1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/moduleEntry.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/gcId.hpp"
  38 #include "gc/shared/gcLocker.inline.hpp"
  39 #include "gc/shared/workgroup.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/linkResolver.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "jvmtifiles/jvmtiEnv.hpp"
  45 #include "logging/log.hpp"
  46 #include "logging/logConfiguration.hpp"
  47 #include "logging/logStream.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/metaspaceShared.hpp"
  50 #include "memory/oopFactory.hpp"
  51 #include "memory/resourceArea.hpp"
  52 #include "memory/universe.hpp"
  53 #include "oops/access.inline.hpp"
  54 #include "oops/instanceKlass.hpp"
  55 #include "oops/objArrayOop.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/symbol.hpp"
  58 #include "oops/typeArrayOop.inline.hpp"
  59 #include "oops/verifyOopClosure.hpp"
  60 #include "prims/jvm_misc.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "prims/jvmtiThreadState.hpp"
  63 #include "runtime/arguments.hpp"
  64 #include "runtime/atomic.hpp"
  65 #include "runtime/biasedLocking.hpp"
  66 #include "runtime/fieldDescriptor.inline.hpp"
  67 #include "runtime/flags/jvmFlagConstraintList.hpp"
  68 #include "runtime/flags/jvmFlagRangeList.hpp"
  69 #include "runtime/flags/jvmFlagWriteableList.hpp"
  70 #include "runtime/deoptimization.hpp"
  71 #include "runtime/frame.inline.hpp"
  72 #include "runtime/handles.inline.hpp"
  73 #include "runtime/handshake.hpp"
  74 #include "runtime/init.hpp"
  75 #include "runtime/interfaceSupport.inline.hpp"
  76 #include "runtime/java.hpp"
  77 #include "runtime/javaCalls.hpp"
  78 #include "runtime/jniHandles.inline.hpp"
  79 #include "runtime/jniPeriodicChecker.hpp"
  80 #include "runtime/memprofiler.hpp"
  81 #include "runtime/mutexLocker.hpp"
  82 #include "runtime/objectMonitor.hpp"
  83 #include "runtime/orderAccess.hpp"
  84 #include "runtime/osThread.hpp"
  85 #include "runtime/prefetch.inline.hpp"
  86 #include "runtime/safepoint.hpp"
  87 #include "runtime/safepointMechanism.inline.hpp"
  88 #include "runtime/safepointVerifiers.hpp"
  89 #include "runtime/sharedRuntime.hpp"
  90 #include "runtime/statSampler.hpp"
  91 #include "runtime/stubRoutines.hpp"
  92 #include "runtime/sweeper.hpp"
  93 #include "runtime/task.hpp"
  94 #include "runtime/thread.inline.hpp"
  95 #include "runtime/threadCritical.hpp"
  96 #include "runtime/threadSMR.inline.hpp"
  97 #include "runtime/threadStatisticalInfo.hpp"
  98 #include "runtime/timer.hpp"
  99 #include "runtime/timerTrace.hpp"
 100 #include "runtime/vframe.inline.hpp"
 101 #include "runtime/vframeArray.hpp"
 102 #include "runtime/vframe_hp.hpp"
 103 #include "runtime/vmThread.hpp"
 104 #include "runtime/vmOperations.hpp"
 105 #include "runtime/vm_version.hpp"
 106 #include "services/attachListener.hpp"
 107 #include "services/management.hpp"
 108 #include "services/memTracker.hpp"
 109 #include "services/threadService.hpp"
 110 #include "utilities/align.hpp"
 111 #include "utilities/copy.hpp"
 112 #include "utilities/defaultStream.hpp"
 113 #include "utilities/dtrace.hpp"
 114 #include "utilities/events.hpp"
 115 #include "utilities/macros.hpp"
 116 #include "utilities/preserveException.hpp"
 117 #include "utilities/singleWriterSynchronizer.hpp"
 118 #include "utilities/vmError.hpp"
 119 #if INCLUDE_JVMCI
 120 #include "jvmci/jvmciCompiler.hpp"
 121 #include "jvmci/jvmciRuntime.hpp"
 122 #include "logging/logHandle.hpp"
 123 #endif
 124 #ifdef COMPILER1
 125 #include "c1/c1_Compiler.hpp"
 126 #endif
 127 #ifdef COMPILER2
 128 #include "opto/c2compiler.hpp"
 129 #include "opto/idealGraphPrinter.hpp"
 130 #endif
 131 #if INCLUDE_RTM_OPT
 132 #include "runtime/rtmLocking.hpp"
 133 #endif
 134 #if INCLUDE_JFR
 135 #include "jfr/jfr.hpp"
 136 #endif
 137 
 138 // Initialization after module runtime initialization
 139 void universe_post_module_init();  // must happen after call_initPhase2
 140 
 141 #ifdef DTRACE_ENABLED
 142 
 143 // Only bother with this argument setup if dtrace is available
 144 
 145   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 146   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 147 
 148   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 149     {                                                                      \
 150       ResourceMark rm(this);                                               \
 151       int len = 0;                                                         \
 152       const char* name = (javathread)->get_thread_name();                  \
 153       len = strlen(name);                                                  \
 154       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 155         (char *) name, len,                                                \
 156         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 157         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 158         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 159     }
 160 
 161 #else //  ndef DTRACE_ENABLED
 162 
 163   #define DTRACE_THREAD_PROBE(probe, javathread)
 164 
 165 #endif // ndef DTRACE_ENABLED
 166 
 167 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 168 // Current thread is maintained as a thread-local variable
 169 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 170 #endif
 171 
 172 // ======= Thread ========
 173 // Support for forcing alignment of thread objects for biased locking
 174 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 175   if (UseBiasedLocking) {
 176     const int alignment = markOopDesc::biased_lock_alignment;
 177     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 178     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 179                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 180                                                          AllocFailStrategy::RETURN_NULL);
 181     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 182     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 183            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 184            "JavaThread alignment code overflowed allocated storage");
 185     if (aligned_addr != real_malloc_addr) {
 186       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 187                               p2i(real_malloc_addr),
 188                               p2i(aligned_addr));
 189     }
 190     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 191     return aligned_addr;
 192   } else {
 193     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 194                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 195   }
 196 }
 197 
 198 void Thread::operator delete(void* p) {
 199   if (UseBiasedLocking) {
 200     FreeHeap(((Thread*) p)->_real_malloc_address);
 201   } else {
 202     FreeHeap(p);
 203   }
 204 }
 205 
 206 void JavaThread::smr_delete() {
 207   if (_on_thread_list) {
 208     ThreadsSMRSupport::smr_delete(this);
 209   } else {
 210     delete this;
 211   }
 212 }
 213 
 214 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 215 // JavaThread
 216 
 217 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 218 
 219 Thread::Thread() {
 220 
 221   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 222 
 223   // stack and get_thread
 224   set_stack_base(NULL);
 225   set_stack_size(0);
 226   set_self_raw_id(0);
 227   set_lgrp_id(-1);
 228   DEBUG_ONLY(clear_suspendible_thread();)
 229 
 230   // allocated data structures
 231   set_osthread(NULL);
 232   set_resource_area(new (mtThread)ResourceArea());
 233   DEBUG_ONLY(_current_resource_mark = NULL;)
 234   set_handle_area(new (mtThread) HandleArea(NULL));
 235   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 236   set_active_handles(NULL);
 237   set_free_handle_block(NULL);
 238   set_last_handle_mark(NULL);
 239   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 240 
 241   // Initial value of zero ==> never claimed.
 242   _threads_do_token = 0;
 243   _threads_hazard_ptr = NULL;
 244   _threads_list_ptr = NULL;
 245   _nested_threads_hazard_ptr_cnt = 0;
 246   _rcu_counter = 0;
 247 
 248   // the handle mark links itself to last_handle_mark
 249   new HandleMark(this);
 250 
 251   // plain initialization
 252   debug_only(_owned_locks = NULL;)
 253   debug_only(_allow_allocation_count = 0;)
 254   NOT_PRODUCT(_allow_safepoint_count = 0;)
 255   NOT_PRODUCT(_skip_gcalot = false;)
 256   _jvmti_env_iteration_count = 0;
 257   set_allocated_bytes(0);
 258   _vm_operation_started_count = 0;
 259   _vm_operation_completed_count = 0;
 260   _current_pending_monitor = NULL;
 261   _current_pending_monitor_is_from_java = true;
 262   _current_waiting_monitor = NULL;
 263   _num_nested_signal = 0;
 264   omFreeList = NULL;
 265   omFreeCount = 0;
 266   omFreeProvision = 32;
 267   omInUseList = NULL;
 268   omInUseCount = 0;
 269   omShouldDeflateIdleMonitors = false;
 270 
 271 #ifdef ASSERT
 272   _visited_for_critical_count = false;
 273 #endif
 274 
 275   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 276                          Monitor::_safepoint_check_sometimes);
 277   _suspend_flags = 0;
 278 
 279   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 280   _hashStateX = os::random();
 281   _hashStateY = 842502087;
 282   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 283   _hashStateW = 273326509;
 284 
 285   _OnTrap   = 0;
 286   _Stalled  = 0;
 287   _TypeTag  = 0x2BAD;
 288 
 289   // Many of the following fields are effectively final - immutable
 290   // Note that nascent threads can't use the Native Monitor-Mutex
 291   // construct until the _MutexEvent is initialized ...
 292   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 293   // we might instead use a stack of ParkEvents that we could provision on-demand.
 294   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 295   // and ::Release()
 296   _ParkEvent   = ParkEvent::Allocate(this);
 297   _SleepEvent  = ParkEvent::Allocate(this);
 298   _MuxEvent    = ParkEvent::Allocate(this);
 299 
 300 #ifdef CHECK_UNHANDLED_OOPS
 301   if (CheckUnhandledOops) {
 302     _unhandled_oops = new UnhandledOops(this);
 303   }
 304 #endif // CHECK_UNHANDLED_OOPS
 305 #ifdef ASSERT
 306   if (UseBiasedLocking) {
 307     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 308     assert(this == _real_malloc_address ||
 309            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 310            "bug in forced alignment of thread objects");
 311   }
 312 #endif // ASSERT
 313 
 314   // Notify the barrier set that a thread is being created. The initial
 315   // thread is created before the barrier set is available.  The call to
 316   // BarrierSet::on_thread_create() for this thread is therefore deferred
 317   // to BarrierSet::set_barrier_set().
 318   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 319   if (barrier_set != NULL) {
 320     barrier_set->on_thread_create(this);
 321   } else {
 322     // Only the main thread should be created before the barrier set
 323     // and that happens just before Thread::current is set. No other thread
 324     // can attach as the VM is not created yet, so they can't execute this code.
 325     // If the main thread creates other threads before the barrier set that is an error.
 326     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 327   }
 328 }
 329 
 330 void Thread::initialize_thread_current() {
 331 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 332   assert(_thr_current == NULL, "Thread::current already initialized");
 333   _thr_current = this;
 334 #endif
 335   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 336   ThreadLocalStorage::set_thread(this);
 337   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 338 }
 339 
 340 void Thread::clear_thread_current() {
 341   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 342 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 343   _thr_current = NULL;
 344 #endif
 345   ThreadLocalStorage::set_thread(NULL);
 346 }
 347 
 348 void Thread::record_stack_base_and_size() {
 349   // Note: at this point, Thread object is not yet initialized. Do not rely on
 350   // any members being initialized. Do not rely on Thread::current() being set.
 351   // If possible, refrain from doing anything which may crash or assert since
 352   // quite probably those crash dumps will be useless.
 353   set_stack_base(os::current_stack_base());
 354   set_stack_size(os::current_stack_size());
 355 
 356 #ifdef SOLARIS
 357   if (os::is_primordial_thread()) {
 358     os::Solaris::correct_stack_boundaries_for_primordial_thread(this);
 359   }
 360 #endif
 361 
 362   // Set stack limits after thread is initialized.
 363   if (is_Java_thread()) {
 364     ((JavaThread*) this)->set_stack_overflow_limit();
 365     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 366   }
 367 }
 368 
 369 #if INCLUDE_NMT
 370 void Thread::register_thread_stack_with_NMT() {
 371   MemTracker::record_thread_stack(stack_end(), stack_size());
 372 }
 373 #endif // INCLUDE_NMT
 374 
 375 void Thread::call_run() {
 376   DEBUG_ONLY(_run_state = CALL_RUN;)
 377 
 378   // At this point, Thread object should be fully initialized and
 379   // Thread::current() should be set.
 380 
 381   assert(Thread::current_or_null() != NULL, "current thread is unset");
 382   assert(Thread::current_or_null() == this, "current thread is wrong");
 383 
 384   // Perform common initialization actions
 385 
 386   register_thread_stack_with_NMT();
 387 
 388   JFR_ONLY(Jfr::on_thread_start(this);)
 389 
 390   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 391     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 392     os::current_thread_id(), p2i(stack_base() - stack_size()),
 393     p2i(stack_base()), stack_size()/1024);
 394 
 395   // Perform <ChildClass> initialization actions
 396   DEBUG_ONLY(_run_state = PRE_RUN;)
 397   this->pre_run();
 398 
 399   // Invoke <ChildClass>::run()
 400   DEBUG_ONLY(_run_state = RUN;)
 401   this->run();
 402   // Returned from <ChildClass>::run(). Thread finished.
 403 
 404   // Perform common tear-down actions
 405 
 406   assert(Thread::current_or_null() != NULL, "current thread is unset");
 407   assert(Thread::current_or_null() == this, "current thread is wrong");
 408 
 409   // Perform <ChildClass> tear-down actions
 410   DEBUG_ONLY(_run_state = POST_RUN;)
 411   this->post_run();
 412 
 413   // Note: at this point the thread object may already have deleted itself,
 414   // so from here on do not dereference *this*. Not all thread types currently
 415   // delete themselves when they terminate. But no thread should ever be deleted
 416   // asynchronously with respect to its termination - that is what _run_state can
 417   // be used to check.
 418 
 419   assert(Thread::current_or_null() == NULL, "current thread still present");
 420 }
 421 
 422 Thread::~Thread() {
 423 
 424   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 425   // get started due to errors etc. Any active thread should at least reach post_run
 426   // before it is deleted (usually in post_run()).
 427   assert(_run_state == PRE_CALL_RUN ||
 428          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 429          "_run_state=%d", (int)_run_state);
 430 
 431   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 432   // set might not be available if we encountered errors during bootstrapping.
 433   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 434   if (barrier_set != NULL) {
 435     barrier_set->on_thread_destroy(this);
 436   }
 437 
 438   // stack_base can be NULL if the thread is never started or exited before
 439   // record_stack_base_and_size called. Although, we would like to ensure
 440   // that all started threads do call record_stack_base_and_size(), there is
 441   // not proper way to enforce that.
 442 #if INCLUDE_NMT
 443   if (_stack_base != NULL) {
 444     MemTracker::release_thread_stack(stack_end(), stack_size());
 445 #ifdef ASSERT
 446     set_stack_base(NULL);
 447 #endif
 448   }
 449 #endif // INCLUDE_NMT
 450 
 451   // deallocate data structures
 452   delete resource_area();
 453   // since the handle marks are using the handle area, we have to deallocated the root
 454   // handle mark before deallocating the thread's handle area,
 455   assert(last_handle_mark() != NULL, "check we have an element");
 456   delete last_handle_mark();
 457   assert(last_handle_mark() == NULL, "check we have reached the end");
 458 
 459   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 460   // We NULL out the fields for good hygiene.
 461   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 462   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 463   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 464 
 465   delete handle_area();
 466   delete metadata_handles();
 467 
 468   // SR_handler uses this as a termination indicator -
 469   // needs to happen before os::free_thread()
 470   delete _SR_lock;
 471   _SR_lock = NULL;
 472 
 473   // osthread() can be NULL, if creation of thread failed.
 474   if (osthread() != NULL) os::free_thread(osthread());
 475 
 476   // Clear Thread::current if thread is deleting itself and it has not
 477   // already been done. This must be done before the memory is deallocated.
 478   // Needed to ensure JNI correctly detects non-attached threads.
 479   if (this == Thread::current_or_null()) {
 480     Thread::clear_thread_current();
 481   }
 482 
 483   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 484 }
 485 
 486 #ifdef ASSERT
 487 // A JavaThread is considered "dangling" if it is not the current
 488 // thread, has been added the Threads list, the system is not at a
 489 // safepoint and the Thread is not "protected".
 490 //
 491 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 492   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 493          !((JavaThread *) thread)->on_thread_list() ||
 494          SafepointSynchronize::is_at_safepoint() ||
 495          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 496          "possibility of dangling Thread pointer");
 497 }
 498 #endif
 499 
 500 ThreadPriority Thread::get_priority(const Thread* const thread) {
 501   ThreadPriority priority;
 502   // Can return an error!
 503   (void)os::get_priority(thread, priority);
 504   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 505   return priority;
 506 }
 507 
 508 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 509   debug_only(check_for_dangling_thread_pointer(thread);)
 510   // Can return an error!
 511   (void)os::set_priority(thread, priority);
 512 }
 513 
 514 
 515 void Thread::start(Thread* thread) {
 516   // Start is different from resume in that its safety is guaranteed by context or
 517   // being called from a Java method synchronized on the Thread object.
 518   if (!DisableStartThread) {
 519     if (thread->is_Java_thread()) {
 520       // Initialize the thread state to RUNNABLE before starting this thread.
 521       // Can not set it after the thread started because we do not know the
 522       // exact thread state at that time. It could be in MONITOR_WAIT or
 523       // in SLEEPING or some other state.
 524       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 525                                           java_lang_Thread::RUNNABLE);
 526     }
 527     os::start_thread(thread);
 528   }
 529 }
 530 
 531 // Enqueue a VM_Operation to do the job for us - sometime later
 532 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 533   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 534   VMThread::execute(vm_stop);
 535 }
 536 
 537 
 538 // Check if an external suspend request has completed (or has been
 539 // cancelled). Returns true if the thread is externally suspended and
 540 // false otherwise.
 541 //
 542 // The bits parameter returns information about the code path through
 543 // the routine. Useful for debugging:
 544 //
 545 // set in is_ext_suspend_completed():
 546 // 0x00000001 - routine was entered
 547 // 0x00000010 - routine return false at end
 548 // 0x00000100 - thread exited (return false)
 549 // 0x00000200 - suspend request cancelled (return false)
 550 // 0x00000400 - thread suspended (return true)
 551 // 0x00001000 - thread is in a suspend equivalent state (return true)
 552 // 0x00002000 - thread is native and walkable (return true)
 553 // 0x00004000 - thread is native_trans and walkable (needed retry)
 554 //
 555 // set in wait_for_ext_suspend_completion():
 556 // 0x00010000 - routine was entered
 557 // 0x00020000 - suspend request cancelled before loop (return false)
 558 // 0x00040000 - thread suspended before loop (return true)
 559 // 0x00080000 - suspend request cancelled in loop (return false)
 560 // 0x00100000 - thread suspended in loop (return true)
 561 // 0x00200000 - suspend not completed during retry loop (return false)
 562 
 563 // Helper class for tracing suspend wait debug bits.
 564 //
 565 // 0x00000100 indicates that the target thread exited before it could
 566 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 567 // 0x00080000 each indicate a cancelled suspend request so they don't
 568 // count as wait failures either.
 569 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 570 
 571 class TraceSuspendDebugBits : public StackObj {
 572  private:
 573   JavaThread * jt;
 574   bool         is_wait;
 575   bool         called_by_wait;  // meaningful when !is_wait
 576   uint32_t *   bits;
 577 
 578  public:
 579   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 580                         uint32_t *_bits) {
 581     jt             = _jt;
 582     is_wait        = _is_wait;
 583     called_by_wait = _called_by_wait;
 584     bits           = _bits;
 585   }
 586 
 587   ~TraceSuspendDebugBits() {
 588     if (!is_wait) {
 589 #if 1
 590       // By default, don't trace bits for is_ext_suspend_completed() calls.
 591       // That trace is very chatty.
 592       return;
 593 #else
 594       if (!called_by_wait) {
 595         // If tracing for is_ext_suspend_completed() is enabled, then only
 596         // trace calls to it from wait_for_ext_suspend_completion()
 597         return;
 598       }
 599 #endif
 600     }
 601 
 602     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 603       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 604         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 605         ResourceMark rm;
 606 
 607         tty->print_cr(
 608                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 609                       jt->get_thread_name(), *bits);
 610 
 611         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 612       }
 613     }
 614   }
 615 };
 616 #undef DEBUG_FALSE_BITS
 617 
 618 
 619 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 620                                           uint32_t *bits) {
 621   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 622 
 623   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 624   bool do_trans_retry;           // flag to force the retry
 625 
 626   *bits |= 0x00000001;
 627 
 628   do {
 629     do_trans_retry = false;
 630 
 631     if (is_exiting()) {
 632       // Thread is in the process of exiting. This is always checked
 633       // first to reduce the risk of dereferencing a freed JavaThread.
 634       *bits |= 0x00000100;
 635       return false;
 636     }
 637 
 638     if (!is_external_suspend()) {
 639       // Suspend request is cancelled. This is always checked before
 640       // is_ext_suspended() to reduce the risk of a rogue resume
 641       // confusing the thread that made the suspend request.
 642       *bits |= 0x00000200;
 643       return false;
 644     }
 645 
 646     if (is_ext_suspended()) {
 647       // thread is suspended
 648       *bits |= 0x00000400;
 649       return true;
 650     }
 651 
 652     // Now that we no longer do hard suspends of threads running
 653     // native code, the target thread can be changing thread state
 654     // while we are in this routine:
 655     //
 656     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 657     //
 658     // We save a copy of the thread state as observed at this moment
 659     // and make our decision about suspend completeness based on the
 660     // copy. This closes the race where the thread state is seen as
 661     // _thread_in_native_trans in the if-thread_blocked check, but is
 662     // seen as _thread_blocked in if-thread_in_native_trans check.
 663     JavaThreadState save_state = thread_state();
 664 
 665     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 666       // If the thread's state is _thread_blocked and this blocking
 667       // condition is known to be equivalent to a suspend, then we can
 668       // consider the thread to be externally suspended. This means that
 669       // the code that sets _thread_blocked has been modified to do
 670       // self-suspension if the blocking condition releases. We also
 671       // used to check for CONDVAR_WAIT here, but that is now covered by
 672       // the _thread_blocked with self-suspension check.
 673       //
 674       // Return true since we wouldn't be here unless there was still an
 675       // external suspend request.
 676       *bits |= 0x00001000;
 677       return true;
 678     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 679       // Threads running native code will self-suspend on native==>VM/Java
 680       // transitions. If its stack is walkable (should always be the case
 681       // unless this function is called before the actual java_suspend()
 682       // call), then the wait is done.
 683       *bits |= 0x00002000;
 684       return true;
 685     } else if (!called_by_wait && !did_trans_retry &&
 686                save_state == _thread_in_native_trans &&
 687                frame_anchor()->walkable()) {
 688       // The thread is transitioning from thread_in_native to another
 689       // thread state. check_safepoint_and_suspend_for_native_trans()
 690       // will force the thread to self-suspend. If it hasn't gotten
 691       // there yet we may have caught the thread in-between the native
 692       // code check above and the self-suspend. Lucky us. If we were
 693       // called by wait_for_ext_suspend_completion(), then it
 694       // will be doing the retries so we don't have to.
 695       //
 696       // Since we use the saved thread state in the if-statement above,
 697       // there is a chance that the thread has already transitioned to
 698       // _thread_blocked by the time we get here. In that case, we will
 699       // make a single unnecessary pass through the logic below. This
 700       // doesn't hurt anything since we still do the trans retry.
 701 
 702       *bits |= 0x00004000;
 703 
 704       // Once the thread leaves thread_in_native_trans for another
 705       // thread state, we break out of this retry loop. We shouldn't
 706       // need this flag to prevent us from getting back here, but
 707       // sometimes paranoia is good.
 708       did_trans_retry = true;
 709 
 710       // We wait for the thread to transition to a more usable state.
 711       for (int i = 1; i <= SuspendRetryCount; i++) {
 712         // We used to do an "os::yield_all(i)" call here with the intention
 713         // that yielding would increase on each retry. However, the parameter
 714         // is ignored on Linux which means the yield didn't scale up. Waiting
 715         // on the SR_lock below provides a much more predictable scale up for
 716         // the delay. It also provides a simple/direct point to check for any
 717         // safepoint requests from the VMThread
 718 
 719         // temporarily drops SR_lock while doing wait with safepoint check
 720         // (if we're a JavaThread - the WatcherThread can also call this)
 721         // and increase delay with each retry
 722         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 723 
 724         // check the actual thread state instead of what we saved above
 725         if (thread_state() != _thread_in_native_trans) {
 726           // the thread has transitioned to another thread state so
 727           // try all the checks (except this one) one more time.
 728           do_trans_retry = true;
 729           break;
 730         }
 731       } // end retry loop
 732 
 733 
 734     }
 735   } while (do_trans_retry);
 736 
 737   *bits |= 0x00000010;
 738   return false;
 739 }
 740 
 741 // Wait for an external suspend request to complete (or be cancelled).
 742 // Returns true if the thread is externally suspended and false otherwise.
 743 //
 744 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 745                                                  uint32_t *bits) {
 746   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 747                              false /* !called_by_wait */, bits);
 748 
 749   // local flag copies to minimize SR_lock hold time
 750   bool is_suspended;
 751   bool pending;
 752   uint32_t reset_bits;
 753 
 754   // set a marker so is_ext_suspend_completed() knows we are the caller
 755   *bits |= 0x00010000;
 756 
 757   // We use reset_bits to reinitialize the bits value at the top of
 758   // each retry loop. This allows the caller to make use of any
 759   // unused bits for their own marking purposes.
 760   reset_bits = *bits;
 761 
 762   {
 763     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 764     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 765                                             delay, bits);
 766     pending = is_external_suspend();
 767   }
 768   // must release SR_lock to allow suspension to complete
 769 
 770   if (!pending) {
 771     // A cancelled suspend request is the only false return from
 772     // is_ext_suspend_completed() that keeps us from entering the
 773     // retry loop.
 774     *bits |= 0x00020000;
 775     return false;
 776   }
 777 
 778   if (is_suspended) {
 779     *bits |= 0x00040000;
 780     return true;
 781   }
 782 
 783   for (int i = 1; i <= retries; i++) {
 784     *bits = reset_bits;  // reinit to only track last retry
 785 
 786     // We used to do an "os::yield_all(i)" call here with the intention
 787     // that yielding would increase on each retry. However, the parameter
 788     // is ignored on Linux which means the yield didn't scale up. Waiting
 789     // on the SR_lock below provides a much more predictable scale up for
 790     // the delay. It also provides a simple/direct point to check for any
 791     // safepoint requests from the VMThread
 792 
 793     {
 794       MutexLocker ml(SR_lock());
 795       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 796       // can also call this)  and increase delay with each retry
 797       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 798 
 799       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 800                                               delay, bits);
 801 
 802       // It is possible for the external suspend request to be cancelled
 803       // (by a resume) before the actual suspend operation is completed.
 804       // Refresh our local copy to see if we still need to wait.
 805       pending = is_external_suspend();
 806     }
 807 
 808     if (!pending) {
 809       // A cancelled suspend request is the only false return from
 810       // is_ext_suspend_completed() that keeps us from staying in the
 811       // retry loop.
 812       *bits |= 0x00080000;
 813       return false;
 814     }
 815 
 816     if (is_suspended) {
 817       *bits |= 0x00100000;
 818       return true;
 819     }
 820   } // end retry loop
 821 
 822   // thread did not suspend after all our retries
 823   *bits |= 0x00200000;
 824   return false;
 825 }
 826 
 827 // Called from API entry points which perform stack walking. If the
 828 // associated JavaThread is the current thread, then wait_for_suspend
 829 // is not used. Otherwise, it determines if we should wait for the
 830 // "other" thread to complete external suspension. (NOTE: in future
 831 // releases the suspension mechanism should be reimplemented so this
 832 // is not necessary.)
 833 //
 834 bool
 835 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 836   if (this != JavaThread::current()) {
 837     // "other" threads require special handling.
 838     if (wait_for_suspend) {
 839       // We are allowed to wait for the external suspend to complete
 840       // so give the other thread a chance to get suspended.
 841       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 842                                            SuspendRetryDelay, bits)) {
 843         // Didn't make it so let the caller know.
 844         return false;
 845       }
 846     }
 847     // We aren't allowed to wait for the external suspend to complete
 848     // so if the other thread isn't externally suspended we need to
 849     // let the caller know.
 850     else if (!is_ext_suspend_completed_with_lock(bits)) {
 851       return false;
 852     }
 853   }
 854 
 855   return true;
 856 }
 857 
 858 #ifndef PRODUCT
 859 void JavaThread::record_jump(address target, address instr, const char* file,
 860                              int line) {
 861 
 862   // This should not need to be atomic as the only way for simultaneous
 863   // updates is via interrupts. Even then this should be rare or non-existent
 864   // and we don't care that much anyway.
 865 
 866   int index = _jmp_ring_index;
 867   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 868   _jmp_ring[index]._target = (intptr_t) target;
 869   _jmp_ring[index]._instruction = (intptr_t) instr;
 870   _jmp_ring[index]._file = file;
 871   _jmp_ring[index]._line = line;
 872 }
 873 #endif // PRODUCT
 874 
 875 void Thread::interrupt(Thread* thread) {
 876   debug_only(check_for_dangling_thread_pointer(thread);)
 877   os::interrupt(thread);
 878 }
 879 
 880 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 881   debug_only(check_for_dangling_thread_pointer(thread);)
 882   // Note:  If clear_interrupted==false, this simply fetches and
 883   // returns the value of the field osthread()->interrupted().
 884   return os::is_interrupted(thread, clear_interrupted);
 885 }
 886 
 887 
 888 // GC Support
 889 bool Thread::claim_par_threads_do(uintx claim_token) {
 890   uintx token = _threads_do_token;
 891   if (token != claim_token) {
 892     uintx res = Atomic::cmpxchg(claim_token, &_threads_do_token, token);
 893     if (res == token) {
 894       return true;
 895     }
 896     guarantee(res == claim_token, "invariant");
 897   }
 898   return false;
 899 }
 900 
 901 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 902   active_handles()->oops_do(f);
 903   // Do oop for ThreadShadow
 904   f->do_oop((oop*)&_pending_exception);
 905   handle_area()->oops_do(f);
 906 
 907   // We scan thread local monitor lists here, and the remaining global
 908   // monitors in ObjectSynchronizer::oops_do().
 909   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 910 }
 911 
 912 void Thread::metadata_handles_do(void f(Metadata*)) {
 913   // Only walk the Handles in Thread.
 914   if (metadata_handles() != NULL) {
 915     for (int i = 0; i< metadata_handles()->length(); i++) {
 916       f(metadata_handles()->at(i));
 917     }
 918   }
 919 }
 920 
 921 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 922   // get_priority assumes osthread initialized
 923   if (osthread() != NULL) {
 924     int os_prio;
 925     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 926       st->print("os_prio=%d ", os_prio);
 927     }
 928 
 929     st->print("cpu=%.2fms ",
 930               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 931               );
 932     st->print("elapsed=%.2fs ",
 933               _statistical_info.getElapsedTime() / 1000.0
 934               );
 935     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 936       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 937       st->print("allocated=" SIZE_FORMAT "%s ",
 938                 byte_size_in_proper_unit(allocated_bytes),
 939                 proper_unit_for_byte_size(allocated_bytes)
 940                 );
 941       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 942     }
 943 
 944     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 945     osthread()->print_on(st);
 946   }
 947   ThreadsSMRSupport::print_info_on(this, st);
 948   st->print(" ");
 949   debug_only(if (WizardMode) print_owned_locks_on(st);)
 950 }
 951 
 952 // Thread::print_on_error() is called by fatal error handler. Don't use
 953 // any lock or allocate memory.
 954 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 955   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 956 
 957   if (is_VM_thread())                 { st->print("VMThread"); }
 958   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 959   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 960   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 961   else                                { st->print("Thread"); }
 962 
 963   if (is_Named_thread()) {
 964     st->print(" \"%s\"", name());
 965   }
 966 
 967   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 968             p2i(stack_end()), p2i(stack_base()));
 969 
 970   if (osthread()) {
 971     st->print(" [id=%d]", osthread()->thread_id());
 972   }
 973 
 974   ThreadsSMRSupport::print_info_on(this, st);
 975 }
 976 
 977 void Thread::print_value_on(outputStream* st) const {
 978   if (is_Named_thread()) {
 979     st->print(" \"%s\" ", name());
 980   }
 981   st->print(INTPTR_FORMAT, p2i(this));   // print address
 982 }
 983 
 984 #ifdef ASSERT
 985 void Thread::print_owned_locks_on(outputStream* st) const {
 986   Monitor *cur = _owned_locks;
 987   if (cur == NULL) {
 988     st->print(" (no locks) ");
 989   } else {
 990     st->print_cr(" Locks owned:");
 991     while (cur) {
 992       cur->print_on(st);
 993       cur = cur->next();
 994     }
 995   }
 996 }
 997 
 998 static int ref_use_count  = 0;
 999 
1000 bool Thread::owns_locks_but_compiled_lock() const {
1001   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
1002     if (cur != Compile_lock) return true;
1003   }
1004   return false;
1005 }
1006 
1007 
1008 #endif
1009 
1010 #ifndef PRODUCT
1011 
1012 // The flag: potential_vm_operation notifies if this particular safepoint state could potentially
1013 // invoke the vm-thread (e.g., an oop allocation). In that case, we also have to make sure that
1014 // no locks which allow_vm_block's are held
1015 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
1016   // Check if current thread is allowed to block at a safepoint
1017   if (!(_allow_safepoint_count == 0)) {
1018     fatal("Possible safepoint reached by thread that does not allow it");
1019   }
1020   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
1021     fatal("LEAF method calling lock?");
1022   }
1023 
1024 #ifdef ASSERT
1025   if (potential_vm_operation && is_Java_thread()
1026       && !Universe::is_bootstrapping()) {
1027     // Make sure we do not hold any locks that the VM thread also uses.
1028     // This could potentially lead to deadlocks
1029     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
1030       // Threads_lock is special, since the safepoint synchronization will not start before this is
1031       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
1032       // since it is used to transfer control between JavaThreads and the VMThread
1033       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
1034       if ((cur->allow_vm_block() &&
1035            cur != Threads_lock &&
1036            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
1037            cur != VMOperationRequest_lock &&
1038            cur != VMOperationQueue_lock) ||
1039            cur->rank() == Mutex::special) {
1040         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
1041       }
1042     }
1043   }
1044 
1045   if (GCALotAtAllSafepoints) {
1046     // We could enter a safepoint here and thus have a gc
1047     InterfaceSupport::check_gc_alot();
1048   }
1049 #endif
1050 }
1051 #endif
1052 
1053 bool Thread::is_in_stack(address adr) const {
1054   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1055   address end = os::current_stack_pointer();
1056   // Allow non Java threads to call this without stack_base
1057   if (_stack_base == NULL) return true;
1058   if (stack_base() >= adr && adr >= end) return true;
1059 
1060   return false;
1061 }
1062 
1063 bool Thread::is_in_usable_stack(address adr) const {
1064   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1065   size_t usable_stack_size = _stack_size - stack_guard_size;
1066 
1067   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1068 }
1069 
1070 
1071 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1072 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1073 // used for compilation in the future. If that change is made, the need for these methods
1074 // should be revisited, and they should be removed if possible.
1075 
1076 bool Thread::is_lock_owned(address adr) const {
1077   return on_local_stack(adr);
1078 }
1079 
1080 bool Thread::set_as_starting_thread() {
1081   assert(_starting_thread == NULL, "already initialized: "
1082          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1083   // NOTE: this must be called inside the main thread.
1084   DEBUG_ONLY(_starting_thread = this;)
1085   return os::create_main_thread((JavaThread*)this);
1086 }
1087 
1088 static void initialize_class(Symbol* class_name, TRAPS) {
1089   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1090   InstanceKlass::cast(klass)->initialize(CHECK);
1091 }
1092 
1093 
1094 // Creates the initial ThreadGroup
1095 static Handle create_initial_thread_group(TRAPS) {
1096   Handle system_instance = JavaCalls::construct_new_instance(
1097                             SystemDictionary::ThreadGroup_klass(),
1098                             vmSymbols::void_method_signature(),
1099                             CHECK_NH);
1100   Universe::set_system_thread_group(system_instance());
1101 
1102   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1103   Handle main_instance = JavaCalls::construct_new_instance(
1104                             SystemDictionary::ThreadGroup_klass(),
1105                             vmSymbols::threadgroup_string_void_signature(),
1106                             system_instance,
1107                             string,
1108                             CHECK_NH);
1109   return main_instance;
1110 }
1111 
1112 // Creates the initial Thread
1113 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1114                                  TRAPS) {
1115   InstanceKlass* ik = SystemDictionary::Thread_klass();
1116   assert(ik->is_initialized(), "must be");
1117   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1118 
1119   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1120   // constructor calls Thread.current(), which must be set here for the
1121   // initial thread.
1122   java_lang_Thread::set_thread(thread_oop(), thread);
1123   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1124   thread->set_threadObj(thread_oop());
1125 
1126   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1127 
1128   JavaValue result(T_VOID);
1129   JavaCalls::call_special(&result, thread_oop,
1130                           ik,
1131                           vmSymbols::object_initializer_name(),
1132                           vmSymbols::threadgroup_string_void_signature(),
1133                           thread_group,
1134                           string,
1135                           CHECK_NULL);
1136   return thread_oop();
1137 }
1138 
1139 char java_runtime_name[128] = "";
1140 char java_runtime_version[128] = "";
1141 
1142 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1143 static const char* get_java_runtime_name(TRAPS) {
1144   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1145                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1146   fieldDescriptor fd;
1147   bool found = k != NULL &&
1148                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1149                                                         vmSymbols::string_signature(), &fd);
1150   if (found) {
1151     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1152     if (name_oop == NULL) {
1153       return NULL;
1154     }
1155     const char* name = java_lang_String::as_utf8_string(name_oop,
1156                                                         java_runtime_name,
1157                                                         sizeof(java_runtime_name));
1158     return name;
1159   } else {
1160     return NULL;
1161   }
1162 }
1163 
1164 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1165 static const char* get_java_runtime_version(TRAPS) {
1166   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1167                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1168   fieldDescriptor fd;
1169   bool found = k != NULL &&
1170                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1171                                                         vmSymbols::string_signature(), &fd);
1172   if (found) {
1173     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1174     if (name_oop == NULL) {
1175       return NULL;
1176     }
1177     const char* name = java_lang_String::as_utf8_string(name_oop,
1178                                                         java_runtime_version,
1179                                                         sizeof(java_runtime_version));
1180     return name;
1181   } else {
1182     return NULL;
1183   }
1184 }
1185 
1186 // General purpose hook into Java code, run once when the VM is initialized.
1187 // The Java library method itself may be changed independently from the VM.
1188 static void call_postVMInitHook(TRAPS) {
1189   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1190   if (klass != NULL) {
1191     JavaValue result(T_VOID);
1192     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1193                            vmSymbols::void_method_signature(),
1194                            CHECK);
1195   }
1196 }
1197 
1198 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1199                                     bool daemon, TRAPS) {
1200   assert(thread_group.not_null(), "thread group should be specified");
1201   assert(threadObj() == NULL, "should only create Java thread object once");
1202 
1203   InstanceKlass* ik = SystemDictionary::Thread_klass();
1204   assert(ik->is_initialized(), "must be");
1205   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1206 
1207   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1208   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1209   // constructor calls Thread.current(), which must be set here.
1210   java_lang_Thread::set_thread(thread_oop(), this);
1211   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1212   set_threadObj(thread_oop());
1213 
1214   JavaValue result(T_VOID);
1215   if (thread_name != NULL) {
1216     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1217     // Thread gets assigned specified name and null target
1218     JavaCalls::call_special(&result,
1219                             thread_oop,
1220                             ik,
1221                             vmSymbols::object_initializer_name(),
1222                             vmSymbols::threadgroup_string_void_signature(),
1223                             thread_group,
1224                             name,
1225                             THREAD);
1226   } else {
1227     // Thread gets assigned name "Thread-nnn" and null target
1228     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1229     JavaCalls::call_special(&result,
1230                             thread_oop,
1231                             ik,
1232                             vmSymbols::object_initializer_name(),
1233                             vmSymbols::threadgroup_runnable_void_signature(),
1234                             thread_group,
1235                             Handle(),
1236                             THREAD);
1237   }
1238 
1239 
1240   if (daemon) {
1241     java_lang_Thread::set_daemon(thread_oop());
1242   }
1243 
1244   if (HAS_PENDING_EXCEPTION) {
1245     return;
1246   }
1247 
1248   Klass* group =  SystemDictionary::ThreadGroup_klass();
1249   Handle threadObj(THREAD, this->threadObj());
1250 
1251   JavaCalls::call_special(&result,
1252                           thread_group,
1253                           group,
1254                           vmSymbols::add_method_name(),
1255                           vmSymbols::thread_void_signature(),
1256                           threadObj,          // Arg 1
1257                           THREAD);
1258 }
1259 
1260 // List of all NonJavaThreads and safe iteration over that list.
1261 
1262 class NonJavaThread::List {
1263 public:
1264   NonJavaThread* volatile _head;
1265   SingleWriterSynchronizer _protect;
1266 
1267   List() : _head(NULL), _protect() {}
1268 };
1269 
1270 NonJavaThread::List NonJavaThread::_the_list;
1271 
1272 NonJavaThread::Iterator::Iterator() :
1273   _protect_enter(_the_list._protect.enter()),
1274   _current(OrderAccess::load_acquire(&_the_list._head))
1275 {}
1276 
1277 NonJavaThread::Iterator::~Iterator() {
1278   _the_list._protect.exit(_protect_enter);
1279 }
1280 
1281 void NonJavaThread::Iterator::step() {
1282   assert(!end(), "precondition");
1283   _current = OrderAccess::load_acquire(&_current->_next);
1284 }
1285 
1286 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1287   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1288 }
1289 
1290 NonJavaThread::~NonJavaThread() { }
1291 
1292 void NonJavaThread::add_to_the_list() {
1293   MutexLockerEx ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1294   // Initialize BarrierSet-related data before adding to list.
1295   BarrierSet::barrier_set()->on_thread_attach(this);
1296   OrderAccess::release_store(&_next, _the_list._head);
1297   OrderAccess::release_store(&_the_list._head, this);
1298 }
1299 
1300 void NonJavaThread::remove_from_the_list() {
1301   {
1302     MutexLockerEx ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1303     // Cleanup BarrierSet-related data before removing from list.
1304     BarrierSet::barrier_set()->on_thread_detach(this);
1305     NonJavaThread* volatile* p = &_the_list._head;
1306     for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1307       if (t == this) {
1308         *p = _next;
1309         break;
1310       }
1311     }
1312   }
1313   // Wait for any in-progress iterators.  Concurrent synchronize is not
1314   // allowed, so do it while holding a dedicated lock.  Outside and distinct
1315   // from NJTList_lock in case an iteration attempts to lock it.
1316   MutexLockerEx ml(NonJavaThreadsListSync_lock, Mutex::_no_safepoint_check_flag);
1317   _the_list._protect.synchronize();
1318   _next = NULL;                 // Safe to drop the link now.
1319 }
1320 
1321 void NonJavaThread::pre_run() {
1322   add_to_the_list();
1323 
1324   // This is slightly odd in that NamedThread is a subclass, but
1325   // in fact name() is defined in Thread
1326   assert(this->name() != NULL, "thread name was not set before it was started");
1327   this->set_native_thread_name(this->name());
1328 }
1329 
1330 void NonJavaThread::post_run() {
1331   JFR_ONLY(Jfr::on_thread_exit(this);)
1332   remove_from_the_list();
1333   // Ensure thread-local-storage is cleared before termination.
1334   Thread::clear_thread_current();
1335 }
1336 
1337 // NamedThread --  non-JavaThread subclasses with multiple
1338 // uniquely named instances should derive from this.
1339 NamedThread::NamedThread() :
1340   NonJavaThread(),
1341   _name(NULL),
1342   _processed_thread(NULL),
1343   _gc_id(GCId::undefined())
1344 {}
1345 
1346 NamedThread::~NamedThread() {
1347   if (_name != NULL) {
1348     FREE_C_HEAP_ARRAY(char, _name);
1349     _name = NULL;
1350   }
1351 }
1352 
1353 void NamedThread::set_name(const char* format, ...) {
1354   guarantee(_name == NULL, "Only get to set name once.");
1355   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1356   guarantee(_name != NULL, "alloc failure");
1357   va_list ap;
1358   va_start(ap, format);
1359   jio_vsnprintf(_name, max_name_len, format, ap);
1360   va_end(ap);
1361 }
1362 
1363 void NamedThread::print_on(outputStream* st) const {
1364   st->print("\"%s\" ", name());
1365   Thread::print_on(st);
1366   st->cr();
1367 }
1368 
1369 
1370 // ======= WatcherThread ========
1371 
1372 // The watcher thread exists to simulate timer interrupts.  It should
1373 // be replaced by an abstraction over whatever native support for
1374 // timer interrupts exists on the platform.
1375 
1376 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1377 bool WatcherThread::_startable = false;
1378 volatile bool  WatcherThread::_should_terminate = false;
1379 
1380 WatcherThread::WatcherThread() : NonJavaThread() {
1381   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1382   if (os::create_thread(this, os::watcher_thread)) {
1383     _watcher_thread = this;
1384 
1385     // Set the watcher thread to the highest OS priority which should not be
1386     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1387     // is created. The only normal thread using this priority is the reference
1388     // handler thread, which runs for very short intervals only.
1389     // If the VMThread's priority is not lower than the WatcherThread profiling
1390     // will be inaccurate.
1391     os::set_priority(this, MaxPriority);
1392     if (!DisableStartThread) {
1393       os::start_thread(this);
1394     }
1395   }
1396 }
1397 
1398 int WatcherThread::sleep() const {
1399   // The WatcherThread does not participate in the safepoint protocol
1400   // for the PeriodicTask_lock because it is not a JavaThread.
1401   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1402 
1403   if (_should_terminate) {
1404     // check for termination before we do any housekeeping or wait
1405     return 0;  // we did not sleep.
1406   }
1407 
1408   // remaining will be zero if there are no tasks,
1409   // causing the WatcherThread to sleep until a task is
1410   // enrolled
1411   int remaining = PeriodicTask::time_to_wait();
1412   int time_slept = 0;
1413 
1414   // we expect this to timeout - we only ever get unparked when
1415   // we should terminate or when a new task has been enrolled
1416   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1417 
1418   jlong time_before_loop = os::javaTimeNanos();
1419 
1420   while (true) {
1421     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1422                                             remaining);
1423     jlong now = os::javaTimeNanos();
1424 
1425     if (remaining == 0) {
1426       // if we didn't have any tasks we could have waited for a long time
1427       // consider the time_slept zero and reset time_before_loop
1428       time_slept = 0;
1429       time_before_loop = now;
1430     } else {
1431       // need to recalculate since we might have new tasks in _tasks
1432       time_slept = (int) ((now - time_before_loop) / 1000000);
1433     }
1434 
1435     // Change to task list or spurious wakeup of some kind
1436     if (timedout || _should_terminate) {
1437       break;
1438     }
1439 
1440     remaining = PeriodicTask::time_to_wait();
1441     if (remaining == 0) {
1442       // Last task was just disenrolled so loop around and wait until
1443       // another task gets enrolled
1444       continue;
1445     }
1446 
1447     remaining -= time_slept;
1448     if (remaining <= 0) {
1449       break;
1450     }
1451   }
1452 
1453   return time_slept;
1454 }
1455 
1456 void WatcherThread::run() {
1457   assert(this == watcher_thread(), "just checking");
1458 
1459   this->set_active_handles(JNIHandleBlock::allocate_block());
1460   while (true) {
1461     assert(watcher_thread() == Thread::current(), "thread consistency check");
1462     assert(watcher_thread() == this, "thread consistency check");
1463 
1464     // Calculate how long it'll be until the next PeriodicTask work
1465     // should be done, and sleep that amount of time.
1466     int time_waited = sleep();
1467 
1468     if (VMError::is_error_reported()) {
1469       // A fatal error has happened, the error handler(VMError::report_and_die)
1470       // should abort JVM after creating an error log file. However in some
1471       // rare cases, the error handler itself might deadlock. Here periodically
1472       // check for error reporting timeouts, and if it happens, just proceed to
1473       // abort the VM.
1474 
1475       // This code is in WatcherThread because WatcherThread wakes up
1476       // periodically so the fatal error handler doesn't need to do anything;
1477       // also because the WatcherThread is less likely to crash than other
1478       // threads.
1479 
1480       for (;;) {
1481         // Note: we use naked sleep in this loop because we want to avoid using
1482         // any kind of VM infrastructure which may be broken at this point.
1483         if (VMError::check_timeout()) {
1484           // We hit error reporting timeout. Error reporting was interrupted and
1485           // will be wrapping things up now (closing files etc). Give it some more
1486           // time, then quit the VM.
1487           os::naked_short_sleep(200);
1488           // Print a message to stderr.
1489           fdStream err(defaultStream::output_fd());
1490           err.print_raw_cr("# [ timer expired, abort... ]");
1491           // skip atexit/vm_exit/vm_abort hooks
1492           os::die();
1493         }
1494 
1495         // Wait a second, then recheck for timeout.
1496         os::naked_short_sleep(999);
1497       }
1498     }
1499 
1500     if (_should_terminate) {
1501       // check for termination before posting the next tick
1502       break;
1503     }
1504 
1505     PeriodicTask::real_time_tick(time_waited);
1506   }
1507 
1508   // Signal that it is terminated
1509   {
1510     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1511     _watcher_thread = NULL;
1512     Terminator_lock->notify_all();
1513   }
1514 }
1515 
1516 void WatcherThread::start() {
1517   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1518 
1519   if (watcher_thread() == NULL && _startable) {
1520     _should_terminate = false;
1521     // Create the single instance of WatcherThread
1522     new WatcherThread();
1523   }
1524 }
1525 
1526 void WatcherThread::make_startable() {
1527   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1528   _startable = true;
1529 }
1530 
1531 void WatcherThread::stop() {
1532   {
1533     // Follow normal safepoint aware lock enter protocol since the
1534     // WatcherThread is stopped by another JavaThread.
1535     MutexLocker ml(PeriodicTask_lock);
1536     _should_terminate = true;
1537 
1538     WatcherThread* watcher = watcher_thread();
1539     if (watcher != NULL) {
1540       // unpark the WatcherThread so it can see that it should terminate
1541       watcher->unpark();
1542     }
1543   }
1544 
1545   MutexLocker mu(Terminator_lock);
1546 
1547   while (watcher_thread() != NULL) {
1548     // This wait should make safepoint checks, wait without a timeout,
1549     // and wait as a suspend-equivalent condition.
1550     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1551                           Mutex::_as_suspend_equivalent_flag);
1552   }
1553 }
1554 
1555 void WatcherThread::unpark() {
1556   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1557   PeriodicTask_lock->notify();
1558 }
1559 
1560 void WatcherThread::print_on(outputStream* st) const {
1561   st->print("\"%s\" ", name());
1562   Thread::print_on(st);
1563   st->cr();
1564 }
1565 
1566 // ======= JavaThread ========
1567 
1568 #if INCLUDE_JVMCI
1569 
1570 jlong* JavaThread::_jvmci_old_thread_counters;
1571 
1572 bool jvmci_counters_include(JavaThread* thread) {
1573   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1574 }
1575 
1576 void JavaThread::collect_counters(typeArrayOop array) {
1577   if (JVMCICounterSize > 0) {
1578     JavaThreadIteratorWithHandle jtiwh;
1579     for (int i = 0; i < array->length(); i++) {
1580       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1581     }
1582     for (; JavaThread *tp = jtiwh.next(); ) {
1583       if (jvmci_counters_include(tp)) {
1584         for (int i = 0; i < array->length(); i++) {
1585           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1586         }
1587       }
1588     }
1589   }
1590 }
1591 
1592 #endif // INCLUDE_JVMCI
1593 
1594 // A JavaThread is a normal Java thread
1595 
1596 void JavaThread::initialize() {
1597   // Initialize fields
1598 
1599   set_saved_exception_pc(NULL);
1600   set_threadObj(NULL);
1601   _anchor.clear();
1602   set_entry_point(NULL);
1603   set_jni_functions(jni_functions());
1604   set_callee_target(NULL);
1605   set_vm_result(NULL);
1606   set_vm_result_2(NULL);
1607   set_vframe_array_head(NULL);
1608   set_vframe_array_last(NULL);
1609   set_deferred_locals(NULL);
1610   set_deopt_mark(NULL);
1611   set_deopt_compiled_method(NULL);
1612   clear_must_deopt_id();
1613   set_monitor_chunks(NULL);
1614   set_next(NULL);
1615   _on_thread_list = false;
1616   set_thread_state(_thread_new);
1617   _terminated = _not_terminated;
1618   _array_for_gc = NULL;
1619   _suspend_equivalent = false;
1620   _in_deopt_handler = 0;
1621   _doing_unsafe_access = false;
1622   _stack_guard_state = stack_guard_unused;
1623 #if INCLUDE_JVMCI
1624   _pending_monitorenter = false;
1625   _pending_deoptimization = -1;
1626   _pending_failed_speculation = 0;
1627   _pending_transfer_to_interpreter = false;
1628   _adjusting_comp_level = false;
1629   _in_retryable_allocation = false;
1630   _jvmci._alternate_call_target = NULL;
1631   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1632   if (JVMCICounterSize > 0) {
1633     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1634     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1635   } else {
1636     _jvmci_counters = NULL;
1637   }
1638 #endif // INCLUDE_JVMCI
1639   _reserved_stack_activation = NULL;  // stack base not known yet
1640   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1641   _exception_pc  = 0;
1642   _exception_handler_pc = 0;
1643   _is_method_handle_return = 0;
1644   _jvmti_thread_state= NULL;
1645   _should_post_on_exceptions_flag = JNI_FALSE;
1646   _interp_only_mode    = 0;
1647   _special_runtime_exit_condition = _no_async_condition;
1648   _pending_async_exception = NULL;
1649   _thread_stat = NULL;
1650   _thread_stat = new ThreadStatistics();
1651   _blocked_on_compilation = false;
1652   _jni_active_critical = 0;
1653   _pending_jni_exception_check_fn = NULL;
1654   _do_not_unlock_if_synchronized = false;
1655   _cached_monitor_info = NULL;
1656   _parker = Parker::Allocate(this);
1657 
1658 #ifndef PRODUCT
1659   _jmp_ring_index = 0;
1660   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1661     record_jump(NULL, NULL, NULL, 0);
1662   }
1663 #endif // PRODUCT
1664 
1665   // Setup safepoint state info for this thread
1666   ThreadSafepointState::create(this);
1667 
1668   debug_only(_java_call_counter = 0);
1669 
1670   // JVMTI PopFrame support
1671   _popframe_condition = popframe_inactive;
1672   _popframe_preserved_args = NULL;
1673   _popframe_preserved_args_size = 0;
1674   _frames_to_pop_failed_realloc = 0;
1675 
1676   if (SafepointMechanism::uses_thread_local_poll()) {
1677     SafepointMechanism::initialize_header(this);
1678   }
1679 
1680   _class_to_be_initialized = NULL;
1681 
1682   pd_initialize();
1683 }
1684 
1685 JavaThread::JavaThread(bool is_attaching_via_jni) :
1686                        Thread() {
1687   initialize();
1688   if (is_attaching_via_jni) {
1689     _jni_attach_state = _attaching_via_jni;
1690   } else {
1691     _jni_attach_state = _not_attaching_via_jni;
1692   }
1693   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1694 }
1695 
1696 bool JavaThread::reguard_stack(address cur_sp) {
1697   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1698       && _stack_guard_state != stack_guard_reserved_disabled) {
1699     return true; // Stack already guarded or guard pages not needed.
1700   }
1701 
1702   if (register_stack_overflow()) {
1703     // For those architectures which have separate register and
1704     // memory stacks, we must check the register stack to see if
1705     // it has overflowed.
1706     return false;
1707   }
1708 
1709   // Java code never executes within the yellow zone: the latter is only
1710   // there to provoke an exception during stack banging.  If java code
1711   // is executing there, either StackShadowPages should be larger, or
1712   // some exception code in c1, c2 or the interpreter isn't unwinding
1713   // when it should.
1714   guarantee(cur_sp > stack_reserved_zone_base(),
1715             "not enough space to reguard - increase StackShadowPages");
1716   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1717     enable_stack_yellow_reserved_zone();
1718     if (reserved_stack_activation() != stack_base()) {
1719       set_reserved_stack_activation(stack_base());
1720     }
1721   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1722     set_reserved_stack_activation(stack_base());
1723     enable_stack_reserved_zone();
1724   }
1725   return true;
1726 }
1727 
1728 bool JavaThread::reguard_stack(void) {
1729   return reguard_stack(os::current_stack_pointer());
1730 }
1731 
1732 
1733 void JavaThread::block_if_vm_exited() {
1734   if (_terminated == _vm_exited) {
1735     // _vm_exited is set at safepoint, and Threads_lock is never released
1736     // we will block here forever
1737     Threads_lock->lock_without_safepoint_check();
1738     ShouldNotReachHere();
1739   }
1740 }
1741 
1742 
1743 // Remove this ifdef when C1 is ported to the compiler interface.
1744 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1745 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1746 
1747 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1748                        Thread() {
1749   initialize();
1750   _jni_attach_state = _not_attaching_via_jni;
1751   set_entry_point(entry_point);
1752   // Create the native thread itself.
1753   // %note runtime_23
1754   os::ThreadType thr_type = os::java_thread;
1755   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1756                                                      os::java_thread;
1757   os::create_thread(this, thr_type, stack_sz);
1758   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1759   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1760   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1761   // the exception consists of creating the exception object & initializing it, initialization
1762   // will leave the VM via a JavaCall and then all locks must be unlocked).
1763   //
1764   // The thread is still suspended when we reach here. Thread must be explicit started
1765   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1766   // by calling Threads:add. The reason why this is not done here, is because the thread
1767   // object must be fully initialized (take a look at JVM_Start)
1768 }
1769 
1770 JavaThread::~JavaThread() {
1771 
1772   // JSR166 -- return the parker to the free list
1773   Parker::Release(_parker);
1774   _parker = NULL;
1775 
1776   // Free any remaining  previous UnrollBlock
1777   vframeArray* old_array = vframe_array_last();
1778 
1779   if (old_array != NULL) {
1780     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1781     old_array->set_unroll_block(NULL);
1782     delete old_info;
1783     delete old_array;
1784   }
1785 
1786   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1787   if (deferred != NULL) {
1788     // This can only happen if thread is destroyed before deoptimization occurs.
1789     assert(deferred->length() != 0, "empty array!");
1790     do {
1791       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1792       deferred->remove_at(0);
1793       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1794       delete dlv;
1795     } while (deferred->length() != 0);
1796     delete deferred;
1797   }
1798 
1799   // All Java related clean up happens in exit
1800   ThreadSafepointState::destroy(this);
1801   if (_thread_stat != NULL) delete _thread_stat;
1802 
1803 #if INCLUDE_JVMCI
1804   if (JVMCICounterSize > 0) {
1805     if (jvmci_counters_include(this)) {
1806       for (int i = 0; i < JVMCICounterSize; i++) {
1807         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1808       }
1809     }
1810     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1811   }
1812 #endif // INCLUDE_JVMCI
1813 }
1814 
1815 
1816 // First JavaThread specific code executed by a new Java thread.
1817 void JavaThread::pre_run() {
1818   // empty - see comments in run()
1819 }
1820 
1821 // The main routine called by a new Java thread. This isn't overridden
1822 // by subclasses, instead different subclasses define a different "entry_point"
1823 // which defines the actual logic for that kind of thread.
1824 void JavaThread::run() {
1825   // initialize thread-local alloc buffer related fields
1826   this->initialize_tlab();
1827 
1828   // Used to test validity of stack trace backs.
1829   // This can't be moved into pre_run() else we invalidate
1830   // the requirement that thread_main_inner is lower on
1831   // the stack. Consequently all the initialization logic
1832   // stays here in run() rather than pre_run().
1833   this->record_base_of_stack_pointer();
1834 
1835   this->create_stack_guard_pages();
1836 
1837   this->cache_global_variables();
1838 
1839   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1840   // in the VM. Change thread state from _thread_new to _thread_in_vm
1841   ThreadStateTransition::transition(this, _thread_new, _thread_in_vm);
1842   // Before a thread is on the threads list it is always safe, so after leaving the
1843   // _thread_new we should emit a instruction barrier. The distance to modified code
1844   // from here is probably far enough, but this is consistent and safe.
1845   OrderAccess::cross_modify_fence();
1846 
1847   assert(JavaThread::current() == this, "sanity check");
1848   assert(!Thread::current()->owns_locks(), "sanity check");
1849 
1850   DTRACE_THREAD_PROBE(start, this);
1851 
1852   // This operation might block. We call that after all safepoint checks for a new thread has
1853   // been completed.
1854   this->set_active_handles(JNIHandleBlock::allocate_block());
1855 
1856   if (JvmtiExport::should_post_thread_life()) {
1857     JvmtiExport::post_thread_start(this);
1858 
1859   }
1860 
1861   // We call another function to do the rest so we are sure that the stack addresses used
1862   // from there will be lower than the stack base just computed.
1863   thread_main_inner();
1864 }
1865 
1866 void JavaThread::thread_main_inner() {
1867   assert(JavaThread::current() == this, "sanity check");
1868   assert(this->threadObj() != NULL, "just checking");
1869 
1870   // Execute thread entry point unless this thread has a pending exception
1871   // or has been stopped before starting.
1872   // Note: Due to JVM_StopThread we can have pending exceptions already!
1873   if (!this->has_pending_exception() &&
1874       !java_lang_Thread::is_stillborn(this->threadObj())) {
1875     {
1876       ResourceMark rm(this);
1877       this->set_native_thread_name(this->get_thread_name());
1878     }
1879     HandleMark hm(this);
1880     this->entry_point()(this, this);
1881   }
1882 
1883   DTRACE_THREAD_PROBE(stop, this);
1884 
1885   // Cleanup is handled in post_run()
1886 }
1887 
1888 // Shared teardown for all JavaThreads
1889 void JavaThread::post_run() {
1890   this->exit(false);
1891   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1892   // for any shared tear-down.
1893   this->smr_delete();
1894 }
1895 
1896 static void ensure_join(JavaThread* thread) {
1897   // We do not need to grab the Threads_lock, since we are operating on ourself.
1898   Handle threadObj(thread, thread->threadObj());
1899   assert(threadObj.not_null(), "java thread object must exist");
1900   ObjectLocker lock(threadObj, thread);
1901   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1902   thread->clear_pending_exception();
1903   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1904   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1905   // Clear the native thread instance - this makes isAlive return false and allows the join()
1906   // to complete once we've done the notify_all below
1907   java_lang_Thread::set_thread(threadObj(), NULL);
1908   lock.notify_all(thread);
1909   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1910   thread->clear_pending_exception();
1911 }
1912 
1913 static bool is_daemon(oop threadObj) {
1914   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
1915 }
1916 
1917 // For any new cleanup additions, please check to see if they need to be applied to
1918 // cleanup_failed_attach_current_thread as well.
1919 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1920   assert(this == JavaThread::current(), "thread consistency check");
1921 
1922   elapsedTimer _timer_exit_phase1;
1923   elapsedTimer _timer_exit_phase2;
1924   elapsedTimer _timer_exit_phase3;
1925   elapsedTimer _timer_exit_phase4;
1926 
1927   if (log_is_enabled(Debug, os, thread, timer)) {
1928     _timer_exit_phase1.start();
1929   }
1930 
1931   HandleMark hm(this);
1932   Handle uncaught_exception(this, this->pending_exception());
1933   this->clear_pending_exception();
1934   Handle threadObj(this, this->threadObj());
1935   assert(threadObj.not_null(), "Java thread object should be created");
1936 
1937   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1938   {
1939     EXCEPTION_MARK;
1940 
1941     CLEAR_PENDING_EXCEPTION;
1942   }
1943   if (!destroy_vm) {
1944     if (uncaught_exception.not_null()) {
1945       EXCEPTION_MARK;
1946       // Call method Thread.dispatchUncaughtException().
1947       Klass* thread_klass = SystemDictionary::Thread_klass();
1948       JavaValue result(T_VOID);
1949       JavaCalls::call_virtual(&result,
1950                               threadObj, thread_klass,
1951                               vmSymbols::dispatchUncaughtException_name(),
1952                               vmSymbols::throwable_void_signature(),
1953                               uncaught_exception,
1954                               THREAD);
1955       if (HAS_PENDING_EXCEPTION) {
1956         ResourceMark rm(this);
1957         jio_fprintf(defaultStream::error_stream(),
1958                     "\nException: %s thrown from the UncaughtExceptionHandler"
1959                     " in thread \"%s\"\n",
1960                     pending_exception()->klass()->external_name(),
1961                     get_thread_name());
1962         CLEAR_PENDING_EXCEPTION;
1963       }
1964     }
1965     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
1966 
1967     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1968     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1969     // is deprecated anyhow.
1970     if (!is_Compiler_thread()) {
1971       int count = 3;
1972       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1973         EXCEPTION_MARK;
1974         JavaValue result(T_VOID);
1975         Klass* thread_klass = SystemDictionary::Thread_klass();
1976         JavaCalls::call_virtual(&result,
1977                                 threadObj, thread_klass,
1978                                 vmSymbols::exit_method_name(),
1979                                 vmSymbols::void_method_signature(),
1980                                 THREAD);
1981         CLEAR_PENDING_EXCEPTION;
1982       }
1983     }
1984     // notify JVMTI
1985     if (JvmtiExport::should_post_thread_life()) {
1986       JvmtiExport::post_thread_end(this);
1987     }
1988 
1989     // We have notified the agents that we are exiting, before we go on,
1990     // we must check for a pending external suspend request and honor it
1991     // in order to not surprise the thread that made the suspend request.
1992     while (true) {
1993       {
1994         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1995         if (!is_external_suspend()) {
1996           set_terminated(_thread_exiting);
1997           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
1998           break;
1999         }
2000         // Implied else:
2001         // Things get a little tricky here. We have a pending external
2002         // suspend request, but we are holding the SR_lock so we
2003         // can't just self-suspend. So we temporarily drop the lock
2004         // and then self-suspend.
2005       }
2006 
2007       ThreadBlockInVM tbivm(this);
2008       java_suspend_self();
2009 
2010       // We're done with this suspend request, but we have to loop around
2011       // and check again. Eventually we will get SR_lock without a pending
2012       // external suspend request and will be able to mark ourselves as
2013       // exiting.
2014     }
2015     // no more external suspends are allowed at this point
2016   } else {
2017     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2018     // before_exit() has already posted JVMTI THREAD_END events
2019   }
2020 
2021   if (log_is_enabled(Debug, os, thread, timer)) {
2022     _timer_exit_phase1.stop();
2023     _timer_exit_phase2.start();
2024   }
2025 
2026   // Capture daemon status before the thread is marked as terminated.
2027   bool daemon = is_daemon(threadObj());
2028 
2029   // Notify waiters on thread object. This has to be done after exit() is called
2030   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2031   // group should have the destroyed bit set before waiters are notified).
2032   ensure_join(this);
2033   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2034 
2035   if (log_is_enabled(Debug, os, thread, timer)) {
2036     _timer_exit_phase2.stop();
2037     _timer_exit_phase3.start();
2038   }
2039   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2040   // held by this thread must be released. The spec does not distinguish
2041   // between JNI-acquired and regular Java monitors. We can only see
2042   // regular Java monitors here if monitor enter-exit matching is broken.
2043   //
2044   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2045   // ObjectSynchronizer::release_monitors_owned_by_thread().
2046   if (exit_type == jni_detach) {
2047     // Sanity check even though JNI DetachCurrentThread() would have
2048     // returned JNI_ERR if there was a Java frame. JavaThread exit
2049     // should be done executing Java code by the time we get here.
2050     assert(!this->has_last_Java_frame(),
2051            "should not have a Java frame when detaching or exiting");
2052     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2053     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2054   }
2055 
2056   // These things needs to be done while we are still a Java Thread. Make sure that thread
2057   // is in a consistent state, in case GC happens
2058   JFR_ONLY(Jfr::on_thread_exit(this);)
2059 
2060   if (active_handles() != NULL) {
2061     JNIHandleBlock* block = active_handles();
2062     set_active_handles(NULL);
2063     JNIHandleBlock::release_block(block);
2064   }
2065 
2066   if (free_handle_block() != NULL) {
2067     JNIHandleBlock* block = free_handle_block();
2068     set_free_handle_block(NULL);
2069     JNIHandleBlock::release_block(block);
2070   }
2071 
2072   // These have to be removed while this is still a valid thread.
2073   remove_stack_guard_pages();
2074 
2075   if (UseTLAB) {
2076     tlab().retire();
2077   }
2078 
2079   if (JvmtiEnv::environments_might_exist()) {
2080     JvmtiExport::cleanup_thread(this);
2081   }
2082 
2083   // We must flush any deferred card marks and other various GC barrier
2084   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2085   // before removing a thread from the list of active threads.
2086   BarrierSet::barrier_set()->on_thread_detach(this);
2087 
2088   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2089     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2090     os::current_thread_id());
2091 
2092   if (log_is_enabled(Debug, os, thread, timer)) {
2093     _timer_exit_phase3.stop();
2094     _timer_exit_phase4.start();
2095   }
2096   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2097   Threads::remove(this, daemon);
2098 
2099   if (log_is_enabled(Debug, os, thread, timer)) {
2100     _timer_exit_phase4.stop();
2101     ResourceMark rm(this);
2102     log_debug(os, thread, timer)("name='%s'"
2103                                  ", exit-phase1=" JLONG_FORMAT
2104                                  ", exit-phase2=" JLONG_FORMAT
2105                                  ", exit-phase3=" JLONG_FORMAT
2106                                  ", exit-phase4=" JLONG_FORMAT,
2107                                  get_thread_name(),
2108                                  _timer_exit_phase1.milliseconds(),
2109                                  _timer_exit_phase2.milliseconds(),
2110                                  _timer_exit_phase3.milliseconds(),
2111                                  _timer_exit_phase4.milliseconds());
2112   }
2113 }
2114 
2115 void JavaThread::cleanup_failed_attach_current_thread(bool is_daemon) {
2116   if (active_handles() != NULL) {
2117     JNIHandleBlock* block = active_handles();
2118     set_active_handles(NULL);
2119     JNIHandleBlock::release_block(block);
2120   }
2121 
2122   if (free_handle_block() != NULL) {
2123     JNIHandleBlock* block = free_handle_block();
2124     set_free_handle_block(NULL);
2125     JNIHandleBlock::release_block(block);
2126   }
2127 
2128   // These have to be removed while this is still a valid thread.
2129   remove_stack_guard_pages();
2130 
2131   if (UseTLAB) {
2132     tlab().retire();
2133   }
2134 
2135   BarrierSet::barrier_set()->on_thread_detach(this);
2136 
2137   Threads::remove(this, is_daemon);
2138   this->smr_delete();
2139 }
2140 
2141 JavaThread* JavaThread::active() {
2142   Thread* thread = Thread::current();
2143   if (thread->is_Java_thread()) {
2144     return (JavaThread*) thread;
2145   } else {
2146     assert(thread->is_VM_thread(), "this must be a vm thread");
2147     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2148     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2149     assert(ret->is_Java_thread(), "must be a Java thread");
2150     return ret;
2151   }
2152 }
2153 
2154 bool JavaThread::is_lock_owned(address adr) const {
2155   if (Thread::is_lock_owned(adr)) return true;
2156 
2157   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2158     if (chunk->contains(adr)) return true;
2159   }
2160 
2161   return false;
2162 }
2163 
2164 
2165 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2166   chunk->set_next(monitor_chunks());
2167   set_monitor_chunks(chunk);
2168 }
2169 
2170 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2171   guarantee(monitor_chunks() != NULL, "must be non empty");
2172   if (monitor_chunks() == chunk) {
2173     set_monitor_chunks(chunk->next());
2174   } else {
2175     MonitorChunk* prev = monitor_chunks();
2176     while (prev->next() != chunk) prev = prev->next();
2177     prev->set_next(chunk->next());
2178   }
2179 }
2180 
2181 // JVM support.
2182 
2183 // Note: this function shouldn't block if it's called in
2184 // _thread_in_native_trans state (such as from
2185 // check_special_condition_for_native_trans()).
2186 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2187 
2188   if (has_last_Java_frame() && has_async_condition()) {
2189     // If we are at a polling page safepoint (not a poll return)
2190     // then we must defer async exception because live registers
2191     // will be clobbered by the exception path. Poll return is
2192     // ok because the call we a returning from already collides
2193     // with exception handling registers and so there is no issue.
2194     // (The exception handling path kills call result registers but
2195     //  this is ok since the exception kills the result anyway).
2196 
2197     if (is_at_poll_safepoint()) {
2198       // if the code we are returning to has deoptimized we must defer
2199       // the exception otherwise live registers get clobbered on the
2200       // exception path before deoptimization is able to retrieve them.
2201       //
2202       RegisterMap map(this, false);
2203       frame caller_fr = last_frame().sender(&map);
2204       assert(caller_fr.is_compiled_frame(), "what?");
2205       if (caller_fr.is_deoptimized_frame()) {
2206         log_info(exceptions)("deferred async exception at compiled safepoint");
2207         return;
2208       }
2209     }
2210   }
2211 
2212   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2213   if (condition == _no_async_condition) {
2214     // Conditions have changed since has_special_runtime_exit_condition()
2215     // was called:
2216     // - if we were here only because of an external suspend request,
2217     //   then that was taken care of above (or cancelled) so we are done
2218     // - if we were here because of another async request, then it has
2219     //   been cleared between the has_special_runtime_exit_condition()
2220     //   and now so again we are done
2221     return;
2222   }
2223 
2224   // Check for pending async. exception
2225   if (_pending_async_exception != NULL) {
2226     // Only overwrite an already pending exception, if it is not a threadDeath.
2227     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2228 
2229       // We cannot call Exceptions::_throw(...) here because we cannot block
2230       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2231 
2232       LogTarget(Info, exceptions) lt;
2233       if (lt.is_enabled()) {
2234         ResourceMark rm;
2235         LogStream ls(lt);
2236         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2237           if (has_last_Java_frame()) {
2238             frame f = last_frame();
2239            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2240           }
2241         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2242       }
2243       _pending_async_exception = NULL;
2244       clear_has_async_exception();
2245     }
2246   }
2247 
2248   if (check_unsafe_error &&
2249       condition == _async_unsafe_access_error && !has_pending_exception()) {
2250     condition = _no_async_condition;  // done
2251     switch (thread_state()) {
2252     case _thread_in_vm: {
2253       JavaThread* THREAD = this;
2254       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2255     }
2256     case _thread_in_native: {
2257       ThreadInVMfromNative tiv(this);
2258       JavaThread* THREAD = this;
2259       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2260     }
2261     case _thread_in_Java: {
2262       ThreadInVMfromJava tiv(this);
2263       JavaThread* THREAD = this;
2264       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2265     }
2266     default:
2267       ShouldNotReachHere();
2268     }
2269   }
2270 
2271   assert(condition == _no_async_condition || has_pending_exception() ||
2272          (!check_unsafe_error && condition == _async_unsafe_access_error),
2273          "must have handled the async condition, if no exception");
2274 }
2275 
2276 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2277   //
2278   // Check for pending external suspend.
2279   // If JNIEnv proxies are allowed, don't self-suspend if the target
2280   // thread is not the current thread. In older versions of jdbx, jdbx
2281   // threads could call into the VM with another thread's JNIEnv so we
2282   // can be here operating on behalf of a suspended thread (4432884).
2283   bool do_self_suspend = is_external_suspend_with_lock();
2284   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2285     frame_anchor()->make_walkable(this);
2286     java_suspend_self_with_safepoint_check();
2287   }
2288 
2289   // We might be here for reasons in addition to the self-suspend request
2290   // so check for other async requests.
2291   if (check_asyncs) {
2292     check_and_handle_async_exceptions();
2293   }
2294 
2295   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2296 }
2297 
2298 void JavaThread::send_thread_stop(oop java_throwable)  {
2299   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2300   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2301   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2302 
2303   // Do not throw asynchronous exceptions against the compiler thread
2304   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2305   if (!can_call_java()) return;
2306 
2307   {
2308     // Actually throw the Throwable against the target Thread - however
2309     // only if there is no thread death exception installed already.
2310     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2311       // If the topmost frame is a runtime stub, then we are calling into
2312       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2313       // must deoptimize the caller before continuing, as the compiled  exception handler table
2314       // may not be valid
2315       if (has_last_Java_frame()) {
2316         frame f = last_frame();
2317         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2318           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2319           RegisterMap reg_map(this, UseBiasedLocking);
2320           frame compiled_frame = f.sender(&reg_map);
2321           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2322             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2323           }
2324         }
2325       }
2326 
2327       // Set async. pending exception in thread.
2328       set_pending_async_exception(java_throwable);
2329 
2330       if (log_is_enabled(Info, exceptions)) {
2331          ResourceMark rm;
2332         log_info(exceptions)("Pending Async. exception installed of type: %s",
2333                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2334       }
2335       // for AbortVMOnException flag
2336       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2337     }
2338   }
2339 
2340 
2341   // Interrupt thread so it will wake up from a potential wait()
2342   Thread::interrupt(this);
2343 }
2344 
2345 // External suspension mechanism.
2346 //
2347 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2348 // to any VM_locks and it is at a transition
2349 // Self-suspension will happen on the transition out of the vm.
2350 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2351 //
2352 // Guarantees on return:
2353 //   + Target thread will not execute any new bytecode (that's why we need to
2354 //     force a safepoint)
2355 //   + Target thread will not enter any new monitors
2356 //
2357 void JavaThread::java_suspend() {
2358   ThreadsListHandle tlh;
2359   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2360     return;
2361   }
2362 
2363   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2364     if (!is_external_suspend()) {
2365       // a racing resume has cancelled us; bail out now
2366       return;
2367     }
2368 
2369     // suspend is done
2370     uint32_t debug_bits = 0;
2371     // Warning: is_ext_suspend_completed() may temporarily drop the
2372     // SR_lock to allow the thread to reach a stable thread state if
2373     // it is currently in a transient thread state.
2374     if (is_ext_suspend_completed(false /* !called_by_wait */,
2375                                  SuspendRetryDelay, &debug_bits)) {
2376       return;
2377     }
2378   }
2379 
2380   if (Thread::current() == this) {
2381     // Safely self-suspend.
2382     // If we don't do this explicitly it will implicitly happen
2383     // before we transition back to Java, and on some other thread-state
2384     // transition paths, but not as we exit a JVM TI SuspendThread call.
2385     // As SuspendThread(current) must not return (until resumed) we must
2386     // self-suspend here.
2387     ThreadBlockInVM tbivm(this);
2388     java_suspend_self();
2389   } else {
2390     VM_ThreadSuspend vm_suspend;
2391     VMThread::execute(&vm_suspend);
2392   }
2393 }
2394 
2395 // Part II of external suspension.
2396 // A JavaThread self suspends when it detects a pending external suspend
2397 // request. This is usually on transitions. It is also done in places
2398 // where continuing to the next transition would surprise the caller,
2399 // e.g., monitor entry.
2400 //
2401 // Returns the number of times that the thread self-suspended.
2402 //
2403 // Note: DO NOT call java_suspend_self() when you just want to block current
2404 //       thread. java_suspend_self() is the second stage of cooperative
2405 //       suspension for external suspend requests and should only be used
2406 //       to complete an external suspend request.
2407 //
2408 int JavaThread::java_suspend_self() {
2409   assert(thread_state() == _thread_blocked, "wrong state for java_suspend_self()");
2410   int ret = 0;
2411 
2412   // we are in the process of exiting so don't suspend
2413   if (is_exiting()) {
2414     clear_external_suspend();
2415     return ret;
2416   }
2417 
2418   assert(_anchor.walkable() ||
2419          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2420          "must have walkable stack");
2421 
2422   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2423 
2424   assert(!this->is_ext_suspended(),
2425          "a thread trying to self-suspend should not already be suspended");
2426 
2427   if (this->is_suspend_equivalent()) {
2428     // If we are self-suspending as a result of the lifting of a
2429     // suspend equivalent condition, then the suspend_equivalent
2430     // flag is not cleared until we set the ext_suspended flag so
2431     // that wait_for_ext_suspend_completion() returns consistent
2432     // results.
2433     this->clear_suspend_equivalent();
2434   }
2435 
2436   // A racing resume may have cancelled us before we grabbed SR_lock
2437   // above. Or another external suspend request could be waiting for us
2438   // by the time we return from SR_lock()->wait(). The thread
2439   // that requested the suspension may already be trying to walk our
2440   // stack and if we return now, we can change the stack out from under
2441   // it. This would be a "bad thing (TM)" and cause the stack walker
2442   // to crash. We stay self-suspended until there are no more pending
2443   // external suspend requests.
2444   while (is_external_suspend()) {
2445     ret++;
2446     this->set_ext_suspended();
2447 
2448     // _ext_suspended flag is cleared by java_resume()
2449     while (is_ext_suspended()) {
2450       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2451     }
2452   }
2453   return ret;
2454 }
2455 
2456 // Helper routine to set up the correct thread state before calling java_suspend_self.
2457 // This is called when regular thread-state transition helpers can't be used because
2458 // we can be in various states, in particular _thread_in_native_trans.
2459 // Because this thread is external suspended the safepoint code will count it as at
2460 // a safepoint, regardless of what its actual current thread-state is. But
2461 // is_ext_suspend_completed() may be waiting to see a thread transition from
2462 // _thread_in_native_trans to _thread_blocked. So we set the thread state directly
2463 // to _thread_blocked. The problem with setting thread state directly is that a
2464 // safepoint could happen just after java_suspend_self() returns after being resumed,
2465 // and the VM thread will see the _thread_blocked state. So we must check for a safepoint
2466 // after restoring the state to make sure we won't leave while a safepoint is in progress.
2467 // However, not all initial-states are allowed when performing a safepoint check, as we
2468 // should never be blocking at a safepoint whilst in those states. Of these 'bad' states
2469 // only _thread_in_native is possible when executing this code (based on our two callers).
2470 // A thread that is _thread_in_native is already safepoint-safe and so it doesn't matter
2471 // whether the VMThread sees the _thread_blocked state, or the _thread_in_native state,
2472 // and so we don't need the explicit safepoint check.
2473 
2474 void JavaThread::java_suspend_self_with_safepoint_check() {
2475   assert(this == Thread::current(), "invariant");
2476   JavaThreadState state = thread_state();
2477   set_thread_state(_thread_blocked);
2478   java_suspend_self();
2479   set_thread_state_fence(state);
2480   // Since we are not using a regular thread-state transition helper here,
2481   // we must manually emit the instruction barrier after leaving a safe state.
2482   OrderAccess::cross_modify_fence();
2483   if (state != _thread_in_native) {
2484     SafepointMechanism::block_if_requested(this);
2485   }
2486 }
2487 
2488 #ifdef ASSERT
2489 // Verify the JavaThread has not yet been published in the Threads::list, and
2490 // hence doesn't need protection from concurrent access at this stage.
2491 void JavaThread::verify_not_published() {
2492   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2493   // since an unpublished JavaThread doesn't participate in the
2494   // Thread-SMR protocol for keeping a ThreadsList alive.
2495   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2496 }
2497 #endif
2498 
2499 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2500 // progress or when _suspend_flags is non-zero.
2501 // Current thread needs to self-suspend if there is a suspend request and/or
2502 // block if a safepoint is in progress.
2503 // Async exception ISN'T checked.
2504 // Note only the ThreadInVMfromNative transition can call this function
2505 // directly and when thread state is _thread_in_native_trans
2506 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2507   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2508 
2509   JavaThread *curJT = JavaThread::current();
2510   bool do_self_suspend = thread->is_external_suspend();
2511 
2512   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2513 
2514   // If JNIEnv proxies are allowed, don't self-suspend if the target
2515   // thread is not the current thread. In older versions of jdbx, jdbx
2516   // threads could call into the VM with another thread's JNIEnv so we
2517   // can be here operating on behalf of a suspended thread (4432884).
2518   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2519     thread->java_suspend_self_with_safepoint_check();
2520   } else {
2521     SafepointMechanism::block_if_requested(curJT);
2522   }
2523 
2524   if (thread->is_deopt_suspend()) {
2525     thread->clear_deopt_suspend();
2526     RegisterMap map(thread, false);
2527     frame f = thread->last_frame();
2528     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2529       f = f.sender(&map);
2530     }
2531     if (f.id() == thread->must_deopt_id()) {
2532       thread->clear_must_deopt_id();
2533       f.deoptimize(thread);
2534     } else {
2535       fatal("missed deoptimization!");
2536     }
2537   }
2538 
2539   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2540 }
2541 
2542 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2543 // progress or when _suspend_flags is non-zero.
2544 // Current thread needs to self-suspend if there is a suspend request and/or
2545 // block if a safepoint is in progress.
2546 // Also check for pending async exception (not including unsafe access error).
2547 // Note only the native==>VM/Java barriers can call this function and when
2548 // thread state is _thread_in_native_trans.
2549 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2550   check_safepoint_and_suspend_for_native_trans(thread);
2551 
2552   if (thread->has_async_exception()) {
2553     // We are in _thread_in_native_trans state, don't handle unsafe
2554     // access error since that may block.
2555     thread->check_and_handle_async_exceptions(false);
2556   }
2557 }
2558 
2559 // This is a variant of the normal
2560 // check_special_condition_for_native_trans with slightly different
2561 // semantics for use by critical native wrappers.  It does all the
2562 // normal checks but also performs the transition back into
2563 // thread_in_Java state.  This is required so that critical natives
2564 // can potentially block and perform a GC if they are the last thread
2565 // exiting the GCLocker.
2566 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2567   check_special_condition_for_native_trans(thread);
2568 
2569   // Finish the transition
2570   thread->set_thread_state(_thread_in_Java);
2571 
2572   if (thread->do_critical_native_unlock()) {
2573     ThreadInVMfromJavaNoAsyncException tiv(thread);
2574     GCLocker::unlock_critical(thread);
2575     thread->clear_critical_native_unlock();
2576   }
2577 }
2578 
2579 // We need to guarantee the Threads_lock here, since resumes are not
2580 // allowed during safepoint synchronization
2581 // Can only resume from an external suspension
2582 void JavaThread::java_resume() {
2583   assert_locked_or_safepoint(Threads_lock);
2584 
2585   // Sanity check: thread is gone, has started exiting or the thread
2586   // was not externally suspended.
2587   ThreadsListHandle tlh;
2588   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2589     return;
2590   }
2591 
2592   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2593 
2594   clear_external_suspend();
2595 
2596   if (is_ext_suspended()) {
2597     clear_ext_suspended();
2598     SR_lock()->notify_all();
2599   }
2600 }
2601 
2602 size_t JavaThread::_stack_red_zone_size = 0;
2603 size_t JavaThread::_stack_yellow_zone_size = 0;
2604 size_t JavaThread::_stack_reserved_zone_size = 0;
2605 size_t JavaThread::_stack_shadow_zone_size = 0;
2606 
2607 void JavaThread::create_stack_guard_pages() {
2608   if (!os::uses_stack_guard_pages() ||
2609       _stack_guard_state != stack_guard_unused ||
2610       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2611       log_info(os, thread)("Stack guard page creation for thread "
2612                            UINTX_FORMAT " disabled", os::current_thread_id());
2613     return;
2614   }
2615   address low_addr = stack_end();
2616   size_t len = stack_guard_zone_size();
2617 
2618   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2619   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2620 
2621   int must_commit = os::must_commit_stack_guard_pages();
2622   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2623 
2624   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2625     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2626     return;
2627   }
2628 
2629   if (os::guard_memory((char *) low_addr, len)) {
2630     _stack_guard_state = stack_guard_enabled;
2631   } else {
2632     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2633       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2634     if (os::uncommit_memory((char *) low_addr, len)) {
2635       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2636     }
2637     return;
2638   }
2639 
2640   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2641     PTR_FORMAT "-" PTR_FORMAT ".",
2642     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2643 }
2644 
2645 void JavaThread::remove_stack_guard_pages() {
2646   assert(Thread::current() == this, "from different thread");
2647   if (_stack_guard_state == stack_guard_unused) return;
2648   address low_addr = stack_end();
2649   size_t len = stack_guard_zone_size();
2650 
2651   if (os::must_commit_stack_guard_pages()) {
2652     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2653       _stack_guard_state = stack_guard_unused;
2654     } else {
2655       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2656         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2657       return;
2658     }
2659   } else {
2660     if (_stack_guard_state == stack_guard_unused) return;
2661     if (os::unguard_memory((char *) low_addr, len)) {
2662       _stack_guard_state = stack_guard_unused;
2663     } else {
2664       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2665         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2666       return;
2667     }
2668   }
2669 
2670   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2671     PTR_FORMAT "-" PTR_FORMAT ".",
2672     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2673 }
2674 
2675 void JavaThread::enable_stack_reserved_zone() {
2676   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2677 
2678   // The base notation is from the stack's point of view, growing downward.
2679   // We need to adjust it to work correctly with guard_memory()
2680   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2681 
2682   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2683   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2684 
2685   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2686     _stack_guard_state = stack_guard_enabled;
2687   } else {
2688     warning("Attempt to guard stack reserved zone failed.");
2689   }
2690   enable_register_stack_guard();
2691 }
2692 
2693 void JavaThread::disable_stack_reserved_zone() {
2694   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2695 
2696   // Simply return if called for a thread that does not use guard pages.
2697   if (_stack_guard_state != stack_guard_enabled) return;
2698 
2699   // The base notation is from the stack's point of view, growing downward.
2700   // We need to adjust it to work correctly with guard_memory()
2701   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2702 
2703   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2704     _stack_guard_state = stack_guard_reserved_disabled;
2705   } else {
2706     warning("Attempt to unguard stack reserved zone failed.");
2707   }
2708   disable_register_stack_guard();
2709 }
2710 
2711 void JavaThread::enable_stack_yellow_reserved_zone() {
2712   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2713   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2714 
2715   // The base notation is from the stacks point of view, growing downward.
2716   // We need to adjust it to work correctly with guard_memory()
2717   address base = stack_red_zone_base();
2718 
2719   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2720   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2721 
2722   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2723     _stack_guard_state = stack_guard_enabled;
2724   } else {
2725     warning("Attempt to guard stack yellow zone failed.");
2726   }
2727   enable_register_stack_guard();
2728 }
2729 
2730 void JavaThread::disable_stack_yellow_reserved_zone() {
2731   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2732   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2733 
2734   // Simply return if called for a thread that does not use guard pages.
2735   if (_stack_guard_state == stack_guard_unused) return;
2736 
2737   // The base notation is from the stacks point of view, growing downward.
2738   // We need to adjust it to work correctly with guard_memory()
2739   address base = stack_red_zone_base();
2740 
2741   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2742     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2743   } else {
2744     warning("Attempt to unguard stack yellow zone failed.");
2745   }
2746   disable_register_stack_guard();
2747 }
2748 
2749 void JavaThread::enable_stack_red_zone() {
2750   // The base notation is from the stacks point of view, growing downward.
2751   // We need to adjust it to work correctly with guard_memory()
2752   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2753   address base = stack_red_zone_base() - stack_red_zone_size();
2754 
2755   guarantee(base < stack_base(), "Error calculating stack red zone");
2756   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2757 
2758   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2759     warning("Attempt to guard stack red zone failed.");
2760   }
2761 }
2762 
2763 void JavaThread::disable_stack_red_zone() {
2764   // The base notation is from the stacks point of view, growing downward.
2765   // We need to adjust it to work correctly with guard_memory()
2766   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2767   address base = stack_red_zone_base() - stack_red_zone_size();
2768   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2769     warning("Attempt to unguard stack red zone failed.");
2770   }
2771 }
2772 
2773 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2774   // ignore is there is no stack
2775   if (!has_last_Java_frame()) return;
2776   // traverse the stack frames. Starts from top frame.
2777   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2778     frame* fr = fst.current();
2779     f(fr, fst.register_map());
2780   }
2781 }
2782 
2783 
2784 #ifndef PRODUCT
2785 // Deoptimization
2786 // Function for testing deoptimization
2787 void JavaThread::deoptimize() {
2788   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2789   StackFrameStream fst(this, UseBiasedLocking);
2790   bool deopt = false;           // Dump stack only if a deopt actually happens.
2791   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2792   // Iterate over all frames in the thread and deoptimize
2793   for (; !fst.is_done(); fst.next()) {
2794     if (fst.current()->can_be_deoptimized()) {
2795 
2796       if (only_at) {
2797         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2798         // consists of comma or carriage return separated numbers so
2799         // search for the current bci in that string.
2800         address pc = fst.current()->pc();
2801         nmethod* nm =  (nmethod*) fst.current()->cb();
2802         ScopeDesc* sd = nm->scope_desc_at(pc);
2803         char buffer[8];
2804         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2805         size_t len = strlen(buffer);
2806         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2807         while (found != NULL) {
2808           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2809               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2810             // Check that the bci found is bracketed by terminators.
2811             break;
2812           }
2813           found = strstr(found + 1, buffer);
2814         }
2815         if (!found) {
2816           continue;
2817         }
2818       }
2819 
2820       if (DebugDeoptimization && !deopt) {
2821         deopt = true; // One-time only print before deopt
2822         tty->print_cr("[BEFORE Deoptimization]");
2823         trace_frames();
2824         trace_stack();
2825       }
2826       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2827     }
2828   }
2829 
2830   if (DebugDeoptimization && deopt) {
2831     tty->print_cr("[AFTER Deoptimization]");
2832     trace_frames();
2833   }
2834 }
2835 
2836 
2837 // Make zombies
2838 void JavaThread::make_zombies() {
2839   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2840     if (fst.current()->can_be_deoptimized()) {
2841       // it is a Java nmethod
2842       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2843       nm->make_not_entrant();
2844     }
2845   }
2846 }
2847 #endif // PRODUCT
2848 
2849 
2850 void JavaThread::deoptimized_wrt_marked_nmethods() {
2851   if (!has_last_Java_frame()) return;
2852   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2853   StackFrameStream fst(this, UseBiasedLocking);
2854   for (; !fst.is_done(); fst.next()) {
2855     if (fst.current()->should_be_deoptimized()) {
2856       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2857     }
2858   }
2859 }
2860 
2861 
2862 // If the caller is a NamedThread, then remember, in the current scope,
2863 // the given JavaThread in its _processed_thread field.
2864 class RememberProcessedThread: public StackObj {
2865   NamedThread* _cur_thr;
2866  public:
2867   RememberProcessedThread(JavaThread* jthr) {
2868     Thread* thread = Thread::current();
2869     if (thread->is_Named_thread()) {
2870       _cur_thr = (NamedThread *)thread;
2871       _cur_thr->set_processed_thread(jthr);
2872     } else {
2873       _cur_thr = NULL;
2874     }
2875   }
2876 
2877   ~RememberProcessedThread() {
2878     if (_cur_thr) {
2879       _cur_thr->set_processed_thread(NULL);
2880     }
2881   }
2882 };
2883 
2884 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2885   // Verify that the deferred card marks have been flushed.
2886   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2887 
2888   // Traverse the GCHandles
2889   Thread::oops_do(f, cf);
2890 
2891   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2892          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2893 
2894   if (has_last_Java_frame()) {
2895     // Record JavaThread to GC thread
2896     RememberProcessedThread rpt(this);
2897 
2898     // traverse the registered growable array
2899     if (_array_for_gc != NULL) {
2900       for (int index = 0; index < _array_for_gc->length(); index++) {
2901         f->do_oop(_array_for_gc->adr_at(index));
2902       }
2903     }
2904 
2905     // Traverse the monitor chunks
2906     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2907       chunk->oops_do(f);
2908     }
2909 
2910     // Traverse the execution stack
2911     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2912       fst.current()->oops_do(f, cf, fst.register_map());
2913     }
2914   }
2915 
2916   // callee_target is never live across a gc point so NULL it here should
2917   // it still contain a methdOop.
2918 
2919   set_callee_target(NULL);
2920 
2921   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2922   // If we have deferred set_locals there might be oops waiting to be
2923   // written
2924   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2925   if (list != NULL) {
2926     for (int i = 0; i < list->length(); i++) {
2927       list->at(i)->oops_do(f);
2928     }
2929   }
2930 
2931   // Traverse instance variables at the end since the GC may be moving things
2932   // around using this function
2933   f->do_oop((oop*) &_threadObj);
2934   f->do_oop((oop*) &_vm_result);
2935   f->do_oop((oop*) &_exception_oop);
2936   f->do_oop((oop*) &_pending_async_exception);
2937 
2938   if (jvmti_thread_state() != NULL) {
2939     jvmti_thread_state()->oops_do(f);
2940   }
2941 }
2942 
2943 #ifdef ASSERT
2944 void JavaThread::verify_states_for_handshake() {
2945   // This checks that the thread has a correct frame state during a handshake.
2946   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2947          (has_last_Java_frame() && java_call_counter() > 0),
2948          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2949          has_last_Java_frame(), java_call_counter());
2950 }
2951 #endif
2952 
2953 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2954   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2955          (has_last_Java_frame() && java_call_counter() > 0),
2956          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2957          has_last_Java_frame(), java_call_counter());
2958 
2959   if (has_last_Java_frame()) {
2960     // Traverse the execution stack
2961     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2962       fst.current()->nmethods_do(cf);
2963     }
2964   }
2965 }
2966 
2967 void JavaThread::metadata_do(MetadataClosure* f) {
2968   if (has_last_Java_frame()) {
2969     // Traverse the execution stack to call f() on the methods in the stack
2970     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2971       fst.current()->metadata_do(f);
2972     }
2973   } else if (is_Compiler_thread()) {
2974     // need to walk ciMetadata in current compile tasks to keep alive.
2975     CompilerThread* ct = (CompilerThread*)this;
2976     if (ct->env() != NULL) {
2977       ct->env()->metadata_do(f);
2978     }
2979     CompileTask* task = ct->task();
2980     if (task != NULL) {
2981       task->metadata_do(f);
2982     }
2983   }
2984 }
2985 
2986 // Printing
2987 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2988   switch (_thread_state) {
2989   case _thread_uninitialized:     return "_thread_uninitialized";
2990   case _thread_new:               return "_thread_new";
2991   case _thread_new_trans:         return "_thread_new_trans";
2992   case _thread_in_native:         return "_thread_in_native";
2993   case _thread_in_native_trans:   return "_thread_in_native_trans";
2994   case _thread_in_vm:             return "_thread_in_vm";
2995   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2996   case _thread_in_Java:           return "_thread_in_Java";
2997   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2998   case _thread_blocked:           return "_thread_blocked";
2999   case _thread_blocked_trans:     return "_thread_blocked_trans";
3000   default:                        return "unknown thread state";
3001   }
3002 }
3003 
3004 #ifndef PRODUCT
3005 void JavaThread::print_thread_state_on(outputStream *st) const {
3006   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
3007 };
3008 void JavaThread::print_thread_state() const {
3009   print_thread_state_on(tty);
3010 }
3011 #endif // PRODUCT
3012 
3013 // Called by Threads::print() for VM_PrintThreads operation
3014 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3015   st->print_raw("\"");
3016   st->print_raw(get_thread_name());
3017   st->print_raw("\" ");
3018   oop thread_oop = threadObj();
3019   if (thread_oop != NULL) {
3020     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3021     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3022     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3023   }
3024   Thread::print_on(st, print_extended_info);
3025   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3026   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3027   if (thread_oop != NULL) {
3028     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3029   }
3030 #ifndef PRODUCT
3031   _safepoint_state->print_on(st);
3032 #endif // PRODUCT
3033   if (is_Compiler_thread()) {
3034     CompileTask *task = ((CompilerThread*)this)->task();
3035     if (task != NULL) {
3036       st->print("   Compiling: ");
3037       task->print(st, NULL, true, false);
3038     } else {
3039       st->print("   No compile task");
3040     }
3041     st->cr();
3042   }
3043 }
3044 
3045 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3046   st->print("%s", get_thread_name_string(buf, buflen));
3047 }
3048 
3049 // Called by fatal error handler. The difference between this and
3050 // JavaThread::print() is that we can't grab lock or allocate memory.
3051 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3052   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3053   oop thread_obj = threadObj();
3054   if (thread_obj != NULL) {
3055     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3056   }
3057   st->print(" [");
3058   st->print("%s", _get_thread_state_name(_thread_state));
3059   if (osthread()) {
3060     st->print(", id=%d", osthread()->thread_id());
3061   }
3062   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3063             p2i(stack_end()), p2i(stack_base()));
3064   st->print("]");
3065 
3066   ThreadsSMRSupport::print_info_on(this, st);
3067   return;
3068 }
3069 
3070 // Verification
3071 
3072 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3073 
3074 void JavaThread::verify() {
3075   // Verify oops in the thread.
3076   oops_do(&VerifyOopClosure::verify_oop, NULL);
3077 
3078   // Verify the stack frames.
3079   frames_do(frame_verify);
3080 }
3081 
3082 // CR 6300358 (sub-CR 2137150)
3083 // Most callers of this method assume that it can't return NULL but a
3084 // thread may not have a name whilst it is in the process of attaching to
3085 // the VM - see CR 6412693, and there are places where a JavaThread can be
3086 // seen prior to having it's threadObj set (eg JNI attaching threads and
3087 // if vm exit occurs during initialization). These cases can all be accounted
3088 // for such that this method never returns NULL.
3089 const char* JavaThread::get_thread_name() const {
3090 #ifdef ASSERT
3091   // early safepoints can hit while current thread does not yet have TLS
3092   if (!SafepointSynchronize::is_at_safepoint()) {
3093     Thread *cur = Thread::current();
3094     if (!(cur->is_Java_thread() && cur == this)) {
3095       // Current JavaThreads are allowed to get their own name without
3096       // the Threads_lock.
3097       assert_locked_or_safepoint(Threads_lock);
3098     }
3099   }
3100 #endif // ASSERT
3101   return get_thread_name_string();
3102 }
3103 
3104 // Returns a non-NULL representation of this thread's name, or a suitable
3105 // descriptive string if there is no set name
3106 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3107   const char* name_str;
3108   oop thread_obj = threadObj();
3109   if (thread_obj != NULL) {
3110     oop name = java_lang_Thread::name(thread_obj);
3111     if (name != NULL) {
3112       if (buf == NULL) {
3113         name_str = java_lang_String::as_utf8_string(name);
3114       } else {
3115         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3116       }
3117     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3118       name_str = "<no-name - thread is attaching>";
3119     } else {
3120       name_str = Thread::name();
3121     }
3122   } else {
3123     name_str = Thread::name();
3124   }
3125   assert(name_str != NULL, "unexpected NULL thread name");
3126   return name_str;
3127 }
3128 
3129 
3130 const char* JavaThread::get_threadgroup_name() const {
3131   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3132   oop thread_obj = threadObj();
3133   if (thread_obj != NULL) {
3134     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3135     if (thread_group != NULL) {
3136       // ThreadGroup.name can be null
3137       return java_lang_ThreadGroup::name(thread_group);
3138     }
3139   }
3140   return NULL;
3141 }
3142 
3143 const char* JavaThread::get_parent_name() const {
3144   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3145   oop thread_obj = threadObj();
3146   if (thread_obj != NULL) {
3147     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3148     if (thread_group != NULL) {
3149       oop parent = java_lang_ThreadGroup::parent(thread_group);
3150       if (parent != NULL) {
3151         // ThreadGroup.name can be null
3152         return java_lang_ThreadGroup::name(parent);
3153       }
3154     }
3155   }
3156   return NULL;
3157 }
3158 
3159 ThreadPriority JavaThread::java_priority() const {
3160   oop thr_oop = threadObj();
3161   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3162   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3163   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3164   return priority;
3165 }
3166 
3167 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3168 
3169   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3170   // Link Java Thread object <-> C++ Thread
3171 
3172   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3173   // and put it into a new Handle.  The Handle "thread_oop" can then
3174   // be used to pass the C++ thread object to other methods.
3175 
3176   // Set the Java level thread object (jthread) field of the
3177   // new thread (a JavaThread *) to C++ thread object using the
3178   // "thread_oop" handle.
3179 
3180   // Set the thread field (a JavaThread *) of the
3181   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3182 
3183   Handle thread_oop(Thread::current(),
3184                     JNIHandles::resolve_non_null(jni_thread));
3185   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3186          "must be initialized");
3187   set_threadObj(thread_oop());
3188   java_lang_Thread::set_thread(thread_oop(), this);
3189 
3190   if (prio == NoPriority) {
3191     prio = java_lang_Thread::priority(thread_oop());
3192     assert(prio != NoPriority, "A valid priority should be present");
3193   }
3194 
3195   // Push the Java priority down to the native thread; needs Threads_lock
3196   Thread::set_priority(this, prio);
3197 
3198   // Add the new thread to the Threads list and set it in motion.
3199   // We must have threads lock in order to call Threads::add.
3200   // It is crucial that we do not block before the thread is
3201   // added to the Threads list for if a GC happens, then the java_thread oop
3202   // will not be visited by GC.
3203   Threads::add(this);
3204 }
3205 
3206 oop JavaThread::current_park_blocker() {
3207   // Support for JSR-166 locks
3208   oop thread_oop = threadObj();
3209   if (thread_oop != NULL &&
3210       JDK_Version::current().supports_thread_park_blocker()) {
3211     return java_lang_Thread::park_blocker(thread_oop);
3212   }
3213   return NULL;
3214 }
3215 
3216 
3217 void JavaThread::print_stack_on(outputStream* st) {
3218   if (!has_last_Java_frame()) return;
3219   ResourceMark rm;
3220   HandleMark   hm;
3221 
3222   RegisterMap reg_map(this);
3223   vframe* start_vf = last_java_vframe(&reg_map);
3224   int count = 0;
3225   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3226     if (f->is_java_frame()) {
3227       javaVFrame* jvf = javaVFrame::cast(f);
3228       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3229 
3230       // Print out lock information
3231       if (JavaMonitorsInStackTrace) {
3232         jvf->print_lock_info_on(st, count);
3233       }
3234     } else {
3235       // Ignore non-Java frames
3236     }
3237 
3238     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3239     count++;
3240     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3241   }
3242 }
3243 
3244 
3245 // JVMTI PopFrame support
3246 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3247   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3248   if (in_bytes(size_in_bytes) != 0) {
3249     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3250     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3251     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3252   }
3253 }
3254 
3255 void* JavaThread::popframe_preserved_args() {
3256   return _popframe_preserved_args;
3257 }
3258 
3259 ByteSize JavaThread::popframe_preserved_args_size() {
3260   return in_ByteSize(_popframe_preserved_args_size);
3261 }
3262 
3263 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3264   int sz = in_bytes(popframe_preserved_args_size());
3265   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3266   return in_WordSize(sz / wordSize);
3267 }
3268 
3269 void JavaThread::popframe_free_preserved_args() {
3270   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3271   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3272   _popframe_preserved_args = NULL;
3273   _popframe_preserved_args_size = 0;
3274 }
3275 
3276 #ifndef PRODUCT
3277 
3278 void JavaThread::trace_frames() {
3279   tty->print_cr("[Describe stack]");
3280   int frame_no = 1;
3281   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3282     tty->print("  %d. ", frame_no++);
3283     fst.current()->print_value_on(tty, this);
3284     tty->cr();
3285   }
3286 }
3287 
3288 class PrintAndVerifyOopClosure: public OopClosure {
3289  protected:
3290   template <class T> inline void do_oop_work(T* p) {
3291     oop obj = RawAccess<>::oop_load(p);
3292     if (obj == NULL) return;
3293     tty->print(INTPTR_FORMAT ": ", p2i(p));
3294     if (oopDesc::is_oop_or_null(obj)) {
3295       if (obj->is_objArray()) {
3296         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3297       } else {
3298         obj->print();
3299       }
3300     } else {
3301       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3302     }
3303     tty->cr();
3304   }
3305  public:
3306   virtual void do_oop(oop* p) { do_oop_work(p); }
3307   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3308 };
3309 
3310 
3311 static void oops_print(frame* f, const RegisterMap *map) {
3312   PrintAndVerifyOopClosure print;
3313   f->print_value();
3314   f->oops_do(&print, NULL, (RegisterMap*)map);
3315 }
3316 
3317 // Print our all the locations that contain oops and whether they are
3318 // valid or not.  This useful when trying to find the oldest frame
3319 // where an oop has gone bad since the frame walk is from youngest to
3320 // oldest.
3321 void JavaThread::trace_oops() {
3322   tty->print_cr("[Trace oops]");
3323   frames_do(oops_print);
3324 }
3325 
3326 
3327 #ifdef ASSERT
3328 // Print or validate the layout of stack frames
3329 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3330   ResourceMark rm;
3331   PRESERVE_EXCEPTION_MARK;
3332   FrameValues values;
3333   int frame_no = 0;
3334   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3335     fst.current()->describe(values, ++frame_no);
3336     if (depth == frame_no) break;
3337   }
3338   if (validate_only) {
3339     values.validate();
3340   } else {
3341     tty->print_cr("[Describe stack layout]");
3342     values.print(this);
3343   }
3344 }
3345 #endif
3346 
3347 void JavaThread::trace_stack_from(vframe* start_vf) {
3348   ResourceMark rm;
3349   int vframe_no = 1;
3350   for (vframe* f = start_vf; f; f = f->sender()) {
3351     if (f->is_java_frame()) {
3352       javaVFrame::cast(f)->print_activation(vframe_no++);
3353     } else {
3354       f->print();
3355     }
3356     if (vframe_no > StackPrintLimit) {
3357       tty->print_cr("...<more frames>...");
3358       return;
3359     }
3360   }
3361 }
3362 
3363 
3364 void JavaThread::trace_stack() {
3365   if (!has_last_Java_frame()) return;
3366   ResourceMark rm;
3367   HandleMark   hm;
3368   RegisterMap reg_map(this);
3369   trace_stack_from(last_java_vframe(&reg_map));
3370 }
3371 
3372 
3373 #endif // PRODUCT
3374 
3375 
3376 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3377   assert(reg_map != NULL, "a map must be given");
3378   frame f = last_frame();
3379   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3380     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3381   }
3382   return NULL;
3383 }
3384 
3385 
3386 Klass* JavaThread::security_get_caller_class(int depth) {
3387   vframeStream vfst(this);
3388   vfst.security_get_caller_frame(depth);
3389   if (!vfst.at_end()) {
3390     return vfst.method()->method_holder();
3391   }
3392   return NULL;
3393 }
3394 
3395 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3396   assert(thread->is_Compiler_thread(), "must be compiler thread");
3397   CompileBroker::compiler_thread_loop();
3398 }
3399 
3400 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3401   NMethodSweeper::sweeper_loop();
3402 }
3403 
3404 // Create a CompilerThread
3405 CompilerThread::CompilerThread(CompileQueue* queue,
3406                                CompilerCounters* counters)
3407                                : JavaThread(&compiler_thread_entry) {
3408   _env   = NULL;
3409   _log   = NULL;
3410   _task  = NULL;
3411   _queue = queue;
3412   _counters = counters;
3413   _buffer_blob = NULL;
3414   _compiler = NULL;
3415 
3416   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3417   resource_area()->bias_to(mtCompiler);
3418 
3419 #ifndef PRODUCT
3420   _ideal_graph_printer = NULL;
3421 #endif
3422 }
3423 
3424 CompilerThread::~CompilerThread() {
3425   // Delete objects which were allocated on heap.
3426   delete _counters;
3427 }
3428 
3429 bool CompilerThread::can_call_java() const {
3430   return _compiler != NULL && _compiler->is_jvmci();
3431 }
3432 
3433 // Create sweeper thread
3434 CodeCacheSweeperThread::CodeCacheSweeperThread()
3435 : JavaThread(&sweeper_thread_entry) {
3436   _scanned_compiled_method = NULL;
3437 }
3438 
3439 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3440   JavaThread::oops_do(f, cf);
3441   if (_scanned_compiled_method != NULL && cf != NULL) {
3442     // Safepoints can occur when the sweeper is scanning an nmethod so
3443     // process it here to make sure it isn't unloaded in the middle of
3444     // a scan.
3445     cf->do_code_blob(_scanned_compiled_method);
3446   }
3447 }
3448 
3449 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3450   JavaThread::nmethods_do(cf);
3451   if (_scanned_compiled_method != NULL && cf != NULL) {
3452     // Safepoints can occur when the sweeper is scanning an nmethod so
3453     // process it here to make sure it isn't unloaded in the middle of
3454     // a scan.
3455     cf->do_code_blob(_scanned_compiled_method);
3456   }
3457 }
3458 
3459 
3460 // ======= Threads ========
3461 
3462 // The Threads class links together all active threads, and provides
3463 // operations over all threads. It is protected by the Threads_lock,
3464 // which is also used in other global contexts like safepointing.
3465 // ThreadsListHandles are used to safely perform operations on one
3466 // or more threads without the risk of the thread exiting during the
3467 // operation.
3468 //
3469 // Note: The Threads_lock is currently more widely used than we
3470 // would like. We are actively migrating Threads_lock uses to other
3471 // mechanisms in order to reduce Threads_lock contention.
3472 
3473 JavaThread* Threads::_thread_list = NULL;
3474 int         Threads::_number_of_threads = 0;
3475 int         Threads::_number_of_non_daemon_threads = 0;
3476 int         Threads::_return_code = 0;
3477 uintx       Threads::_thread_claim_token = 1; // Never zero.
3478 size_t      JavaThread::_stack_size_at_create = 0;
3479 
3480 #ifdef ASSERT
3481 bool        Threads::_vm_complete = false;
3482 #endif
3483 
3484 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3485   Prefetch::read((void*)addr, prefetch_interval);
3486   return *addr;
3487 }
3488 
3489 // Possibly the ugliest for loop the world has seen. C++ does not allow
3490 // multiple types in the declaration section of the for loop. In this case
3491 // we are only dealing with pointers and hence can cast them. It looks ugly
3492 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3493 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3494     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3495              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3496              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3497              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3498              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3499          MACRO_current_p != MACRO_end;                                                                                    \
3500          MACRO_current_p++,                                                                                               \
3501              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3502 
3503 // All JavaThreads
3504 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3505 
3506 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3507 void Threads::non_java_threads_do(ThreadClosure* tc) {
3508   NoSafepointVerifier nsv(!SafepointSynchronize::is_at_safepoint(), false);
3509   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3510     tc->do_thread(njti.current());
3511   }
3512 }
3513 
3514 // All JavaThreads
3515 void Threads::java_threads_do(ThreadClosure* tc) {
3516   assert_locked_or_safepoint(Threads_lock);
3517   // ALL_JAVA_THREADS iterates through all JavaThreads.
3518   ALL_JAVA_THREADS(p) {
3519     tc->do_thread(p);
3520   }
3521 }
3522 
3523 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3524   assert_locked_or_safepoint(Threads_lock);
3525   java_threads_do(tc);
3526   tc->do_thread(VMThread::vm_thread());
3527 }
3528 
3529 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3530 void Threads::threads_do(ThreadClosure* tc) {
3531   assert_locked_or_safepoint(Threads_lock);
3532   java_threads_do(tc);
3533   non_java_threads_do(tc);
3534 }
3535 
3536 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3537   uintx claim_token = Threads::thread_claim_token();
3538   ALL_JAVA_THREADS(p) {
3539     if (p->claim_threads_do(is_par, claim_token)) {
3540       tc->do_thread(p);
3541     }
3542   }
3543   VMThread* vmt = VMThread::vm_thread();
3544   if (vmt->claim_threads_do(is_par, claim_token)) {
3545     tc->do_thread(vmt);
3546   }
3547 }
3548 
3549 // The system initialization in the library has three phases.
3550 //
3551 // Phase 1: java.lang.System class initialization
3552 //     java.lang.System is a primordial class loaded and initialized
3553 //     by the VM early during startup.  java.lang.System.<clinit>
3554 //     only does registerNatives and keeps the rest of the class
3555 //     initialization work later until thread initialization completes.
3556 //
3557 //     System.initPhase1 initializes the system properties, the static
3558 //     fields in, out, and err. Set up java signal handlers, OS-specific
3559 //     system settings, and thread group of the main thread.
3560 static void call_initPhase1(TRAPS) {
3561   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3562   JavaValue result(T_VOID);
3563   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3564                                          vmSymbols::void_method_signature(), CHECK);
3565 }
3566 
3567 // Phase 2. Module system initialization
3568 //     This will initialize the module system.  Only java.base classes
3569 //     can be loaded until phase 2 completes.
3570 //
3571 //     Call System.initPhase2 after the compiler initialization and jsr292
3572 //     classes get initialized because module initialization runs a lot of java
3573 //     code, that for performance reasons, should be compiled.  Also, this will
3574 //     enable the startup code to use lambda and other language features in this
3575 //     phase and onward.
3576 //
3577 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3578 static void call_initPhase2(TRAPS) {
3579   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3580 
3581   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3582 
3583   JavaValue result(T_INT);
3584   JavaCallArguments args;
3585   args.push_int(DisplayVMOutputToStderr);
3586   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3587   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3588                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3589   if (result.get_jint() != JNI_OK) {
3590     vm_exit_during_initialization(); // no message or exception
3591   }
3592 
3593   universe_post_module_init();
3594 }
3595 
3596 // Phase 3. final setup - set security manager, system class loader and TCCL
3597 //
3598 //     This will instantiate and set the security manager, set the system class
3599 //     loader as well as the thread context class loader.  The security manager
3600 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3601 //     other modules or the application's classpath.
3602 static void call_initPhase3(TRAPS) {
3603   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3604   JavaValue result(T_VOID);
3605   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3606                                          vmSymbols::void_method_signature(), CHECK);
3607 }
3608 
3609 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3610   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3611 
3612   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3613     create_vm_init_libraries();
3614   }
3615 
3616   initialize_class(vmSymbols::java_lang_String(), CHECK);
3617 
3618   // Inject CompactStrings value after the static initializers for String ran.
3619   java_lang_String::set_compact_strings(CompactStrings);
3620 
3621   // Initialize java_lang.System (needed before creating the thread)
3622   initialize_class(vmSymbols::java_lang_System(), CHECK);
3623   // The VM creates & returns objects of this class. Make sure it's initialized.
3624   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3625   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3626   Handle thread_group = create_initial_thread_group(CHECK);
3627   Universe::set_main_thread_group(thread_group());
3628   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3629   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3630   main_thread->set_threadObj(thread_object);
3631 
3632   // Set thread status to running since main thread has
3633   // been started and running.
3634   java_lang_Thread::set_thread_status(thread_object,
3635                                       java_lang_Thread::RUNNABLE);
3636 
3637   // The VM creates objects of this class.
3638   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3639 
3640 #ifdef ASSERT
3641   InstanceKlass *k = SystemDictionary::UnsafeConstants_klass();
3642   assert(k->is_not_initialized(), "UnsafeConstants should not already be initialized");
3643 #endif
3644 
3645   // initialize the hardware-specific constants needed by Unsafe
3646   initialize_class(vmSymbols::jdk_internal_misc_UnsafeConstants(), CHECK);
3647   jdk_internal_misc_UnsafeConstants::set_unsafe_constants();
3648 
3649   // The VM preresolves methods to these classes. Make sure that they get initialized
3650   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3651   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3652 
3653   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3654   call_initPhase1(CHECK);
3655 
3656   // get the Java runtime name after java.lang.System is initialized
3657   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3658   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3659 
3660   // an instance of OutOfMemory exception has been allocated earlier
3661   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3662   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3663   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3664   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3665   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3666   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3667   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3668   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3669 }
3670 
3671 void Threads::initialize_jsr292_core_classes(TRAPS) {
3672   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3673 
3674   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3675   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3676   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3677   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3678 }
3679 
3680 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3681   extern void JDK_Version_init();
3682 
3683   // Preinitialize version info.
3684   VM_Version::early_initialize();
3685 
3686   // Check version
3687   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3688 
3689   // Initialize library-based TLS
3690   ThreadLocalStorage::init();
3691 
3692   // Initialize the output stream module
3693   ostream_init();
3694 
3695   // Process java launcher properties.
3696   Arguments::process_sun_java_launcher_properties(args);
3697 
3698   // Initialize the os module
3699   os::init();
3700 
3701   // Record VM creation timing statistics
3702   TraceVmCreationTime create_vm_timer;
3703   create_vm_timer.start();
3704 
3705   // Initialize system properties.
3706   Arguments::init_system_properties();
3707 
3708   // So that JDK version can be used as a discriminator when parsing arguments
3709   JDK_Version_init();
3710 
3711   // Update/Initialize System properties after JDK version number is known
3712   Arguments::init_version_specific_system_properties();
3713 
3714   // Make sure to initialize log configuration *before* parsing arguments
3715   LogConfiguration::initialize(create_vm_timer.begin_time());
3716 
3717   // Parse arguments
3718   // Note: this internally calls os::init_container_support()
3719   jint parse_result = Arguments::parse(args);
3720   if (parse_result != JNI_OK) return parse_result;
3721 
3722   os::init_before_ergo();
3723 
3724   jint ergo_result = Arguments::apply_ergo();
3725   if (ergo_result != JNI_OK) return ergo_result;
3726 
3727   // Final check of all ranges after ergonomics which may change values.
3728   if (!JVMFlagRangeList::check_ranges()) {
3729     return JNI_EINVAL;
3730   }
3731 
3732   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3733   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3734   if (!constraint_result) {
3735     return JNI_EINVAL;
3736   }
3737 
3738   JVMFlagWriteableList::mark_startup();
3739 
3740   if (PauseAtStartup) {
3741     os::pause();
3742   }
3743 
3744   HOTSPOT_VM_INIT_BEGIN();
3745 
3746   // Timing (must come after argument parsing)
3747   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3748 
3749   // Initialize the os module after parsing the args
3750   jint os_init_2_result = os::init_2();
3751   if (os_init_2_result != JNI_OK) return os_init_2_result;
3752 
3753 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3754   // Initialize assert poison page mechanism.
3755   if (ShowRegistersOnAssert) {
3756     initialize_assert_poison();
3757   }
3758 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3759 
3760   SafepointMechanism::initialize();
3761 
3762   jint adjust_after_os_result = Arguments::adjust_after_os();
3763   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3764 
3765   // Initialize output stream logging
3766   ostream_init_log();
3767 
3768   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3769   // Must be before create_vm_init_agents()
3770   if (Arguments::init_libraries_at_startup()) {
3771     convert_vm_init_libraries_to_agents();
3772   }
3773 
3774   // Launch -agentlib/-agentpath and converted -Xrun agents
3775   if (Arguments::init_agents_at_startup()) {
3776     create_vm_init_agents();
3777   }
3778 
3779   // Initialize Threads state
3780   _thread_list = NULL;
3781   _number_of_threads = 0;
3782   _number_of_non_daemon_threads = 0;
3783 
3784   // Initialize global data structures and create system classes in heap
3785   vm_init_globals();
3786 
3787 #if INCLUDE_JVMCI
3788   if (JVMCICounterSize > 0) {
3789     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3790     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3791   } else {
3792     JavaThread::_jvmci_old_thread_counters = NULL;
3793   }
3794 #endif // INCLUDE_JVMCI
3795 
3796   // Attach the main thread to this os thread
3797   JavaThread* main_thread = new JavaThread();
3798   main_thread->set_thread_state(_thread_in_vm);
3799   main_thread->initialize_thread_current();
3800   // must do this before set_active_handles
3801   main_thread->record_stack_base_and_size();
3802   main_thread->register_thread_stack_with_NMT();
3803   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3804 
3805   if (!main_thread->set_as_starting_thread()) {
3806     vm_shutdown_during_initialization(
3807                                       "Failed necessary internal allocation. Out of swap space");
3808     main_thread->smr_delete();
3809     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3810     return JNI_ENOMEM;
3811   }
3812 
3813   // Enable guard page *after* os::create_main_thread(), otherwise it would
3814   // crash Linux VM, see notes in os_linux.cpp.
3815   main_thread->create_stack_guard_pages();
3816 
3817   // Initialize Java-Level synchronization subsystem
3818   ObjectMonitor::Initialize();
3819 
3820   // Initialize global modules
3821   jint status = init_globals();
3822   if (status != JNI_OK) {
3823     main_thread->smr_delete();
3824     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3825     return status;
3826   }
3827 
3828   JFR_ONLY(Jfr::on_vm_init();)
3829 
3830   // Should be done after the heap is fully created
3831   main_thread->cache_global_variables();
3832 
3833   HandleMark hm;
3834 
3835   { MutexLocker mu(Threads_lock);
3836     Threads::add(main_thread);
3837   }
3838 
3839   // Any JVMTI raw monitors entered in onload will transition into
3840   // real raw monitor. VM is setup enough here for raw monitor enter.
3841   JvmtiExport::transition_pending_onload_raw_monitors();
3842 
3843   // Create the VMThread
3844   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3845 
3846   VMThread::create();
3847     Thread* vmthread = VMThread::vm_thread();
3848 
3849     if (!os::create_thread(vmthread, os::vm_thread)) {
3850       vm_exit_during_initialization("Cannot create VM thread. "
3851                                     "Out of system resources.");
3852     }
3853 
3854     // Wait for the VM thread to become ready, and VMThread::run to initialize
3855     // Monitors can have spurious returns, must always check another state flag
3856     {
3857       MutexLocker ml(Notify_lock);
3858       os::start_thread(vmthread);
3859       while (vmthread->active_handles() == NULL) {
3860         Notify_lock->wait();
3861       }
3862     }
3863   }
3864 
3865   assert(Universe::is_fully_initialized(), "not initialized");
3866   if (VerifyDuringStartup) {
3867     // Make sure we're starting with a clean slate.
3868     VM_Verify verify_op;
3869     VMThread::execute(&verify_op);
3870   }
3871 
3872   // We need this to update the java.vm.info property in case any flags used
3873   // to initially define it have been changed. This is needed for both CDS and
3874   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3875   // is initially computed. See Abstract_VM_Version::vm_info_string().
3876   // This update must happen before we initialize the java classes, but
3877   // after any initialization logic that might modify the flags.
3878   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3879 
3880   Thread* THREAD = Thread::current();
3881 
3882   // Always call even when there are not JVMTI environments yet, since environments
3883   // may be attached late and JVMTI must track phases of VM execution
3884   JvmtiExport::enter_early_start_phase();
3885 
3886   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3887   JvmtiExport::post_early_vm_start();
3888 
3889   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3890 
3891   quicken_jni_functions();
3892 
3893   // No more stub generation allowed after that point.
3894   StubCodeDesc::freeze();
3895 
3896   // Set flag that basic initialization has completed. Used by exceptions and various
3897   // debug stuff, that does not work until all basic classes have been initialized.
3898   set_init_completed();
3899 
3900   LogConfiguration::post_initialize();
3901   Metaspace::post_initialize();
3902 
3903   HOTSPOT_VM_INIT_END();
3904 
3905   // record VM initialization completion time
3906 #if INCLUDE_MANAGEMENT
3907   Management::record_vm_init_completed();
3908 #endif // INCLUDE_MANAGEMENT
3909 
3910   // Signal Dispatcher needs to be started before VMInit event is posted
3911   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3912 
3913   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3914   if (!DisableAttachMechanism) {
3915     AttachListener::vm_start();
3916     if (StartAttachListener || AttachListener::init_at_startup()) {
3917       AttachListener::init();
3918     }
3919   }
3920 
3921   // Launch -Xrun agents
3922   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3923   // back-end can launch with -Xdebug -Xrunjdwp.
3924   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3925     create_vm_init_libraries();
3926   }
3927 
3928   if (CleanChunkPoolAsync) {
3929     Chunk::start_chunk_pool_cleaner_task();
3930   }
3931 
3932   // initialize compiler(s)
3933 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3934 #if INCLUDE_JVMCI
3935   bool force_JVMCI_intialization = false;
3936   if (EnableJVMCI) {
3937     // Initialize JVMCI eagerly when it is explicitly requested.
3938     // Or when JVMCIPrintProperties is enabled.
3939     // The JVMCI Java initialization code will read this flag and
3940     // do the printing if it's set.
3941     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties;
3942 
3943     if (!force_JVMCI_intialization) {
3944       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3945       // compilations via JVMCI will not actually block until JVMCI is initialized.
3946       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3947     }
3948   }
3949 #endif
3950   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
3951   // Postpone completion of compiler initialization to after JVMCI
3952   // is initialized to avoid timeouts of blocking compilations.
3953   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
3954     CompileBroker::compilation_init_phase2();
3955   }
3956 #endif
3957 
3958   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3959   // It is done after compilers are initialized, because otherwise compilations of
3960   // signature polymorphic MH intrinsics can be missed
3961   // (see SystemDictionary::find_method_handle_intrinsic).
3962   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3963 
3964   // This will initialize the module system.  Only java.base classes can be
3965   // loaded until phase 2 completes
3966   call_initPhase2(CHECK_JNI_ERR);
3967 
3968   // Always call even when there are not JVMTI environments yet, since environments
3969   // may be attached late and JVMTI must track phases of VM execution
3970   JvmtiExport::enter_start_phase();
3971 
3972   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3973   JvmtiExport::post_vm_start();
3974 
3975   // Final system initialization including security manager and system class loader
3976   call_initPhase3(CHECK_JNI_ERR);
3977 
3978   // cache the system and platform class loaders
3979   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3980 
3981 #if INCLUDE_CDS
3982   if (DumpSharedSpaces) {
3983     // capture the module path info from the ModuleEntryTable
3984     ClassLoader::initialize_module_path(THREAD);
3985   }
3986 #endif
3987 
3988 #if INCLUDE_JVMCI
3989   if (force_JVMCI_intialization) {
3990     JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3991     CompileBroker::compilation_init_phase2();
3992   }
3993 #endif
3994 
3995   // Always call even when there are not JVMTI environments yet, since environments
3996   // may be attached late and JVMTI must track phases of VM execution
3997   JvmtiExport::enter_live_phase();
3998 
3999   // Make perfmemory accessible
4000   PerfMemory::set_accessible(true);
4001 
4002   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
4003   JvmtiExport::post_vm_initialized();
4004 
4005   JFR_ONLY(Jfr::on_vm_start();)
4006 
4007 #if INCLUDE_MANAGEMENT
4008   Management::initialize(THREAD);
4009 
4010   if (HAS_PENDING_EXCEPTION) {
4011     // management agent fails to start possibly due to
4012     // configuration problem and is responsible for printing
4013     // stack trace if appropriate. Simply exit VM.
4014     vm_exit(1);
4015   }
4016 #endif // INCLUDE_MANAGEMENT
4017 
4018   if (MemProfiling)                   MemProfiler::engage();
4019   StatSampler::engage();
4020   if (CheckJNICalls)                  JniPeriodicChecker::engage();
4021 
4022   BiasedLocking::init();
4023 
4024 #if INCLUDE_RTM_OPT
4025   RTMLockingCounters::init();
4026 #endif
4027 
4028   if (JDK_Version::current().post_vm_init_hook_enabled()) {
4029     call_postVMInitHook(THREAD);
4030     // The Java side of PostVMInitHook.run must deal with all
4031     // exceptions and provide means of diagnosis.
4032     if (HAS_PENDING_EXCEPTION) {
4033       CLEAR_PENDING_EXCEPTION;
4034     }
4035   }
4036 
4037   {
4038     MutexLocker ml(PeriodicTask_lock);
4039     // Make sure the WatcherThread can be started by WatcherThread::start()
4040     // or by dynamic enrollment.
4041     WatcherThread::make_startable();
4042     // Start up the WatcherThread if there are any periodic tasks
4043     // NOTE:  All PeriodicTasks should be registered by now. If they
4044     //   aren't, late joiners might appear to start slowly (we might
4045     //   take a while to process their first tick).
4046     if (PeriodicTask::num_tasks() > 0) {
4047       WatcherThread::start();
4048     }
4049   }
4050 
4051   create_vm_timer.end();
4052 #ifdef ASSERT
4053   _vm_complete = true;
4054 #endif
4055 
4056   if (DumpSharedSpaces) {
4057     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4058     ShouldNotReachHere();
4059   }
4060 
4061   return JNI_OK;
4062 }
4063 
4064 // type for the Agent_OnLoad and JVM_OnLoad entry points
4065 extern "C" {
4066   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4067 }
4068 // Find a command line agent library and return its entry point for
4069 //         -agentlib:  -agentpath:   -Xrun
4070 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4071 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4072                                     const char *on_load_symbols[],
4073                                     size_t num_symbol_entries) {
4074   OnLoadEntry_t on_load_entry = NULL;
4075   void *library = NULL;
4076 
4077   if (!agent->valid()) {
4078     char buffer[JVM_MAXPATHLEN];
4079     char ebuf[1024] = "";
4080     const char *name = agent->name();
4081     const char *msg = "Could not find agent library ";
4082 
4083     // First check to see if agent is statically linked into executable
4084     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4085       library = agent->os_lib();
4086     } else if (agent->is_absolute_path()) {
4087       library = os::dll_load(name, ebuf, sizeof ebuf);
4088       if (library == NULL) {
4089         const char *sub_msg = " in absolute path, with error: ";
4090         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4091         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4092         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4093         // If we can't find the agent, exit.
4094         vm_exit_during_initialization(buf, NULL);
4095         FREE_C_HEAP_ARRAY(char, buf);
4096       }
4097     } else {
4098       // Try to load the agent from the standard dll directory
4099       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4100                              name)) {
4101         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4102       }
4103       if (library == NULL) { // Try the library path directory.
4104         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4105           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4106         }
4107         if (library == NULL) {
4108           const char *sub_msg = " on the library path, with error: ";
4109           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4110 
4111           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4112                        strlen(ebuf) + strlen(sub_msg2) + 1;
4113           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4114           if (!agent->is_instrument_lib()) {
4115             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4116           } else {
4117             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4118           }
4119           // If we can't find the agent, exit.
4120           vm_exit_during_initialization(buf, NULL);
4121           FREE_C_HEAP_ARRAY(char, buf);
4122         }
4123       }
4124     }
4125     agent->set_os_lib(library);
4126     agent->set_valid();
4127   }
4128 
4129   // Find the OnLoad function.
4130   on_load_entry =
4131     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4132                                                           false,
4133                                                           on_load_symbols,
4134                                                           num_symbol_entries));
4135   return on_load_entry;
4136 }
4137 
4138 // Find the JVM_OnLoad entry point
4139 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4140   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4141   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4142 }
4143 
4144 // Find the Agent_OnLoad entry point
4145 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4146   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4147   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4148 }
4149 
4150 // For backwards compatibility with -Xrun
4151 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4152 // treated like -agentpath:
4153 // Must be called before agent libraries are created
4154 void Threads::convert_vm_init_libraries_to_agents() {
4155   AgentLibrary* agent;
4156   AgentLibrary* next;
4157 
4158   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4159     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4160     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4161 
4162     // If there is an JVM_OnLoad function it will get called later,
4163     // otherwise see if there is an Agent_OnLoad
4164     if (on_load_entry == NULL) {
4165       on_load_entry = lookup_agent_on_load(agent);
4166       if (on_load_entry != NULL) {
4167         // switch it to the agent list -- so that Agent_OnLoad will be called,
4168         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4169         Arguments::convert_library_to_agent(agent);
4170       } else {
4171         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4172       }
4173     }
4174   }
4175 }
4176 
4177 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4178 // Invokes Agent_OnLoad
4179 // Called very early -- before JavaThreads exist
4180 void Threads::create_vm_init_agents() {
4181   extern struct JavaVM_ main_vm;
4182   AgentLibrary* agent;
4183 
4184   JvmtiExport::enter_onload_phase();
4185 
4186   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4187     // CDS dumping does not support native JVMTI agent.
4188     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4189     if (DumpSharedSpaces) {
4190       if(!agent->is_instrument_lib()) {
4191         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4192       } else if (!AllowArchivingWithJavaAgent) {
4193         vm_exit_during_cds_dumping(
4194           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4195       }
4196     }
4197 
4198     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4199 
4200     if (on_load_entry != NULL) {
4201       // Invoke the Agent_OnLoad function
4202       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4203       if (err != JNI_OK) {
4204         vm_exit_during_initialization("agent library failed to init", agent->name());
4205       }
4206     } else {
4207       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4208     }
4209   }
4210 
4211   JvmtiExport::enter_primordial_phase();
4212 }
4213 
4214 extern "C" {
4215   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4216 }
4217 
4218 void Threads::shutdown_vm_agents() {
4219   // Send any Agent_OnUnload notifications
4220   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4221   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4222   extern struct JavaVM_ main_vm;
4223   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4224 
4225     // Find the Agent_OnUnload function.
4226     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4227                                                    os::find_agent_function(agent,
4228                                                    false,
4229                                                    on_unload_symbols,
4230                                                    num_symbol_entries));
4231 
4232     // Invoke the Agent_OnUnload function
4233     if (unload_entry != NULL) {
4234       JavaThread* thread = JavaThread::current();
4235       ThreadToNativeFromVM ttn(thread);
4236       HandleMark hm(thread);
4237       (*unload_entry)(&main_vm);
4238     }
4239   }
4240 }
4241 
4242 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4243 // Invokes JVM_OnLoad
4244 void Threads::create_vm_init_libraries() {
4245   extern struct JavaVM_ main_vm;
4246   AgentLibrary* agent;
4247 
4248   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4249     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4250 
4251     if (on_load_entry != NULL) {
4252       // Invoke the JVM_OnLoad function
4253       JavaThread* thread = JavaThread::current();
4254       ThreadToNativeFromVM ttn(thread);
4255       HandleMark hm(thread);
4256       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4257       if (err != JNI_OK) {
4258         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4259       }
4260     } else {
4261       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4262     }
4263   }
4264 }
4265 
4266 
4267 // Last thread running calls java.lang.Shutdown.shutdown()
4268 void JavaThread::invoke_shutdown_hooks() {
4269   HandleMark hm(this);
4270 
4271   // We could get here with a pending exception, if so clear it now.
4272   if (this->has_pending_exception()) {
4273     this->clear_pending_exception();
4274   }
4275 
4276   EXCEPTION_MARK;
4277   Klass* shutdown_klass =
4278     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4279                                       THREAD);
4280   if (shutdown_klass != NULL) {
4281     // SystemDictionary::resolve_or_null will return null if there was
4282     // an exception.  If we cannot load the Shutdown class, just don't
4283     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4284     // won't be run.  Note that if a shutdown hook was registered,
4285     // the Shutdown class would have already been loaded
4286     // (Runtime.addShutdownHook will load it).
4287     JavaValue result(T_VOID);
4288     JavaCalls::call_static(&result,
4289                            shutdown_klass,
4290                            vmSymbols::shutdown_method_name(),
4291                            vmSymbols::void_method_signature(),
4292                            THREAD);
4293   }
4294   CLEAR_PENDING_EXCEPTION;
4295 }
4296 
4297 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4298 // the program falls off the end of main(). Another VM exit path is through
4299 // vm_exit() when the program calls System.exit() to return a value or when
4300 // there is a serious error in VM. The two shutdown paths are not exactly
4301 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4302 // and VM_Exit op at VM level.
4303 //
4304 // Shutdown sequence:
4305 //   + Shutdown native memory tracking if it is on
4306 //   + Wait until we are the last non-daemon thread to execute
4307 //     <-- every thing is still working at this moment -->
4308 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4309 //        shutdown hooks
4310 //   + Call before_exit(), prepare for VM exit
4311 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4312 //        currently the only user of this mechanism is File.deleteOnExit())
4313 //      > stop StatSampler, watcher thread, CMS threads,
4314 //        post thread end and vm death events to JVMTI,
4315 //        stop signal thread
4316 //   + Call JavaThread::exit(), it will:
4317 //      > release JNI handle blocks, remove stack guard pages
4318 //      > remove this thread from Threads list
4319 //     <-- no more Java code from this thread after this point -->
4320 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4321 //     the compiler threads at safepoint
4322 //     <-- do not use anything that could get blocked by Safepoint -->
4323 //   + Disable tracing at JNI/JVM barriers
4324 //   + Set _vm_exited flag for threads that are still running native code
4325 //   + Call exit_globals()
4326 //      > deletes tty
4327 //      > deletes PerfMemory resources
4328 //   + Delete this thread
4329 //   + Return to caller
4330 
4331 bool Threads::destroy_vm() {
4332   JavaThread* thread = JavaThread::current();
4333 
4334 #ifdef ASSERT
4335   _vm_complete = false;
4336 #endif
4337   // Wait until we are the last non-daemon thread to execute
4338   { MutexLocker nu(Threads_lock);
4339     while (Threads::number_of_non_daemon_threads() > 1)
4340       // This wait should make safepoint checks, wait without a timeout,
4341       // and wait as a suspend-equivalent condition.
4342       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4343                          Mutex::_as_suspend_equivalent_flag);
4344   }
4345 
4346   EventShutdown e;
4347   if (e.should_commit()) {
4348     e.set_reason("No remaining non-daemon Java threads");
4349     e.commit();
4350   }
4351 
4352   // Hang forever on exit if we are reporting an error.
4353   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4354     os::infinite_sleep();
4355   }
4356   os::wait_for_keypress_at_exit();
4357 
4358   // run Java level shutdown hooks
4359   thread->invoke_shutdown_hooks();
4360 
4361   before_exit(thread);
4362 
4363   thread->exit(true);
4364 
4365   // Stop VM thread.
4366   {
4367     // 4945125 The vm thread comes to a safepoint during exit.
4368     // GC vm_operations can get caught at the safepoint, and the
4369     // heap is unparseable if they are caught. Grab the Heap_lock
4370     // to prevent this. The GC vm_operations will not be able to
4371     // queue until after the vm thread is dead. After this point,
4372     // we'll never emerge out of the safepoint before the VM exits.
4373 
4374     MutexLockerEx ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4375 
4376     VMThread::wait_for_vm_thread_exit();
4377     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4378     VMThread::destroy();
4379   }
4380 
4381   // Now, all Java threads are gone except daemon threads. Daemon threads
4382   // running Java code or in VM are stopped by the Safepoint. However,
4383   // daemon threads executing native code are still running.  But they
4384   // will be stopped at native=>Java/VM barriers. Note that we can't
4385   // simply kill or suspend them, as it is inherently deadlock-prone.
4386 
4387   VM_Exit::set_vm_exited();
4388 
4389   // Clean up ideal graph printers after the VMThread has started
4390   // the final safepoint which will block all the Compiler threads.
4391   // Note that this Thread has already logically exited so the
4392   // clean_up() function's use of a JavaThreadIteratorWithHandle
4393   // would be a problem except set_vm_exited() has remembered the
4394   // shutdown thread which is granted a policy exception.
4395 #if defined(COMPILER2) && !defined(PRODUCT)
4396   IdealGraphPrinter::clean_up();
4397 #endif
4398 
4399   notify_vm_shutdown();
4400 
4401   // exit_globals() will delete tty
4402   exit_globals();
4403 
4404   // We are after VM_Exit::set_vm_exited() so we can't call
4405   // thread->smr_delete() or we will block on the Threads_lock.
4406   // Deleting the shutdown thread here is safe because another
4407   // JavaThread cannot have an active ThreadsListHandle for
4408   // this JavaThread.
4409   delete thread;
4410 
4411 #if INCLUDE_JVMCI
4412   if (JVMCICounterSize > 0) {
4413     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4414   }
4415 #endif
4416 
4417   LogConfiguration::finalize();
4418 
4419   return true;
4420 }
4421 
4422 
4423 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4424   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4425   return is_supported_jni_version(version);
4426 }
4427 
4428 
4429 jboolean Threads::is_supported_jni_version(jint version) {
4430   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4431   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4432   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4433   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4434   if (version == JNI_VERSION_9) return JNI_TRUE;
4435   if (version == JNI_VERSION_10) return JNI_TRUE;
4436   return JNI_FALSE;
4437 }
4438 
4439 
4440 void Threads::add(JavaThread* p, bool force_daemon) {
4441   // The threads lock must be owned at this point
4442   assert(Threads_lock->owned_by_self(), "must have threads lock");
4443 
4444   BarrierSet::barrier_set()->on_thread_attach(p);
4445 
4446   p->set_next(_thread_list);
4447   _thread_list = p;
4448 
4449   // Once a JavaThread is added to the Threads list, smr_delete() has
4450   // to be used to delete it. Otherwise we can just delete it directly.
4451   p->set_on_thread_list();
4452 
4453   _number_of_threads++;
4454   oop threadObj = p->threadObj();
4455   bool daemon = true;
4456   // Bootstrapping problem: threadObj can be null for initial
4457   // JavaThread (or for threads attached via JNI)
4458   if ((!force_daemon) && !is_daemon((threadObj))) {
4459     _number_of_non_daemon_threads++;
4460     daemon = false;
4461   }
4462 
4463   ThreadService::add_thread(p, daemon);
4464 
4465   // Maintain fast thread list
4466   ThreadsSMRSupport::add_thread(p);
4467 
4468   // Possible GC point.
4469   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4470 }
4471 
4472 void Threads::remove(JavaThread* p, bool is_daemon) {
4473 
4474   // Reclaim the ObjectMonitors from the omInUseList and omFreeList of the moribund thread.
4475   ObjectSynchronizer::omFlush(p);
4476 
4477   // Extra scope needed for Thread_lock, so we can check
4478   // that we do not remove thread without safepoint code notice
4479   { MutexLocker ml(Threads_lock);
4480 
4481     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4482 
4483     // Maintain fast thread list
4484     ThreadsSMRSupport::remove_thread(p);
4485 
4486     JavaThread* current = _thread_list;
4487     JavaThread* prev    = NULL;
4488 
4489     while (current != p) {
4490       prev    = current;
4491       current = current->next();
4492     }
4493 
4494     if (prev) {
4495       prev->set_next(current->next());
4496     } else {
4497       _thread_list = p->next();
4498     }
4499 
4500     _number_of_threads--;
4501     if (!is_daemon) {
4502       _number_of_non_daemon_threads--;
4503 
4504       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4505       // on destroy_vm will wake up.
4506       if (number_of_non_daemon_threads() == 1) {
4507         Threads_lock->notify_all();
4508       }
4509     }
4510     ThreadService::remove_thread(p, is_daemon);
4511 
4512     // Make sure that safepoint code disregard this thread. This is needed since
4513     // the thread might mess around with locks after this point. This can cause it
4514     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4515     // of this thread since it is removed from the queue.
4516     p->set_terminated_value();
4517   } // unlock Threads_lock
4518 
4519   // Since Events::log uses a lock, we grab it outside the Threads_lock
4520   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4521 }
4522 
4523 // Operations on the Threads list for GC.  These are not explicitly locked,
4524 // but the garbage collector must provide a safe context for them to run.
4525 // In particular, these things should never be called when the Threads_lock
4526 // is held by some other thread. (Note: the Safepoint abstraction also
4527 // uses the Threads_lock to guarantee this property. It also makes sure that
4528 // all threads gets blocked when exiting or starting).
4529 
4530 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4531   ALL_JAVA_THREADS(p) {
4532     p->oops_do(f, cf);
4533   }
4534   VMThread::vm_thread()->oops_do(f, cf);
4535 }
4536 
4537 void Threads::change_thread_claim_token() {
4538   if (++_thread_claim_token == 0) {
4539     // On overflow of the token counter, there is a risk of future
4540     // collisions between a new global token value and a stale token
4541     // for a thread, because not all iterations visit all threads.
4542     // (Though it's pretty much a theoretical concern for non-trivial
4543     // token counter sizes.)  To deal with the possibility, reset all
4544     // the thread tokens to zero on global token overflow.
4545     struct ResetClaims : public ThreadClosure {
4546       virtual void do_thread(Thread* t) {
4547         t->claim_threads_do(false, 0);
4548       }
4549     } reset_claims;
4550     Threads::threads_do(&reset_claims);
4551     // On overflow, update the global token to non-zero, to
4552     // avoid the special "never claimed" initial thread value.
4553     _thread_claim_token = 1;
4554   }
4555 }
4556 
4557 #ifdef ASSERT
4558 void assert_thread_claimed(const char* kind, Thread* t, uintx expected) {
4559   const uintx token = t->threads_do_token();
4560   assert(token == expected,
4561          "%s " PTR_FORMAT " has incorrect value " UINTX_FORMAT " != "
4562          UINTX_FORMAT, kind, p2i(t), token, expected);
4563 }
4564 
4565 void Threads::assert_all_threads_claimed() {
4566   ALL_JAVA_THREADS(p) {
4567     assert_thread_claimed("Thread", p, _thread_claim_token);
4568   }
4569   assert_thread_claimed("VMThread", VMThread::vm_thread(), _thread_claim_token);
4570 }
4571 #endif // ASSERT
4572 
4573 class ParallelOopsDoThreadClosure : public ThreadClosure {
4574 private:
4575   OopClosure* _f;
4576   CodeBlobClosure* _cf;
4577 public:
4578   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4579   void do_thread(Thread* t) {
4580     t->oops_do(_f, _cf);
4581   }
4582 };
4583 
4584 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4585   ParallelOopsDoThreadClosure tc(f, cf);
4586   possibly_parallel_threads_do(is_par, &tc);
4587 }
4588 
4589 void Threads::nmethods_do(CodeBlobClosure* cf) {
4590   ALL_JAVA_THREADS(p) {
4591     // This is used by the code cache sweeper to mark nmethods that are active
4592     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4593     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4594     if(!p->is_Code_cache_sweeper_thread()) {
4595       p->nmethods_do(cf);
4596     }
4597   }
4598 }
4599 
4600 void Threads::metadata_do(MetadataClosure* f) {
4601   ALL_JAVA_THREADS(p) {
4602     p->metadata_do(f);
4603   }
4604 }
4605 
4606 class ThreadHandlesClosure : public ThreadClosure {
4607   void (*_f)(Metadata*);
4608  public:
4609   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4610   virtual void do_thread(Thread* thread) {
4611     thread->metadata_handles_do(_f);
4612   }
4613 };
4614 
4615 void Threads::metadata_handles_do(void f(Metadata*)) {
4616   // Only walk the Handles in Thread.
4617   ThreadHandlesClosure handles_closure(f);
4618   threads_do(&handles_closure);
4619 }
4620 
4621 void Threads::deoptimized_wrt_marked_nmethods() {
4622   ALL_JAVA_THREADS(p) {
4623     p->deoptimized_wrt_marked_nmethods();
4624   }
4625 }
4626 
4627 
4628 // Get count Java threads that are waiting to enter the specified monitor.
4629 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4630                                                          int count,
4631                                                          address monitor) {
4632   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4633 
4634   int i = 0;
4635   DO_JAVA_THREADS(t_list, p) {
4636     if (!p->can_call_java()) continue;
4637 
4638     address pending = (address)p->current_pending_monitor();
4639     if (pending == monitor) {             // found a match
4640       if (i < count) result->append(p);   // save the first count matches
4641       i++;
4642     }
4643   }
4644 
4645   return result;
4646 }
4647 
4648 
4649 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4650                                                       address owner) {
4651   // NULL owner means not locked so we can skip the search
4652   if (owner == NULL) return NULL;
4653 
4654   DO_JAVA_THREADS(t_list, p) {
4655     // first, see if owner is the address of a Java thread
4656     if (owner == (address)p) return p;
4657   }
4658 
4659   // Cannot assert on lack of success here since this function may be
4660   // used by code that is trying to report useful problem information
4661   // like deadlock detection.
4662   if (UseHeavyMonitors) return NULL;
4663 
4664   // If we didn't find a matching Java thread and we didn't force use of
4665   // heavyweight monitors, then the owner is the stack address of the
4666   // Lock Word in the owning Java thread's stack.
4667   //
4668   JavaThread* the_owner = NULL;
4669   DO_JAVA_THREADS(t_list, q) {
4670     if (q->is_lock_owned(owner)) {
4671       the_owner = q;
4672       break;
4673     }
4674   }
4675 
4676   // cannot assert on lack of success here; see above comment
4677   return the_owner;
4678 }
4679 
4680 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4681 void Threads::print_on(outputStream* st, bool print_stacks,
4682                        bool internal_format, bool print_concurrent_locks,
4683                        bool print_extended_info) {
4684   char buf[32];
4685   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4686 
4687   st->print_cr("Full thread dump %s (%s %s):",
4688                VM_Version::vm_name(),
4689                VM_Version::vm_release(),
4690                VM_Version::vm_info_string());
4691   st->cr();
4692 
4693 #if INCLUDE_SERVICES
4694   // Dump concurrent locks
4695   ConcurrentLocksDump concurrent_locks;
4696   if (print_concurrent_locks) {
4697     concurrent_locks.dump_at_safepoint();
4698   }
4699 #endif // INCLUDE_SERVICES
4700 
4701   ThreadsSMRSupport::print_info_on(st);
4702   st->cr();
4703 
4704   ALL_JAVA_THREADS(p) {
4705     ResourceMark rm;
4706     p->print_on(st, print_extended_info);
4707     if (print_stacks) {
4708       if (internal_format) {
4709         p->trace_stack();
4710       } else {
4711         p->print_stack_on(st);
4712       }
4713     }
4714     st->cr();
4715 #if INCLUDE_SERVICES
4716     if (print_concurrent_locks) {
4717       concurrent_locks.print_locks_on(p, st);
4718     }
4719 #endif // INCLUDE_SERVICES
4720   }
4721 
4722   VMThread::vm_thread()->print_on(st);
4723   st->cr();
4724   Universe::heap()->print_gc_threads_on(st);
4725   WatcherThread* wt = WatcherThread::watcher_thread();
4726   if (wt != NULL) {
4727     wt->print_on(st);
4728     st->cr();
4729   }
4730 
4731   st->flush();
4732 }
4733 
4734 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4735                              int buflen, bool* found_current) {
4736   if (this_thread != NULL) {
4737     bool is_current = (current == this_thread);
4738     *found_current = *found_current || is_current;
4739     st->print("%s", is_current ? "=>" : "  ");
4740 
4741     st->print(PTR_FORMAT, p2i(this_thread));
4742     st->print(" ");
4743     this_thread->print_on_error(st, buf, buflen);
4744     st->cr();
4745   }
4746 }
4747 
4748 class PrintOnErrorClosure : public ThreadClosure {
4749   outputStream* _st;
4750   Thread* _current;
4751   char* _buf;
4752   int _buflen;
4753   bool* _found_current;
4754  public:
4755   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4756                       int buflen, bool* found_current) :
4757    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4758 
4759   virtual void do_thread(Thread* thread) {
4760     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4761   }
4762 };
4763 
4764 // Threads::print_on_error() is called by fatal error handler. It's possible
4765 // that VM is not at safepoint and/or current thread is inside signal handler.
4766 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4767 // memory (even in resource area), it might deadlock the error handler.
4768 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4769                              int buflen) {
4770   ThreadsSMRSupport::print_info_on(st);
4771   st->cr();
4772 
4773   bool found_current = false;
4774   st->print_cr("Java Threads: ( => current thread )");
4775   ALL_JAVA_THREADS(thread) {
4776     print_on_error(thread, st, current, buf, buflen, &found_current);
4777   }
4778   st->cr();
4779 
4780   st->print_cr("Other Threads:");
4781   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4782   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4783 
4784   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4785   Universe::heap()->gc_threads_do(&print_closure);
4786 
4787   if (!found_current) {
4788     st->cr();
4789     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4790     current->print_on_error(st, buf, buflen);
4791     st->cr();
4792   }
4793   st->cr();
4794 
4795   st->print_cr("Threads with active compile tasks:");
4796   print_threads_compiling(st, buf, buflen);
4797 }
4798 
4799 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
4800   ALL_JAVA_THREADS(thread) {
4801     if (thread->is_Compiler_thread()) {
4802       CompilerThread* ct = (CompilerThread*) thread;
4803 
4804       // Keep task in local variable for NULL check.
4805       // ct->_task might be set to NULL by concurring compiler thread
4806       // because it completed the compilation. The task is never freed,
4807       // though, just returned to a free list.
4808       CompileTask* task = ct->task();
4809       if (task != NULL) {
4810         thread->print_name_on_error(st, buf, buflen);
4811         st->print("  ");
4812         task->print(st, NULL, short_form, true);
4813       }
4814     }
4815   }
4816 }
4817 
4818 
4819 // Internal SpinLock and Mutex
4820 // Based on ParkEvent
4821 
4822 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4823 //
4824 // We employ SpinLocks _only for low-contention, fixed-length
4825 // short-duration critical sections where we're concerned
4826 // about native mutex_t or HotSpot Mutex:: latency.
4827 // The mux construct provides a spin-then-block mutual exclusion
4828 // mechanism.
4829 //
4830 // Testing has shown that contention on the ListLock guarding gFreeList
4831 // is common.  If we implement ListLock as a simple SpinLock it's common
4832 // for the JVM to devolve to yielding with little progress.  This is true
4833 // despite the fact that the critical sections protected by ListLock are
4834 // extremely short.
4835 //
4836 // TODO-FIXME: ListLock should be of type SpinLock.
4837 // We should make this a 1st-class type, integrated into the lock
4838 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4839 // should have sufficient padding to avoid false-sharing and excessive
4840 // cache-coherency traffic.
4841 
4842 
4843 typedef volatile int SpinLockT;
4844 
4845 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4846   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4847     return;   // normal fast-path return
4848   }
4849 
4850   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4851   int ctr = 0;
4852   int Yields = 0;
4853   for (;;) {
4854     while (*adr != 0) {
4855       ++ctr;
4856       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4857         if (Yields > 5) {
4858           os::naked_short_sleep(1);
4859         } else {
4860           os::naked_yield();
4861           ++Yields;
4862         }
4863       } else {
4864         SpinPause();
4865       }
4866     }
4867     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4868   }
4869 }
4870 
4871 void Thread::SpinRelease(volatile int * adr) {
4872   assert(*adr != 0, "invariant");
4873   OrderAccess::fence();      // guarantee at least release consistency.
4874   // Roach-motel semantics.
4875   // It's safe if subsequent LDs and STs float "up" into the critical section,
4876   // but prior LDs and STs within the critical section can't be allowed
4877   // to reorder or float past the ST that releases the lock.
4878   // Loads and stores in the critical section - which appear in program
4879   // order before the store that releases the lock - must also appear
4880   // before the store that releases the lock in memory visibility order.
4881   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4882   // the ST of 0 into the lock-word which releases the lock, so fence
4883   // more than covers this on all platforms.
4884   *adr = 0;
4885 }
4886 
4887 // muxAcquire and muxRelease:
4888 //
4889 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4890 //    The LSB of the word is set IFF the lock is held.
4891 //    The remainder of the word points to the head of a singly-linked list
4892 //    of threads blocked on the lock.
4893 //
4894 // *  The current implementation of muxAcquire-muxRelease uses its own
4895 //    dedicated Thread._MuxEvent instance.  If we're interested in
4896 //    minimizing the peak number of extant ParkEvent instances then
4897 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4898 //    as certain invariants were satisfied.  Specifically, care would need
4899 //    to be taken with regards to consuming unpark() "permits".
4900 //    A safe rule of thumb is that a thread would never call muxAcquire()
4901 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4902 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4903 //    consume an unpark() permit intended for monitorenter, for instance.
4904 //    One way around this would be to widen the restricted-range semaphore
4905 //    implemented in park().  Another alternative would be to provide
4906 //    multiple instances of the PlatformEvent() for each thread.  One
4907 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4908 //
4909 // *  Usage:
4910 //    -- Only as leaf locks
4911 //    -- for short-term locking only as muxAcquire does not perform
4912 //       thread state transitions.
4913 //
4914 // Alternatives:
4915 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4916 //    but with parking or spin-then-park instead of pure spinning.
4917 // *  Use Taura-Oyama-Yonenzawa locks.
4918 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4919 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4920 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4921 //    acquiring threads use timers (ParkTimed) to detect and recover from
4922 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4923 //    boundaries by using placement-new.
4924 // *  Augment MCS with advisory back-link fields maintained with CAS().
4925 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4926 //    The validity of the backlinks must be ratified before we trust the value.
4927 //    If the backlinks are invalid the exiting thread must back-track through the
4928 //    the forward links, which are always trustworthy.
4929 // *  Add a successor indication.  The LockWord is currently encoded as
4930 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4931 //    to provide the usual futile-wakeup optimization.
4932 //    See RTStt for details.
4933 //
4934 
4935 
4936 const intptr_t LOCKBIT = 1;
4937 
4938 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4939   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4940   if (w == 0) return;
4941   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4942     return;
4943   }
4944 
4945   ParkEvent * const Self = Thread::current()->_MuxEvent;
4946   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4947   for (;;) {
4948     int its = (os::is_MP() ? 100 : 0) + 1;
4949 
4950     // Optional spin phase: spin-then-park strategy
4951     while (--its >= 0) {
4952       w = *Lock;
4953       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4954         return;
4955       }
4956     }
4957 
4958     Self->reset();
4959     Self->OnList = intptr_t(Lock);
4960     // The following fence() isn't _strictly necessary as the subsequent
4961     // CAS() both serializes execution and ratifies the fetched *Lock value.
4962     OrderAccess::fence();
4963     for (;;) {
4964       w = *Lock;
4965       if ((w & LOCKBIT) == 0) {
4966         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4967           Self->OnList = 0;   // hygiene - allows stronger asserts
4968           return;
4969         }
4970         continue;      // Interference -- *Lock changed -- Just retry
4971       }
4972       assert(w & LOCKBIT, "invariant");
4973       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4974       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4975     }
4976 
4977     while (Self->OnList != 0) {
4978       Self->park();
4979     }
4980   }
4981 }
4982 
4983 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4984   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4985   if (w == 0) return;
4986   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4987     return;
4988   }
4989 
4990   ParkEvent * ReleaseAfter = NULL;
4991   if (ev == NULL) {
4992     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4993   }
4994   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4995   for (;;) {
4996     guarantee(ev->OnList == 0, "invariant");
4997     int its = (os::is_MP() ? 100 : 0) + 1;
4998 
4999     // Optional spin phase: spin-then-park strategy
5000     while (--its >= 0) {
5001       w = *Lock;
5002       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
5003         if (ReleaseAfter != NULL) {
5004           ParkEvent::Release(ReleaseAfter);
5005         }
5006         return;
5007       }
5008     }
5009 
5010     ev->reset();
5011     ev->OnList = intptr_t(Lock);
5012     // The following fence() isn't _strictly necessary as the subsequent
5013     // CAS() both serializes execution and ratifies the fetched *Lock value.
5014     OrderAccess::fence();
5015     for (;;) {
5016       w = *Lock;
5017       if ((w & LOCKBIT) == 0) {
5018         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
5019           ev->OnList = 0;
5020           // We call ::Release while holding the outer lock, thus
5021           // artificially lengthening the critical section.
5022           // Consider deferring the ::Release() until the subsequent unlock(),
5023           // after we've dropped the outer lock.
5024           if (ReleaseAfter != NULL) {
5025             ParkEvent::Release(ReleaseAfter);
5026           }
5027           return;
5028         }
5029         continue;      // Interference -- *Lock changed -- Just retry
5030       }
5031       assert(w & LOCKBIT, "invariant");
5032       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
5033       if (Atomic::cmpxchg(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
5034     }
5035 
5036     while (ev->OnList != 0) {
5037       ev->park();
5038     }
5039   }
5040 }
5041 
5042 // Release() must extract a successor from the list and then wake that thread.
5043 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
5044 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
5045 // Release() would :
5046 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
5047 // (B) Extract a successor from the private list "in-hand"
5048 // (C) attempt to CAS() the residual back into *Lock over null.
5049 //     If there were any newly arrived threads and the CAS() would fail.
5050 //     In that case Release() would detach the RATs, re-merge the list in-hand
5051 //     with the RATs and repeat as needed.  Alternately, Release() might
5052 //     detach and extract a successor, but then pass the residual list to the wakee.
5053 //     The wakee would be responsible for reattaching and remerging before it
5054 //     competed for the lock.
5055 //
5056 // Both "pop" and DMR are immune from ABA corruption -- there can be
5057 // multiple concurrent pushers, but only one popper or detacher.
5058 // This implementation pops from the head of the list.  This is unfair,
5059 // but tends to provide excellent throughput as hot threads remain hot.
5060 // (We wake recently run threads first).
5061 //
5062 // All paths through muxRelease() will execute a CAS.
5063 // Release consistency -- We depend on the CAS in muxRelease() to provide full
5064 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
5065 // executed within the critical section are complete and globally visible before the
5066 // store (CAS) to the lock-word that releases the lock becomes globally visible.
5067 void Thread::muxRelease(volatile intptr_t * Lock)  {
5068   for (;;) {
5069     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
5070     assert(w & LOCKBIT, "invariant");
5071     if (w == LOCKBIT) return;
5072     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5073     assert(List != NULL, "invariant");
5074     assert(List->OnList == intptr_t(Lock), "invariant");
5075     ParkEvent * const nxt = List->ListNext;
5076     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5077 
5078     // The following CAS() releases the lock and pops the head element.
5079     // The CAS() also ratifies the previously fetched lock-word value.
5080     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
5081       continue;
5082     }
5083     List->OnList = 0;
5084     OrderAccess::fence();
5085     List->unpark();
5086     return;
5087   }
5088 }
5089 
5090 
5091 void Threads::verify() {
5092   ALL_JAVA_THREADS(p) {
5093     p->verify();
5094   }
5095   VMThread* thread = VMThread::vm_thread();
5096   if (thread != NULL) thread->verify();
5097 }