1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/compiledMethod.inline.hpp"
  35 #include "code/scopeDesc.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/abstractCompiler.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/interpreterRuntime.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "memory/universe.hpp"
  49 #include "oops/klass.hpp"
  50 #include "oops/method.inline.hpp"
  51 #include "oops/objArrayKlass.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "prims/forte.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/methodHandles.hpp"
  56 #include "prims/nativeLookup.hpp"
  57 #include "runtime/arguments.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/biasedLocking.hpp"
  60 #include "runtime/compilationPolicy.hpp"
  61 #include "runtime/frame.inline.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/init.hpp"
  64 #include "runtime/interfaceSupport.inline.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/javaCalls.hpp"
  67 #include "runtime/sharedRuntime.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/vframe.inline.hpp"
  70 #include "runtime/vframeArray.hpp"
  71 #include "utilities/copy.hpp"
  72 #include "utilities/dtrace.hpp"
  73 #include "utilities/events.hpp"
  74 #include "utilities/hashtable.inline.hpp"
  75 #include "utilities/macros.hpp"
  76 #include "utilities/xmlstream.hpp"
  77 #ifdef COMPILER1
  78 #include "c1/c1_Runtime1.hpp"
  79 #endif
  80 
  81 // Shared stub locations
  82 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  83 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  84 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  85 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  86 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  87 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  88 address             SharedRuntime::_resolve_static_call_entry;
  89 
  90 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  91 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  92 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  93 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  94 
  95 #ifdef COMPILER2
  96 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  97 #endif // COMPILER2
  98 
  99 
 100 //----------------------------generate_stubs-----------------------------------
 101 void SharedRuntime::generate_stubs() {
 102   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 103   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 104   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 105   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 106   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 107   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 108   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 109 
 110 #if COMPILER2_OR_JVMCI
 111   // Vectors are generated only by C2 and JVMCI.
 112   bool support_wide = is_wide_vector(MaxVectorSize);
 113   if (support_wide) {
 114     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 115   }
 116 #endif // COMPILER2_OR_JVMCI
 117   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 118   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 119 
 120   generate_deopt_blob();
 121 
 122 #ifdef COMPILER2
 123   generate_uncommon_trap_blob();
 124 #endif // COMPILER2
 125 }
 126 
 127 #include <math.h>
 128 
 129 // Implementation of SharedRuntime
 130 
 131 #ifndef PRODUCT
 132 // For statistics
 133 int SharedRuntime::_ic_miss_ctr = 0;
 134 int SharedRuntime::_wrong_method_ctr = 0;
 135 int SharedRuntime::_resolve_static_ctr = 0;
 136 int SharedRuntime::_resolve_virtual_ctr = 0;
 137 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 138 int SharedRuntime::_implicit_null_throws = 0;
 139 int SharedRuntime::_implicit_div0_throws = 0;
 140 int SharedRuntime::_throw_null_ctr = 0;
 141 
 142 int SharedRuntime::_nof_normal_calls = 0;
 143 int SharedRuntime::_nof_optimized_calls = 0;
 144 int SharedRuntime::_nof_inlined_calls = 0;
 145 int SharedRuntime::_nof_megamorphic_calls = 0;
 146 int SharedRuntime::_nof_static_calls = 0;
 147 int SharedRuntime::_nof_inlined_static_calls = 0;
 148 int SharedRuntime::_nof_interface_calls = 0;
 149 int SharedRuntime::_nof_optimized_interface_calls = 0;
 150 int SharedRuntime::_nof_inlined_interface_calls = 0;
 151 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 152 int SharedRuntime::_nof_removable_exceptions = 0;
 153 
 154 int SharedRuntime::_new_instance_ctr=0;
 155 int SharedRuntime::_new_array_ctr=0;
 156 int SharedRuntime::_multi1_ctr=0;
 157 int SharedRuntime::_multi2_ctr=0;
 158 int SharedRuntime::_multi3_ctr=0;
 159 int SharedRuntime::_multi4_ctr=0;
 160 int SharedRuntime::_multi5_ctr=0;
 161 int SharedRuntime::_mon_enter_stub_ctr=0;
 162 int SharedRuntime::_mon_exit_stub_ctr=0;
 163 int SharedRuntime::_mon_enter_ctr=0;
 164 int SharedRuntime::_mon_exit_ctr=0;
 165 int SharedRuntime::_partial_subtype_ctr=0;
 166 int SharedRuntime::_jbyte_array_copy_ctr=0;
 167 int SharedRuntime::_jshort_array_copy_ctr=0;
 168 int SharedRuntime::_jint_array_copy_ctr=0;
 169 int SharedRuntime::_jlong_array_copy_ctr=0;
 170 int SharedRuntime::_oop_array_copy_ctr=0;
 171 int SharedRuntime::_checkcast_array_copy_ctr=0;
 172 int SharedRuntime::_unsafe_array_copy_ctr=0;
 173 int SharedRuntime::_generic_array_copy_ctr=0;
 174 int SharedRuntime::_slow_array_copy_ctr=0;
 175 int SharedRuntime::_find_handler_ctr=0;
 176 int SharedRuntime::_rethrow_ctr=0;
 177 
 178 int     SharedRuntime::_ICmiss_index                    = 0;
 179 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 180 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 181 
 182 
 183 void SharedRuntime::trace_ic_miss(address at) {
 184   for (int i = 0; i < _ICmiss_index; i++) {
 185     if (_ICmiss_at[i] == at) {
 186       _ICmiss_count[i]++;
 187       return;
 188     }
 189   }
 190   int index = _ICmiss_index++;
 191   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 192   _ICmiss_at[index] = at;
 193   _ICmiss_count[index] = 1;
 194 }
 195 
 196 void SharedRuntime::print_ic_miss_histogram() {
 197   if (ICMissHistogram) {
 198     tty->print_cr("IC Miss Histogram:");
 199     int tot_misses = 0;
 200     for (int i = 0; i < _ICmiss_index; i++) {
 201       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 202       tot_misses += _ICmiss_count[i];
 203     }
 204     tty->print_cr("Total IC misses: %7d", tot_misses);
 205   }
 206 }
 207 #endif // PRODUCT
 208 
 209 
 210 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 211   return x * y;
 212 JRT_END
 213 
 214 
 215 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 216   if (x == min_jlong && y == CONST64(-1)) {
 217     return x;
 218   } else {
 219     return x / y;
 220   }
 221 JRT_END
 222 
 223 
 224 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 225   if (x == min_jlong && y == CONST64(-1)) {
 226     return 0;
 227   } else {
 228     return x % y;
 229   }
 230 JRT_END
 231 
 232 
 233 const juint  float_sign_mask  = 0x7FFFFFFF;
 234 const juint  float_infinity   = 0x7F800000;
 235 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 236 const julong double_infinity  = CONST64(0x7FF0000000000000);
 237 
 238 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 239 #ifdef _WIN64
 240   // 64-bit Windows on amd64 returns the wrong values for
 241   // infinity operands.
 242   union { jfloat f; juint i; } xbits, ybits;
 243   xbits.f = x;
 244   ybits.f = y;
 245   // x Mod Infinity == x unless x is infinity
 246   if (((xbits.i & float_sign_mask) != float_infinity) &&
 247        ((ybits.i & float_sign_mask) == float_infinity) ) {
 248     return x;
 249   }
 250   return ((jfloat)fmod_winx64((double)x, (double)y));
 251 #else
 252   return ((jfloat)fmod((double)x,(double)y));
 253 #endif
 254 JRT_END
 255 
 256 
 257 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 258 #ifdef _WIN64
 259   union { jdouble d; julong l; } xbits, ybits;
 260   xbits.d = x;
 261   ybits.d = y;
 262   // x Mod Infinity == x unless x is infinity
 263   if (((xbits.l & double_sign_mask) != double_infinity) &&
 264        ((ybits.l & double_sign_mask) == double_infinity) ) {
 265     return x;
 266   }
 267   return ((jdouble)fmod_winx64((double)x, (double)y));
 268 #else
 269   return ((jdouble)fmod((double)x,(double)y));
 270 #endif
 271 JRT_END
 272 
 273 #ifdef __SOFTFP__
 274 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 275   return x + y;
 276 JRT_END
 277 
 278 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 279   return x - y;
 280 JRT_END
 281 
 282 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 283   return x * y;
 284 JRT_END
 285 
 286 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 287   return x / y;
 288 JRT_END
 289 
 290 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 291   return x + y;
 292 JRT_END
 293 
 294 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 295   return x - y;
 296 JRT_END
 297 
 298 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 299   return x * y;
 300 JRT_END
 301 
 302 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 303   return x / y;
 304 JRT_END
 305 
 306 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 307   return (jfloat)x;
 308 JRT_END
 309 
 310 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 311   return (jdouble)x;
 312 JRT_END
 313 
 314 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 315   return (jdouble)x;
 316 JRT_END
 317 
 318 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 319   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 320 JRT_END
 321 
 322 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 323   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 324 JRT_END
 325 
 326 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 327   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 328 JRT_END
 329 
 330 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 331   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 332 JRT_END
 333 
 334 // Functions to return the opposite of the aeabi functions for nan.
 335 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 336   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 337 JRT_END
 338 
 339 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 340   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 341 JRT_END
 342 
 343 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 344   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 345 JRT_END
 346 
 347 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 348   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 349 JRT_END
 350 
 351 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 352   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 353 JRT_END
 354 
 355 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 356   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 357 JRT_END
 358 
 359 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 360   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 361 JRT_END
 362 
 363 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 364   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 365 JRT_END
 366 
 367 // Intrinsics make gcc generate code for these.
 368 float  SharedRuntime::fneg(float f)   {
 369   return -f;
 370 }
 371 
 372 double SharedRuntime::dneg(double f)  {
 373   return -f;
 374 }
 375 
 376 #endif // __SOFTFP__
 377 
 378 #if defined(__SOFTFP__) || defined(E500V2)
 379 // Intrinsics make gcc generate code for these.
 380 double SharedRuntime::dabs(double f)  {
 381   return (f <= (double)0.0) ? (double)0.0 - f : f;
 382 }
 383 
 384 #endif
 385 
 386 #if defined(__SOFTFP__) || defined(PPC)
 387 double SharedRuntime::dsqrt(double f) {
 388   return sqrt(f);
 389 }
 390 #endif
 391 
 392 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 393   if (g_isnan(x))
 394     return 0;
 395   if (x >= (jfloat) max_jint)
 396     return max_jint;
 397   if (x <= (jfloat) min_jint)
 398     return min_jint;
 399   return (jint) x;
 400 JRT_END
 401 
 402 
 403 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 404   if (g_isnan(x))
 405     return 0;
 406   if (x >= (jfloat) max_jlong)
 407     return max_jlong;
 408   if (x <= (jfloat) min_jlong)
 409     return min_jlong;
 410   return (jlong) x;
 411 JRT_END
 412 
 413 
 414 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 415   if (g_isnan(x))
 416     return 0;
 417   if (x >= (jdouble) max_jint)
 418     return max_jint;
 419   if (x <= (jdouble) min_jint)
 420     return min_jint;
 421   return (jint) x;
 422 JRT_END
 423 
 424 
 425 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 426   if (g_isnan(x))
 427     return 0;
 428   if (x >= (jdouble) max_jlong)
 429     return max_jlong;
 430   if (x <= (jdouble) min_jlong)
 431     return min_jlong;
 432   return (jlong) x;
 433 JRT_END
 434 
 435 
 436 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 437   return (jfloat)x;
 438 JRT_END
 439 
 440 
 441 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 442   return (jfloat)x;
 443 JRT_END
 444 
 445 
 446 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 447   return (jdouble)x;
 448 JRT_END
 449 
 450 // Exception handling across interpreter/compiler boundaries
 451 //
 452 // exception_handler_for_return_address(...) returns the continuation address.
 453 // The continuation address is the entry point of the exception handler of the
 454 // previous frame depending on the return address.
 455 
 456 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 457   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 458   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 459 
 460   // Reset method handle flag.
 461   thread->set_is_method_handle_return(false);
 462 
 463 #if INCLUDE_JVMCI
 464   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 465   // and other exception handler continuations do not read it
 466   thread->set_exception_pc(NULL);
 467 #endif // INCLUDE_JVMCI
 468 
 469   // The fastest case first
 470   CodeBlob* blob = CodeCache::find_blob(return_address);
 471   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 472   if (nm != NULL) {
 473     // Set flag if return address is a method handle call site.
 474     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 475     // native nmethods don't have exception handlers
 476     assert(!nm->is_native_method(), "no exception handler");
 477     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 478     if (nm->is_deopt_pc(return_address)) {
 479       // If we come here because of a stack overflow, the stack may be
 480       // unguarded. Reguard the stack otherwise if we return to the
 481       // deopt blob and the stack bang causes a stack overflow we
 482       // crash.
 483       bool guard_pages_enabled = thread->stack_guards_enabled();
 484       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 485       if (thread->reserved_stack_activation() != thread->stack_base()) {
 486         thread->set_reserved_stack_activation(thread->stack_base());
 487       }
 488       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 489       return SharedRuntime::deopt_blob()->unpack_with_exception();
 490     } else {
 491       return nm->exception_begin();
 492     }
 493   }
 494 
 495   // Entry code
 496   if (StubRoutines::returns_to_call_stub(return_address)) {
 497     return StubRoutines::catch_exception_entry();
 498   }
 499   // Interpreted code
 500   if (Interpreter::contains(return_address)) {
 501     return Interpreter::rethrow_exception_entry();
 502   }
 503 
 504   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 505   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 506 
 507 #ifndef PRODUCT
 508   { ResourceMark rm;
 509     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 510     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 511     tty->print_cr("b) other problem");
 512   }
 513 #endif // PRODUCT
 514 
 515   ShouldNotReachHere();
 516   return NULL;
 517 }
 518 
 519 
 520 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 521   return raw_exception_handler_for_return_address(thread, return_address);
 522 JRT_END
 523 
 524 
 525 address SharedRuntime::get_poll_stub(address pc) {
 526   address stub;
 527   // Look up the code blob
 528   CodeBlob *cb = CodeCache::find_blob(pc);
 529 
 530   // Should be an nmethod
 531   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 532 
 533   // Look up the relocation information
 534   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 535     "safepoint polling: type must be poll");
 536 
 537 #ifdef ASSERT
 538   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 539     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 540     Disassembler::decode(cb);
 541     fatal("Only polling locations are used for safepoint");
 542   }
 543 #endif
 544 
 545   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 546   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 547   if (at_poll_return) {
 548     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 549            "polling page return stub not created yet");
 550     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 551   } else if (has_wide_vectors) {
 552     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 553            "polling page vectors safepoint stub not created yet");
 554     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 555   } else {
 556     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 557            "polling page safepoint stub not created yet");
 558     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 559   }
 560   log_debug(safepoint)("... found polling page %s exception at pc = "
 561                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 562                        at_poll_return ? "return" : "loop",
 563                        (intptr_t)pc, (intptr_t)stub);
 564   return stub;
 565 }
 566 
 567 
 568 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 569   assert(caller.is_interpreted_frame(), "");
 570   int args_size = ArgumentSizeComputer(sig).size() + 1;
 571   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 572   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 573   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 574   return result;
 575 }
 576 
 577 
 578 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 579   if (JvmtiExport::can_post_on_exceptions()) {
 580     vframeStream vfst(thread, true);
 581     methodHandle method = methodHandle(thread, vfst.method());
 582     address bcp = method()->bcp_from(vfst.bci());
 583     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 584   }
 585   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 586 }
 587 
 588 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 589   Handle h_exception = Exceptions::new_exception(thread, name, message);
 590   throw_and_post_jvmti_exception(thread, h_exception);
 591 }
 592 
 593 // The interpreter code to call this tracing function is only
 594 // called/generated when UL is on for redefine, class and has the right level
 595 // and tags. Since obsolete methods are never compiled, we don't have
 596 // to modify the compilers to generate calls to this function.
 597 //
 598 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 599     JavaThread* thread, Method* method))
 600   if (method->is_obsolete()) {
 601     // We are calling an obsolete method, but this is not necessarily
 602     // an error. Our method could have been redefined just after we
 603     // fetched the Method* from the constant pool.
 604     ResourceMark rm;
 605     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 606   }
 607   return 0;
 608 JRT_END
 609 
 610 // ret_pc points into caller; we are returning caller's exception handler
 611 // for given exception
 612 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 613                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 614   assert(cm != NULL, "must exist");
 615   ResourceMark rm;
 616 
 617 #if INCLUDE_JVMCI
 618   if (cm->is_compiled_by_jvmci()) {
 619     // lookup exception handler for this pc
 620     int catch_pco = ret_pc - cm->code_begin();
 621     ExceptionHandlerTable table(cm);
 622     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 623     if (t != NULL) {
 624       return cm->code_begin() + t->pco();
 625     } else {
 626       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 627     }
 628   }
 629 #endif // INCLUDE_JVMCI
 630 
 631   nmethod* nm = cm->as_nmethod();
 632   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 633   // determine handler bci, if any
 634   EXCEPTION_MARK;
 635 
 636   int handler_bci = -1;
 637   int scope_depth = 0;
 638   if (!force_unwind) {
 639     int bci = sd->bci();
 640     bool recursive_exception = false;
 641     do {
 642       bool skip_scope_increment = false;
 643       // exception handler lookup
 644       Klass* ek = exception->klass();
 645       methodHandle mh(THREAD, sd->method());
 646       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 647       if (HAS_PENDING_EXCEPTION) {
 648         recursive_exception = true;
 649         // We threw an exception while trying to find the exception handler.
 650         // Transfer the new exception to the exception handle which will
 651         // be set into thread local storage, and do another lookup for an
 652         // exception handler for this exception, this time starting at the
 653         // BCI of the exception handler which caused the exception to be
 654         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 655         // argument to ensure that the correct exception is thrown (4870175).
 656         recursive_exception_occurred = true;
 657         exception = Handle(THREAD, PENDING_EXCEPTION);
 658         CLEAR_PENDING_EXCEPTION;
 659         if (handler_bci >= 0) {
 660           bci = handler_bci;
 661           handler_bci = -1;
 662           skip_scope_increment = true;
 663         }
 664       }
 665       else {
 666         recursive_exception = false;
 667       }
 668       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 669         sd = sd->sender();
 670         if (sd != NULL) {
 671           bci = sd->bci();
 672         }
 673         ++scope_depth;
 674       }
 675     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 676   }
 677 
 678   // found handling method => lookup exception handler
 679   int catch_pco = ret_pc - nm->code_begin();
 680 
 681   ExceptionHandlerTable table(nm);
 682   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 683   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 684     // Allow abbreviated catch tables.  The idea is to allow a method
 685     // to materialize its exceptions without committing to the exact
 686     // routing of exceptions.  In particular this is needed for adding
 687     // a synthetic handler to unlock monitors when inlining
 688     // synchronized methods since the unlock path isn't represented in
 689     // the bytecodes.
 690     t = table.entry_for(catch_pco, -1, 0);
 691   }
 692 
 693 #ifdef COMPILER1
 694   if (t == NULL && nm->is_compiled_by_c1()) {
 695     assert(nm->unwind_handler_begin() != NULL, "");
 696     return nm->unwind_handler_begin();
 697   }
 698 #endif
 699 
 700   if (t == NULL) {
 701     ttyLocker ttyl;
 702     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 703     tty->print_cr("   Exception:");
 704     exception->print();
 705     tty->cr();
 706     tty->print_cr(" Compiled exception table :");
 707     table.print();
 708     nm->print_code();
 709     guarantee(false, "missing exception handler");
 710     return NULL;
 711   }
 712 
 713   return nm->code_begin() + t->pco();
 714 }
 715 
 716 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 717   // These errors occur only at call sites
 718   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 719 JRT_END
 720 
 721 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 722   // These errors occur only at call sites
 723   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 724 JRT_END
 725 
 726 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 727   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 728 JRT_END
 729 
 730 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 731   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 732 JRT_END
 733 
 734 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 735   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 736   // cache sites (when the callee activation is not yet set up) so we are at a call site
 737   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 738 JRT_END
 739 
 740 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 741   throw_StackOverflowError_common(thread, false);
 742 JRT_END
 743 
 744 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 745   throw_StackOverflowError_common(thread, true);
 746 JRT_END
 747 
 748 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 749   // We avoid using the normal exception construction in this case because
 750   // it performs an upcall to Java, and we're already out of stack space.
 751   Thread* THREAD = thread;
 752   Klass* k = SystemDictionary::StackOverflowError_klass();
 753   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 754   if (delayed) {
 755     java_lang_Throwable::set_message(exception_oop,
 756                                      Universe::delayed_stack_overflow_error_message());
 757   }
 758   Handle exception (thread, exception_oop);
 759   if (StackTraceInThrowable) {
 760     java_lang_Throwable::fill_in_stack_trace(exception);
 761   }
 762   // Increment counter for hs_err file reporting
 763   Atomic::inc(&Exceptions::_stack_overflow_errors);
 764   throw_and_post_jvmti_exception(thread, exception);
 765 }
 766 
 767 #if INCLUDE_JVMCI
 768 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 769   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 770   thread->set_jvmci_implicit_exception_pc(pc);
 771   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 772   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 773 }
 774 #endif // INCLUDE_JVMCI
 775 
 776 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 777                                                            address pc,
 778                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 779 {
 780   address target_pc = NULL;
 781 
 782   if (Interpreter::contains(pc)) {
 783 #ifdef CC_INTERP
 784     // C++ interpreter doesn't throw implicit exceptions
 785     ShouldNotReachHere();
 786 #else
 787     switch (exception_kind) {
 788       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 789       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 790       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 791       default:                      ShouldNotReachHere();
 792     }
 793 #endif // !CC_INTERP
 794   } else {
 795     switch (exception_kind) {
 796       case STACK_OVERFLOW: {
 797         // Stack overflow only occurs upon frame setup; the callee is
 798         // going to be unwound. Dispatch to a shared runtime stub
 799         // which will cause the StackOverflowError to be fabricated
 800         // and processed.
 801         // Stack overflow should never occur during deoptimization:
 802         // the compiled method bangs the stack by as much as the
 803         // interpreter would need in case of a deoptimization. The
 804         // deoptimization blob and uncommon trap blob bang the stack
 805         // in a debug VM to verify the correctness of the compiled
 806         // method stack banging.
 807         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 808         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 809         return StubRoutines::throw_StackOverflowError_entry();
 810       }
 811 
 812       case IMPLICIT_NULL: {
 813         if (VtableStubs::contains(pc)) {
 814           // We haven't yet entered the callee frame. Fabricate an
 815           // exception and begin dispatching it in the caller. Since
 816           // the caller was at a call site, it's safe to destroy all
 817           // caller-saved registers, as these entry points do.
 818           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 819 
 820           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 821           if (vt_stub == NULL) return NULL;
 822 
 823           if (vt_stub->is_abstract_method_error(pc)) {
 824             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 825             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 826             // Instead of throwing the abstract method error here directly, we re-resolve
 827             // and will throw the AbstractMethodError during resolve. As a result, we'll
 828             // get a more detailed error message.
 829             return SharedRuntime::get_handle_wrong_method_stub();
 830           } else {
 831             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 832             // Assert that the signal comes from the expected location in stub code.
 833             assert(vt_stub->is_null_pointer_exception(pc),
 834                    "obtained signal from unexpected location in stub code");
 835             return StubRoutines::throw_NullPointerException_at_call_entry();
 836           }
 837         } else {
 838           CodeBlob* cb = CodeCache::find_blob(pc);
 839 
 840           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 841           if (cb == NULL) return NULL;
 842 
 843           // Exception happened in CodeCache. Must be either:
 844           // 1. Inline-cache check in C2I handler blob,
 845           // 2. Inline-cache check in nmethod, or
 846           // 3. Implicit null exception in nmethod
 847 
 848           if (!cb->is_compiled()) {
 849             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 850             if (!is_in_blob) {
 851               // Allow normal crash reporting to handle this
 852               return NULL;
 853             }
 854             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 855             // There is no handler here, so we will simply unwind.
 856             return StubRoutines::throw_NullPointerException_at_call_entry();
 857           }
 858 
 859           // Otherwise, it's a compiled method.  Consult its exception handlers.
 860           CompiledMethod* cm = (CompiledMethod*)cb;
 861           if (cm->inlinecache_check_contains(pc)) {
 862             // exception happened inside inline-cache check code
 863             // => the nmethod is not yet active (i.e., the frame
 864             // is not set up yet) => use return address pushed by
 865             // caller => don't push another return address
 866             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 867             return StubRoutines::throw_NullPointerException_at_call_entry();
 868           }
 869 
 870           if (cm->method()->is_method_handle_intrinsic()) {
 871             // exception happened inside MH dispatch code, similar to a vtable stub
 872             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 873             return StubRoutines::throw_NullPointerException_at_call_entry();
 874           }
 875 
 876 #ifndef PRODUCT
 877           _implicit_null_throws++;
 878 #endif
 879 #if INCLUDE_JVMCI
 880           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 881             // If there's no PcDesc then we'll die way down inside of
 882             // deopt instead of just getting normal error reporting,
 883             // so only go there if it will succeed.
 884             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 885           } else {
 886 #endif // INCLUDE_JVMCI
 887           assert (cm->is_nmethod(), "Expect nmethod");
 888           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 889 #if INCLUDE_JVMCI
 890           }
 891 #endif // INCLUDE_JVMCI
 892           // If there's an unexpected fault, target_pc might be NULL,
 893           // in which case we want to fall through into the normal
 894           // error handling code.
 895         }
 896 
 897         break; // fall through
 898       }
 899 
 900 
 901       case IMPLICIT_DIVIDE_BY_ZERO: {
 902         CompiledMethod* cm = CodeCache::find_compiled(pc);
 903         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 904 #ifndef PRODUCT
 905         _implicit_div0_throws++;
 906 #endif
 907 #if INCLUDE_JVMCI
 908         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 909           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 910         } else {
 911 #endif // INCLUDE_JVMCI
 912         target_pc = cm->continuation_for_implicit_exception(pc);
 913 #if INCLUDE_JVMCI
 914         }
 915 #endif // INCLUDE_JVMCI
 916         // If there's an unexpected fault, target_pc might be NULL,
 917         // in which case we want to fall through into the normal
 918         // error handling code.
 919         break; // fall through
 920       }
 921 
 922       default: ShouldNotReachHere();
 923     }
 924 
 925     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 926 
 927     if (exception_kind == IMPLICIT_NULL) {
 928 #ifndef PRODUCT
 929       // for AbortVMOnException flag
 930       Exceptions::debug_check_abort("java.lang.NullPointerException");
 931 #endif //PRODUCT
 932       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 933     } else {
 934 #ifndef PRODUCT
 935       // for AbortVMOnException flag
 936       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 937 #endif //PRODUCT
 938       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 939     }
 940     return target_pc;
 941   }
 942 
 943   ShouldNotReachHere();
 944   return NULL;
 945 }
 946 
 947 
 948 /**
 949  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 950  * installed in the native function entry of all native Java methods before
 951  * they get linked to their actual native methods.
 952  *
 953  * \note
 954  * This method actually never gets called!  The reason is because
 955  * the interpreter's native entries call NativeLookup::lookup() which
 956  * throws the exception when the lookup fails.  The exception is then
 957  * caught and forwarded on the return from NativeLookup::lookup() call
 958  * before the call to the native function.  This might change in the future.
 959  */
 960 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 961 {
 962   // We return a bad value here to make sure that the exception is
 963   // forwarded before we look at the return value.
 964   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 965 }
 966 JNI_END
 967 
 968 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 969   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 970 }
 971 
 972 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 973 #if INCLUDE_JVMCI
 974   if (!obj->klass()->has_finalizer()) {
 975     return;
 976   }
 977 #endif // INCLUDE_JVMCI
 978   assert(oopDesc::is_oop(obj), "must be a valid oop");
 979   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 980   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 981 JRT_END
 982 
 983 
 984 jlong SharedRuntime::get_java_tid(Thread* thread) {
 985   if (thread != NULL) {
 986     if (thread->is_Java_thread()) {
 987       oop obj = ((JavaThread*)thread)->threadObj();
 988       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 989     }
 990   }
 991   return 0;
 992 }
 993 
 994 /**
 995  * This function ought to be a void function, but cannot be because
 996  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 997  * 6254741.  Once that is fixed we can remove the dummy return value.
 998  */
 999 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1000   return dtrace_object_alloc_base(Thread::current(), o, size);
1001 }
1002 
1003 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1004   assert(DTraceAllocProbes, "wrong call");
1005   Klass* klass = o->klass();
1006   Symbol* name = klass->name();
1007   HOTSPOT_OBJECT_ALLOC(
1008                    get_java_tid(thread),
1009                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1010   return 0;
1011 }
1012 
1013 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1014     JavaThread* thread, Method* method))
1015   assert(DTraceMethodProbes, "wrong call");
1016   Symbol* kname = method->klass_name();
1017   Symbol* name = method->name();
1018   Symbol* sig = method->signature();
1019   HOTSPOT_METHOD_ENTRY(
1020       get_java_tid(thread),
1021       (char *) kname->bytes(), kname->utf8_length(),
1022       (char *) name->bytes(), name->utf8_length(),
1023       (char *) sig->bytes(), sig->utf8_length());
1024   return 0;
1025 JRT_END
1026 
1027 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1028     JavaThread* thread, Method* method))
1029   assert(DTraceMethodProbes, "wrong call");
1030   Symbol* kname = method->klass_name();
1031   Symbol* name = method->name();
1032   Symbol* sig = method->signature();
1033   HOTSPOT_METHOD_RETURN(
1034       get_java_tid(thread),
1035       (char *) kname->bytes(), kname->utf8_length(),
1036       (char *) name->bytes(), name->utf8_length(),
1037       (char *) sig->bytes(), sig->utf8_length());
1038   return 0;
1039 JRT_END
1040 
1041 
1042 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1043 // for a call current in progress, i.e., arguments has been pushed on stack
1044 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1045 // vtable updates, etc.  Caller frame must be compiled.
1046 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1047   ResourceMark rm(THREAD);
1048 
1049   // last java frame on stack (which includes native call frames)
1050   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1051 
1052   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1053 }
1054 
1055 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1056   CompiledMethod* caller = vfst.nm();
1057 
1058   nmethodLocker caller_lock(caller);
1059 
1060   address pc = vfst.frame_pc();
1061   { // Get call instruction under lock because another thread may be busy patching it.
1062     CompiledICLocker ic_locker(caller);
1063     return caller->attached_method_before_pc(pc);
1064   }
1065   return NULL;
1066 }
1067 
1068 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1069 // for a call current in progress, i.e., arguments has been pushed on stack
1070 // but callee has not been invoked yet.  Caller frame must be compiled.
1071 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1072                                               vframeStream& vfst,
1073                                               Bytecodes::Code& bc,
1074                                               CallInfo& callinfo, TRAPS) {
1075   Handle receiver;
1076   Handle nullHandle;  //create a handy null handle for exception returns
1077 
1078   assert(!vfst.at_end(), "Java frame must exist");
1079 
1080   // Find caller and bci from vframe
1081   methodHandle caller(THREAD, vfst.method());
1082   int          bci   = vfst.bci();
1083 
1084   Bytecode_invoke bytecode(caller, bci);
1085   int bytecode_index = bytecode.index();
1086   bc = bytecode.invoke_code();
1087 
1088   methodHandle attached_method = extract_attached_method(vfst);
1089   if (attached_method.not_null()) {
1090     methodHandle callee = bytecode.static_target(CHECK_NH);
1091     vmIntrinsics::ID id = callee->intrinsic_id();
1092     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1093     // it attaches statically resolved method to the call site.
1094     if (MethodHandles::is_signature_polymorphic(id) &&
1095         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1096       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1097 
1098       // Adjust invocation mode according to the attached method.
1099       switch (bc) {
1100         case Bytecodes::_invokevirtual:
1101           if (attached_method->method_holder()->is_interface()) {
1102             bc = Bytecodes::_invokeinterface;
1103           }
1104           break;
1105         case Bytecodes::_invokeinterface:
1106           if (!attached_method->method_holder()->is_interface()) {
1107             bc = Bytecodes::_invokevirtual;
1108           }
1109           break;
1110         case Bytecodes::_invokehandle:
1111           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1112             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1113                                               : Bytecodes::_invokevirtual;
1114           }
1115           break;
1116         default:
1117           break;
1118       }
1119     }
1120   }
1121 
1122   assert(bc != Bytecodes::_illegal, "not initialized");
1123 
1124   bool has_receiver = bc != Bytecodes::_invokestatic &&
1125                       bc != Bytecodes::_invokedynamic &&
1126                       bc != Bytecodes::_invokehandle;
1127 
1128   // Find receiver for non-static call
1129   if (has_receiver) {
1130     // This register map must be update since we need to find the receiver for
1131     // compiled frames. The receiver might be in a register.
1132     RegisterMap reg_map2(thread);
1133     frame stubFrame   = thread->last_frame();
1134     // Caller-frame is a compiled frame
1135     frame callerFrame = stubFrame.sender(&reg_map2);
1136 
1137     if (attached_method.is_null()) {
1138       methodHandle callee = bytecode.static_target(CHECK_NH);
1139       if (callee.is_null()) {
1140         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1141       }
1142     }
1143 
1144     // Retrieve from a compiled argument list
1145     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1146 
1147     if (receiver.is_null()) {
1148       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1149     }
1150   }
1151 
1152   // Resolve method
1153   if (attached_method.not_null()) {
1154     // Parameterized by attached method.
1155     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1156   } else {
1157     // Parameterized by bytecode.
1158     constantPoolHandle constants(THREAD, caller->constants());
1159     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1160   }
1161 
1162 #ifdef ASSERT
1163   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1164   if (has_receiver) {
1165     assert(receiver.not_null(), "should have thrown exception");
1166     Klass* receiver_klass = receiver->klass();
1167     Klass* rk = NULL;
1168     if (attached_method.not_null()) {
1169       // In case there's resolved method attached, use its holder during the check.
1170       rk = attached_method->method_holder();
1171     } else {
1172       // Klass is already loaded.
1173       constantPoolHandle constants(THREAD, caller->constants());
1174       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1175     }
1176     Klass* static_receiver_klass = rk;
1177     methodHandle callee = callinfo.selected_method();
1178     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1179            "actual receiver must be subclass of static receiver klass");
1180     if (receiver_klass->is_instance_klass()) {
1181       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1182         tty->print_cr("ERROR: Klass not yet initialized!!");
1183         receiver_klass->print();
1184       }
1185       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1186     }
1187   }
1188 #endif
1189 
1190   return receiver;
1191 }
1192 
1193 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1194   ResourceMark rm(THREAD);
1195   // We need first to check if any Java activations (compiled, interpreted)
1196   // exist on the stack since last JavaCall.  If not, we need
1197   // to get the target method from the JavaCall wrapper.
1198   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1199   methodHandle callee_method;
1200   if (vfst.at_end()) {
1201     // No Java frames were found on stack since we did the JavaCall.
1202     // Hence the stack can only contain an entry_frame.  We need to
1203     // find the target method from the stub frame.
1204     RegisterMap reg_map(thread, false);
1205     frame fr = thread->last_frame();
1206     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1207     fr = fr.sender(&reg_map);
1208     assert(fr.is_entry_frame(), "must be");
1209     // fr is now pointing to the entry frame.
1210     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1211   } else {
1212     Bytecodes::Code bc;
1213     CallInfo callinfo;
1214     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1215     callee_method = callinfo.selected_method();
1216   }
1217   assert(callee_method()->is_method(), "must be");
1218   return callee_method;
1219 }
1220 
1221 // Resolves a call.
1222 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1223                                            bool is_virtual,
1224                                            bool is_optimized, TRAPS) {
1225   methodHandle callee_method;
1226   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1227   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1228     int retry_count = 0;
1229     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1230            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1231       // If has a pending exception then there is no need to re-try to
1232       // resolve this method.
1233       // If the method has been redefined, we need to try again.
1234       // Hack: we have no way to update the vtables of arrays, so don't
1235       // require that java.lang.Object has been updated.
1236 
1237       // It is very unlikely that method is redefined more than 100 times
1238       // in the middle of resolve. If it is looping here more than 100 times
1239       // means then there could be a bug here.
1240       guarantee((retry_count++ < 100),
1241                 "Could not resolve to latest version of redefined method");
1242       // method is redefined in the middle of resolve so re-try.
1243       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1244     }
1245   }
1246   return callee_method;
1247 }
1248 
1249 // This fails if resolution required refilling of IC stubs
1250 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1251                                                 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1252                                                 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1253   StaticCallInfo static_call_info;
1254   CompiledICInfo virtual_call_info;
1255 
1256   // Make sure the callee nmethod does not get deoptimized and removed before
1257   // we are done patching the code.
1258   CompiledMethod* callee = callee_method->code();
1259 
1260   if (callee != NULL) {
1261     assert(callee->is_compiled(), "must be nmethod for patching");
1262   }
1263 
1264   if (callee != NULL && !callee->is_in_use()) {
1265     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1266     callee = NULL;
1267   }
1268   nmethodLocker nl_callee(callee);
1269 #ifdef ASSERT
1270   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1271 #endif
1272 
1273   bool is_nmethod = caller_nm->is_nmethod();
1274 
1275   if (is_virtual) {
1276     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1277     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1278     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1279     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1280                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1281                      CHECK_false);
1282   } else {
1283     // static call
1284     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1285   }
1286 
1287   // grab lock, check for deoptimization and potentially patch caller
1288   {
1289     CompiledICLocker ml(caller_nm);
1290 
1291     // Lock blocks for safepoint during which both nmethods can change state.
1292 
1293     // Now that we are ready to patch if the Method* was redefined then
1294     // don't update call site and let the caller retry.
1295     // Don't update call site if callee nmethod was unloaded or deoptimized.
1296     // Don't update call site if callee nmethod was replaced by an other nmethod
1297     // which may happen when multiply alive nmethod (tiered compilation)
1298     // will be supported.
1299     if (!callee_method->is_old() &&
1300         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1301 #ifdef ASSERT
1302       // We must not try to patch to jump to an already unloaded method.
1303       if (dest_entry_point != 0) {
1304         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1305         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1306                "should not call unloaded nmethod");
1307       }
1308 #endif
1309       if (is_virtual) {
1310         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1311         if (inline_cache->is_clean()) {
1312           if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1313             return false;
1314           }
1315         }
1316       } else {
1317         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1318         if (ssc->is_clean()) ssc->set(static_call_info);
1319       }
1320     }
1321   } // unlock CompiledICLocker
1322   return true;
1323 }
1324 
1325 // Resolves a call.  The compilers generate code for calls that go here
1326 // and are patched with the real destination of the call.
1327 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1328                                                bool is_virtual,
1329                                                bool is_optimized, TRAPS) {
1330 
1331   ResourceMark rm(thread);
1332   RegisterMap cbl_map(thread, false);
1333   frame caller_frame = thread->last_frame().sender(&cbl_map);
1334 
1335   CodeBlob* caller_cb = caller_frame.cb();
1336   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1337   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1338 
1339   // make sure caller is not getting deoptimized
1340   // and removed before we are done with it.
1341   // CLEANUP - with lazy deopt shouldn't need this lock
1342   nmethodLocker caller_lock(caller_nm);
1343 
1344   // determine call info & receiver
1345   // note: a) receiver is NULL for static calls
1346   //       b) an exception is thrown if receiver is NULL for non-static calls
1347   CallInfo call_info;
1348   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1349   Handle receiver = find_callee_info(thread, invoke_code,
1350                                      call_info, CHECK_(methodHandle()));
1351   methodHandle callee_method = call_info.selected_method();
1352 
1353   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1354          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1355          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1356          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1357          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1358 
1359   assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1360 
1361 #ifndef PRODUCT
1362   // tracing/debugging/statistics
1363   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1364                 (is_virtual) ? (&_resolve_virtual_ctr) :
1365                                (&_resolve_static_ctr);
1366   Atomic::inc(addr);
1367 
1368   if (TraceCallFixup) {
1369     ResourceMark rm(thread);
1370     tty->print("resolving %s%s (%s) call to",
1371       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1372       Bytecodes::name(invoke_code));
1373     callee_method->print_short_name(tty);
1374     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1375                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1376   }
1377 #endif
1378 
1379   // Do not patch call site for static call when the class is not
1380   // fully initialized.
1381   if (invoke_code == Bytecodes::_invokestatic &&
1382       !callee_method->method_holder()->is_initialized()) {
1383     assert(callee_method->method_holder()->is_linked(), "must be");
1384     return callee_method;
1385   }
1386 
1387   // JSR 292 key invariant:
1388   // If the resolved method is a MethodHandle invoke target, the call
1389   // site must be a MethodHandle call site, because the lambda form might tail-call
1390   // leaving the stack in a state unknown to either caller or callee
1391   // TODO detune for now but we might need it again
1392 //  assert(!callee_method->is_compiled_lambda_form() ||
1393 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1394 
1395   // Compute entry points. This might require generation of C2I converter
1396   // frames, so we cannot be holding any locks here. Furthermore, the
1397   // computation of the entry points is independent of patching the call.  We
1398   // always return the entry-point, but we only patch the stub if the call has
1399   // not been deoptimized.  Return values: For a virtual call this is an
1400   // (cached_oop, destination address) pair. For a static call/optimized
1401   // virtual this is just a destination address.
1402 
1403   // Patching IC caches may fail if we run out if transition stubs.
1404   // We refill the ic stubs then and try again.
1405   for (;;) {
1406     ICRefillVerifier ic_refill_verifier;
1407     bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1408                                                   is_virtual, is_optimized, receiver,
1409                                                   call_info, invoke_code, CHECK_(methodHandle()));
1410     if (successful) {
1411       return callee_method;
1412     } else {
1413       InlineCacheBuffer::refill_ic_stubs();
1414     }
1415   }
1416 
1417 }
1418 
1419 
1420 // Inline caches exist only in compiled code
1421 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1422 #ifdef ASSERT
1423   RegisterMap reg_map(thread, false);
1424   frame stub_frame = thread->last_frame();
1425   assert(stub_frame.is_runtime_frame(), "sanity check");
1426   frame caller_frame = stub_frame.sender(&reg_map);
1427   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1428 #endif /* ASSERT */
1429 
1430   methodHandle callee_method;
1431   JRT_BLOCK
1432     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1433     // Return Method* through TLS
1434     thread->set_vm_result_2(callee_method());
1435   JRT_BLOCK_END
1436   // return compiled code entry point after potential safepoints
1437   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1438   return callee_method->verified_code_entry();
1439 JRT_END
1440 
1441 
1442 // Handle call site that has been made non-entrant
1443 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1444   // 6243940 We might end up in here if the callee is deoptimized
1445   // as we race to call it.  We don't want to take a safepoint if
1446   // the caller was interpreted because the caller frame will look
1447   // interpreted to the stack walkers and arguments are now
1448   // "compiled" so it is much better to make this transition
1449   // invisible to the stack walking code. The i2c path will
1450   // place the callee method in the callee_target. It is stashed
1451   // there because if we try and find the callee by normal means a
1452   // safepoint is possible and have trouble gc'ing the compiled args.
1453   RegisterMap reg_map(thread, false);
1454   frame stub_frame = thread->last_frame();
1455   assert(stub_frame.is_runtime_frame(), "sanity check");
1456   frame caller_frame = stub_frame.sender(&reg_map);
1457 
1458   if (caller_frame.is_interpreted_frame() ||
1459       caller_frame.is_entry_frame()) {
1460     Method* callee = thread->callee_target();
1461     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1462     thread->set_vm_result_2(callee);
1463     thread->set_callee_target(NULL);
1464     return callee->get_c2i_entry();
1465   }
1466 
1467   // Must be compiled to compiled path which is safe to stackwalk
1468   methodHandle callee_method;
1469   JRT_BLOCK
1470     // Force resolving of caller (if we called from compiled frame)
1471     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1472     thread->set_vm_result_2(callee_method());
1473   JRT_BLOCK_END
1474   // return compiled code entry point after potential safepoints
1475   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1476   return callee_method->verified_code_entry();
1477 JRT_END
1478 
1479 // Handle abstract method call
1480 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1481   // Verbose error message for AbstractMethodError.
1482   // Get the called method from the invoke bytecode.
1483   vframeStream vfst(thread, true);
1484   assert(!vfst.at_end(), "Java frame must exist");
1485   methodHandle caller(vfst.method());
1486   Bytecode_invoke invoke(caller, vfst.bci());
1487   DEBUG_ONLY( invoke.verify(); )
1488 
1489   // Find the compiled caller frame.
1490   RegisterMap reg_map(thread);
1491   frame stubFrame = thread->last_frame();
1492   assert(stubFrame.is_runtime_frame(), "must be");
1493   frame callerFrame = stubFrame.sender(&reg_map);
1494   assert(callerFrame.is_compiled_frame(), "must be");
1495 
1496   // Install exception and return forward entry.
1497   address res = StubRoutines::throw_AbstractMethodError_entry();
1498   JRT_BLOCK
1499     methodHandle callee = invoke.static_target(thread);
1500     if (!callee.is_null()) {
1501       oop recv = callerFrame.retrieve_receiver(&reg_map);
1502       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1503       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1504       res = StubRoutines::forward_exception_entry();
1505     }
1506   JRT_BLOCK_END
1507   return res;
1508 JRT_END
1509 
1510 
1511 // resolve a static call and patch code
1512 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1513   methodHandle callee_method;
1514   JRT_BLOCK
1515     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1516     thread->set_vm_result_2(callee_method());
1517   JRT_BLOCK_END
1518   // return compiled code entry point after potential safepoints
1519   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1520   return callee_method->verified_code_entry();
1521 JRT_END
1522 
1523 
1524 // resolve virtual call and update inline cache to monomorphic
1525 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1526   methodHandle callee_method;
1527   JRT_BLOCK
1528     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1529     thread->set_vm_result_2(callee_method());
1530   JRT_BLOCK_END
1531   // return compiled code entry point after potential safepoints
1532   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1533   return callee_method->verified_code_entry();
1534 JRT_END
1535 
1536 
1537 // Resolve a virtual call that can be statically bound (e.g., always
1538 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1539 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1540   methodHandle callee_method;
1541   JRT_BLOCK
1542     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1543     thread->set_vm_result_2(callee_method());
1544   JRT_BLOCK_END
1545   // return compiled code entry point after potential safepoints
1546   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1547   return callee_method->verified_code_entry();
1548 JRT_END
1549 
1550 // The handle_ic_miss_helper_internal function returns false if it failed due
1551 // to either running out of vtable stubs or ic stubs due to IC transitions
1552 // to transitional states. The needs_ic_stub_refill value will be set if
1553 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1554 // refills the IC stubs and tries again.
1555 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1556                                                    const frame& caller_frame, methodHandle callee_method,
1557                                                    Bytecodes::Code bc, CallInfo& call_info,
1558                                                    bool& needs_ic_stub_refill, TRAPS) {
1559   CompiledICLocker ml(caller_nm);
1560   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1561   bool should_be_mono = false;
1562   if (inline_cache->is_optimized()) {
1563     if (TraceCallFixup) {
1564       ResourceMark rm(THREAD);
1565       tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1566       callee_method->print_short_name(tty);
1567       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1568     }
1569     should_be_mono = true;
1570   } else if (inline_cache->is_icholder_call()) {
1571     CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1572     if (ic_oop != NULL) {
1573       if (!ic_oop->is_loader_alive()) {
1574         // Deferred IC cleaning due to concurrent class unloading
1575         if (!inline_cache->set_to_clean()) {
1576           needs_ic_stub_refill = true;
1577           return false;
1578         }
1579       } else if (receiver()->klass() == ic_oop->holder_klass()) {
1580         // This isn't a real miss. We must have seen that compiled code
1581         // is now available and we want the call site converted to a
1582         // monomorphic compiled call site.
1583         // We can't assert for callee_method->code() != NULL because it
1584         // could have been deoptimized in the meantime
1585         if (TraceCallFixup) {
1586           ResourceMark rm(THREAD);
1587           tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1588           callee_method->print_short_name(tty);
1589           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1590         }
1591         should_be_mono = true;
1592       }
1593     }
1594   }
1595 
1596   if (should_be_mono) {
1597     // We have a path that was monomorphic but was going interpreted
1598     // and now we have (or had) a compiled entry. We correct the IC
1599     // by using a new icBuffer.
1600     CompiledICInfo info;
1601     Klass* receiver_klass = receiver()->klass();
1602     inline_cache->compute_monomorphic_entry(callee_method,
1603                                             receiver_klass,
1604                                             inline_cache->is_optimized(),
1605                                             false, caller_nm->is_nmethod(),
1606                                             info, CHECK_false);
1607     if (!inline_cache->set_to_monomorphic(info)) {
1608       needs_ic_stub_refill = true;
1609       return false;
1610     }
1611   } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1612     // Potential change to megamorphic
1613 
1614     bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false);
1615     if (needs_ic_stub_refill) {
1616       return false;
1617     }
1618     if (!successful) {
1619       if (!inline_cache->set_to_clean()) {
1620         needs_ic_stub_refill = true;
1621         return false;
1622       }
1623     }
1624   } else {
1625     // Either clean or megamorphic
1626   }
1627   return true;
1628 }
1629 
1630 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1631   ResourceMark rm(thread);
1632   CallInfo call_info;
1633   Bytecodes::Code bc;
1634 
1635   // receiver is NULL for static calls. An exception is thrown for NULL
1636   // receivers for non-static calls
1637   Handle receiver = find_callee_info(thread, bc, call_info,
1638                                      CHECK_(methodHandle()));
1639   // Compiler1 can produce virtual call sites that can actually be statically bound
1640   // If we fell thru to below we would think that the site was going megamorphic
1641   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1642   // we'd try and do a vtable dispatch however methods that can be statically bound
1643   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1644   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1645   // plain ic_miss) and the site will be converted to an optimized virtual call site
1646   // never to miss again. I don't believe C2 will produce code like this but if it
1647   // did this would still be the correct thing to do for it too, hence no ifdef.
1648   //
1649   if (call_info.resolved_method()->can_be_statically_bound()) {
1650     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1651     if (TraceCallFixup) {
1652       RegisterMap reg_map(thread, false);
1653       frame caller_frame = thread->last_frame().sender(&reg_map);
1654       ResourceMark rm(thread);
1655       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1656       callee_method->print_short_name(tty);
1657       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1658       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1659     }
1660     return callee_method;
1661   }
1662 
1663   methodHandle callee_method = call_info.selected_method();
1664 
1665 #ifndef PRODUCT
1666   Atomic::inc(&_ic_miss_ctr);
1667 
1668   // Statistics & Tracing
1669   if (TraceCallFixup) {
1670     ResourceMark rm(thread);
1671     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1672     callee_method->print_short_name(tty);
1673     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1674   }
1675 
1676   if (ICMissHistogram) {
1677     MutexLocker m(VMStatistic_lock);
1678     RegisterMap reg_map(thread, false);
1679     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1680     // produce statistics under the lock
1681     trace_ic_miss(f.pc());
1682   }
1683 #endif
1684 
1685   // install an event collector so that when a vtable stub is created the
1686   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1687   // event can't be posted when the stub is created as locks are held
1688   // - instead the event will be deferred until the event collector goes
1689   // out of scope.
1690   JvmtiDynamicCodeEventCollector event_collector;
1691 
1692   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1693   // Transitioning IC caches may require transition stubs. If we run out
1694   // of transition stubs, we have to drop locks and perform a safepoint
1695   // that refills them.
1696   RegisterMap reg_map(thread, false);
1697   frame caller_frame = thread->last_frame().sender(&reg_map);
1698   CodeBlob* cb = caller_frame.cb();
1699   CompiledMethod* caller_nm = cb->as_compiled_method();
1700 
1701   for (;;) {
1702     ICRefillVerifier ic_refill_verifier;
1703     bool needs_ic_stub_refill = false;
1704     bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1705                                                      bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle()));
1706     if (successful || !needs_ic_stub_refill) {
1707       return callee_method;
1708     } else {
1709       InlineCacheBuffer::refill_ic_stubs();
1710     }
1711   }
1712 }
1713 
1714 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1715   CompiledICLocker ml(caller_nm);
1716   if (is_static_call) {
1717     CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1718     if (!ssc->is_clean()) {
1719       return ssc->set_to_clean();
1720     }
1721   } else {
1722     // compiled, dispatched call (which used to call an interpreted method)
1723     CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1724     if (!inline_cache->is_clean()) {
1725       return inline_cache->set_to_clean();
1726     }
1727   }
1728   return true;
1729 }
1730 
1731 //
1732 // Resets a call-site in compiled code so it will get resolved again.
1733 // This routines handles both virtual call sites, optimized virtual call
1734 // sites, and static call sites. Typically used to change a call sites
1735 // destination from compiled to interpreted.
1736 //
1737 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1738   ResourceMark rm(thread);
1739   RegisterMap reg_map(thread, false);
1740   frame stub_frame = thread->last_frame();
1741   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1742   frame caller = stub_frame.sender(&reg_map);
1743 
1744   // Do nothing if the frame isn't a live compiled frame.
1745   // nmethod could be deoptimized by the time we get here
1746   // so no update to the caller is needed.
1747 
1748   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1749 
1750     address pc = caller.pc();
1751 
1752     // Check for static or virtual call
1753     bool is_static_call = false;
1754     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1755 
1756     // Default call_addr is the location of the "basic" call.
1757     // Determine the address of the call we a reresolving. With
1758     // Inline Caches we will always find a recognizable call.
1759     // With Inline Caches disabled we may or may not find a
1760     // recognizable call. We will always find a call for static
1761     // calls and for optimized virtual calls. For vanilla virtual
1762     // calls it depends on the state of the UseInlineCaches switch.
1763     //
1764     // With Inline Caches disabled we can get here for a virtual call
1765     // for two reasons:
1766     //   1 - calling an abstract method. The vtable for abstract methods
1767     //       will run us thru handle_wrong_method and we will eventually
1768     //       end up in the interpreter to throw the ame.
1769     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1770     //       call and between the time we fetch the entry address and
1771     //       we jump to it the target gets deoptimized. Similar to 1
1772     //       we will wind up in the interprter (thru a c2i with c2).
1773     //
1774     address call_addr = NULL;
1775     {
1776       // Get call instruction under lock because another thread may be
1777       // busy patching it.
1778       CompiledICLocker ml(caller_nm);
1779       // Location of call instruction
1780       call_addr = caller_nm->call_instruction_address(pc);
1781     }
1782     // Make sure nmethod doesn't get deoptimized and removed until
1783     // this is done with it.
1784     // CLEANUP - with lazy deopt shouldn't need this lock
1785     nmethodLocker nmlock(caller_nm);
1786 
1787     if (call_addr != NULL) {
1788       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1789       int ret = iter.next(); // Get item
1790       if (ret) {
1791         assert(iter.addr() == call_addr, "must find call");
1792         if (iter.type() == relocInfo::static_call_type) {
1793           is_static_call = true;
1794         } else {
1795           assert(iter.type() == relocInfo::virtual_call_type ||
1796                  iter.type() == relocInfo::opt_virtual_call_type
1797                 , "unexpected relocInfo. type");
1798         }
1799       } else {
1800         assert(!UseInlineCaches, "relocation info. must exist for this address");
1801       }
1802 
1803       // Cleaning the inline cache will force a new resolve. This is more robust
1804       // than directly setting it to the new destination, since resolving of calls
1805       // is always done through the same code path. (experience shows that it
1806       // leads to very hard to track down bugs, if an inline cache gets updated
1807       // to a wrong method). It should not be performance critical, since the
1808       // resolve is only done once.
1809 
1810       for (;;) {
1811         ICRefillVerifier ic_refill_verifier;
1812         if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1813           InlineCacheBuffer::refill_ic_stubs();
1814         } else {
1815           break;
1816         }
1817       }
1818     }
1819   }
1820 
1821   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1822 
1823 
1824 #ifndef PRODUCT
1825   Atomic::inc(&_wrong_method_ctr);
1826 
1827   if (TraceCallFixup) {
1828     ResourceMark rm(thread);
1829     tty->print("handle_wrong_method reresolving call to");
1830     callee_method->print_short_name(tty);
1831     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1832   }
1833 #endif
1834 
1835   return callee_method;
1836 }
1837 
1838 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1839   // The faulting unsafe accesses should be changed to throw the error
1840   // synchronously instead. Meanwhile the faulting instruction will be
1841   // skipped over (effectively turning it into a no-op) and an
1842   // asynchronous exception will be raised which the thread will
1843   // handle at a later point. If the instruction is a load it will
1844   // return garbage.
1845 
1846   // Request an async exception.
1847   thread->set_pending_unsafe_access_error();
1848 
1849   // Return address of next instruction to execute.
1850   return next_pc;
1851 }
1852 
1853 #ifdef ASSERT
1854 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1855                                                                 const BasicType* sig_bt,
1856                                                                 const VMRegPair* regs) {
1857   ResourceMark rm;
1858   const int total_args_passed = method->size_of_parameters();
1859   const VMRegPair*    regs_with_member_name = regs;
1860         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1861 
1862   const int member_arg_pos = total_args_passed - 1;
1863   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1864   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1865 
1866   const bool is_outgoing = method->is_method_handle_intrinsic();
1867   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1868 
1869   for (int i = 0; i < member_arg_pos; i++) {
1870     VMReg a =    regs_with_member_name[i].first();
1871     VMReg b = regs_without_member_name[i].first();
1872     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1873   }
1874   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1875 }
1876 #endif
1877 
1878 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1879   if (destination != entry_point) {
1880     CodeBlob* callee = CodeCache::find_blob(destination);
1881     // callee == cb seems weird. It means calling interpreter thru stub.
1882     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1883       // static call or optimized virtual
1884       if (TraceCallFixup) {
1885         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1886         moop->print_short_name(tty);
1887         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1888       }
1889       return true;
1890     } else {
1891       if (TraceCallFixup) {
1892         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1893         moop->print_short_name(tty);
1894         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1895       }
1896       // assert is too strong could also be resolve destinations.
1897       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1898     }
1899   } else {
1900     if (TraceCallFixup) {
1901       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1902       moop->print_short_name(tty);
1903       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1904     }
1905   }
1906   return false;
1907 }
1908 
1909 // ---------------------------------------------------------------------------
1910 // We are calling the interpreter via a c2i. Normally this would mean that
1911 // we were called by a compiled method. However we could have lost a race
1912 // where we went int -> i2c -> c2i and so the caller could in fact be
1913 // interpreted. If the caller is compiled we attempt to patch the caller
1914 // so he no longer calls into the interpreter.
1915 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1916   Method* moop(method);
1917 
1918   address entry_point = moop->from_compiled_entry_no_trampoline();
1919 
1920   // It's possible that deoptimization can occur at a call site which hasn't
1921   // been resolved yet, in which case this function will be called from
1922   // an nmethod that has been patched for deopt and we can ignore the
1923   // request for a fixup.
1924   // Also it is possible that we lost a race in that from_compiled_entry
1925   // is now back to the i2c in that case we don't need to patch and if
1926   // we did we'd leap into space because the callsite needs to use
1927   // "to interpreter" stub in order to load up the Method*. Don't
1928   // ask me how I know this...
1929 
1930   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1931   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1932     return;
1933   }
1934 
1935   // The check above makes sure this is a nmethod.
1936   CompiledMethod* nm = cb->as_compiled_method_or_null();
1937   assert(nm, "must be");
1938 
1939   // Get the return PC for the passed caller PC.
1940   address return_pc = caller_pc + frame::pc_return_offset;
1941 
1942   // There is a benign race here. We could be attempting to patch to a compiled
1943   // entry point at the same time the callee is being deoptimized. If that is
1944   // the case then entry_point may in fact point to a c2i and we'd patch the
1945   // call site with the same old data. clear_code will set code() to NULL
1946   // at the end of it. If we happen to see that NULL then we can skip trying
1947   // to patch. If we hit the window where the callee has a c2i in the
1948   // from_compiled_entry and the NULL isn't present yet then we lose the race
1949   // and patch the code with the same old data. Asi es la vida.
1950 
1951   if (moop->code() == NULL) return;
1952 
1953   if (nm->is_in_use()) {
1954     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1955     CompiledICLocker ic_locker(nm);
1956     if (NativeCall::is_call_before(return_pc)) {
1957       ResourceMark mark;
1958       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1959       //
1960       // bug 6281185. We might get here after resolving a call site to a vanilla
1961       // virtual call. Because the resolvee uses the verified entry it may then
1962       // see compiled code and attempt to patch the site by calling us. This would
1963       // then incorrectly convert the call site to optimized and its downhill from
1964       // there. If you're lucky you'll get the assert in the bugid, if not you've
1965       // just made a call site that could be megamorphic into a monomorphic site
1966       // for the rest of its life! Just another racing bug in the life of
1967       // fixup_callers_callsite ...
1968       //
1969       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1970       iter.next();
1971       assert(iter.has_current(), "must have a reloc at java call site");
1972       relocInfo::relocType typ = iter.reloc()->type();
1973       if (typ != relocInfo::static_call_type &&
1974            typ != relocInfo::opt_virtual_call_type &&
1975            typ != relocInfo::static_stub_type) {
1976         return;
1977       }
1978       address destination = call->destination();
1979       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1980         call->set_destination_mt_safe(entry_point);
1981       }
1982     }
1983   }
1984 JRT_END
1985 
1986 
1987 // same as JVM_Arraycopy, but called directly from compiled code
1988 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1989                                                 oopDesc* dest, jint dest_pos,
1990                                                 jint length,
1991                                                 JavaThread* thread)) {
1992 #ifndef PRODUCT
1993   _slow_array_copy_ctr++;
1994 #endif
1995   // Check if we have null pointers
1996   if (src == NULL || dest == NULL) {
1997     THROW(vmSymbols::java_lang_NullPointerException());
1998   }
1999   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
2000   // even though the copy_array API also performs dynamic checks to ensure
2001   // that src and dest are truly arrays (and are conformable).
2002   // The copy_array mechanism is awkward and could be removed, but
2003   // the compilers don't call this function except as a last resort,
2004   // so it probably doesn't matter.
2005   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2006                                         (arrayOopDesc*)dest, dest_pos,
2007                                         length, thread);
2008 }
2009 JRT_END
2010 
2011 // The caller of generate_class_cast_message() (or one of its callers)
2012 // must use a ResourceMark in order to correctly free the result.
2013 char* SharedRuntime::generate_class_cast_message(
2014     JavaThread* thread, Klass* caster_klass) {
2015 
2016   // Get target class name from the checkcast instruction
2017   vframeStream vfst(thread, true);
2018   assert(!vfst.at_end(), "Java frame must exist");
2019   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2020   constantPoolHandle cpool(thread, vfst.method()->constants());
2021   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2022   Symbol* target_klass_name = NULL;
2023   if (target_klass == NULL) {
2024     // This klass should be resolved, but just in case, get the name in the klass slot.
2025     target_klass_name = cpool->klass_name_at(cc.index());
2026   }
2027   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2028 }
2029 
2030 
2031 // The caller of generate_class_cast_message() (or one of its callers)
2032 // must use a ResourceMark in order to correctly free the result.
2033 char* SharedRuntime::generate_class_cast_message(
2034     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2035   const char* caster_name = caster_klass->external_name();
2036 
2037   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2038   const char* target_name = target_klass == NULL ? target_klass_name->as_C_string() :
2039                                                    target_klass->external_name();
2040 
2041   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2042 
2043   const char* caster_klass_description = "";
2044   const char* target_klass_description = "";
2045   const char* klass_separator = "";
2046   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2047     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2048   } else {
2049     caster_klass_description = caster_klass->class_in_module_of_loader();
2050     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2051     klass_separator = (target_klass != NULL) ? "; " : "";
2052   }
2053 
2054   // add 3 for parenthesis and preceeding space
2055   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2056 
2057   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2058   if (message == NULL) {
2059     // Shouldn't happen, but don't cause even more problems if it does
2060     message = const_cast<char*>(caster_klass->external_name());
2061   } else {
2062     jio_snprintf(message,
2063                  msglen,
2064                  "class %s cannot be cast to class %s (%s%s%s)",
2065                  caster_name,
2066                  target_name,
2067                  caster_klass_description,
2068                  klass_separator,
2069                  target_klass_description
2070                  );
2071   }
2072   return message;
2073 }
2074 
2075 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2076   (void) JavaThread::current()->reguard_stack();
2077 JRT_END
2078 
2079 
2080 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2081 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2082   if (!SafepointSynchronize::is_synchronizing()) {
2083     // Only try quick_enter() if we're not trying to reach a safepoint
2084     // so that the calling thread reaches the safepoint more quickly.
2085     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2086   }
2087   // NO_ASYNC required because an async exception on the state transition destructor
2088   // would leave you with the lock held and it would never be released.
2089   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2090   // and the model is that an exception implies the method failed.
2091   JRT_BLOCK_NO_ASYNC
2092   oop obj(_obj);
2093   if (PrintBiasedLockingStatistics) {
2094     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2095   }
2096   Handle h_obj(THREAD, obj);
2097   if (UseBiasedLocking) {
2098     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2099     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2100   } else {
2101     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2102   }
2103   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2104   JRT_BLOCK_END
2105 JRT_END
2106 
2107 // Handles the uncommon cases of monitor unlocking in compiled code
2108 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2109    oop obj(_obj);
2110   assert(JavaThread::current() == THREAD, "invariant");
2111   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2112   // testing was unable to ever fire the assert that guarded it so I have removed it.
2113   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2114 #undef MIGHT_HAVE_PENDING
2115 #ifdef MIGHT_HAVE_PENDING
2116   // Save and restore any pending_exception around the exception mark.
2117   // While the slow_exit must not throw an exception, we could come into
2118   // this routine with one set.
2119   oop pending_excep = NULL;
2120   const char* pending_file;
2121   int pending_line;
2122   if (HAS_PENDING_EXCEPTION) {
2123     pending_excep = PENDING_EXCEPTION;
2124     pending_file  = THREAD->exception_file();
2125     pending_line  = THREAD->exception_line();
2126     CLEAR_PENDING_EXCEPTION;
2127   }
2128 #endif /* MIGHT_HAVE_PENDING */
2129 
2130   {
2131     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2132     EXCEPTION_MARK;
2133     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2134   }
2135 
2136 #ifdef MIGHT_HAVE_PENDING
2137   if (pending_excep != NULL) {
2138     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2139   }
2140 #endif /* MIGHT_HAVE_PENDING */
2141 JRT_END
2142 
2143 #ifndef PRODUCT
2144 
2145 void SharedRuntime::print_statistics() {
2146   ttyLocker ttyl;
2147   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2148 
2149   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2150 
2151   SharedRuntime::print_ic_miss_histogram();
2152 
2153   if (CountRemovableExceptions) {
2154     if (_nof_removable_exceptions > 0) {
2155       Unimplemented(); // this counter is not yet incremented
2156       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2157     }
2158   }
2159 
2160   // Dump the JRT_ENTRY counters
2161   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2162   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2163   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2164   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2165   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2166   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2167   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2168 
2169   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2170   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2171   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2172   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2173   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2174 
2175   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2176   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2177   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2178   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2179   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2180   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2181   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2182   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2183   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2184   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2185   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2186   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2187   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2188   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2189   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2190   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2191 
2192   AdapterHandlerLibrary::print_statistics();
2193 
2194   if (xtty != NULL)  xtty->tail("statistics");
2195 }
2196 
2197 inline double percent(int x, int y) {
2198   return 100.0 * x / MAX2(y, 1);
2199 }
2200 
2201 class MethodArityHistogram {
2202  public:
2203   enum { MAX_ARITY = 256 };
2204  private:
2205   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2206   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2207   static int _max_arity;                      // max. arity seen
2208   static int _max_size;                       // max. arg size seen
2209 
2210   static void add_method_to_histogram(nmethod* nm) {
2211     if (CompiledMethod::nmethod_access_is_safe(nm)) {
2212       Method* method = nm->method();
2213       ArgumentCount args(method->signature());
2214       int arity   = args.size() + (method->is_static() ? 0 : 1);
2215       int argsize = method->size_of_parameters();
2216       arity   = MIN2(arity, MAX_ARITY-1);
2217       argsize = MIN2(argsize, MAX_ARITY-1);
2218       int count = method->compiled_invocation_count();
2219       _arity_histogram[arity]  += count;
2220       _size_histogram[argsize] += count;
2221       _max_arity = MAX2(_max_arity, arity);
2222       _max_size  = MAX2(_max_size, argsize);
2223     }
2224   }
2225 
2226   void print_histogram_helper(int n, int* histo, const char* name) {
2227     const int N = MIN2(5, n);
2228     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2229     double sum = 0;
2230     double weighted_sum = 0;
2231     int i;
2232     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2233     double rest = sum;
2234     double percent = sum / 100;
2235     for (i = 0; i <= N; i++) {
2236       rest -= histo[i];
2237       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2238     }
2239     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2240     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2241   }
2242 
2243   void print_histogram() {
2244     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2245     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2246     tty->print_cr("\nSame for parameter size (in words):");
2247     print_histogram_helper(_max_size, _size_histogram, "size");
2248     tty->cr();
2249   }
2250 
2251  public:
2252   MethodArityHistogram() {
2253     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2254     _max_arity = _max_size = 0;
2255     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2256     CodeCache::nmethods_do(add_method_to_histogram);
2257     print_histogram();
2258   }
2259 };
2260 
2261 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2262 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2263 int MethodArityHistogram::_max_arity;
2264 int MethodArityHistogram::_max_size;
2265 
2266 void SharedRuntime::print_call_statistics(int comp_total) {
2267   tty->print_cr("Calls from compiled code:");
2268   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2269   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2270   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2271   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2272   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2273   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2274   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2275   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2276   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2277   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2278   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2279   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2280   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2281   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2282   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2283   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2284   tty->cr();
2285   tty->print_cr("Note 1: counter updates are not MT-safe.");
2286   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2287   tty->print_cr("        %% in nested categories are relative to their category");
2288   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2289   tty->cr();
2290 
2291   MethodArityHistogram h;
2292 }
2293 #endif
2294 
2295 
2296 // A simple wrapper class around the calling convention information
2297 // that allows sharing of adapters for the same calling convention.
2298 class AdapterFingerPrint : public CHeapObj<mtCode> {
2299  private:
2300   enum {
2301     _basic_type_bits = 4,
2302     _basic_type_mask = right_n_bits(_basic_type_bits),
2303     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2304     _compact_int_count = 3
2305   };
2306   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2307   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2308 
2309   union {
2310     int  _compact[_compact_int_count];
2311     int* _fingerprint;
2312   } _value;
2313   int _length; // A negative length indicates the fingerprint is in the compact form,
2314                // Otherwise _value._fingerprint is the array.
2315 
2316   // Remap BasicTypes that are handled equivalently by the adapters.
2317   // These are correct for the current system but someday it might be
2318   // necessary to make this mapping platform dependent.
2319   static int adapter_encoding(BasicType in) {
2320     switch (in) {
2321       case T_BOOLEAN:
2322       case T_BYTE:
2323       case T_SHORT:
2324       case T_CHAR:
2325         // There are all promoted to T_INT in the calling convention
2326         return T_INT;
2327 
2328       case T_OBJECT:
2329       case T_ARRAY:
2330         // In other words, we assume that any register good enough for
2331         // an int or long is good enough for a managed pointer.
2332 #ifdef _LP64
2333         return T_LONG;
2334 #else
2335         return T_INT;
2336 #endif
2337 
2338       case T_INT:
2339       case T_LONG:
2340       case T_FLOAT:
2341       case T_DOUBLE:
2342       case T_VOID:
2343         return in;
2344 
2345       default:
2346         ShouldNotReachHere();
2347         return T_CONFLICT;
2348     }
2349   }
2350 
2351  public:
2352   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2353     // The fingerprint is based on the BasicType signature encoded
2354     // into an array of ints with eight entries per int.
2355     int* ptr;
2356     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2357     if (len <= _compact_int_count) {
2358       assert(_compact_int_count == 3, "else change next line");
2359       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2360       // Storing the signature encoded as signed chars hits about 98%
2361       // of the time.
2362       _length = -len;
2363       ptr = _value._compact;
2364     } else {
2365       _length = len;
2366       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2367       ptr = _value._fingerprint;
2368     }
2369 
2370     // Now pack the BasicTypes with 8 per int
2371     int sig_index = 0;
2372     for (int index = 0; index < len; index++) {
2373       int value = 0;
2374       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2375         int bt = ((sig_index < total_args_passed)
2376                   ? adapter_encoding(sig_bt[sig_index++])
2377                   : 0);
2378         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2379         value = (value << _basic_type_bits) | bt;
2380       }
2381       ptr[index] = value;
2382     }
2383   }
2384 
2385   ~AdapterFingerPrint() {
2386     if (_length > 0) {
2387       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2388     }
2389   }
2390 
2391   int value(int index) {
2392     if (_length < 0) {
2393       return _value._compact[index];
2394     }
2395     return _value._fingerprint[index];
2396   }
2397   int length() {
2398     if (_length < 0) return -_length;
2399     return _length;
2400   }
2401 
2402   bool is_compact() {
2403     return _length <= 0;
2404   }
2405 
2406   unsigned int compute_hash() {
2407     int hash = 0;
2408     for (int i = 0; i < length(); i++) {
2409       int v = value(i);
2410       hash = (hash << 8) ^ v ^ (hash >> 5);
2411     }
2412     return (unsigned int)hash;
2413   }
2414 
2415   const char* as_string() {
2416     stringStream st;
2417     st.print("0x");
2418     for (int i = 0; i < length(); i++) {
2419       st.print("%08x", value(i));
2420     }
2421     return st.as_string();
2422   }
2423 
2424   bool equals(AdapterFingerPrint* other) {
2425     if (other->_length != _length) {
2426       return false;
2427     }
2428     if (_length < 0) {
2429       assert(_compact_int_count == 3, "else change next line");
2430       return _value._compact[0] == other->_value._compact[0] &&
2431              _value._compact[1] == other->_value._compact[1] &&
2432              _value._compact[2] == other->_value._compact[2];
2433     } else {
2434       for (int i = 0; i < _length; i++) {
2435         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2436           return false;
2437         }
2438       }
2439     }
2440     return true;
2441   }
2442 };
2443 
2444 
2445 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2446 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2447   friend class AdapterHandlerTableIterator;
2448 
2449  private:
2450 
2451 #ifndef PRODUCT
2452   static int _lookups; // number of calls to lookup
2453   static int _buckets; // number of buckets checked
2454   static int _equals;  // number of buckets checked with matching hash
2455   static int _hits;    // number of successful lookups
2456   static int _compact; // number of equals calls with compact signature
2457 #endif
2458 
2459   AdapterHandlerEntry* bucket(int i) {
2460     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2461   }
2462 
2463  public:
2464   AdapterHandlerTable()
2465     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2466 
2467   // Create a new entry suitable for insertion in the table
2468   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2469     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2470     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2471     if (DumpSharedSpaces) {
2472       ((CDSAdapterHandlerEntry*)entry)->init();
2473     }
2474     return entry;
2475   }
2476 
2477   // Insert an entry into the table
2478   void add(AdapterHandlerEntry* entry) {
2479     int index = hash_to_index(entry->hash());
2480     add_entry(index, entry);
2481   }
2482 
2483   void free_entry(AdapterHandlerEntry* entry) {
2484     entry->deallocate();
2485     BasicHashtable<mtCode>::free_entry(entry);
2486   }
2487 
2488   // Find a entry with the same fingerprint if it exists
2489   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2490     NOT_PRODUCT(_lookups++);
2491     AdapterFingerPrint fp(total_args_passed, sig_bt);
2492     unsigned int hash = fp.compute_hash();
2493     int index = hash_to_index(hash);
2494     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2495       NOT_PRODUCT(_buckets++);
2496       if (e->hash() == hash) {
2497         NOT_PRODUCT(_equals++);
2498         if (fp.equals(e->fingerprint())) {
2499 #ifndef PRODUCT
2500           if (fp.is_compact()) _compact++;
2501           _hits++;
2502 #endif
2503           return e;
2504         }
2505       }
2506     }
2507     return NULL;
2508   }
2509 
2510 #ifndef PRODUCT
2511   void print_statistics() {
2512     ResourceMark rm;
2513     int longest = 0;
2514     int empty = 0;
2515     int total = 0;
2516     int nonempty = 0;
2517     for (int index = 0; index < table_size(); index++) {
2518       int count = 0;
2519       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2520         count++;
2521       }
2522       if (count != 0) nonempty++;
2523       if (count == 0) empty++;
2524       if (count > longest) longest = count;
2525       total += count;
2526     }
2527     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2528                   empty, longest, total, total / (double)nonempty);
2529     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2530                   _lookups, _buckets, _equals, _hits, _compact);
2531   }
2532 #endif
2533 };
2534 
2535 
2536 #ifndef PRODUCT
2537 
2538 int AdapterHandlerTable::_lookups;
2539 int AdapterHandlerTable::_buckets;
2540 int AdapterHandlerTable::_equals;
2541 int AdapterHandlerTable::_hits;
2542 int AdapterHandlerTable::_compact;
2543 
2544 #endif
2545 
2546 class AdapterHandlerTableIterator : public StackObj {
2547  private:
2548   AdapterHandlerTable* _table;
2549   int _index;
2550   AdapterHandlerEntry* _current;
2551 
2552   void scan() {
2553     while (_index < _table->table_size()) {
2554       AdapterHandlerEntry* a = _table->bucket(_index);
2555       _index++;
2556       if (a != NULL) {
2557         _current = a;
2558         return;
2559       }
2560     }
2561   }
2562 
2563  public:
2564   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2565     scan();
2566   }
2567   bool has_next() {
2568     return _current != NULL;
2569   }
2570   AdapterHandlerEntry* next() {
2571     if (_current != NULL) {
2572       AdapterHandlerEntry* result = _current;
2573       _current = _current->next();
2574       if (_current == NULL) scan();
2575       return result;
2576     } else {
2577       return NULL;
2578     }
2579   }
2580 };
2581 
2582 
2583 // ---------------------------------------------------------------------------
2584 // Implementation of AdapterHandlerLibrary
2585 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2586 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2587 const int AdapterHandlerLibrary_size = 16*K;
2588 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2589 
2590 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2591   // Should be called only when AdapterHandlerLibrary_lock is active.
2592   if (_buffer == NULL) // Initialize lazily
2593       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2594   return _buffer;
2595 }
2596 
2597 extern "C" void unexpected_adapter_call() {
2598   ShouldNotCallThis();
2599 }
2600 
2601 void AdapterHandlerLibrary::initialize() {
2602   if (_adapters != NULL) return;
2603   _adapters = new AdapterHandlerTable();
2604 
2605   // Create a special handler for abstract methods.  Abstract methods
2606   // are never compiled so an i2c entry is somewhat meaningless, but
2607   // throw AbstractMethodError just in case.
2608   // Pass wrong_method_abstract for the c2i transitions to return
2609   // AbstractMethodError for invalid invocations.
2610   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2611   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2612                                                               StubRoutines::throw_AbstractMethodError_entry(),
2613                                                               wrong_method_abstract, wrong_method_abstract);
2614 }
2615 
2616 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2617                                                       address i2c_entry,
2618                                                       address c2i_entry,
2619                                                       address c2i_unverified_entry) {
2620   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2621 }
2622 
2623 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2624   AdapterHandlerEntry* entry = get_adapter0(method);
2625   if (method->is_shared()) {
2626     // See comments around Method::link_method()
2627     MutexLocker mu(AdapterHandlerLibrary_lock);
2628     if (method->adapter() == NULL) {
2629       method->update_adapter_trampoline(entry);
2630     }
2631     address trampoline = method->from_compiled_entry();
2632     if (*(int*)trampoline == 0) {
2633       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2634       MacroAssembler _masm(&buffer);
2635       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2636       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2637 
2638       if (PrintInterpreter) {
2639         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2640       }
2641     }
2642   }
2643 
2644   return entry;
2645 }
2646 
2647 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2648   // Use customized signature handler.  Need to lock around updates to
2649   // the AdapterHandlerTable (it is not safe for concurrent readers
2650   // and a single writer: this could be fixed if it becomes a
2651   // problem).
2652 
2653   ResourceMark rm;
2654 
2655   NOT_PRODUCT(int insts_size);
2656   AdapterBlob* new_adapter = NULL;
2657   AdapterHandlerEntry* entry = NULL;
2658   AdapterFingerPrint* fingerprint = NULL;
2659   {
2660     MutexLocker mu(AdapterHandlerLibrary_lock);
2661     // make sure data structure is initialized
2662     initialize();
2663 
2664     if (method->is_abstract()) {
2665       return _abstract_method_handler;
2666     }
2667 
2668     // Fill in the signature array, for the calling-convention call.
2669     int total_args_passed = method->size_of_parameters(); // All args on stack
2670 
2671     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2672     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2673     int i = 0;
2674     if (!method->is_static())  // Pass in receiver first
2675       sig_bt[i++] = T_OBJECT;
2676     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2677       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2678       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2679         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2680     }
2681     assert(i == total_args_passed, "");
2682 
2683     // Lookup method signature's fingerprint
2684     entry = _adapters->lookup(total_args_passed, sig_bt);
2685 
2686 #ifdef ASSERT
2687     AdapterHandlerEntry* shared_entry = NULL;
2688     // Start adapter sharing verification only after the VM is booted.
2689     if (VerifyAdapterSharing && (entry != NULL)) {
2690       shared_entry = entry;
2691       entry = NULL;
2692     }
2693 #endif
2694 
2695     if (entry != NULL) {
2696       return entry;
2697     }
2698 
2699     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2700     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2701 
2702     // Make a C heap allocated version of the fingerprint to store in the adapter
2703     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2704 
2705     // StubRoutines::code2() is initialized after this function can be called. As a result,
2706     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2707     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2708     // stub that ensure that an I2C stub is called from an interpreter frame.
2709     bool contains_all_checks = StubRoutines::code2() != NULL;
2710 
2711     // Create I2C & C2I handlers
2712     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2713     if (buf != NULL) {
2714       CodeBuffer buffer(buf);
2715       short buffer_locs[20];
2716       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2717                                              sizeof(buffer_locs)/sizeof(relocInfo));
2718 
2719       MacroAssembler _masm(&buffer);
2720       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2721                                                      total_args_passed,
2722                                                      comp_args_on_stack,
2723                                                      sig_bt,
2724                                                      regs,
2725                                                      fingerprint);
2726 #ifdef ASSERT
2727       if (VerifyAdapterSharing) {
2728         if (shared_entry != NULL) {
2729           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2730           // Release the one just created and return the original
2731           _adapters->free_entry(entry);
2732           return shared_entry;
2733         } else  {
2734           entry->save_code(buf->code_begin(), buffer.insts_size());
2735         }
2736       }
2737 #endif
2738 
2739       new_adapter = AdapterBlob::create(&buffer);
2740       NOT_PRODUCT(insts_size = buffer.insts_size());
2741     }
2742     if (new_adapter == NULL) {
2743       // CodeCache is full, disable compilation
2744       // Ought to log this but compile log is only per compile thread
2745       // and we're some non descript Java thread.
2746       return NULL; // Out of CodeCache space
2747     }
2748     entry->relocate(new_adapter->content_begin());
2749 #ifndef PRODUCT
2750     // debugging suppport
2751     if (PrintAdapterHandlers || PrintStubCode) {
2752       ttyLocker ttyl;
2753       entry->print_adapter_on(tty);
2754       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2755                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2756                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2757       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2758       if (Verbose || PrintStubCode) {
2759         address first_pc = entry->base_address();
2760         if (first_pc != NULL) {
2761           Disassembler::decode(first_pc, first_pc + insts_size);
2762           tty->cr();
2763         }
2764       }
2765     }
2766 #endif
2767     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2768     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2769     if (contains_all_checks || !VerifyAdapterCalls) {
2770       _adapters->add(entry);
2771     }
2772   }
2773   // Outside of the lock
2774   if (new_adapter != NULL) {
2775     char blob_id[256];
2776     jio_snprintf(blob_id,
2777                  sizeof(blob_id),
2778                  "%s(%s)@" PTR_FORMAT,
2779                  new_adapter->name(),
2780                  fingerprint->as_string(),
2781                  new_adapter->content_begin());
2782     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2783 
2784     if (JvmtiExport::should_post_dynamic_code_generated()) {
2785       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2786     }
2787   }
2788   return entry;
2789 }
2790 
2791 address AdapterHandlerEntry::base_address() {
2792   address base = _i2c_entry;
2793   if (base == NULL)  base = _c2i_entry;
2794   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2795   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2796   return base;
2797 }
2798 
2799 void AdapterHandlerEntry::relocate(address new_base) {
2800   address old_base = base_address();
2801   assert(old_base != NULL, "");
2802   ptrdiff_t delta = new_base - old_base;
2803   if (_i2c_entry != NULL)
2804     _i2c_entry += delta;
2805   if (_c2i_entry != NULL)
2806     _c2i_entry += delta;
2807   if (_c2i_unverified_entry != NULL)
2808     _c2i_unverified_entry += delta;
2809   assert(base_address() == new_base, "");
2810 }
2811 
2812 
2813 void AdapterHandlerEntry::deallocate() {
2814   delete _fingerprint;
2815 #ifdef ASSERT
2816   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2817 #endif
2818 }
2819 
2820 
2821 #ifdef ASSERT
2822 // Capture the code before relocation so that it can be compared
2823 // against other versions.  If the code is captured after relocation
2824 // then relative instructions won't be equivalent.
2825 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2826   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2827   _saved_code_length = length;
2828   memcpy(_saved_code, buffer, length);
2829 }
2830 
2831 
2832 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2833   if (length != _saved_code_length) {
2834     return false;
2835   }
2836 
2837   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2838 }
2839 #endif
2840 
2841 
2842 /**
2843  * Create a native wrapper for this native method.  The wrapper converts the
2844  * Java-compiled calling convention to the native convention, handles
2845  * arguments, and transitions to native.  On return from the native we transition
2846  * back to java blocking if a safepoint is in progress.
2847  */
2848 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2849   ResourceMark rm;
2850   nmethod* nm = NULL;
2851 
2852   assert(method->is_native(), "must be native");
2853   assert(method->is_method_handle_intrinsic() ||
2854          method->has_native_function(), "must have something valid to call!");
2855 
2856   {
2857     // Perform the work while holding the lock, but perform any printing outside the lock
2858     MutexLocker mu(AdapterHandlerLibrary_lock);
2859     // See if somebody beat us to it
2860     if (method->code() != NULL) {
2861       return;
2862     }
2863 
2864     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2865     assert(compile_id > 0, "Must generate native wrapper");
2866 
2867 
2868     ResourceMark rm;
2869     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2870     if (buf != NULL) {
2871       CodeBuffer buffer(buf);
2872       double locs_buf[20];
2873       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2874       MacroAssembler _masm(&buffer);
2875 
2876       // Fill in the signature array, for the calling-convention call.
2877       const int total_args_passed = method->size_of_parameters();
2878 
2879       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2880       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2881       int i=0;
2882       if (!method->is_static())  // Pass in receiver first
2883         sig_bt[i++] = T_OBJECT;
2884       SignatureStream ss(method->signature());
2885       for (; !ss.at_return_type(); ss.next()) {
2886         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2887         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2888           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2889       }
2890       assert(i == total_args_passed, "");
2891       BasicType ret_type = ss.type();
2892 
2893       // Now get the compiled-Java layout as input (or output) arguments.
2894       // NOTE: Stubs for compiled entry points of method handle intrinsics
2895       // are just trampolines so the argument registers must be outgoing ones.
2896       const bool is_outgoing = method->is_method_handle_intrinsic();
2897       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2898 
2899       // Generate the compiled-to-native wrapper code
2900       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2901 
2902       if (nm != NULL) {
2903         method->set_code(method, nm);
2904 
2905         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2906         if (directive->PrintAssemblyOption) {
2907           nm->print_code();
2908         }
2909         DirectivesStack::release(directive);
2910       }
2911     }
2912   } // Unlock AdapterHandlerLibrary_lock
2913 
2914 
2915   // Install the generated code.
2916   if (nm != NULL) {
2917     const char *msg = method->is_static() ? "(static)" : "";
2918     CompileTask::print_ul(nm, msg);
2919     if (PrintCompilation) {
2920       ttyLocker ttyl;
2921       CompileTask::print(tty, nm, msg);
2922     }
2923     nm->post_compiled_method_load_event();
2924   }
2925 }
2926 
2927 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2928   assert(thread == JavaThread::current(), "must be");
2929   // The code is about to enter a JNI lazy critical native method and
2930   // _needs_gc is true, so if this thread is already in a critical
2931   // section then just return, otherwise this thread should block
2932   // until needs_gc has been cleared.
2933   if (thread->in_critical()) {
2934     return;
2935   }
2936   // Lock and unlock a critical section to give the system a chance to block
2937   GCLocker::lock_critical(thread);
2938   GCLocker::unlock_critical(thread);
2939 JRT_END
2940 
2941 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
2942   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2943   assert(obj != NULL, "Should not be null");
2944   oop o(obj);
2945   o = Universe::heap()->pin_object(thread, o);
2946   assert(o != NULL, "Should not be null");
2947   return o;
2948 JRT_END
2949 
2950 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
2951   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2952   assert(obj != NULL, "Should not be null");
2953   oop o(obj);
2954   Universe::heap()->unpin_object(thread, o);
2955 JRT_END
2956 
2957 // -------------------------------------------------------------------------
2958 // Java-Java calling convention
2959 // (what you use when Java calls Java)
2960 
2961 //------------------------------name_for_receiver----------------------------------
2962 // For a given signature, return the VMReg for parameter 0.
2963 VMReg SharedRuntime::name_for_receiver() {
2964   VMRegPair regs;
2965   BasicType sig_bt = T_OBJECT;
2966   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2967   // Return argument 0 register.  In the LP64 build pointers
2968   // take 2 registers, but the VM wants only the 'main' name.
2969   return regs.first();
2970 }
2971 
2972 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2973   // This method is returning a data structure allocating as a
2974   // ResourceObject, so do not put any ResourceMarks in here.
2975   char *s = sig->as_C_string();
2976   int len = (int)strlen(s);
2977   s++; len--;                   // Skip opening paren
2978 
2979   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2980   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2981   int cnt = 0;
2982   if (has_receiver) {
2983     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2984   }
2985 
2986   while (*s != ')') {          // Find closing right paren
2987     switch (*s++) {            // Switch on signature character
2988     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2989     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2990     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2991     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2992     case 'I': sig_bt[cnt++] = T_INT;     break;
2993     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2994     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2995     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2996     case 'V': sig_bt[cnt++] = T_VOID;    break;
2997     case 'L':                   // Oop
2998       while (*s++ != ';');   // Skip signature
2999       sig_bt[cnt++] = T_OBJECT;
3000       break;
3001     case '[': {                 // Array
3002       do {                      // Skip optional size
3003         while (*s >= '0' && *s <= '9') s++;
3004       } while (*s++ == '[');   // Nested arrays?
3005       // Skip element type
3006       if (s[-1] == 'L')
3007         while (*s++ != ';'); // Skip signature
3008       sig_bt[cnt++] = T_ARRAY;
3009       break;
3010     }
3011     default : ShouldNotReachHere();
3012     }
3013   }
3014 
3015   if (has_appendix) {
3016     sig_bt[cnt++] = T_OBJECT;
3017   }
3018 
3019   assert(cnt < 256, "grow table size");
3020 
3021   int comp_args_on_stack;
3022   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3023 
3024   // the calling convention doesn't count out_preserve_stack_slots so
3025   // we must add that in to get "true" stack offsets.
3026 
3027   if (comp_args_on_stack) {
3028     for (int i = 0; i < cnt; i++) {
3029       VMReg reg1 = regs[i].first();
3030       if (reg1->is_stack()) {
3031         // Yuck
3032         reg1 = reg1->bias(out_preserve_stack_slots());
3033       }
3034       VMReg reg2 = regs[i].second();
3035       if (reg2->is_stack()) {
3036         // Yuck
3037         reg2 = reg2->bias(out_preserve_stack_slots());
3038       }
3039       regs[i].set_pair(reg2, reg1);
3040     }
3041   }
3042 
3043   // results
3044   *arg_size = cnt;
3045   return regs;
3046 }
3047 
3048 // OSR Migration Code
3049 //
3050 // This code is used convert interpreter frames into compiled frames.  It is
3051 // called from very start of a compiled OSR nmethod.  A temp array is
3052 // allocated to hold the interesting bits of the interpreter frame.  All
3053 // active locks are inflated to allow them to move.  The displaced headers and
3054 // active interpreter locals are copied into the temp buffer.  Then we return
3055 // back to the compiled code.  The compiled code then pops the current
3056 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3057 // copies the interpreter locals and displaced headers where it wants.
3058 // Finally it calls back to free the temp buffer.
3059 //
3060 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3061 
3062 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3063 
3064   //
3065   // This code is dependent on the memory layout of the interpreter local
3066   // array and the monitors. On all of our platforms the layout is identical
3067   // so this code is shared. If some platform lays the their arrays out
3068   // differently then this code could move to platform specific code or
3069   // the code here could be modified to copy items one at a time using
3070   // frame accessor methods and be platform independent.
3071 
3072   frame fr = thread->last_frame();
3073   assert(fr.is_interpreted_frame(), "");
3074   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3075 
3076   // Figure out how many monitors are active.
3077   int active_monitor_count = 0;
3078   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3079        kptr < fr.interpreter_frame_monitor_begin();
3080        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3081     if (kptr->obj() != NULL) active_monitor_count++;
3082   }
3083 
3084   // QQQ we could place number of active monitors in the array so that compiled code
3085   // could double check it.
3086 
3087   Method* moop = fr.interpreter_frame_method();
3088   int max_locals = moop->max_locals();
3089   // Allocate temp buffer, 1 word per local & 2 per active monitor
3090   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3091   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3092 
3093   // Copy the locals.  Order is preserved so that loading of longs works.
3094   // Since there's no GC I can copy the oops blindly.
3095   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3096   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3097                        (HeapWord*)&buf[0],
3098                        max_locals);
3099 
3100   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3101   int i = max_locals;
3102   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3103        kptr2 < fr.interpreter_frame_monitor_begin();
3104        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3105     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3106       BasicLock *lock = kptr2->lock();
3107       // Inflate so the displaced header becomes position-independent
3108       if (lock->displaced_header()->is_unlocked())
3109         ObjectSynchronizer::inflate_helper(kptr2->obj());
3110       // Now the displaced header is free to move
3111       buf[i++] = (intptr_t)lock->displaced_header();
3112       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3113     }
3114   }
3115   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3116 
3117   return buf;
3118 JRT_END
3119 
3120 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3121   FREE_C_HEAP_ARRAY(intptr_t, buf);
3122 JRT_END
3123 
3124 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3125   AdapterHandlerTableIterator iter(_adapters);
3126   while (iter.has_next()) {
3127     AdapterHandlerEntry* a = iter.next();
3128     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3129   }
3130   return false;
3131 }
3132 
3133 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3134   AdapterHandlerTableIterator iter(_adapters);
3135   while (iter.has_next()) {
3136     AdapterHandlerEntry* a = iter.next();
3137     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3138       st->print("Adapter for signature: ");
3139       a->print_adapter_on(tty);
3140       return;
3141     }
3142   }
3143   assert(false, "Should have found handler");
3144 }
3145 
3146 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3147   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3148                p2i(this), fingerprint()->as_string(),
3149                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3150 
3151 }
3152 
3153 #if INCLUDE_CDS
3154 
3155 void CDSAdapterHandlerEntry::init() {
3156   assert(DumpSharedSpaces, "used during dump time only");
3157   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3158   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3159 };
3160 
3161 #endif // INCLUDE_CDS
3162 
3163 
3164 #ifndef PRODUCT
3165 
3166 void AdapterHandlerLibrary::print_statistics() {
3167   _adapters->print_statistics();
3168 }
3169 
3170 #endif /* PRODUCT */
3171 
3172 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3173   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3174   if (thread->stack_reserved_zone_disabled()) {
3175   thread->enable_stack_reserved_zone();
3176   }
3177   thread->set_reserved_stack_activation(thread->stack_base());
3178 JRT_END
3179 
3180 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3181   ResourceMark rm(thread);
3182   frame activation;
3183   CompiledMethod* nm = NULL;
3184   int count = 1;
3185 
3186   assert(fr.is_java_frame(), "Must start on Java frame");
3187 
3188   while (true) {
3189     Method* method = NULL;
3190     bool found = false;
3191     if (fr.is_interpreted_frame()) {
3192       method = fr.interpreter_frame_method();
3193       if (method != NULL && method->has_reserved_stack_access()) {
3194         found = true;
3195       }
3196     } else {
3197       CodeBlob* cb = fr.cb();
3198       if (cb != NULL && cb->is_compiled()) {
3199         nm = cb->as_compiled_method();
3200         method = nm->method();
3201         // scope_desc_near() must be used, instead of scope_desc_at() because on
3202         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3203         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3204           method = sd->method();
3205           if (method != NULL && method->has_reserved_stack_access()) {
3206             found = true;
3207       }
3208     }
3209       }
3210     }
3211     if (found) {
3212       activation = fr;
3213       warning("Potentially dangerous stack overflow in "
3214               "ReservedStackAccess annotated method %s [%d]",
3215               method->name_and_sig_as_C_string(), count++);
3216       EventReservedStackActivation event;
3217       if (event.should_commit()) {
3218         event.set_method(method);
3219         event.commit();
3220       }
3221     }
3222     if (fr.is_first_java_frame()) {
3223       break;
3224     } else {
3225       fr = fr.java_sender();
3226     }
3227   }
3228   return activation;
3229 }
3230 
3231 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3232   // After any safepoint, just before going back to compiled code,
3233   // we inform the GC that we will be doing initializing writes to
3234   // this object in the future without emitting card-marks, so
3235   // GC may take any compensating steps.
3236 
3237   oop new_obj = thread->vm_result();
3238   if (new_obj == NULL) return;
3239 
3240   BarrierSet *bs = BarrierSet::barrier_set();
3241   bs->on_slowpath_allocation_exit(thread, new_obj);
3242 }