1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "logging/logStream.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/metaspaceShared.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/markOop.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "runtime/atomic.hpp"
  37 #include "runtime/biasedLocking.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/interfaceSupport.inline.hpp"
  40 #include "runtime/mutexLocker.hpp"
  41 #include "runtime/objectMonitor.hpp"
  42 #include "runtime/objectMonitor.inline.hpp"
  43 #include "runtime/osThread.hpp"
  44 #include "runtime/safepointVerifiers.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/synchronizer.hpp"
  48 #include "runtime/thread.inline.hpp"
  49 #include "runtime/timer.hpp"
  50 #include "runtime/vframe.hpp"
  51 #include "runtime/vmThread.hpp"
  52 #include "utilities/align.hpp"
  53 #include "utilities/dtrace.hpp"
  54 #include "utilities/events.hpp"
  55 #include "utilities/preserveException.hpp"
  56 
  57 // The "core" versions of monitor enter and exit reside in this file.
  58 // The interpreter and compilers contain specialized transliterated
  59 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  60 // for instance.  If you make changes here, make sure to modify the
  61 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  62 //
  63 // -----------------------------------------------------------------------------
  64 
  65 #ifdef DTRACE_ENABLED
  66 
  67 // Only bother with this argument setup if dtrace is available
  68 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  69 
  70 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  71   char* bytes = NULL;                                                      \
  72   int len = 0;                                                             \
  73   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  74   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  75   if (klassname != NULL) {                                                 \
  76     bytes = (char*)klassname->bytes();                                     \
  77     len = klassname->utf8_length();                                        \
  78   }
  79 
  80 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  81   {                                                                        \
  82     if (DTraceMonitorProbes) {                                             \
  83       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  84       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  85                            (uintptr_t)(monitor), bytes, len, (millis));    \
  86     }                                                                      \
  87   }
  88 
  89 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  90 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  91 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  92 
  93 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  94   {                                                                        \
  95     if (DTraceMonitorProbes) {                                             \
  96       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  97       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
  98                                     (uintptr_t)(monitor), bytes, len);     \
  99     }                                                                      \
 100   }
 101 
 102 #else //  ndef DTRACE_ENABLED
 103 
 104 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 105 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 106 
 107 #endif // ndef DTRACE_ENABLED
 108 
 109 // This exists only as a workaround of dtrace bug 6254741
 110 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 111   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 112   return 0;
 113 }
 114 
 115 #define NINFLATIONLOCKS 256
 116 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 117 
 118 // global list of blocks of monitors
 119 PaddedEnd<ObjectMonitor> * volatile ObjectSynchronizer::gBlockList = NULL;
 120 // global monitor free list
 121 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL;
 122 // global monitor in-use list, for moribund threads,
 123 // monitors they inflated need to be scanned for deflation
 124 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL;
 125 // count of entries in gOmInUseList
 126 int ObjectSynchronizer::gOmInUseCount = 0;
 127 bool ObjectSynchronizer::_gOmShouldDeflateIdleMonitors = false;
 128 bool volatile ObjectSynchronizer::_is_cleanup_requested = false;
 129 
 130 static volatile intptr_t gListLock = 0;      // protects global monitor lists
 131 static volatile int gMonitorFreeCount  = 0;  // # on gFreeList
 132 static volatile int gMonitorPopulation = 0;  // # Extant -- in circulation
 133 
 134 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 135 
 136 
 137 // =====================> Quick functions
 138 
 139 // The quick_* forms are special fast-path variants used to improve
 140 // performance.  In the simplest case, a "quick_*" implementation could
 141 // simply return false, in which case the caller will perform the necessary
 142 // state transitions and call the slow-path form.
 143 // The fast-path is designed to handle frequently arising cases in an efficient
 144 // manner and is just a degenerate "optimistic" variant of the slow-path.
 145 // returns true  -- to indicate the call was satisfied.
 146 // returns false -- to indicate the call needs the services of the slow-path.
 147 // A no-loitering ordinance is in effect for code in the quick_* family
 148 // operators: safepoints or indefinite blocking (blocking that might span a
 149 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 150 // entry.
 151 //
 152 // Consider: An interesting optimization is to have the JIT recognize the
 153 // following common idiom:
 154 //   synchronized (someobj) { .... ; notify(); }
 155 // That is, we find a notify() or notifyAll() call that immediately precedes
 156 // the monitorexit operation.  In that case the JIT could fuse the operations
 157 // into a single notifyAndExit() runtime primitive.
 158 
 159 bool ObjectSynchronizer::quick_notify(oopDesc * obj, Thread * self, bool all) {
 160   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 161   assert(self->is_Java_thread(), "invariant");
 162   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 163   NoSafepointVerifier nsv;
 164   if (obj == NULL) return false;  // slow-path for invalid obj
 165   const markOop mark = obj->mark();
 166 
 167   if (mark->has_locker() && self->is_lock_owned((address)mark->locker())) {
 168     // Degenerate notify
 169     // stack-locked by caller so by definition the implied waitset is empty.
 170     return true;
 171   }
 172 
 173   if (mark->has_monitor()) {
 174     ObjectMonitor * const mon = mark->monitor();
 175     assert(oopDesc::equals((oop) mon->object(), obj), "invariant");
 176     if (mon->owner() != self) return false;  // slow-path for IMS exception
 177 
 178     if (mon->first_waiter() != NULL) {
 179       // We have one or more waiters. Since this is an inflated monitor
 180       // that we own, we can transfer one or more threads from the waitset
 181       // to the entrylist here and now, avoiding the slow-path.
 182       if (all) {
 183         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
 184       } else {
 185         DTRACE_MONITOR_PROBE(notify, mon, obj, self);
 186       }
 187       int tally = 0;
 188       do {
 189         mon->INotify(self);
 190         ++tally;
 191       } while (mon->first_waiter() != NULL && all);
 192       OM_PERFDATA_OP(Notifications, inc(tally));
 193     }
 194     return true;
 195   }
 196 
 197   // biased locking and any other IMS exception states take the slow-path
 198   return false;
 199 }
 200 
 201 
 202 // The LockNode emitted directly at the synchronization site would have
 203 // been too big if it were to have included support for the cases of inflated
 204 // recursive enter and exit, so they go here instead.
 205 // Note that we can't safely call AsyncPrintJavaStack() from within
 206 // quick_enter() as our thread state remains _in_Java.
 207 
 208 bool ObjectSynchronizer::quick_enter(oop obj, Thread * Self,
 209                                      BasicLock * lock) {
 210   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 211   assert(Self->is_Java_thread(), "invariant");
 212   assert(((JavaThread *) Self)->thread_state() == _thread_in_Java, "invariant");
 213   NoSafepointVerifier nsv;
 214   if (obj == NULL) return false;       // Need to throw NPE
 215 
 216   while (true) {
 217     const markOop mark = obj->mark();
 218 
 219     if (mark->has_monitor()) {
 220       ObjectMonitorHandle omh;
 221       if (!omh.save_om_ptr(obj, mark)) {
 222         // Lost a race with async deflation so try again.
 223         assert(AsyncDeflateIdleMonitors, "sanity check");
 224         continue;
 225       }
 226       ObjectMonitor * const m = omh.om_ptr();
 227       assert(oopDesc::equals((oop) m->object(), obj), "invariant");
 228       Thread * const owner = (Thread *) m->_owner;
 229 
 230       // Lock contention and Transactional Lock Elision (TLE) diagnostics
 231       // and observability
 232       // Case: light contention possibly amenable to TLE
 233       // Case: TLE inimical operations such as nested/recursive synchronization
 234 
 235       if (owner == Self) {
 236         m->_recursions++;
 237         return true;
 238       }
 239 
 240       // This Java Monitor is inflated so obj's header will never be
 241       // displaced to this thread's BasicLock. Make the displaced header
 242       // non-NULL so this BasicLock is not seen as recursive nor as
 243       // being locked. We do this unconditionally so that this thread's
 244       // BasicLock cannot be mis-interpreted by any stack walkers. For
 245       // performance reasons, stack walkers generally first check for
 246       // Biased Locking in the object's header, the second check is for
 247       // stack-locking in the object's header, the third check is for
 248       // recursive stack-locking in the displaced header in the BasicLock,
 249       // and last are the inflated Java Monitor (ObjectMonitor) checks.
 250       lock->set_displaced_header(markOopDesc::unused_mark());
 251 
 252       if (owner == NULL && Atomic::replace_if_null(Self, &(m->_owner))) {
 253         assert(m->_recursions == 0, "invariant");
 254         assert(m->_owner == Self, "invariant");
 255         return true;
 256       }
 257     }
 258     break;
 259   }
 260 
 261   // Note that we could inflate in quick_enter.
 262   // This is likely a useful optimization
 263   // Critically, in quick_enter() we must not:
 264   // -- perform bias revocation, or
 265   // -- block indefinitely, or
 266   // -- reach a safepoint
 267 
 268   return false;        // revert to slow-path
 269 }
 270 
 271 // -----------------------------------------------------------------------------
 272 //  Fast Monitor Enter/Exit
 273 // This the fast monitor enter. The interpreter and compiler use
 274 // some assembly copies of this code. Make sure update those code
 275 // if the following function is changed. The implementation is
 276 // extremely sensitive to race condition. Be careful.
 277 
 278 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock,
 279                                     bool attempt_rebias, TRAPS) {
 280   if (UseBiasedLocking) {
 281     if (!SafepointSynchronize::is_at_safepoint()) {
 282       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
 283       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
 284         return;
 285       }
 286     } else {
 287       assert(!attempt_rebias, "can not rebias toward VM thread");
 288       BiasedLocking::revoke_at_safepoint(obj);
 289     }
 290     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 291   }
 292 
 293   slow_enter(obj, lock, THREAD);
 294 }
 295 
 296 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
 297   markOop mark = object->mark();
 298   // We cannot check for Biased Locking if we are racing an inflation.
 299   assert(mark == markOopDesc::INFLATING() ||
 300          !mark->has_bias_pattern(), "should not see bias pattern here");
 301 
 302   markOop dhw = lock->displaced_header();
 303   if (dhw == NULL) {
 304     // If the displaced header is NULL, then this exit matches up with
 305     // a recursive enter. No real work to do here except for diagnostics.
 306 #ifndef PRODUCT
 307     if (mark != markOopDesc::INFLATING()) {
 308       // Only do diagnostics if we are not racing an inflation. Simply
 309       // exiting a recursive enter of a Java Monitor that is being
 310       // inflated is safe; see the has_monitor() comment below.
 311       assert(!mark->is_neutral(), "invariant");
 312       assert(!mark->has_locker() ||
 313              THREAD->is_lock_owned((address)mark->locker()), "invariant");
 314       if (mark->has_monitor()) {
 315         // The BasicLock's displaced_header is marked as a recursive
 316         // enter and we have an inflated Java Monitor (ObjectMonitor).
 317         // This is a special case where the Java Monitor was inflated
 318         // after this thread entered the stack-lock recursively. When a
 319         // Java Monitor is inflated, we cannot safely walk the Java
 320         // Monitor owner's stack and update the BasicLocks because a
 321         // Java Monitor can be asynchronously inflated by a thread that
 322         // does not own the Java Monitor.
 323         ObjectMonitor * m = mark->monitor();
 324         assert(((oop)(m->object()))->mark() == mark, "invariant");
 325         assert(m->is_entered(THREAD), "invariant");
 326       }
 327     }
 328 #endif
 329     return;
 330   }
 331 
 332   if (mark == (markOop) lock) {
 333     // If the object is stack-locked by the current thread, try to
 334     // swing the displaced header from the BasicLock back to the mark.
 335     assert(dhw->is_neutral(), "invariant");
 336     if (object->cas_set_mark(dhw, mark) == mark) {
 337       return;
 338     }
 339   }
 340 
 341   // We have to take the slow-path of possible inflation and then exit.
 342   ObjectMonitorHandle omh;
 343   inflate(&omh, THREAD, object, inflate_cause_vm_internal);
 344   omh.om_ptr()->exit(true, THREAD);
 345 }
 346 
 347 // -----------------------------------------------------------------------------
 348 // Interpreter/Compiler Slow Case
 349 // This routine is used to handle interpreter/compiler slow case
 350 // We don't need to use fast path here, because it must have been
 351 // failed in the interpreter/compiler code.
 352 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 353   bool do_loop = true;
 354   while (do_loop) {
 355     markOop mark = obj->mark();
 356     assert(!mark->has_bias_pattern(), "should not see bias pattern here");
 357 
 358     if (mark->is_neutral()) {
 359       // Anticipate successful CAS -- the ST of the displaced mark must
 360       // be visible <= the ST performed by the CAS.
 361       lock->set_displaced_header(mark);
 362       if (mark == obj()->cas_set_mark((markOop) lock, mark)) {
 363         return;
 364       }
 365       // Fall through to inflate() ...
 366     } else if (mark->has_locker() &&
 367                THREAD->is_lock_owned((address)mark->locker())) {
 368       assert(lock != mark->locker(), "must not re-lock the same lock");
 369       assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
 370       lock->set_displaced_header(NULL);
 371       return;
 372     }
 373 
 374     // The object header will never be displaced to this lock,
 375     // so it does not matter what the value is, except that it
 376     // must be non-zero to avoid looking like a re-entrant lock,
 377     // and must not look locked either.
 378     lock->set_displaced_header(markOopDesc::unused_mark());
 379     ObjectMonitorHandle omh;
 380     inflate(&omh, THREAD, obj(), inflate_cause_monitor_enter);
 381     do_loop = !omh.om_ptr()->enter(THREAD);
 382   }
 383 }
 384 
 385 // This routine is used to handle interpreter/compiler slow case
 386 // We don't need to use fast path here, because it must have
 387 // failed in the interpreter/compiler code. Simply use the heavy
 388 // weight monitor should be ok, unless someone find otherwise.
 389 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 390   fast_exit(object, lock, THREAD);
 391 }
 392 
 393 // -----------------------------------------------------------------------------
 394 // Class Loader  support to workaround deadlocks on the class loader lock objects
 395 // Also used by GC
 396 // complete_exit()/reenter() are used to wait on a nested lock
 397 // i.e. to give up an outer lock completely and then re-enter
 398 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 399 //  1) complete_exit lock1 - saving recursion count
 400 //  2) wait on lock2
 401 //  3) when notified on lock2, unlock lock2
 402 //  4) reenter lock1 with original recursion count
 403 //  5) lock lock2
 404 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 405 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 406   if (UseBiasedLocking) {
 407     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 408     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 409   }
 410 
 411   ObjectMonitorHandle omh;
 412   inflate(&omh, THREAD, obj(), inflate_cause_vm_internal);
 413   intptr_t ret_code = omh.om_ptr()->complete_exit(THREAD);
 414   return ret_code;
 415 }
 416 
 417 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 418 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 419   if (UseBiasedLocking) {
 420     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 421     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 422   }
 423 
 424   bool do_loop = true;
 425   while (do_loop) {
 426     ObjectMonitorHandle omh;
 427     inflate(&omh, THREAD, obj(), inflate_cause_vm_internal);
 428     do_loop = !omh.om_ptr()->reenter(recursion, THREAD);
 429   }
 430 }
 431 // -----------------------------------------------------------------------------
 432 // JNI locks on java objects
 433 // NOTE: must use heavy weight monitor to handle jni monitor enter
 434 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 435   // the current locking is from JNI instead of Java code
 436   if (UseBiasedLocking) {
 437     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 438     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 439   }
 440   THREAD->set_current_pending_monitor_is_from_java(false);
 441   bool do_loop = true;
 442   while (do_loop) {
 443     ObjectMonitorHandle omh;
 444     inflate(&omh, THREAD, obj(), inflate_cause_jni_enter);
 445     do_loop = !omh.om_ptr()->enter(THREAD);
 446   }
 447   THREAD->set_current_pending_monitor_is_from_java(true);
 448 }
 449 
 450 // NOTE: must use heavy weight monitor to handle jni monitor exit
 451 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 452   if (UseBiasedLocking) {
 453     Handle h_obj(THREAD, obj);
 454     BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
 455     obj = h_obj();
 456   }
 457   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 458 
 459   ObjectMonitorHandle omh;
 460   inflate(&omh, THREAD, obj, inflate_cause_jni_exit);
 461   ObjectMonitor * monitor = omh.om_ptr();
 462   // If this thread has locked the object, exit the monitor.  Note:  can't use
 463   // monitor->check(CHECK); must exit even if an exception is pending.
 464   if (monitor->check(THREAD)) {
 465     monitor->exit(true, THREAD);
 466   }
 467 }
 468 
 469 // -----------------------------------------------------------------------------
 470 // Internal VM locks on java objects
 471 // standard constructor, allows locking failures
 472 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
 473   _dolock = doLock;
 474   _thread = thread;
 475   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
 476   _obj = obj;
 477 
 478   if (_dolock) {
 479     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 480   }
 481 }
 482 
 483 ObjectLocker::~ObjectLocker() {
 484   if (_dolock) {
 485     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 486   }
 487 }
 488 
 489 
 490 // -----------------------------------------------------------------------------
 491 //  Wait/Notify/NotifyAll
 492 // NOTE: must use heavy weight monitor to handle wait()
 493 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 494   if (UseBiasedLocking) {
 495     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 496     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 497   }
 498   if (millis < 0) {
 499     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 500   }
 501   ObjectMonitorHandle omh;
 502   inflate(&omh, THREAD, obj(), inflate_cause_wait);
 503   ObjectMonitor * monitor = omh.om_ptr();
 504 
 505   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 506   monitor->wait(millis, true, THREAD);
 507 
 508   // This dummy call is in place to get around dtrace bug 6254741.  Once
 509   // that's fixed we can uncomment the following line, remove the call
 510   // and change this function back into a "void" func.
 511   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 512   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 513   return ret_code;
 514 }
 515 
 516 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) {
 517   if (UseBiasedLocking) {
 518     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 519     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 520   }
 521   if (millis < 0) {
 522     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 523   }
 524   ObjectMonitorHandle omh;
 525   inflate(&omh, THREAD, obj(), inflate_cause_wait);
 526   omh.om_ptr()->wait(millis, false, THREAD);
 527 }
 528 
 529 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 530   if (UseBiasedLocking) {
 531     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 532     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 533   }
 534 
 535   markOop mark = obj->mark();
 536   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 537     return;
 538   }
 539   ObjectMonitorHandle omh;
 540   inflate(&omh, THREAD, obj(), inflate_cause_notify);
 541   omh.om_ptr()->notify(THREAD);
 542 }
 543 
 544 // NOTE: see comment of notify()
 545 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 546   if (UseBiasedLocking) {
 547     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 548     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 549   }
 550 
 551   markOop mark = obj->mark();
 552   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 553     return;
 554   }
 555   ObjectMonitorHandle omh;
 556   inflate(&omh, THREAD, obj(), inflate_cause_notify);
 557   omh.om_ptr()->notifyAll(THREAD);
 558 }
 559 
 560 // -----------------------------------------------------------------------------
 561 // Hash Code handling
 562 //
 563 // Performance concern:
 564 // OrderAccess::storestore() calls release() which at one time stored 0
 565 // into the global volatile OrderAccess::dummy variable. This store was
 566 // unnecessary for correctness. Many threads storing into a common location
 567 // causes considerable cache migration or "sloshing" on large SMP systems.
 568 // As such, I avoided using OrderAccess::storestore(). In some cases
 569 // OrderAccess::fence() -- which incurs local latency on the executing
 570 // processor -- is a better choice as it scales on SMP systems.
 571 //
 572 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 573 // a discussion of coherency costs. Note that all our current reference
 574 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 575 // x64, and SPARC.
 576 //
 577 // As a general policy we use "volatile" to control compiler-based reordering
 578 // and explicit fences (barriers) to control for architectural reordering
 579 // performed by the CPU(s) or platform.
 580 
 581 struct SharedGlobals {
 582   char         _pad_prefix[DEFAULT_CACHE_LINE_SIZE];
 583   // These are highly shared mostly-read variables.
 584   // To avoid false-sharing they need to be the sole occupants of a cache line.
 585   volatile int stwRandom;
 586   volatile int stwCycle;
 587   DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 588   // Hot RW variable -- Sequester to avoid false-sharing
 589   volatile int hcSequence;
 590   DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int));
 591 };
 592 
 593 static SharedGlobals GVars;
 594 static int MonitorScavengeThreshold = 1000000;
 595 static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending
 596 
 597 static markOop ReadStableMark(oop obj) {
 598   markOop mark = obj->mark();
 599   if (!mark->is_being_inflated()) {
 600     return mark;       // normal fast-path return
 601   }
 602 
 603   int its = 0;
 604   for (;;) {
 605     markOop mark = obj->mark();
 606     if (!mark->is_being_inflated()) {
 607       return mark;    // normal fast-path return
 608     }
 609 
 610     // The object is being inflated by some other thread.
 611     // The caller of ReadStableMark() must wait for inflation to complete.
 612     // Avoid live-lock
 613     // TODO: consider calling SafepointSynchronize::do_call_back() while
 614     // spinning to see if there's a safepoint pending.  If so, immediately
 615     // yielding or blocking would be appropriate.  Avoid spinning while
 616     // there is a safepoint pending.
 617     // TODO: add inflation contention performance counters.
 618     // TODO: restrict the aggregate number of spinners.
 619 
 620     ++its;
 621     if (its > 10000 || !os::is_MP()) {
 622       if (its & 1) {
 623         os::naked_yield();
 624       } else {
 625         // Note that the following code attenuates the livelock problem but is not
 626         // a complete remedy.  A more complete solution would require that the inflating
 627         // thread hold the associated inflation lock.  The following code simply restricts
 628         // the number of spinners to at most one.  We'll have N-2 threads blocked
 629         // on the inflationlock, 1 thread holding the inflation lock and using
 630         // a yield/park strategy, and 1 thread in the midst of inflation.
 631         // A more refined approach would be to change the encoding of INFLATING
 632         // to allow encapsulation of a native thread pointer.  Threads waiting for
 633         // inflation to complete would use CAS to push themselves onto a singly linked
 634         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 635         // and calling park().  When inflation was complete the thread that accomplished inflation
 636         // would detach the list and set the markword to inflated with a single CAS and
 637         // then for each thread on the list, set the flag and unpark() the thread.
 638         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 639         // wakes at most one thread whereas we need to wake the entire list.
 640         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 641         int YieldThenBlock = 0;
 642         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 643         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 644         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 645         while (obj->mark() == markOopDesc::INFLATING()) {
 646           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 647           // so we periodically call Self->_ParkEvent->park(1).
 648           // We use a mixed spin/yield/block mechanism.
 649           if ((YieldThenBlock++) >= 16) {
 650             Thread::current()->_ParkEvent->park(1);
 651           } else {
 652             os::naked_yield();
 653           }
 654         }
 655         Thread::muxRelease(gInflationLocks + ix);
 656       }
 657     } else {
 658       SpinPause();       // SMP-polite spinning
 659     }
 660   }
 661 }
 662 
 663 // hashCode() generation :
 664 //
 665 // Possibilities:
 666 // * MD5Digest of {obj,stwRandom}
 667 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
 668 // * A DES- or AES-style SBox[] mechanism
 669 // * One of the Phi-based schemes, such as:
 670 //   2654435761 = 2^32 * Phi (golden ratio)
 671 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
 672 // * A variation of Marsaglia's shift-xor RNG scheme.
 673 // * (obj ^ stwRandom) is appealing, but can result
 674 //   in undesirable regularity in the hashCode values of adjacent objects
 675 //   (objects allocated back-to-back, in particular).  This could potentially
 676 //   result in hashtable collisions and reduced hashtable efficiency.
 677 //   There are simple ways to "diffuse" the middle address bits over the
 678 //   generated hashCode values:
 679 
 680 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
 681   intptr_t value = 0;
 682   if (hashCode == 0) {
 683     // This form uses global Park-Miller RNG.
 684     // On MP system we'll have lots of RW access to a global, so the
 685     // mechanism induces lots of coherency traffic.
 686     value = os::random();
 687   } else if (hashCode == 1) {
 688     // This variation has the property of being stable (idempotent)
 689     // between STW operations.  This can be useful in some of the 1-0
 690     // synchronization schemes.
 691     intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3;
 692     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom;
 693   } else if (hashCode == 2) {
 694     value = 1;            // for sensitivity testing
 695   } else if (hashCode == 3) {
 696     value = ++GVars.hcSequence;
 697   } else if (hashCode == 4) {
 698     value = cast_from_oop<intptr_t>(obj);
 699   } else {
 700     // Marsaglia's xor-shift scheme with thread-specific state
 701     // This is probably the best overall implementation -- we'll
 702     // likely make this the default in future releases.
 703     unsigned t = Self->_hashStateX;
 704     t ^= (t << 11);
 705     Self->_hashStateX = Self->_hashStateY;
 706     Self->_hashStateY = Self->_hashStateZ;
 707     Self->_hashStateZ = Self->_hashStateW;
 708     unsigned v = Self->_hashStateW;
 709     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 710     Self->_hashStateW = v;
 711     value = v;
 712   }
 713 
 714   value &= markOopDesc::hash_mask;
 715   if (value == 0) value = 0xBAD;
 716   assert(value != markOopDesc::no_hash, "invariant");
 717   return value;
 718 }
 719 
 720 intptr_t ObjectSynchronizer::FastHashCode(Thread * Self, oop obj) {
 721   if (UseBiasedLocking) {
 722     // NOTE: many places throughout the JVM do not expect a safepoint
 723     // to be taken here, in particular most operations on perm gen
 724     // objects. However, we only ever bias Java instances and all of
 725     // the call sites of identity_hash that might revoke biases have
 726     // been checked to make sure they can handle a safepoint. The
 727     // added check of the bias pattern is to avoid useless calls to
 728     // thread-local storage.
 729     if (obj->mark()->has_bias_pattern()) {
 730       // Handle for oop obj in case of STW safepoint
 731       Handle hobj(Self, obj);
 732       // Relaxing assertion for bug 6320749.
 733       assert(Universe::verify_in_progress() ||
 734              !SafepointSynchronize::is_at_safepoint(),
 735              "biases should not be seen by VM thread here");
 736       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
 737       obj = hobj();
 738       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 739     }
 740   }
 741 
 742   // hashCode() is a heap mutator ...
 743   // Relaxing assertion for bug 6320749.
 744   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 745          !SafepointSynchronize::is_at_safepoint(), "invariant");
 746   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 747          Self->is_Java_thread() , "invariant");
 748   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 749          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 750 
 751   while (true) {
 752     ObjectMonitor* monitor = NULL;
 753     markOop temp, test;
 754     intptr_t hash;
 755     markOop mark = ReadStableMark(obj);
 756 
 757     // object should remain ineligible for biased locking
 758     assert(!mark->has_bias_pattern(), "invariant");
 759 
 760     if (mark->is_neutral()) {
 761       hash = mark->hash();              // this is a normal header
 762       if (hash != 0) {                  // if it has hash, just return it
 763         return hash;
 764       }
 765       hash = get_next_hash(Self, obj);  // allocate a new hash code
 766       temp = mark->copy_set_hash(hash); // merge the hash code into header
 767       // use (machine word version) atomic operation to install the hash
 768       test = obj->cas_set_mark(temp, mark);
 769       if (test == mark) {
 770         return hash;
 771       }
 772       // If atomic operation failed, we must inflate the header
 773       // into heavy weight monitor. We could add more code here
 774       // for fast path, but it does not worth the complexity.
 775     } else if (mark->has_monitor()) {
 776       ObjectMonitorHandle omh;
 777       if (!omh.save_om_ptr(obj, mark)) {
 778         // Lost a race with async deflation so try again.
 779         assert(AsyncDeflateIdleMonitors, "sanity check");
 780         continue;
 781       }
 782       monitor = omh.om_ptr();
 783       temp = monitor->header();
 784       assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 785       hash = temp->hash();
 786       if (hash != 0) {
 787         return hash;
 788       }
 789       // Skip to the following code to reduce code size
 790     } else if (Self->is_lock_owned((address)mark->locker())) {
 791       temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
 792       assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 793       hash = temp->hash();              // by current thread, check if the displaced
 794       if (hash != 0) {                  // header contains hash code
 795         return hash;
 796       }
 797       // WARNING:
 798       // The displaced header in the BasicLock on a thread's stack
 799       // is strictly immutable. It CANNOT be changed in ANY cases.
 800       // So we have to inflate the stack lock into an ObjectMonitor
 801       // even if the current thread owns the lock. The BasicLock on
 802       // a thread's stack can be asynchronously read by other threads
 803       // during an inflate() call so any change to that stack memory
 804       // may not propagate to other threads correctly.
 805     }
 806 
 807     // Inflate the monitor to set hash code
 808     ObjectMonitorHandle omh;
 809     inflate(&omh, Self, obj, inflate_cause_hash_code);
 810     monitor = omh.om_ptr();
 811     // Load displaced header and check it has hash code
 812     mark = monitor->header();
 813     assert(mark->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(mark));
 814     hash = mark->hash();
 815     if (hash == 0) {
 816       hash = get_next_hash(Self, obj);
 817       temp = mark->copy_set_hash(hash); // merge hash code into header
 818       assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 819       test = Atomic::cmpxchg(temp, monitor->header_addr(), mark);
 820       if (test != mark) {
 821         // The only non-deflation update to the ObjectMonitor's
 822         // header/dmw field is to merge in the hash code. If someone
 823         // adds a new usage of the header/dmw field, please update
 824         // this code.
 825         // ObjectMonitor::install_displaced_markword_in_object()
 826         // does mark the header/dmw field as part of async deflation,
 827         // but that protocol cannot happen now due to the
 828         // ObjectMonitorHandle above.
 829         hash = test->hash();
 830         assert(test->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(test));
 831         assert(hash != 0, "Trivial unexpected object/monitor header usage.");
 832       }
 833     }
 834     // We finally get the hash
 835     return hash;
 836   }
 837 }
 838 
 839 // Deprecated -- use FastHashCode() instead.
 840 
 841 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 842   return FastHashCode(Thread::current(), obj());
 843 }
 844 
 845 
 846 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 847                                                    Handle h_obj) {
 848   if (UseBiasedLocking) {
 849     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
 850     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 851   }
 852 
 853   assert(thread == JavaThread::current(), "Can only be called on current thread");
 854   oop obj = h_obj();
 855 
 856   while (true) {
 857     markOop mark = ReadStableMark(obj);
 858 
 859     // Uncontended case, header points to stack
 860     if (mark->has_locker()) {
 861       return thread->is_lock_owned((address)mark->locker());
 862     }
 863     // Contended case, header points to ObjectMonitor (tagged pointer)
 864     if (mark->has_monitor()) {
 865       ObjectMonitorHandle omh;
 866       if (!omh.save_om_ptr(obj, mark)) {
 867         // Lost a race with async deflation so try again.
 868         assert(AsyncDeflateIdleMonitors, "sanity check");
 869         continue;
 870       }
 871       bool ret_code = omh.om_ptr()->is_entered(thread) != 0;
 872       return ret_code;
 873     }
 874     // Unlocked case, header in place
 875     assert(mark->is_neutral(), "sanity check");
 876     return false;
 877   }
 878 }
 879 
 880 // Be aware of this method could revoke bias of the lock object.
 881 // This method queries the ownership of the lock handle specified by 'h_obj'.
 882 // If the current thread owns the lock, it returns owner_self. If no
 883 // thread owns the lock, it returns owner_none. Otherwise, it will return
 884 // owner_other.
 885 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 886 (JavaThread *self, Handle h_obj) {
 887   // The caller must beware this method can revoke bias, and
 888   // revocation can result in a safepoint.
 889   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 890   assert(self->thread_state() != _thread_blocked, "invariant");
 891 
 892   // Possible mark states: neutral, biased, stack-locked, inflated
 893 
 894   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
 895     // CASE: biased
 896     BiasedLocking::revoke_and_rebias(h_obj, false, self);
 897     assert(!h_obj->mark()->has_bias_pattern(),
 898            "biases should be revoked by now");
 899   }
 900 
 901   assert(self == JavaThread::current(), "Can only be called on current thread");
 902   oop obj = h_obj();
 903 
 904   while (true) {
 905     markOop mark = ReadStableMark(obj);
 906 
 907     // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 908     if (mark->has_locker()) {
 909       return self->is_lock_owned((address)mark->locker()) ?
 910         owner_self : owner_other;
 911     }
 912 
 913     // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor.
 914     // The Object:ObjectMonitor relationship is stable as long as we're
 915     // not at a safepoint and AsyncDeflateIdleMonitors is false.
 916     if (mark->has_monitor()) {
 917       ObjectMonitorHandle omh;
 918       if (!omh.save_om_ptr(obj, mark)) {
 919         // Lost a race with async deflation so try again.
 920         assert(AsyncDeflateIdleMonitors, "sanity check");
 921         continue;
 922       }
 923       ObjectMonitor * monitor = omh.om_ptr();
 924       void * owner = monitor->_owner;
 925       if (owner == NULL) return owner_none;
 926       return (owner == self ||
 927               self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 928     }
 929 
 930     // CASE: neutral
 931     assert(mark->is_neutral(), "sanity check");
 932     return owner_none;           // it's unlocked
 933   }
 934 }
 935 
 936 // FIXME: jvmti should call this
 937 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
 938   if (UseBiasedLocking) {
 939     if (SafepointSynchronize::is_at_safepoint()) {
 940       BiasedLocking::revoke_at_safepoint(h_obj);
 941     } else {
 942       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
 943     }
 944     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 945   }
 946 
 947   oop obj = h_obj();
 948 
 949   while (true) {
 950     address owner = NULL;
 951     markOop mark = ReadStableMark(obj);
 952 
 953     // Uncontended case, header points to stack
 954     if (mark->has_locker()) {
 955       owner = (address) mark->locker();
 956     }
 957 
 958     // Contended case, header points to ObjectMonitor (tagged pointer)
 959     else if (mark->has_monitor()) {
 960       ObjectMonitorHandle omh;
 961       if (!omh.save_om_ptr(obj, mark)) {
 962         // Lost a race with async deflation so try again.
 963         assert(AsyncDeflateIdleMonitors, "sanity check");
 964         continue;
 965       }
 966       ObjectMonitor* monitor = omh.om_ptr();
 967       assert(monitor != NULL, "monitor should be non-null");
 968       owner = (address) monitor->owner();
 969     }
 970 
 971     if (owner != NULL) {
 972       // owning_thread_from_monitor_owner() may also return NULL here
 973       return Threads::owning_thread_from_monitor_owner(t_list, owner);
 974     }
 975 
 976     // Unlocked case, header in place
 977     // Cannot have assertion since this object may have been
 978     // locked by another thread when reaching here.
 979     // assert(mark->is_neutral(), "sanity check");
 980 
 981     return NULL;
 982   }
 983 }
 984 
 985 // Visitors ...
 986 
 987 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 988   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
 989   while (block != NULL) {
 990     assert(block->object() == CHAINMARKER, "must be a block header");
 991     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 992       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
 993       if (mid->is_active()) {
 994         ObjectMonitorHandle omh(mid);
 995 
 996         if (mid->object() == NULL ||
 997             (AsyncDeflateIdleMonitors && mid->_owner == DEFLATER_MARKER)) {
 998           // Only process with closure if the object is set.
 999           // For async deflation, race here if monitor is not owned!
1000           // The above ref_count bump (in ObjectMonitorHandle ctr)
1001           // will cause subsequent async deflation to skip it.
1002           // However, previous or concurrent async deflation is a race.
1003           continue;
1004         }
1005         closure->do_monitor(mid);
1006       }
1007     }
1008     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
1009   }
1010 }
1011 
1012 // Get the next block in the block list.
1013 static inline PaddedEnd<ObjectMonitor>* next(PaddedEnd<ObjectMonitor>* block) {
1014   assert(block->object() == CHAINMARKER, "must be a block header");
1015   block = (PaddedEnd<ObjectMonitor>*) block->FreeNext;
1016   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
1017   return block;
1018 }
1019 
1020 static bool monitors_used_above_threshold() {
1021   if (gMonitorPopulation == 0) {
1022     return false;
1023   }
1024   int monitors_used = gMonitorPopulation - gMonitorFreeCount;
1025   int monitor_usage = (monitors_used * 100LL) / gMonitorPopulation;
1026   return monitor_usage > MonitorUsedDeflationThreshold;
1027 }
1028 
1029 bool ObjectSynchronizer::is_cleanup_needed() {
1030   if (MonitorUsedDeflationThreshold > 0) {
1031     return monitors_used_above_threshold();
1032   }
1033   return false;
1034 }
1035 
1036 void ObjectSynchronizer::oops_do(OopClosure* f) {
1037   // We only scan the global used list here (for moribund threads), and
1038   // the thread-local monitors in Thread::oops_do().
1039   global_used_oops_do(f);
1040 }
1041 
1042 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
1043   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1044   list_oops_do(gOmInUseList, f);
1045 }
1046 
1047 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
1048   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1049   list_oops_do(thread->omInUseList, f);
1050 }
1051 
1052 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) {
1053   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1054   ObjectMonitor* mid;
1055   for (mid = list; mid != NULL; mid = mid->FreeNext) {
1056     if (mid->object() != NULL) {
1057       f->do_oop((oop*)mid->object_addr());
1058     }
1059   }
1060 }
1061 
1062 
1063 // -----------------------------------------------------------------------------
1064 // ObjectMonitor Lifecycle
1065 // -----------------------
1066 // Inflation unlinks monitors from the global gFreeList and
1067 // associates them with objects.  Deflation -- which occurs at
1068 // STW-time -- disassociates idle monitors from objects.  Such
1069 // scavenged monitors are returned to the gFreeList.
1070 //
1071 // The global list is protected by gListLock.  All the critical sections
1072 // are short and operate in constant-time.
1073 //
1074 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
1075 //
1076 // Lifecycle:
1077 // --   unassigned and on the global free list
1078 // --   unassigned and on a thread's private omFreeList
1079 // --   assigned to an object.  The object is inflated and the mark refers
1080 //      to the objectmonitor.
1081 
1082 
1083 // Constraining monitor pool growth via MonitorBound ...
1084 //
1085 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
1086 // the rate of scavenging is driven primarily by GC.  As such,  we can find
1087 // an inordinate number of monitors in circulation.
1088 // To avoid that scenario we can artificially induce a STW safepoint
1089 // if the pool appears to be growing past some reasonable bound.
1090 // Generally we favor time in space-time tradeoffs, but as there's no
1091 // natural back-pressure on the # of extant monitors we need to impose some
1092 // type of limit.  Beware that if MonitorBound is set to too low a value
1093 // we could just loop. In addition, if MonitorBound is set to a low value
1094 // we'll incur more safepoints, which are harmful to performance.
1095 // See also: GuaranteedSafepointInterval
1096 //
1097 // The current implementation uses asynchronous VM operations.
1098 
1099 static void InduceScavenge(Thread * Self, const char * Whence) {
1100   // Induce STW safepoint to trim monitors
1101   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1102   // More precisely, trigger an asynchronous STW safepoint as the number
1103   // of active monitors passes the specified threshold.
1104   // TODO: assert thread state is reasonable
1105 
1106   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
1107     // Induce a 'null' safepoint to scavenge monitors
1108     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
1109     // to the VMthread and have a lifespan longer than that of this activation record.
1110     // The VMThread will delete the op when completed.
1111     VMThread::execute(new VM_ScavengeMonitors());
1112   }
1113 }
1114 
1115 ObjectMonitor* ObjectSynchronizer::omAlloc(Thread * Self,
1116                                            const InflateCause cause) {
1117   // A large MAXPRIVATE value reduces both list lock contention
1118   // and list coherency traffic, but also tends to increase the
1119   // number of objectMonitors in circulation as well as the STW
1120   // scavenge costs.  As usual, we lean toward time in space-time
1121   // tradeoffs.
1122   const int MAXPRIVATE = 1024;
1123 
1124   if (AsyncDeflateIdleMonitors) {
1125     JavaThread * jt = (JavaThread *)Self;
1126     if (jt->omShouldDeflateIdleMonitors && jt->omInUseCount > 0 &&
1127         cause != inflate_cause_vm_internal) {
1128       // Deflate any per-thread idle monitors for this JavaThread if
1129       // this is not an internal inflation. Clean up your own mess.
1130       // (Gibbs Rule 45) Otherwise, skip this cleanup.
1131       // deflate_global_idle_monitors_using_JT() is called by the ServiceThread.
1132       debug_only(jt->check_for_valid_safepoint_state(false);)
1133       ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT();
1134     }
1135   }
1136 
1137   for (;;) {
1138     ObjectMonitor * m;
1139 
1140     // 1: try to allocate from the thread's local omFreeList.
1141     // Threads will attempt to allocate first from their local list, then
1142     // from the global list, and only after those attempts fail will the thread
1143     // attempt to instantiate new monitors.   Thread-local free lists take
1144     // heat off the gListLock and improve allocation latency, as well as reducing
1145     // coherency traffic on the shared global list.
1146     m = Self->omFreeList;
1147     if (m != NULL) {
1148       Self->omFreeList = m->FreeNext;
1149       Self->omFreeCount--;
1150       guarantee(m->object() == NULL, "invariant");
1151       m->set_allocation_state(ObjectMonitor::New);
1152       m->FreeNext = Self->omInUseList;
1153       Self->omInUseList = m;
1154       Self->omInUseCount++;
1155       return m;
1156     }
1157 
1158     // 2: try to allocate from the global gFreeList
1159     // CONSIDER: use muxTry() instead of muxAcquire().
1160     // If the muxTry() fails then drop immediately into case 3.
1161     // If we're using thread-local free lists then try
1162     // to reprovision the caller's free list.
1163     if (gFreeList != NULL) {
1164       // Reprovision the thread's omFreeList.
1165       // Use bulk transfers to reduce the allocation rate and heat
1166       // on various locks.
1167       Thread::muxAcquire(&gListLock, "omAlloc(1)");
1168       for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL;) {
1169         gMonitorFreeCount--;
1170         ObjectMonitor * take = gFreeList;
1171         gFreeList = take->FreeNext;
1172         guarantee(take->object() == NULL, "invariant");
1173         if (AsyncDeflateIdleMonitors) {
1174           // Clear any values we allowed to linger during async deflation.
1175           take->_header = NULL;
1176           take->set_owner(NULL);
1177           take->_contentions = 0;
1178         }
1179         guarantee(!take->is_busy(), "invariant");
1180         take->Recycle();
1181         assert(take->is_free(), "invariant");
1182         omRelease(Self, take, false);
1183       }
1184       Thread::muxRelease(&gListLock);
1185       Self->omFreeProvision += 1 + (Self->omFreeProvision/2);
1186       if (Self->omFreeProvision > MAXPRIVATE) Self->omFreeProvision = MAXPRIVATE;
1187 
1188       const int mx = MonitorBound;
1189       if (mx > 0 && (gMonitorPopulation-gMonitorFreeCount) > mx) {
1190         // We can't safely induce a STW safepoint from omAlloc() as our thread
1191         // state may not be appropriate for such activities and callers may hold
1192         // naked oops, so instead we defer the action.
1193         InduceScavenge(Self, "omAlloc");
1194       }
1195       continue;
1196     }
1197 
1198     // 3: allocate a block of new ObjectMonitors
1199     // Both the local and global free lists are empty -- resort to malloc().
1200     // In the current implementation objectMonitors are TSM - immortal.
1201     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1202     // each ObjectMonitor to start at the beginning of a cache line,
1203     // so we use align_up().
1204     // A better solution would be to use C++ placement-new.
1205     // BEWARE: As it stands currently, we don't run the ctors!
1206     assert(_BLOCKSIZE > 1, "invariant");
1207     size_t neededsize = sizeof(PaddedEnd<ObjectMonitor>) * _BLOCKSIZE;
1208     PaddedEnd<ObjectMonitor> * temp;
1209     size_t aligned_size = neededsize + (DEFAULT_CACHE_LINE_SIZE - 1);
1210     void* real_malloc_addr = (void *)NEW_C_HEAP_ARRAY(char, aligned_size,
1211                                                       mtInternal);
1212     temp = (PaddedEnd<ObjectMonitor> *)
1213              align_up(real_malloc_addr, DEFAULT_CACHE_LINE_SIZE);
1214 
1215     // NOTE: (almost) no way to recover if allocation failed.
1216     // We might be able to induce a STW safepoint and scavenge enough
1217     // objectMonitors to permit progress.
1218     if (temp == NULL) {
1219       vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR,
1220                             "Allocate ObjectMonitors");
1221     }
1222     (void)memset((void *) temp, 0, neededsize);
1223 
1224     // Format the block.
1225     // initialize the linked list, each monitor points to its next
1226     // forming the single linked free list, the very first monitor
1227     // will points to next block, which forms the block list.
1228     // The trick of using the 1st element in the block as gBlockList
1229     // linkage should be reconsidered.  A better implementation would
1230     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1231 
1232     for (int i = 1; i < _BLOCKSIZE; i++) {
1233       temp[i].FreeNext = (ObjectMonitor *)&temp[i+1];
1234       assert(temp[i].is_free(), "invariant");
1235     }
1236 
1237     // terminate the last monitor as the end of list
1238     temp[_BLOCKSIZE - 1].FreeNext = NULL;
1239 
1240     // Element [0] is reserved for global list linkage
1241     temp[0].set_object(CHAINMARKER);
1242 
1243     // Consider carving out this thread's current request from the
1244     // block in hand.  This avoids some lock traffic and redundant
1245     // list activity.
1246 
1247     // Acquire the gListLock to manipulate gBlockList and gFreeList.
1248     // An Oyama-Taura-Yonezawa scheme might be more efficient.
1249     Thread::muxAcquire(&gListLock, "omAlloc(2)");
1250     gMonitorPopulation += _BLOCKSIZE-1;
1251     gMonitorFreeCount += _BLOCKSIZE-1;
1252 
1253     // Add the new block to the list of extant blocks (gBlockList).
1254     // The very first objectMonitor in a block is reserved and dedicated.
1255     // It serves as blocklist "next" linkage.
1256     temp[0].FreeNext = gBlockList;
1257     // There are lock-free uses of gBlockList so make sure that
1258     // the previous stores happen before we update gBlockList.
1259     OrderAccess::release_store(&gBlockList, temp);
1260 
1261     // Add the new string of objectMonitors to the global free list
1262     temp[_BLOCKSIZE - 1].FreeNext = gFreeList;
1263     gFreeList = temp + 1;
1264     Thread::muxRelease(&gListLock);
1265   }
1266 }
1267 
1268 // Place "m" on the caller's private per-thread omFreeList.
1269 // In practice there's no need to clamp or limit the number of
1270 // monitors on a thread's omFreeList as the only time we'll call
1271 // omRelease is to return a monitor to the free list after a CAS
1272 // attempt failed.  This doesn't allow unbounded #s of monitors to
1273 // accumulate on a thread's free list.
1274 //
1275 // Key constraint: all ObjectMonitors on a thread's free list and the global
1276 // free list must have their object field set to null. This prevents the
1277 // scavenger -- deflate_monitor_list() or deflate_monitor_list_using_JT()
1278 // -- from reclaiming them while we are trying to release them.
1279 
1280 void ObjectSynchronizer::omRelease(Thread * Self, ObjectMonitor * m,
1281                                    bool fromPerThreadAlloc) {
1282   guarantee(m->header() == NULL, "invariant");
1283   guarantee(m->object() == NULL, "invariant");
1284   guarantee(((m->is_busy()|m->_recursions) == 0), "freeing in-use monitor");
1285   m->set_allocation_state(ObjectMonitor::Free);
1286   // Remove from omInUseList
1287   if (fromPerThreadAlloc) {
1288     ObjectMonitor* cur_mid_in_use = NULL;
1289     bool extracted = false;
1290     for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; cur_mid_in_use = mid, mid = mid->FreeNext) {
1291       if (m == mid) {
1292         // extract from per-thread in-use list
1293         if (mid == Self->omInUseList) {
1294           Self->omInUseList = mid->FreeNext;
1295         } else if (cur_mid_in_use != NULL) {
1296           cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1297         }
1298         extracted = true;
1299         Self->omInUseCount--;
1300         break;
1301       }
1302     }
1303     assert(extracted, "Should have extracted from in-use list");
1304   }
1305 
1306   // FreeNext is used for both omInUseList and omFreeList, so clear old before setting new
1307   m->FreeNext = Self->omFreeList;
1308   guarantee(m->is_free(), "invariant");
1309   Self->omFreeList = m;
1310   Self->omFreeCount++;
1311 }
1312 
1313 // Return the monitors of a moribund thread's local free list to
1314 // the global free list.  Typically a thread calls omFlush() when
1315 // it's dying.  We could also consider having the VM thread steal
1316 // monitors from threads that have not run java code over a few
1317 // consecutive STW safepoints.  Relatedly, we might decay
1318 // omFreeProvision at STW safepoints.
1319 //
1320 // Also return the monitors of a moribund thread's omInUseList to
1321 // a global gOmInUseList under the global list lock so these
1322 // will continue to be scanned.
1323 //
1324 // We currently call omFlush() from Threads::remove() _before the thread
1325 // has been excised from the thread list and is no longer a mutator.
1326 // This means that omFlush() cannot run concurrently with a safepoint and
1327 // interleave with the deflate_idle_monitors scavenge operator. In particular,
1328 // this ensures that the thread's monitors are scanned by a GC safepoint,
1329 // either via Thread::oops_do() (if safepoint happens before omFlush()) or via
1330 // ObjectSynchronizer::oops_do() (if it happens after omFlush() and the thread's
1331 // monitors have been transferred to the global in-use list).
1332 //
1333 // With AsyncDeflateIdleMonitors, deflate_global_idle_monitors_using_JT()
1334 // and deflate_per_thread_idle_monitors_using_JT() (in another thread) can
1335 // run at the same time as omFlush() so we have to be careful.
1336 
1337 void ObjectSynchronizer::omFlush(Thread * Self) {
1338   ObjectMonitor * list = Self->omFreeList;  // Null-terminated SLL
1339   ObjectMonitor * tail = NULL;
1340   int tally = 0;
1341   if (list != NULL) {
1342     ObjectMonitor * s;
1343     // The thread is going away, the per-thread free monitors
1344     // are freed via set_owner(NULL)
1345     // Link them to tail, which will be linked into the global free list
1346     // gFreeList below, under the gListLock
1347     for (s = list; s != NULL; s = s->FreeNext) {
1348       tally++;
1349       tail = s;
1350       guarantee(s->object() == NULL, "invariant");
1351       guarantee(!s->is_busy(), "invariant");
1352       s->set_owner(NULL);   // redundant but good hygiene
1353     }
1354     guarantee(tail != NULL, "invariant");
1355     ADIM_guarantee(Self->omFreeCount == tally, "free-count off");
1356     Self->omFreeList = NULL;
1357     Self->omFreeCount = 0;
1358   }
1359 
1360   ObjectMonitor * inUseList = Self->omInUseList;
1361   ObjectMonitor * inUseTail = NULL;
1362   int inUseTally = 0;
1363   if (inUseList != NULL) {
1364     ObjectMonitor *cur_om;
1365     // The thread is going away, however the omInUseList inflated
1366     // monitors may still be in-use by other threads.
1367     // Link them to inUseTail, which will be linked into the global in-use list
1368     // gOmInUseList below, under the gListLock
1369     for (cur_om = inUseList; cur_om != NULL; cur_om = cur_om->FreeNext) {
1370       inUseTail = cur_om;
1371       inUseTally++;
1372       ADIM_guarantee(cur_om->is_active(), "invariant");
1373     }
1374     guarantee(inUseTail != NULL, "invariant");
1375     ADIM_guarantee(Self->omInUseCount == inUseTally, "in-use count off");
1376     Self->omInUseList = NULL;
1377     Self->omInUseCount = 0;
1378   }
1379 
1380   Thread::muxAcquire(&gListLock, "omFlush");
1381   if (tail != NULL) {
1382     tail->FreeNext = gFreeList;
1383     gFreeList = list;
1384     gMonitorFreeCount += tally;
1385   }
1386 
1387   if (inUseTail != NULL) {
1388     inUseTail->FreeNext = gOmInUseList;
1389     gOmInUseList = inUseList;
1390     gOmInUseCount += inUseTally;
1391   }
1392 
1393   Thread::muxRelease(&gListLock);
1394 
1395   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1396   LogStreamHandle(Info, monitorinflation) lsh_info;
1397   LogStream * ls = NULL;
1398   if (log_is_enabled(Debug, monitorinflation)) {
1399     ls = &lsh_debug;
1400   } else if ((tally != 0 || inUseTally != 0) &&
1401              log_is_enabled(Info, monitorinflation)) {
1402     ls = &lsh_info;
1403   }
1404   if (ls != NULL) {
1405     ls->print_cr("omFlush: jt=" INTPTR_FORMAT ", free_monitor_tally=%d"
1406                  ", in_use_monitor_tally=%d" ", omFreeProvision=%d",
1407                  p2i(Self), tally, inUseTally, Self->omFreeProvision);
1408   }
1409 }
1410 
1411 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1412                                        const oop obj,
1413                                        ObjectSynchronizer::InflateCause cause) {
1414   assert(event != NULL, "invariant");
1415   assert(event->should_commit(), "invariant");
1416   event->set_monitorClass(obj->klass());
1417   event->set_address((uintptr_t)(void*)obj);
1418   event->set_cause((u1)cause);
1419   event->commit();
1420 }
1421 
1422 // Fast path code shared by multiple functions
1423 void ObjectSynchronizer::inflate_helper(ObjectMonitorHandle * omh_p, oop obj) {
1424   while (true) {
1425     markOop mark = obj->mark();
1426     if (mark->has_monitor()) {
1427       if (!omh_p->save_om_ptr(obj, mark)) {
1428         // Lost a race with async deflation so try again.
1429         assert(AsyncDeflateIdleMonitors, "sanity check");
1430         continue;
1431       }
1432       ObjectMonitor * monitor = omh_p->om_ptr();
1433       assert(ObjectSynchronizer::verify_objmon_isinpool(monitor), "monitor is invalid");
1434       markOop dmw = monitor->header();
1435       assert(dmw->is_neutral(), "sanity check: header=" INTPTR_FORMAT, p2i(dmw));
1436       return;
1437     }
1438     inflate(omh_p, Thread::current(), obj, inflate_cause_vm_internal);
1439     return;
1440   }
1441 }
1442 
1443 void ObjectSynchronizer::inflate(ObjectMonitorHandle * omh_p, Thread * Self,
1444                                  oop object, const InflateCause cause) {
1445   // Inflate mutates the heap ...
1446   // Relaxing assertion for bug 6320749.
1447   assert(Universe::verify_in_progress() ||
1448          !SafepointSynchronize::is_at_safepoint(), "invariant");
1449 
1450   EventJavaMonitorInflate event;
1451 
1452   for (;;) {
1453     const markOop mark = object->mark();
1454     assert(!mark->has_bias_pattern(), "invariant");
1455 
1456     // The mark can be in one of the following states:
1457     // *  Inflated     - just return
1458     // *  Stack-locked - coerce it to inflated
1459     // *  INFLATING    - busy wait for conversion to complete
1460     // *  Neutral      - aggressively inflate the object.
1461     // *  BIASED       - Illegal.  We should never see this
1462 
1463     // CASE: inflated
1464     if (mark->has_monitor()) {
1465       if (!omh_p->save_om_ptr(object, mark)) {
1466         // Lost a race with async deflation so try again.
1467         assert(AsyncDeflateIdleMonitors, "sanity check");
1468         continue;
1469       }
1470       ObjectMonitor * inf = omh_p->om_ptr();
1471       markOop dmw = inf->header();
1472       assert(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1473       assert(oopDesc::equals((oop) inf->object(), object), "invariant");
1474       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1475       return;
1476     }
1477 
1478     // CASE: inflation in progress - inflating over a stack-lock.
1479     // Some other thread is converting from stack-locked to inflated.
1480     // Only that thread can complete inflation -- other threads must wait.
1481     // The INFLATING value is transient.
1482     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1483     // We could always eliminate polling by parking the thread on some auxiliary list.
1484     if (mark == markOopDesc::INFLATING()) {
1485       ReadStableMark(object);
1486       continue;
1487     }
1488 
1489     // CASE: stack-locked
1490     // Could be stack-locked either by this thread or by some other thread.
1491     //
1492     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1493     // to install INFLATING into the mark word.  We originally installed INFLATING,
1494     // allocated the objectmonitor, and then finally STed the address of the
1495     // objectmonitor into the mark.  This was correct, but artificially lengthened
1496     // the interval in which INFLATED appeared in the mark, thus increasing
1497     // the odds of inflation contention.
1498     //
1499     // We now use per-thread private objectmonitor free lists.
1500     // These list are reprovisioned from the global free list outside the
1501     // critical INFLATING...ST interval.  A thread can transfer
1502     // multiple objectmonitors en-mass from the global free list to its local free list.
1503     // This reduces coherency traffic and lock contention on the global free list.
1504     // Using such local free lists, it doesn't matter if the omAlloc() call appears
1505     // before or after the CAS(INFLATING) operation.
1506     // See the comments in omAlloc().
1507 
1508     LogStreamHandle(Trace, monitorinflation) lsh;
1509 
1510     if (mark->has_locker()) {
1511       ObjectMonitor * m;
1512       if (!AsyncDeflateIdleMonitors || cause == inflate_cause_vm_internal) {
1513         // If !AsyncDeflateIdleMonitors or if an internal inflation, then
1514         // we won't stop for a potential safepoint in omAlloc.
1515         m = omAlloc(Self, cause);
1516       } else {
1517         // If AsyncDeflateIdleMonitors and not an internal inflation, then
1518         // we may stop for a safepoint in omAlloc() so protect object.
1519         Handle h_obj(Self, object);
1520         m = omAlloc(Self, cause);
1521         object = h_obj();  // Refresh object.
1522       }
1523       // Optimistically prepare the objectmonitor - anticipate successful CAS
1524       // We do this before the CAS in order to minimize the length of time
1525       // in which INFLATING appears in the mark.
1526       m->Recycle();
1527       m->_Responsible  = NULL;
1528       m->_recursions   = 0;
1529       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1530 
1531       markOop cmp = object->cas_set_mark(markOopDesc::INFLATING(), mark);
1532       if (cmp != mark) {
1533         omRelease(Self, m, true);
1534         continue;       // Interference -- just retry
1535       }
1536 
1537       // We've successfully installed INFLATING (0) into the mark-word.
1538       // This is the only case where 0 will appear in a mark-word.
1539       // Only the singular thread that successfully swings the mark-word
1540       // to 0 can perform (or more precisely, complete) inflation.
1541       //
1542       // Why do we CAS a 0 into the mark-word instead of just CASing the
1543       // mark-word from the stack-locked value directly to the new inflated state?
1544       // Consider what happens when a thread unlocks a stack-locked object.
1545       // It attempts to use CAS to swing the displaced header value from the
1546       // on-stack basiclock back into the object header.  Recall also that the
1547       // header value (hash code, etc) can reside in (a) the object header, or
1548       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1549       // header in an objectMonitor.  The inflate() routine must copy the header
1550       // value from the basiclock on the owner's stack to the objectMonitor, all
1551       // the while preserving the hashCode stability invariants.  If the owner
1552       // decides to release the lock while the value is 0, the unlock will fail
1553       // and control will eventually pass from slow_exit() to inflate.  The owner
1554       // will then spin, waiting for the 0 value to disappear.   Put another way,
1555       // the 0 causes the owner to stall if the owner happens to try to
1556       // drop the lock (restoring the header from the basiclock to the object)
1557       // while inflation is in-progress.  This protocol avoids races that might
1558       // would otherwise permit hashCode values to change or "flicker" for an object.
1559       // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1560       // 0 serves as a "BUSY" inflate-in-progress indicator.
1561 
1562 
1563       // fetch the displaced mark from the owner's stack.
1564       // The owner can't die or unwind past the lock while our INFLATING
1565       // object is in the mark.  Furthermore the owner can't complete
1566       // an unlock on the object, either.
1567       markOop dmw = mark->displaced_mark_helper();
1568       // Catch if the object's header is not neutral (not locked and
1569       // not marked is what we care about here).
1570       ADIM_guarantee(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1571 
1572       // Setup monitor fields to proper values -- prepare the monitor
1573       m->set_header(dmw);
1574 
1575       // Optimization: if the mark->locker stack address is associated
1576       // with this thread we could simply set m->_owner = Self.
1577       // Note that a thread can inflate an object
1578       // that it has stack-locked -- as might happen in wait() -- directly
1579       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1580       m->set_owner(mark->locker());
1581       m->set_object(object);
1582       // TODO-FIXME: assert BasicLock->dhw != 0.
1583 
1584       omh_p->set_om_ptr(m);
1585       assert(m->is_new(), "freshly allocated monitor must be new");
1586       m->set_allocation_state(ObjectMonitor::Old);
1587 
1588       // Must preserve store ordering. The monitor state must
1589       // be stable at the time of publishing the monitor address.
1590       guarantee(object->mark() == markOopDesc::INFLATING(), "invariant");
1591       object->release_set_mark(markOopDesc::encode(m));
1592 
1593       // Hopefully the performance counters are allocated on distinct cache lines
1594       // to avoid false sharing on MP systems ...
1595       OM_PERFDATA_OP(Inflations, inc());
1596       if (log_is_enabled(Trace, monitorinflation)) {
1597         ResourceMark rm(Self);
1598         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1599                      INTPTR_FORMAT ", type='%s'", p2i(object),
1600                      p2i(object->mark()), object->klass()->external_name());
1601       }
1602       if (event.should_commit()) {
1603         post_monitor_inflate_event(&event, object, cause);
1604       }
1605       ADIM_guarantee(!m->is_free(), "inflated monitor to be returned cannot be free");
1606       return;
1607     }
1608 
1609     // CASE: neutral
1610     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1611     // If we know we're inflating for entry it's better to inflate by swinging a
1612     // pre-locked objectMonitor pointer into the object header.   A successful
1613     // CAS inflates the object *and* confers ownership to the inflating thread.
1614     // In the current implementation we use a 2-step mechanism where we CAS()
1615     // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1616     // An inflateTry() method that we could call from fast_enter() and slow_enter()
1617     // would be useful.
1618 
1619     // Catch if the object's header is not neutral (not locked and
1620     // not marked is what we care about here).
1621     ADIM_guarantee(mark->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(mark));
1622     ObjectMonitor * m;
1623     if (!AsyncDeflateIdleMonitors || cause == inflate_cause_vm_internal) {
1624       // If !AsyncDeflateIdleMonitors or if an internal inflation, then
1625       // we won't stop for a potential safepoint in omAlloc.
1626       m = omAlloc(Self, cause);
1627     } else {
1628       // If AsyncDeflateIdleMonitors and not an internal inflation, then
1629       // we may stop for a safepoint in omAlloc() so protect object.
1630       Handle h_obj(Self, object);
1631       m = omAlloc(Self, cause);
1632       object = h_obj();  // Refresh object.
1633     }
1634     // prepare m for installation - set monitor to initial state
1635     m->Recycle();
1636     m->set_header(mark);
1637     m->set_owner(NULL);
1638     m->set_object(object);
1639     m->_recursions   = 0;
1640     m->_Responsible  = NULL;
1641     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1642 
1643     omh_p->set_om_ptr(m);
1644     assert(m->is_new(), "freshly allocated monitor must be new");
1645     m->set_allocation_state(ObjectMonitor::Old);
1646 
1647     if (object->cas_set_mark(markOopDesc::encode(m), mark) != mark) {
1648       m->set_header(NULL);
1649       m->set_object(NULL);
1650       m->Recycle();
1651       omh_p->set_om_ptr(NULL);
1652       // omRelease() will reset the allocation state
1653       omRelease(Self, m, true);
1654       m = NULL;
1655       continue;
1656       // interference - the markword changed - just retry.
1657       // The state-transitions are one-way, so there's no chance of
1658       // live-lock -- "Inflated" is an absorbing state.
1659     }
1660 
1661     // Hopefully the performance counters are allocated on distinct
1662     // cache lines to avoid false sharing on MP systems ...
1663     OM_PERFDATA_OP(Inflations, inc());
1664     if (log_is_enabled(Trace, monitorinflation)) {
1665       ResourceMark rm(Self);
1666       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
1667                    INTPTR_FORMAT ", type='%s'", p2i(object),
1668                    p2i(object->mark()), object->klass()->external_name());
1669     }
1670     if (event.should_commit()) {
1671       post_monitor_inflate_event(&event, object, cause);
1672     }
1673     ADIM_guarantee(!m->is_free(), "inflated monitor to be returned cannot be free");
1674     return;
1675   }
1676 }
1677 
1678 
1679 // We maintain a list of in-use monitors for each thread.
1680 //
1681 // deflate_thread_local_monitors() scans a single thread's in-use list, while
1682 // deflate_idle_monitors() scans only a global list of in-use monitors which
1683 // is populated only as a thread dies (see omFlush()).
1684 //
1685 // These operations are called at all safepoints, immediately after mutators
1686 // are stopped, but before any objects have moved. Collectively they traverse
1687 // the population of in-use monitors, deflating where possible. The scavenged
1688 // monitors are returned to the global monitor free list.
1689 //
1690 // Beware that we scavenge at *every* stop-the-world point. Having a large
1691 // number of monitors in-use could negatively impact performance. We also want
1692 // to minimize the total # of monitors in circulation, as they incur a small
1693 // footprint penalty.
1694 //
1695 // Perversely, the heap size -- and thus the STW safepoint rate --
1696 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1697 // which in turn can mean large(r) numbers of ObjectMonitors in circulation.
1698 // This is an unfortunate aspect of this design.
1699 
1700 void ObjectSynchronizer::do_safepoint_work(DeflateMonitorCounters* _counters) {
1701   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1702 
1703   // The per-thread in-use lists are handled in
1704   // ParallelSPCleanupThreadClosure::do_thread().
1705 
1706   if (!AsyncDeflateIdleMonitors || is_cleanup_requested()) {
1707     // Use the older mechanism for the global in-use list or
1708     // if a special cleanup has been requested.
1709     ObjectSynchronizer::deflate_idle_monitors(_counters);
1710     return;
1711   }
1712 
1713   log_debug(monitorinflation)("requesting deflation of idle monitors.");
1714   // Request deflation of global idle monitors by the ServiceThread:
1715   _gOmShouldDeflateIdleMonitors = true;
1716   MutexLockerEx ml(Service_lock, Mutex::_no_safepoint_check_flag);
1717   Service_lock->notify_all();
1718 }
1719 
1720 // Deflate a single monitor if not in-use
1721 // Return true if deflated, false if in-use
1722 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1723                                          ObjectMonitor** freeHeadp,
1724                                          ObjectMonitor** freeTailp) {
1725   bool deflated;
1726   // Normal case ... The monitor is associated with obj.
1727   const markOop mark = obj->mark();
1728   guarantee(mark == markOopDesc::encode(mid), "should match: mark="
1729             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, p2i(mark),
1730             p2i(markOopDesc::encode(mid)));
1731   // Make sure that mark->monitor() and markOopDesc::encode() agree:
1732   guarantee(mark->monitor() == mid, "should match: monitor()=" INTPTR_FORMAT
1733             ", mid=" INTPTR_FORMAT, p2i(mark->monitor()), p2i(mid));
1734   const markOop dmw = mid->header();
1735   guarantee(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1736 
1737   if (mid->is_busy()) {
1738     deflated = false;
1739   } else {
1740     // Deflate the monitor if it is no longer being used
1741     // It's idle - scavenge and return to the global free list
1742     // plain old deflation ...
1743     if (log_is_enabled(Trace, monitorinflation)) {
1744       ResourceMark rm;
1745       log_trace(monitorinflation)("deflate_monitor: "
1746                                   "object=" INTPTR_FORMAT ", mark="
1747                                   INTPTR_FORMAT ", type='%s'", p2i(obj),
1748                                   p2i(mark), obj->klass()->external_name());
1749     }
1750 
1751     // Restore the header back to obj
1752     obj->release_set_mark(dmw);
1753     mid->clear();
1754 
1755     assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT,
1756            p2i(mid->object()));
1757     assert(mid->is_free(), "invariant");
1758 
1759     // Move the object to the working free list defined by freeHeadp, freeTailp
1760     if (*freeHeadp == NULL) *freeHeadp = mid;
1761     if (*freeTailp != NULL) {
1762       ObjectMonitor * prevtail = *freeTailp;
1763       assert(prevtail->FreeNext == NULL, "cleaned up deflated?");
1764       prevtail->FreeNext = mid;
1765     }
1766     *freeTailp = mid;
1767     deflated = true;
1768   }
1769   return deflated;
1770 }
1771 
1772 // Deflate the specified ObjectMonitor if not in-use using a JavaThread.
1773 // Returns true if it was deflated and false otherwise.
1774 //
1775 // The async deflation protocol sets owner to DEFLATER_MARKER and
1776 // makes contentions negative as signals to contending threads that
1777 // an async deflation is in progress. There are a number of checks
1778 // as part of the protocol to make sure that the calling thread has
1779 // not lost the race to a contending thread.
1780 //
1781 // The ObjectMonitor has been successfully async deflated when:
1782 // (owner == DEFLATER_MARKER && contentions < 0). Contending threads
1783 // that see those values know to retry their operation.
1784 //
1785 bool ObjectSynchronizer::deflate_monitor_using_JT(ObjectMonitor* mid,
1786                                                   ObjectMonitor** freeHeadp,
1787                                                   ObjectMonitor** freeTailp) {
1788   assert(AsyncDeflateIdleMonitors, "sanity check");
1789   assert(Thread::current()->is_Java_thread(), "precondition");
1790   // A newly allocated ObjectMonitor should not be seen here so we
1791   // avoid an endless inflate/deflate cycle.
1792   assert(mid->is_old(), "must be old: allocation_state=%d",
1793          (int) mid->allocation_state());
1794 
1795   if (mid->is_busy() || mid->ref_count() != 0) {
1796     // Easy checks are first - the ObjectMonitor is busy or ObjectMonitor*
1797     // is in use so no deflation.
1798     return false;
1799   }
1800 
1801   if (Atomic::replace_if_null(DEFLATER_MARKER, &(mid->_owner))) {
1802     // ObjectMonitor is not owned by another thread. Our setting
1803     // owner to DEFLATER_MARKER forces any contending thread through
1804     // the slow path. This is just the first part of the async
1805     // deflation dance.
1806 
1807     if (mid->_waiters != 0 || mid->ref_count() != 0) {
1808       // Another thread has raced to enter the ObjectMonitor after
1809       // mid->is_busy() above and has already waited on it which
1810       // makes it busy so no deflation. Or the ObjectMonitor* is
1811       // in use for some other operation like inflate(). Restore
1812       // owner to NULL if it is still DEFLATER_MARKER.
1813       Atomic::cmpxchg((void*)NULL, &mid->_owner, DEFLATER_MARKER);
1814       return false;
1815     }
1816 
1817     if (Atomic::cmpxchg(-max_jint, &mid->_contentions, (jint)0) == 0) {
1818       // Make contentions negative to force racing threads to retry.
1819       // This is the second part of the async deflation dance.
1820 
1821       if (mid->_owner == DEFLATER_MARKER && mid->ref_count() == 0) {
1822         // If owner is still DEFLATER_MARKER, then we have successfully
1823         // signaled any racing threads to retry. If it is not, then we
1824         // have lost the race to an entering thread and the ObjectMonitor
1825         // is now busy. If the ObjectMonitor* is in use, then we have
1826         // lost that race. This is the third and final part of the async
1827         // deflation dance.
1828         // Note: This owner check solves the ABA problem with contentions
1829         // where another thread acquired the ObjectMonitor, finished
1830         // using it and restored the contentions to zero.
1831         // Note: This ref_count check solves the race with save_om_ptr()
1832         // where its ref_count increment happens after the first ref_count
1833         // check in this function and before contentions is made negative.
1834 
1835         // Sanity checks for the races:
1836         guarantee(mid->_waiters == 0, "must be 0: waiters=%d", mid->_waiters);
1837         guarantee(mid->_cxq == NULL, "must be no contending threads: cxq="
1838                   INTPTR_FORMAT, p2i(mid->_cxq));
1839         guarantee(mid->_EntryList == NULL,
1840                   "must be no entering threads: EntryList=" INTPTR_FORMAT,
1841                   p2i(mid->_EntryList));
1842 
1843         const oop obj = (oop) mid->object();
1844         if (log_is_enabled(Trace, monitorinflation)) {
1845           ResourceMark rm;
1846           log_trace(monitorinflation)("deflate_monitor_using_JT: "
1847                                       "object=" INTPTR_FORMAT ", mark="
1848                                       INTPTR_FORMAT ", type='%s'",
1849                                       p2i(obj), p2i(obj->mark()),
1850                                       obj->klass()->external_name());
1851         }
1852 
1853         // Install the old mark word if nobody else has already done it.
1854         mid->install_displaced_markword_in_object(obj);
1855         mid->clear_using_JT();
1856 
1857         assert(mid->object() == NULL, "must be NULL: object=" INTPTR_FORMAT,
1858                p2i(mid->object()));
1859         assert(mid->is_free(), "must be free: allocation_state=%d",
1860                (int) mid->allocation_state());
1861 
1862         // Move the deflated ObjectMonitor to the working free list
1863         // defined by freeHeadp and freeTailp.
1864         if (*freeHeadp == NULL) {
1865           // First one on the list.
1866           *freeHeadp = mid;
1867         }
1868         if (*freeTailp != NULL) {
1869           // We append to the list so the caller can use mid->FreeNext
1870           // to fix the linkages in its context.
1871           ObjectMonitor * prevtail = *freeTailp;
1872           // Should have been cleaned up by the caller:
1873           assert(prevtail->FreeNext == NULL, "must be NULL: FreeNext="
1874                  INTPTR_FORMAT, p2i(prevtail->FreeNext));
1875           prevtail->FreeNext = mid;
1876         }
1877         *freeTailp = mid;
1878 
1879         // At this point, mid->FreeNext still refers to its current
1880         // value and another ObjectMonitor's FreeNext field still
1881         // refers to this ObjectMonitor. Those linkages have to be
1882         // cleaned up by the caller who has the complete context.
1883 
1884         // We leave owner == DEFLATER_MARKER and contentions < 0
1885         // to force any racing threads to retry.
1886         return true;  // Success, ObjectMonitor has been deflated.
1887       }
1888 
1889       // The owner was changed from DEFLATER_MARKER or ObjectMonitor*
1890       // is in use so we lost the race since the ObjectMonitor is now
1891       // busy.
1892 
1893       // Restore owner to NULL if it is still DEFLATER_MARKER:
1894       Atomic::cmpxchg((void*)NULL, &mid->_owner, DEFLATER_MARKER);
1895 
1896       // Add back max_jint to restore the contentions field to its
1897       // proper value (which may not be what we saw above):
1898       Atomic::add(max_jint, &mid->_contentions);
1899 
1900       assert(mid->_contentions >= 0, "must not be negative: contentions=%d",
1901              mid->_contentions);
1902     }
1903 
1904     // The contentions was no longer 0 so we lost the race since the
1905     // ObjectMonitor is now busy.
1906     assert(mid->_owner != DEFLATER_MARKER, "must not be DEFLATER_MARKER");
1907   }
1908 
1909   // The owner field is no longer NULL so we lost the race since the
1910   // ObjectMonitor is now busy.
1911   return false;
1912 }
1913 
1914 // Walk a given monitor list, and deflate idle monitors
1915 // The given list could be a per-thread list or a global list
1916 // Caller acquires gListLock as needed.
1917 //
1918 // In the case of parallel processing of thread local monitor lists,
1919 // work is done by Threads::parallel_threads_do() which ensures that
1920 // each Java thread is processed by exactly one worker thread, and
1921 // thus avoid conflicts that would arise when worker threads would
1922 // process the same monitor lists concurrently.
1923 //
1924 // See also ParallelSPCleanupTask and
1925 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
1926 // Threads::parallel_java_threads_do() in thread.cpp.
1927 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** listHeadp,
1928                                              ObjectMonitor** freeHeadp,
1929                                              ObjectMonitor** freeTailp) {
1930   ObjectMonitor* mid;
1931   ObjectMonitor* next;
1932   ObjectMonitor* cur_mid_in_use = NULL;
1933   int deflated_count = 0;
1934 
1935   for (mid = *listHeadp; mid != NULL;) {
1936     oop obj = (oop) mid->object();
1937     if (obj != NULL && deflate_monitor(mid, obj, freeHeadp, freeTailp)) {
1938       // if deflate_monitor succeeded,
1939       // extract from per-thread in-use list
1940       if (mid == *listHeadp) {
1941         *listHeadp = mid->FreeNext;
1942       } else if (cur_mid_in_use != NULL) {
1943         cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1944       }
1945       next = mid->FreeNext;
1946       mid->FreeNext = NULL;  // This mid is current tail in the freeHeadp list
1947       mid = next;
1948       deflated_count++;
1949     } else {
1950       cur_mid_in_use = mid;
1951       mid = mid->FreeNext;
1952     }
1953   }
1954   return deflated_count;
1955 }
1956 
1957 // Walk a given ObjectMonitor list and deflate idle ObjectMonitors using
1958 // a JavaThread. Returns the number of deflated ObjectMonitors. The given
1959 // list could be a per-thread in-use list or the global in-use list.
1960 // Caller acquires gListLock as appropriate. If a safepoint has started,
1961 // then we save state via savedMidInUsep and return to the caller to
1962 // honor the safepoint.
1963 //
1964 int ObjectSynchronizer::deflate_monitor_list_using_JT(ObjectMonitor** listHeadp,
1965                                                       ObjectMonitor** freeHeadp,
1966                                                       ObjectMonitor** freeTailp,
1967                                                       ObjectMonitor** savedMidInUsep) {
1968   assert(AsyncDeflateIdleMonitors, "sanity check");
1969   assert(Thread::current()->is_Java_thread(), "precondition");
1970 
1971   ObjectMonitor* mid;
1972   ObjectMonitor* next;
1973   ObjectMonitor* cur_mid_in_use = NULL;
1974   int deflated_count = 0;
1975 
1976   if (*savedMidInUsep == NULL) {
1977     // No saved state so start at the beginning.
1978     mid = *listHeadp;
1979   } else {
1980     // We're restarting after a safepoint so restore the necessary state
1981     // before we resume.
1982     cur_mid_in_use = *savedMidInUsep;
1983     mid = cur_mid_in_use->FreeNext;
1984   }
1985   while (mid != NULL) {
1986     // Only try to deflate if there is an associated Java object and if
1987     // mid is old (is not newly allocated and is not newly freed).
1988     if (mid->object() != NULL && mid->is_old() &&
1989         deflate_monitor_using_JT(mid, freeHeadp, freeTailp)) {
1990       // Deflation succeeded so update the in-use list.
1991       if (mid == *listHeadp) {
1992         *listHeadp = mid->FreeNext;
1993       } else if (cur_mid_in_use != NULL) {
1994         // Maintain the current in-use list.
1995         cur_mid_in_use->FreeNext = mid->FreeNext;
1996       }
1997       next = mid->FreeNext;
1998       mid->FreeNext = NULL;
1999       // At this point mid is disconnected from the in-use list
2000       // and is the current tail in the freeHeadp list.
2001       mid = next;
2002       deflated_count++;
2003     } else {
2004       // mid is considered in-use if it does not have an associated
2005       // Java object or mid is not old or deflation did not succeed.
2006       // A mid->is_new() node can be seen here when it is freshly
2007       // returned by omAlloc() (and skips the deflation code path).
2008       // A mid->is_old() node can be seen here when deflation failed.
2009       // A mid->is_free() node can be seen here when a fresh node from
2010       // omAlloc() is released by omRelease() due to losing the race
2011       // in inflate().
2012 
2013       cur_mid_in_use = mid;
2014       mid = mid->FreeNext;
2015 
2016       if (SafepointSynchronize::is_synchronizing() &&
2017           cur_mid_in_use != *listHeadp && cur_mid_in_use->is_old()) {
2018         // If a safepoint has started and cur_mid_in_use is not the list
2019         // head and is old, then it is safe to use as saved state. Return
2020         // to the caller so gListLock can be dropped as appropriate
2021         // before blocking.
2022         *savedMidInUsep = cur_mid_in_use;
2023         return deflated_count;
2024       }
2025     }
2026   }
2027   // We finished the list without a safepoint starting so there's
2028   // no need to save state.
2029   *savedMidInUsep = NULL;
2030   return deflated_count;
2031 }
2032 
2033 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2034   counters->nInuse = 0;              // currently associated with objects
2035   counters->nInCirculation = 0;      // extant
2036   counters->nScavenged = 0;          // reclaimed (global and per-thread)
2037   counters->perThreadScavenged = 0;  // per-thread scavenge total
2038   counters->perThreadTimes = 0.0;    // per-thread scavenge times
2039 }
2040 
2041 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
2042   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2043 
2044   if (AsyncDeflateIdleMonitors) {
2045     // Nothing to do when global idle ObjectMonitors are deflated using
2046     // a JavaThread unless a special cleanup has been requested.
2047     if (!is_cleanup_requested()) {
2048       return;
2049     }
2050   }
2051 
2052   bool deflated = false;
2053 
2054   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
2055   ObjectMonitor * freeTailp = NULL;
2056   elapsedTimer timer;
2057 
2058   if (log_is_enabled(Info, monitorinflation)) {
2059     timer.start();
2060   }
2061 
2062   // Prevent omFlush from changing mids in Thread dtor's during deflation
2063   // And in case the vm thread is acquiring a lock during a safepoint
2064   // See e.g. 6320749
2065   Thread::muxAcquire(&gListLock, "deflate_idle_monitors");
2066 
2067   // Note: the thread-local monitors lists get deflated in
2068   // a separate pass. See deflate_thread_local_monitors().
2069 
2070   // For moribund threads, scan gOmInUseList
2071   int deflated_count = 0;
2072   if (gOmInUseList) {
2073     counters->nInCirculation += gOmInUseCount;
2074     deflated_count = deflate_monitor_list((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp);
2075     gOmInUseCount -= deflated_count;
2076     counters->nScavenged += deflated_count;
2077     counters->nInuse += gOmInUseCount;
2078   }
2079 
2080   // Move the scavenged monitors back to the global free list.
2081   if (freeHeadp != NULL) {
2082     guarantee(freeTailp != NULL && counters->nScavenged > 0, "invariant");
2083     assert(freeTailp->FreeNext == NULL, "invariant");
2084     // constant-time list splice - prepend scavenged segment to gFreeList
2085     freeTailp->FreeNext = gFreeList;
2086     gFreeList = freeHeadp;
2087   }
2088   Thread::muxRelease(&gListLock);
2089   timer.stop();
2090 
2091   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2092   LogStreamHandle(Info, monitorinflation) lsh_info;
2093   LogStream * ls = NULL;
2094   if (log_is_enabled(Debug, monitorinflation)) {
2095     ls = &lsh_debug;
2096   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2097     ls = &lsh_info;
2098   }
2099   if (ls != NULL) {
2100     ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2101   }
2102 }
2103 
2104 // Deflate global idle ObjectMonitors using a JavaThread.
2105 //
2106 void ObjectSynchronizer::deflate_global_idle_monitors_using_JT() {
2107   assert(AsyncDeflateIdleMonitors, "sanity check");
2108   assert(Thread::current()->is_Java_thread(), "precondition");
2109   JavaThread * self = JavaThread::current();
2110 
2111   _gOmShouldDeflateIdleMonitors = false;
2112 
2113   deflate_common_idle_monitors_using_JT(true /* is_global */, self);
2114 }
2115 
2116 // Deflate per-thread idle ObjectMonitors using a JavaThread.
2117 //
2118 void ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT() {
2119   assert(AsyncDeflateIdleMonitors, "sanity check");
2120   assert(Thread::current()->is_Java_thread(), "precondition");
2121   JavaThread * self = JavaThread::current();
2122 
2123   self->omShouldDeflateIdleMonitors = false;
2124 
2125   deflate_common_idle_monitors_using_JT(false /* !is_global */, self);
2126 }
2127 
2128 // Deflate global or per-thread idle ObjectMonitors using a JavaThread.
2129 //
2130 void ObjectSynchronizer::deflate_common_idle_monitors_using_JT(bool is_global, JavaThread * self) {
2131   int deflated_count = 0;
2132   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged ObjectMonitors
2133   ObjectMonitor * freeTailp = NULL;
2134   ObjectMonitor * savedMidInUsep = NULL;
2135   elapsedTimer timer;
2136 
2137   if (log_is_enabled(Info, monitorinflation)) {
2138     timer.start();
2139   }
2140 
2141   if (is_global) {
2142     Thread::muxAcquire(&gListLock, "deflate_global_idle_monitors_using_JT(1)");
2143     OM_PERFDATA_OP(MonExtant, set_value(gOmInUseCount));
2144   } else {
2145     OM_PERFDATA_OP(MonExtant, inc(self->omInUseCount));
2146   }
2147 
2148   do {
2149     int local_deflated_count;
2150     if (is_global) {
2151       local_deflated_count = deflate_monitor_list_using_JT((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp, &savedMidInUsep);
2152       gOmInUseCount -= local_deflated_count;
2153     } else {
2154       local_deflated_count = deflate_monitor_list_using_JT(self->omInUseList_addr(), &freeHeadp, &freeTailp, &savedMidInUsep);
2155       self->omInUseCount -= local_deflated_count;
2156     }
2157     deflated_count += local_deflated_count;
2158 
2159     if (freeHeadp != NULL) {
2160       // Move the scavenged ObjectMonitors to the global free list.
2161       guarantee(freeTailp != NULL && local_deflated_count > 0, "freeTailp=" INTPTR_FORMAT ", local_deflated_count=%d", p2i(freeTailp), local_deflated_count);
2162       assert(freeTailp->FreeNext == NULL, "invariant");
2163 
2164       if (!is_global) {
2165         Thread::muxAcquire(&gListLock, "deflate_per_thread_idle_monitors_using_JT(2)");
2166       }
2167       // Constant-time list splice - prepend scavenged segment to gFreeList.
2168       freeTailp->FreeNext = gFreeList;
2169       gFreeList = freeHeadp;
2170 
2171       gMonitorFreeCount += local_deflated_count;
2172       OM_PERFDATA_OP(Deflations, inc(local_deflated_count));
2173       if (!is_global) {
2174         Thread::muxRelease(&gListLock);
2175       }
2176     }
2177 
2178     if (savedMidInUsep != NULL) {
2179       // deflate_monitor_list_using_JT() detected a safepoint starting.
2180       if (is_global) {
2181         Thread::muxRelease(&gListLock);
2182       }
2183       timer.stop();
2184       {
2185         if (is_global) {
2186           log_debug(monitorinflation)("pausing deflation of global idle monitors for a safepoint.");
2187         } else {
2188           log_debug(monitorinflation)("jt=" INTPTR_FORMAT ": pausing deflation of per-thread idle monitors for a safepoint.", p2i(self));
2189         }
2190         assert(SafepointSynchronize::is_synchronizing(), "sanity check");
2191         ThreadBlockInVM blocker(self);
2192       }
2193       // Prepare for another loop after the safepoint.
2194       freeHeadp = NULL;
2195       freeTailp = NULL;
2196       if (log_is_enabled(Info, monitorinflation)) {
2197         timer.start();
2198       }
2199       if (is_global) {
2200         Thread::muxAcquire(&gListLock, "deflate_global_idle_monitors_using_JT(3)");
2201       }
2202     }
2203   } while (savedMidInUsep != NULL);
2204   if (is_global) {
2205     Thread::muxRelease(&gListLock);
2206   }
2207   timer.stop();
2208 
2209   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2210   LogStreamHandle(Info, monitorinflation) lsh_info;
2211   LogStream * ls = NULL;
2212   if (log_is_enabled(Debug, monitorinflation)) {
2213     ls = &lsh_debug;
2214   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2215     ls = &lsh_info;
2216   }
2217   if (ls != NULL) {
2218     if (is_global) {
2219       ls->print_cr("async-deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2220     } else {
2221       ls->print_cr("jt=" INTPTR_FORMAT ": async-deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(self), timer.seconds(), deflated_count);
2222     }
2223   }
2224 }
2225 
2226 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2227   // Report the cumulative time for deflating each thread's idle
2228   // monitors. Note: if the work is split among more than one
2229   // worker thread, then the reported time will likely be more
2230   // than a beginning to end measurement of the phase.
2231   // Note: AsyncDeflateIdleMonitors only deflates per-thread idle
2232   // monitors at a safepoint when a special cleanup has been requested.
2233   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d", counters->perThreadTimes, counters->perThreadScavenged);
2234 
2235   bool needs_special_cleanup = is_cleanup_requested();
2236   if (!AsyncDeflateIdleMonitors || needs_special_cleanup) {
2237     // AsyncDeflateIdleMonitors does not use these counters unless
2238     // there is a special cleanup request.
2239 
2240     gMonitorFreeCount += counters->nScavenged;
2241 
2242     OM_PERFDATA_OP(Deflations, inc(counters->nScavenged));
2243     OM_PERFDATA_OP(MonExtant, set_value(counters->nInCirculation));
2244   }
2245 
2246   if (log_is_enabled(Debug, monitorinflation)) {
2247     // exit_globals()'s call to audit_and_print_stats() is done
2248     // at the Info level.
2249     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2250   } else if (log_is_enabled(Info, monitorinflation)) {
2251     Thread::muxAcquire(&gListLock, "finish_deflate_idle_monitors");
2252     log_info(monitorinflation)("gMonitorPopulation=%d, gOmInUseCount=%d, "
2253                                "gMonitorFreeCount=%d", gMonitorPopulation,
2254                                gOmInUseCount, gMonitorFreeCount);
2255     Thread::muxRelease(&gListLock);
2256   }
2257 
2258   ForceMonitorScavenge = 0;    // Reset
2259   GVars.stwRandom = os::random();
2260   GVars.stwCycle++;
2261   if (needs_special_cleanup) {
2262     set_is_cleanup_requested(false);  // special clean up is done
2263   }
2264 }
2265 
2266 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
2267   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2268 
2269   if (AsyncDeflateIdleMonitors) {
2270     if (!is_cleanup_requested()) {
2271       // Mark the JavaThread for idle monitor cleanup if a special
2272       // cleanup has NOT been requested.
2273       if (thread->omInUseCount > 0) {
2274         // This JavaThread is using monitors so mark it.
2275         thread->omShouldDeflateIdleMonitors = true;
2276       }
2277       return;
2278     }
2279   }
2280 
2281   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
2282   ObjectMonitor * freeTailp = NULL;
2283   elapsedTimer timer;
2284 
2285   if (log_is_enabled(Info, safepoint, cleanup) ||
2286       log_is_enabled(Info, monitorinflation)) {
2287     timer.start();
2288   }
2289 
2290   int deflated_count = deflate_monitor_list(thread->omInUseList_addr(), &freeHeadp, &freeTailp);
2291 
2292   Thread::muxAcquire(&gListLock, "deflate_thread_local_monitors");
2293 
2294   // Adjust counters
2295   counters->nInCirculation += thread->omInUseCount;
2296   thread->omInUseCount -= deflated_count;
2297   counters->nScavenged += deflated_count;
2298   counters->nInuse += thread->omInUseCount;
2299   counters->perThreadScavenged += deflated_count;
2300 
2301   // Move the scavenged monitors back to the global free list.
2302   if (freeHeadp != NULL) {
2303     guarantee(freeTailp != NULL && deflated_count > 0, "invariant");
2304     assert(freeTailp->FreeNext == NULL, "invariant");
2305 
2306     // constant-time list splice - prepend scavenged segment to gFreeList
2307     freeTailp->FreeNext = gFreeList;
2308     gFreeList = freeHeadp;
2309   }
2310 
2311   timer.stop();
2312   // Safepoint logging cares about cumulative perThreadTimes and
2313   // we'll capture most of the cost, but not the muxRelease() which
2314   // should be cheap.
2315   counters->perThreadTimes += timer.seconds();
2316 
2317   Thread::muxRelease(&gListLock);
2318 
2319   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2320   LogStreamHandle(Info, monitorinflation) lsh_info;
2321   LogStream * ls = NULL;
2322   if (log_is_enabled(Debug, monitorinflation)) {
2323     ls = &lsh_debug;
2324   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2325     ls = &lsh_info;
2326   }
2327   if (ls != NULL) {
2328     ls->print_cr("jt=" INTPTR_FORMAT ": deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(thread), timer.seconds(), deflated_count);
2329   }
2330 }
2331 
2332 // Monitor cleanup on JavaThread::exit
2333 
2334 // Iterate through monitor cache and attempt to release thread's monitors
2335 // Gives up on a particular monitor if an exception occurs, but continues
2336 // the overall iteration, swallowing the exception.
2337 class ReleaseJavaMonitorsClosure: public MonitorClosure {
2338  private:
2339   TRAPS;
2340 
2341  public:
2342   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
2343   void do_monitor(ObjectMonitor* mid) {
2344     if (mid->owner() == THREAD) {
2345       (void)mid->complete_exit(CHECK);
2346     }
2347   }
2348 };
2349 
2350 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
2351 // ignored.  This is meant to be called during JNI thread detach which assumes
2352 // all remaining monitors are heavyweight.  All exceptions are swallowed.
2353 // Scanning the extant monitor list can be time consuming.
2354 // A simple optimization is to add a per-thread flag that indicates a thread
2355 // called jni_monitorenter() during its lifetime.
2356 //
2357 // Instead of No_Savepoint_Verifier it might be cheaper to
2358 // use an idiom of the form:
2359 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
2360 //   <code that must not run at safepoint>
2361 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
2362 // Since the tests are extremely cheap we could leave them enabled
2363 // for normal product builds.
2364 
2365 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
2366   assert(THREAD == JavaThread::current(), "must be current Java thread");
2367   NoSafepointVerifier nsv;
2368   ReleaseJavaMonitorsClosure rjmc(THREAD);
2369   Thread::muxAcquire(&gListLock, "release_monitors_owned_by_thread");
2370   ObjectSynchronizer::monitors_iterate(&rjmc);
2371   Thread::muxRelease(&gListLock);
2372   THREAD->clear_pending_exception();
2373 }
2374 
2375 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
2376   switch (cause) {
2377     case inflate_cause_vm_internal:    return "VM Internal";
2378     case inflate_cause_monitor_enter:  return "Monitor Enter";
2379     case inflate_cause_wait:           return "Monitor Wait";
2380     case inflate_cause_notify:         return "Monitor Notify";
2381     case inflate_cause_hash_code:      return "Monitor Hash Code";
2382     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
2383     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
2384     default:
2385       ShouldNotReachHere();
2386   }
2387   return "Unknown";
2388 }
2389 
2390 //------------------------------------------------------------------------------
2391 // Debugging code
2392 
2393 u_char* ObjectSynchronizer::get_gvars_addr() {
2394   return (u_char*)&GVars;
2395 }
2396 
2397 u_char* ObjectSynchronizer::get_gvars_hcSequence_addr() {
2398   return (u_char*)&GVars.hcSequence;
2399 }
2400 
2401 size_t ObjectSynchronizer::get_gvars_size() {
2402   return sizeof(SharedGlobals);
2403 }
2404 
2405 u_char* ObjectSynchronizer::get_gvars_stwRandom_addr() {
2406   return (u_char*)&GVars.stwRandom;
2407 }
2408 
2409 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) {
2410   assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant");
2411 
2412   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2413   LogStreamHandle(Info, monitorinflation) lsh_info;
2414   LogStreamHandle(Trace, monitorinflation) lsh_trace;
2415   LogStream * ls = NULL;
2416   if (log_is_enabled(Trace, monitorinflation)) {
2417     ls = &lsh_trace;
2418   } else if (log_is_enabled(Debug, monitorinflation)) {
2419     ls = &lsh_debug;
2420   } else if (log_is_enabled(Info, monitorinflation)) {
2421     ls = &lsh_info;
2422   }
2423   assert(ls != NULL, "sanity check");
2424 
2425   if (!on_exit) {
2426     // Not at VM exit so grab the global list lock.
2427     Thread::muxAcquire(&gListLock, "audit_and_print_stats");
2428   }
2429 
2430   // Log counts for the global and per-thread monitor lists:
2431   int chkMonitorPopulation = log_monitor_list_counts(ls);
2432   int error_cnt = 0;
2433 
2434   ls->print_cr("Checking global lists:");
2435 
2436   // Check gMonitorPopulation:
2437   if (gMonitorPopulation == chkMonitorPopulation) {
2438     ls->print_cr("gMonitorPopulation=%d equals chkMonitorPopulation=%d",
2439                  gMonitorPopulation, chkMonitorPopulation);
2440   } else {
2441     ls->print_cr("ERROR: gMonitorPopulation=%d is not equal to "
2442                  "chkMonitorPopulation=%d", gMonitorPopulation,
2443                  chkMonitorPopulation);
2444     error_cnt++;
2445   }
2446 
2447   // Check gOmInUseList and gOmInUseCount:
2448   chk_global_in_use_list_and_count(ls, &error_cnt);
2449 
2450   // Check gFreeList and gMonitorFreeCount:
2451   chk_global_free_list_and_count(ls, &error_cnt);
2452 
2453   if (!on_exit) {
2454     Thread::muxRelease(&gListLock);
2455   }
2456 
2457   ls->print_cr("Checking per-thread lists:");
2458 
2459   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2460     // Check omInUseList and omInUseCount:
2461     chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt);
2462 
2463     // Check omFreeList and omFreeCount:
2464     chk_per_thread_free_list_and_count(jt, ls, &error_cnt);
2465   }
2466 
2467   if (error_cnt == 0) {
2468     ls->print_cr("No errors found in monitor list checks.");
2469   } else {
2470     log_error(monitorinflation)("found monitor list errors: error_cnt=%d", error_cnt);
2471   }
2472 
2473   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
2474       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
2475     // When exiting this log output is at the Info level. When called
2476     // at a safepoint, this log output is at the Trace level since
2477     // there can be a lot of it.
2478     log_in_use_monitor_details(ls, on_exit);
2479   }
2480 
2481   ls->flush();
2482 
2483   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
2484 }
2485 
2486 // Check a free monitor entry; log any errors.
2487 void ObjectSynchronizer::chk_free_entry(JavaThread * jt, ObjectMonitor * n,
2488                                         outputStream * out, int *error_cnt_p) {
2489   if ((!AsyncDeflateIdleMonitors && n->is_busy()) ||
2490       (AsyncDeflateIdleMonitors && n->is_busy_async())) {
2491     if (jt != NULL) {
2492       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2493                     ": free per-thread monitor must not be busy.", p2i(jt),
2494                     p2i(n));
2495     } else {
2496       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2497                     "must not be busy.", p2i(n));
2498     }
2499     *error_cnt_p = *error_cnt_p + 1;
2500   }
2501   if (n->header() != NULL) {
2502     if (jt != NULL) {
2503       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2504                     ": free per-thread monitor must have NULL _header "
2505                     "field: _header=" INTPTR_FORMAT, p2i(jt), p2i(n),
2506                     p2i(n->header()));
2507       *error_cnt_p = *error_cnt_p + 1;
2508     } else if (!AsyncDeflateIdleMonitors) {
2509       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2510                     "must have NULL _header field: _header=" INTPTR_FORMAT,
2511                     p2i(n), p2i(n->header()));
2512       *error_cnt_p = *error_cnt_p + 1;
2513     }
2514   }
2515   if (n->object() != NULL) {
2516     if (jt != NULL) {
2517       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2518                     ": free per-thread monitor must have NULL _object "
2519                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
2520                     p2i(n->object()));
2521     } else {
2522       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2523                     "must have NULL _object field: _object=" INTPTR_FORMAT,
2524                     p2i(n), p2i(n->object()));
2525     }
2526     *error_cnt_p = *error_cnt_p + 1;
2527   }
2528 }
2529 
2530 // Check the global free list and count; log the results of the checks.
2531 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
2532                                                         int *error_cnt_p) {
2533   int chkMonitorFreeCount = 0;
2534   for (ObjectMonitor * n = gFreeList; n != NULL; n = n->FreeNext) {
2535     chk_free_entry(NULL /* jt */, n, out, error_cnt_p);
2536     chkMonitorFreeCount++;
2537   }
2538   if (gMonitorFreeCount == chkMonitorFreeCount) {
2539     out->print_cr("gMonitorFreeCount=%d equals chkMonitorFreeCount=%d",
2540                   gMonitorFreeCount, chkMonitorFreeCount);
2541   } else {
2542     out->print_cr("ERROR: gMonitorFreeCount=%d is not equal to "
2543                   "chkMonitorFreeCount=%d", gMonitorFreeCount,
2544                   chkMonitorFreeCount);
2545     *error_cnt_p = *error_cnt_p + 1;
2546   }
2547 }
2548 
2549 // Check the global in-use list and count; log the results of the checks.
2550 void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out,
2551                                                           int *error_cnt_p) {
2552   int chkOmInUseCount = 0;
2553   for (ObjectMonitor * n = gOmInUseList; n != NULL; n = n->FreeNext) {
2554     chk_in_use_entry(NULL /* jt */, n, out, error_cnt_p);
2555     chkOmInUseCount++;
2556   }
2557   if (gOmInUseCount == chkOmInUseCount) {
2558     out->print_cr("gOmInUseCount=%d equals chkOmInUseCount=%d", gOmInUseCount,
2559                   chkOmInUseCount);
2560   } else {
2561     out->print_cr("ERROR: gOmInUseCount=%d is not equal to chkOmInUseCount=%d",
2562                   gOmInUseCount, chkOmInUseCount);
2563     *error_cnt_p = *error_cnt_p + 1;
2564   }
2565 }
2566 
2567 // Check an in-use monitor entry; log any errors.
2568 void ObjectSynchronizer::chk_in_use_entry(JavaThread * jt, ObjectMonitor * n,
2569                                           outputStream * out, int *error_cnt_p) {
2570   if (n->header() == NULL) {
2571     if (jt != NULL) {
2572       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2573                     ": in-use per-thread monitor must have non-NULL _header "
2574                     "field.", p2i(jt), p2i(n));
2575     } else {
2576       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
2577                     "must have non-NULL _header field.", p2i(n));
2578     }
2579     *error_cnt_p = *error_cnt_p + 1;
2580   }
2581   if (n->object() == NULL) {
2582     if (jt != NULL) {
2583       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2584                     ": in-use per-thread monitor must have non-NULL _object "
2585                     "field.", p2i(jt), p2i(n));
2586     } else {
2587       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
2588                     "must have non-NULL _object field.", p2i(n));
2589     }
2590     *error_cnt_p = *error_cnt_p + 1;
2591   }
2592   const oop obj = (oop)n->object();
2593   const markOop mark = obj->mark();
2594   if (!mark->has_monitor()) {
2595     if (jt != NULL) {
2596       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2597                     ": in-use per-thread monitor's object does not think "
2598                     "it has a monitor: obj=" INTPTR_FORMAT ", mark="
2599                     INTPTR_FORMAT,  p2i(jt), p2i(n), p2i(obj), p2i(mark));
2600     } else {
2601       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2602                     "monitor's object does not think it has a monitor: obj="
2603                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
2604                     p2i(obj), p2i(mark));
2605     }
2606     *error_cnt_p = *error_cnt_p + 1;
2607   }
2608   ObjectMonitor * const obj_mon = mark->monitor();
2609   if (n != obj_mon) {
2610     if (jt != NULL) {
2611       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2612                     ": in-use per-thread monitor's object does not refer "
2613                     "to the same monitor: obj=" INTPTR_FORMAT ", mark="
2614                     INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt),
2615                     p2i(n), p2i(obj), p2i(mark), p2i(obj_mon));
2616     } else {
2617       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2618                     "monitor's object does not refer to the same monitor: obj="
2619                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
2620                     INTPTR_FORMAT, p2i(n), p2i(obj), p2i(mark), p2i(obj_mon));
2621     }
2622     *error_cnt_p = *error_cnt_p + 1;
2623   }
2624 }
2625 
2626 // Check the thread's free list and count; log the results of the checks.
2627 void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt,
2628                                                             outputStream * out,
2629                                                             int *error_cnt_p) {
2630   int chkOmFreeCount = 0;
2631   for (ObjectMonitor * n = jt->omFreeList; n != NULL; n = n->FreeNext) {
2632     chk_free_entry(jt, n, out, error_cnt_p);
2633     chkOmFreeCount++;
2634   }
2635   if (jt->omFreeCount == chkOmFreeCount) {
2636     out->print_cr("jt=" INTPTR_FORMAT ": omFreeCount=%d equals "
2637                   "chkOmFreeCount=%d", p2i(jt), jt->omFreeCount, chkOmFreeCount);
2638   } else {
2639     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": omFreeCount=%d is not "
2640                   "equal to chkOmFreeCount=%d", p2i(jt), jt->omFreeCount,
2641                   chkOmFreeCount);
2642     *error_cnt_p = *error_cnt_p + 1;
2643   }
2644 }
2645 
2646 // Check the thread's in-use list and count; log the results of the checks.
2647 void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt,
2648                                                               outputStream * out,
2649                                                               int *error_cnt_p) {
2650   int chkOmInUseCount = 0;
2651   for (ObjectMonitor * n = jt->omInUseList; n != NULL; n = n->FreeNext) {
2652     chk_in_use_entry(jt, n, out, error_cnt_p);
2653     chkOmInUseCount++;
2654   }
2655   if (jt->omInUseCount == chkOmInUseCount) {
2656     out->print_cr("jt=" INTPTR_FORMAT ": omInUseCount=%d equals "
2657                   "chkOmInUseCount=%d", p2i(jt), jt->omInUseCount,
2658                   chkOmInUseCount);
2659   } else {
2660     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": omInUseCount=%d is not "
2661                   "equal to chkOmInUseCount=%d", p2i(jt), jt->omInUseCount,
2662                   chkOmInUseCount);
2663     *error_cnt_p = *error_cnt_p + 1;
2664   }
2665 }
2666 
2667 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
2668 // flags indicate why the entry is in-use, 'object' and 'object type'
2669 // indicate the associated object and its type.
2670 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out,
2671                                                     bool on_exit) {
2672   if (!on_exit) {
2673     // Not at VM exit so grab the global list lock.
2674     Thread::muxAcquire(&gListLock, "log_in_use_monitor_details");
2675   }
2676 
2677   if (gOmInUseCount > 0) {
2678     out->print_cr("In-use global monitor info:");
2679     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2680     out->print_cr("%18s  %s  %7s  %18s  %18s",
2681                   "monitor", "BHL", "ref_cnt", "object", "object type");
2682     out->print_cr("==================  ===  =======  ==================  ==================");
2683     for (ObjectMonitor * n = gOmInUseList; n != NULL; n = n->FreeNext) {
2684       const oop obj = (oop) n->object();
2685       const markOop mark = n->header();
2686       ResourceMark rm;
2687       out->print_cr(INTPTR_FORMAT "  %d%d%d  %7d  " INTPTR_FORMAT "  %s",
2688                     p2i(n), n->is_busy() != 0, mark->hash() != 0,
2689                     n->owner() != NULL, (int)n->ref_count(), p2i(obj),
2690                     obj->klass()->external_name());
2691     }
2692   }
2693 
2694   if (!on_exit) {
2695     Thread::muxRelease(&gListLock);
2696   }
2697 
2698   out->print_cr("In-use per-thread monitor info:");
2699   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2700   out->print_cr("%18s  %18s  %s  %7s  %18s  %18s",
2701                 "jt", "monitor", "BHL", "ref_cnt", "object", "object type");
2702   out->print_cr("==================  ==================  ===  =======  ==================  ==================");
2703   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2704     for (ObjectMonitor * n = jt->omInUseList; n != NULL; n = n->FreeNext) {
2705       const oop obj = (oop) n->object();
2706       const markOop mark = n->header();
2707       ResourceMark rm;
2708       out->print_cr(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  %7d  "
2709                     INTPTR_FORMAT "  %s", p2i(jt), p2i(n), n->is_busy() != 0,
2710                     mark->hash() != 0, n->owner() != NULL, (int)n->ref_count(),
2711                     p2i(obj), obj->klass()->external_name());
2712     }
2713   }
2714 
2715   out->flush();
2716 }
2717 
2718 // Log counts for the global and per-thread monitor lists and return
2719 // the population count.
2720 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
2721   int popCount = 0;
2722   out->print_cr("%18s  %10s  %10s  %10s",
2723                 "Global Lists:", "InUse", "Free", "Total");
2724   out->print_cr("==================  ==========  ==========  ==========");
2725   out->print_cr("%18s  %10d  %10d  %10d", "",
2726                 gOmInUseCount, gMonitorFreeCount, gMonitorPopulation);
2727   popCount += gOmInUseCount + gMonitorFreeCount;
2728 
2729   out->print_cr("%18s  %10s  %10s  %10s",
2730                 "Per-Thread Lists:", "InUse", "Free", "Provision");
2731   out->print_cr("==================  ==========  ==========  ==========");
2732 
2733   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2734     out->print_cr(INTPTR_FORMAT "  %10d  %10d  %10d", p2i(jt),
2735                   jt->omInUseCount, jt->omFreeCount, jt->omFreeProvision);
2736     popCount += jt->omInUseCount + jt->omFreeCount;
2737   }
2738   return popCount;
2739 }
2740 
2741 #ifndef PRODUCT
2742 
2743 // Check if monitor belongs to the monitor cache
2744 // The list is grow-only so it's *relatively* safe to traverse
2745 // the list of extant blocks without taking a lock.
2746 
2747 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
2748   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
2749   while (block != NULL) {
2750     assert(block->object() == CHAINMARKER, "must be a block header");
2751     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
2752       address mon = (address)monitor;
2753       address blk = (address)block;
2754       size_t diff = mon - blk;
2755       assert((diff % sizeof(PaddedEnd<ObjectMonitor>)) == 0, "must be aligned");
2756       return 1;
2757     }
2758     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
2759   }
2760   return 0;
2761 }
2762 
2763 #endif