1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/compiledMethod.inline.hpp"
  35 #include "code/scopeDesc.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/abstractCompiler.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/interpreterRuntime.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "memory/universe.hpp"
  49 #include "oops/klass.hpp"
  50 #include "oops/method.inline.hpp"
  51 #include "oops/objArrayKlass.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "prims/forte.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/methodHandles.hpp"
  56 #include "prims/nativeLookup.hpp"
  57 #include "runtime/arguments.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/biasedLocking.hpp"
  60 #include "runtime/compilationPolicy.hpp"
  61 #include "runtime/frame.inline.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/init.hpp"
  64 #include "runtime/interfaceSupport.inline.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/javaCalls.hpp"
  67 #include "runtime/objectMonitor.hpp"
  68 #include "runtime/sharedRuntime.hpp"
  69 #include "runtime/stubRoutines.hpp"
  70 #include "runtime/synchronizer.hpp"
  71 #include "runtime/vframe.inline.hpp"
  72 #include "runtime/vframeArray.hpp"
  73 #include "utilities/copy.hpp"
  74 #include "utilities/dtrace.hpp"
  75 #include "utilities/events.hpp"
  76 #include "utilities/hashtable.inline.hpp"
  77 #include "utilities/macros.hpp"
  78 #include "utilities/xmlstream.hpp"
  79 #ifdef COMPILER1
  80 #include "c1/c1_Runtime1.hpp"
  81 #endif
  82 
  83 // Shared stub locations
  84 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  85 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  86 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  87 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  88 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  89 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  90 address             SharedRuntime::_resolve_static_call_entry;
  91 
  92 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  93 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  94 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  95 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  96 
  97 #ifdef COMPILER2
  98 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  99 #endif // COMPILER2
 100 
 101 
 102 //----------------------------generate_stubs-----------------------------------
 103 void SharedRuntime::generate_stubs() {
 104   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 105   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 106   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 107   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 108   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 109   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 110   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 111 
 112 #if COMPILER2_OR_JVMCI
 113   // Vectors are generated only by C2 and JVMCI.
 114   bool support_wide = is_wide_vector(MaxVectorSize);
 115   if (support_wide) {
 116     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 117   }
 118 #endif // COMPILER2_OR_JVMCI
 119   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 120   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 121 
 122   generate_deopt_blob();
 123 
 124 #ifdef COMPILER2
 125   generate_uncommon_trap_blob();
 126 #endif // COMPILER2
 127 }
 128 
 129 #include <math.h>
 130 
 131 // Implementation of SharedRuntime
 132 
 133 #ifndef PRODUCT
 134 // For statistics
 135 int SharedRuntime::_ic_miss_ctr = 0;
 136 int SharedRuntime::_wrong_method_ctr = 0;
 137 int SharedRuntime::_resolve_static_ctr = 0;
 138 int SharedRuntime::_resolve_virtual_ctr = 0;
 139 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 140 int SharedRuntime::_implicit_null_throws = 0;
 141 int SharedRuntime::_implicit_div0_throws = 0;
 142 int SharedRuntime::_throw_null_ctr = 0;
 143 
 144 int SharedRuntime::_nof_normal_calls = 0;
 145 int SharedRuntime::_nof_optimized_calls = 0;
 146 int SharedRuntime::_nof_inlined_calls = 0;
 147 int SharedRuntime::_nof_megamorphic_calls = 0;
 148 int SharedRuntime::_nof_static_calls = 0;
 149 int SharedRuntime::_nof_inlined_static_calls = 0;
 150 int SharedRuntime::_nof_interface_calls = 0;
 151 int SharedRuntime::_nof_optimized_interface_calls = 0;
 152 int SharedRuntime::_nof_inlined_interface_calls = 0;
 153 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 154 int SharedRuntime::_nof_removable_exceptions = 0;
 155 
 156 int SharedRuntime::_new_instance_ctr=0;
 157 int SharedRuntime::_new_array_ctr=0;
 158 int SharedRuntime::_multi1_ctr=0;
 159 int SharedRuntime::_multi2_ctr=0;
 160 int SharedRuntime::_multi3_ctr=0;
 161 int SharedRuntime::_multi4_ctr=0;
 162 int SharedRuntime::_multi5_ctr=0;
 163 int SharedRuntime::_mon_enter_stub_ctr=0;
 164 int SharedRuntime::_mon_exit_stub_ctr=0;
 165 int SharedRuntime::_mon_enter_ctr=0;
 166 int SharedRuntime::_mon_exit_ctr=0;
 167 int SharedRuntime::_partial_subtype_ctr=0;
 168 int SharedRuntime::_jbyte_array_copy_ctr=0;
 169 int SharedRuntime::_jshort_array_copy_ctr=0;
 170 int SharedRuntime::_jint_array_copy_ctr=0;
 171 int SharedRuntime::_jlong_array_copy_ctr=0;
 172 int SharedRuntime::_oop_array_copy_ctr=0;
 173 int SharedRuntime::_checkcast_array_copy_ctr=0;
 174 int SharedRuntime::_unsafe_array_copy_ctr=0;
 175 int SharedRuntime::_generic_array_copy_ctr=0;
 176 int SharedRuntime::_slow_array_copy_ctr=0;
 177 int SharedRuntime::_find_handler_ctr=0;
 178 int SharedRuntime::_rethrow_ctr=0;
 179 
 180 int     SharedRuntime::_ICmiss_index                    = 0;
 181 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 182 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 183 
 184 
 185 void SharedRuntime::trace_ic_miss(address at) {
 186   for (int i = 0; i < _ICmiss_index; i++) {
 187     if (_ICmiss_at[i] == at) {
 188       _ICmiss_count[i]++;
 189       return;
 190     }
 191   }
 192   int index = _ICmiss_index++;
 193   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 194   _ICmiss_at[index] = at;
 195   _ICmiss_count[index] = 1;
 196 }
 197 
 198 void SharedRuntime::print_ic_miss_histogram() {
 199   if (ICMissHistogram) {
 200     tty->print_cr("IC Miss Histogram:");
 201     int tot_misses = 0;
 202     for (int i = 0; i < _ICmiss_index; i++) {
 203       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 204       tot_misses += _ICmiss_count[i];
 205     }
 206     tty->print_cr("Total IC misses: %7d", tot_misses);
 207   }
 208 }
 209 #endif // PRODUCT
 210 
 211 
 212 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 213   return x * y;
 214 JRT_END
 215 
 216 
 217 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 218   if (x == min_jlong && y == CONST64(-1)) {
 219     return x;
 220   } else {
 221     return x / y;
 222   }
 223 JRT_END
 224 
 225 
 226 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 227   if (x == min_jlong && y == CONST64(-1)) {
 228     return 0;
 229   } else {
 230     return x % y;
 231   }
 232 JRT_END
 233 
 234 
 235 const juint  float_sign_mask  = 0x7FFFFFFF;
 236 const juint  float_infinity   = 0x7F800000;
 237 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 238 const julong double_infinity  = CONST64(0x7FF0000000000000);
 239 
 240 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 241 #ifdef _WIN64
 242   // 64-bit Windows on amd64 returns the wrong values for
 243   // infinity operands.
 244   union { jfloat f; juint i; } xbits, ybits;
 245   xbits.f = x;
 246   ybits.f = y;
 247   // x Mod Infinity == x unless x is infinity
 248   if (((xbits.i & float_sign_mask) != float_infinity) &&
 249        ((ybits.i & float_sign_mask) == float_infinity) ) {
 250     return x;
 251   }
 252   return ((jfloat)fmod_winx64((double)x, (double)y));
 253 #else
 254   return ((jfloat)fmod((double)x,(double)y));
 255 #endif
 256 JRT_END
 257 
 258 
 259 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 260 #ifdef _WIN64
 261   union { jdouble d; julong l; } xbits, ybits;
 262   xbits.d = x;
 263   ybits.d = y;
 264   // x Mod Infinity == x unless x is infinity
 265   if (((xbits.l & double_sign_mask) != double_infinity) &&
 266        ((ybits.l & double_sign_mask) == double_infinity) ) {
 267     return x;
 268   }
 269   return ((jdouble)fmod_winx64((double)x, (double)y));
 270 #else
 271   return ((jdouble)fmod((double)x,(double)y));
 272 #endif
 273 JRT_END
 274 
 275 #ifdef __SOFTFP__
 276 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 277   return x + y;
 278 JRT_END
 279 
 280 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 281   return x - y;
 282 JRT_END
 283 
 284 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 285   return x * y;
 286 JRT_END
 287 
 288 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 289   return x / y;
 290 JRT_END
 291 
 292 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 293   return x + y;
 294 JRT_END
 295 
 296 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 297   return x - y;
 298 JRT_END
 299 
 300 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 301   return x * y;
 302 JRT_END
 303 
 304 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 305   return x / y;
 306 JRT_END
 307 
 308 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 309   return (jfloat)x;
 310 JRT_END
 311 
 312 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 313   return (jdouble)x;
 314 JRT_END
 315 
 316 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 317   return (jdouble)x;
 318 JRT_END
 319 
 320 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 321   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 322 JRT_END
 323 
 324 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 325   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 326 JRT_END
 327 
 328 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 329   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 330 JRT_END
 331 
 332 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 333   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 334 JRT_END
 335 
 336 // Functions to return the opposite of the aeabi functions for nan.
 337 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 338   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 339 JRT_END
 340 
 341 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 342   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 343 JRT_END
 344 
 345 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 346   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 347 JRT_END
 348 
 349 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 350   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 351 JRT_END
 352 
 353 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 354   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 355 JRT_END
 356 
 357 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 358   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 359 JRT_END
 360 
 361 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 362   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 363 JRT_END
 364 
 365 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 366   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 367 JRT_END
 368 
 369 // Intrinsics make gcc generate code for these.
 370 float  SharedRuntime::fneg(float f)   {
 371   return -f;
 372 }
 373 
 374 double SharedRuntime::dneg(double f)  {
 375   return -f;
 376 }
 377 
 378 #endif // __SOFTFP__
 379 
 380 #if defined(__SOFTFP__) || defined(E500V2)
 381 // Intrinsics make gcc generate code for these.
 382 double SharedRuntime::dabs(double f)  {
 383   return (f <= (double)0.0) ? (double)0.0 - f : f;
 384 }
 385 
 386 #endif
 387 
 388 #if defined(__SOFTFP__) || defined(PPC)
 389 double SharedRuntime::dsqrt(double f) {
 390   return sqrt(f);
 391 }
 392 #endif
 393 
 394 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 395   if (g_isnan(x))
 396     return 0;
 397   if (x >= (jfloat) max_jint)
 398     return max_jint;
 399   if (x <= (jfloat) min_jint)
 400     return min_jint;
 401   return (jint) x;
 402 JRT_END
 403 
 404 
 405 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 406   if (g_isnan(x))
 407     return 0;
 408   if (x >= (jfloat) max_jlong)
 409     return max_jlong;
 410   if (x <= (jfloat) min_jlong)
 411     return min_jlong;
 412   return (jlong) x;
 413 JRT_END
 414 
 415 
 416 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 417   if (g_isnan(x))
 418     return 0;
 419   if (x >= (jdouble) max_jint)
 420     return max_jint;
 421   if (x <= (jdouble) min_jint)
 422     return min_jint;
 423   return (jint) x;
 424 JRT_END
 425 
 426 
 427 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 428   if (g_isnan(x))
 429     return 0;
 430   if (x >= (jdouble) max_jlong)
 431     return max_jlong;
 432   if (x <= (jdouble) min_jlong)
 433     return min_jlong;
 434   return (jlong) x;
 435 JRT_END
 436 
 437 
 438 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 439   return (jfloat)x;
 440 JRT_END
 441 
 442 
 443 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 444   return (jfloat)x;
 445 JRT_END
 446 
 447 
 448 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 449   return (jdouble)x;
 450 JRT_END
 451 
 452 // Exception handling across interpreter/compiler boundaries
 453 //
 454 // exception_handler_for_return_address(...) returns the continuation address.
 455 // The continuation address is the entry point of the exception handler of the
 456 // previous frame depending on the return address.
 457 
 458 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 459   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 460   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 461 
 462   // Reset method handle flag.
 463   thread->set_is_method_handle_return(false);
 464 
 465 #if INCLUDE_JVMCI
 466   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 467   // and other exception handler continuations do not read it
 468   thread->set_exception_pc(NULL);
 469 #endif // INCLUDE_JVMCI
 470 
 471   // The fastest case first
 472   CodeBlob* blob = CodeCache::find_blob(return_address);
 473   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 474   if (nm != NULL) {
 475     // Set flag if return address is a method handle call site.
 476     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 477     // native nmethods don't have exception handlers
 478     assert(!nm->is_native_method(), "no exception handler");
 479     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 480     if (nm->is_deopt_pc(return_address)) {
 481       // If we come here because of a stack overflow, the stack may be
 482       // unguarded. Reguard the stack otherwise if we return to the
 483       // deopt blob and the stack bang causes a stack overflow we
 484       // crash.
 485       bool guard_pages_enabled = thread->stack_guards_enabled();
 486       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 487       if (thread->reserved_stack_activation() != thread->stack_base()) {
 488         thread->set_reserved_stack_activation(thread->stack_base());
 489       }
 490       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 491       return SharedRuntime::deopt_blob()->unpack_with_exception();
 492     } else {
 493       return nm->exception_begin();
 494     }
 495   }
 496 
 497   // Entry code
 498   if (StubRoutines::returns_to_call_stub(return_address)) {
 499     return StubRoutines::catch_exception_entry();
 500   }
 501   // Interpreted code
 502   if (Interpreter::contains(return_address)) {
 503     return Interpreter::rethrow_exception_entry();
 504   }
 505 
 506   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 507   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 508 
 509 #ifndef PRODUCT
 510   { ResourceMark rm;
 511     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 512     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 513     tty->print_cr("b) other problem");
 514   }
 515 #endif // PRODUCT
 516 
 517   ShouldNotReachHere();
 518   return NULL;
 519 }
 520 
 521 
 522 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 523   return raw_exception_handler_for_return_address(thread, return_address);
 524 JRT_END
 525 
 526 
 527 address SharedRuntime::get_poll_stub(address pc) {
 528   address stub;
 529   // Look up the code blob
 530   CodeBlob *cb = CodeCache::find_blob(pc);
 531 
 532   // Should be an nmethod
 533   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 534 
 535   // Look up the relocation information
 536   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 537     "safepoint polling: type must be poll");
 538 
 539 #ifdef ASSERT
 540   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 541     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 542     Disassembler::decode(cb);
 543     fatal("Only polling locations are used for safepoint");
 544   }
 545 #endif
 546 
 547   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 548   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 549   if (at_poll_return) {
 550     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 551            "polling page return stub not created yet");
 552     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 553   } else if (has_wide_vectors) {
 554     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 555            "polling page vectors safepoint stub not created yet");
 556     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 557   } else {
 558     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 559            "polling page safepoint stub not created yet");
 560     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 561   }
 562   log_debug(safepoint)("... found polling page %s exception at pc = "
 563                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 564                        at_poll_return ? "return" : "loop",
 565                        (intptr_t)pc, (intptr_t)stub);
 566   return stub;
 567 }
 568 
 569 
 570 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 571   assert(caller.is_interpreted_frame(), "");
 572   int args_size = ArgumentSizeComputer(sig).size() + 1;
 573   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 574   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 575   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 576   return result;
 577 }
 578 
 579 
 580 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 581   if (JvmtiExport::can_post_on_exceptions()) {
 582     vframeStream vfst(thread, true);
 583     methodHandle method = methodHandle(thread, vfst.method());
 584     address bcp = method()->bcp_from(vfst.bci());
 585     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 586   }
 587   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 588 }
 589 
 590 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 591   Handle h_exception = Exceptions::new_exception(thread, name, message);
 592   throw_and_post_jvmti_exception(thread, h_exception);
 593 }
 594 
 595 // The interpreter code to call this tracing function is only
 596 // called/generated when UL is on for redefine, class and has the right level
 597 // and tags. Since obsolete methods are never compiled, we don't have
 598 // to modify the compilers to generate calls to this function.
 599 //
 600 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 601     JavaThread* thread, Method* method))
 602   if (method->is_obsolete()) {
 603     // We are calling an obsolete method, but this is not necessarily
 604     // an error. Our method could have been redefined just after we
 605     // fetched the Method* from the constant pool.
 606     ResourceMark rm;
 607     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 608   }
 609   return 0;
 610 JRT_END
 611 
 612 // ret_pc points into caller; we are returning caller's exception handler
 613 // for given exception
 614 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 615                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 616   assert(cm != NULL, "must exist");
 617   ResourceMark rm;
 618 
 619 #if INCLUDE_JVMCI
 620   if (cm->is_compiled_by_jvmci()) {
 621     // lookup exception handler for this pc
 622     int catch_pco = ret_pc - cm->code_begin();
 623     ExceptionHandlerTable table(cm);
 624     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 625     if (t != NULL) {
 626       return cm->code_begin() + t->pco();
 627     } else {
 628       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 629     }
 630   }
 631 #endif // INCLUDE_JVMCI
 632 
 633   nmethod* nm = cm->as_nmethod();
 634   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 635   // determine handler bci, if any
 636   EXCEPTION_MARK;
 637 
 638   int handler_bci = -1;
 639   int scope_depth = 0;
 640   if (!force_unwind) {
 641     int bci = sd->bci();
 642     bool recursive_exception = false;
 643     do {
 644       bool skip_scope_increment = false;
 645       // exception handler lookup
 646       Klass* ek = exception->klass();
 647       methodHandle mh(THREAD, sd->method());
 648       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 649       if (HAS_PENDING_EXCEPTION) {
 650         recursive_exception = true;
 651         // We threw an exception while trying to find the exception handler.
 652         // Transfer the new exception to the exception handle which will
 653         // be set into thread local storage, and do another lookup for an
 654         // exception handler for this exception, this time starting at the
 655         // BCI of the exception handler which caused the exception to be
 656         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 657         // argument to ensure that the correct exception is thrown (4870175).
 658         recursive_exception_occurred = true;
 659         exception = Handle(THREAD, PENDING_EXCEPTION);
 660         CLEAR_PENDING_EXCEPTION;
 661         if (handler_bci >= 0) {
 662           bci = handler_bci;
 663           handler_bci = -1;
 664           skip_scope_increment = true;
 665         }
 666       }
 667       else {
 668         recursive_exception = false;
 669       }
 670       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 671         sd = sd->sender();
 672         if (sd != NULL) {
 673           bci = sd->bci();
 674         }
 675         ++scope_depth;
 676       }
 677     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 678   }
 679 
 680   // found handling method => lookup exception handler
 681   int catch_pco = ret_pc - nm->code_begin();
 682 
 683   ExceptionHandlerTable table(nm);
 684   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 685   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 686     // Allow abbreviated catch tables.  The idea is to allow a method
 687     // to materialize its exceptions without committing to the exact
 688     // routing of exceptions.  In particular this is needed for adding
 689     // a synthetic handler to unlock monitors when inlining
 690     // synchronized methods since the unlock path isn't represented in
 691     // the bytecodes.
 692     t = table.entry_for(catch_pco, -1, 0);
 693   }
 694 
 695 #ifdef COMPILER1
 696   if (t == NULL && nm->is_compiled_by_c1()) {
 697     assert(nm->unwind_handler_begin() != NULL, "");
 698     return nm->unwind_handler_begin();
 699   }
 700 #endif
 701 
 702   if (t == NULL) {
 703     ttyLocker ttyl;
 704     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 705     tty->print_cr("   Exception:");
 706     exception->print();
 707     tty->cr();
 708     tty->print_cr(" Compiled exception table :");
 709     table.print();
 710     nm->print_code();
 711     guarantee(false, "missing exception handler");
 712     return NULL;
 713   }
 714 
 715   return nm->code_begin() + t->pco();
 716 }
 717 
 718 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 719   // These errors occur only at call sites
 720   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 721 JRT_END
 722 
 723 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 724   // These errors occur only at call sites
 725   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 726 JRT_END
 727 
 728 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 729   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 730 JRT_END
 731 
 732 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 733   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 734 JRT_END
 735 
 736 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 737   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 738   // cache sites (when the callee activation is not yet set up) so we are at a call site
 739   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 740 JRT_END
 741 
 742 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 743   throw_StackOverflowError_common(thread, false);
 744 JRT_END
 745 
 746 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 747   throw_StackOverflowError_common(thread, true);
 748 JRT_END
 749 
 750 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 751   // We avoid using the normal exception construction in this case because
 752   // it performs an upcall to Java, and we're already out of stack space.
 753   Thread* THREAD = thread;
 754   Klass* k = SystemDictionary::StackOverflowError_klass();
 755   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 756   if (delayed) {
 757     java_lang_Throwable::set_message(exception_oop,
 758                                      Universe::delayed_stack_overflow_error_message());
 759   }
 760   Handle exception (thread, exception_oop);
 761   if (StackTraceInThrowable) {
 762     java_lang_Throwable::fill_in_stack_trace(exception);
 763   }
 764   // Increment counter for hs_err file reporting
 765   Atomic::inc(&Exceptions::_stack_overflow_errors);
 766   throw_and_post_jvmti_exception(thread, exception);
 767 }
 768 
 769 #if INCLUDE_JVMCI
 770 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 771   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 772   thread->set_jvmci_implicit_exception_pc(pc);
 773   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 774   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 775 }
 776 #endif // INCLUDE_JVMCI
 777 
 778 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 779                                                            address pc,
 780                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 781 {
 782   address target_pc = NULL;
 783 
 784   if (Interpreter::contains(pc)) {
 785 #ifdef CC_INTERP
 786     // C++ interpreter doesn't throw implicit exceptions
 787     ShouldNotReachHere();
 788 #else
 789     switch (exception_kind) {
 790       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 791       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 792       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 793       default:                      ShouldNotReachHere();
 794     }
 795 #endif // !CC_INTERP
 796   } else {
 797     switch (exception_kind) {
 798       case STACK_OVERFLOW: {
 799         // Stack overflow only occurs upon frame setup; the callee is
 800         // going to be unwound. Dispatch to a shared runtime stub
 801         // which will cause the StackOverflowError to be fabricated
 802         // and processed.
 803         // Stack overflow should never occur during deoptimization:
 804         // the compiled method bangs the stack by as much as the
 805         // interpreter would need in case of a deoptimization. The
 806         // deoptimization blob and uncommon trap blob bang the stack
 807         // in a debug VM to verify the correctness of the compiled
 808         // method stack banging.
 809         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 810         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 811         return StubRoutines::throw_StackOverflowError_entry();
 812       }
 813 
 814       case IMPLICIT_NULL: {
 815         if (VtableStubs::contains(pc)) {
 816           // We haven't yet entered the callee frame. Fabricate an
 817           // exception and begin dispatching it in the caller. Since
 818           // the caller was at a call site, it's safe to destroy all
 819           // caller-saved registers, as these entry points do.
 820           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 821 
 822           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 823           if (vt_stub == NULL) return NULL;
 824 
 825           if (vt_stub->is_abstract_method_error(pc)) {
 826             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 827             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 828             // Instead of throwing the abstract method error here directly, we re-resolve
 829             // and will throw the AbstractMethodError during resolve. As a result, we'll
 830             // get a more detailed error message.
 831             return SharedRuntime::get_handle_wrong_method_stub();
 832           } else {
 833             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 834             // Assert that the signal comes from the expected location in stub code.
 835             assert(vt_stub->is_null_pointer_exception(pc),
 836                    "obtained signal from unexpected location in stub code");
 837             return StubRoutines::throw_NullPointerException_at_call_entry();
 838           }
 839         } else {
 840           CodeBlob* cb = CodeCache::find_blob(pc);
 841 
 842           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 843           if (cb == NULL) return NULL;
 844 
 845           // Exception happened in CodeCache. Must be either:
 846           // 1. Inline-cache check in C2I handler blob,
 847           // 2. Inline-cache check in nmethod, or
 848           // 3. Implicit null exception in nmethod
 849 
 850           if (!cb->is_compiled()) {
 851             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 852             if (!is_in_blob) {
 853               // Allow normal crash reporting to handle this
 854               return NULL;
 855             }
 856             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 857             // There is no handler here, so we will simply unwind.
 858             return StubRoutines::throw_NullPointerException_at_call_entry();
 859           }
 860 
 861           // Otherwise, it's a compiled method.  Consult its exception handlers.
 862           CompiledMethod* cm = (CompiledMethod*)cb;
 863           if (cm->inlinecache_check_contains(pc)) {
 864             // exception happened inside inline-cache check code
 865             // => the nmethod is not yet active (i.e., the frame
 866             // is not set up yet) => use return address pushed by
 867             // caller => don't push another return address
 868             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 869             return StubRoutines::throw_NullPointerException_at_call_entry();
 870           }
 871 
 872           if (cm->method()->is_method_handle_intrinsic()) {
 873             // exception happened inside MH dispatch code, similar to a vtable stub
 874             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 875             return StubRoutines::throw_NullPointerException_at_call_entry();
 876           }
 877 
 878 #ifndef PRODUCT
 879           _implicit_null_throws++;
 880 #endif
 881 #if INCLUDE_JVMCI
 882           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 883             // If there's no PcDesc then we'll die way down inside of
 884             // deopt instead of just getting normal error reporting,
 885             // so only go there if it will succeed.
 886             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 887           } else {
 888 #endif // INCLUDE_JVMCI
 889           assert (cm->is_nmethod(), "Expect nmethod");
 890           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 891 #if INCLUDE_JVMCI
 892           }
 893 #endif // INCLUDE_JVMCI
 894           // If there's an unexpected fault, target_pc might be NULL,
 895           // in which case we want to fall through into the normal
 896           // error handling code.
 897         }
 898 
 899         break; // fall through
 900       }
 901 
 902 
 903       case IMPLICIT_DIVIDE_BY_ZERO: {
 904         CompiledMethod* cm = CodeCache::find_compiled(pc);
 905         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 906 #ifndef PRODUCT
 907         _implicit_div0_throws++;
 908 #endif
 909 #if INCLUDE_JVMCI
 910         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 911           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 912         } else {
 913 #endif // INCLUDE_JVMCI
 914         target_pc = cm->continuation_for_implicit_exception(pc);
 915 #if INCLUDE_JVMCI
 916         }
 917 #endif // INCLUDE_JVMCI
 918         // If there's an unexpected fault, target_pc might be NULL,
 919         // in which case we want to fall through into the normal
 920         // error handling code.
 921         break; // fall through
 922       }
 923 
 924       default: ShouldNotReachHere();
 925     }
 926 
 927     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 928 
 929     if (exception_kind == IMPLICIT_NULL) {
 930 #ifndef PRODUCT
 931       // for AbortVMOnException flag
 932       Exceptions::debug_check_abort("java.lang.NullPointerException");
 933 #endif //PRODUCT
 934       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 935     } else {
 936 #ifndef PRODUCT
 937       // for AbortVMOnException flag
 938       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 939 #endif //PRODUCT
 940       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 941     }
 942     return target_pc;
 943   }
 944 
 945   ShouldNotReachHere();
 946   return NULL;
 947 }
 948 
 949 
 950 /**
 951  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 952  * installed in the native function entry of all native Java methods before
 953  * they get linked to their actual native methods.
 954  *
 955  * \note
 956  * This method actually never gets called!  The reason is because
 957  * the interpreter's native entries call NativeLookup::lookup() which
 958  * throws the exception when the lookup fails.  The exception is then
 959  * caught and forwarded on the return from NativeLookup::lookup() call
 960  * before the call to the native function.  This might change in the future.
 961  */
 962 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 963 {
 964   // We return a bad value here to make sure that the exception is
 965   // forwarded before we look at the return value.
 966   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 967 }
 968 JNI_END
 969 
 970 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 971   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 972 }
 973 
 974 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 975 #if INCLUDE_JVMCI
 976   if (!obj->klass()->has_finalizer()) {
 977     return;
 978   }
 979 #endif // INCLUDE_JVMCI
 980   assert(oopDesc::is_oop(obj), "must be a valid oop");
 981   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 982   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 983 JRT_END
 984 
 985 
 986 jlong SharedRuntime::get_java_tid(Thread* thread) {
 987   if (thread != NULL) {
 988     if (thread->is_Java_thread()) {
 989       oop obj = ((JavaThread*)thread)->threadObj();
 990       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 991     }
 992   }
 993   return 0;
 994 }
 995 
 996 /**
 997  * This function ought to be a void function, but cannot be because
 998  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 999  * 6254741.  Once that is fixed we can remove the dummy return value.
1000  */
1001 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1002   return dtrace_object_alloc_base(Thread::current(), o, size);
1003 }
1004 
1005 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1006   assert(DTraceAllocProbes, "wrong call");
1007   Klass* klass = o->klass();
1008   Symbol* name = klass->name();
1009   HOTSPOT_OBJECT_ALLOC(
1010                    get_java_tid(thread),
1011                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1012   return 0;
1013 }
1014 
1015 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1016     JavaThread* thread, Method* method))
1017   assert(DTraceMethodProbes, "wrong call");
1018   Symbol* kname = method->klass_name();
1019   Symbol* name = method->name();
1020   Symbol* sig = method->signature();
1021   HOTSPOT_METHOD_ENTRY(
1022       get_java_tid(thread),
1023       (char *) kname->bytes(), kname->utf8_length(),
1024       (char *) name->bytes(), name->utf8_length(),
1025       (char *) sig->bytes(), sig->utf8_length());
1026   return 0;
1027 JRT_END
1028 
1029 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1030     JavaThread* thread, Method* method))
1031   assert(DTraceMethodProbes, "wrong call");
1032   Symbol* kname = method->klass_name();
1033   Symbol* name = method->name();
1034   Symbol* sig = method->signature();
1035   HOTSPOT_METHOD_RETURN(
1036       get_java_tid(thread),
1037       (char *) kname->bytes(), kname->utf8_length(),
1038       (char *) name->bytes(), name->utf8_length(),
1039       (char *) sig->bytes(), sig->utf8_length());
1040   return 0;
1041 JRT_END
1042 
1043 
1044 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1045 // for a call current in progress, i.e., arguments has been pushed on stack
1046 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1047 // vtable updates, etc.  Caller frame must be compiled.
1048 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1049   ResourceMark rm(THREAD);
1050 
1051   // last java frame on stack (which includes native call frames)
1052   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1053 
1054   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1055 }
1056 
1057 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1058   CompiledMethod* caller = vfst.nm();
1059 
1060   nmethodLocker caller_lock(caller);
1061 
1062   address pc = vfst.frame_pc();
1063   { // Get call instruction under lock because another thread may be busy patching it.
1064     CompiledICLocker ic_locker(caller);
1065     return caller->attached_method_before_pc(pc);
1066   }
1067   return NULL;
1068 }
1069 
1070 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1071 // for a call current in progress, i.e., arguments has been pushed on stack
1072 // but callee has not been invoked yet.  Caller frame must be compiled.
1073 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1074                                               vframeStream& vfst,
1075                                               Bytecodes::Code& bc,
1076                                               CallInfo& callinfo, TRAPS) {
1077   Handle receiver;
1078   Handle nullHandle;  //create a handy null handle for exception returns
1079 
1080   assert(!vfst.at_end(), "Java frame must exist");
1081 
1082   // Find caller and bci from vframe
1083   methodHandle caller(THREAD, vfst.method());
1084   int          bci   = vfst.bci();
1085 
1086   Bytecode_invoke bytecode(caller, bci);
1087   int bytecode_index = bytecode.index();
1088   bc = bytecode.invoke_code();
1089 
1090   methodHandle attached_method = extract_attached_method(vfst);
1091   if (attached_method.not_null()) {
1092     methodHandle callee = bytecode.static_target(CHECK_NH);
1093     vmIntrinsics::ID id = callee->intrinsic_id();
1094     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1095     // it attaches statically resolved method to the call site.
1096     if (MethodHandles::is_signature_polymorphic(id) &&
1097         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1098       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1099 
1100       // Adjust invocation mode according to the attached method.
1101       switch (bc) {
1102         case Bytecodes::_invokevirtual:
1103           if (attached_method->method_holder()->is_interface()) {
1104             bc = Bytecodes::_invokeinterface;
1105           }
1106           break;
1107         case Bytecodes::_invokeinterface:
1108           if (!attached_method->method_holder()->is_interface()) {
1109             bc = Bytecodes::_invokevirtual;
1110           }
1111           break;
1112         case Bytecodes::_invokehandle:
1113           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1114             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1115                                               : Bytecodes::_invokevirtual;
1116           }
1117           break;
1118         default:
1119           break;
1120       }
1121     }
1122   }
1123 
1124   assert(bc != Bytecodes::_illegal, "not initialized");
1125 
1126   bool has_receiver = bc != Bytecodes::_invokestatic &&
1127                       bc != Bytecodes::_invokedynamic &&
1128                       bc != Bytecodes::_invokehandle;
1129 
1130   // Find receiver for non-static call
1131   if (has_receiver) {
1132     // This register map must be update since we need to find the receiver for
1133     // compiled frames. The receiver might be in a register.
1134     RegisterMap reg_map2(thread);
1135     frame stubFrame   = thread->last_frame();
1136     // Caller-frame is a compiled frame
1137     frame callerFrame = stubFrame.sender(&reg_map2);
1138 
1139     if (attached_method.is_null()) {
1140       methodHandle callee = bytecode.static_target(CHECK_NH);
1141       if (callee.is_null()) {
1142         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1143       }
1144     }
1145 
1146     // Retrieve from a compiled argument list
1147     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1148 
1149     if (receiver.is_null()) {
1150       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1151     }
1152   }
1153 
1154   // Resolve method
1155   if (attached_method.not_null()) {
1156     // Parameterized by attached method.
1157     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1158   } else {
1159     // Parameterized by bytecode.
1160     constantPoolHandle constants(THREAD, caller->constants());
1161     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1162   }
1163 
1164 #ifdef ASSERT
1165   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1166   if (has_receiver) {
1167     assert(receiver.not_null(), "should have thrown exception");
1168     Klass* receiver_klass = receiver->klass();
1169     Klass* rk = NULL;
1170     if (attached_method.not_null()) {
1171       // In case there's resolved method attached, use its holder during the check.
1172       rk = attached_method->method_holder();
1173     } else {
1174       // Klass is already loaded.
1175       constantPoolHandle constants(THREAD, caller->constants());
1176       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1177     }
1178     Klass* static_receiver_klass = rk;
1179     methodHandle callee = callinfo.selected_method();
1180     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1181            "actual receiver must be subclass of static receiver klass");
1182     if (receiver_klass->is_instance_klass()) {
1183       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1184         tty->print_cr("ERROR: Klass not yet initialized!!");
1185         receiver_klass->print();
1186       }
1187       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1188     }
1189   }
1190 #endif
1191 
1192   return receiver;
1193 }
1194 
1195 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1196   ResourceMark rm(THREAD);
1197   // We need first to check if any Java activations (compiled, interpreted)
1198   // exist on the stack since last JavaCall.  If not, we need
1199   // to get the target method from the JavaCall wrapper.
1200   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1201   methodHandle callee_method;
1202   if (vfst.at_end()) {
1203     // No Java frames were found on stack since we did the JavaCall.
1204     // Hence the stack can only contain an entry_frame.  We need to
1205     // find the target method from the stub frame.
1206     RegisterMap reg_map(thread, false);
1207     frame fr = thread->last_frame();
1208     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1209     fr = fr.sender(&reg_map);
1210     assert(fr.is_entry_frame(), "must be");
1211     // fr is now pointing to the entry frame.
1212     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1213   } else {
1214     Bytecodes::Code bc;
1215     CallInfo callinfo;
1216     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1217     callee_method = callinfo.selected_method();
1218   }
1219   assert(callee_method()->is_method(), "must be");
1220   return callee_method;
1221 }
1222 
1223 // Resolves a call.
1224 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1225                                            bool is_virtual,
1226                                            bool is_optimized, TRAPS) {
1227   methodHandle callee_method;
1228   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1229   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1230     int retry_count = 0;
1231     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1232            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1233       // If has a pending exception then there is no need to re-try to
1234       // resolve this method.
1235       // If the method has been redefined, we need to try again.
1236       // Hack: we have no way to update the vtables of arrays, so don't
1237       // require that java.lang.Object has been updated.
1238 
1239       // It is very unlikely that method is redefined more than 100 times
1240       // in the middle of resolve. If it is looping here more than 100 times
1241       // means then there could be a bug here.
1242       guarantee((retry_count++ < 100),
1243                 "Could not resolve to latest version of redefined method");
1244       // method is redefined in the middle of resolve so re-try.
1245       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1246     }
1247   }
1248   return callee_method;
1249 }
1250 
1251 // This fails if resolution required refilling of IC stubs
1252 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1253                                                 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1254                                                 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1255   StaticCallInfo static_call_info;
1256   CompiledICInfo virtual_call_info;
1257 
1258   // Make sure the callee nmethod does not get deoptimized and removed before
1259   // we are done patching the code.
1260   CompiledMethod* callee = callee_method->code();
1261 
1262   if (callee != NULL) {
1263     assert(callee->is_compiled(), "must be nmethod for patching");
1264   }
1265 
1266   if (callee != NULL && !callee->is_in_use()) {
1267     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1268     callee = NULL;
1269   }
1270   nmethodLocker nl_callee(callee);
1271 #ifdef ASSERT
1272   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1273 #endif
1274 
1275   bool is_nmethod = caller_nm->is_nmethod();
1276 
1277   if (is_virtual) {
1278     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1279     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1280     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1281     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1282                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1283                      CHECK_false);
1284   } else {
1285     // static call
1286     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1287   }
1288 
1289   // grab lock, check for deoptimization and potentially patch caller
1290   {
1291     CompiledICLocker ml(caller_nm);
1292 
1293     // Lock blocks for safepoint during which both nmethods can change state.
1294 
1295     // Now that we are ready to patch if the Method* was redefined then
1296     // don't update call site and let the caller retry.
1297     // Don't update call site if callee nmethod was unloaded or deoptimized.
1298     // Don't update call site if callee nmethod was replaced by an other nmethod
1299     // which may happen when multiply alive nmethod (tiered compilation)
1300     // will be supported.
1301     if (!callee_method->is_old() &&
1302         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1303 #ifdef ASSERT
1304       // We must not try to patch to jump to an already unloaded method.
1305       if (dest_entry_point != 0) {
1306         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1307         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1308                "should not call unloaded nmethod");
1309       }
1310 #endif
1311       if (is_virtual) {
1312         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1313         if (inline_cache->is_clean()) {
1314           if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1315             return false;
1316           }
1317         }
1318       } else {
1319         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1320         if (ssc->is_clean()) ssc->set(static_call_info);
1321       }
1322     }
1323   } // unlock CompiledICLocker
1324   return true;
1325 }
1326 
1327 // Resolves a call.  The compilers generate code for calls that go here
1328 // and are patched with the real destination of the call.
1329 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1330                                                bool is_virtual,
1331                                                bool is_optimized, TRAPS) {
1332 
1333   ResourceMark rm(thread);
1334   RegisterMap cbl_map(thread, false);
1335   frame caller_frame = thread->last_frame().sender(&cbl_map);
1336 
1337   CodeBlob* caller_cb = caller_frame.cb();
1338   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1339   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1340 
1341   // make sure caller is not getting deoptimized
1342   // and removed before we are done with it.
1343   // CLEANUP - with lazy deopt shouldn't need this lock
1344   nmethodLocker caller_lock(caller_nm);
1345 
1346   // determine call info & receiver
1347   // note: a) receiver is NULL for static calls
1348   //       b) an exception is thrown if receiver is NULL for non-static calls
1349   CallInfo call_info;
1350   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1351   Handle receiver = find_callee_info(thread, invoke_code,
1352                                      call_info, CHECK_(methodHandle()));
1353   methodHandle callee_method = call_info.selected_method();
1354 
1355   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1356          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1357          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1358          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1359          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1360 
1361   assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1362 
1363 #ifndef PRODUCT
1364   // tracing/debugging/statistics
1365   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1366                 (is_virtual) ? (&_resolve_virtual_ctr) :
1367                                (&_resolve_static_ctr);
1368   Atomic::inc(addr);
1369 
1370   if (TraceCallFixup) {
1371     ResourceMark rm(thread);
1372     tty->print("resolving %s%s (%s) call to",
1373       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1374       Bytecodes::name(invoke_code));
1375     callee_method->print_short_name(tty);
1376     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1377                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1378   }
1379 #endif
1380 
1381   // Do not patch call site for static call to another class
1382   // when the class is not fully initialized.
1383   if (invoke_code == Bytecodes::_invokestatic) {
1384     if (!callee_method->method_holder()->is_initialized() &&
1385         callee_method->method_holder() != caller_nm->method()->method_holder()) {
1386       assert(callee_method->method_holder()->is_linked(), "must be");
1387       return callee_method;
1388     } else {
1389       assert(callee_method->method_holder()->is_initialized() ||
1390              callee_method->method_holder()->is_reentrant_initialization(thread),
1391              "invalid class initialization state for invoke_static");
1392     }
1393   }
1394 
1395   // JSR 292 key invariant:
1396   // If the resolved method is a MethodHandle invoke target, the call
1397   // site must be a MethodHandle call site, because the lambda form might tail-call
1398   // leaving the stack in a state unknown to either caller or callee
1399   // TODO detune for now but we might need it again
1400 //  assert(!callee_method->is_compiled_lambda_form() ||
1401 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1402 
1403   // Compute entry points. This might require generation of C2I converter
1404   // frames, so we cannot be holding any locks here. Furthermore, the
1405   // computation of the entry points is independent of patching the call.  We
1406   // always return the entry-point, but we only patch the stub if the call has
1407   // not been deoptimized.  Return values: For a virtual call this is an
1408   // (cached_oop, destination address) pair. For a static call/optimized
1409   // virtual this is just a destination address.
1410 
1411   // Patching IC caches may fail if we run out if transition stubs.
1412   // We refill the ic stubs then and try again.
1413   for (;;) {
1414     ICRefillVerifier ic_refill_verifier;
1415     bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1416                                                   is_virtual, is_optimized, receiver,
1417                                                   call_info, invoke_code, CHECK_(methodHandle()));
1418     if (successful) {
1419       return callee_method;
1420     } else {
1421       InlineCacheBuffer::refill_ic_stubs();
1422     }
1423   }
1424 
1425 }
1426 
1427 
1428 // Inline caches exist only in compiled code
1429 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1430 #ifdef ASSERT
1431   RegisterMap reg_map(thread, false);
1432   frame stub_frame = thread->last_frame();
1433   assert(stub_frame.is_runtime_frame(), "sanity check");
1434   frame caller_frame = stub_frame.sender(&reg_map);
1435   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1436 #endif /* ASSERT */
1437 
1438   methodHandle callee_method;
1439   JRT_BLOCK
1440     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1441     // Return Method* through TLS
1442     thread->set_vm_result_2(callee_method());
1443   JRT_BLOCK_END
1444   // return compiled code entry point after potential safepoints
1445   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1446   return callee_method->verified_code_entry();
1447 JRT_END
1448 
1449 
1450 // Handle call site that has been made non-entrant
1451 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1452   // 6243940 We might end up in here if the callee is deoptimized
1453   // as we race to call it.  We don't want to take a safepoint if
1454   // the caller was interpreted because the caller frame will look
1455   // interpreted to the stack walkers and arguments are now
1456   // "compiled" so it is much better to make this transition
1457   // invisible to the stack walking code. The i2c path will
1458   // place the callee method in the callee_target. It is stashed
1459   // there because if we try and find the callee by normal means a
1460   // safepoint is possible and have trouble gc'ing the compiled args.
1461   RegisterMap reg_map(thread, false);
1462   frame stub_frame = thread->last_frame();
1463   assert(stub_frame.is_runtime_frame(), "sanity check");
1464   frame caller_frame = stub_frame.sender(&reg_map);
1465 
1466   if (caller_frame.is_interpreted_frame() ||
1467       caller_frame.is_entry_frame()) {
1468     Method* callee = thread->callee_target();
1469     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1470     thread->set_vm_result_2(callee);
1471     thread->set_callee_target(NULL);
1472     return callee->get_c2i_entry();
1473   }
1474 
1475   // Must be compiled to compiled path which is safe to stackwalk
1476   methodHandle callee_method;
1477   JRT_BLOCK
1478     // Force resolving of caller (if we called from compiled frame)
1479     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1480     thread->set_vm_result_2(callee_method());
1481   JRT_BLOCK_END
1482   // return compiled code entry point after potential safepoints
1483   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1484   return callee_method->verified_code_entry();
1485 JRT_END
1486 
1487 // Handle abstract method call
1488 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1489   // Verbose error message for AbstractMethodError.
1490   // Get the called method from the invoke bytecode.
1491   vframeStream vfst(thread, true);
1492   assert(!vfst.at_end(), "Java frame must exist");
1493   methodHandle caller(vfst.method());
1494   Bytecode_invoke invoke(caller, vfst.bci());
1495   DEBUG_ONLY( invoke.verify(); )
1496 
1497   // Find the compiled caller frame.
1498   RegisterMap reg_map(thread);
1499   frame stubFrame = thread->last_frame();
1500   assert(stubFrame.is_runtime_frame(), "must be");
1501   frame callerFrame = stubFrame.sender(&reg_map);
1502   assert(callerFrame.is_compiled_frame(), "must be");
1503 
1504   // Install exception and return forward entry.
1505   address res = StubRoutines::throw_AbstractMethodError_entry();
1506   JRT_BLOCK
1507     methodHandle callee = invoke.static_target(thread);
1508     if (!callee.is_null()) {
1509       oop recv = callerFrame.retrieve_receiver(&reg_map);
1510       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1511       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1512       res = StubRoutines::forward_exception_entry();
1513     }
1514   JRT_BLOCK_END
1515   return res;
1516 JRT_END
1517 
1518 
1519 // resolve a static call and patch code
1520 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1521   methodHandle callee_method;
1522   JRT_BLOCK
1523     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1524     thread->set_vm_result_2(callee_method());
1525   JRT_BLOCK_END
1526   // return compiled code entry point after potential safepoints
1527   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1528   return callee_method->verified_code_entry();
1529 JRT_END
1530 
1531 
1532 // resolve virtual call and update inline cache to monomorphic
1533 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1534   methodHandle callee_method;
1535   JRT_BLOCK
1536     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1537     thread->set_vm_result_2(callee_method());
1538   JRT_BLOCK_END
1539   // return compiled code entry point after potential safepoints
1540   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1541   return callee_method->verified_code_entry();
1542 JRT_END
1543 
1544 
1545 // Resolve a virtual call that can be statically bound (e.g., always
1546 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1547 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1548   methodHandle callee_method;
1549   JRT_BLOCK
1550     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1551     thread->set_vm_result_2(callee_method());
1552   JRT_BLOCK_END
1553   // return compiled code entry point after potential safepoints
1554   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1555   return callee_method->verified_code_entry();
1556 JRT_END
1557 
1558 // The handle_ic_miss_helper_internal function returns false if it failed due
1559 // to either running out of vtable stubs or ic stubs due to IC transitions
1560 // to transitional states. The needs_ic_stub_refill value will be set if
1561 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1562 // refills the IC stubs and tries again.
1563 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1564                                                    const frame& caller_frame, methodHandle callee_method,
1565                                                    Bytecodes::Code bc, CallInfo& call_info,
1566                                                    bool& needs_ic_stub_refill, TRAPS) {
1567   CompiledICLocker ml(caller_nm);
1568   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1569   bool should_be_mono = false;
1570   if (inline_cache->is_optimized()) {
1571     if (TraceCallFixup) {
1572       ResourceMark rm(THREAD);
1573       tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1574       callee_method->print_short_name(tty);
1575       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1576     }
1577     should_be_mono = true;
1578   } else if (inline_cache->is_icholder_call()) {
1579     CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1580     if (ic_oop != NULL) {
1581       if (!ic_oop->is_loader_alive()) {
1582         // Deferred IC cleaning due to concurrent class unloading
1583         if (!inline_cache->set_to_clean()) {
1584           needs_ic_stub_refill = true;
1585           return false;
1586         }
1587       } else if (receiver()->klass() == ic_oop->holder_klass()) {
1588         // This isn't a real miss. We must have seen that compiled code
1589         // is now available and we want the call site converted to a
1590         // monomorphic compiled call site.
1591         // We can't assert for callee_method->code() != NULL because it
1592         // could have been deoptimized in the meantime
1593         if (TraceCallFixup) {
1594           ResourceMark rm(THREAD);
1595           tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1596           callee_method->print_short_name(tty);
1597           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1598         }
1599         should_be_mono = true;
1600       }
1601     }
1602   }
1603 
1604   if (should_be_mono) {
1605     // We have a path that was monomorphic but was going interpreted
1606     // and now we have (or had) a compiled entry. We correct the IC
1607     // by using a new icBuffer.
1608     CompiledICInfo info;
1609     Klass* receiver_klass = receiver()->klass();
1610     inline_cache->compute_monomorphic_entry(callee_method,
1611                                             receiver_klass,
1612                                             inline_cache->is_optimized(),
1613                                             false, caller_nm->is_nmethod(),
1614                                             info, CHECK_false);
1615     if (!inline_cache->set_to_monomorphic(info)) {
1616       needs_ic_stub_refill = true;
1617       return false;
1618     }
1619   } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1620     // Potential change to megamorphic
1621 
1622     bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false);
1623     if (needs_ic_stub_refill) {
1624       return false;
1625     }
1626     if (!successful) {
1627       if (!inline_cache->set_to_clean()) {
1628         needs_ic_stub_refill = true;
1629         return false;
1630       }
1631     }
1632   } else {
1633     // Either clean or megamorphic
1634   }
1635   return true;
1636 }
1637 
1638 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1639   ResourceMark rm(thread);
1640   CallInfo call_info;
1641   Bytecodes::Code bc;
1642 
1643   // receiver is NULL for static calls. An exception is thrown for NULL
1644   // receivers for non-static calls
1645   Handle receiver = find_callee_info(thread, bc, call_info,
1646                                      CHECK_(methodHandle()));
1647   // Compiler1 can produce virtual call sites that can actually be statically bound
1648   // If we fell thru to below we would think that the site was going megamorphic
1649   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1650   // we'd try and do a vtable dispatch however methods that can be statically bound
1651   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1652   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1653   // plain ic_miss) and the site will be converted to an optimized virtual call site
1654   // never to miss again. I don't believe C2 will produce code like this but if it
1655   // did this would still be the correct thing to do for it too, hence no ifdef.
1656   //
1657   if (call_info.resolved_method()->can_be_statically_bound()) {
1658     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1659     if (TraceCallFixup) {
1660       RegisterMap reg_map(thread, false);
1661       frame caller_frame = thread->last_frame().sender(&reg_map);
1662       ResourceMark rm(thread);
1663       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1664       callee_method->print_short_name(tty);
1665       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1666       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1667     }
1668     return callee_method;
1669   }
1670 
1671   methodHandle callee_method = call_info.selected_method();
1672 
1673 #ifndef PRODUCT
1674   Atomic::inc(&_ic_miss_ctr);
1675 
1676   // Statistics & Tracing
1677   if (TraceCallFixup) {
1678     ResourceMark rm(thread);
1679     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1680     callee_method->print_short_name(tty);
1681     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1682   }
1683 
1684   if (ICMissHistogram) {
1685     MutexLocker m(VMStatistic_lock);
1686     RegisterMap reg_map(thread, false);
1687     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1688     // produce statistics under the lock
1689     trace_ic_miss(f.pc());
1690   }
1691 #endif
1692 
1693   // install an event collector so that when a vtable stub is created the
1694   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1695   // event can't be posted when the stub is created as locks are held
1696   // - instead the event will be deferred until the event collector goes
1697   // out of scope.
1698   JvmtiDynamicCodeEventCollector event_collector;
1699 
1700   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1701   // Transitioning IC caches may require transition stubs. If we run out
1702   // of transition stubs, we have to drop locks and perform a safepoint
1703   // that refills them.
1704   RegisterMap reg_map(thread, false);
1705   frame caller_frame = thread->last_frame().sender(&reg_map);
1706   CodeBlob* cb = caller_frame.cb();
1707   CompiledMethod* caller_nm = cb->as_compiled_method();
1708 
1709   for (;;) {
1710     ICRefillVerifier ic_refill_verifier;
1711     bool needs_ic_stub_refill = false;
1712     bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1713                                                      bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle()));
1714     if (successful || !needs_ic_stub_refill) {
1715       return callee_method;
1716     } else {
1717       InlineCacheBuffer::refill_ic_stubs();
1718     }
1719   }
1720 }
1721 
1722 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1723   CompiledICLocker ml(caller_nm);
1724   if (is_static_call) {
1725     CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1726     if (!ssc->is_clean()) {
1727       return ssc->set_to_clean();
1728     }
1729   } else {
1730     // compiled, dispatched call (which used to call an interpreted method)
1731     CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1732     if (!inline_cache->is_clean()) {
1733       return inline_cache->set_to_clean();
1734     }
1735   }
1736   return true;
1737 }
1738 
1739 //
1740 // Resets a call-site in compiled code so it will get resolved again.
1741 // This routines handles both virtual call sites, optimized virtual call
1742 // sites, and static call sites. Typically used to change a call sites
1743 // destination from compiled to interpreted.
1744 //
1745 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1746   ResourceMark rm(thread);
1747   RegisterMap reg_map(thread, false);
1748   frame stub_frame = thread->last_frame();
1749   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1750   frame caller = stub_frame.sender(&reg_map);
1751 
1752   // Do nothing if the frame isn't a live compiled frame.
1753   // nmethod could be deoptimized by the time we get here
1754   // so no update to the caller is needed.
1755 
1756   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1757 
1758     address pc = caller.pc();
1759 
1760     // Check for static or virtual call
1761     bool is_static_call = false;
1762     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1763 
1764     // Default call_addr is the location of the "basic" call.
1765     // Determine the address of the call we a reresolving. With
1766     // Inline Caches we will always find a recognizable call.
1767     // With Inline Caches disabled we may or may not find a
1768     // recognizable call. We will always find a call for static
1769     // calls and for optimized virtual calls. For vanilla virtual
1770     // calls it depends on the state of the UseInlineCaches switch.
1771     //
1772     // With Inline Caches disabled we can get here for a virtual call
1773     // for two reasons:
1774     //   1 - calling an abstract method. The vtable for abstract methods
1775     //       will run us thru handle_wrong_method and we will eventually
1776     //       end up in the interpreter to throw the ame.
1777     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1778     //       call and between the time we fetch the entry address and
1779     //       we jump to it the target gets deoptimized. Similar to 1
1780     //       we will wind up in the interprter (thru a c2i with c2).
1781     //
1782     address call_addr = NULL;
1783     {
1784       // Get call instruction under lock because another thread may be
1785       // busy patching it.
1786       CompiledICLocker ml(caller_nm);
1787       // Location of call instruction
1788       call_addr = caller_nm->call_instruction_address(pc);
1789     }
1790     // Make sure nmethod doesn't get deoptimized and removed until
1791     // this is done with it.
1792     // CLEANUP - with lazy deopt shouldn't need this lock
1793     nmethodLocker nmlock(caller_nm);
1794 
1795     if (call_addr != NULL) {
1796       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1797       int ret = iter.next(); // Get item
1798       if (ret) {
1799         assert(iter.addr() == call_addr, "must find call");
1800         if (iter.type() == relocInfo::static_call_type) {
1801           is_static_call = true;
1802         } else {
1803           assert(iter.type() == relocInfo::virtual_call_type ||
1804                  iter.type() == relocInfo::opt_virtual_call_type
1805                 , "unexpected relocInfo. type");
1806         }
1807       } else {
1808         assert(!UseInlineCaches, "relocation info. must exist for this address");
1809       }
1810 
1811       // Cleaning the inline cache will force a new resolve. This is more robust
1812       // than directly setting it to the new destination, since resolving of calls
1813       // is always done through the same code path. (experience shows that it
1814       // leads to very hard to track down bugs, if an inline cache gets updated
1815       // to a wrong method). It should not be performance critical, since the
1816       // resolve is only done once.
1817 
1818       for (;;) {
1819         ICRefillVerifier ic_refill_verifier;
1820         if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1821           InlineCacheBuffer::refill_ic_stubs();
1822         } else {
1823           break;
1824         }
1825       }
1826     }
1827   }
1828 
1829   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1830 
1831 
1832 #ifndef PRODUCT
1833   Atomic::inc(&_wrong_method_ctr);
1834 
1835   if (TraceCallFixup) {
1836     ResourceMark rm(thread);
1837     tty->print("handle_wrong_method reresolving call to");
1838     callee_method->print_short_name(tty);
1839     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1840   }
1841 #endif
1842 
1843   return callee_method;
1844 }
1845 
1846 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1847   // The faulting unsafe accesses should be changed to throw the error
1848   // synchronously instead. Meanwhile the faulting instruction will be
1849   // skipped over (effectively turning it into a no-op) and an
1850   // asynchronous exception will be raised which the thread will
1851   // handle at a later point. If the instruction is a load it will
1852   // return garbage.
1853 
1854   // Request an async exception.
1855   thread->set_pending_unsafe_access_error();
1856 
1857   // Return address of next instruction to execute.
1858   return next_pc;
1859 }
1860 
1861 #ifdef ASSERT
1862 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1863                                                                 const BasicType* sig_bt,
1864                                                                 const VMRegPair* regs) {
1865   ResourceMark rm;
1866   const int total_args_passed = method->size_of_parameters();
1867   const VMRegPair*    regs_with_member_name = regs;
1868         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1869 
1870   const int member_arg_pos = total_args_passed - 1;
1871   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1872   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1873 
1874   const bool is_outgoing = method->is_method_handle_intrinsic();
1875   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1876 
1877   for (int i = 0; i < member_arg_pos; i++) {
1878     VMReg a =    regs_with_member_name[i].first();
1879     VMReg b = regs_without_member_name[i].first();
1880     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1881   }
1882   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1883 }
1884 #endif
1885 
1886 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1887   if (destination != entry_point) {
1888     CodeBlob* callee = CodeCache::find_blob(destination);
1889     // callee == cb seems weird. It means calling interpreter thru stub.
1890     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1891       // static call or optimized virtual
1892       if (TraceCallFixup) {
1893         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1894         moop->print_short_name(tty);
1895         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1896       }
1897       return true;
1898     } else {
1899       if (TraceCallFixup) {
1900         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1901         moop->print_short_name(tty);
1902         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1903       }
1904       // assert is too strong could also be resolve destinations.
1905       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1906     }
1907   } else {
1908     if (TraceCallFixup) {
1909       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1910       moop->print_short_name(tty);
1911       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1912     }
1913   }
1914   return false;
1915 }
1916 
1917 // ---------------------------------------------------------------------------
1918 // We are calling the interpreter via a c2i. Normally this would mean that
1919 // we were called by a compiled method. However we could have lost a race
1920 // where we went int -> i2c -> c2i and so the caller could in fact be
1921 // interpreted. If the caller is compiled we attempt to patch the caller
1922 // so he no longer calls into the interpreter.
1923 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1924   Method* moop(method);
1925 
1926   address entry_point = moop->from_compiled_entry_no_trampoline();
1927 
1928   // It's possible that deoptimization can occur at a call site which hasn't
1929   // been resolved yet, in which case this function will be called from
1930   // an nmethod that has been patched for deopt and we can ignore the
1931   // request for a fixup.
1932   // Also it is possible that we lost a race in that from_compiled_entry
1933   // is now back to the i2c in that case we don't need to patch and if
1934   // we did we'd leap into space because the callsite needs to use
1935   // "to interpreter" stub in order to load up the Method*. Don't
1936   // ask me how I know this...
1937 
1938   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1939   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1940     return;
1941   }
1942 
1943   // The check above makes sure this is a nmethod.
1944   CompiledMethod* nm = cb->as_compiled_method_or_null();
1945   assert(nm, "must be");
1946 
1947   // Get the return PC for the passed caller PC.
1948   address return_pc = caller_pc + frame::pc_return_offset;
1949 
1950   // There is a benign race here. We could be attempting to patch to a compiled
1951   // entry point at the same time the callee is being deoptimized. If that is
1952   // the case then entry_point may in fact point to a c2i and we'd patch the
1953   // call site with the same old data. clear_code will set code() to NULL
1954   // at the end of it. If we happen to see that NULL then we can skip trying
1955   // to patch. If we hit the window where the callee has a c2i in the
1956   // from_compiled_entry and the NULL isn't present yet then we lose the race
1957   // and patch the code with the same old data. Asi es la vida.
1958 
1959   if (moop->code() == NULL) return;
1960 
1961   if (nm->is_in_use()) {
1962     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1963     CompiledICLocker ic_locker(nm);
1964     if (NativeCall::is_call_before(return_pc)) {
1965       ResourceMark mark;
1966       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1967       //
1968       // bug 6281185. We might get here after resolving a call site to a vanilla
1969       // virtual call. Because the resolvee uses the verified entry it may then
1970       // see compiled code and attempt to patch the site by calling us. This would
1971       // then incorrectly convert the call site to optimized and its downhill from
1972       // there. If you're lucky you'll get the assert in the bugid, if not you've
1973       // just made a call site that could be megamorphic into a monomorphic site
1974       // for the rest of its life! Just another racing bug in the life of
1975       // fixup_callers_callsite ...
1976       //
1977       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1978       iter.next();
1979       assert(iter.has_current(), "must have a reloc at java call site");
1980       relocInfo::relocType typ = iter.reloc()->type();
1981       if (typ != relocInfo::static_call_type &&
1982            typ != relocInfo::opt_virtual_call_type &&
1983            typ != relocInfo::static_stub_type) {
1984         return;
1985       }
1986       address destination = call->destination();
1987       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1988         call->set_destination_mt_safe(entry_point);
1989       }
1990     }
1991   }
1992 JRT_END
1993 
1994 
1995 // same as JVM_Arraycopy, but called directly from compiled code
1996 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1997                                                 oopDesc* dest, jint dest_pos,
1998                                                 jint length,
1999                                                 JavaThread* thread)) {
2000 #ifndef PRODUCT
2001   _slow_array_copy_ctr++;
2002 #endif
2003   // Check if we have null pointers
2004   if (src == NULL || dest == NULL) {
2005     THROW(vmSymbols::java_lang_NullPointerException());
2006   }
2007   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
2008   // even though the copy_array API also performs dynamic checks to ensure
2009   // that src and dest are truly arrays (and are conformable).
2010   // The copy_array mechanism is awkward and could be removed, but
2011   // the compilers don't call this function except as a last resort,
2012   // so it probably doesn't matter.
2013   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2014                                         (arrayOopDesc*)dest, dest_pos,
2015                                         length, thread);
2016 }
2017 JRT_END
2018 
2019 // The caller of generate_class_cast_message() (or one of its callers)
2020 // must use a ResourceMark in order to correctly free the result.
2021 char* SharedRuntime::generate_class_cast_message(
2022     JavaThread* thread, Klass* caster_klass) {
2023 
2024   // Get target class name from the checkcast instruction
2025   vframeStream vfst(thread, true);
2026   assert(!vfst.at_end(), "Java frame must exist");
2027   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2028   constantPoolHandle cpool(thread, vfst.method()->constants());
2029   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2030   Symbol* target_klass_name = NULL;
2031   if (target_klass == NULL) {
2032     // This klass should be resolved, but just in case, get the name in the klass slot.
2033     target_klass_name = cpool->klass_name_at(cc.index());
2034   }
2035   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2036 }
2037 
2038 
2039 // The caller of generate_class_cast_message() (or one of its callers)
2040 // must use a ResourceMark in order to correctly free the result.
2041 char* SharedRuntime::generate_class_cast_message(
2042     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2043   const char* caster_name = caster_klass->external_name();
2044 
2045   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2046   const char* target_name = target_klass == NULL ? target_klass_name->as_C_string() :
2047                                                    target_klass->external_name();
2048 
2049   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2050 
2051   const char* caster_klass_description = "";
2052   const char* target_klass_description = "";
2053   const char* klass_separator = "";
2054   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2055     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2056   } else {
2057     caster_klass_description = caster_klass->class_in_module_of_loader();
2058     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2059     klass_separator = (target_klass != NULL) ? "; " : "";
2060   }
2061 
2062   // add 3 for parenthesis and preceeding space
2063   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2064 
2065   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2066   if (message == NULL) {
2067     // Shouldn't happen, but don't cause even more problems if it does
2068     message = const_cast<char*>(caster_klass->external_name());
2069   } else {
2070     jio_snprintf(message,
2071                  msglen,
2072                  "class %s cannot be cast to class %s (%s%s%s)",
2073                  caster_name,
2074                  target_name,
2075                  caster_klass_description,
2076                  klass_separator,
2077                  target_klass_description
2078                  );
2079   }
2080   return message;
2081 }
2082 
2083 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2084   (void) JavaThread::current()->reguard_stack();
2085 JRT_END
2086 
2087 
2088 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2089 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2090   if (!SafepointSynchronize::is_synchronizing()) {
2091     // Only try quick_enter() if we're not trying to reach a safepoint
2092     // so that the calling thread reaches the safepoint more quickly.
2093     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2094   }
2095   // NO_ASYNC required because an async exception on the state transition destructor
2096   // would leave you with the lock held and it would never be released.
2097   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2098   // and the model is that an exception implies the method failed.
2099   JRT_BLOCK_NO_ASYNC
2100   oop obj(_obj);
2101   if (PrintBiasedLockingStatistics) {
2102     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2103   }
2104   Handle h_obj(THREAD, obj);
2105   if (UseBiasedLocking) {
2106     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2107     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2108   } else {
2109     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2110   }
2111   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2112   JRT_BLOCK_END
2113 JRT_END
2114 
2115 // Handles the uncommon cases of monitor unlocking in compiled code
2116 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2117    oop obj(_obj);
2118   assert(JavaThread::current() == THREAD, "invariant");
2119   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2120   // testing was unable to ever fire the assert that guarded it so I have removed it.
2121   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2122 #undef MIGHT_HAVE_PENDING
2123 #ifdef MIGHT_HAVE_PENDING
2124   // Save and restore any pending_exception around the exception mark.
2125   // While the slow_exit must not throw an exception, we could come into
2126   // this routine with one set.
2127   oop pending_excep = NULL;
2128   const char* pending_file;
2129   int pending_line;
2130   if (HAS_PENDING_EXCEPTION) {
2131     pending_excep = PENDING_EXCEPTION;
2132     pending_file  = THREAD->exception_file();
2133     pending_line  = THREAD->exception_line();
2134     CLEAR_PENDING_EXCEPTION;
2135   }
2136 #endif /* MIGHT_HAVE_PENDING */
2137 
2138   {
2139     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2140     EXCEPTION_MARK;
2141     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2142   }
2143 
2144 #ifdef MIGHT_HAVE_PENDING
2145   if (pending_excep != NULL) {
2146     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2147   }
2148 #endif /* MIGHT_HAVE_PENDING */
2149 JRT_END
2150 
2151 #ifndef PRODUCT
2152 
2153 void SharedRuntime::print_statistics() {
2154   ttyLocker ttyl;
2155   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2156 
2157   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2158 
2159   SharedRuntime::print_ic_miss_histogram();
2160 
2161   if (CountRemovableExceptions) {
2162     if (_nof_removable_exceptions > 0) {
2163       Unimplemented(); // this counter is not yet incremented
2164       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2165     }
2166   }
2167 
2168   // Dump the JRT_ENTRY counters
2169   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2170   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2171   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2172   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2173   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2174   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2175   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2176 
2177   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2178   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2179   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2180   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2181   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2182 
2183   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2184   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2185   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2186   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2187   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2188   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2189   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2190   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2191   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2192   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2193   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2194   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2195   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2196   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2197   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2198   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2199 
2200   AdapterHandlerLibrary::print_statistics();
2201 
2202   if (xtty != NULL)  xtty->tail("statistics");
2203 }
2204 
2205 inline double percent(int x, int y) {
2206   return 100.0 * x / MAX2(y, 1);
2207 }
2208 
2209 class MethodArityHistogram {
2210  public:
2211   enum { MAX_ARITY = 256 };
2212  private:
2213   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2214   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2215   static int _max_arity;                      // max. arity seen
2216   static int _max_size;                       // max. arg size seen
2217 
2218   static void add_method_to_histogram(nmethod* nm) {
2219     if (CompiledMethod::nmethod_access_is_safe(nm)) {
2220       Method* method = nm->method();
2221       ArgumentCount args(method->signature());
2222       int arity   = args.size() + (method->is_static() ? 0 : 1);
2223       int argsize = method->size_of_parameters();
2224       arity   = MIN2(arity, MAX_ARITY-1);
2225       argsize = MIN2(argsize, MAX_ARITY-1);
2226       int count = method->compiled_invocation_count();
2227       _arity_histogram[arity]  += count;
2228       _size_histogram[argsize] += count;
2229       _max_arity = MAX2(_max_arity, arity);
2230       _max_size  = MAX2(_max_size, argsize);
2231     }
2232   }
2233 
2234   void print_histogram_helper(int n, int* histo, const char* name) {
2235     const int N = MIN2(5, n);
2236     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2237     double sum = 0;
2238     double weighted_sum = 0;
2239     int i;
2240     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2241     double rest = sum;
2242     double percent = sum / 100;
2243     for (i = 0; i <= N; i++) {
2244       rest -= histo[i];
2245       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2246     }
2247     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2248     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2249   }
2250 
2251   void print_histogram() {
2252     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2253     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2254     tty->print_cr("\nSame for parameter size (in words):");
2255     print_histogram_helper(_max_size, _size_histogram, "size");
2256     tty->cr();
2257   }
2258 
2259  public:
2260   MethodArityHistogram() {
2261     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2262     _max_arity = _max_size = 0;
2263     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2264     CodeCache::nmethods_do(add_method_to_histogram);
2265     print_histogram();
2266   }
2267 };
2268 
2269 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2270 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2271 int MethodArityHistogram::_max_arity;
2272 int MethodArityHistogram::_max_size;
2273 
2274 void SharedRuntime::print_call_statistics(int comp_total) {
2275   tty->print_cr("Calls from compiled code:");
2276   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2277   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2278   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2279   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2280   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2281   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2282   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2283   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2284   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2285   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2286   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2287   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2288   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2289   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2290   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2291   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2292   tty->cr();
2293   tty->print_cr("Note 1: counter updates are not MT-safe.");
2294   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2295   tty->print_cr("        %% in nested categories are relative to their category");
2296   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2297   tty->cr();
2298 
2299   MethodArityHistogram h;
2300 }
2301 #endif
2302 
2303 
2304 // A simple wrapper class around the calling convention information
2305 // that allows sharing of adapters for the same calling convention.
2306 class AdapterFingerPrint : public CHeapObj<mtCode> {
2307  private:
2308   enum {
2309     _basic_type_bits = 4,
2310     _basic_type_mask = right_n_bits(_basic_type_bits),
2311     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2312     _compact_int_count = 3
2313   };
2314   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2315   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2316 
2317   union {
2318     int  _compact[_compact_int_count];
2319     int* _fingerprint;
2320   } _value;
2321   int _length; // A negative length indicates the fingerprint is in the compact form,
2322                // Otherwise _value._fingerprint is the array.
2323 
2324   // Remap BasicTypes that are handled equivalently by the adapters.
2325   // These are correct for the current system but someday it might be
2326   // necessary to make this mapping platform dependent.
2327   static int adapter_encoding(BasicType in) {
2328     switch (in) {
2329       case T_BOOLEAN:
2330       case T_BYTE:
2331       case T_SHORT:
2332       case T_CHAR:
2333         // There are all promoted to T_INT in the calling convention
2334         return T_INT;
2335 
2336       case T_OBJECT:
2337       case T_ARRAY:
2338         // In other words, we assume that any register good enough for
2339         // an int or long is good enough for a managed pointer.
2340 #ifdef _LP64
2341         return T_LONG;
2342 #else
2343         return T_INT;
2344 #endif
2345 
2346       case T_INT:
2347       case T_LONG:
2348       case T_FLOAT:
2349       case T_DOUBLE:
2350       case T_VOID:
2351         return in;
2352 
2353       default:
2354         ShouldNotReachHere();
2355         return T_CONFLICT;
2356     }
2357   }
2358 
2359  public:
2360   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2361     // The fingerprint is based on the BasicType signature encoded
2362     // into an array of ints with eight entries per int.
2363     int* ptr;
2364     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2365     if (len <= _compact_int_count) {
2366       assert(_compact_int_count == 3, "else change next line");
2367       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2368       // Storing the signature encoded as signed chars hits about 98%
2369       // of the time.
2370       _length = -len;
2371       ptr = _value._compact;
2372     } else {
2373       _length = len;
2374       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2375       ptr = _value._fingerprint;
2376     }
2377 
2378     // Now pack the BasicTypes with 8 per int
2379     int sig_index = 0;
2380     for (int index = 0; index < len; index++) {
2381       int value = 0;
2382       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2383         int bt = ((sig_index < total_args_passed)
2384                   ? adapter_encoding(sig_bt[sig_index++])
2385                   : 0);
2386         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2387         value = (value << _basic_type_bits) | bt;
2388       }
2389       ptr[index] = value;
2390     }
2391   }
2392 
2393   ~AdapterFingerPrint() {
2394     if (_length > 0) {
2395       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2396     }
2397   }
2398 
2399   int value(int index) {
2400     if (_length < 0) {
2401       return _value._compact[index];
2402     }
2403     return _value._fingerprint[index];
2404   }
2405   int length() {
2406     if (_length < 0) return -_length;
2407     return _length;
2408   }
2409 
2410   bool is_compact() {
2411     return _length <= 0;
2412   }
2413 
2414   unsigned int compute_hash() {
2415     int hash = 0;
2416     for (int i = 0; i < length(); i++) {
2417       int v = value(i);
2418       hash = (hash << 8) ^ v ^ (hash >> 5);
2419     }
2420     return (unsigned int)hash;
2421   }
2422 
2423   const char* as_string() {
2424     stringStream st;
2425     st.print("0x");
2426     for (int i = 0; i < length(); i++) {
2427       st.print("%08x", value(i));
2428     }
2429     return st.as_string();
2430   }
2431 
2432   bool equals(AdapterFingerPrint* other) {
2433     if (other->_length != _length) {
2434       return false;
2435     }
2436     if (_length < 0) {
2437       assert(_compact_int_count == 3, "else change next line");
2438       return _value._compact[0] == other->_value._compact[0] &&
2439              _value._compact[1] == other->_value._compact[1] &&
2440              _value._compact[2] == other->_value._compact[2];
2441     } else {
2442       for (int i = 0; i < _length; i++) {
2443         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2444           return false;
2445         }
2446       }
2447     }
2448     return true;
2449   }
2450 };
2451 
2452 
2453 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2454 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2455   friend class AdapterHandlerTableIterator;
2456 
2457  private:
2458 
2459 #ifndef PRODUCT
2460   static int _lookups; // number of calls to lookup
2461   static int _buckets; // number of buckets checked
2462   static int _equals;  // number of buckets checked with matching hash
2463   static int _hits;    // number of successful lookups
2464   static int _compact; // number of equals calls with compact signature
2465 #endif
2466 
2467   AdapterHandlerEntry* bucket(int i) {
2468     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2469   }
2470 
2471  public:
2472   AdapterHandlerTable()
2473     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2474 
2475   // Create a new entry suitable for insertion in the table
2476   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2477     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2478     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2479     if (DumpSharedSpaces) {
2480       ((CDSAdapterHandlerEntry*)entry)->init();
2481     }
2482     return entry;
2483   }
2484 
2485   // Insert an entry into the table
2486   void add(AdapterHandlerEntry* entry) {
2487     int index = hash_to_index(entry->hash());
2488     add_entry(index, entry);
2489   }
2490 
2491   void free_entry(AdapterHandlerEntry* entry) {
2492     entry->deallocate();
2493     BasicHashtable<mtCode>::free_entry(entry);
2494   }
2495 
2496   // Find a entry with the same fingerprint if it exists
2497   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2498     NOT_PRODUCT(_lookups++);
2499     AdapterFingerPrint fp(total_args_passed, sig_bt);
2500     unsigned int hash = fp.compute_hash();
2501     int index = hash_to_index(hash);
2502     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2503       NOT_PRODUCT(_buckets++);
2504       if (e->hash() == hash) {
2505         NOT_PRODUCT(_equals++);
2506         if (fp.equals(e->fingerprint())) {
2507 #ifndef PRODUCT
2508           if (fp.is_compact()) _compact++;
2509           _hits++;
2510 #endif
2511           return e;
2512         }
2513       }
2514     }
2515     return NULL;
2516   }
2517 
2518 #ifndef PRODUCT
2519   void print_statistics() {
2520     ResourceMark rm;
2521     int longest = 0;
2522     int empty = 0;
2523     int total = 0;
2524     int nonempty = 0;
2525     for (int index = 0; index < table_size(); index++) {
2526       int count = 0;
2527       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2528         count++;
2529       }
2530       if (count != 0) nonempty++;
2531       if (count == 0) empty++;
2532       if (count > longest) longest = count;
2533       total += count;
2534     }
2535     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2536                   empty, longest, total, total / (double)nonempty);
2537     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2538                   _lookups, _buckets, _equals, _hits, _compact);
2539   }
2540 #endif
2541 };
2542 
2543 
2544 #ifndef PRODUCT
2545 
2546 int AdapterHandlerTable::_lookups;
2547 int AdapterHandlerTable::_buckets;
2548 int AdapterHandlerTable::_equals;
2549 int AdapterHandlerTable::_hits;
2550 int AdapterHandlerTable::_compact;
2551 
2552 #endif
2553 
2554 class AdapterHandlerTableIterator : public StackObj {
2555  private:
2556   AdapterHandlerTable* _table;
2557   int _index;
2558   AdapterHandlerEntry* _current;
2559 
2560   void scan() {
2561     while (_index < _table->table_size()) {
2562       AdapterHandlerEntry* a = _table->bucket(_index);
2563       _index++;
2564       if (a != NULL) {
2565         _current = a;
2566         return;
2567       }
2568     }
2569   }
2570 
2571  public:
2572   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2573     scan();
2574   }
2575   bool has_next() {
2576     return _current != NULL;
2577   }
2578   AdapterHandlerEntry* next() {
2579     if (_current != NULL) {
2580       AdapterHandlerEntry* result = _current;
2581       _current = _current->next();
2582       if (_current == NULL) scan();
2583       return result;
2584     } else {
2585       return NULL;
2586     }
2587   }
2588 };
2589 
2590 
2591 // ---------------------------------------------------------------------------
2592 // Implementation of AdapterHandlerLibrary
2593 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2594 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2595 const int AdapterHandlerLibrary_size = 16*K;
2596 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2597 
2598 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2599   // Should be called only when AdapterHandlerLibrary_lock is active.
2600   if (_buffer == NULL) // Initialize lazily
2601       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2602   return _buffer;
2603 }
2604 
2605 extern "C" void unexpected_adapter_call() {
2606   ShouldNotCallThis();
2607 }
2608 
2609 void AdapterHandlerLibrary::initialize() {
2610   if (_adapters != NULL) return;
2611   _adapters = new AdapterHandlerTable();
2612 
2613   // Create a special handler for abstract methods.  Abstract methods
2614   // are never compiled so an i2c entry is somewhat meaningless, but
2615   // throw AbstractMethodError just in case.
2616   // Pass wrong_method_abstract for the c2i transitions to return
2617   // AbstractMethodError for invalid invocations.
2618   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2619   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2620                                                               StubRoutines::throw_AbstractMethodError_entry(),
2621                                                               wrong_method_abstract, wrong_method_abstract);
2622 }
2623 
2624 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2625                                                       address i2c_entry,
2626                                                       address c2i_entry,
2627                                                       address c2i_unverified_entry) {
2628   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2629 }
2630 
2631 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2632   AdapterHandlerEntry* entry = get_adapter0(method);
2633   if (method->is_shared()) {
2634     // See comments around Method::link_method()
2635     MutexLocker mu(AdapterHandlerLibrary_lock);
2636     if (method->adapter() == NULL) {
2637       method->update_adapter_trampoline(entry);
2638     }
2639     address trampoline = method->from_compiled_entry();
2640     if (*(int*)trampoline == 0) {
2641       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2642       MacroAssembler _masm(&buffer);
2643       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2644       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2645 
2646       if (PrintInterpreter) {
2647         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2648       }
2649     }
2650   }
2651 
2652   return entry;
2653 }
2654 
2655 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2656   // Use customized signature handler.  Need to lock around updates to
2657   // the AdapterHandlerTable (it is not safe for concurrent readers
2658   // and a single writer: this could be fixed if it becomes a
2659   // problem).
2660 
2661   ResourceMark rm;
2662 
2663   NOT_PRODUCT(int insts_size);
2664   AdapterBlob* new_adapter = NULL;
2665   AdapterHandlerEntry* entry = NULL;
2666   AdapterFingerPrint* fingerprint = NULL;
2667   {
2668     MutexLocker mu(AdapterHandlerLibrary_lock);
2669     // make sure data structure is initialized
2670     initialize();
2671 
2672     if (method->is_abstract()) {
2673       return _abstract_method_handler;
2674     }
2675 
2676     // Fill in the signature array, for the calling-convention call.
2677     int total_args_passed = method->size_of_parameters(); // All args on stack
2678 
2679     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2680     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2681     int i = 0;
2682     if (!method->is_static())  // Pass in receiver first
2683       sig_bt[i++] = T_OBJECT;
2684     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2685       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2686       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2687         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2688     }
2689     assert(i == total_args_passed, "");
2690 
2691     // Lookup method signature's fingerprint
2692     entry = _adapters->lookup(total_args_passed, sig_bt);
2693 
2694 #ifdef ASSERT
2695     AdapterHandlerEntry* shared_entry = NULL;
2696     // Start adapter sharing verification only after the VM is booted.
2697     if (VerifyAdapterSharing && (entry != NULL)) {
2698       shared_entry = entry;
2699       entry = NULL;
2700     }
2701 #endif
2702 
2703     if (entry != NULL) {
2704       return entry;
2705     }
2706 
2707     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2708     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2709 
2710     // Make a C heap allocated version of the fingerprint to store in the adapter
2711     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2712 
2713     // StubRoutines::code2() is initialized after this function can be called. As a result,
2714     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2715     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2716     // stub that ensure that an I2C stub is called from an interpreter frame.
2717     bool contains_all_checks = StubRoutines::code2() != NULL;
2718 
2719     // Create I2C & C2I handlers
2720     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2721     if (buf != NULL) {
2722       CodeBuffer buffer(buf);
2723       short buffer_locs[20];
2724       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2725                                              sizeof(buffer_locs)/sizeof(relocInfo));
2726 
2727       MacroAssembler _masm(&buffer);
2728       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2729                                                      total_args_passed,
2730                                                      comp_args_on_stack,
2731                                                      sig_bt,
2732                                                      regs,
2733                                                      fingerprint);
2734 #ifdef ASSERT
2735       if (VerifyAdapterSharing) {
2736         if (shared_entry != NULL) {
2737           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2738           // Release the one just created and return the original
2739           _adapters->free_entry(entry);
2740           return shared_entry;
2741         } else  {
2742           entry->save_code(buf->code_begin(), buffer.insts_size());
2743         }
2744       }
2745 #endif
2746 
2747       new_adapter = AdapterBlob::create(&buffer);
2748       NOT_PRODUCT(insts_size = buffer.insts_size());
2749     }
2750     if (new_adapter == NULL) {
2751       // CodeCache is full, disable compilation
2752       // Ought to log this but compile log is only per compile thread
2753       // and we're some non descript Java thread.
2754       return NULL; // Out of CodeCache space
2755     }
2756     entry->relocate(new_adapter->content_begin());
2757 #ifndef PRODUCT
2758     // debugging suppport
2759     if (PrintAdapterHandlers || PrintStubCode) {
2760       ttyLocker ttyl;
2761       entry->print_adapter_on(tty);
2762       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2763                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2764                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2765       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2766       if (Verbose || PrintStubCode) {
2767         address first_pc = entry->base_address();
2768         if (first_pc != NULL) {
2769           Disassembler::decode(first_pc, first_pc + insts_size);
2770           tty->cr();
2771         }
2772       }
2773     }
2774 #endif
2775     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2776     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2777     if (contains_all_checks || !VerifyAdapterCalls) {
2778       _adapters->add(entry);
2779     }
2780   }
2781   // Outside of the lock
2782   if (new_adapter != NULL) {
2783     char blob_id[256];
2784     jio_snprintf(blob_id,
2785                  sizeof(blob_id),
2786                  "%s(%s)@" PTR_FORMAT,
2787                  new_adapter->name(),
2788                  fingerprint->as_string(),
2789                  new_adapter->content_begin());
2790     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2791 
2792     if (JvmtiExport::should_post_dynamic_code_generated()) {
2793       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2794     }
2795   }
2796   return entry;
2797 }
2798 
2799 address AdapterHandlerEntry::base_address() {
2800   address base = _i2c_entry;
2801   if (base == NULL)  base = _c2i_entry;
2802   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2803   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2804   return base;
2805 }
2806 
2807 void AdapterHandlerEntry::relocate(address new_base) {
2808   address old_base = base_address();
2809   assert(old_base != NULL, "");
2810   ptrdiff_t delta = new_base - old_base;
2811   if (_i2c_entry != NULL)
2812     _i2c_entry += delta;
2813   if (_c2i_entry != NULL)
2814     _c2i_entry += delta;
2815   if (_c2i_unverified_entry != NULL)
2816     _c2i_unverified_entry += delta;
2817   assert(base_address() == new_base, "");
2818 }
2819 
2820 
2821 void AdapterHandlerEntry::deallocate() {
2822   delete _fingerprint;
2823 #ifdef ASSERT
2824   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2825 #endif
2826 }
2827 
2828 
2829 #ifdef ASSERT
2830 // Capture the code before relocation so that it can be compared
2831 // against other versions.  If the code is captured after relocation
2832 // then relative instructions won't be equivalent.
2833 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2834   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2835   _saved_code_length = length;
2836   memcpy(_saved_code, buffer, length);
2837 }
2838 
2839 
2840 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2841   if (length != _saved_code_length) {
2842     return false;
2843   }
2844 
2845   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2846 }
2847 #endif
2848 
2849 
2850 /**
2851  * Create a native wrapper for this native method.  The wrapper converts the
2852  * Java-compiled calling convention to the native convention, handles
2853  * arguments, and transitions to native.  On return from the native we transition
2854  * back to java blocking if a safepoint is in progress.
2855  */
2856 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2857   ResourceMark rm;
2858   nmethod* nm = NULL;
2859 
2860   assert(method->is_native(), "must be native");
2861   assert(method->is_method_handle_intrinsic() ||
2862          method->has_native_function(), "must have something valid to call!");
2863 
2864   {
2865     // Perform the work while holding the lock, but perform any printing outside the lock
2866     MutexLocker mu(AdapterHandlerLibrary_lock);
2867     // See if somebody beat us to it
2868     if (method->code() != NULL) {
2869       return;
2870     }
2871 
2872     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2873     assert(compile_id > 0, "Must generate native wrapper");
2874 
2875 
2876     ResourceMark rm;
2877     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2878     if (buf != NULL) {
2879       CodeBuffer buffer(buf);
2880       double locs_buf[20];
2881       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2882       MacroAssembler _masm(&buffer);
2883 
2884       // Fill in the signature array, for the calling-convention call.
2885       const int total_args_passed = method->size_of_parameters();
2886 
2887       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2888       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2889       int i=0;
2890       if (!method->is_static())  // Pass in receiver first
2891         sig_bt[i++] = T_OBJECT;
2892       SignatureStream ss(method->signature());
2893       for (; !ss.at_return_type(); ss.next()) {
2894         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2895         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2896           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2897       }
2898       assert(i == total_args_passed, "");
2899       BasicType ret_type = ss.type();
2900 
2901       // Now get the compiled-Java layout as input (or output) arguments.
2902       // NOTE: Stubs for compiled entry points of method handle intrinsics
2903       // are just trampolines so the argument registers must be outgoing ones.
2904       const bool is_outgoing = method->is_method_handle_intrinsic();
2905       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2906 
2907       // Generate the compiled-to-native wrapper code
2908       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2909 
2910       if (nm != NULL) {
2911         method->set_code(method, nm);
2912 
2913         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2914         if (directive->PrintAssemblyOption) {
2915           nm->print_code();
2916         }
2917         DirectivesStack::release(directive);
2918       }
2919     }
2920   } // Unlock AdapterHandlerLibrary_lock
2921 
2922 
2923   // Install the generated code.
2924   if (nm != NULL) {
2925     const char *msg = method->is_static() ? "(static)" : "";
2926     CompileTask::print_ul(nm, msg);
2927     if (PrintCompilation) {
2928       ttyLocker ttyl;
2929       CompileTask::print(tty, nm, msg);
2930     }
2931     nm->post_compiled_method_load_event();
2932   }
2933 }
2934 
2935 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2936   assert(thread == JavaThread::current(), "must be");
2937   // The code is about to enter a JNI lazy critical native method and
2938   // _needs_gc is true, so if this thread is already in a critical
2939   // section then just return, otherwise this thread should block
2940   // until needs_gc has been cleared.
2941   if (thread->in_critical()) {
2942     return;
2943   }
2944   // Lock and unlock a critical section to give the system a chance to block
2945   GCLocker::lock_critical(thread);
2946   GCLocker::unlock_critical(thread);
2947 JRT_END
2948 
2949 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
2950   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2951   assert(obj != NULL, "Should not be null");
2952   oop o(obj);
2953   o = Universe::heap()->pin_object(thread, o);
2954   assert(o != NULL, "Should not be null");
2955   return o;
2956 JRT_END
2957 
2958 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
2959   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2960   assert(obj != NULL, "Should not be null");
2961   oop o(obj);
2962   Universe::heap()->unpin_object(thread, o);
2963 JRT_END
2964 
2965 // -------------------------------------------------------------------------
2966 // Java-Java calling convention
2967 // (what you use when Java calls Java)
2968 
2969 //------------------------------name_for_receiver----------------------------------
2970 // For a given signature, return the VMReg for parameter 0.
2971 VMReg SharedRuntime::name_for_receiver() {
2972   VMRegPair regs;
2973   BasicType sig_bt = T_OBJECT;
2974   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2975   // Return argument 0 register.  In the LP64 build pointers
2976   // take 2 registers, but the VM wants only the 'main' name.
2977   return regs.first();
2978 }
2979 
2980 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2981   // This method is returning a data structure allocating as a
2982   // ResourceObject, so do not put any ResourceMarks in here.
2983   char *s = sig->as_C_string();
2984   int len = (int)strlen(s);
2985   s++; len--;                   // Skip opening paren
2986 
2987   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2988   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2989   int cnt = 0;
2990   if (has_receiver) {
2991     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2992   }
2993 
2994   while (*s != ')') {          // Find closing right paren
2995     switch (*s++) {            // Switch on signature character
2996     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2997     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2998     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2999     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
3000     case 'I': sig_bt[cnt++] = T_INT;     break;
3001     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
3002     case 'S': sig_bt[cnt++] = T_SHORT;   break;
3003     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
3004     case 'V': sig_bt[cnt++] = T_VOID;    break;
3005     case 'L':                   // Oop
3006       while (*s++ != ';');   // Skip signature
3007       sig_bt[cnt++] = T_OBJECT;
3008       break;
3009     case '[': {                 // Array
3010       do {                      // Skip optional size
3011         while (*s >= '0' && *s <= '9') s++;
3012       } while (*s++ == '[');   // Nested arrays?
3013       // Skip element type
3014       if (s[-1] == 'L')
3015         while (*s++ != ';'); // Skip signature
3016       sig_bt[cnt++] = T_ARRAY;
3017       break;
3018     }
3019     default : ShouldNotReachHere();
3020     }
3021   }
3022 
3023   if (has_appendix) {
3024     sig_bt[cnt++] = T_OBJECT;
3025   }
3026 
3027   assert(cnt < 256, "grow table size");
3028 
3029   int comp_args_on_stack;
3030   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3031 
3032   // the calling convention doesn't count out_preserve_stack_slots so
3033   // we must add that in to get "true" stack offsets.
3034 
3035   if (comp_args_on_stack) {
3036     for (int i = 0; i < cnt; i++) {
3037       VMReg reg1 = regs[i].first();
3038       if (reg1->is_stack()) {
3039         // Yuck
3040         reg1 = reg1->bias(out_preserve_stack_slots());
3041       }
3042       VMReg reg2 = regs[i].second();
3043       if (reg2->is_stack()) {
3044         // Yuck
3045         reg2 = reg2->bias(out_preserve_stack_slots());
3046       }
3047       regs[i].set_pair(reg2, reg1);
3048     }
3049   }
3050 
3051   // results
3052   *arg_size = cnt;
3053   return regs;
3054 }
3055 
3056 // OSR Migration Code
3057 //
3058 // This code is used convert interpreter frames into compiled frames.  It is
3059 // called from very start of a compiled OSR nmethod.  A temp array is
3060 // allocated to hold the interesting bits of the interpreter frame.  All
3061 // active locks are inflated to allow them to move.  The displaced headers and
3062 // active interpreter locals are copied into the temp buffer.  Then we return
3063 // back to the compiled code.  The compiled code then pops the current
3064 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3065 // copies the interpreter locals and displaced headers where it wants.
3066 // Finally it calls back to free the temp buffer.
3067 //
3068 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3069 
3070 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3071 
3072   //
3073   // This code is dependent on the memory layout of the interpreter local
3074   // array and the monitors. On all of our platforms the layout is identical
3075   // so this code is shared. If some platform lays the their arrays out
3076   // differently then this code could move to platform specific code or
3077   // the code here could be modified to copy items one at a time using
3078   // frame accessor methods and be platform independent.
3079 
3080   frame fr = thread->last_frame();
3081   assert(fr.is_interpreted_frame(), "");
3082   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3083 
3084   // Figure out how many monitors are active.
3085   int active_monitor_count = 0;
3086   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3087        kptr < fr.interpreter_frame_monitor_begin();
3088        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3089     if (kptr->obj() != NULL) active_monitor_count++;
3090   }
3091 
3092   // QQQ we could place number of active monitors in the array so that compiled code
3093   // could double check it.
3094 
3095   Method* moop = fr.interpreter_frame_method();
3096   int max_locals = moop->max_locals();
3097   // Allocate temp buffer, 1 word per local & 2 per active monitor
3098   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3099   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3100 
3101   // Copy the locals.  Order is preserved so that loading of longs works.
3102   // Since there's no GC I can copy the oops blindly.
3103   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3104   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3105                        (HeapWord*)&buf[0],
3106                        max_locals);
3107 
3108   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3109   int i = max_locals;
3110   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3111        kptr2 < fr.interpreter_frame_monitor_begin();
3112        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3113     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3114       BasicLock *lock = kptr2->lock();
3115       // Disallow async deflation of the inflated monitor so the
3116       // displaced header stays stable until we've copied it.
3117       ObjectMonitorHandle omh;
3118       // Inflate so the displaced header becomes position-independent
3119       if (lock->displaced_header()->is_unlocked()) {
3120         ObjectSynchronizer::inflate_helper(&omh, kptr2->obj());
3121       }
3122       // Now the displaced header is free to move
3123       buf[i++] = (intptr_t)lock->displaced_header();
3124       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3125     }
3126   }
3127   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3128 
3129   return buf;
3130 JRT_END
3131 
3132 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3133   FREE_C_HEAP_ARRAY(intptr_t, buf);
3134 JRT_END
3135 
3136 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3137   AdapterHandlerTableIterator iter(_adapters);
3138   while (iter.has_next()) {
3139     AdapterHandlerEntry* a = iter.next();
3140     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3141   }
3142   return false;
3143 }
3144 
3145 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3146   AdapterHandlerTableIterator iter(_adapters);
3147   while (iter.has_next()) {
3148     AdapterHandlerEntry* a = iter.next();
3149     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3150       st->print("Adapter for signature: ");
3151       a->print_adapter_on(tty);
3152       return;
3153     }
3154   }
3155   assert(false, "Should have found handler");
3156 }
3157 
3158 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3159   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3160                p2i(this), fingerprint()->as_string(),
3161                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3162 
3163 }
3164 
3165 #if INCLUDE_CDS
3166 
3167 void CDSAdapterHandlerEntry::init() {
3168   assert(DumpSharedSpaces, "used during dump time only");
3169   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3170   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3171 };
3172 
3173 #endif // INCLUDE_CDS
3174 
3175 
3176 #ifndef PRODUCT
3177 
3178 void AdapterHandlerLibrary::print_statistics() {
3179   _adapters->print_statistics();
3180 }
3181 
3182 #endif /* PRODUCT */
3183 
3184 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3185   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3186   if (thread->stack_reserved_zone_disabled()) {
3187   thread->enable_stack_reserved_zone();
3188   }
3189   thread->set_reserved_stack_activation(thread->stack_base());
3190 JRT_END
3191 
3192 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3193   ResourceMark rm(thread);
3194   frame activation;
3195   CompiledMethod* nm = NULL;
3196   int count = 1;
3197 
3198   assert(fr.is_java_frame(), "Must start on Java frame");
3199 
3200   while (true) {
3201     Method* method = NULL;
3202     bool found = false;
3203     if (fr.is_interpreted_frame()) {
3204       method = fr.interpreter_frame_method();
3205       if (method != NULL && method->has_reserved_stack_access()) {
3206         found = true;
3207       }
3208     } else {
3209       CodeBlob* cb = fr.cb();
3210       if (cb != NULL && cb->is_compiled()) {
3211         nm = cb->as_compiled_method();
3212         method = nm->method();
3213         // scope_desc_near() must be used, instead of scope_desc_at() because on
3214         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3215         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3216           method = sd->method();
3217           if (method != NULL && method->has_reserved_stack_access()) {
3218             found = true;
3219       }
3220     }
3221       }
3222     }
3223     if (found) {
3224       activation = fr;
3225       warning("Potentially dangerous stack overflow in "
3226               "ReservedStackAccess annotated method %s [%d]",
3227               method->name_and_sig_as_C_string(), count++);
3228       EventReservedStackActivation event;
3229       if (event.should_commit()) {
3230         event.set_method(method);
3231         event.commit();
3232       }
3233     }
3234     if (fr.is_first_java_frame()) {
3235       break;
3236     } else {
3237       fr = fr.java_sender();
3238     }
3239   }
3240   return activation;
3241 }
3242 
3243 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3244   // After any safepoint, just before going back to compiled code,
3245   // we inform the GC that we will be doing initializing writes to
3246   // this object in the future without emitting card-marks, so
3247   // GC may take any compensating steps.
3248 
3249   oop new_obj = thread->vm_result();
3250   if (new_obj == NULL) return;
3251 
3252   BarrierSet *bs = BarrierSet::barrier_set();
3253   bs->on_slowpath_allocation_exit(thread, new_obj);
3254 }