // for a thread, because not all iterations visit all threads.
4532     // (Though it's pretty much a theoretical concern for non-trivial
4533     // token counter sizes.)  To deal with the possibility, reset all
4534     // the thread tokens to zero on global token overflow.
4535     struct ResetClaims : public ThreadClosure {
4536       virtual void do_thread(Thread* t) {
4537         t->claim_threads_do(false, 0);
4538       }
4539     } reset_claims;
4540     Threads::threads_do(&reset_claims);
4541     // On overflow, update the global token to non-zero, to
4542     // avoid the special "never claimed" initial thread value.
4543     _thread_claim_token = 1;
4544   }
4545 }
4546 
4547 #ifdef ASSERT
4548 void assert_thread_claimed(const char* kind, Thread* t, uintx expected) {
4549   const uintx token = t->threads_do_token();
4550   assert(token == expected,
4551          "%s " PTR_FORMAT " has incorrect value " UINTX_FORMAT " != "
4552          UINTX_FORMAT, kind, p2i(t), token, expected);
4553 }
4554 
4555 void Threads::assert_all_threads_claimed() {
4556   ALL_JAVA_THREADS(p) {
4557     assert_thread_claimed("Thread", p, _thread_claim_token);
4558   }
4559   assert_thread_claimed("VMThread", VMThread::vm_thread(), _thread_claim_token);
4560 }
4561 #endif // ASSERT
4562 
4563 class ParallelOopsDoThreadClosure : public ThreadClosure {
4564 private:
4565   OopClosure* _f;
4566   CodeBlobClosure* _cf;
4567 public:
4568   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4569   void do_thread(Thread* t) {
4570     t->oops_do(_f, _cf);
4571   }
4572 };
4573 
4574 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4575   ParallelOopsDoThreadClosure tc(f, cf);
4576   possibly_parallel_threads_do(is_par, &tc);
4577 }
4578 
4579 void Threads::nmethods_do(CodeBlobClosure* cf) {
4580   ALL_JAVA_THREADS(p) {
4581     // This is used by the code cache sweeper to mark nmethods that are active
4582     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4583     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4584     if(!p->is_Code_cache_sweeper_thread()) {
4585       p->nmethods_do(cf);
4586     }
4587   }
4588 }
4589 
4590 void Threads::metadata_do(MetadataClosure* f) {
4591   ALL_JAVA_THREADS(p) {
4592     p->metadata_do(f);
4593   }
4594 }
4595 
4596 class ThreadHandlesClosure : public ThreadClosure {
4597   void (*_f)(Metadata*);
4598  public:
4599   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4600   virtual void do_thread(Thread* thread) {
4601     thread->metadata_handles_do(_f);
4602   }
4603 };
4604 
4605 void Threads::metadata_handles_do(void f(Metadata*)) {
4606   // Only walk the Handles in Thread.
4607   ThreadHandlesClosure handles_closure(f);
4608   threads_do(&handles_closure);
4609 }
4610 
4611 void Threads::deoptimized_wrt_marked_nmethods() {
4612   ALL_JAVA_THREADS(p) {
4613     p->deoptimized_wrt_marked_nmethods();
4614   }
4615 }
4616 
4617 
4618 // Get count Java threads that are waiting to enter the specified monitor.
4619 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4620                                                          int count,
4621                                                          address monitor) {
4622   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4623 
4624   int i = 0;
4625   DO_JAVA_THREADS(t_list, p) {
4626     if (!p->can_call_java()) continue;
4627 
4628     address pending = (address)p->current_pending_monitor();
4629     if (pending == monitor) {             // found a match
4630       if (i < count) result->append(p);   // save the first count matches
4631       i++;
4632     }
4633   }
4634 
4635   return result;
4636 }
4637 
4638 
4639 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4640                                                       address owner) {
4641   // NULL owner means not locked so we can skip the search
4642   if (owner == NULL) return NULL;
4643 
4644   DO_JAVA_THREADS(t_list, p) {
4645     // first, see if owner is the address of a Java thread
4646     if (owner == (address)p) return p;
4647   }
4648 
4649   // Cannot assert on lack of success here since this function may be
4650   // used by code that is trying to report useful problem information
4651   // like deadlock detection.
4652   if (UseHeavyMonitors) return NULL;
4653 
4654   // If we didn't find a matching Java thread and we didn't force use of
4655   // heavyweight monitors, then the owner is the stack address of the
4656   // Lock Word in the owning Java thread's stack.
4657   //
4658   JavaThread* the_owner = NULL;
4659   DO_JAVA_THREADS(t_list, q) {
4660     if (q->is_lock_owned(owner)) {
4661       the_owner = q;
4662       break;
4663     }
4664   }
4665 
4666   // cannot assert on lack of success here; see above comment
4667   return the_owner;
4668 }
4669 
4670 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4671 void Threads::print_on(outputStream* st, bool print_stacks,
4672                        bool internal_format, bool print_concurrent_locks,
4673                        bool print_extended_info) {
4674   char buf[32];
4675   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4676 
4677   st->print_cr("Full thread dump %s (%s %s):",
4678                VM_Version::vm_name(),
4679                VM_Version::vm_release(),
4680                VM_Version::vm_info_string());
4681   st->cr();
4682 
4683 #if INCLUDE_SERVICES
4684   // Dump concurrent locks
4685   ConcurrentLocksDump concurrent_locks;
4686   if (print_concurrent_locks) {
4687     concurrent_locks.dump_at_safepoint();
4688   }
4689 #endif // INCLUDE_SERVICES
4690 
4691   ThreadsSMRSupport::print_info_on(st);
4692   st->cr();
4693 
4694   ALL_JAVA_THREADS(p) {
4695     ResourceMark rm;
4696     p->print_on(st, print_extended_info);
4697     if (print_stacks) {
4698       if (internal_format) {
4699         p->trace_stack();
4700       } else {
4701         p->print_stack_on(st);
4702       }
4703     }
4704     st->cr();
4705 #if INCLUDE_SERVICES
4706     if (print_concurrent_locks) {
4707       concurrent_locks.print_locks_on(p, st);
4708     }
4709 #endif // INCLUDE_SERVICES
4710   }
4711 
4712   VMThread::vm_thread()->print_on(st);
4713   st->cr();
4714   Universe::heap()->print_gc_threads_on(st);
4715   WatcherThread* wt = WatcherThread::watcher_thread();
4716   if (wt != NULL) {
4717     wt->print_on(st);
4718     st->cr();
4719   }
4720 
4721   st->flush();
4722 }
4723 
4724 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4725                              int buflen, bool* found_current) {
4726   if (this_thread != NULL) {
4727     bool is_current = (current == this_thread);
4728     *found_current = *found_current || is_current;
4729     st->print("%s", is_current ? "=>" : "  ");
4730 
4731     st->print(PTR_FORMAT, p2i(this_thread));
4732     st->print(" ");
4733     this_thread->print_on_error(st, buf, buflen);
4734     st->cr();
4735   }
4736 }
4737 
4738 class PrintOnErrorClosure : public ThreadClosure {
4739   outputStream* _st;
4740   Thread* _current;
4741   char* _buf;
4742   int _buflen;
4743   bool* _found_current;
4744  public:
4745   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4746                       int buflen, bool* found_current) :
4747    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4748 
4749   virtual void do_thread(Thread* thread) {
4750     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4751   }
4752 };
4753 
4754 // Threads::print_on_error() is called by fatal error handler. It's possible
4755 // that VM is not at safepoint and/or current thread is inside signal handler.
4756 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4757 // memory (even in resource area), it might deadlock the error handler.
4758 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4759                              int buflen) {
4760   ThreadsSMRSupport::print_info_on(st);
4761   st->cr();
4762 
4763   bool found_current = false;
4764   st->print_cr("Java Threads: ( => current thread )");
4765   ALL_JAVA_THREADS(thread) {
4766     print_on_error(thread, st, current, buf, buflen, &found_current);
4767   }
4768   st->cr();
4769 
4770   st->print_cr("Other Threads:");
4771   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4772   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4773 
4774   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4775   Universe::heap()->gc_threads_do(&print_closure);
4776 
4777   if (!found_current) {
4778     st->cr();
4779     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4780     current->print_on_error(st, buf, buflen);
4781     st->cr();
4782   }
4783   st->cr();
4784 
4785   st->print_cr("Threads with active compile tasks:");
4786   print_threads_compiling(st, buf, buflen);
4787 }
4788 
4789 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
4790   ALL_JAVA_THREADS(thread) {
4791     if (thread->is_Compiler_thread()) {
4792       CompilerThread* ct = (CompilerThread*) thread;
4793 
4794       // Keep task in local variable for NULL check.
4795       // ct->_task might be set to NULL by concurring compiler thread
4796       // because it completed the compilation. The task is never freed,
4797       // though, just returned to a free list.
4798       CompileTask* task = ct->task();
4799       if (task != NULL) {
4800         thread->print_name_on_error(st, buf, buflen);
4801         st->print("  ");
4802         task->print(st, NULL, short_form, true);
4803       }
4804     }
4805   }
4806 }
4807 
4808 
4809 // Internal SpinLock and Mutex
4810 // Based on ParkEvent
4811 
4812 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4813 //
4814 // We employ SpinLocks _only for low-contention, fixed-length
4815 // short-duration critical sections where we're concerned
4816 // about native mutex_t or HotSpot Mutex:: latency.
4817 // The mux construct provides a spin-then-block mutual exclusion
4818 // mechanism.
4819 //
4820 // Testing has shown that contention on the ListLock guarding gFreeList
4821 // is common.  If we implement ListLock as a simple SpinLock it's common
4822 // for the JVM to devolve to yielding with little progress.  This is true
4823 // despite the fact that the critical sections protected by ListLock are
4824 // extremely short.
4825 //
4826 // TODO-FIXME: ListLock should be of type SpinLock.
4827 // We should make this a 1st-class type, integrated into the lock
4828 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4829 // should have sufficient padding to avoid false-sharing and excessive
4830 // cache-coherency traffic.
4831 
4832 
4833 typedef volatile int SpinLockT;
4834 
4835 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4836   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4837     return;   // normal fast-path return
4838   }
4839 
4840   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4841   int ctr = 0;
4842   int Yields = 0;
4843   for (;;) {
4844     while (*adr != 0) {
4845       ++ctr;
4846       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4847         if (Yields > 5) {
4848           os::naked_short_sleep(1);
4849         } else {
4850           os::naked_yield();
4851           ++Yields;
4852         }
4853       } else {
4854         SpinPause();
4855       }
4856     }
4857     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4858   }
4859 }
4860 
4861 void Thread::SpinRelease(volatile int * adr) {
4862   assert(*adr != 0, "invariant");
4863   OrderAccess::fence();      // guarantee at least release consistency.
4864   // Roach-motel semantics.
4865   // It's safe if subsequent LDs and STs float "up" into the critical section,
4866   // but prior LDs and STs within the critical section can't be allowed
4867   // to reorder or float past the ST that releases the lock.
4868   // Loads and stores in the critical section - which appear in program
4869   // order before the store that releases the lock - must also appear
4870   // before the store that releases the lock in memory visibility order.
4871   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4872   // the ST of 0 into the lock-word which releases the lock, so fence
4873   // more than covers this on all platforms.
4874   *adr = 0;
4875 }
4876 
4877 // muxAcquire and muxRelease:
4878 //
4879 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4880 //    The LSB of the word is set IFF the lock is held.
4881 //    The remainder of the word points to the head of a singly-linked list
4882 //    of threads blocked on the lock.
4883 //
4884 // *  The current implementation of muxAcquire-muxRelease uses its own
4885 //    dedicated Thread._MuxEvent instance.  If we're interested in
4886 //    minimizing the peak number of extant ParkEvent instances then
4887 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4888 //    as certain invariants were satisfied.  Specifically, care would need
4889 //    to be taken with regards to consuming unpark() "permits".
4890 //    A safe rule of thumb is that a thread would never call muxAcquire()
4891 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4892 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4893 //    consume an unpark() permit intended for monitorenter, for instance.
4894 //    One way around this would be to widen the restricted-range semaphore
4895 //    implemented in park().  Another alternative would be to provide
4896 //    multiple instances of the PlatformEvent() for each thread.  One
4897 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4898 //
4899 // *  Usage:
4900 //    -- Only as leaf locks
4901 //    -- for short-term locking only as muxAcquire does not perform
4902 //       thread state transitions.
4903 //
4904 // Alternatives:
4905 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4906 //    but with parking or spin-then-park instead of pure spinning.
4907 // *  Use Taura-Oyama-Yonenzawa locks.
4908 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4909 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4910 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4911 //    acquiring threads use timers (ParkTimed) to detect and recover from
4912 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4913 //    boundaries by using placement-new.
4914 // *  Augment MCS with advisory back-link fields maintained with CAS().
4915 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4916 //    The validity of the backlinks must be ratified before we trust the value.
4917 //    If the backlinks are invalid the exiting thread must back-track through the
4918 //    the forward links, which are always trustworthy.
4919 // *  Add a successor indication.  The LockWord is currently encoded as
4920 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4921 //    to provide the usual futile-wakeup optimization.
4922 //    See RTStt for details.
4923 //
4924 
4925 
4926 const intptr_t LOCKBIT = 1;
4927 
4928 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4929   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4930   if (w == 0) return;
4931   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4932     return;
4933   }
4934 
4935   ParkEvent * const Self = Thread::current()->_MuxEvent;
4936   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4937   for (;;) {
4938     int its = (os::is_MP() ? 100 : 0) + 1;
4939 
4940     // Optional spin phase: spin-then-park strategy
4941     while (--its >= 0) {
4942       w = *Lock;
4943       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4944         return;
4945       }
4946     }
4947 
4948     Self->reset();
4949     Self->OnList = intptr_t(Lock);
4950     // The following fence() isn't _strictly necessary as the subsequent
4951     // CAS() both serializes execution and ratifies the fetched *Lock value.
4952     OrderAccess::fence();
4953     for (;;) {
4954       w = *Lock;
4955       if ((w & LOCKBIT) == 0) {
4956         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4957           Self->OnList = 0;   // hygiene - allows stronger asserts
4958           return;
4959         }
4960         continue;      // Interference -- *Lock changed -- Just retry
4961       }
4962       assert(w & LOCKBIT, "invariant");
4963       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4964       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4965     }
4966 
4967     while (Self->OnList != 0) {
4968       Self->park();
4969     }
4970   }
4971 }
4972 
4973 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4974   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4975   if (w == 0) return;
4976   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4977     return;
4978   }
4979 
4980   ParkEvent * ReleaseAfter = NULL;
4981   if (ev == NULL) {
4982     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4983   }
4984   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4985   for (;;) {
4986     guarantee(ev->OnList == 0, "invariant");
4987     int its = (os::is_MP() ? 100 : 0) + 1;
4988 
4989     // Optional spin phase: spin-then-park strategy
4990     while (--its >= 0) {
4991       w = *Lock;
4992       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4993         if (ReleaseAfter != NULL) {
4994           ParkEvent::Release(ReleaseAfter);
4995         }
4996         return;
4997       }
4998     }
4999 
5000     ev->reset();
5001     ev->OnList = intptr_t(Lock);
5002     // The following fence() isn't _strictly necessary as the subsequent
5003     // CAS() both serializes execution and ratifies the fetched *Lock value.
5004     OrderAccess::fence();
5005     for (;;) {
5006       w = *Lock;
5007       if ((w & LOCKBIT) == 0) {
5008         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
5009           ev->OnList = 0;
5010           // We call ::Release while holding the outer lock, thus
5011           // artificially lengthening the critical section.
5012           // Consider deferring the ::Release() until the subsequent unlock(),
5013           // after we've dropped the outer lock.
5014           if (ReleaseAfter != NULL) {
5015             ParkEvent::Release(ReleaseAfter);
5016           }
5017           return;
5018         }
5019         continue;      // Interference -- *Lock changed -- Just retry
5020       }
5021       assert(w & LOCKBIT, "invariant");
5022       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
5023       if (Atomic::cmpxchg(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
5024     }
5025 
5026     while (ev->OnList != 0) {
5027       ev->park();
5028     }
5029   }
5030 }
5031 
5032 // Release() must extract a successor from the list and then wake that thread.
5033 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
5034 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
5035 // Release() would :
5036 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
5037 // (B) Extract a successor from the private list "in-hand"
5038 // (C) attempt to CAS() the residual back into *Lock over null.
5039 //     If there were any newly arrived threads and the CAS() would fail.
5040 //     In that case Release() would detach the RATs, re-merge the list in-hand
5041 //     with the RATs and repeat as needed.  Alternately, Release() might
5042 //     detach and extract a successor, but then pass the residual list to the wakee.
5043 //     The wakee would be responsible for reattaching and remerging before it
5044 //     competed for the lock.
5045 //
5046 // Both "pop" and DMR are immune from ABA corruption -- there can be
5047 // multiple concurrent pushers, but only one popper or detacher.
5048 // This implementation pops from the head of the list.  This is unfair,
5049 // but tends to provide excellent throughput as hot threads remain hot.
5050 // (We wake recently run threads first).
5051 //
5052 // All paths through muxRelease() will execute a CAS.
5053 // Release consistency -- We depend on the CAS in muxRelease() to provide full
5054 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
5055 // executed within the critical section are complete and globally visible before the
5056 // store (CAS) to the lock-word that releases the lock becomes globally visible.
5057 void Thread::muxRelease(volatile intptr_t * Lock)  {
5058   for (;;) {
5059     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
5060     assert(w & LOCKBIT, "invariant");
5061     if (w == LOCKBIT) return;
5062     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5063     assert(List != NULL, "invariant");
5064     assert(List->OnList == intptr_t(Lock), "invariant");
5065     ParkEvent * const nxt = List->ListNext;
5066     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5067 
5068     // The following CAS() releases the lock and pops the head element.
5069     // The CAS() also ratifies the previously fetched lock-word value.
5070     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
5071       continue;
5072     }
5073     List->OnList = 0;
5074     OrderAccess::fence();
5075     List->unpark();
5076     return;
5077   }
5078 }
5079 
5080 
5081 void Threads::verify() {
5082   ALL_JAVA_THREADS(p) {
5083     p->verify();
5084   }
5085   VMThread* thread = VMThread::vm_thread();
5086   if (thread != NULL) thread->verify();
5087 }