1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "logging/logStream.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/metaspaceShared.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/markOop.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "runtime/atomic.hpp"
  37 #include "runtime/biasedLocking.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/interfaceSupport.inline.hpp"
  40 #include "runtime/mutexLocker.hpp"
  41 #include "runtime/objectMonitor.hpp"
  42 #include "runtime/objectMonitor.inline.hpp"
  43 #include "runtime/osThread.hpp"
  44 #include "runtime/safepointVerifiers.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/synchronizer.hpp"
  48 #include "runtime/thread.inline.hpp"
  49 #include "runtime/timer.hpp"
  50 #include "runtime/vframe.hpp"
  51 #include "runtime/vmThread.hpp"
  52 #include "utilities/align.hpp"
  53 #include "utilities/dtrace.hpp"
  54 #include "utilities/events.hpp"
  55 #include "utilities/preserveException.hpp"
  56 
  57 // The "core" versions of monitor enter and exit reside in this file.
  58 // The interpreter and compilers contain specialized transliterated
  59 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  60 // for instance.  If you make changes here, make sure to modify the
  61 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  62 //
  63 // -----------------------------------------------------------------------------
  64 
  65 #ifdef DTRACE_ENABLED
  66 
  67 // Only bother with this argument setup if dtrace is available
  68 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  69 
  70 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  71   char* bytes = NULL;                                                      \
  72   int len = 0;                                                             \
  73   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  74   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  75   if (klassname != NULL) {                                                 \
  76     bytes = (char*)klassname->bytes();                                     \
  77     len = klassname->utf8_length();                                        \
  78   }
  79 
  80 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  81   {                                                                        \
  82     if (DTraceMonitorProbes) {                                             \
  83       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  84       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  85                            (uintptr_t)(monitor), bytes, len, (millis));    \
  86     }                                                                      \
  87   }
  88 
  89 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  90 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  91 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  92 
  93 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  94   {                                                                        \
  95     if (DTraceMonitorProbes) {                                             \
  96       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  97       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
  98                                     (uintptr_t)(monitor), bytes, len);     \
  99     }                                                                      \
 100   }
 101 
 102 #else //  ndef DTRACE_ENABLED
 103 
 104 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 105 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 106 
 107 #endif // ndef DTRACE_ENABLED
 108 
 109 // This exists only as a workaround of dtrace bug 6254741
 110 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 111   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 112   return 0;
 113 }
 114 
 115 #define NINFLATIONLOCKS 256
 116 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 117 
 118 // global list of blocks of monitors
 119 PaddedEnd<ObjectMonitor> * volatile ObjectSynchronizer::gBlockList = NULL;
 120 // global monitor free list
 121 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL;
 122 // global monitor in-use list, for moribund threads,
 123 // monitors they inflated need to be scanned for deflation
 124 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL;
 125 // count of entries in gOmInUseList
 126 int ObjectSynchronizer::gOmInUseCount = 0;
 127 bool ObjectSynchronizer::_gOmShouldDeflateIdleMonitors = false;
 128 bool volatile ObjectSynchronizer::_is_cleanup_requested = false;
 129 
 130 static volatile intptr_t gListLock = 0;      // protects global monitor lists
 131 static volatile int gMonitorFreeCount  = 0;  // # on gFreeList
 132 static volatile int gMonitorPopulation = 0;  // # Extant -- in circulation
 133 
 134 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 135 
 136 
 137 // =====================> Quick functions
 138 
 139 // The quick_* forms are special fast-path variants used to improve
 140 // performance.  In the simplest case, a "quick_*" implementation could
 141 // simply return false, in which case the caller will perform the necessary
 142 // state transitions and call the slow-path form.
 143 // The fast-path is designed to handle frequently arising cases in an efficient
 144 // manner and is just a degenerate "optimistic" variant of the slow-path.
 145 // returns true  -- to indicate the call was satisfied.
 146 // returns false -- to indicate the call needs the services of the slow-path.
 147 // A no-loitering ordinance is in effect for code in the quick_* family
 148 // operators: safepoints or indefinite blocking (blocking that might span a
 149 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 150 // entry.
 151 //
 152 // Consider: An interesting optimization is to have the JIT recognize the
 153 // following common idiom:
 154 //   synchronized (someobj) { .... ; notify(); }
 155 // That is, we find a notify() or notifyAll() call that immediately precedes
 156 // the monitorexit operation.  In that case the JIT could fuse the operations
 157 // into a single notifyAndExit() runtime primitive.
 158 
 159 bool ObjectSynchronizer::quick_notify(oopDesc * obj, Thread * self, bool all) {
 160   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 161   assert(self->is_Java_thread(), "invariant");
 162   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 163   NoSafepointVerifier nsv;
 164   if (obj == NULL) return false;  // slow-path for invalid obj
 165   const markOop mark = obj->mark();
 166 
 167   if (mark->has_locker() && self->is_lock_owned((address)mark->locker())) {
 168     // Degenerate notify
 169     // stack-locked by caller so by definition the implied waitset is empty.
 170     return true;
 171   }
 172 
 173   if (mark->has_monitor()) {
 174     ObjectMonitor * const mon = mark->monitor();
 175     assert(oopDesc::equals((oop) mon->object(), obj), "invariant");
 176     if (mon->owner() != self) return false;  // slow-path for IMS exception
 177 
 178     if (mon->first_waiter() != NULL) {
 179       // We have one or more waiters. Since this is an inflated monitor
 180       // that we own, we can transfer one or more threads from the waitset
 181       // to the entrylist here and now, avoiding the slow-path.
 182       if (all) {
 183         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
 184       } else {
 185         DTRACE_MONITOR_PROBE(notify, mon, obj, self);
 186       }
 187       int tally = 0;
 188       do {
 189         mon->INotify(self);
 190         ++tally;
 191       } while (mon->first_waiter() != NULL && all);
 192       OM_PERFDATA_OP(Notifications, inc(tally));
 193     }
 194     return true;
 195   }
 196 
 197   // biased locking and any other IMS exception states take the slow-path
 198   return false;
 199 }
 200 
 201 
 202 // The LockNode emitted directly at the synchronization site would have
 203 // been too big if it were to have included support for the cases of inflated
 204 // recursive enter and exit, so they go here instead.
 205 // Note that we can't safely call AsyncPrintJavaStack() from within
 206 // quick_enter() as our thread state remains _in_Java.
 207 
 208 bool ObjectSynchronizer::quick_enter(oop obj, Thread * Self,
 209                                      BasicLock * lock) {
 210   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 211   assert(Self->is_Java_thread(), "invariant");
 212   assert(((JavaThread *) Self)->thread_state() == _thread_in_Java, "invariant");
 213   NoSafepointVerifier nsv;
 214   if (obj == NULL) return false;       // Need to throw NPE
 215 
 216   while (true) {
 217     const markOop mark = obj->mark();
 218 
 219     if (mark->has_monitor()) {
 220       ObjectMonitorHandle omh;
 221       if (!omh.save_om_ptr(obj, mark)) {
 222         // Lost a race with async deflation so try again.
 223         assert(AsyncDeflateIdleMonitors, "sanity check");
 224         continue;
 225       }
 226       ObjectMonitor * const m = omh.om_ptr();
 227       assert(oopDesc::equals((oop) m->object(), obj), "invariant");
 228       Thread * const owner = (Thread *) m->_owner;
 229 
 230       // Lock contention and Transactional Lock Elision (TLE) diagnostics
 231       // and observability
 232       // Case: light contention possibly amenable to TLE
 233       // Case: TLE inimical operations such as nested/recursive synchronization
 234 
 235       if (owner == Self) {
 236         m->_recursions++;
 237         return true;
 238       }
 239 
 240       // This Java Monitor is inflated so obj's header will never be
 241       // displaced to this thread's BasicLock. Make the displaced header
 242       // non-NULL so this BasicLock is not seen as recursive nor as
 243       // being locked. We do this unconditionally so that this thread's
 244       // BasicLock cannot be mis-interpreted by any stack walkers. For
 245       // performance reasons, stack walkers generally first check for
 246       // Biased Locking in the object's header, the second check is for
 247       // stack-locking in the object's header, the third check is for
 248       // recursive stack-locking in the displaced header in the BasicLock,
 249       // and last are the inflated Java Monitor (ObjectMonitor) checks.
 250       lock->set_displaced_header(markOopDesc::unused_mark());
 251 
 252       if (owner == NULL && Atomic::replace_if_null(Self, &(m->_owner))) {
 253         assert(m->_recursions == 0, "invariant");
 254         assert(m->_owner == Self, "invariant");
 255         return true;
 256       }
 257     }
 258     break;
 259   }
 260 
 261   // Note that we could inflate in quick_enter.
 262   // This is likely a useful optimization
 263   // Critically, in quick_enter() we must not:
 264   // -- perform bias revocation, or
 265   // -- block indefinitely, or
 266   // -- reach a safepoint
 267 
 268   return false;        // revert to slow-path
 269 }
 270 
 271 // -----------------------------------------------------------------------------
 272 //  Fast Monitor Enter/Exit
 273 // This the fast monitor enter. The interpreter and compiler use
 274 // some assembly copies of this code. Make sure update those code
 275 // if the following function is changed. The implementation is
 276 // extremely sensitive to race condition. Be careful.
 277 
 278 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock,
 279                                     bool attempt_rebias, TRAPS) {
 280   if (UseBiasedLocking) {
 281     if (!SafepointSynchronize::is_at_safepoint()) {
 282       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
 283       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
 284         return;
 285       }
 286     } else {
 287       assert(!attempt_rebias, "can not rebias toward VM thread");
 288       BiasedLocking::revoke_at_safepoint(obj);
 289     }
 290     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 291   }
 292 
 293   slow_enter(obj, lock, THREAD);
 294 }
 295 
 296 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
 297   markOop mark = object->mark();
 298   // We cannot check for Biased Locking if we are racing an inflation.
 299   assert(mark == markOopDesc::INFLATING() ||
 300          !mark->has_bias_pattern(), "should not see bias pattern here");
 301 
 302   markOop dhw = lock->displaced_header();
 303   if (dhw == NULL) {
 304     // If the displaced header is NULL, then this exit matches up with
 305     // a recursive enter. No real work to do here except for diagnostics.
 306 #ifndef PRODUCT
 307     if (mark != markOopDesc::INFLATING()) {
 308       // Only do diagnostics if we are not racing an inflation. Simply
 309       // exiting a recursive enter of a Java Monitor that is being
 310       // inflated is safe; see the has_monitor() comment below.
 311       assert(!mark->is_neutral(), "invariant");
 312       assert(!mark->has_locker() ||
 313              THREAD->is_lock_owned((address)mark->locker()), "invariant");
 314       if (mark->has_monitor()) {
 315         // The BasicLock's displaced_header is marked as a recursive
 316         // enter and we have an inflated Java Monitor (ObjectMonitor).
 317         // This is a special case where the Java Monitor was inflated
 318         // after this thread entered the stack-lock recursively. When a
 319         // Java Monitor is inflated, we cannot safely walk the Java
 320         // Monitor owner's stack and update the BasicLocks because a
 321         // Java Monitor can be asynchronously inflated by a thread that
 322         // does not own the Java Monitor.
 323         ObjectMonitor * m = mark->monitor();
 324         assert(((oop)(m->object()))->mark() == mark, "invariant");
 325         assert(m->is_entered(THREAD), "invariant");
 326       }
 327     }
 328 #endif
 329     return;
 330   }
 331 
 332   if (mark == (markOop) lock) {
 333     // If the object is stack-locked by the current thread, try to
 334     // swing the displaced header from the BasicLock back to the mark.
 335     assert(dhw->is_neutral(), "invariant");
 336     if (object->cas_set_mark(dhw, mark) == mark) {
 337       return;
 338     }
 339   }
 340 
 341   // We have to take the slow-path of possible inflation and then exit.
 342   ObjectMonitorHandle omh;
 343   inflate(&omh, THREAD, object, inflate_cause_vm_internal);
 344   omh.om_ptr()->exit(true, THREAD);
 345 }
 346 
 347 // -----------------------------------------------------------------------------
 348 // Interpreter/Compiler Slow Case
 349 // This routine is used to handle interpreter/compiler slow case
 350 // We don't need to use fast path here, because it must have been
 351 // failed in the interpreter/compiler code.
 352 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 353   bool do_loop = true;
 354   while (do_loop) {
 355     markOop mark = obj->mark();
 356     assert(!mark->has_bias_pattern(), "should not see bias pattern here");
 357 
 358     if (mark->is_neutral()) {
 359       // Anticipate successful CAS -- the ST of the displaced mark must
 360       // be visible <= the ST performed by the CAS.
 361       lock->set_displaced_header(mark);
 362       if (mark == obj()->cas_set_mark((markOop) lock, mark)) {
 363         return;
 364       }
 365       // Fall through to inflate() ...
 366     } else if (mark->has_locker() &&
 367                THREAD->is_lock_owned((address)mark->locker())) {
 368       assert(lock != mark->locker(), "must not re-lock the same lock");
 369       assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
 370       lock->set_displaced_header(NULL);
 371       return;
 372     }
 373 
 374     // The object header will never be displaced to this lock,
 375     // so it does not matter what the value is, except that it
 376     // must be non-zero to avoid looking like a re-entrant lock,
 377     // and must not look locked either.
 378     lock->set_displaced_header(markOopDesc::unused_mark());
 379     ObjectMonitorHandle omh;
 380     inflate(&omh, THREAD, obj(), inflate_cause_monitor_enter);
 381     do_loop = !omh.om_ptr()->enter(THREAD);
 382   }
 383 }
 384 
 385 // This routine is used to handle interpreter/compiler slow case
 386 // We don't need to use fast path here, because it must have
 387 // failed in the interpreter/compiler code. Simply use the heavy
 388 // weight monitor should be ok, unless someone find otherwise.
 389 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 390   fast_exit(object, lock, THREAD);
 391 }
 392 
 393 // -----------------------------------------------------------------------------
 394 // Class Loader  support to workaround deadlocks on the class loader lock objects
 395 // Also used by GC
 396 // complete_exit()/reenter() are used to wait on a nested lock
 397 // i.e. to give up an outer lock completely and then re-enter
 398 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 399 //  1) complete_exit lock1 - saving recursion count
 400 //  2) wait on lock2
 401 //  3) when notified on lock2, unlock lock2
 402 //  4) reenter lock1 with original recursion count
 403 //  5) lock lock2
 404 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 405 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 406   if (UseBiasedLocking) {
 407     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 408     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 409   }
 410 
 411   ObjectMonitorHandle omh;
 412   inflate(&omh, THREAD, obj(), inflate_cause_vm_internal);
 413   intptr_t ret_code = omh.om_ptr()->complete_exit(THREAD);
 414   return ret_code;
 415 }
 416 
 417 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 418 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 419   if (UseBiasedLocking) {
 420     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 421     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 422   }
 423 
 424   bool do_loop = true;
 425   while (do_loop) {
 426     ObjectMonitorHandle omh;
 427     inflate(&omh, THREAD, obj(), inflate_cause_vm_internal);
 428     do_loop = !omh.om_ptr()->reenter(recursion, THREAD);
 429   }
 430 }
 431 // -----------------------------------------------------------------------------
 432 // JNI locks on java objects
 433 // NOTE: must use heavy weight monitor to handle jni monitor enter
 434 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 435   // the current locking is from JNI instead of Java code
 436   if (UseBiasedLocking) {
 437     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 438     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 439   }
 440   THREAD->set_current_pending_monitor_is_from_java(false);
 441   bool do_loop = true;
 442   while (do_loop) {
 443     ObjectMonitorHandle omh;
 444     inflate(&omh, THREAD, obj(), inflate_cause_jni_enter);
 445     do_loop = !omh.om_ptr()->enter(THREAD);
 446   }
 447   THREAD->set_current_pending_monitor_is_from_java(true);
 448 }
 449 
 450 // NOTE: must use heavy weight monitor to handle jni monitor exit
 451 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 452   if (UseBiasedLocking) {
 453     Handle h_obj(THREAD, obj);
 454     BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
 455     obj = h_obj();
 456   }
 457   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 458 
 459   ObjectMonitorHandle omh;
 460   inflate(&omh, THREAD, obj, inflate_cause_jni_exit);
 461   ObjectMonitor * monitor = omh.om_ptr();
 462   // If this thread has locked the object, exit the monitor.  Note:  can't use
 463   // monitor->check(CHECK); must exit even if an exception is pending.
 464   if (monitor->check(THREAD)) {
 465     monitor->exit(true, THREAD);
 466   }
 467 }
 468 
 469 // -----------------------------------------------------------------------------
 470 // Internal VM locks on java objects
 471 // standard constructor, allows locking failures
 472 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
 473   _dolock = doLock;
 474   _thread = thread;
 475   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
 476   _obj = obj;
 477 
 478   if (_dolock) {
 479     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 480   }
 481 }
 482 
 483 ObjectLocker::~ObjectLocker() {
 484   if (_dolock) {
 485     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 486   }
 487 }
 488 
 489 
 490 // -----------------------------------------------------------------------------
 491 //  Wait/Notify/NotifyAll
 492 // NOTE: must use heavy weight monitor to handle wait()
 493 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 494   if (UseBiasedLocking) {
 495     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 496     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 497   }
 498   if (millis < 0) {
 499     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 500   }
 501   ObjectMonitorHandle omh;
 502   inflate(&omh, THREAD, obj(), inflate_cause_wait);
 503   ObjectMonitor * monitor = omh.om_ptr();
 504 
 505   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 506   monitor->wait(millis, true, THREAD);
 507 
 508   // This dummy call is in place to get around dtrace bug 6254741.  Once
 509   // that's fixed we can uncomment the following line, remove the call
 510   // and change this function back into a "void" func.
 511   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 512   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 513   return ret_code;
 514 }
 515 
 516 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) {
 517   if (UseBiasedLocking) {
 518     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 519     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 520   }
 521   if (millis < 0) {
 522     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 523   }
 524   ObjectMonitorHandle omh;
 525   inflate(&omh, THREAD, obj(), inflate_cause_wait);
 526   omh.om_ptr()->wait(millis, false, THREAD);
 527 }
 528 
 529 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 530   if (UseBiasedLocking) {
 531     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 532     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 533   }
 534 
 535   markOop mark = obj->mark();
 536   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 537     return;
 538   }
 539   ObjectMonitorHandle omh;
 540   inflate(&omh, THREAD, obj(), inflate_cause_notify);
 541   omh.om_ptr()->notify(THREAD);
 542 }
 543 
 544 // NOTE: see comment of notify()
 545 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 546   if (UseBiasedLocking) {
 547     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 548     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 549   }
 550 
 551   markOop mark = obj->mark();
 552   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 553     return;
 554   }
 555   ObjectMonitorHandle omh;
 556   inflate(&omh, THREAD, obj(), inflate_cause_notify);
 557   omh.om_ptr()->notifyAll(THREAD);
 558 }
 559 
 560 // -----------------------------------------------------------------------------
 561 // Hash Code handling
 562 //
 563 // Performance concern:
 564 // OrderAccess::storestore() calls release() which at one time stored 0
 565 // into the global volatile OrderAccess::dummy variable. This store was
 566 // unnecessary for correctness. Many threads storing into a common location
 567 // causes considerable cache migration or "sloshing" on large SMP systems.
 568 // As such, I avoided using OrderAccess::storestore(). In some cases
 569 // OrderAccess::fence() -- which incurs local latency on the executing
 570 // processor -- is a better choice as it scales on SMP systems.
 571 //
 572 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 573 // a discussion of coherency costs. Note that all our current reference
 574 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 575 // x64, and SPARC.
 576 //
 577 // As a general policy we use "volatile" to control compiler-based reordering
 578 // and explicit fences (barriers) to control for architectural reordering
 579 // performed by the CPU(s) or platform.
 580 
 581 struct SharedGlobals {
 582   char         _pad_prefix[DEFAULT_CACHE_LINE_SIZE];
 583   // These are highly shared mostly-read variables.
 584   // To avoid false-sharing they need to be the sole occupants of a cache line.
 585   volatile int stwRandom;
 586   volatile int stwCycle;
 587   DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 588   // Hot RW variable -- Sequester to avoid false-sharing
 589   volatile int hcSequence;
 590   DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int));
 591 };
 592 
 593 static SharedGlobals GVars;
 594 static int MonitorScavengeThreshold = 1000000;
 595 static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending
 596 
 597 static markOop ReadStableMark(oop obj) {
 598   markOop mark = obj->mark();
 599   if (!mark->is_being_inflated()) {
 600     return mark;       // normal fast-path return
 601   }
 602 
 603   int its = 0;
 604   for (;;) {
 605     markOop mark = obj->mark();
 606     if (!mark->is_being_inflated()) {
 607       return mark;    // normal fast-path return
 608     }
 609 
 610     // The object is being inflated by some other thread.
 611     // The caller of ReadStableMark() must wait for inflation to complete.
 612     // Avoid live-lock
 613     // TODO: consider calling SafepointSynchronize::do_call_back() while
 614     // spinning to see if there's a safepoint pending.  If so, immediately
 615     // yielding or blocking would be appropriate.  Avoid spinning while
 616     // there is a safepoint pending.
 617     // TODO: add inflation contention performance counters.
 618     // TODO: restrict the aggregate number of spinners.
 619 
 620     ++its;
 621     if (its > 10000 || !os::is_MP()) {
 622       if (its & 1) {
 623         os::naked_yield();
 624       } else {
 625         // Note that the following code attenuates the livelock problem but is not
 626         // a complete remedy.  A more complete solution would require that the inflating
 627         // thread hold the associated inflation lock.  The following code simply restricts
 628         // the number of spinners to at most one.  We'll have N-2 threads blocked
 629         // on the inflationlock, 1 thread holding the inflation lock and using
 630         // a yield/park strategy, and 1 thread in the midst of inflation.
 631         // A more refined approach would be to change the encoding of INFLATING
 632         // to allow encapsulation of a native thread pointer.  Threads waiting for
 633         // inflation to complete would use CAS to push themselves onto a singly linked
 634         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 635         // and calling park().  When inflation was complete the thread that accomplished inflation
 636         // would detach the list and set the markword to inflated with a single CAS and
 637         // then for each thread on the list, set the flag and unpark() the thread.
 638         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 639         // wakes at most one thread whereas we need to wake the entire list.
 640         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 641         int YieldThenBlock = 0;
 642         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 643         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 644         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 645         while (obj->mark() == markOopDesc::INFLATING()) {
 646           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 647           // so we periodically call Self->_ParkEvent->park(1).
 648           // We use a mixed spin/yield/block mechanism.
 649           if ((YieldThenBlock++) >= 16) {
 650             Thread::current()->_ParkEvent->park(1);
 651           } else {
 652             os::naked_yield();
 653           }
 654         }
 655         Thread::muxRelease(gInflationLocks + ix);
 656       }
 657     } else {
 658       SpinPause();       // SMP-polite spinning
 659     }
 660   }
 661 }
 662 
 663 // hashCode() generation :
 664 //
 665 // Possibilities:
 666 // * MD5Digest of {obj,stwRandom}
 667 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
 668 // * A DES- or AES-style SBox[] mechanism
 669 // * One of the Phi-based schemes, such as:
 670 //   2654435761 = 2^32 * Phi (golden ratio)
 671 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
 672 // * A variation of Marsaglia's shift-xor RNG scheme.
 673 // * (obj ^ stwRandom) is appealing, but can result
 674 //   in undesirable regularity in the hashCode values of adjacent objects
 675 //   (objects allocated back-to-back, in particular).  This could potentially
 676 //   result in hashtable collisions and reduced hashtable efficiency.
 677 //   There are simple ways to "diffuse" the middle address bits over the
 678 //   generated hashCode values:
 679 
 680 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
 681   intptr_t value = 0;
 682   if (hashCode == 0) {
 683     // This form uses global Park-Miller RNG.
 684     // On MP system we'll have lots of RW access to a global, so the
 685     // mechanism induces lots of coherency traffic.
 686     value = os::random();
 687   } else if (hashCode == 1) {
 688     // This variation has the property of being stable (idempotent)
 689     // between STW operations.  This can be useful in some of the 1-0
 690     // synchronization schemes.
 691     intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3;
 692     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom;
 693   } else if (hashCode == 2) {
 694     value = 1;            // for sensitivity testing
 695   } else if (hashCode == 3) {
 696     value = ++GVars.hcSequence;
 697   } else if (hashCode == 4) {
 698     value = cast_from_oop<intptr_t>(obj);
 699   } else {
 700     // Marsaglia's xor-shift scheme with thread-specific state
 701     // This is probably the best overall implementation -- we'll
 702     // likely make this the default in future releases.
 703     unsigned t = Self->_hashStateX;
 704     t ^= (t << 11);
 705     Self->_hashStateX = Self->_hashStateY;
 706     Self->_hashStateY = Self->_hashStateZ;
 707     Self->_hashStateZ = Self->_hashStateW;
 708     unsigned v = Self->_hashStateW;
 709     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 710     Self->_hashStateW = v;
 711     value = v;
 712   }
 713 
 714   value &= markOopDesc::hash_mask;
 715   if (value == 0) value = 0xBAD;
 716   assert(value != markOopDesc::no_hash, "invariant");
 717   return value;
 718 }
 719 
 720 intptr_t ObjectSynchronizer::FastHashCode(Thread * Self, oop obj) {
 721   if (UseBiasedLocking) {
 722     // NOTE: many places throughout the JVM do not expect a safepoint
 723     // to be taken here, in particular most operations on perm gen
 724     // objects. However, we only ever bias Java instances and all of
 725     // the call sites of identity_hash that might revoke biases have
 726     // been checked to make sure they can handle a safepoint. The
 727     // added check of the bias pattern is to avoid useless calls to
 728     // thread-local storage.
 729     if (obj->mark()->has_bias_pattern()) {
 730       // Handle for oop obj in case of STW safepoint
 731       Handle hobj(Self, obj);
 732       // Relaxing assertion for bug 6320749.
 733       assert(Universe::verify_in_progress() ||
 734              !SafepointSynchronize::is_at_safepoint(),
 735              "biases should not be seen by VM thread here");
 736       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
 737       obj = hobj();
 738       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 739     }
 740   }
 741 
 742   // hashCode() is a heap mutator ...
 743   // Relaxing assertion for bug 6320749.
 744   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 745          !SafepointSynchronize::is_at_safepoint(), "invariant");
 746   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 747          Self->is_Java_thread() , "invariant");
 748   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 749          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 750 
 751  Retry:
 752   ObjectMonitor* monitor = NULL;
 753   markOop temp, test;
 754   intptr_t hash;
 755   markOop mark = ReadStableMark(obj);
 756 
 757   // object should remain ineligible for biased locking
 758   assert(!mark->has_bias_pattern(), "invariant");
 759 
 760   if (mark->is_neutral()) {
 761     hash = mark->hash();              // this is a normal header
 762     if (hash != 0) {                  // if it has hash, just return it
 763       return hash;
 764     }
 765     hash = get_next_hash(Self, obj);  // allocate a new hash code
 766     temp = mark->copy_set_hash(hash); // merge the hash code into header
 767     // use (machine word version) atomic operation to install the hash
 768     test = obj->cas_set_mark(temp, mark);
 769     if (test == mark) {
 770       return hash;
 771     }
 772     // If atomic operation failed, we must inflate the header
 773     // into heavy weight monitor. We could add more code here
 774     // for fast path, but it does not worth the complexity.
 775   } else if (mark->has_monitor()) {
 776     ObjectMonitorHandle omh;
 777     if (!omh.save_om_ptr(obj, mark)) {
 778       // Lost a race with async deflation so try again.
 779       assert(AsyncDeflateIdleMonitors, "sanity check");
 780       goto Retry;
 781     }
 782     monitor = omh.om_ptr();
 783     temp = monitor->header();
 784     assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 785     hash = temp->hash();
 786     if (hash != 0) {
 787       return hash;
 788     }
 789     // Skip to the following code to reduce code size
 790   } else if (Self->is_lock_owned((address)mark->locker())) {
 791     temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
 792     assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 793     hash = temp->hash();              // by current thread, check if the displaced
 794     if (hash != 0) {                  // header contains hash code
 795       return hash;
 796     }
 797     // WARNING:
 798     // The displaced header in the BasicLock on a thread's stack
 799     // is strictly immutable. It CANNOT be changed in ANY cases.
 800     // So we have to inflate the stack lock into an ObjectMonitor
 801     // even if the current thread owns the lock. The BasicLock on
 802     // a thread's stack can be asynchronously read by other threads
 803     // during an inflate() call so any change to that stack memory
 804     // may not propagate to other threads correctly.
 805   }
 806 
 807   // Inflate the monitor to set hash code
 808   ObjectMonitorHandle omh;
 809   inflate(&omh, Self, obj, inflate_cause_hash_code);
 810   monitor = omh.om_ptr();
 811   // Load displaced header and check it has hash code
 812   mark = monitor->header();
 813   assert(mark->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(mark));
 814   hash = mark->hash();
 815   if (hash == 0) {
 816     hash = get_next_hash(Self, obj);
 817     temp = mark->copy_set_hash(hash); // merge hash code into header
 818     assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 819     test = Atomic::cmpxchg(temp, monitor->header_addr(), mark);
 820     if (test != mark) {
 821       // The only update to the ObjectMonitor's header/dmw field
 822       // is to merge in the hash code. If someone adds a new usage
 823       // of the header/dmw field, please update this code.
 824       hash = test->hash();
 825       assert(test->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(test));
 826       assert(hash != 0, "Trivial unexpected object/monitor header usage.");
 827     }
 828   }
 829   // We finally get the hash
 830   return hash;
 831 }
 832 
 833 // Deprecated -- use FastHashCode() instead.
 834 
 835 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 836   return FastHashCode(Thread::current(), obj());
 837 }
 838 
 839 
 840 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 841                                                    Handle h_obj) {
 842   if (UseBiasedLocking) {
 843     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
 844     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 845   }
 846 
 847   assert(thread == JavaThread::current(), "Can only be called on current thread");
 848   oop obj = h_obj();
 849 
 850   while (true) {
 851     markOop mark = ReadStableMark(obj);
 852 
 853     // Uncontended case, header points to stack
 854     if (mark->has_locker()) {
 855       return thread->is_lock_owned((address)mark->locker());
 856     }
 857     // Contended case, header points to ObjectMonitor (tagged pointer)
 858     if (mark->has_monitor()) {
 859       ObjectMonitorHandle omh;
 860       if (!omh.save_om_ptr(obj, mark)) {
 861         // Lost a race with async deflation so try again.
 862         assert(AsyncDeflateIdleMonitors, "sanity check");
 863         continue;
 864       }
 865       bool ret_code = omh.om_ptr()->is_entered(thread) != 0;
 866       return ret_code;
 867     }
 868     // Unlocked case, header in place
 869     assert(mark->is_neutral(), "sanity check");
 870     return false;
 871   }
 872 }
 873 
 874 // Be aware of this method could revoke bias of the lock object.
 875 // This method queries the ownership of the lock handle specified by 'h_obj'.
 876 // If the current thread owns the lock, it returns owner_self. If no
 877 // thread owns the lock, it returns owner_none. Otherwise, it will return
 878 // owner_other.
 879 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 880 (JavaThread *self, Handle h_obj) {
 881   // The caller must beware this method can revoke bias, and
 882   // revocation can result in a safepoint.
 883   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 884   assert(self->thread_state() != _thread_blocked, "invariant");
 885 
 886   // Possible mark states: neutral, biased, stack-locked, inflated
 887 
 888   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
 889     // CASE: biased
 890     BiasedLocking::revoke_and_rebias(h_obj, false, self);
 891     assert(!h_obj->mark()->has_bias_pattern(),
 892            "biases should be revoked by now");
 893   }
 894 
 895   assert(self == JavaThread::current(), "Can only be called on current thread");
 896   oop obj = h_obj();
 897 
 898   while (true) {
 899     markOop mark = ReadStableMark(obj);
 900 
 901     // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 902     if (mark->has_locker()) {
 903       return self->is_lock_owned((address)mark->locker()) ?
 904         owner_self : owner_other;
 905     }
 906 
 907     // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor.
 908     // The Object:ObjectMonitor relationship is stable as long as we're
 909     // not at a safepoint and AsyncDeflateIdleMonitors is false.
 910     if (mark->has_monitor()) {
 911       ObjectMonitorHandle omh;
 912       if (!omh.save_om_ptr(obj, mark)) {
 913         // Lost a race with async deflation so try again.
 914         assert(AsyncDeflateIdleMonitors, "sanity check");
 915         continue;
 916       }
 917       ObjectMonitor * monitor = omh.om_ptr();
 918       void * owner = monitor->_owner;
 919       if (owner == NULL) return owner_none;
 920       return (owner == self ||
 921               self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 922     }
 923 
 924     // CASE: neutral
 925     assert(mark->is_neutral(), "sanity check");
 926     return owner_none;           // it's unlocked
 927   }
 928 }
 929 
 930 // FIXME: jvmti should call this
 931 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
 932   if (UseBiasedLocking) {
 933     if (SafepointSynchronize::is_at_safepoint()) {
 934       BiasedLocking::revoke_at_safepoint(h_obj);
 935     } else {
 936       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
 937     }
 938     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 939   }
 940 
 941   oop obj = h_obj();
 942 
 943   while (true) {
 944     address owner = NULL;
 945     markOop mark = ReadStableMark(obj);
 946 
 947     // Uncontended case, header points to stack
 948     if (mark->has_locker()) {
 949       owner = (address) mark->locker();
 950     }
 951 
 952     // Contended case, header points to ObjectMonitor (tagged pointer)
 953     else if (mark->has_monitor()) {
 954       ObjectMonitorHandle omh;
 955       if (!omh.save_om_ptr(obj, mark)) {
 956         // Lost a race with async deflation so try again.
 957         assert(AsyncDeflateIdleMonitors, "sanity check");
 958         continue;
 959       }
 960       ObjectMonitor* monitor = omh.om_ptr();
 961       assert(monitor != NULL, "monitor should be non-null");
 962       owner = (address) monitor->owner();
 963     }
 964 
 965     if (owner != NULL) {
 966       // owning_thread_from_monitor_owner() may also return NULL here
 967       return Threads::owning_thread_from_monitor_owner(t_list, owner);
 968     }
 969 
 970     // Unlocked case, header in place
 971     // Cannot have assertion since this object may have been
 972     // locked by another thread when reaching here.
 973     // assert(mark->is_neutral(), "sanity check");
 974 
 975     return NULL;
 976   }
 977 }
 978 
 979 // Visitors ...
 980 
 981 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 982   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
 983   while (block != NULL) {
 984     assert(block->object() == CHAINMARKER, "must be a block header");
 985     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 986       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
 987       if (mid->is_active()) {
 988         ObjectMonitorHandle omh(mid);
 989 
 990         if (mid->object() == NULL ||
 991             (AsyncDeflateIdleMonitors && mid->_owner == DEFLATER_MARKER)) {
 992           // Only process with closure if the object is set.
 993           // For async deflation, race here if monitor is not owned!
 994           // The above ref_count bump (in ObjectMonitorHandle ctr)
 995           // will cause subsequent async deflation to skip it.
 996           // However, previous or concurrent async deflation is a race.
 997           continue;
 998         }
 999         closure->do_monitor(mid);
1000       }
1001     }
1002     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
1003   }
1004 }
1005 
1006 // Get the next block in the block list.
1007 static inline PaddedEnd<ObjectMonitor>* next(PaddedEnd<ObjectMonitor>* block) {
1008   assert(block->object() == CHAINMARKER, "must be a block header");
1009   block = (PaddedEnd<ObjectMonitor>*) block->FreeNext;
1010   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
1011   return block;
1012 }
1013 
1014 static bool monitors_used_above_threshold() {
1015   if (gMonitorPopulation == 0) {
1016     return false;
1017   }
1018   int monitors_used = gMonitorPopulation - gMonitorFreeCount;
1019   int monitor_usage = (monitors_used * 100LL) / gMonitorPopulation;
1020   return monitor_usage > MonitorUsedDeflationThreshold;
1021 }
1022 
1023 bool ObjectSynchronizer::is_cleanup_needed() {
1024   if (MonitorUsedDeflationThreshold > 0) {
1025     return monitors_used_above_threshold();
1026   }
1027   return false;
1028 }
1029 
1030 void ObjectSynchronizer::oops_do(OopClosure* f) {
1031   // We only scan the global used list here (for moribund threads), and
1032   // the thread-local monitors in Thread::oops_do().
1033   global_used_oops_do(f);
1034 }
1035 
1036 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
1037   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1038   list_oops_do(gOmInUseList, f);
1039 }
1040 
1041 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
1042   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1043   list_oops_do(thread->omInUseList, f);
1044 }
1045 
1046 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) {
1047   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1048   ObjectMonitor* mid;
1049   for (mid = list; mid != NULL; mid = mid->FreeNext) {
1050     if (mid->object() != NULL) {
1051       f->do_oop((oop*)mid->object_addr());
1052     }
1053   }
1054 }
1055 
1056 
1057 // -----------------------------------------------------------------------------
1058 // ObjectMonitor Lifecycle
1059 // -----------------------
1060 // Inflation unlinks monitors from the global gFreeList and
1061 // associates them with objects.  Deflation -- which occurs at
1062 // STW-time -- disassociates idle monitors from objects.  Such
1063 // scavenged monitors are returned to the gFreeList.
1064 //
1065 // The global list is protected by gListLock.  All the critical sections
1066 // are short and operate in constant-time.
1067 //
1068 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
1069 //
1070 // Lifecycle:
1071 // --   unassigned and on the global free list
1072 // --   unassigned and on a thread's private omFreeList
1073 // --   assigned to an object.  The object is inflated and the mark refers
1074 //      to the objectmonitor.
1075 
1076 
1077 // Constraining monitor pool growth via MonitorBound ...
1078 //
1079 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
1080 // the rate of scavenging is driven primarily by GC.  As such,  we can find
1081 // an inordinate number of monitors in circulation.
1082 // To avoid that scenario we can artificially induce a STW safepoint
1083 // if the pool appears to be growing past some reasonable bound.
1084 // Generally we favor time in space-time tradeoffs, but as there's no
1085 // natural back-pressure on the # of extant monitors we need to impose some
1086 // type of limit.  Beware that if MonitorBound is set to too low a value
1087 // we could just loop. In addition, if MonitorBound is set to a low value
1088 // we'll incur more safepoints, which are harmful to performance.
1089 // See also: GuaranteedSafepointInterval
1090 //
1091 // The current implementation uses asynchronous VM operations.
1092 
1093 static void InduceScavenge(Thread * Self, const char * Whence) {
1094   // Induce STW safepoint to trim monitors
1095   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1096   // More precisely, trigger an asynchronous STW safepoint as the number
1097   // of active monitors passes the specified threshold.
1098   // TODO: assert thread state is reasonable
1099 
1100   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
1101     // Induce a 'null' safepoint to scavenge monitors
1102     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
1103     // to the VMthread and have a lifespan longer than that of this activation record.
1104     // The VMThread will delete the op when completed.
1105     VMThread::execute(new VM_ScavengeMonitors());
1106   }
1107 }
1108 
1109 ObjectMonitor* ObjectSynchronizer::omAlloc(Thread * Self,
1110                                            const InflateCause cause) {
1111   // A large MAXPRIVATE value reduces both list lock contention
1112   // and list coherency traffic, but also tends to increase the
1113   // number of objectMonitors in circulation as well as the STW
1114   // scavenge costs.  As usual, we lean toward time in space-time
1115   // tradeoffs.
1116   const int MAXPRIVATE = 1024;
1117 
1118   if (AsyncDeflateIdleMonitors) {
1119     JavaThread * jt = (JavaThread *)Self;
1120     if (jt->omShouldDeflateIdleMonitors && jt->omInUseCount > 0 &&
1121         cause != inflate_cause_vm_internal) {
1122       // Deflate any per-thread idle monitors for this JavaThread if
1123       // this is not an internal inflation. Clean up your own mess.
1124       // (Gibbs Rule 45) Otherwise, skip this cleanup.
1125       // deflate_global_idle_monitors_using_JT() is called by the ServiceThread.
1126       debug_only(jt->check_for_valid_safepoint_state(false);)
1127       ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT();
1128     }
1129   }
1130 
1131   for (;;) {
1132     ObjectMonitor * m;
1133 
1134     // 1: try to allocate from the thread's local omFreeList.
1135     // Threads will attempt to allocate first from their local list, then
1136     // from the global list, and only after those attempts fail will the thread
1137     // attempt to instantiate new monitors.   Thread-local free lists take
1138     // heat off the gListLock and improve allocation latency, as well as reducing
1139     // coherency traffic on the shared global list.
1140     m = Self->omFreeList;
1141     if (m != NULL) {
1142       Self->omFreeList = m->FreeNext;
1143       Self->omFreeCount--;
1144       guarantee(m->object() == NULL, "invariant");
1145       m->set_allocation_state(ObjectMonitor::New);
1146       m->FreeNext = Self->omInUseList;
1147       Self->omInUseList = m;
1148       Self->omInUseCount++;
1149       return m;
1150     }
1151 
1152     // 2: try to allocate from the global gFreeList
1153     // CONSIDER: use muxTry() instead of muxAcquire().
1154     // If the muxTry() fails then drop immediately into case 3.
1155     // If we're using thread-local free lists then try
1156     // to reprovision the caller's free list.
1157     if (gFreeList != NULL) {
1158       // Reprovision the thread's omFreeList.
1159       // Use bulk transfers to reduce the allocation rate and heat
1160       // on various locks.
1161       Thread::muxAcquire(&gListLock, "omAlloc(1)");
1162       for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL;) {
1163         gMonitorFreeCount--;
1164         ObjectMonitor * take = gFreeList;
1165         gFreeList = take->FreeNext;
1166         guarantee(take->object() == NULL, "invariant");
1167         if (AsyncDeflateIdleMonitors) {
1168           take->set_owner(NULL);
1169           take->_contentions = 0;
1170         }
1171         guarantee(!take->is_busy(), "invariant");
1172         take->Recycle();
1173         assert(take->is_free(), "invariant");
1174         omRelease(Self, take, false);
1175       }
1176       Thread::muxRelease(&gListLock);
1177       Self->omFreeProvision += 1 + (Self->omFreeProvision/2);
1178       if (Self->omFreeProvision > MAXPRIVATE) Self->omFreeProvision = MAXPRIVATE;
1179 
1180       const int mx = MonitorBound;
1181       if (mx > 0 && (gMonitorPopulation-gMonitorFreeCount) > mx) {
1182         // We can't safely induce a STW safepoint from omAlloc() as our thread
1183         // state may not be appropriate for such activities and callers may hold
1184         // naked oops, so instead we defer the action.
1185         InduceScavenge(Self, "omAlloc");
1186       }
1187       continue;
1188     }
1189 
1190     // 3: allocate a block of new ObjectMonitors
1191     // Both the local and global free lists are empty -- resort to malloc().
1192     // In the current implementation objectMonitors are TSM - immortal.
1193     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1194     // each ObjectMonitor to start at the beginning of a cache line,
1195     // so we use align_up().
1196     // A better solution would be to use C++ placement-new.
1197     // BEWARE: As it stands currently, we don't run the ctors!
1198     assert(_BLOCKSIZE > 1, "invariant");
1199     size_t neededsize = sizeof(PaddedEnd<ObjectMonitor>) * _BLOCKSIZE;
1200     PaddedEnd<ObjectMonitor> * temp;
1201     size_t aligned_size = neededsize + (DEFAULT_CACHE_LINE_SIZE - 1);
1202     void* real_malloc_addr = (void *)NEW_C_HEAP_ARRAY(char, aligned_size,
1203                                                       mtInternal);
1204     temp = (PaddedEnd<ObjectMonitor> *)
1205              align_up(real_malloc_addr, DEFAULT_CACHE_LINE_SIZE);
1206 
1207     // NOTE: (almost) no way to recover if allocation failed.
1208     // We might be able to induce a STW safepoint and scavenge enough
1209     // objectMonitors to permit progress.
1210     if (temp == NULL) {
1211       vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR,
1212                             "Allocate ObjectMonitors");
1213     }
1214     (void)memset((void *) temp, 0, neededsize);
1215 
1216     // Format the block.
1217     // initialize the linked list, each monitor points to its next
1218     // forming the single linked free list, the very first monitor
1219     // will points to next block, which forms the block list.
1220     // The trick of using the 1st element in the block as gBlockList
1221     // linkage should be reconsidered.  A better implementation would
1222     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1223 
1224     for (int i = 1; i < _BLOCKSIZE; i++) {
1225       temp[i].FreeNext = (ObjectMonitor *)&temp[i+1];
1226       assert(temp[i].is_free(), "invariant");
1227     }
1228 
1229     // terminate the last monitor as the end of list
1230     temp[_BLOCKSIZE - 1].FreeNext = NULL;
1231 
1232     // Element [0] is reserved for global list linkage
1233     temp[0].set_object(CHAINMARKER);
1234 
1235     // Consider carving out this thread's current request from the
1236     // block in hand.  This avoids some lock traffic and redundant
1237     // list activity.
1238 
1239     // Acquire the gListLock to manipulate gBlockList and gFreeList.
1240     // An Oyama-Taura-Yonezawa scheme might be more efficient.
1241     Thread::muxAcquire(&gListLock, "omAlloc(2)");
1242     gMonitorPopulation += _BLOCKSIZE-1;
1243     gMonitorFreeCount += _BLOCKSIZE-1;
1244 
1245     // Add the new block to the list of extant blocks (gBlockList).
1246     // The very first objectMonitor in a block is reserved and dedicated.
1247     // It serves as blocklist "next" linkage.
1248     temp[0].FreeNext = gBlockList;
1249     // There are lock-free uses of gBlockList so make sure that
1250     // the previous stores happen before we update gBlockList.
1251     OrderAccess::release_store(&gBlockList, temp);
1252 
1253     // Add the new string of objectMonitors to the global free list
1254     temp[_BLOCKSIZE - 1].FreeNext = gFreeList;
1255     gFreeList = temp + 1;
1256     Thread::muxRelease(&gListLock);
1257   }
1258 }
1259 
1260 // Place "m" on the caller's private per-thread omFreeList.
1261 // In practice there's no need to clamp or limit the number of
1262 // monitors on a thread's omFreeList as the only time we'll call
1263 // omRelease is to return a monitor to the free list after a CAS
1264 // attempt failed.  This doesn't allow unbounded #s of monitors to
1265 // accumulate on a thread's free list.
1266 //
1267 // Key constraint: all ObjectMonitors on a thread's free list and the global
1268 // free list must have their object field set to null. This prevents the
1269 // scavenger -- deflate_monitor_list() or deflate_monitor_list_using_JT()
1270 // -- from reclaiming them while we are trying to release them.
1271 
1272 void ObjectSynchronizer::omRelease(Thread * Self, ObjectMonitor * m,
1273                                    bool fromPerThreadAlloc) {
1274   guarantee(m->header() == NULL, "invariant");
1275   guarantee(m->object() == NULL, "invariant");
1276   guarantee(((m->is_busy()|m->_recursions) == 0), "freeing in-use monitor");
1277   m->set_allocation_state(ObjectMonitor::Free);
1278   // Remove from omInUseList
1279   if (fromPerThreadAlloc) {
1280     ObjectMonitor* cur_mid_in_use = NULL;
1281     bool extracted = false;
1282     for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; cur_mid_in_use = mid, mid = mid->FreeNext) {
1283       if (m == mid) {
1284         // extract from per-thread in-use list
1285         if (mid == Self->omInUseList) {
1286           Self->omInUseList = mid->FreeNext;
1287         } else if (cur_mid_in_use != NULL) {
1288           cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1289         }
1290         extracted = true;
1291         Self->omInUseCount--;
1292         break;
1293       }
1294     }
1295     assert(extracted, "Should have extracted from in-use list");
1296   }
1297 
1298   // FreeNext is used for both omInUseList and omFreeList, so clear old before setting new
1299   m->FreeNext = Self->omFreeList;
1300   guarantee(m->is_free(), "invariant");
1301   Self->omFreeList = m;
1302   Self->omFreeCount++;
1303 }
1304 
1305 // Return the monitors of a moribund thread's local free list to
1306 // the global free list.  Typically a thread calls omFlush() when
1307 // it's dying.  We could also consider having the VM thread steal
1308 // monitors from threads that have not run java code over a few
1309 // consecutive STW safepoints.  Relatedly, we might decay
1310 // omFreeProvision at STW safepoints.
1311 //
1312 // Also return the monitors of a moribund thread's omInUseList to
1313 // a global gOmInUseList under the global list lock so these
1314 // will continue to be scanned.
1315 //
1316 // We currently call omFlush() from Threads::remove() _before the thread
1317 // has been excised from the thread list and is no longer a mutator.
1318 // This means that omFlush() cannot run concurrently with a safepoint and
1319 // interleave with the deflate_idle_monitors scavenge operator. In particular,
1320 // this ensures that the thread's monitors are scanned by a GC safepoint,
1321 // either via Thread::oops_do() (if safepoint happens before omFlush()) or via
1322 // ObjectSynchronizer::oops_do() (if it happens after omFlush() and the thread's
1323 // monitors have been transferred to the global in-use list).
1324 //
1325 // With AsyncDeflateIdleMonitors, deflate_global_idle_monitors_using_JT()
1326 // and deflate_per_thread_idle_monitors_using_JT() (in another thread) can
1327 // run at the same time as omFlush() so we have to be careful.
1328 
1329 void ObjectSynchronizer::omFlush(Thread * Self) {
1330   ObjectMonitor * list = Self->omFreeList;  // Null-terminated SLL
1331   ObjectMonitor * tail = NULL;
1332   int tally = 0;
1333   if (list != NULL) {
1334     ObjectMonitor * s;
1335     // The thread is going away, the per-thread free monitors
1336     // are freed via set_owner(NULL)
1337     // Link them to tail, which will be linked into the global free list
1338     // gFreeList below, under the gListLock
1339     for (s = list; s != NULL; s = s->FreeNext) {
1340       tally++;
1341       tail = s;
1342       guarantee(s->object() == NULL, "invariant");
1343       guarantee(!s->is_busy(), "invariant");
1344       s->set_owner(NULL);   // redundant but good hygiene
1345     }
1346     guarantee(tail != NULL, "invariant");
1347     guarantee(Self->omFreeCount == tally, "free-count off");
1348     Self->omFreeList = NULL;
1349     Self->omFreeCount = 0;
1350   }
1351 
1352   ObjectMonitor * inUseList = Self->omInUseList;
1353   ObjectMonitor * inUseTail = NULL;
1354   int inUseTally = 0;
1355   if (inUseList != NULL) {
1356     ObjectMonitor *cur_om;
1357     // The thread is going away, however the omInUseList inflated
1358     // monitors may still be in-use by other threads.
1359     // Link them to inUseTail, which will be linked into the global in-use list
1360     // gOmInUseList below, under the gListLock
1361     for (cur_om = inUseList; cur_om != NULL; cur_om = cur_om->FreeNext) {
1362       inUseTail = cur_om;
1363       inUseTally++;
1364       guarantee(cur_om->is_active(), "invariant");
1365     }
1366     guarantee(inUseTail != NULL, "invariant");
1367     guarantee(Self->omInUseCount == inUseTally, "in-use count off");
1368     Self->omInUseList = NULL;
1369     Self->omInUseCount = 0;
1370   }
1371 
1372   Thread::muxAcquire(&gListLock, "omFlush");
1373   if (tail != NULL) {
1374     tail->FreeNext = gFreeList;
1375     gFreeList = list;
1376     gMonitorFreeCount += tally;
1377   }
1378 
1379   if (inUseTail != NULL) {
1380     inUseTail->FreeNext = gOmInUseList;
1381     gOmInUseList = inUseList;
1382     gOmInUseCount += inUseTally;
1383   }
1384 
1385   Thread::muxRelease(&gListLock);
1386 
1387   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1388   LogStreamHandle(Info, monitorinflation) lsh_info;
1389   LogStream * ls = NULL;
1390   if (log_is_enabled(Debug, monitorinflation)) {
1391     ls = &lsh_debug;
1392   } else if ((tally != 0 || inUseTally != 0) &&
1393              log_is_enabled(Info, monitorinflation)) {
1394     ls = &lsh_info;
1395   }
1396   if (ls != NULL) {
1397     ls->print_cr("omFlush: jt=" INTPTR_FORMAT ", free_monitor_tally=%d"
1398                  ", in_use_monitor_tally=%d" ", omFreeProvision=%d",
1399                  p2i(Self), tally, inUseTally, Self->omFreeProvision);
1400   }
1401 }
1402 
1403 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1404                                        const oop obj,
1405                                        ObjectSynchronizer::InflateCause cause) {
1406   assert(event != NULL, "invariant");
1407   assert(event->should_commit(), "invariant");
1408   event->set_monitorClass(obj->klass());
1409   event->set_address((uintptr_t)(void*)obj);
1410   event->set_cause((u1)cause);
1411   event->commit();
1412 }
1413 
1414 // Fast path code shared by multiple functions
1415 void ObjectSynchronizer::inflate_helper(ObjectMonitorHandle * omh_p, oop obj) {
1416   while (true) {
1417     markOop mark = obj->mark();
1418     if (mark->has_monitor()) {
1419       if (!omh_p->save_om_ptr(obj, mark)) {
1420         // Lost a race with async deflation so try again.
1421         assert(AsyncDeflateIdleMonitors, "sanity check");
1422         continue;
1423       }
1424       ObjectMonitor * monitor = omh_p->om_ptr();
1425       assert(ObjectSynchronizer::verify_objmon_isinpool(monitor), "monitor is invalid");
1426       markOop dmw = monitor->header();
1427       assert(dmw->is_neutral(), "sanity check: header=" INTPTR_FORMAT, p2i(dmw));
1428       return;
1429     }
1430     inflate(omh_p, Thread::current(), obj, inflate_cause_vm_internal);
1431     return;
1432   }
1433 }
1434 
1435 void ObjectSynchronizer::inflate(ObjectMonitorHandle * omh_p, Thread * Self,
1436                                  oop object, const InflateCause cause) {
1437   // Inflate mutates the heap ...
1438   // Relaxing assertion for bug 6320749.
1439   assert(Universe::verify_in_progress() ||
1440          !SafepointSynchronize::is_at_safepoint(), "invariant");
1441 
1442   EventJavaMonitorInflate event;
1443 
1444   for (;;) {
1445     const markOop mark = object->mark();
1446     assert(!mark->has_bias_pattern(), "invariant");
1447 
1448     // The mark can be in one of the following states:
1449     // *  Inflated     - just return
1450     // *  Stack-locked - coerce it to inflated
1451     // *  INFLATING    - busy wait for conversion to complete
1452     // *  Neutral      - aggressively inflate the object.
1453     // *  BIASED       - Illegal.  We should never see this
1454 
1455     // CASE: inflated
1456     if (mark->has_monitor()) {
1457       if (!omh_p->save_om_ptr(object, mark)) {
1458         // Lost a race with async deflation so try again.
1459         assert(AsyncDeflateIdleMonitors, "sanity check");
1460         continue;
1461       }
1462       ObjectMonitor * inf = omh_p->om_ptr();
1463       markOop dmw = inf->header();
1464       assert(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1465       assert(oopDesc::equals((oop) inf->object(), object), "invariant");
1466       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1467       return;
1468     }
1469 
1470     // CASE: inflation in progress - inflating over a stack-lock.
1471     // Some other thread is converting from stack-locked to inflated.
1472     // Only that thread can complete inflation -- other threads must wait.
1473     // The INFLATING value is transient.
1474     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1475     // We could always eliminate polling by parking the thread on some auxiliary list.
1476     if (mark == markOopDesc::INFLATING()) {
1477       ReadStableMark(object);
1478       continue;
1479     }
1480 
1481     // CASE: stack-locked
1482     // Could be stack-locked either by this thread or by some other thread.
1483     //
1484     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1485     // to install INFLATING into the mark word.  We originally installed INFLATING,
1486     // allocated the objectmonitor, and then finally STed the address of the
1487     // objectmonitor into the mark.  This was correct, but artificially lengthened
1488     // the interval in which INFLATED appeared in the mark, thus increasing
1489     // the odds of inflation contention.
1490     //
1491     // We now use per-thread private objectmonitor free lists.
1492     // These list are reprovisioned from the global free list outside the
1493     // critical INFLATING...ST interval.  A thread can transfer
1494     // multiple objectmonitors en-mass from the global free list to its local free list.
1495     // This reduces coherency traffic and lock contention on the global free list.
1496     // Using such local free lists, it doesn't matter if the omAlloc() call appears
1497     // before or after the CAS(INFLATING) operation.
1498     // See the comments in omAlloc().
1499 
1500     LogStreamHandle(Trace, monitorinflation) lsh;
1501 
1502     if (mark->has_locker()) {
1503       ObjectMonitor * m;
1504       if (!AsyncDeflateIdleMonitors || cause == inflate_cause_vm_internal) {
1505         // If !AsyncDeflateIdleMonitors or if an internal inflation, then
1506         // we won't stop for a potential safepoint in omAlloc.
1507         m = omAlloc(Self, cause);
1508       } else {
1509         // If AsyncDeflateIdleMonitors and not an internal inflation, then
1510         // we may stop for a safepoint in omAlloc() so protect object.
1511         Handle h_obj(Self, object);
1512         m = omAlloc(Self, cause);
1513         object = h_obj();  // Refresh object.
1514       }
1515       // Optimistically prepare the objectmonitor - anticipate successful CAS
1516       // We do this before the CAS in order to minimize the length of time
1517       // in which INFLATING appears in the mark.
1518       m->Recycle();
1519       m->_Responsible  = NULL;
1520       m->_recursions   = 0;
1521       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1522 
1523       markOop cmp = object->cas_set_mark(markOopDesc::INFLATING(), mark);
1524       if (cmp != mark) {
1525         omRelease(Self, m, true);
1526         continue;       // Interference -- just retry
1527       }
1528 
1529       // We've successfully installed INFLATING (0) into the mark-word.
1530       // This is the only case where 0 will appear in a mark-word.
1531       // Only the singular thread that successfully swings the mark-word
1532       // to 0 can perform (or more precisely, complete) inflation.
1533       //
1534       // Why do we CAS a 0 into the mark-word instead of just CASing the
1535       // mark-word from the stack-locked value directly to the new inflated state?
1536       // Consider what happens when a thread unlocks a stack-locked object.
1537       // It attempts to use CAS to swing the displaced header value from the
1538       // on-stack basiclock back into the object header.  Recall also that the
1539       // header value (hash code, etc) can reside in (a) the object header, or
1540       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1541       // header in an objectMonitor.  The inflate() routine must copy the header
1542       // value from the basiclock on the owner's stack to the objectMonitor, all
1543       // the while preserving the hashCode stability invariants.  If the owner
1544       // decides to release the lock while the value is 0, the unlock will fail
1545       // and control will eventually pass from slow_exit() to inflate.  The owner
1546       // will then spin, waiting for the 0 value to disappear.   Put another way,
1547       // the 0 causes the owner to stall if the owner happens to try to
1548       // drop the lock (restoring the header from the basiclock to the object)
1549       // while inflation is in-progress.  This protocol avoids races that might
1550       // would otherwise permit hashCode values to change or "flicker" for an object.
1551       // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1552       // 0 serves as a "BUSY" inflate-in-progress indicator.
1553 
1554 
1555       // fetch the displaced mark from the owner's stack.
1556       // The owner can't die or unwind past the lock while our INFLATING
1557       // object is in the mark.  Furthermore the owner can't complete
1558       // an unlock on the object, either.
1559       markOop dmw = mark->displaced_mark_helper();
1560       // Catch if the object's header is not neutral (not locked and
1561       // not marked is what we care about here).
1562       assert(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1563 
1564       // Setup monitor fields to proper values -- prepare the monitor
1565       m->set_header(dmw);
1566 
1567       // Optimization: if the mark->locker stack address is associated
1568       // with this thread we could simply set m->_owner = Self.
1569       // Note that a thread can inflate an object
1570       // that it has stack-locked -- as might happen in wait() -- directly
1571       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1572       m->set_owner(mark->locker());
1573       m->set_object(object);
1574       // TODO-FIXME: assert BasicLock->dhw != 0.
1575 
1576       // Must preserve store ordering. The monitor state must
1577       // be stable at the time of publishing the monitor address.
1578       guarantee(object->mark() == markOopDesc::INFLATING(), "invariant");
1579       object->release_set_mark(markOopDesc::encode(m));
1580 
1581       // Hopefully the performance counters are allocated on distinct cache lines
1582       // to avoid false sharing on MP systems ...
1583       OM_PERFDATA_OP(Inflations, inc());
1584       if (log_is_enabled(Trace, monitorinflation)) {
1585         ResourceMark rm(Self);
1586         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1587                      INTPTR_FORMAT ", type='%s'", p2i(object),
1588                      p2i(object->mark()), object->klass()->external_name());
1589       }
1590       if (event.should_commit()) {
1591         post_monitor_inflate_event(&event, object, cause);
1592       }
1593       assert(!m->is_free(), "post-condition");
1594       omh_p->set_om_ptr(m);
1595       return;
1596     }
1597 
1598     // CASE: neutral
1599     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1600     // If we know we're inflating for entry it's better to inflate by swinging a
1601     // pre-locked objectMonitor pointer into the object header.   A successful
1602     // CAS inflates the object *and* confers ownership to the inflating thread.
1603     // In the current implementation we use a 2-step mechanism where we CAS()
1604     // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1605     // An inflateTry() method that we could call from fast_enter() and slow_enter()
1606     // would be useful.
1607 
1608     // Catch if the object's header is not neutral (not locked and
1609     // not marked is what we care about here).
1610     assert(mark->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(mark));
1611     ObjectMonitor * m;
1612     if (!AsyncDeflateIdleMonitors || cause == inflate_cause_vm_internal) {
1613       // If !AsyncDeflateIdleMonitors or if an internal inflation, then
1614       // we won't stop for a potential safepoint in omAlloc.
1615       m = omAlloc(Self, cause);
1616     } else {
1617       // If AsyncDeflateIdleMonitors and not an internal inflation, then
1618       // we may stop for a safepoint in omAlloc() so protect object.
1619       Handle h_obj(Self, object);
1620       m = omAlloc(Self, cause);
1621       object = h_obj();  // Refresh object.
1622     }
1623     // prepare m for installation - set monitor to initial state
1624     m->Recycle();
1625     m->set_header(mark);
1626     m->set_owner(NULL);
1627     m->set_object(object);
1628     m->_recursions   = 0;
1629     m->_Responsible  = NULL;
1630     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1631 
1632     if (object->cas_set_mark(markOopDesc::encode(m), mark) != mark) {
1633       m->set_header(NULL);
1634       m->set_object(NULL);
1635       m->Recycle();
1636       omRelease(Self, m, true);
1637       m = NULL;
1638       continue;
1639       // interference - the markword changed - just retry.
1640       // The state-transitions are one-way, so there's no chance of
1641       // live-lock -- "Inflated" is an absorbing state.
1642     }
1643 
1644     // Hopefully the performance counters are allocated on distinct
1645     // cache lines to avoid false sharing on MP systems ...
1646     OM_PERFDATA_OP(Inflations, inc());
1647     if (log_is_enabled(Trace, monitorinflation)) {
1648       ResourceMark rm(Self);
1649       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
1650                    INTPTR_FORMAT ", type='%s'", p2i(object),
1651                    p2i(object->mark()), object->klass()->external_name());
1652     }
1653     if (event.should_commit()) {
1654       post_monitor_inflate_event(&event, object, cause);
1655     }
1656     omh_p->set_om_ptr(m);
1657     return;
1658   }
1659 }
1660 
1661 
1662 // We maintain a list of in-use monitors for each thread.
1663 //
1664 // deflate_thread_local_monitors() scans a single thread's in-use list, while
1665 // deflate_idle_monitors() scans only a global list of in-use monitors which
1666 // is populated only as a thread dies (see omFlush()).
1667 //
1668 // These operations are called at all safepoints, immediately after mutators
1669 // are stopped, but before any objects have moved. Collectively they traverse
1670 // the population of in-use monitors, deflating where possible. The scavenged
1671 // monitors are returned to the global monitor free list.
1672 //
1673 // Beware that we scavenge at *every* stop-the-world point. Having a large
1674 // number of monitors in-use could negatively impact performance. We also want
1675 // to minimize the total # of monitors in circulation, as they incur a small
1676 // footprint penalty.
1677 //
1678 // Perversely, the heap size -- and thus the STW safepoint rate --
1679 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1680 // which in turn can mean large(r) numbers of ObjectMonitors in circulation.
1681 // This is an unfortunate aspect of this design.
1682 
1683 void ObjectSynchronizer::do_safepoint_work(DeflateMonitorCounters* _counters) {
1684   if (!AsyncDeflateIdleMonitors) {
1685     // Use the older mechanism for the global in-use list.
1686     ObjectSynchronizer::deflate_idle_monitors(_counters);
1687     return;
1688   }
1689 
1690   assert(_counters == NULL, "not used with AsyncDeflateIdleMonitors");
1691 
1692   log_debug(monitorinflation)("requesting deflation of idle monitors.");
1693   // Request deflation of global idle monitors by the ServiceThread:
1694   _gOmShouldDeflateIdleMonitors = true;
1695   MutexLockerEx ml(Service_lock, Mutex::_no_safepoint_check_flag);
1696   Service_lock->notify_all();
1697 
1698   // Request deflation of per-thread idle monitors by each JavaThread:
1699   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1700     if (jt->omInUseCount > 0) {
1701       // This JavaThread is using monitors so check it.
1702       jt->omShouldDeflateIdleMonitors = true;
1703     }
1704   }
1705 }
1706 
1707 // Deflate a single monitor if not in-use
1708 // Return true if deflated, false if in-use
1709 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1710                                          ObjectMonitor** freeHeadp,
1711                                          ObjectMonitor** freeTailp) {
1712   bool deflated;
1713   // Normal case ... The monitor is associated with obj.
1714   const markOop mark = obj->mark();
1715   guarantee(mark == markOopDesc::encode(mid), "should match: mark="
1716             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, p2i(mark),
1717             p2i(markOopDesc::encode(mid)));
1718   // Make sure that mark->monitor() and markOopDesc::encode() agree:
1719   guarantee(mark->monitor() == mid, "should match: monitor()=" INTPTR_FORMAT
1720             ", mid=" INTPTR_FORMAT, p2i(mark->monitor()), p2i(mid));
1721   const markOop dmw = mid->header();
1722   guarantee(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1723 
1724   if (mid->is_busy()) {
1725     deflated = false;
1726   } else {
1727     // Deflate the monitor if it is no longer being used
1728     // It's idle - scavenge and return to the global free list
1729     // plain old deflation ...
1730     if (log_is_enabled(Trace, monitorinflation)) {
1731       ResourceMark rm;
1732       log_trace(monitorinflation)("deflate_monitor: "
1733                                   "object=" INTPTR_FORMAT ", mark="
1734                                   INTPTR_FORMAT ", type='%s'", p2i(obj),
1735                                   p2i(mark), obj->klass()->external_name());
1736     }
1737 
1738     // Restore the header back to obj
1739     obj->release_set_mark(dmw);
1740     mid->clear();
1741 
1742     assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT,
1743            p2i(mid->object()));
1744     assert(mid->is_free(), "invariant");
1745 
1746     // Move the object to the working free list defined by freeHeadp, freeTailp
1747     if (*freeHeadp == NULL) *freeHeadp = mid;
1748     if (*freeTailp != NULL) {
1749       ObjectMonitor * prevtail = *freeTailp;
1750       assert(prevtail->FreeNext == NULL, "cleaned up deflated?");
1751       prevtail->FreeNext = mid;
1752     }
1753     *freeTailp = mid;
1754     deflated = true;
1755   }
1756   return deflated;
1757 }
1758 
1759 // Deflate the specified ObjectMonitor if not in-use using a JavaThread.
1760 // Returns true if it was deflated and false otherwise.
1761 //
1762 // The async deflation protocol sets _owner to DEFLATER_MARKER and
1763 // makes _contentions negative as signals to contending threads that
1764 // an async deflation is in progress. There are a number of checks
1765 // as part of the protocol to make sure that the calling thread has
1766 // not lost the race to a contending thread.
1767 //
1768 // The ObjectMonitor has been successfully async deflated when:
1769 // (_owner == DEFLATER_MARKER && _contentions < 0). Contending threads
1770 // that see those values know to retry their operation.
1771 //
1772 bool ObjectSynchronizer::deflate_monitor_using_JT(ObjectMonitor* mid,
1773                                                   ObjectMonitor** freeHeadp,
1774                                                   ObjectMonitor** freeTailp) {
1775   assert(AsyncDeflateIdleMonitors, "sanity check");
1776   assert(Thread::current()->is_Java_thread(), "precondition");
1777   // A newly allocated ObjectMonitor should not be seen here so we
1778   // avoid an endless inflate/deflate cycle.
1779   assert(mid->is_old(), "precondition");
1780 
1781   if (mid->is_busy() || mid->ref_count() != 0) {
1782     // Easy checks are first - the ObjectMonitor is busy or ObjectMonitor*
1783     // is in use so no deflation.
1784     return false;
1785   }
1786 
1787   if (Atomic::cmpxchg(DEFLATER_MARKER, &mid->_owner, (void*)NULL) == NULL) {
1788     // ObjectMonitor is not owned by another thread. Our setting
1789     // _owner to DEFLATER_MARKER forces any contending thread through
1790     // the slow path. This is just the first part of the async
1791     // deflation dance.
1792 
1793     if (mid->_waiters != 0 || mid->ref_count() != 0) {
1794       // Another thread has raced to enter the ObjectMonitor after
1795       // mid->is_busy() above and has already waited on it which
1796       // makes it busy so no deflation. Or the ObjectMonitor* is
1797       // in use for some other operation like inflate(). Restore
1798       // _owner to NULL if it is still DEFLATER_MARKER.
1799       Atomic::cmpxchg((void*)NULL, &mid->_owner, DEFLATER_MARKER);
1800       return false;
1801     }
1802 
1803     if (Atomic::cmpxchg(-max_jint, &mid->_contentions, (jint)0) == 0) {
1804       // Make _contentions negative to force racing threads to retry.
1805       // This is the second part of the async deflation dance.
1806 
1807       if (mid->_owner == DEFLATER_MARKER) {
1808         // If _owner is still DEFLATER_MARKER, then we have successfully
1809         // signaled any racing threads to retry. If it is not, then we
1810         // have lost the race to another thread and the ObjectMonitor is
1811         // now busy. This is the third and final part of the async
1812         // deflation dance.
1813         // Note: This _owner check solves the ABA problem with _contentions
1814         // where another thread acquired the ObjectMonitor, finished
1815         // using it and restored the _contentions to zero.
1816 
1817         // Sanity checks for the races:
1818         guarantee(mid->_waiters == 0, "should be no waiters");
1819         guarantee(mid->_cxq == NULL, "should be no contending threads");
1820         guarantee(mid->_EntryList == NULL, "should be no entering threads");
1821 
1822         if (log_is_enabled(Trace, monitorinflation)) {
1823           oop obj = (oop) mid->object();
1824           assert(obj != NULL, "sanity check");
1825           if (obj->is_instance()) {
1826             ResourceMark rm;
1827             log_trace(monitorinflation)("deflate_monitor_using_JT: "
1828                                         "object=" INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", type='%s'",
1829                                         p2i(obj), p2i(obj->mark()),
1830                                         obj->klass()->external_name());
1831           }
1832         }
1833 
1834         // Install the old mark word if nobody else has already done it.
1835         mid->install_displaced_markword_in_object();
1836         mid->clear_using_JT();
1837 
1838         assert(mid->object() == NULL, "invariant");
1839         assert(mid->is_free(), "invariant");
1840 
1841         // Move the deflated ObjectMonitor to the working free list
1842         // defined by freeHeadp and freeTailp.
1843         if (*freeHeadp == NULL) {
1844           // First one on the list.
1845           *freeHeadp = mid;
1846         }
1847         if (*freeTailp != NULL) {
1848           // We append to the list so the caller can use mid->FreeNext
1849           // to fix the linkages in its context.
1850           ObjectMonitor * prevtail = *freeTailp;
1851           assert(prevtail->FreeNext == NULL, "not cleaned up by the caller");
1852           prevtail->FreeNext = mid;
1853         }
1854         *freeTailp = mid;
1855 
1856         // At this point, mid->FreeNext still refers to its current
1857         // value and another ObjectMonitor's FreeNext field still
1858         // refers to this ObjectMonitor. Those linkages have to be
1859         // cleaned up by the caller who has the complete context.
1860 
1861         // We leave _owner == DEFLATER_MARKER and _contentions < 0
1862         // to force any racing threads to retry.
1863         return true;  // Success, ObjectMonitor has been deflated.
1864       }
1865 
1866       // The _owner was changed from DEFLATER_MARKER so we lost the
1867       // race since the ObjectMonitor is now busy. Add back max_jint
1868       // to restore the _contentions field to its proper value (which
1869       // may not be what we saw above).
1870       Atomic::add(max_jint, &mid->_contentions);
1871 
1872       assert(mid->_contentions >= 0, "_contentions should not be negative");
1873     }
1874 
1875     // The _contentions was no longer 0 so we lost the race since the
1876     // ObjectMonitor is now busy.
1877     assert(mid->_owner != DEFLATER_MARKER, "should no longer be set");
1878   }
1879 
1880   // The _owner field is no longer NULL so we lost the race since the
1881   // ObjectMonitor is now busy.
1882   return false;
1883 }
1884 
1885 // Walk a given monitor list, and deflate idle monitors
1886 // The given list could be a per-thread list or a global list
1887 // Caller acquires gListLock as needed.
1888 //
1889 // In the case of parallel processing of thread local monitor lists,
1890 // work is done by Threads::parallel_threads_do() which ensures that
1891 // each Java thread is processed by exactly one worker thread, and
1892 // thus avoid conflicts that would arise when worker threads would
1893 // process the same monitor lists concurrently.
1894 //
1895 // See also ParallelSPCleanupTask and
1896 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
1897 // Threads::parallel_java_threads_do() in thread.cpp.
1898 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** listHeadp,
1899                                              ObjectMonitor** freeHeadp,
1900                                              ObjectMonitor** freeTailp) {
1901   ObjectMonitor* mid;
1902   ObjectMonitor* next;
1903   ObjectMonitor* cur_mid_in_use = NULL;
1904   int deflated_count = 0;
1905 
1906   for (mid = *listHeadp; mid != NULL;) {
1907     oop obj = (oop) mid->object();
1908     if (obj != NULL && deflate_monitor(mid, obj, freeHeadp, freeTailp)) {
1909       // if deflate_monitor succeeded,
1910       // extract from per-thread in-use list
1911       if (mid == *listHeadp) {
1912         *listHeadp = mid->FreeNext;
1913       } else if (cur_mid_in_use != NULL) {
1914         cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1915       }
1916       next = mid->FreeNext;
1917       mid->FreeNext = NULL;  // This mid is current tail in the freeHeadp list
1918       mid = next;
1919       deflated_count++;
1920     } else {
1921       cur_mid_in_use = mid;
1922       mid = mid->FreeNext;
1923     }
1924   }
1925   return deflated_count;
1926 }
1927 
1928 // Walk a given ObjectMonitor list and deflate idle ObjectMonitors using
1929 // a JavaThread. Returns the number of deflated ObjectMonitors. The given
1930 // list could be a per-thread in-use list or the global in-use list.
1931 // Caller acquires gListLock as appropriate. If a safepoint has started,
1932 // then we save state via savedMidInUsep and return to the caller to
1933 // honor the safepoint.
1934 //
1935 int ObjectSynchronizer::deflate_monitor_list_using_JT(ObjectMonitor** listHeadp,
1936                                                       ObjectMonitor** freeHeadp,
1937                                                       ObjectMonitor** freeTailp,
1938                                                       ObjectMonitor** savedMidInUsep) {
1939   assert(AsyncDeflateIdleMonitors, "sanity check");
1940   assert(Thread::current()->is_Java_thread(), "precondition");
1941 
1942   ObjectMonitor* mid;
1943   ObjectMonitor* next;
1944   ObjectMonitor* cur_mid_in_use = NULL;
1945   int deflated_count = 0;
1946 
1947   if (*savedMidInUsep == NULL) {
1948     // No saved state so start at the beginning.
1949     mid = *listHeadp;
1950   } else {
1951     // We're restarting after a safepoint so restore the necessary state
1952     // before we resume.
1953     cur_mid_in_use = *savedMidInUsep;
1954     mid = cur_mid_in_use->FreeNext;
1955   }
1956   while (mid != NULL) {
1957     // Only try to deflate if there is an associated Java object and if
1958     // mid is old (is not newly allocated and is not newly freed).
1959     if (mid->object() != NULL && mid->is_old() &&
1960         deflate_monitor_using_JT(mid, freeHeadp, freeTailp)) {
1961       // Deflation succeeded so update the in-use list.
1962       if (mid == *listHeadp) {
1963         *listHeadp = mid->FreeNext;
1964       } else if (cur_mid_in_use != NULL) {
1965         // Maintain the current in-use list.
1966         cur_mid_in_use->FreeNext = mid->FreeNext;
1967       }
1968       next = mid->FreeNext;
1969       mid->FreeNext = NULL;
1970       // At this point mid is disconnected from the in-use list
1971       // and is the current tail in the freeHeadp list.
1972       mid = next;
1973       deflated_count++;
1974     } else {
1975       // mid is considered in-use if it does not have an associated
1976       // Java object or mid is not old or deflation did not succeed.
1977       // A mid->is_new() node can be seen here when it is freshly returned
1978       // by omAlloc() (and skips the deflation code path).
1979       // A mid->is_old() node can be seen here when deflation failed.
1980       // A mid->is_free() node can be seen here when a fresh node from
1981       // omAlloc() is released by omRelease() due to losing the race
1982       // in inflate().
1983 
1984       if (mid->object() != NULL && mid->is_new()) {
1985         // mid has an associated Java object and has now been seen
1986         // as newly allocated so mark it as "old".
1987         mid->set_allocation_state(ObjectMonitor::Old);
1988       }
1989       cur_mid_in_use = mid;
1990       mid = mid->FreeNext;
1991 
1992       if (SafepointSynchronize::is_synchronizing() &&
1993           cur_mid_in_use != *listHeadp && cur_mid_in_use->is_old()) {
1994         // If a safepoint has started and cur_mid_in_use is not the list
1995         // head and is old, then it is safe to use as saved state. Return
1996         // to the caller so gListLock can be dropped as appropriate
1997         // before blocking.
1998         *savedMidInUsep = cur_mid_in_use;
1999         return deflated_count;
2000       }
2001     }
2002   }
2003   // We finished the list without a safepoint starting so there's
2004   // no need to save state.
2005   *savedMidInUsep = NULL;
2006   return deflated_count;
2007 }
2008 
2009 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2010   counters->nInuse = 0;              // currently associated with objects
2011   counters->nInCirculation = 0;      // extant
2012   counters->nScavenged = 0;          // reclaimed (global and per-thread)
2013   counters->perThreadScavenged = 0;  // per-thread scavenge total
2014   counters->perThreadTimes = 0.0;    // per-thread scavenge times
2015 }
2016 
2017 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
2018   assert(!AsyncDeflateIdleMonitors, "sanity check");
2019   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2020   bool deflated = false;
2021 
2022   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
2023   ObjectMonitor * freeTailp = NULL;
2024   elapsedTimer timer;
2025 
2026   if (log_is_enabled(Info, monitorinflation)) {
2027     timer.start();
2028   }
2029 
2030   // Prevent omFlush from changing mids in Thread dtor's during deflation
2031   // And in case the vm thread is acquiring a lock during a safepoint
2032   // See e.g. 6320749
2033   Thread::muxAcquire(&gListLock, "deflate_idle_monitors");
2034 
2035   // Note: the thread-local monitors lists get deflated in
2036   // a separate pass. See deflate_thread_local_monitors().
2037 
2038   // For moribund threads, scan gOmInUseList
2039   int deflated_count = 0;
2040   if (gOmInUseList) {
2041     counters->nInCirculation += gOmInUseCount;
2042     deflated_count = deflate_monitor_list((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp);
2043     gOmInUseCount -= deflated_count;
2044     counters->nScavenged += deflated_count;
2045     counters->nInuse += gOmInUseCount;
2046   }
2047 
2048   // Move the scavenged monitors back to the global free list.
2049   if (freeHeadp != NULL) {
2050     guarantee(freeTailp != NULL && counters->nScavenged > 0, "invariant");
2051     assert(freeTailp->FreeNext == NULL, "invariant");
2052     // constant-time list splice - prepend scavenged segment to gFreeList
2053     freeTailp->FreeNext = gFreeList;
2054     gFreeList = freeHeadp;
2055   }
2056   Thread::muxRelease(&gListLock);
2057   timer.stop();
2058 
2059   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2060   LogStreamHandle(Info, monitorinflation) lsh_info;
2061   LogStream * ls = NULL;
2062   if (log_is_enabled(Debug, monitorinflation)) {
2063     ls = &lsh_debug;
2064   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2065     ls = &lsh_info;
2066   }
2067   if (ls != NULL) {
2068     ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2069   }
2070 }
2071 
2072 // Deflate global idle ObjectMonitors using a JavaThread.
2073 //
2074 void ObjectSynchronizer::deflate_global_idle_monitors_using_JT() {
2075   assert(AsyncDeflateIdleMonitors, "sanity check");
2076   assert(Thread::current()->is_Java_thread(), "precondition");
2077   JavaThread * cur_jt = JavaThread::current();
2078 
2079   _gOmShouldDeflateIdleMonitors = false;
2080 
2081   int deflated_count = 0;
2082   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged ObjectMonitors
2083   ObjectMonitor * freeTailp = NULL;
2084   ObjectMonitor * savedMidInUsep = NULL;
2085   elapsedTimer timer;
2086 
2087   if (log_is_enabled(Info, monitorinflation)) {
2088     timer.start();
2089   }
2090   Thread::muxAcquire(&gListLock, "deflate_global_idle_monitors_using_JT(1)");
2091   OM_PERFDATA_OP(MonExtant, set_value(gOmInUseCount));
2092 
2093   do {
2094     int local_deflated_count = deflate_monitor_list_using_JT((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp, &savedMidInUsep);
2095     gOmInUseCount -= local_deflated_count;
2096     deflated_count += local_deflated_count;
2097 
2098     if (freeHeadp != NULL) {
2099       // Move the scavenged ObjectMonitors to the global free list.
2100       guarantee(freeTailp != NULL && local_deflated_count > 0, "freeTailp=" INTPTR_FORMAT ", local_deflated_count=%d", p2i(freeTailp), local_deflated_count);
2101       assert(freeTailp->FreeNext == NULL, "invariant");
2102 
2103       // Constant-time list splice - prepend scavenged segment to gFreeList.
2104       freeTailp->FreeNext = gFreeList;
2105       gFreeList = freeHeadp;
2106 
2107       gMonitorFreeCount += local_deflated_count;
2108       OM_PERFDATA_OP(Deflations, inc(local_deflated_count));
2109     }
2110 
2111     if (savedMidInUsep != NULL) {
2112       // deflate_monitor_list_using_JT() detected a safepoint starting.
2113       Thread::muxRelease(&gListLock);
2114       timer.stop();
2115       {
2116         log_debug(monitorinflation)("pausing deflation of global idle monitors for a safepoint.");
2117         assert(SafepointSynchronize::is_synchronizing(), "sanity check");
2118         ThreadBlockInVM blocker(cur_jt);
2119       }
2120       // Prepare for another loop after the safepoint.
2121       freeHeadp = NULL;
2122       freeTailp = NULL;
2123       if (log_is_enabled(Info, monitorinflation)) {
2124         timer.start();
2125       }
2126       Thread::muxAcquire(&gListLock, "deflate_global_idle_monitors_using_JT(2)");
2127     }
2128   } while (savedMidInUsep != NULL);
2129   Thread::muxRelease(&gListLock);
2130   timer.stop();
2131 
2132   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2133   LogStreamHandle(Info, monitorinflation) lsh_info;
2134   LogStream * ls = NULL;
2135   if (log_is_enabled(Debug, monitorinflation)) {
2136     ls = &lsh_debug;
2137   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2138     ls = &lsh_info;
2139   }
2140   if (ls != NULL) {
2141     ls->print_cr("async-deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2142   }
2143 }
2144 
2145 // Deflate per-thread idle ObjectMonitors using a JavaThread.
2146 //
2147 void ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT() {
2148   assert(AsyncDeflateIdleMonitors, "sanity check");
2149   assert(Thread::current()->is_Java_thread(), "precondition");
2150   JavaThread * cur_jt = JavaThread::current();
2151 
2152   cur_jt->omShouldDeflateIdleMonitors = false;
2153 
2154   int deflated_count = 0;
2155   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged ObjectMonitors
2156   ObjectMonitor * freeTailp = NULL;
2157   ObjectMonitor * savedMidInUsep = NULL;
2158   elapsedTimer timer;
2159 
2160   if (log_is_enabled(Info, monitorinflation)) {
2161     timer.start();
2162   }
2163 
2164   OM_PERFDATA_OP(MonExtant, inc(cur_jt->omInUseCount));
2165   do {
2166     int local_deflated_count = deflate_monitor_list_using_JT(cur_jt->omInUseList_addr(), &freeHeadp, &freeTailp, &savedMidInUsep);
2167     cur_jt->omInUseCount -= local_deflated_count;
2168     deflated_count += local_deflated_count;
2169 
2170     if (freeHeadp != NULL) {
2171       // Move the scavenged ObjectMonitors to the global free list.
2172       Thread::muxAcquire(&gListLock, "deflate_per_thread_idle_monitors_using_JT");
2173       guarantee(freeTailp != NULL && local_deflated_count > 0, "freeTailp=" INTPTR_FORMAT ", local_deflated_count=%d", p2i(freeTailp), local_deflated_count);
2174       assert(freeTailp->FreeNext == NULL, "invariant");
2175 
2176       // Constant-time list splice - prepend scavenged segment to gFreeList.
2177       freeTailp->FreeNext = gFreeList;
2178       gFreeList = freeHeadp;
2179 
2180       gMonitorFreeCount += local_deflated_count;
2181       OM_PERFDATA_OP(Deflations, inc(local_deflated_count));
2182       Thread::muxRelease(&gListLock);
2183       // Prepare for another loop on the current JavaThread.
2184       freeHeadp = NULL;
2185       freeTailp = NULL;
2186     }
2187     timer.stop();
2188 
2189     if (savedMidInUsep != NULL) {
2190       // deflate_monitor_list_using_JT() detected a safepoint starting.
2191       {
2192         log_debug(monitorinflation)("jt=" INTPTR_FORMAT ": pausing deflation of per-thread idle monitors for a safepoint.", p2i(cur_jt));
2193         assert(SafepointSynchronize::is_synchronizing(), "sanity check");
2194         ThreadBlockInVM blocker(cur_jt);
2195       }
2196       // Prepare for another loop on the current JavaThread after
2197       // the safepoint.
2198       if (log_is_enabled(Info, monitorinflation)) {
2199         timer.start();
2200       }
2201     }
2202   } while (savedMidInUsep != NULL);
2203 
2204   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2205   LogStreamHandle(Info, monitorinflation) lsh_info;
2206   LogStream * ls = NULL;
2207   if (log_is_enabled(Debug, monitorinflation)) {
2208     ls = &lsh_debug;
2209   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2210     ls = &lsh_info;
2211   }
2212   if (ls != NULL) {
2213     ls->print_cr("jt=" INTPTR_FORMAT ": async-deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(cur_jt), timer.seconds(), deflated_count);
2214   }
2215 }
2216 
2217 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2218   // Report the cumulative time for deflating each thread's idle
2219   // monitors. Note: if the work is split among more than one
2220   // worker thread, then the reported time will likely be more
2221   // than a beginning to end measurement of the phase.
2222   // Note: AsyncDeflateIdleMonitors only deflates per-thread idle
2223   // monitors at a safepoint when a special cleanup has been requested.
2224   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d", counters->perThreadTimes, counters->perThreadScavenged);
2225 
2226   bool needs_special_cleanup = is_cleanup_requested();
2227   if (!AsyncDeflateIdleMonitors || needs_special_cleanup) {
2228     // AsyncDeflateIdleMonitors does not use these counters unless
2229     // there is a special cleanup request.
2230 
2231     gMonitorFreeCount += counters->nScavenged;
2232 
2233     OM_PERFDATA_OP(Deflations, inc(counters->nScavenged));
2234     OM_PERFDATA_OP(MonExtant, set_value(counters->nInCirculation));
2235   }
2236 
2237   if (log_is_enabled(Debug, monitorinflation)) {
2238     // exit_globals()'s call to audit_and_print_stats() is done
2239     // at the Info level.
2240     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2241   } else if (log_is_enabled(Info, monitorinflation)) {
2242     Thread::muxAcquire(&gListLock, "finish_deflate_idle_monitors");
2243     log_info(monitorinflation)("gMonitorPopulation=%d, gOmInUseCount=%d, "
2244                                "gMonitorFreeCount=%d", gMonitorPopulation,
2245                                gOmInUseCount, gMonitorFreeCount);
2246     Thread::muxRelease(&gListLock);
2247   }
2248 
2249   ForceMonitorScavenge = 0;    // Reset
2250   GVars.stwRandom = os::random();
2251   GVars.stwCycle++;
2252   if (needs_special_cleanup) {
2253     set_is_cleanup_requested(false);  // special clean up is done
2254   }
2255 }
2256 
2257 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
2258   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2259 
2260   if (AsyncDeflateIdleMonitors) {
2261     // Nothing to do when idle ObjectMonitors are deflated using a
2262     // JavaThread unless a special cleanup has been requested.
2263     if (!is_cleanup_requested()) {
2264       return;
2265     }
2266   }
2267 
2268   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
2269   ObjectMonitor * freeTailp = NULL;
2270   elapsedTimer timer;
2271 
2272   if (log_is_enabled(Info, safepoint, cleanup) ||
2273       log_is_enabled(Info, monitorinflation)) {
2274     timer.start();
2275   }
2276 
2277   int deflated_count = deflate_monitor_list(thread->omInUseList_addr(), &freeHeadp, &freeTailp);
2278 
2279   Thread::muxAcquire(&gListLock, "deflate_thread_local_monitors");
2280 
2281   // Adjust counters
2282   counters->nInCirculation += thread->omInUseCount;
2283   thread->omInUseCount -= deflated_count;
2284   counters->nScavenged += deflated_count;
2285   counters->nInuse += thread->omInUseCount;
2286   counters->perThreadScavenged += deflated_count;
2287 
2288   // Move the scavenged monitors back to the global free list.
2289   if (freeHeadp != NULL) {
2290     guarantee(freeTailp != NULL && deflated_count > 0, "invariant");
2291     assert(freeTailp->FreeNext == NULL, "invariant");
2292 
2293     // constant-time list splice - prepend scavenged segment to gFreeList
2294     freeTailp->FreeNext = gFreeList;
2295     gFreeList = freeHeadp;
2296   }
2297 
2298   timer.stop();
2299   // Safepoint logging cares about cumulative perThreadTimes and
2300   // we'll capture most of the cost, but not the muxRelease() which
2301   // should be cheap.
2302   counters->perThreadTimes += timer.seconds();
2303 
2304   Thread::muxRelease(&gListLock);
2305 
2306   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2307   LogStreamHandle(Info, monitorinflation) lsh_info;
2308   LogStream * ls = NULL;
2309   if (log_is_enabled(Debug, monitorinflation)) {
2310     ls = &lsh_debug;
2311   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2312     ls = &lsh_info;
2313   }
2314   if (ls != NULL) {
2315     ls->print_cr("jt=" INTPTR_FORMAT ": deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(thread), timer.seconds(), deflated_count);
2316   }
2317 }
2318 
2319 // Monitor cleanup on JavaThread::exit
2320 
2321 // Iterate through monitor cache and attempt to release thread's monitors
2322 // Gives up on a particular monitor if an exception occurs, but continues
2323 // the overall iteration, swallowing the exception.
2324 class ReleaseJavaMonitorsClosure: public MonitorClosure {
2325  private:
2326   TRAPS;
2327 
2328  public:
2329   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
2330   void do_monitor(ObjectMonitor* mid) {
2331     if (mid->owner() == THREAD) {
2332       (void)mid->complete_exit(CHECK);
2333     }
2334   }
2335 };
2336 
2337 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
2338 // ignored.  This is meant to be called during JNI thread detach which assumes
2339 // all remaining monitors are heavyweight.  All exceptions are swallowed.
2340 // Scanning the extant monitor list can be time consuming.
2341 // A simple optimization is to add a per-thread flag that indicates a thread
2342 // called jni_monitorenter() during its lifetime.
2343 //
2344 // Instead of No_Savepoint_Verifier it might be cheaper to
2345 // use an idiom of the form:
2346 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
2347 //   <code that must not run at safepoint>
2348 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
2349 // Since the tests are extremely cheap we could leave them enabled
2350 // for normal product builds.
2351 
2352 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
2353   assert(THREAD == JavaThread::current(), "must be current Java thread");
2354   NoSafepointVerifier nsv;
2355   ReleaseJavaMonitorsClosure rjmc(THREAD);
2356   Thread::muxAcquire(&gListLock, "release_monitors_owned_by_thread");
2357   ObjectSynchronizer::monitors_iterate(&rjmc);
2358   Thread::muxRelease(&gListLock);
2359   THREAD->clear_pending_exception();
2360 }
2361 
2362 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
2363   switch (cause) {
2364     case inflate_cause_vm_internal:    return "VM Internal";
2365     case inflate_cause_monitor_enter:  return "Monitor Enter";
2366     case inflate_cause_wait:           return "Monitor Wait";
2367     case inflate_cause_notify:         return "Monitor Notify";
2368     case inflate_cause_hash_code:      return "Monitor Hash Code";
2369     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
2370     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
2371     default:
2372       ShouldNotReachHere();
2373   }
2374   return "Unknown";
2375 }
2376 
2377 //------------------------------------------------------------------------------
2378 // Debugging code
2379 
2380 u_char* ObjectSynchronizer::get_gvars_addr() {
2381   return (u_char*)&GVars;
2382 }
2383 
2384 u_char* ObjectSynchronizer::get_gvars_hcSequence_addr() {
2385   return (u_char*)&GVars.hcSequence;
2386 }
2387 
2388 size_t ObjectSynchronizer::get_gvars_size() {
2389   return sizeof(SharedGlobals);
2390 }
2391 
2392 u_char* ObjectSynchronizer::get_gvars_stwRandom_addr() {
2393   return (u_char*)&GVars.stwRandom;
2394 }
2395 
2396 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) {
2397   assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant");
2398 
2399   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2400   LogStreamHandle(Info, monitorinflation) lsh_info;
2401   LogStreamHandle(Trace, monitorinflation) lsh_trace;
2402   LogStream * ls = NULL;
2403   if (log_is_enabled(Trace, monitorinflation)) {
2404     ls = &lsh_trace;
2405   } else if (log_is_enabled(Debug, monitorinflation)) {
2406     ls = &lsh_debug;
2407   } else if (log_is_enabled(Info, monitorinflation)) {
2408     ls = &lsh_info;
2409   }
2410   assert(ls != NULL, "sanity check");
2411 
2412   if (!on_exit) {
2413     // Not at VM exit so grab the global list lock.
2414     Thread::muxAcquire(&gListLock, "audit_and_print_stats");
2415   }
2416 
2417   // Log counts for the global and per-thread monitor lists:
2418   int chkMonitorPopulation = log_monitor_list_counts(ls);
2419   int error_cnt = 0;
2420 
2421   ls->print_cr("Checking global lists:");
2422 
2423   // Check gMonitorPopulation:
2424   if (gMonitorPopulation == chkMonitorPopulation) {
2425     ls->print_cr("gMonitorPopulation=%d equals chkMonitorPopulation=%d",
2426                  gMonitorPopulation, chkMonitorPopulation);
2427   } else {
2428     ls->print_cr("ERROR: gMonitorPopulation=%d is not equal to "
2429                  "chkMonitorPopulation=%d", gMonitorPopulation,
2430                  chkMonitorPopulation);
2431     error_cnt++;
2432   }
2433 
2434   // Check gOmInUseList and gOmInUseCount:
2435   chk_global_in_use_list_and_count(ls, &error_cnt);
2436 
2437   // Check gFreeList and gMonitorFreeCount:
2438   chk_global_free_list_and_count(ls, &error_cnt);
2439 
2440   if (!on_exit) {
2441     Thread::muxRelease(&gListLock);
2442   }
2443 
2444   ls->print_cr("Checking per-thread lists:");
2445 
2446   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2447     // Check omInUseList and omInUseCount:
2448     chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt);
2449 
2450     // Check omFreeList and omFreeCount:
2451     chk_per_thread_free_list_and_count(jt, ls, &error_cnt);
2452   }
2453 
2454   if (error_cnt == 0) {
2455     ls->print_cr("No errors found in monitor list checks.");
2456   } else {
2457     log_error(monitorinflation)("found monitor list errors: error_cnt=%d", error_cnt);
2458   }
2459 
2460   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
2461       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
2462     // When exiting this log output is at the Info level. When called
2463     // at a safepoint, this log output is at the Trace level since
2464     // there can be a lot of it.
2465     log_in_use_monitor_details(ls, on_exit);
2466   }
2467 
2468   ls->flush();
2469 
2470   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
2471 }
2472 
2473 // Check a free monitor entry; log any errors.
2474 void ObjectSynchronizer::chk_free_entry(JavaThread * jt, ObjectMonitor * n,
2475                                         outputStream * out, int *error_cnt_p) {
2476   if ((!AsyncDeflateIdleMonitors && n->is_busy()) ||
2477       (AsyncDeflateIdleMonitors && n->is_busy_async())) {
2478     if (jt != NULL) {
2479       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2480                     ": free per-thread monitor must not be busy.", p2i(jt),
2481                     p2i(n));
2482     } else {
2483       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2484                     "must not be busy.", p2i(n));
2485     }
2486     *error_cnt_p = *error_cnt_p + 1;
2487   }
2488   if (n->header() != NULL) {
2489     if (jt != NULL) {
2490       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2491                     ": free per-thread monitor must have NULL _header "
2492                     "field: _header=" INTPTR_FORMAT, p2i(jt), p2i(n),
2493                     p2i(n->header()));
2494     } else {
2495       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2496                     "must have NULL _header field: _header=" INTPTR_FORMAT,
2497                     p2i(n), p2i(n->header()));
2498     }
2499     *error_cnt_p = *error_cnt_p + 1;
2500   }
2501   if (n->object() != NULL) {
2502     if (jt != NULL) {
2503       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2504                     ": free per-thread monitor must have NULL _object "
2505                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
2506                     p2i(n->object()));
2507     } else {
2508       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2509                     "must have NULL _object field: _object=" INTPTR_FORMAT,
2510                     p2i(n), p2i(n->object()));
2511     }
2512     *error_cnt_p = *error_cnt_p + 1;
2513   }
2514 }
2515 
2516 // Check the global free list and count; log the results of the checks.
2517 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
2518                                                         int *error_cnt_p) {
2519   int chkMonitorFreeCount = 0;
2520   for (ObjectMonitor * n = gFreeList; n != NULL; n = n->FreeNext) {
2521     chk_free_entry(NULL /* jt */, n, out, error_cnt_p);
2522     chkMonitorFreeCount++;
2523   }
2524   if (gMonitorFreeCount == chkMonitorFreeCount) {
2525     out->print_cr("gMonitorFreeCount=%d equals chkMonitorFreeCount=%d",
2526                   gMonitorFreeCount, chkMonitorFreeCount);
2527   } else {
2528     out->print_cr("ERROR: gMonitorFreeCount=%d is not equal to "
2529                   "chkMonitorFreeCount=%d", gMonitorFreeCount,
2530                   chkMonitorFreeCount);
2531     *error_cnt_p = *error_cnt_p + 1;
2532   }
2533 }
2534 
2535 // Check the global in-use list and count; log the results of the checks.
2536 void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out,
2537                                                           int *error_cnt_p) {
2538   int chkOmInUseCount = 0;
2539   for (ObjectMonitor * n = gOmInUseList; n != NULL; n = n->FreeNext) {
2540     chk_in_use_entry(NULL /* jt */, n, out, error_cnt_p);
2541     chkOmInUseCount++;
2542   }
2543   if (gOmInUseCount == chkOmInUseCount) {
2544     out->print_cr("gOmInUseCount=%d equals chkOmInUseCount=%d", gOmInUseCount,
2545                   chkOmInUseCount);
2546   } else {
2547     out->print_cr("ERROR: gOmInUseCount=%d is not equal to chkOmInUseCount=%d",
2548                   gOmInUseCount, chkOmInUseCount);
2549     *error_cnt_p = *error_cnt_p + 1;
2550   }
2551 }
2552 
2553 // Check an in-use monitor entry; log any errors.
2554 void ObjectSynchronizer::chk_in_use_entry(JavaThread * jt, ObjectMonitor * n,
2555                                           outputStream * out, int *error_cnt_p) {
2556   if (n->header() == NULL) {
2557     if (jt != NULL) {
2558       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2559                     ": in-use per-thread monitor must have non-NULL _header "
2560                     "field.", p2i(jt), p2i(n));
2561     } else {
2562       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
2563                     "must have non-NULL _header field.", p2i(n));
2564     }
2565     *error_cnt_p = *error_cnt_p + 1;
2566   }
2567   if (n->object() == NULL) {
2568     if (jt != NULL) {
2569       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2570                     ": in-use per-thread monitor must have non-NULL _object "
2571                     "field.", p2i(jt), p2i(n));
2572     } else {
2573       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
2574                     "must have non-NULL _object field.", p2i(n));
2575     }
2576     *error_cnt_p = *error_cnt_p + 1;
2577   }
2578   const oop obj = (oop)n->object();
2579   const markOop mark = obj->mark();
2580   if (!mark->has_monitor()) {
2581     if (jt != NULL) {
2582       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2583                     ": in-use per-thread monitor's object does not think "
2584                     "it has a monitor: obj=" INTPTR_FORMAT ", mark="
2585                     INTPTR_FORMAT,  p2i(jt), p2i(n), p2i(obj), p2i(mark));
2586     } else {
2587       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2588                     "monitor's object does not think it has a monitor: obj="
2589                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
2590                     p2i(obj), p2i(mark));
2591     }
2592     *error_cnt_p = *error_cnt_p + 1;
2593   }
2594   ObjectMonitor * const obj_mon = mark->monitor();
2595   if (n != obj_mon) {
2596     if (jt != NULL) {
2597       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2598                     ": in-use per-thread monitor's object does not refer "
2599                     "to the same monitor: obj=" INTPTR_FORMAT ", mark="
2600                     INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt),
2601                     p2i(n), p2i(obj), p2i(mark), p2i(obj_mon));
2602     } else {
2603       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2604                     "monitor's object does not refer to the same monitor: obj="
2605                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
2606                     INTPTR_FORMAT, p2i(n), p2i(obj), p2i(mark), p2i(obj_mon));
2607     }
2608     *error_cnt_p = *error_cnt_p + 1;
2609   }
2610 }
2611 
2612 // Check the thread's free list and count; log the results of the checks.
2613 void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt,
2614                                                             outputStream * out,
2615                                                             int *error_cnt_p) {
2616   int chkOmFreeCount = 0;
2617   for (ObjectMonitor * n = jt->omFreeList; n != NULL; n = n->FreeNext) {
2618     chk_free_entry(jt, n, out, error_cnt_p);
2619     chkOmFreeCount++;
2620   }
2621   if (jt->omFreeCount == chkOmFreeCount) {
2622     out->print_cr("jt=" INTPTR_FORMAT ": omFreeCount=%d equals "
2623                   "chkOmFreeCount=%d", p2i(jt), jt->omFreeCount, chkOmFreeCount);
2624   } else {
2625     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": omFreeCount=%d is not "
2626                   "equal to chkOmFreeCount=%d", p2i(jt), jt->omFreeCount,
2627                   chkOmFreeCount);
2628     *error_cnt_p = *error_cnt_p + 1;
2629   }
2630 }
2631 
2632 // Check the thread's in-use list and count; log the results of the checks.
2633 void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt,
2634                                                               outputStream * out,
2635                                                               int *error_cnt_p) {
2636   int chkOmInUseCount = 0;
2637   for (ObjectMonitor * n = jt->omInUseList; n != NULL; n = n->FreeNext) {
2638     chk_in_use_entry(jt, n, out, error_cnt_p);
2639     chkOmInUseCount++;
2640   }
2641   if (jt->omInUseCount == chkOmInUseCount) {
2642     out->print_cr("jt=" INTPTR_FORMAT ": omInUseCount=%d equals "
2643                   "chkOmInUseCount=%d", p2i(jt), jt->omInUseCount,
2644                   chkOmInUseCount);
2645   } else {
2646     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": omInUseCount=%d is not "
2647                   "equal to chkOmInUseCount=%d", p2i(jt), jt->omInUseCount,
2648                   chkOmInUseCount);
2649     *error_cnt_p = *error_cnt_p + 1;
2650   }
2651 }
2652 
2653 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
2654 // flags indicate why the entry is in-use, 'object' and 'object type'
2655 // indicate the associated object and its type.
2656 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out,
2657                                                     bool on_exit) {
2658   if (!on_exit) {
2659     // Not at VM exit so grab the global list lock.
2660     Thread::muxAcquire(&gListLock, "log_in_use_monitor_details");
2661   }
2662 
2663   if (gOmInUseCount > 0) {
2664     out->print_cr("In-use global monitor info:");
2665     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2666     out->print_cr("%18s  %s  %7s  %18s  %18s",
2667                   "monitor", "BHL", "ref_cnt", "object", "object type");
2668     out->print_cr("==================  ===  =======  ==================  ==================");
2669     for (ObjectMonitor * n = gOmInUseList; n != NULL; n = n->FreeNext) {
2670       const oop obj = (oop) n->object();
2671       const markOop mark = n->header();
2672       ResourceMark rm;
2673       out->print_cr(INTPTR_FORMAT "  %d%d%d  %7d  " INTPTR_FORMAT "  %s",
2674                     p2i(n), n->is_busy() != 0, mark->hash() != 0,
2675                     n->owner() != NULL, (int)n->ref_count(), p2i(obj),
2676                     obj->klass()->external_name());
2677     }
2678   }
2679 
2680   if (!on_exit) {
2681     Thread::muxRelease(&gListLock);
2682   }
2683 
2684   out->print_cr("In-use per-thread monitor info:");
2685   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2686   out->print_cr("%18s  %18s  %s  %7s  %18s  %18s",
2687                 "jt", "monitor", "BHL", "ref_cnt", "object", "object type");
2688   out->print_cr("==================  ==================  ===  =======  ==================  ==================");
2689   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2690     for (ObjectMonitor * n = jt->omInUseList; n != NULL; n = n->FreeNext) {
2691       const oop obj = (oop) n->object();
2692       const markOop mark = n->header();
2693       ResourceMark rm;
2694       out->print_cr(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  %7d  "
2695                     INTPTR_FORMAT "  %s", p2i(jt), p2i(n), n->is_busy() != 0,
2696                     mark->hash() != 0, n->owner() != NULL, (int)n->ref_count(),
2697                     p2i(obj), obj->klass()->external_name());
2698     }
2699   }
2700 
2701   out->flush();
2702 }
2703 
2704 // Log counts for the global and per-thread monitor lists and return
2705 // the population count.
2706 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
2707   int popCount = 0;
2708   out->print_cr("%18s  %10s  %10s  %10s",
2709                 "Global Lists:", "InUse", "Free", "Total");
2710   out->print_cr("==================  ==========  ==========  ==========");
2711   out->print_cr("%18s  %10d  %10d  %10d", "",
2712                 gOmInUseCount, gMonitorFreeCount, gMonitorPopulation);
2713   popCount += gOmInUseCount + gMonitorFreeCount;
2714 
2715   out->print_cr("%18s  %10s  %10s  %10s",
2716                 "Per-Thread Lists:", "InUse", "Free", "Provision");
2717   out->print_cr("==================  ==========  ==========  ==========");
2718 
2719   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2720     out->print_cr(INTPTR_FORMAT "  %10d  %10d  %10d", p2i(jt),
2721                   jt->omInUseCount, jt->omFreeCount, jt->omFreeProvision);
2722     popCount += jt->omInUseCount + jt->omFreeCount;
2723   }
2724   return popCount;
2725 }
2726 
2727 #ifndef PRODUCT
2728 
2729 // Check if monitor belongs to the monitor cache
2730 // The list is grow-only so it's *relatively* safe to traverse
2731 // the list of extant blocks without taking a lock.
2732 
2733 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
2734   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
2735   while (block != NULL) {
2736     assert(block->object() == CHAINMARKER, "must be a block header");
2737     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
2738       address mon = (address)monitor;
2739       address blk = (address)block;
2740       size_t diff = mon - blk;
2741       assert((diff % sizeof(PaddedEnd<ObjectMonitor>)) == 0, "must be aligned");
2742       return 1;
2743     }
2744     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
2745   }
2746   return 0;
2747 }
2748 
2749 #endif