< prev index next >

src/hotspot/share/runtime/synchronizer.cpp

Print this page
rev 54996 : Checkpoint latest preliminary review patches for full OpenJDK review; merge with 8222295.patch.
rev 54997 : imported patch dcubed.monitor_deflate_conc.v2.01
rev 54998 : imported patch dcubed.monitor_deflate_conc.v2.02
rev 54999 : imported patch dcubed.monitor_deflate_conc.v2.03
rev 55000 : [mq]: dcubed.monitor_deflate_conc.v2.04


 108 #endif // ndef DTRACE_ENABLED
 109 
 110 // This exists only as a workaround of dtrace bug 6254741
 111 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 112   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 113   return 0;
 114 }
 115 
 116 #define NINFLATIONLOCKS 256
 117 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 118 
 119 // global list of blocks of monitors
 120 PaddedEnd<ObjectMonitor> * volatile ObjectSynchronizer::gBlockList = NULL;
 121 // global monitor free list
 122 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL;
 123 // global monitor in-use list, for moribund threads,
 124 // monitors they inflated need to be scanned for deflation
 125 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL;
 126 // count of entries in gOmInUseList
 127 int ObjectSynchronizer::gOmInUseCount = 0;



 128 
 129 static volatile intptr_t gListLock = 0;      // protects global monitor lists
 130 static volatile int gMonitorFreeCount  = 0;  // # on gFreeList
 131 static volatile int gMonitorPopulation = 0;  // # Extant -- in circulation
 132 
 133 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 134 
 135 
 136 // =====================> Quick functions
 137 
 138 // The quick_* forms are special fast-path variants used to improve
 139 // performance.  In the simplest case, a "quick_*" implementation could
 140 // simply return false, in which case the caller will perform the necessary
 141 // state transitions and call the slow-path form.
 142 // The fast-path is designed to handle frequently arising cases in an efficient
 143 // manner and is just a degenerate "optimistic" variant of the slow-path.
 144 // returns true  -- to indicate the call was satisfied.
 145 // returns false -- to indicate the call needs the services of the slow-path.
 146 // A no-loitering ordinance is in effect for code in the quick_* family
 147 // operators: safepoints or indefinite blocking (blocking that might span a


 194   }
 195 
 196   // biased locking and any other IMS exception states take the slow-path
 197   return false;
 198 }
 199 
 200 
 201 // The LockNode emitted directly at the synchronization site would have
 202 // been too big if it were to have included support for the cases of inflated
 203 // recursive enter and exit, so they go here instead.
 204 // Note that we can't safely call AsyncPrintJavaStack() from within
 205 // quick_enter() as our thread state remains _in_Java.
 206 
 207 bool ObjectSynchronizer::quick_enter(oop obj, Thread * Self,
 208                                      BasicLock * lock) {
 209   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 210   assert(Self->is_Java_thread(), "invariant");
 211   assert(((JavaThread *) Self)->thread_state() == _thread_in_Java, "invariant");
 212   NoSafepointVerifier nsv;
 213   if (obj == NULL) return false;       // Need to throw NPE


 214   const markOop mark = obj->mark();
 215 
 216   if (mark->has_monitor()) {
 217     ObjectMonitor * const m = mark->monitor();






 218     assert(oopDesc::equals((oop) m->object(), obj), "invariant");
 219     Thread * const owner = (Thread *) m->_owner;
 220 
 221     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 222     // and observability
 223     // Case: light contention possibly amenable to TLE
 224     // Case: TLE inimical operations such as nested/recursive synchronization
 225 
 226     if (owner == Self) {
 227       m->_recursions++;
 228       return true;
 229     }
 230 
 231     // This Java Monitor is inflated so obj's header will never be
 232     // displaced to this thread's BasicLock. Make the displaced header
 233     // non-NULL so this BasicLock is not seen as recursive nor as
 234     // being locked. We do this unconditionally so that this thread's
 235     // BasicLock cannot be mis-interpreted by any stack walkers. For
 236     // performance reasons, stack walkers generally first check for
 237     // Biased Locking in the object's header, the second check is for
 238     // stack-locking in the object's header, the third check is for
 239     // recursive stack-locking in the displaced header in the BasicLock,
 240     // and last are the inflated Java Monitor (ObjectMonitor) checks.
 241     lock->set_displaced_header(markOopDesc::unused_mark());
 242 
 243     if (owner == NULL && Atomic::replace_if_null(Self, &(m->_owner))) {
 244       assert(m->_recursions == 0, "invariant");
 245       assert(m->_owner == Self, "invariant");
 246       return true;
 247     }
 248   }


 249 
 250   // Note that we could inflate in quick_enter.
 251   // This is likely a useful optimization
 252   // Critically, in quick_enter() we must not:
 253   // -- perform bias revocation, or
 254   // -- block indefinitely, or
 255   // -- reach a safepoint
 256 
 257   return false;        // revert to slow-path
 258 }
 259 
 260 // -----------------------------------------------------------------------------
 261 //  Fast Monitor Enter/Exit
 262 // This the fast monitor enter. The interpreter and compiler use
 263 // some assembly copies of this code. Make sure update those code
 264 // if the following function is changed. The implementation is
 265 // extremely sensitive to race condition. Be careful.
 266 
 267 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock,
 268                                     bool attempt_rebias, TRAPS) {


 311         // does not own the Java Monitor.
 312         ObjectMonitor * m = mark->monitor();
 313         assert(((oop)(m->object()))->mark() == mark, "invariant");
 314         assert(m->is_entered(THREAD), "invariant");
 315       }
 316     }
 317 #endif
 318     return;
 319   }
 320 
 321   if (mark == (markOop) lock) {
 322     // If the object is stack-locked by the current thread, try to
 323     // swing the displaced header from the BasicLock back to the mark.
 324     assert(dhw->is_neutral(), "invariant");
 325     if (object->cas_set_mark(dhw, mark) == mark) {
 326       return;
 327     }
 328   }
 329 
 330   // We have to take the slow-path of possible inflation and then exit.
 331   inflate(THREAD, object, inflate_cause_vm_internal)->exit(true, THREAD);


 332 }
 333 
 334 // -----------------------------------------------------------------------------
 335 // Interpreter/Compiler Slow Case
 336 // This routine is used to handle interpreter/compiler slow case
 337 // We don't need to use fast path here, because it must have been
 338 // failed in the interpreter/compiler code.
 339 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 340   markOop mark = obj->mark();
 341   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
 342 
 343   if (mark->is_neutral()) {
 344     // Anticipate successful CAS -- the ST of the displaced mark must
 345     // be visible <= the ST performed by the CAS.
 346     lock->set_displaced_header(mark);
 347     if (mark == obj()->cas_set_mark((markOop) lock, mark)) {
 348       return;
 349     }
 350     // Fall through to inflate() ...
 351   } else if (mark->has_locker() &&
 352              THREAD->is_lock_owned((address)mark->locker())) {
 353     assert(lock != mark->locker(), "must not re-lock the same lock");
 354     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
 355     lock->set_displaced_header(NULL);
 356     return;
 357   }
 358 
 359   // The object header will never be displaced to this lock,
 360   // so it does not matter what the value is, except that it
 361   // must be non-zero to avoid looking like a re-entrant lock,
 362   // and must not look locked either.
 363   lock->set_displaced_header(markOopDesc::unused_mark());
 364   inflate(THREAD, obj(), inflate_cause_monitor_enter)->enter(THREAD);


 365 }
 366 
 367 // This routine is used to handle interpreter/compiler slow case
 368 // We don't need to use fast path here, because it must have
 369 // failed in the interpreter/compiler code. Simply use the heavy
 370 // weight monitor should be ok, unless someone find otherwise.
 371 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 372   fast_exit(object, lock, THREAD);
 373 }
 374 
 375 // -----------------------------------------------------------------------------
 376 // Class Loader  support to workaround deadlocks on the class loader lock objects
 377 // Also used by GC
 378 // complete_exit()/reenter() are used to wait on a nested lock
 379 // i.e. to give up an outer lock completely and then re-enter
 380 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 381 //  1) complete_exit lock1 - saving recursion count
 382 //  2) wait on lock2
 383 //  3) when notified on lock2, unlock lock2
 384 //  4) reenter lock1 with original recursion count
 385 //  5) lock lock2
 386 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 387 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 388   if (UseBiasedLocking) {
 389     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 390     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 391   }
 392 
 393   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal);
 394 
 395   return monitor->complete_exit(THREAD);

 396 }
 397 
 398 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 399 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 400   if (UseBiasedLocking) {
 401     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 402     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 403   }
 404 
 405   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal);
 406 
 407   monitor->reenter(recursion, THREAD);
 408 }
 409 // -----------------------------------------------------------------------------
 410 // JNI locks on java objects
 411 // NOTE: must use heavy weight monitor to handle jni monitor enter
 412 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 413   // the current locking is from JNI instead of Java code
 414   if (UseBiasedLocking) {
 415     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 416     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 417   }
 418   THREAD->set_current_pending_monitor_is_from_java(false);
 419   inflate(THREAD, obj(), inflate_cause_jni_enter)->enter(THREAD);


 420   THREAD->set_current_pending_monitor_is_from_java(true);
 421 }
 422 
 423 // NOTE: must use heavy weight monitor to handle jni monitor exit
 424 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 425   if (UseBiasedLocking) {
 426     Handle h_obj(THREAD, obj);
 427     BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
 428     obj = h_obj();
 429   }
 430   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 431 
 432   ObjectMonitor* monitor = inflate(THREAD, obj, inflate_cause_jni_exit);


 433   // If this thread has locked the object, exit the monitor.  Note:  can't use
 434   // monitor->check(CHECK); must exit even if an exception is pending.
 435   if (monitor->check(THREAD)) {
 436     monitor->exit(true, THREAD);
 437   }
 438 }
 439 
 440 // -----------------------------------------------------------------------------
 441 // Internal VM locks on java objects
 442 // standard constructor, allows locking failures
 443 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
 444   _dolock = doLock;
 445   _thread = thread;
 446   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
 447   _obj = obj;
 448 
 449   if (_dolock) {
 450     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 451   }
 452 }
 453 
 454 ObjectLocker::~ObjectLocker() {
 455   if (_dolock) {
 456     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 457   }
 458 }
 459 
 460 
 461 // -----------------------------------------------------------------------------
 462 //  Wait/Notify/NotifyAll
 463 // NOTE: must use heavy weight monitor to handle wait()
 464 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 465   if (UseBiasedLocking) {
 466     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 467     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 468   }
 469   if (millis < 0) {
 470     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 471   }
 472   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_wait);


 473 
 474   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 475   monitor->wait(millis, true, THREAD);
 476 
 477   // This dummy call is in place to get around dtrace bug 6254741.  Once
 478   // that's fixed we can uncomment the following line, remove the call
 479   // and change this function back into a "void" func.
 480   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 481   return dtrace_waited_probe(monitor, obj, THREAD);

 482 }
 483 
 484 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) {
 485   if (UseBiasedLocking) {
 486     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 487     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 488   }
 489   if (millis < 0) {
 490     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 491   }
 492   inflate(THREAD, obj(), inflate_cause_wait)->wait(millis, false, THREAD);


 493 }
 494 
 495 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 496   if (UseBiasedLocking) {
 497     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 498     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 499   }
 500 
 501   markOop mark = obj->mark();
 502   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 503     return;
 504   }
 505   inflate(THREAD, obj(), inflate_cause_notify)->notify(THREAD);


 506 }
 507 
 508 // NOTE: see comment of notify()
 509 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 510   if (UseBiasedLocking) {
 511     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 512     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 513   }
 514 
 515   markOop mark = obj->mark();
 516   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 517     return;
 518   }
 519   inflate(THREAD, obj(), inflate_cause_notify)->notifyAll(THREAD);


 520 }
 521 
 522 // -----------------------------------------------------------------------------
 523 // Hash Code handling
 524 //
 525 // Performance concern:
 526 // OrderAccess::storestore() calls release() which at one time stored 0
 527 // into the global volatile OrderAccess::dummy variable. This store was
 528 // unnecessary for correctness. Many threads storing into a common location
 529 // causes considerable cache migration or "sloshing" on large SMP systems.
 530 // As such, I avoided using OrderAccess::storestore(). In some cases
 531 // OrderAccess::fence() -- which incurs local latency on the executing
 532 // processor -- is a better choice as it scales on SMP systems.
 533 //
 534 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 535 // a discussion of coherency costs. Note that all our current reference
 536 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 537 // x64, and SPARC.
 538 //
 539 // As a general policy we use "volatile" to control compiler-based reordering


 693       Handle hobj(Self, obj);
 694       // Relaxing assertion for bug 6320749.
 695       assert(Universe::verify_in_progress() ||
 696              !SafepointSynchronize::is_at_safepoint(),
 697              "biases should not be seen by VM thread here");
 698       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
 699       obj = hobj();
 700       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 701     }
 702   }
 703 
 704   // hashCode() is a heap mutator ...
 705   // Relaxing assertion for bug 6320749.
 706   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 707          !SafepointSynchronize::is_at_safepoint(), "invariant");
 708   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 709          Self->is_Java_thread() , "invariant");
 710   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 711          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 712 

 713   ObjectMonitor* monitor = NULL;
 714   markOop temp, test;
 715   intptr_t hash;
 716   markOop mark = ReadStableMark(obj);
 717 
 718   // object should remain ineligible for biased locking
 719   assert(!mark->has_bias_pattern(), "invariant");
 720 
 721   if (mark->is_neutral()) {
 722     hash = mark->hash();              // this is a normal header
 723     if (hash != 0) {                  // if it has hash, just return it
 724       return hash;
 725     }
 726     hash = get_next_hash(Self, obj);  // allocate a new hash code
 727     temp = mark->copy_set_hash(hash); // merge the hash code into header
 728     // use (machine word version) atomic operation to install the hash
 729     test = obj->cas_set_mark(temp, mark);
 730     if (test == mark) {
 731       return hash;
 732     }
 733     // If atomic operation failed, we must inflate the header
 734     // into heavy weight monitor. We could add more code here
 735     // for fast path, but it does not worth the complexity.
 736   } else if (mark->has_monitor()) {
 737     monitor = mark->monitor();






 738     temp = monitor->header();
 739     assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 740     hash = temp->hash();
 741     if (hash != 0) {
 742       return hash;
 743     }
 744     // Skip to the following code to reduce code size
 745   } else if (Self->is_lock_owned((address)mark->locker())) {
 746     temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
 747     assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 748     hash = temp->hash();              // by current thread, check if the displaced
 749     if (hash != 0) {                  // header contains hash code
 750       return hash;
 751     }
 752     // WARNING:
 753     // The displaced header in the BasicLock on a thread's stack
 754     // is strictly immutable. It CANNOT be changed in ANY cases.
 755     // So we have to inflate the stack lock into an ObjectMonitor
 756     // even if the current thread owns the lock. The BasicLock on
 757     // a thread's stack can be asynchronously read by other threads
 758     // during an inflate() call so any change to that stack memory
 759     // may not propagate to other threads correctly.
 760   }
 761 
 762   // Inflate the monitor to set hash code
 763   monitor = inflate(Self, obj, inflate_cause_hash_code);


 764   // Load displaced header and check it has hash code
 765   mark = monitor->header();
 766   assert(mark->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(mark));
 767   hash = mark->hash();
 768   if (hash == 0) {
 769     hash = get_next_hash(Self, obj);
 770     temp = mark->copy_set_hash(hash); // merge hash code into header
 771     assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 772     test = Atomic::cmpxchg(temp, monitor->header_addr(), mark);
 773     if (test != mark) {
 774       // The only update to the ObjectMonitor's header/dmw field
 775       // is to merge in the hash code. If someone adds a new usage
 776       // of the header/dmw field, please update this code.





 777       hash = test->hash();
 778       assert(test->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(test));
 779       assert(hash != 0, "Trivial unexpected object/monitor header usage.");
 780     }
 781   }
 782   // We finally get the hash
 783   return hash;

 784 }
 785 
 786 // Deprecated -- use FastHashCode() instead.
 787 
 788 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 789   return FastHashCode(Thread::current(), obj());
 790 }
 791 
 792 
 793 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 794                                                    Handle h_obj) {
 795   if (UseBiasedLocking) {
 796     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
 797     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 798   }
 799 
 800   assert(thread == JavaThread::current(), "Can only be called on current thread");
 801   oop obj = h_obj();
 802 

 803   markOop mark = ReadStableMark(obj);
 804 
 805   // Uncontended case, header points to stack
 806   if (mark->has_locker()) {
 807     return thread->is_lock_owned((address)mark->locker());
 808   }
 809   // Contended case, header points to ObjectMonitor (tagged pointer)
 810   if (mark->has_monitor()) {
 811     ObjectMonitor* monitor = mark->monitor();
 812     return monitor->is_entered(thread) != 0;






 813   }
 814   // Unlocked case, header in place
 815   assert(mark->is_neutral(), "sanity check");
 816   return false;

 817 }
 818 
 819 // Be aware of this method could revoke bias of the lock object.
 820 // This method queries the ownership of the lock handle specified by 'h_obj'.
 821 // If the current thread owns the lock, it returns owner_self. If no
 822 // thread owns the lock, it returns owner_none. Otherwise, it will return
 823 // owner_other.
 824 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 825 (JavaThread *self, Handle h_obj) {
 826   // The caller must beware this method can revoke bias, and
 827   // revocation can result in a safepoint.
 828   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 829   assert(self->thread_state() != _thread_blocked, "invariant");
 830 
 831   // Possible mark states: neutral, biased, stack-locked, inflated
 832 
 833   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
 834     // CASE: biased
 835     BiasedLocking::revoke_and_rebias(h_obj, false, self);
 836     assert(!h_obj->mark()->has_bias_pattern(),
 837            "biases should be revoked by now");
 838   }
 839 
 840   assert(self == JavaThread::current(), "Can only be called on current thread");
 841   oop obj = h_obj();


 842   markOop mark = ReadStableMark(obj);
 843 
 844   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 845   if (mark->has_locker()) {
 846     return self->is_lock_owned((address)mark->locker()) ?
 847       owner_self : owner_other;
 848   }
 849 
 850   // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor.
 851   // The Object:ObjectMonitor relationship is stable as long as we're
 852   // not at a safepoint.
 853   if (mark->has_monitor()) {
 854     void * owner = mark->monitor()->_owner;







 855     if (owner == NULL) return owner_none;
 856     return (owner == self ||
 857             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 858   }
 859 
 860   // CASE: neutral
 861   assert(mark->is_neutral(), "sanity check");
 862   return owner_none;           // it's unlocked

 863 }
 864 
 865 // FIXME: jvmti should call this
 866 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
 867   if (UseBiasedLocking) {
 868     if (SafepointSynchronize::is_at_safepoint()) {
 869       BiasedLocking::revoke_at_safepoint(h_obj);
 870     } else {
 871       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
 872     }
 873     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 874   }
 875 
 876   oop obj = h_obj();
 877   address owner = NULL;
 878 


 879   markOop mark = ReadStableMark(obj);
 880 
 881   // Uncontended case, header points to stack
 882   if (mark->has_locker()) {
 883     owner = (address) mark->locker();
 884   }
 885 
 886   // Contended case, header points to ObjectMonitor (tagged pointer)
 887   else if (mark->has_monitor()) {
 888     ObjectMonitor* monitor = mark->monitor();






 889     assert(monitor != NULL, "monitor should be non-null");
 890     owner = (address) monitor->owner();
 891   }
 892 
 893   if (owner != NULL) {
 894     // owning_thread_from_monitor_owner() may also return NULL here
 895     return Threads::owning_thread_from_monitor_owner(t_list, owner);
 896   }
 897 
 898   // Unlocked case, header in place
 899   // Cannot have assertion since this object may have been
 900   // locked by another thread when reaching here.
 901   // assert(mark->is_neutral(), "sanity check");
 902 
 903   return NULL;

 904 }
 905 
 906 // Visitors ...
 907 
 908 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 909   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
 910   while (block != NULL) {
 911     assert(block->object() == CHAINMARKER, "must be a block header");
 912     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 913       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
 914       oop object = (oop)mid->object();
 915       if (object != NULL) {










 916         closure->do_monitor(mid);
 917       }
 918     }
 919     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
 920   }
 921 }
 922 
 923 // Get the next block in the block list.
 924 static inline PaddedEnd<ObjectMonitor>* next(PaddedEnd<ObjectMonitor>* block) {
 925   assert(block->object() == CHAINMARKER, "must be a block header");
 926   block = (PaddedEnd<ObjectMonitor>*) block->FreeNext;
 927   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
 928   return block;
 929 }
 930 
 931 static bool monitors_used_above_threshold() {
 932   if (gMonitorPopulation == 0) {
 933     return false;
 934   }

 935   int monitors_used = gMonitorPopulation - gMonitorFreeCount;
 936   int monitor_usage = (monitors_used * 100LL) / gMonitorPopulation;
 937   return monitor_usage > MonitorUsedDeflationThreshold;


 938 }
 939 
 940 bool ObjectSynchronizer::is_cleanup_needed() {
 941   if (MonitorUsedDeflationThreshold > 0) {
 942     return monitors_used_above_threshold();














 943   }
 944   return false;
 945 }
 946 




















 947 void ObjectSynchronizer::oops_do(OopClosure* f) {
 948   // We only scan the global used list here (for moribund threads), and
 949   // the thread-local monitors in Thread::oops_do().
 950   global_used_oops_do(f);
 951 }
 952 
 953 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
 954   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 955   list_oops_do(gOmInUseList, f);
 956 }
 957 
 958 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
 959   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 960   list_oops_do(thread->omInUseList, f);
 961 }
 962 
 963 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) {
 964   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 965   ObjectMonitor* mid;
 966   for (mid = list; mid != NULL; mid = mid->FreeNext) {


1006 // See also: GuaranteedSafepointInterval
1007 //
1008 // The current implementation uses asynchronous VM operations.
1009 
1010 static void InduceScavenge(Thread * Self, const char * Whence) {
1011   // Induce STW safepoint to trim monitors
1012   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1013   // More precisely, trigger an asynchronous STW safepoint as the number
1014   // of active monitors passes the specified threshold.
1015   // TODO: assert thread state is reasonable
1016 
1017   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
1018     // Induce a 'null' safepoint to scavenge monitors
1019     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
1020     // to the VMthread and have a lifespan longer than that of this activation record.
1021     // The VMThread will delete the op when completed.
1022     VMThread::execute(new VM_ScavengeMonitors());
1023   }
1024 }
1025 
1026 ObjectMonitor* ObjectSynchronizer::omAlloc(Thread * Self) {

1027   // A large MAXPRIVATE value reduces both list lock contention
1028   // and list coherency traffic, but also tends to increase the
1029   // number of objectMonitors in circulation as well as the STW
1030   // scavenge costs.  As usual, we lean toward time in space-time
1031   // tradeoffs.
1032   const int MAXPRIVATE = 1024;
















1033   for (;;) {
1034     ObjectMonitor * m;
1035 
1036     // 1: try to allocate from the thread's local omFreeList.
1037     // Threads will attempt to allocate first from their local list, then
1038     // from the global list, and only after those attempts fail will the thread
1039     // attempt to instantiate new monitors.   Thread-local free lists take
1040     // heat off the gListLock and improve allocation latency, as well as reducing
1041     // coherency traffic on the shared global list.
1042     m = Self->omFreeList;
1043     if (m != NULL) {
1044       Self->omFreeList = m->FreeNext;
1045       Self->omFreeCount--;
1046       guarantee(m->object() == NULL, "invariant");

1047       m->FreeNext = Self->omInUseList;
1048       Self->omInUseList = m;
1049       Self->omInUseCount++;
1050       return m;
1051     }
1052 
1053     // 2: try to allocate from the global gFreeList
1054     // CONSIDER: use muxTry() instead of muxAcquire().
1055     // If the muxTry() fails then drop immediately into case 3.
1056     // If we're using thread-local free lists then try
1057     // to reprovision the caller's free list.
1058     if (gFreeList != NULL) {
1059       // Reprovision the thread's omFreeList.
1060       // Use bulk transfers to reduce the allocation rate and heat
1061       // on various locks.
1062       Thread::muxAcquire(&gListLock, "omAlloc(1)");
1063       for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL;) {
1064         gMonitorFreeCount--;
1065         ObjectMonitor * take = gFreeList;
1066         gFreeList = take->FreeNext;
1067         guarantee(take->object() == NULL, "invariant");














1068         guarantee(!take->is_busy(), "invariant");
1069         take->Recycle();

1070         omRelease(Self, take, false);
1071       }
1072       Thread::muxRelease(&gListLock);
1073       Self->omFreeProvision += 1 + (Self->omFreeProvision/2);
1074       if (Self->omFreeProvision > MAXPRIVATE) Self->omFreeProvision = MAXPRIVATE;
1075 
1076       const int mx = MonitorBound;
1077       if (mx > 0 && (gMonitorPopulation-gMonitorFreeCount) > mx) {
1078         // We can't safely induce a STW safepoint from omAlloc() as our thread
1079         // state may not be appropriate for such activities and callers may hold
1080         // naked oops, so instead we defer the action.
1081         InduceScavenge(Self, "omAlloc");
1082       }
1083       continue;
1084     }
1085 
1086     // 3: allocate a block of new ObjectMonitors
1087     // Both the local and global free lists are empty -- resort to malloc().
1088     // In the current implementation objectMonitors are TSM - immortal.
1089     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want


1102 
1103     // NOTE: (almost) no way to recover if allocation failed.
1104     // We might be able to induce a STW safepoint and scavenge enough
1105     // objectMonitors to permit progress.
1106     if (temp == NULL) {
1107       vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR,
1108                             "Allocate ObjectMonitors");
1109     }
1110     (void)memset((void *) temp, 0, neededsize);
1111 
1112     // Format the block.
1113     // initialize the linked list, each monitor points to its next
1114     // forming the single linked free list, the very first monitor
1115     // will points to next block, which forms the block list.
1116     // The trick of using the 1st element in the block as gBlockList
1117     // linkage should be reconsidered.  A better implementation would
1118     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1119 
1120     for (int i = 1; i < _BLOCKSIZE; i++) {
1121       temp[i].FreeNext = (ObjectMonitor *)&temp[i+1];

1122     }
1123 
1124     // terminate the last monitor as the end of list
1125     temp[_BLOCKSIZE - 1].FreeNext = NULL;
1126 
1127     // Element [0] is reserved for global list linkage
1128     temp[0].set_object(CHAINMARKER);
1129 
1130     // Consider carving out this thread's current request from the
1131     // block in hand.  This avoids some lock traffic and redundant
1132     // list activity.
1133 
1134     // Acquire the gListLock to manipulate gBlockList and gFreeList.
1135     // An Oyama-Taura-Yonezawa scheme might be more efficient.
1136     Thread::muxAcquire(&gListLock, "omAlloc(2)");
1137     gMonitorPopulation += _BLOCKSIZE-1;
1138     gMonitorFreeCount += _BLOCKSIZE-1;
1139 
1140     // Add the new block to the list of extant blocks (gBlockList).
1141     // The very first objectMonitor in a block is reserved and dedicated.


1144     // There are lock-free uses of gBlockList so make sure that
1145     // the previous stores happen before we update gBlockList.
1146     OrderAccess::release_store(&gBlockList, temp);
1147 
1148     // Add the new string of objectMonitors to the global free list
1149     temp[_BLOCKSIZE - 1].FreeNext = gFreeList;
1150     gFreeList = temp + 1;
1151     Thread::muxRelease(&gListLock);
1152   }
1153 }
1154 
1155 // Place "m" on the caller's private per-thread omFreeList.
1156 // In practice there's no need to clamp or limit the number of
1157 // monitors on a thread's omFreeList as the only time we'll call
1158 // omRelease is to return a monitor to the free list after a CAS
1159 // attempt failed.  This doesn't allow unbounded #s of monitors to
1160 // accumulate on a thread's free list.
1161 //
1162 // Key constraint: all ObjectMonitors on a thread's free list and the global
1163 // free list must have their object field set to null. This prevents the
1164 // scavenger -- deflate_monitor_list() -- from reclaiming them.

1165 
1166 void ObjectSynchronizer::omRelease(Thread * Self, ObjectMonitor * m,
1167                                    bool fromPerThreadAlloc) {
1168   guarantee(m->header() == NULL, "invariant");
1169   guarantee(m->object() == NULL, "invariant");
1170   guarantee(((m->is_busy()|m->_recursions) == 0), "freeing in-use monitor");

1171   // Remove from omInUseList
1172   if (fromPerThreadAlloc) {
1173     ObjectMonitor* cur_mid_in_use = NULL;
1174     bool extracted = false;
1175     for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; cur_mid_in_use = mid, mid = mid->FreeNext) {
1176       if (m == mid) {
1177         // extract from per-thread in-use list
1178         if (mid == Self->omInUseList) {
1179           Self->omInUseList = mid->FreeNext;
1180         } else if (cur_mid_in_use != NULL) {
1181           cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1182         }
1183         extracted = true;
1184         Self->omInUseCount--;
1185         break;
1186       }
1187     }
1188     assert(extracted, "Should have extracted from in-use list");
1189   }
1190 
1191   // FreeNext is used for both omInUseList and omFreeList, so clear old before setting new
1192   m->FreeNext = Self->omFreeList;

1193   Self->omFreeList = m;
1194   Self->omFreeCount++;
1195 }
1196 
1197 // Return the monitors of a moribund thread's local free list to
1198 // the global free list.  Typically a thread calls omFlush() when
1199 // it's dying.  We could also consider having the VM thread steal
1200 // monitors from threads that have not run java code over a few
1201 // consecutive STW safepoints.  Relatedly, we might decay
1202 // omFreeProvision at STW safepoints.
1203 //
1204 // Also return the monitors of a moribund thread's omInUseList to
1205 // a global gOmInUseList under the global list lock so these
1206 // will continue to be scanned.
1207 //
1208 // We currently call omFlush() from Threads::remove() _before the thread
1209 // has been excised from the thread list and is no longer a mutator.
1210 // This means that omFlush() cannot run concurrently with a safepoint and
1211 // interleave with the deflate_idle_monitors scavenge operator. In particular,
1212 // this ensures that the thread's monitors are scanned by a GC safepoint,
1213 // either via Thread::oops_do() (if safepoint happens before omFlush()) or via
1214 // ObjectSynchronizer::oops_do() (if it happens after omFlush() and the thread's
1215 // monitors have been transferred to the global in-use list).




1216 
1217 void ObjectSynchronizer::omFlush(Thread * Self) {
1218   ObjectMonitor * list = Self->omFreeList;  // Null-terminated SLL
1219   ObjectMonitor * tail = NULL;
1220   int tally = 0;
1221   if (list != NULL) {
1222     ObjectMonitor * s;
1223     // The thread is going away, the per-thread free monitors
1224     // are freed via set_owner(NULL)
1225     // Link them to tail, which will be linked into the global free list
1226     // gFreeList below, under the gListLock
1227     for (s = list; s != NULL; s = s->FreeNext) {
1228       tally++;
1229       tail = s;
1230       guarantee(s->object() == NULL, "invariant");
1231       guarantee(!s->is_busy(), "invariant");
1232       s->set_owner(NULL);   // redundant but good hygiene
1233     }
1234     guarantee(tail != NULL, "invariant");
1235     assert(Self->omFreeCount == tally, "free-count off");
1236     Self->omFreeList = NULL;
1237     Self->omFreeCount = 0;
1238   }
1239 
1240   ObjectMonitor * inUseList = Self->omInUseList;
1241   ObjectMonitor * inUseTail = NULL;
1242   int inUseTally = 0;
1243   if (inUseList != NULL) {
1244     ObjectMonitor *cur_om;
1245     // The thread is going away, however the omInUseList inflated
1246     // monitors may still be in-use by other threads.
1247     // Link them to inUseTail, which will be linked into the global in-use list
1248     // gOmInUseList below, under the gListLock
1249     for (cur_om = inUseList; cur_om != NULL; cur_om = cur_om->FreeNext) {
1250       inUseTail = cur_om;
1251       inUseTally++;

1252     }
1253     guarantee(inUseTail != NULL, "invariant");
1254     assert(Self->omInUseCount == inUseTally, "in-use count off");
1255     Self->omInUseList = NULL;
1256     Self->omInUseCount = 0;
1257   }
1258 
1259   Thread::muxAcquire(&gListLock, "omFlush");
1260   if (tail != NULL) {
1261     tail->FreeNext = gFreeList;
1262     gFreeList = list;
1263     gMonitorFreeCount += tally;
1264   }
1265 
1266   if (inUseTail != NULL) {
1267     inUseTail->FreeNext = gOmInUseList;
1268     gOmInUseList = inUseList;
1269     gOmInUseCount += inUseTally;
1270   }
1271 
1272   Thread::muxRelease(&gListLock);
1273 
1274   LogStreamHandle(Debug, monitorinflation) lsh_debug;


1282   }
1283   if (ls != NULL) {
1284     ls->print_cr("omFlush: jt=" INTPTR_FORMAT ", free_monitor_tally=%d"
1285                  ", in_use_monitor_tally=%d" ", omFreeProvision=%d",
1286                  p2i(Self), tally, inUseTally, Self->omFreeProvision);
1287   }
1288 }
1289 
1290 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1291                                        const oop obj,
1292                                        ObjectSynchronizer::InflateCause cause) {
1293   assert(event != NULL, "invariant");
1294   assert(event->should_commit(), "invariant");
1295   event->set_monitorClass(obj->klass());
1296   event->set_address((uintptr_t)(void*)obj);
1297   event->set_cause((u1)cause);
1298   event->commit();
1299 }
1300 
1301 // Fast path code shared by multiple functions
1302 void ObjectSynchronizer::inflate_helper(oop obj) {

1303   markOop mark = obj->mark();
1304   if (mark->has_monitor()) {
1305     assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
1306     assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");










1307     return;
1308   }
1309   inflate(Thread::current(), obj, inflate_cause_vm_internal);
1310 }
1311 
1312 ObjectMonitor* ObjectSynchronizer::inflate(Thread * Self,
1313                                            oop object,
1314                                            const InflateCause cause) {
1315   // Inflate mutates the heap ...
1316   // Relaxing assertion for bug 6320749.
1317   assert(Universe::verify_in_progress() ||
1318          !SafepointSynchronize::is_at_safepoint(), "invariant");
1319 
1320   EventJavaMonitorInflate event;
1321 
1322   for (;;) {
1323     const markOop mark = object->mark();
1324     assert(!mark->has_bias_pattern(), "invariant");
1325 
1326     // The mark can be in one of the following states:
1327     // *  Inflated     - just return
1328     // *  Stack-locked - coerce it to inflated
1329     // *  INFLATING    - busy wait for conversion to complete
1330     // *  Neutral      - aggressively inflate the object.
1331     // *  BIASED       - Illegal.  We should never see this
1332 
1333     // CASE: inflated
1334     if (mark->has_monitor()) {
1335       ObjectMonitor * inf = mark->monitor();





1336       markOop dmw = inf->header();
1337       assert(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1338       assert(oopDesc::equals((oop) inf->object(), object), "invariant");
1339       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1340       return inf;
1341     }
1342 
1343     // CASE: inflation in progress - inflating over a stack-lock.
1344     // Some other thread is converting from stack-locked to inflated.
1345     // Only that thread can complete inflation -- other threads must wait.
1346     // The INFLATING value is transient.
1347     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1348     // We could always eliminate polling by parking the thread on some auxiliary list.
1349     if (mark == markOopDesc::INFLATING()) {
1350       ReadStableMark(object);
1351       continue;
1352     }
1353 
1354     // CASE: stack-locked
1355     // Could be stack-locked either by this thread or by some other thread.
1356     //
1357     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1358     // to install INFLATING into the mark word.  We originally installed INFLATING,
1359     // allocated the objectmonitor, and then finally STed the address of the
1360     // objectmonitor into the mark.  This was correct, but artificially lengthened
1361     // the interval in which INFLATED appeared in the mark, thus increasing
1362     // the odds of inflation contention.
1363     //
1364     // We now use per-thread private objectmonitor free lists.
1365     // These list are reprovisioned from the global free list outside the
1366     // critical INFLATING...ST interval.  A thread can transfer
1367     // multiple objectmonitors en-mass from the global free list to its local free list.
1368     // This reduces coherency traffic and lock contention on the global free list.
1369     // Using such local free lists, it doesn't matter if the omAlloc() call appears
1370     // before or after the CAS(INFLATING) operation.
1371     // See the comments in omAlloc().
1372 
1373     LogStreamHandle(Trace, monitorinflation) lsh;
1374 
1375     if (mark->has_locker()) {
1376       ObjectMonitor * m = omAlloc(Self);











1377       // Optimistically prepare the objectmonitor - anticipate successful CAS
1378       // We do this before the CAS in order to minimize the length of time
1379       // in which INFLATING appears in the mark.
1380       m->Recycle();
1381       m->_Responsible  = NULL;
1382       m->_recursions   = 0;
1383       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1384 
1385       markOop cmp = object->cas_set_mark(markOopDesc::INFLATING(), mark);
1386       if (cmp != mark) {
1387         omRelease(Self, m, true);
1388         continue;       // Interference -- just retry
1389       }
1390 
1391       // We've successfully installed INFLATING (0) into the mark-word.
1392       // This is the only case where 0 will appear in a mark-word.
1393       // Only the singular thread that successfully swings the mark-word
1394       // to 0 can perform (or more precisely, complete) inflation.
1395       //
1396       // Why do we CAS a 0 into the mark-word instead of just CASing the


1404       // value from the basiclock on the owner's stack to the objectMonitor, all
1405       // the while preserving the hashCode stability invariants.  If the owner
1406       // decides to release the lock while the value is 0, the unlock will fail
1407       // and control will eventually pass from slow_exit() to inflate.  The owner
1408       // will then spin, waiting for the 0 value to disappear.   Put another way,
1409       // the 0 causes the owner to stall if the owner happens to try to
1410       // drop the lock (restoring the header from the basiclock to the object)
1411       // while inflation is in-progress.  This protocol avoids races that might
1412       // would otherwise permit hashCode values to change or "flicker" for an object.
1413       // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1414       // 0 serves as a "BUSY" inflate-in-progress indicator.
1415 
1416 
1417       // fetch the displaced mark from the owner's stack.
1418       // The owner can't die or unwind past the lock while our INFLATING
1419       // object is in the mark.  Furthermore the owner can't complete
1420       // an unlock on the object, either.
1421       markOop dmw = mark->displaced_mark_helper();
1422       // Catch if the object's header is not neutral (not locked and
1423       // not marked is what we care about here).
1424       assert(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1425 
1426       // Setup monitor fields to proper values -- prepare the monitor
1427       m->set_header(dmw);
1428 
1429       // Optimization: if the mark->locker stack address is associated
1430       // with this thread we could simply set m->_owner = Self.
1431       // Note that a thread can inflate an object
1432       // that it has stack-locked -- as might happen in wait() -- directly
1433       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1434       m->set_owner(mark->locker());
1435       m->set_object(object);
1436       // TODO-FIXME: assert BasicLock->dhw != 0.
1437 




1438       // Must preserve store ordering. The monitor state must
1439       // be stable at the time of publishing the monitor address.
1440       guarantee(object->mark() == markOopDesc::INFLATING(), "invariant");
1441       object->release_set_mark(markOopDesc::encode(m));
1442 
1443       // Hopefully the performance counters are allocated on distinct cache lines
1444       // to avoid false sharing on MP systems ...
1445       OM_PERFDATA_OP(Inflations, inc());
1446       if (log_is_enabled(Trace, monitorinflation)) {
1447         ResourceMark rm(Self);
1448         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1449                      INTPTR_FORMAT ", type='%s'", p2i(object),
1450                      p2i(object->mark()), object->klass()->external_name());
1451       }
1452       if (event.should_commit()) {
1453         post_monitor_inflate_event(&event, object, cause);
1454       }
1455       return m;

1456     }
1457 
1458     // CASE: neutral
1459     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1460     // If we know we're inflating for entry it's better to inflate by swinging a
1461     // pre-locked objectMonitor pointer into the object header.   A successful
1462     // CAS inflates the object *and* confers ownership to the inflating thread.
1463     // In the current implementation we use a 2-step mechanism where we CAS()
1464     // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1465     // An inflateTry() method that we could call from fast_enter() and slow_enter()
1466     // would be useful.
1467 
1468     // Catch if the object's header is not neutral (not locked and
1469     // not marked is what we care about here).
1470     assert(mark->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(mark));
1471     ObjectMonitor * m = omAlloc(Self);











1472     // prepare m for installation - set monitor to initial state
1473     m->Recycle();
1474     m->set_header(mark);
1475     m->set_owner(NULL);
1476     m->set_object(object);
1477     m->_recursions   = 0;
1478     m->_Responsible  = NULL;
1479     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1480 




1481     if (object->cas_set_mark(markOopDesc::encode(m), mark) != mark) {
1482       m->set_header(NULL);
1483       m->set_object(NULL);
1484       m->Recycle();


1485       omRelease(Self, m, true);
1486       m = NULL;
1487       continue;
1488       // interference - the markword changed - just retry.
1489       // The state-transitions are one-way, so there's no chance of
1490       // live-lock -- "Inflated" is an absorbing state.
1491     }
1492 
1493     // Hopefully the performance counters are allocated on distinct
1494     // cache lines to avoid false sharing on MP systems ...
1495     OM_PERFDATA_OP(Inflations, inc());
1496     if (log_is_enabled(Trace, monitorinflation)) {
1497       ResourceMark rm(Self);
1498       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
1499                    INTPTR_FORMAT ", type='%s'", p2i(object),
1500                    p2i(object->mark()), object->klass()->external_name());
1501     }
1502     if (event.should_commit()) {
1503       post_monitor_inflate_event(&event, object, cause);
1504     }
1505     return m;

1506   }
1507 }
1508 
1509 
1510 // We maintain a list of in-use monitors for each thread.
1511 //
1512 // deflate_thread_local_monitors() scans a single thread's in-use list, while
1513 // deflate_idle_monitors() scans only a global list of in-use monitors which
1514 // is populated only as a thread dies (see omFlush()).
1515 //
1516 // These operations are called at all safepoints, immediately after mutators
1517 // are stopped, but before any objects have moved. Collectively they traverse
1518 // the population of in-use monitors, deflating where possible. The scavenged
1519 // monitors are returned to the global monitor free list.
1520 //
1521 // Beware that we scavenge at *every* stop-the-world point. Having a large
1522 // number of monitors in-use could negatively impact performance. We also want
1523 // to minimize the total # of monitors in circulation, as they incur a small
1524 // footprint penalty.
1525 //
1526 // Perversely, the heap size -- and thus the STW safepoint rate --
1527 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1528 // which in turn can mean large(r) numbers of ObjectMonitors in circulation.
1529 // This is an unfortunate aspect of this design.
1530 




















1531 // Deflate a single monitor if not in-use
1532 // Return true if deflated, false if in-use
1533 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1534                                          ObjectMonitor** freeHeadp,
1535                                          ObjectMonitor** freeTailp) {
1536   bool deflated;
1537   // Normal case ... The monitor is associated with obj.
1538   const markOop mark = obj->mark();
1539   guarantee(mark == markOopDesc::encode(mid), "should match: mark="
1540             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, p2i(mark),
1541             p2i(markOopDesc::encode(mid)));
1542   // Make sure that mark->monitor() and markOopDesc::encode() agree:
1543   guarantee(mark->monitor() == mid, "should match: monitor()=" INTPTR_FORMAT
1544             ", mid=" INTPTR_FORMAT, p2i(mark->monitor()), p2i(mid));
1545   const markOop dmw = mid->header();
1546   guarantee(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1547 
1548   if (mid->is_busy()) {
1549     deflated = false;
1550   } else {
1551     // Deflate the monitor if it is no longer being used
1552     // It's idle - scavenge and return to the global free list
1553     // plain old deflation ...
1554     if (log_is_enabled(Trace, monitorinflation)) {
1555       ResourceMark rm;
1556       log_trace(monitorinflation)("deflate_monitor: "
1557                                   "object=" INTPTR_FORMAT ", mark="
1558                                   INTPTR_FORMAT ", type='%s'", p2i(obj),
1559                                   p2i(mark), obj->klass()->external_name());
1560     }
1561 
1562     // Restore the header back to obj
1563     obj->release_set_mark(dmw);
1564     mid->clear();
1565 
1566     assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT,
1567            p2i(mid->object()));

1568 
1569     // Move the object to the working free list defined by freeHeadp, freeTailp
1570     if (*freeHeadp == NULL) *freeHeadp = mid;
1571     if (*freeTailp != NULL) {
1572       ObjectMonitor * prevtail = *freeTailp;
1573       assert(prevtail->FreeNext == NULL, "cleaned up deflated?");
1574       prevtail->FreeNext = mid;
1575     }
1576     *freeTailp = mid;
1577     deflated = true;
1578   }
1579   return deflated;
1580 }
1581 












































































































































1582 // Walk a given monitor list, and deflate idle monitors
1583 // The given list could be a per-thread list or a global list
1584 // Caller acquires gListLock as needed.
1585 //
1586 // In the case of parallel processing of thread local monitor lists,
1587 // work is done by Threads::parallel_threads_do() which ensures that
1588 // each Java thread is processed by exactly one worker thread, and
1589 // thus avoid conflicts that would arise when worker threads would
1590 // process the same monitor lists concurrently.
1591 //
1592 // See also ParallelSPCleanupTask and
1593 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
1594 // Threads::parallel_java_threads_do() in thread.cpp.
1595 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** listHeadp,
1596                                              ObjectMonitor** freeHeadp,
1597                                              ObjectMonitor** freeTailp) {
1598   ObjectMonitor* mid;
1599   ObjectMonitor* next;
1600   ObjectMonitor* cur_mid_in_use = NULL;
1601   int deflated_count = 0;


1605     if (obj != NULL && deflate_monitor(mid, obj, freeHeadp, freeTailp)) {
1606       // if deflate_monitor succeeded,
1607       // extract from per-thread in-use list
1608       if (mid == *listHeadp) {
1609         *listHeadp = mid->FreeNext;
1610       } else if (cur_mid_in_use != NULL) {
1611         cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1612       }
1613       next = mid->FreeNext;
1614       mid->FreeNext = NULL;  // This mid is current tail in the freeHeadp list
1615       mid = next;
1616       deflated_count++;
1617     } else {
1618       cur_mid_in_use = mid;
1619       mid = mid->FreeNext;
1620     }
1621   }
1622   return deflated_count;
1623 }
1624 












































































1625 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
1626   counters->nInuse = 0;              // currently associated with objects
1627   counters->nInCirculation = 0;      // extant
1628   counters->nScavenged = 0;          // reclaimed (global and per-thread)
1629   counters->perThreadScavenged = 0;  // per-thread scavenge total
1630   counters->perThreadTimes = 0.0;    // per-thread scavenge times
1631 }
1632 
1633 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
1634   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");









1635   bool deflated = false;
1636 
1637   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
1638   ObjectMonitor * freeTailp = NULL;
1639   elapsedTimer timer;
1640 
1641   if (log_is_enabled(Info, monitorinflation)) {
1642     timer.start();
1643   }
1644 
1645   // Prevent omFlush from changing mids in Thread dtor's during deflation
1646   // And in case the vm thread is acquiring a lock during a safepoint
1647   // See e.g. 6320749
1648   Thread::muxAcquire(&gListLock, "deflate_idle_monitors");
1649 
1650   // Note: the thread-local monitors lists get deflated in
1651   // a separate pass. See deflate_thread_local_monitors().
1652 
1653   // For moribund threads, scan gOmInUseList
1654   int deflated_count = 0;


1667     // constant-time list splice - prepend scavenged segment to gFreeList
1668     freeTailp->FreeNext = gFreeList;
1669     gFreeList = freeHeadp;
1670   }
1671   Thread::muxRelease(&gListLock);
1672   timer.stop();
1673 
1674   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1675   LogStreamHandle(Info, monitorinflation) lsh_info;
1676   LogStream * ls = NULL;
1677   if (log_is_enabled(Debug, monitorinflation)) {
1678     ls = &lsh_debug;
1679   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
1680     ls = &lsh_info;
1681   }
1682   if (ls != NULL) {
1683     ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
1684   }
1685 }
1686 
























































































































1687 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
1688   // Report the cumulative time for deflating each thread's idle
1689   // monitors. Note: if the work is split among more than one
1690   // worker thread, then the reported time will likely be more
1691   // than a beginning to end measurement of the phase.


1692   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d", counters->perThreadTimes, counters->perThreadScavenged);
1693 





1694   gMonitorFreeCount += counters->nScavenged;
1695 




1696   if (log_is_enabled(Debug, monitorinflation)) {
1697     // exit_globals()'s call to audit_and_print_stats() is done
1698     // at the Info level.
1699     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
1700   } else if (log_is_enabled(Info, monitorinflation)) {
1701     Thread::muxAcquire(&gListLock, "finish_deflate_idle_monitors");
1702     log_info(monitorinflation)("gMonitorPopulation=%d, gOmInUseCount=%d, "
1703                                "gMonitorFreeCount=%d", gMonitorPopulation,
1704                                gOmInUseCount, gMonitorFreeCount);
1705     Thread::muxRelease(&gListLock);
1706   }
1707 
1708   ForceMonitorScavenge = 0;    // Reset
1709 
1710   OM_PERFDATA_OP(Deflations, inc(counters->nScavenged));
1711   OM_PERFDATA_OP(MonExtant, set_value(counters->nInCirculation));
1712 
1713   GVars.stwRandom = os::random();
1714   GVars.stwCycle++;



1715 }
1716 
1717 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
1718   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1719 












1720   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
1721   ObjectMonitor * freeTailp = NULL;
1722   elapsedTimer timer;
1723 
1724   if (log_is_enabled(Info, safepoint, cleanup) ||
1725       log_is_enabled(Info, monitorinflation)) {
1726     timer.start();
1727   }
1728 
1729   int deflated_count = deflate_monitor_list(thread->omInUseList_addr(), &freeHeadp, &freeTailp);
1730 
1731   Thread::muxAcquire(&gListLock, "deflate_thread_local_monitors");
1732 
1733   // Adjust counters
1734   counters->nInCirculation += thread->omInUseCount;
1735   thread->omInUseCount -= deflated_count;
1736   counters->nScavenged += deflated_count;
1737   counters->nInuse += thread->omInUseCount;
1738   counters->perThreadScavenged += deflated_count;
1739 


1908   } else {
1909     log_error(monitorinflation)("found monitor list errors: error_cnt=%d", error_cnt);
1910   }
1911 
1912   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
1913       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
1914     // When exiting this log output is at the Info level. When called
1915     // at a safepoint, this log output is at the Trace level since
1916     // there can be a lot of it.
1917     log_in_use_monitor_details(ls, on_exit);
1918   }
1919 
1920   ls->flush();
1921 
1922   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
1923 }
1924 
1925 // Check a free monitor entry; log any errors.
1926 void ObjectSynchronizer::chk_free_entry(JavaThread * jt, ObjectMonitor * n,
1927                                         outputStream * out, int *error_cnt_p) {
1928   if (n->is_busy()) {

1929     if (jt != NULL) {
1930       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
1931                     ": free per-thread monitor must not be busy.", p2i(jt),
1932                     p2i(n));
1933     } else {
1934       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
1935                     "must not be busy.", p2i(n));
1936     }
1937     *error_cnt_p = *error_cnt_p + 1;
1938   }
1939   if (n->header() != NULL) {
1940     if (jt != NULL) {
1941       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
1942                     ": free per-thread monitor must have NULL _header "
1943                     "field: _header=" INTPTR_FORMAT, p2i(jt), p2i(n),
1944                     p2i(n->header()));
1945     } else {

1946       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
1947                     "must have NULL _header field: _header=" INTPTR_FORMAT,
1948                     p2i(n), p2i(n->header()));
1949     }
1950     *error_cnt_p = *error_cnt_p + 1;
1951   }

1952   if (n->object() != NULL) {
1953     if (jt != NULL) {
1954       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
1955                     ": free per-thread monitor must have NULL _object "
1956                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
1957                     p2i(n->object()));
1958     } else {
1959       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
1960                     "must have NULL _object field: _object=" INTPTR_FORMAT,
1961                     p2i(n), p2i(n->object()));
1962     }
1963     *error_cnt_p = *error_cnt_p + 1;
1964   }
1965 }
1966 
1967 // Check the global free list and count; log the results of the checks.
1968 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
1969                                                         int *error_cnt_p) {
1970   int chkMonitorFreeCount = 0;
1971   for (ObjectMonitor * n = gFreeList; n != NULL; n = n->FreeNext) {


2097     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": omInUseCount=%d is not "
2098                   "equal to chkOmInUseCount=%d", p2i(jt), jt->omInUseCount,
2099                   chkOmInUseCount);
2100     *error_cnt_p = *error_cnt_p + 1;
2101   }
2102 }
2103 
2104 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
2105 // flags indicate why the entry is in-use, 'object' and 'object type'
2106 // indicate the associated object and its type.
2107 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out,
2108                                                     bool on_exit) {
2109   if (!on_exit) {
2110     // Not at VM exit so grab the global list lock.
2111     Thread::muxAcquire(&gListLock, "log_in_use_monitor_details");
2112   }
2113 
2114   if (gOmInUseCount > 0) {
2115     out->print_cr("In-use global monitor info:");
2116     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2117     out->print_cr("%18s  %s  %18s  %18s",
2118                   "monitor", "BHL", "object", "object type");
2119     out->print_cr("==================  ===  ==================  ==================");
2120     for (ObjectMonitor * n = gOmInUseList; n != NULL; n = n->FreeNext) {
2121       const oop obj = (oop) n->object();
2122       const markOop mark = n->header();
2123       ResourceMark rm;
2124       out->print_cr(INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT "  %s", p2i(n),
2125                     n->is_busy() != 0, mark->hash() != 0, n->owner() != NULL,
2126                     p2i(obj), obj->klass()->external_name());

2127     }
2128   }
2129 
2130   if (!on_exit) {
2131     Thread::muxRelease(&gListLock);
2132   }
2133 
2134   out->print_cr("In-use per-thread monitor info:");
2135   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2136   out->print_cr("%18s  %18s  %s  %18s  %18s",
2137                 "jt", "monitor", "BHL", "object", "object type");
2138   out->print_cr("==================  ==================  ===  ==================  ==================");
2139   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2140     for (ObjectMonitor * n = jt->omInUseList; n != NULL; n = n->FreeNext) {
2141       const oop obj = (oop) n->object();
2142       const markOop mark = n->header();
2143       ResourceMark rm;
2144       out->print_cr(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT
2145                     "  %s", p2i(jt), p2i(n), n->is_busy() != 0,
2146                     mark->hash() != 0, n->owner() != NULL, p2i(obj),
2147                     obj->klass()->external_name());
2148     }
2149   }
2150 
2151   out->flush();
2152 }
2153 
2154 // Log counts for the global and per-thread monitor lists and return
2155 // the population count.
2156 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
2157   int popCount = 0;
2158   out->print_cr("%18s  %10s  %10s  %10s",
2159                 "Global Lists:", "InUse", "Free", "Total");
2160   out->print_cr("==================  ==========  ==========  ==========");
2161   out->print_cr("%18s  %10d  %10d  %10d", "",
2162                 gOmInUseCount, gMonitorFreeCount, gMonitorPopulation);
2163   popCount += gOmInUseCount + gMonitorFreeCount;
2164 
2165   out->print_cr("%18s  %10s  %10s  %10s",
2166                 "Per-Thread Lists:", "InUse", "Free", "Provision");
2167   out->print_cr("==================  ==========  ==========  ==========");




 108 #endif // ndef DTRACE_ENABLED
 109 
 110 // This exists only as a workaround of dtrace bug 6254741
 111 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 112   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 113   return 0;
 114 }
 115 
 116 #define NINFLATIONLOCKS 256
 117 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 118 
 119 // global list of blocks of monitors
 120 PaddedEnd<ObjectMonitor> * volatile ObjectSynchronizer::gBlockList = NULL;
 121 // global monitor free list
 122 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL;
 123 // global monitor in-use list, for moribund threads,
 124 // monitors they inflated need to be scanned for deflation
 125 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL;
 126 // count of entries in gOmInUseList
 127 int ObjectSynchronizer::gOmInUseCount = 0;
 128 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false;
 129 bool volatile ObjectSynchronizer::_is_special_deflation_requested = false;
 130 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0;
 131 
 132 static volatile intptr_t gListLock = 0;      // protects global monitor lists
 133 static volatile int gMonitorFreeCount  = 0;  // # on gFreeList
 134 static volatile int gMonitorPopulation = 0;  // # Extant -- in circulation
 135 
 136 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 137 
 138 
 139 // =====================> Quick functions
 140 
 141 // The quick_* forms are special fast-path variants used to improve
 142 // performance.  In the simplest case, a "quick_*" implementation could
 143 // simply return false, in which case the caller will perform the necessary
 144 // state transitions and call the slow-path form.
 145 // The fast-path is designed to handle frequently arising cases in an efficient
 146 // manner and is just a degenerate "optimistic" variant of the slow-path.
 147 // returns true  -- to indicate the call was satisfied.
 148 // returns false -- to indicate the call needs the services of the slow-path.
 149 // A no-loitering ordinance is in effect for code in the quick_* family
 150 // operators: safepoints or indefinite blocking (blocking that might span a


 197   }
 198 
 199   // biased locking and any other IMS exception states take the slow-path
 200   return false;
 201 }
 202 
 203 
 204 // The LockNode emitted directly at the synchronization site would have
 205 // been too big if it were to have included support for the cases of inflated
 206 // recursive enter and exit, so they go here instead.
 207 // Note that we can't safely call AsyncPrintJavaStack() from within
 208 // quick_enter() as our thread state remains _in_Java.
 209 
 210 bool ObjectSynchronizer::quick_enter(oop obj, Thread * Self,
 211                                      BasicLock * lock) {
 212   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 213   assert(Self->is_Java_thread(), "invariant");
 214   assert(((JavaThread *) Self)->thread_state() == _thread_in_Java, "invariant");
 215   NoSafepointVerifier nsv;
 216   if (obj == NULL) return false;       // Need to throw NPE
 217 
 218   while (true) {
 219     const markOop mark = obj->mark();
 220 
 221     if (mark->has_monitor()) {
 222       ObjectMonitorHandle omh;
 223       if (!omh.save_om_ptr(obj, mark)) {
 224         // Lost a race with async deflation so try again.
 225         assert(AsyncDeflateIdleMonitors, "sanity check");
 226         continue;
 227       }
 228       ObjectMonitor * const m = omh.om_ptr();
 229       assert(oopDesc::equals((oop) m->object(), obj), "invariant");
 230       Thread * const owner = (Thread *) m->_owner;
 231 
 232       // Lock contention and Transactional Lock Elision (TLE) diagnostics
 233       // and observability
 234       // Case: light contention possibly amenable to TLE
 235       // Case: TLE inimical operations such as nested/recursive synchronization
 236 
 237       if (owner == Self) {
 238         m->_recursions++;
 239         return true;
 240       }
 241 
 242       // This Java Monitor is inflated so obj's header will never be
 243       // displaced to this thread's BasicLock. Make the displaced header
 244       // non-NULL so this BasicLock is not seen as recursive nor as
 245       // being locked. We do this unconditionally so that this thread's
 246       // BasicLock cannot be mis-interpreted by any stack walkers. For
 247       // performance reasons, stack walkers generally first check for
 248       // Biased Locking in the object's header, the second check is for
 249       // stack-locking in the object's header, the third check is for
 250       // recursive stack-locking in the displaced header in the BasicLock,
 251       // and last are the inflated Java Monitor (ObjectMonitor) checks.
 252       lock->set_displaced_header(markOopDesc::unused_mark());
 253 
 254       if (owner == NULL && Atomic::replace_if_null(Self, &(m->_owner))) {
 255         assert(m->_recursions == 0, "invariant");
 256         assert(m->_owner == Self, "invariant");
 257         return true;
 258       }
 259     }
 260     break;
 261   }
 262 
 263   // Note that we could inflate in quick_enter.
 264   // This is likely a useful optimization
 265   // Critically, in quick_enter() we must not:
 266   // -- perform bias revocation, or
 267   // -- block indefinitely, or
 268   // -- reach a safepoint
 269 
 270   return false;        // revert to slow-path
 271 }
 272 
 273 // -----------------------------------------------------------------------------
 274 //  Fast Monitor Enter/Exit
 275 // This the fast monitor enter. The interpreter and compiler use
 276 // some assembly copies of this code. Make sure update those code
 277 // if the following function is changed. The implementation is
 278 // extremely sensitive to race condition. Be careful.
 279 
 280 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock,
 281                                     bool attempt_rebias, TRAPS) {


 324         // does not own the Java Monitor.
 325         ObjectMonitor * m = mark->monitor();
 326         assert(((oop)(m->object()))->mark() == mark, "invariant");
 327         assert(m->is_entered(THREAD), "invariant");
 328       }
 329     }
 330 #endif
 331     return;
 332   }
 333 
 334   if (mark == (markOop) lock) {
 335     // If the object is stack-locked by the current thread, try to
 336     // swing the displaced header from the BasicLock back to the mark.
 337     assert(dhw->is_neutral(), "invariant");
 338     if (object->cas_set_mark(dhw, mark) == mark) {
 339       return;
 340     }
 341   }
 342 
 343   // We have to take the slow-path of possible inflation and then exit.
 344   ObjectMonitorHandle omh;
 345   inflate(&omh, THREAD, object, inflate_cause_vm_internal);
 346   omh.om_ptr()->exit(true, THREAD);
 347 }
 348 
 349 // -----------------------------------------------------------------------------
 350 // Interpreter/Compiler Slow Case
 351 // This routine is used to handle interpreter/compiler slow case
 352 // We don't need to use fast path here, because it must have been
 353 // failed in the interpreter/compiler code.
 354 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 355   markOop mark = obj->mark();
 356   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
 357 
 358   if (mark->is_neutral()) {
 359     // Anticipate successful CAS -- the ST of the displaced mark must
 360     // be visible <= the ST performed by the CAS.
 361     lock->set_displaced_header(mark);
 362     if (mark == obj()->cas_set_mark((markOop) lock, mark)) {
 363       return;
 364     }
 365     // Fall through to inflate() ...
 366   } else if (mark->has_locker() &&
 367              THREAD->is_lock_owned((address)mark->locker())) {
 368     assert(lock != mark->locker(), "must not re-lock the same lock");
 369     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
 370     lock->set_displaced_header(NULL);
 371     return;
 372   }
 373 
 374   // The object header will never be displaced to this lock,
 375   // so it does not matter what the value is, except that it
 376   // must be non-zero to avoid looking like a re-entrant lock,
 377   // and must not look locked either.
 378   lock->set_displaced_header(markOopDesc::unused_mark());
 379   ObjectMonitorHandle omh;
 380   inflate(&omh, THREAD, obj(), inflate_cause_monitor_enter);
 381   omh.om_ptr()->enter(THREAD);
 382 }
 383 
 384 // This routine is used to handle interpreter/compiler slow case
 385 // We don't need to use fast path here, because it must have
 386 // failed in the interpreter/compiler code. Simply use the heavy
 387 // weight monitor should be ok, unless someone find otherwise.
 388 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 389   fast_exit(object, lock, THREAD);
 390 }
 391 
 392 // -----------------------------------------------------------------------------
 393 // Class Loader  support to workaround deadlocks on the class loader lock objects
 394 // Also used by GC
 395 // complete_exit()/reenter() are used to wait on a nested lock
 396 // i.e. to give up an outer lock completely and then re-enter
 397 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 398 //  1) complete_exit lock1 - saving recursion count
 399 //  2) wait on lock2
 400 //  3) when notified on lock2, unlock lock2
 401 //  4) reenter lock1 with original recursion count
 402 //  5) lock lock2
 403 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 404 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 405   if (UseBiasedLocking) {
 406     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 407     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 408   }
 409 
 410   ObjectMonitorHandle omh;
 411   inflate(&omh, THREAD, obj(), inflate_cause_vm_internal);
 412   intptr_t ret_code = omh.om_ptr()->complete_exit(THREAD);
 413   return ret_code;
 414 }
 415 
 416 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 417 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 418   if (UseBiasedLocking) {
 419     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 420     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 421   }
 422 
 423   ObjectMonitorHandle omh;
 424   inflate(&omh, THREAD, obj(), inflate_cause_vm_internal);
 425   omh.om_ptr()->reenter(recursion, THREAD);
 426 }
 427 // -----------------------------------------------------------------------------
 428 // JNI locks on java objects
 429 // NOTE: must use heavy weight monitor to handle jni monitor enter
 430 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 431   // the current locking is from JNI instead of Java code
 432   if (UseBiasedLocking) {
 433     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 434     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 435   }
 436   THREAD->set_current_pending_monitor_is_from_java(false);
 437   ObjectMonitorHandle omh;
 438   inflate(&omh, THREAD, obj(), inflate_cause_jni_enter);
 439   omh.om_ptr()->enter(THREAD);
 440   THREAD->set_current_pending_monitor_is_from_java(true);
 441 }
 442 
 443 // NOTE: must use heavy weight monitor to handle jni monitor exit
 444 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 445   if (UseBiasedLocking) {
 446     Handle h_obj(THREAD, obj);
 447     BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
 448     obj = h_obj();
 449   }
 450   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 451 
 452   ObjectMonitorHandle omh;
 453   inflate(&omh, THREAD, obj, inflate_cause_jni_exit);
 454   ObjectMonitor * monitor = omh.om_ptr();
 455   // If this thread has locked the object, exit the monitor.  Note:  can't use
 456   // monitor->check(CHECK); must exit even if an exception is pending.
 457   if (monitor->check(THREAD)) {
 458     monitor->exit(true, THREAD);
 459   }
 460 }
 461 
 462 // -----------------------------------------------------------------------------
 463 // Internal VM locks on java objects
 464 // standard constructor, allows locking failures
 465 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
 466   _dolock = doLock;
 467   _thread = thread;
 468   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
 469   _obj = obj;
 470 
 471   if (_dolock) {
 472     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 473   }
 474 }
 475 
 476 ObjectLocker::~ObjectLocker() {
 477   if (_dolock) {
 478     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 479   }
 480 }
 481 
 482 
 483 // -----------------------------------------------------------------------------
 484 //  Wait/Notify/NotifyAll
 485 // NOTE: must use heavy weight monitor to handle wait()
 486 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 487   if (UseBiasedLocking) {
 488     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 489     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 490   }
 491   if (millis < 0) {
 492     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 493   }
 494   ObjectMonitorHandle omh;
 495   inflate(&omh, THREAD, obj(), inflate_cause_wait);
 496   ObjectMonitor * monitor = omh.om_ptr();
 497 
 498   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 499   monitor->wait(millis, true, THREAD);
 500 
 501   // This dummy call is in place to get around dtrace bug 6254741.  Once
 502   // that's fixed we can uncomment the following line, remove the call
 503   // and change this function back into a "void" func.
 504   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 505   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 506   return ret_code;
 507 }
 508 
 509 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) {
 510   if (UseBiasedLocking) {
 511     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 512     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 513   }
 514   if (millis < 0) {
 515     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 516   }
 517   ObjectMonitorHandle omh;
 518   inflate(&omh, THREAD, obj(), inflate_cause_wait);
 519   omh.om_ptr()->wait(millis, false, THREAD);
 520 }
 521 
 522 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 523   if (UseBiasedLocking) {
 524     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 525     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 526   }
 527 
 528   markOop mark = obj->mark();
 529   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 530     return;
 531   }
 532   ObjectMonitorHandle omh;
 533   inflate(&omh, THREAD, obj(), inflate_cause_notify);
 534   omh.om_ptr()->notify(THREAD);
 535 }
 536 
 537 // NOTE: see comment of notify()
 538 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 539   if (UseBiasedLocking) {
 540     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 541     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 542   }
 543 
 544   markOop mark = obj->mark();
 545   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 546     return;
 547   }
 548   ObjectMonitorHandle omh;
 549   inflate(&omh, THREAD, obj(), inflate_cause_notify);
 550   omh.om_ptr()->notifyAll(THREAD);
 551 }
 552 
 553 // -----------------------------------------------------------------------------
 554 // Hash Code handling
 555 //
 556 // Performance concern:
 557 // OrderAccess::storestore() calls release() which at one time stored 0
 558 // into the global volatile OrderAccess::dummy variable. This store was
 559 // unnecessary for correctness. Many threads storing into a common location
 560 // causes considerable cache migration or "sloshing" on large SMP systems.
 561 // As such, I avoided using OrderAccess::storestore(). In some cases
 562 // OrderAccess::fence() -- which incurs local latency on the executing
 563 // processor -- is a better choice as it scales on SMP systems.
 564 //
 565 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 566 // a discussion of coherency costs. Note that all our current reference
 567 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 568 // x64, and SPARC.
 569 //
 570 // As a general policy we use "volatile" to control compiler-based reordering


 724       Handle hobj(Self, obj);
 725       // Relaxing assertion for bug 6320749.
 726       assert(Universe::verify_in_progress() ||
 727              !SafepointSynchronize::is_at_safepoint(),
 728              "biases should not be seen by VM thread here");
 729       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
 730       obj = hobj();
 731       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 732     }
 733   }
 734 
 735   // hashCode() is a heap mutator ...
 736   // Relaxing assertion for bug 6320749.
 737   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 738          !SafepointSynchronize::is_at_safepoint(), "invariant");
 739   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 740          Self->is_Java_thread() , "invariant");
 741   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 742          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 743 
 744   while (true) {
 745     ObjectMonitor* monitor = NULL;
 746     markOop temp, test;
 747     intptr_t hash;
 748     markOop mark = ReadStableMark(obj);
 749 
 750     // object should remain ineligible for biased locking
 751     assert(!mark->has_bias_pattern(), "invariant");
 752 
 753     if (mark->is_neutral()) {
 754       hash = mark->hash();              // this is a normal header
 755       if (hash != 0) {                  // if it has hash, just return it
 756         return hash;
 757       }
 758       hash = get_next_hash(Self, obj);  // allocate a new hash code
 759       temp = mark->copy_set_hash(hash); // merge the hash code into header
 760       // use (machine word version) atomic operation to install the hash
 761       test = obj->cas_set_mark(temp, mark);
 762       if (test == mark) {
 763         return hash;
 764       }
 765       // If atomic operation failed, we must inflate the header
 766       // into heavy weight monitor. We could add more code here
 767       // for fast path, but it does not worth the complexity.
 768     } else if (mark->has_monitor()) {
 769       ObjectMonitorHandle omh;
 770       if (!omh.save_om_ptr(obj, mark)) {
 771         // Lost a race with async deflation so try again.
 772         assert(AsyncDeflateIdleMonitors, "sanity check");
 773         continue;
 774       }
 775       monitor = omh.om_ptr();
 776       temp = monitor->header();
 777       assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 778       hash = temp->hash();
 779       if (hash != 0) {
 780         return hash;
 781       }
 782       // Skip to the following code to reduce code size
 783     } else if (Self->is_lock_owned((address)mark->locker())) {
 784       temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
 785       assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 786       hash = temp->hash();              // by current thread, check if the displaced
 787       if (hash != 0) {                  // header contains hash code
 788         return hash;
 789       }
 790       // WARNING:
 791       // The displaced header in the BasicLock on a thread's stack
 792       // is strictly immutable. It CANNOT be changed in ANY cases.
 793       // So we have to inflate the stack lock into an ObjectMonitor
 794       // even if the current thread owns the lock. The BasicLock on
 795       // a thread's stack can be asynchronously read by other threads
 796       // during an inflate() call so any change to that stack memory
 797       // may not propagate to other threads correctly.
 798     }
 799 
 800     // Inflate the monitor to set hash code
 801     ObjectMonitorHandle omh;
 802     inflate(&omh, Self, obj, inflate_cause_hash_code);
 803     monitor = omh.om_ptr();
 804     // Load displaced header and check it has hash code
 805     mark = monitor->header();
 806     assert(mark->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(mark));
 807     hash = mark->hash();
 808     if (hash == 0) {
 809       hash = get_next_hash(Self, obj);
 810       temp = mark->copy_set_hash(hash); // merge hash code into header
 811       assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 812       test = Atomic::cmpxchg(temp, monitor->header_addr(), mark);
 813       if (test != mark) {
 814         // The only non-deflation update to the ObjectMonitor's
 815         // header/dmw field is to merge in the hash code. If someone
 816         // adds a new usage of the header/dmw field, please update
 817         // this code.
 818         // ObjectMonitor::install_displaced_markword_in_object()
 819         // does mark the header/dmw field as part of async deflation,
 820         // but that protocol cannot happen now due to the
 821         // ObjectMonitorHandle above.
 822         hash = test->hash();
 823         assert(test->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(test));
 824         assert(hash != 0, "Trivial unexpected object/monitor header usage.");
 825       }
 826     }
 827     // We finally get the hash
 828     return hash;
 829   }
 830 }
 831 
 832 // Deprecated -- use FastHashCode() instead.
 833 
 834 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 835   return FastHashCode(Thread::current(), obj());
 836 }
 837 
 838 
 839 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 840                                                    Handle h_obj) {
 841   if (UseBiasedLocking) {
 842     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
 843     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 844   }
 845 
 846   assert(thread == JavaThread::current(), "Can only be called on current thread");
 847   oop obj = h_obj();
 848 
 849   while (true) {
 850     markOop mark = ReadStableMark(obj);
 851 
 852     // Uncontended case, header points to stack
 853     if (mark->has_locker()) {
 854       return thread->is_lock_owned((address)mark->locker());
 855     }
 856     // Contended case, header points to ObjectMonitor (tagged pointer)
 857     if (mark->has_monitor()) {
 858       ObjectMonitorHandle omh;
 859       if (!omh.save_om_ptr(obj, mark)) {
 860         // Lost a race with async deflation so try again.
 861         assert(AsyncDeflateIdleMonitors, "sanity check");
 862         continue;
 863       }
 864       bool ret_code = omh.om_ptr()->is_entered(thread) != 0;
 865       return ret_code;
 866     }
 867     // Unlocked case, header in place
 868     assert(mark->is_neutral(), "sanity check");
 869     return false;
 870   }
 871 }
 872 
 873 // Be aware of this method could revoke bias of the lock object.
 874 // This method queries the ownership of the lock handle specified by 'h_obj'.
 875 // If the current thread owns the lock, it returns owner_self. If no
 876 // thread owns the lock, it returns owner_none. Otherwise, it will return
 877 // owner_other.
 878 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 879 (JavaThread *self, Handle h_obj) {
 880   // The caller must beware this method can revoke bias, and
 881   // revocation can result in a safepoint.
 882   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 883   assert(self->thread_state() != _thread_blocked, "invariant");
 884 
 885   // Possible mark states: neutral, biased, stack-locked, inflated
 886 
 887   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
 888     // CASE: biased
 889     BiasedLocking::revoke_and_rebias(h_obj, false, self);
 890     assert(!h_obj->mark()->has_bias_pattern(),
 891            "biases should be revoked by now");
 892   }
 893 
 894   assert(self == JavaThread::current(), "Can only be called on current thread");
 895   oop obj = h_obj();
 896 
 897   while (true) {
 898     markOop mark = ReadStableMark(obj);
 899 
 900     // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 901     if (mark->has_locker()) {
 902       return self->is_lock_owned((address)mark->locker()) ?
 903         owner_self : owner_other;
 904     }
 905 
 906     // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor.
 907     // The Object:ObjectMonitor relationship is stable as long as we're
 908     // not at a safepoint and AsyncDeflateIdleMonitors is false.
 909     if (mark->has_monitor()) {
 910       ObjectMonitorHandle omh;
 911       if (!omh.save_om_ptr(obj, mark)) {
 912         // Lost a race with async deflation so try again.
 913         assert(AsyncDeflateIdleMonitors, "sanity check");
 914         continue;
 915       }
 916       ObjectMonitor * monitor = omh.om_ptr();
 917       void * owner = monitor->_owner;
 918       if (owner == NULL) return owner_none;
 919       return (owner == self ||
 920               self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 921     }
 922 
 923     // CASE: neutral
 924     assert(mark->is_neutral(), "sanity check");
 925     return owner_none;           // it's unlocked
 926   }
 927 }
 928 
 929 // FIXME: jvmti should call this
 930 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
 931   if (UseBiasedLocking) {
 932     if (SafepointSynchronize::is_at_safepoint()) {
 933       BiasedLocking::revoke_at_safepoint(h_obj);
 934     } else {
 935       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
 936     }
 937     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 938   }
 939 
 940   oop obj = h_obj();

 941 
 942   while (true) {
 943     address owner = NULL;
 944     markOop mark = ReadStableMark(obj);
 945 
 946     // Uncontended case, header points to stack
 947     if (mark->has_locker()) {
 948       owner = (address) mark->locker();
 949     }
 950 
 951     // Contended case, header points to ObjectMonitor (tagged pointer)
 952     else if (mark->has_monitor()) {
 953       ObjectMonitorHandle omh;
 954       if (!omh.save_om_ptr(obj, mark)) {
 955         // Lost a race with async deflation so try again.
 956         assert(AsyncDeflateIdleMonitors, "sanity check");
 957         continue;
 958       }
 959       ObjectMonitor* monitor = omh.om_ptr();
 960       assert(monitor != NULL, "monitor should be non-null");
 961       owner = (address) monitor->owner();
 962     }
 963 
 964     if (owner != NULL) {
 965       // owning_thread_from_monitor_owner() may also return NULL here
 966       return Threads::owning_thread_from_monitor_owner(t_list, owner);
 967     }
 968 
 969     // Unlocked case, header in place
 970     // Cannot have assertion since this object may have been
 971     // locked by another thread when reaching here.
 972     // assert(mark->is_neutral(), "sanity check");
 973 
 974     return NULL;
 975   }
 976 }
 977 
 978 // Visitors ...
 979 
 980 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 981   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
 982   while (block != NULL) {
 983     assert(block->object() == CHAINMARKER, "must be a block header");
 984     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 985       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
 986       if (mid->is_active()) {
 987         ObjectMonitorHandle omh(mid);
 988 
 989         if (mid->object() == NULL ||
 990             (AsyncDeflateIdleMonitors && mid->_owner == DEFLATER_MARKER)) {
 991           // Only process with closure if the object is set.
 992           // For async deflation, race here if monitor is not owned!
 993           // The above ref_count bump (in ObjectMonitorHandle ctr)
 994           // will cause subsequent async deflation to skip it.
 995           // However, previous or concurrent async deflation is a race.
 996           continue;
 997         }
 998         closure->do_monitor(mid);
 999       }
1000     }
1001     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
1002   }
1003 }
1004 
1005 // Get the next block in the block list.
1006 static inline PaddedEnd<ObjectMonitor>* next(PaddedEnd<ObjectMonitor>* block) {
1007   assert(block->object() == CHAINMARKER, "must be a block header");
1008   block = (PaddedEnd<ObjectMonitor>*) block->FreeNext;
1009   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
1010   return block;
1011 }
1012 
1013 static bool monitors_used_above_threshold() {
1014   if (gMonitorPopulation == 0) {
1015     return false;
1016   }
1017   if (MonitorUsedDeflationThreshold > 0) {
1018     int monitors_used = gMonitorPopulation - gMonitorFreeCount;
1019     int monitor_usage = (monitors_used * 100LL) / gMonitorPopulation;
1020     return monitor_usage > MonitorUsedDeflationThreshold;
1021   }
1022   return false;
1023 }
1024 
1025 bool ObjectSynchronizer::is_async_deflation_needed() {
1026   if (!AsyncDeflateIdleMonitors) {
1027     return false;
1028   }
1029   if (is_async_deflation_requested()) {
1030     // Async deflation request.
1031     return true;
1032   }
1033   if (AsyncDeflationInterval > 0 &&
1034       time_since_last_async_deflation_ms() > AsyncDeflationInterval &&
1035       monitors_used_above_threshold()) {
1036     // It's been longer than our specified deflate interval and there
1037     // are too many monitors in use. We don't deflate more frequently
1038     // than AsyncDeflationInterval (unless is_async_deflation_requested)
1039     // in order to not swamp the ServiceThread.
1040     _last_async_deflation_time_ns = os::javaTimeNanos();
1041     return true;
1042   }
1043   return false;
1044 }
1045 
1046 bool ObjectSynchronizer::is_safepoint_deflation_needed() {
1047   if (!AsyncDeflateIdleMonitors) {
1048     if (monitors_used_above_threshold()) {
1049       // Too many monitors in use.
1050       return true;
1051     }
1052     return false;
1053   }
1054   if (is_special_deflation_requested()) {
1055     // For AsyncDeflateIdleMonitors only do a safepoint deflation
1056     // if there is a special deflation request.
1057     return true;
1058   }
1059   return false;
1060 }
1061 
1062 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1063   return (os::javaTimeNanos() - _last_async_deflation_time_ns) / (NANOUNITS / MILLIUNITS);
1064 }
1065 
1066 void ObjectSynchronizer::oops_do(OopClosure* f) {
1067   // We only scan the global used list here (for moribund threads), and
1068   // the thread-local monitors in Thread::oops_do().
1069   global_used_oops_do(f);
1070 }
1071 
1072 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
1073   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1074   list_oops_do(gOmInUseList, f);
1075 }
1076 
1077 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
1078   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1079   list_oops_do(thread->omInUseList, f);
1080 }
1081 
1082 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) {
1083   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1084   ObjectMonitor* mid;
1085   for (mid = list; mid != NULL; mid = mid->FreeNext) {


1125 // See also: GuaranteedSafepointInterval
1126 //
1127 // The current implementation uses asynchronous VM operations.
1128 
1129 static void InduceScavenge(Thread * Self, const char * Whence) {
1130   // Induce STW safepoint to trim monitors
1131   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1132   // More precisely, trigger an asynchronous STW safepoint as the number
1133   // of active monitors passes the specified threshold.
1134   // TODO: assert thread state is reasonable
1135 
1136   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
1137     // Induce a 'null' safepoint to scavenge monitors
1138     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
1139     // to the VMthread and have a lifespan longer than that of this activation record.
1140     // The VMThread will delete the op when completed.
1141     VMThread::execute(new VM_ScavengeMonitors());
1142   }
1143 }
1144 
1145 ObjectMonitor* ObjectSynchronizer::omAlloc(Thread * Self,
1146                                            const InflateCause cause) {
1147   // A large MAXPRIVATE value reduces both list lock contention
1148   // and list coherency traffic, but also tends to increase the
1149   // number of objectMonitors in circulation as well as the STW
1150   // scavenge costs.  As usual, we lean toward time in space-time
1151   // tradeoffs.
1152   const int MAXPRIVATE = 1024;
1153 
1154   if (AsyncDeflateIdleMonitors) {
1155     JavaThread * jt = (JavaThread *)Self;
1156     if (jt->omShouldDeflateIdleMonitors && jt->omInUseCount > 0 &&
1157         cause != inflate_cause_vm_internal) {
1158       // Deflate any per-thread idle monitors for this JavaThread if
1159       // this is not an internal inflation; internal inflations can
1160       // occur in places where it is not safe to pause for a safepoint.
1161       // Clean up your own mess. (Gibbs Rule 45) Otherwise, skip this
1162       // deflation. deflate_global_idle_monitors_using_JT() is called
1163       // by the ServiceThread.
1164       debug_only(jt->check_for_valid_safepoint_state(false);)
1165       ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT();
1166     }
1167   }
1168 
1169   for (;;) {
1170     ObjectMonitor * m;
1171 
1172     // 1: try to allocate from the thread's local omFreeList.
1173     // Threads will attempt to allocate first from their local list, then
1174     // from the global list, and only after those attempts fail will the thread
1175     // attempt to instantiate new monitors.   Thread-local free lists take
1176     // heat off the gListLock and improve allocation latency, as well as reducing
1177     // coherency traffic on the shared global list.
1178     m = Self->omFreeList;
1179     if (m != NULL) {
1180       Self->omFreeList = m->FreeNext;
1181       Self->omFreeCount--;
1182       guarantee(m->object() == NULL, "invariant");
1183       m->set_allocation_state(ObjectMonitor::New);
1184       m->FreeNext = Self->omInUseList;
1185       Self->omInUseList = m;
1186       Self->omInUseCount++;
1187       return m;
1188     }
1189 
1190     // 2: try to allocate from the global gFreeList
1191     // CONSIDER: use muxTry() instead of muxAcquire().
1192     // If the muxTry() fails then drop immediately into case 3.
1193     // If we're using thread-local free lists then try
1194     // to reprovision the caller's free list.
1195     if (gFreeList != NULL) {
1196       // Reprovision the thread's omFreeList.
1197       // Use bulk transfers to reduce the allocation rate and heat
1198       // on various locks.
1199       Thread::muxAcquire(&gListLock, "omAlloc(1)");
1200       for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL;) {
1201         gMonitorFreeCount--;
1202         ObjectMonitor * take = gFreeList;
1203         gFreeList = take->FreeNext;
1204         guarantee(take->object() == NULL, "invariant");
1205         if (AsyncDeflateIdleMonitors) {
1206           // Clear any values we allowed to linger during async deflation.
1207           take->_header = NULL;
1208           take->set_owner(NULL);
1209 
1210           if (take->ref_count() < 0) {
1211             // Add back max_jint to restore the ref_count field to its
1212             // proper value.
1213             Atomic::add(max_jint, &take->_ref_count);
1214 
1215             assert(take->ref_count() >= 0, "must not be negative: ref_count=%d",
1216                    take->ref_count());
1217           }
1218         }
1219         guarantee(!take->is_busy(), "invariant");
1220         take->Recycle();
1221         assert(take->is_free(), "invariant");
1222         omRelease(Self, take, false);
1223       }
1224       Thread::muxRelease(&gListLock);
1225       Self->omFreeProvision += 1 + (Self->omFreeProvision/2);
1226       if (Self->omFreeProvision > MAXPRIVATE) Self->omFreeProvision = MAXPRIVATE;
1227 
1228       const int mx = MonitorBound;
1229       if (mx > 0 && (gMonitorPopulation-gMonitorFreeCount) > mx) {
1230         // We can't safely induce a STW safepoint from omAlloc() as our thread
1231         // state may not be appropriate for such activities and callers may hold
1232         // naked oops, so instead we defer the action.
1233         InduceScavenge(Self, "omAlloc");
1234       }
1235       continue;
1236     }
1237 
1238     // 3: allocate a block of new ObjectMonitors
1239     // Both the local and global free lists are empty -- resort to malloc().
1240     // In the current implementation objectMonitors are TSM - immortal.
1241     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want


1254 
1255     // NOTE: (almost) no way to recover if allocation failed.
1256     // We might be able to induce a STW safepoint and scavenge enough
1257     // objectMonitors to permit progress.
1258     if (temp == NULL) {
1259       vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR,
1260                             "Allocate ObjectMonitors");
1261     }
1262     (void)memset((void *) temp, 0, neededsize);
1263 
1264     // Format the block.
1265     // initialize the linked list, each monitor points to its next
1266     // forming the single linked free list, the very first monitor
1267     // will points to next block, which forms the block list.
1268     // The trick of using the 1st element in the block as gBlockList
1269     // linkage should be reconsidered.  A better implementation would
1270     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1271 
1272     for (int i = 1; i < _BLOCKSIZE; i++) {
1273       temp[i].FreeNext = (ObjectMonitor *)&temp[i+1];
1274       assert(temp[i].is_free(), "invariant");
1275     }
1276 
1277     // terminate the last monitor as the end of list
1278     temp[_BLOCKSIZE - 1].FreeNext = NULL;
1279 
1280     // Element [0] is reserved for global list linkage
1281     temp[0].set_object(CHAINMARKER);
1282 
1283     // Consider carving out this thread's current request from the
1284     // block in hand.  This avoids some lock traffic and redundant
1285     // list activity.
1286 
1287     // Acquire the gListLock to manipulate gBlockList and gFreeList.
1288     // An Oyama-Taura-Yonezawa scheme might be more efficient.
1289     Thread::muxAcquire(&gListLock, "omAlloc(2)");
1290     gMonitorPopulation += _BLOCKSIZE-1;
1291     gMonitorFreeCount += _BLOCKSIZE-1;
1292 
1293     // Add the new block to the list of extant blocks (gBlockList).
1294     // The very first objectMonitor in a block is reserved and dedicated.


1297     // There are lock-free uses of gBlockList so make sure that
1298     // the previous stores happen before we update gBlockList.
1299     OrderAccess::release_store(&gBlockList, temp);
1300 
1301     // Add the new string of objectMonitors to the global free list
1302     temp[_BLOCKSIZE - 1].FreeNext = gFreeList;
1303     gFreeList = temp + 1;
1304     Thread::muxRelease(&gListLock);
1305   }
1306 }
1307 
1308 // Place "m" on the caller's private per-thread omFreeList.
1309 // In practice there's no need to clamp or limit the number of
1310 // monitors on a thread's omFreeList as the only time we'll call
1311 // omRelease is to return a monitor to the free list after a CAS
1312 // attempt failed.  This doesn't allow unbounded #s of monitors to
1313 // accumulate on a thread's free list.
1314 //
1315 // Key constraint: all ObjectMonitors on a thread's free list and the global
1316 // free list must have their object field set to null. This prevents the
1317 // scavenger -- deflate_monitor_list() or deflate_monitor_list_using_JT()
1318 // -- from reclaiming them while we are trying to release them.
1319 
1320 void ObjectSynchronizer::omRelease(Thread * Self, ObjectMonitor * m,
1321                                    bool fromPerThreadAlloc) {
1322   guarantee(m->header() == NULL, "invariant");
1323   guarantee(m->object() == NULL, "invariant");
1324   guarantee(((m->is_busy()|m->_recursions) == 0), "freeing in-use monitor");
1325   m->set_allocation_state(ObjectMonitor::Free);
1326   // Remove from omInUseList
1327   if (fromPerThreadAlloc) {
1328     ObjectMonitor* cur_mid_in_use = NULL;
1329     bool extracted = false;
1330     for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; cur_mid_in_use = mid, mid = mid->FreeNext) {
1331       if (m == mid) {
1332         // extract from per-thread in-use list
1333         if (mid == Self->omInUseList) {
1334           Self->omInUseList = mid->FreeNext;
1335         } else if (cur_mid_in_use != NULL) {
1336           cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1337         }
1338         extracted = true;
1339         Self->omInUseCount--;
1340         break;
1341       }
1342     }
1343     assert(extracted, "Should have extracted from in-use list");
1344   }
1345 
1346   // FreeNext is used for both omInUseList and omFreeList, so clear old before setting new
1347   m->FreeNext = Self->omFreeList;
1348   guarantee(m->is_free(), "invariant");
1349   Self->omFreeList = m;
1350   Self->omFreeCount++;
1351 }
1352 
1353 // Return the monitors of a moribund thread's local free list to
1354 // the global free list.  Typically a thread calls omFlush() when
1355 // it's dying.  We could also consider having the VM thread steal
1356 // monitors from threads that have not run java code over a few
1357 // consecutive STW safepoints.  Relatedly, we might decay
1358 // omFreeProvision at STW safepoints.
1359 //
1360 // Also return the monitors of a moribund thread's omInUseList to
1361 // a global gOmInUseList under the global list lock so these
1362 // will continue to be scanned.
1363 //
1364 // We currently call omFlush() from Threads::remove() _before the thread
1365 // has been excised from the thread list and is no longer a mutator.
1366 // This means that omFlush() cannot run concurrently with a safepoint and
1367 // interleave with the deflate_idle_monitors scavenge operator. In particular,
1368 // this ensures that the thread's monitors are scanned by a GC safepoint,
1369 // either via Thread::oops_do() (if safepoint happens before omFlush()) or via
1370 // ObjectSynchronizer::oops_do() (if it happens after omFlush() and the thread's
1371 // monitors have been transferred to the global in-use list).
1372 //
1373 // With AsyncDeflateIdleMonitors, deflate_global_idle_monitors_using_JT()
1374 // and deflate_per_thread_idle_monitors_using_JT() (in another thread) can
1375 // run at the same time as omFlush() so we have to be careful.
1376 
1377 void ObjectSynchronizer::omFlush(Thread * Self) {
1378   ObjectMonitor * list = Self->omFreeList;  // Null-terminated SLL
1379   ObjectMonitor * tail = NULL;
1380   int tally = 0;
1381   if (list != NULL) {
1382     ObjectMonitor * s;
1383     // The thread is going away, the per-thread free monitors
1384     // are freed via set_owner(NULL)
1385     // Link them to tail, which will be linked into the global free list
1386     // gFreeList below, under the gListLock
1387     for (s = list; s != NULL; s = s->FreeNext) {
1388       tally++;
1389       tail = s;
1390       guarantee(s->object() == NULL, "invariant");
1391       guarantee(!s->is_busy(), "invariant");
1392       s->set_owner(NULL);   // redundant but good hygiene
1393     }
1394     guarantee(tail != NULL, "invariant");
1395     ADIM_guarantee(Self->omFreeCount == tally, "free-count off");
1396     Self->omFreeList = NULL;
1397     Self->omFreeCount = 0;
1398   }
1399 
1400   ObjectMonitor * inUseList = Self->omInUseList;
1401   ObjectMonitor * inUseTail = NULL;
1402   int inUseTally = 0;
1403   if (inUseList != NULL) {
1404     ObjectMonitor *cur_om;
1405     // The thread is going away, however the omInUseList inflated
1406     // monitors may still be in-use by other threads.
1407     // Link them to inUseTail, which will be linked into the global in-use list
1408     // gOmInUseList below, under the gListLock
1409     for (cur_om = inUseList; cur_om != NULL; cur_om = cur_om->FreeNext) {
1410       inUseTail = cur_om;
1411       inUseTally++;
1412       ADIM_guarantee(cur_om->is_active(), "invariant");
1413     }
1414     guarantee(inUseTail != NULL, "invariant");
1415     ADIM_guarantee(Self->omInUseCount == inUseTally, "in-use count off");
1416     Self->omInUseList = NULL;
1417     Self->omInUseCount = 0;
1418   }
1419 
1420   Thread::muxAcquire(&gListLock, "omFlush");
1421   if (tail != NULL) {
1422     tail->FreeNext = gFreeList;
1423     gFreeList = list;
1424     gMonitorFreeCount += tally;
1425   }
1426 
1427   if (inUseTail != NULL) {
1428     inUseTail->FreeNext = gOmInUseList;
1429     gOmInUseList = inUseList;
1430     gOmInUseCount += inUseTally;
1431   }
1432 
1433   Thread::muxRelease(&gListLock);
1434 
1435   LogStreamHandle(Debug, monitorinflation) lsh_debug;


1443   }
1444   if (ls != NULL) {
1445     ls->print_cr("omFlush: jt=" INTPTR_FORMAT ", free_monitor_tally=%d"
1446                  ", in_use_monitor_tally=%d" ", omFreeProvision=%d",
1447                  p2i(Self), tally, inUseTally, Self->omFreeProvision);
1448   }
1449 }
1450 
1451 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1452                                        const oop obj,
1453                                        ObjectSynchronizer::InflateCause cause) {
1454   assert(event != NULL, "invariant");
1455   assert(event->should_commit(), "invariant");
1456   event->set_monitorClass(obj->klass());
1457   event->set_address((uintptr_t)(void*)obj);
1458   event->set_cause((u1)cause);
1459   event->commit();
1460 }
1461 
1462 // Fast path code shared by multiple functions
1463 void ObjectSynchronizer::inflate_helper(ObjectMonitorHandle * omh_p, oop obj) {
1464   while (true) {
1465     markOop mark = obj->mark();
1466     if (mark->has_monitor()) {
1467       if (!omh_p->save_om_ptr(obj, mark)) {
1468         // Lost a race with async deflation so try again.
1469         assert(AsyncDeflateIdleMonitors, "sanity check");
1470         continue;
1471       }
1472       ObjectMonitor * monitor = omh_p->om_ptr();
1473       assert(ObjectSynchronizer::verify_objmon_isinpool(monitor), "monitor is invalid");
1474       markOop dmw = monitor->header();
1475       assert(dmw->is_neutral(), "sanity check: header=" INTPTR_FORMAT, p2i(dmw));
1476       return;
1477     }
1478     inflate(omh_p, Thread::current(), obj, inflate_cause_vm_internal);
1479     return;
1480   }

1481 }
1482 
1483 void ObjectSynchronizer::inflate(ObjectMonitorHandle * omh_p, Thread * Self,
1484                                  oop object, const InflateCause cause) {

1485   // Inflate mutates the heap ...
1486   // Relaxing assertion for bug 6320749.
1487   assert(Universe::verify_in_progress() ||
1488          !SafepointSynchronize::is_at_safepoint(), "invariant");
1489 
1490   EventJavaMonitorInflate event;
1491 
1492   for (;;) {
1493     const markOop mark = object->mark();
1494     assert(!mark->has_bias_pattern(), "invariant");
1495 
1496     // The mark can be in one of the following states:
1497     // *  Inflated     - just return
1498     // *  Stack-locked - coerce it to inflated
1499     // *  INFLATING    - busy wait for conversion to complete
1500     // *  Neutral      - aggressively inflate the object.
1501     // *  BIASED       - Illegal.  We should never see this
1502 
1503     // CASE: inflated
1504     if (mark->has_monitor()) {
1505       if (!omh_p->save_om_ptr(object, mark)) {
1506         // Lost a race with async deflation so try again.
1507         assert(AsyncDeflateIdleMonitors, "sanity check");
1508         continue;
1509       }
1510       ObjectMonitor * inf = omh_p->om_ptr();
1511       markOop dmw = inf->header();
1512       assert(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1513       assert(oopDesc::equals((oop) inf->object(), object), "invariant");
1514       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1515       return;
1516     }
1517 
1518     // CASE: inflation in progress - inflating over a stack-lock.
1519     // Some other thread is converting from stack-locked to inflated.
1520     // Only that thread can complete inflation -- other threads must wait.
1521     // The INFLATING value is transient.
1522     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1523     // We could always eliminate polling by parking the thread on some auxiliary list.
1524     if (mark == markOopDesc::INFLATING()) {
1525       ReadStableMark(object);
1526       continue;
1527     }
1528 
1529     // CASE: stack-locked
1530     // Could be stack-locked either by this thread or by some other thread.
1531     //
1532     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1533     // to install INFLATING into the mark word.  We originally installed INFLATING,
1534     // allocated the objectmonitor, and then finally STed the address of the
1535     // objectmonitor into the mark.  This was correct, but artificially lengthened
1536     // the interval in which INFLATED appeared in the mark, thus increasing
1537     // the odds of inflation contention.
1538     //
1539     // We now use per-thread private objectmonitor free lists.
1540     // These list are reprovisioned from the global free list outside the
1541     // critical INFLATING...ST interval.  A thread can transfer
1542     // multiple objectmonitors en-mass from the global free list to its local free list.
1543     // This reduces coherency traffic and lock contention on the global free list.
1544     // Using such local free lists, it doesn't matter if the omAlloc() call appears
1545     // before or after the CAS(INFLATING) operation.
1546     // See the comments in omAlloc().
1547 
1548     LogStreamHandle(Trace, monitorinflation) lsh;
1549 
1550     if (mark->has_locker()) {
1551       ObjectMonitor * m;
1552       if (!AsyncDeflateIdleMonitors || cause == inflate_cause_vm_internal) {
1553         // If !AsyncDeflateIdleMonitors or if an internal inflation, then
1554         // we won't stop for a potential safepoint in omAlloc.
1555         m = omAlloc(Self, cause);
1556       } else {
1557         // If AsyncDeflateIdleMonitors and not an internal inflation, then
1558         // we may stop for a safepoint in omAlloc() so protect object.
1559         Handle h_obj(Self, object);
1560         m = omAlloc(Self, cause);
1561         object = h_obj();  // Refresh object.
1562       }
1563       // Optimistically prepare the objectmonitor - anticipate successful CAS
1564       // We do this before the CAS in order to minimize the length of time
1565       // in which INFLATING appears in the mark.
1566       m->Recycle();
1567       m->_Responsible  = NULL;
1568       m->_recursions   = 0;
1569       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1570 
1571       markOop cmp = object->cas_set_mark(markOopDesc::INFLATING(), mark);
1572       if (cmp != mark) {
1573         omRelease(Self, m, true);
1574         continue;       // Interference -- just retry
1575       }
1576 
1577       // We've successfully installed INFLATING (0) into the mark-word.
1578       // This is the only case where 0 will appear in a mark-word.
1579       // Only the singular thread that successfully swings the mark-word
1580       // to 0 can perform (or more precisely, complete) inflation.
1581       //
1582       // Why do we CAS a 0 into the mark-word instead of just CASing the


1590       // value from the basiclock on the owner's stack to the objectMonitor, all
1591       // the while preserving the hashCode stability invariants.  If the owner
1592       // decides to release the lock while the value is 0, the unlock will fail
1593       // and control will eventually pass from slow_exit() to inflate.  The owner
1594       // will then spin, waiting for the 0 value to disappear.   Put another way,
1595       // the 0 causes the owner to stall if the owner happens to try to
1596       // drop the lock (restoring the header from the basiclock to the object)
1597       // while inflation is in-progress.  This protocol avoids races that might
1598       // would otherwise permit hashCode values to change or "flicker" for an object.
1599       // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1600       // 0 serves as a "BUSY" inflate-in-progress indicator.
1601 
1602 
1603       // fetch the displaced mark from the owner's stack.
1604       // The owner can't die or unwind past the lock while our INFLATING
1605       // object is in the mark.  Furthermore the owner can't complete
1606       // an unlock on the object, either.
1607       markOop dmw = mark->displaced_mark_helper();
1608       // Catch if the object's header is not neutral (not locked and
1609       // not marked is what we care about here).
1610       ADIM_guarantee(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1611 
1612       // Setup monitor fields to proper values -- prepare the monitor
1613       m->set_header(dmw);
1614 
1615       // Optimization: if the mark->locker stack address is associated
1616       // with this thread we could simply set m->_owner = Self.
1617       // Note that a thread can inflate an object
1618       // that it has stack-locked -- as might happen in wait() -- directly
1619       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1620       m->set_owner(mark->locker());
1621       m->set_object(object);
1622       // TODO-FIXME: assert BasicLock->dhw != 0.
1623 
1624       omh_p->set_om_ptr(m);
1625       assert(m->is_new(), "freshly allocated monitor must be new");
1626       m->set_allocation_state(ObjectMonitor::Old);
1627 
1628       // Must preserve store ordering. The monitor state must
1629       // be stable at the time of publishing the monitor address.
1630       guarantee(object->mark() == markOopDesc::INFLATING(), "invariant");
1631       object->release_set_mark(markOopDesc::encode(m));
1632 
1633       // Hopefully the performance counters are allocated on distinct cache lines
1634       // to avoid false sharing on MP systems ...
1635       OM_PERFDATA_OP(Inflations, inc());
1636       if (log_is_enabled(Trace, monitorinflation)) {
1637         ResourceMark rm(Self);
1638         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1639                      INTPTR_FORMAT ", type='%s'", p2i(object),
1640                      p2i(object->mark()), object->klass()->external_name());
1641       }
1642       if (event.should_commit()) {
1643         post_monitor_inflate_event(&event, object, cause);
1644       }
1645       ADIM_guarantee(!m->is_free(), "inflated monitor to be returned cannot be free");
1646       return;
1647     }
1648 
1649     // CASE: neutral
1650     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1651     // If we know we're inflating for entry it's better to inflate by swinging a
1652     // pre-locked objectMonitor pointer into the object header.   A successful
1653     // CAS inflates the object *and* confers ownership to the inflating thread.
1654     // In the current implementation we use a 2-step mechanism where we CAS()
1655     // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1656     // An inflateTry() method that we could call from fast_enter() and slow_enter()
1657     // would be useful.
1658 
1659     // Catch if the object's header is not neutral (not locked and
1660     // not marked is what we care about here).
1661     ADIM_guarantee(mark->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(mark));
1662     ObjectMonitor * m;
1663     if (!AsyncDeflateIdleMonitors || cause == inflate_cause_vm_internal) {
1664       // If !AsyncDeflateIdleMonitors or if an internal inflation, then
1665       // we won't stop for a potential safepoint in omAlloc.
1666       m = omAlloc(Self, cause);
1667     } else {
1668       // If AsyncDeflateIdleMonitors and not an internal inflation, then
1669       // we may stop for a safepoint in omAlloc() so protect object.
1670       Handle h_obj(Self, object);
1671       m = omAlloc(Self, cause);
1672       object = h_obj();  // Refresh object.
1673     }
1674     // prepare m for installation - set monitor to initial state
1675     m->Recycle();
1676     m->set_header(mark);
1677     m->set_owner(NULL);
1678     m->set_object(object);
1679     m->_recursions   = 0;
1680     m->_Responsible  = NULL;
1681     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1682 
1683     omh_p->set_om_ptr(m);
1684     assert(m->is_new(), "freshly allocated monitor must be new");
1685     m->set_allocation_state(ObjectMonitor::Old);
1686 
1687     if (object->cas_set_mark(markOopDesc::encode(m), mark) != mark) {
1688       m->set_header(NULL);
1689       m->set_object(NULL);
1690       m->Recycle();
1691       omh_p->set_om_ptr(NULL);
1692       // omRelease() will reset the allocation state
1693       omRelease(Self, m, true);
1694       m = NULL;
1695       continue;
1696       // interference - the markword changed - just retry.
1697       // The state-transitions are one-way, so there's no chance of
1698       // live-lock -- "Inflated" is an absorbing state.
1699     }
1700 
1701     // Hopefully the performance counters are allocated on distinct
1702     // cache lines to avoid false sharing on MP systems ...
1703     OM_PERFDATA_OP(Inflations, inc());
1704     if (log_is_enabled(Trace, monitorinflation)) {
1705       ResourceMark rm(Self);
1706       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
1707                    INTPTR_FORMAT ", type='%s'", p2i(object),
1708                    p2i(object->mark()), object->klass()->external_name());
1709     }
1710     if (event.should_commit()) {
1711       post_monitor_inflate_event(&event, object, cause);
1712     }
1713     ADIM_guarantee(!m->is_free(), "inflated monitor to be returned cannot be free");
1714     return;
1715   }
1716 }
1717 
1718 
1719 // We maintain a list of in-use monitors for each thread.
1720 //
1721 // deflate_thread_local_monitors() scans a single thread's in-use list, while
1722 // deflate_idle_monitors() scans only a global list of in-use monitors which
1723 // is populated only as a thread dies (see omFlush()).
1724 //
1725 // These operations are called at all safepoints, immediately after mutators
1726 // are stopped, but before any objects have moved. Collectively they traverse
1727 // the population of in-use monitors, deflating where possible. The scavenged
1728 // monitors are returned to the global monitor free list.
1729 //
1730 // Beware that we scavenge at *every* stop-the-world point. Having a large
1731 // number of monitors in-use could negatively impact performance. We also want
1732 // to minimize the total # of monitors in circulation, as they incur a small
1733 // footprint penalty.
1734 //
1735 // Perversely, the heap size -- and thus the STW safepoint rate --
1736 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1737 // which in turn can mean large(r) numbers of ObjectMonitors in circulation.
1738 // This is an unfortunate aspect of this design.
1739 
1740 void ObjectSynchronizer::do_safepoint_work(DeflateMonitorCounters* _counters) {
1741   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1742 
1743   // The per-thread in-use lists are handled in
1744   // ParallelSPCleanupThreadClosure::do_thread().
1745 
1746   if (!AsyncDeflateIdleMonitors || is_special_deflation_requested()) {
1747     // Use the older mechanism for the global in-use list or if a
1748     // special deflation has been requested before the safepoint.
1749     ObjectSynchronizer::deflate_idle_monitors(_counters);
1750     return;
1751   }
1752 
1753   log_debug(monitorinflation)("requesting async deflation of idle monitors.");
1754   // Request deflation of idle monitors by the ServiceThread:
1755   set_is_async_deflation_requested(true);
1756   MonitorLocker ml(Service_lock, Mutex::_no_safepoint_check_flag);
1757   ml.notify_all();
1758 }
1759 
1760 // Deflate a single monitor if not in-use
1761 // Return true if deflated, false if in-use
1762 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1763                                          ObjectMonitor** freeHeadp,
1764                                          ObjectMonitor** freeTailp) {
1765   bool deflated;
1766   // Normal case ... The monitor is associated with obj.
1767   const markOop mark = obj->mark();
1768   guarantee(mark == markOopDesc::encode(mid), "should match: mark="
1769             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, p2i(mark),
1770             p2i(markOopDesc::encode(mid)));
1771   // Make sure that mark->monitor() and markOopDesc::encode() agree:
1772   guarantee(mark->monitor() == mid, "should match: monitor()=" INTPTR_FORMAT
1773             ", mid=" INTPTR_FORMAT, p2i(mark->monitor()), p2i(mid));
1774   const markOop dmw = mid->header();
1775   guarantee(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1776 
1777   if (mid->is_busy()) {
1778     deflated = false;
1779   } else {
1780     // Deflate the monitor if it is no longer being used
1781     // It's idle - scavenge and return to the global free list
1782     // plain old deflation ...
1783     if (log_is_enabled(Trace, monitorinflation)) {
1784       ResourceMark rm;
1785       log_trace(monitorinflation)("deflate_monitor: "
1786                                   "object=" INTPTR_FORMAT ", mark="
1787                                   INTPTR_FORMAT ", type='%s'", p2i(obj),
1788                                   p2i(mark), obj->klass()->external_name());
1789     }
1790 
1791     // Restore the header back to obj
1792     obj->release_set_mark(dmw);
1793     mid->clear();
1794 
1795     assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT,
1796            p2i(mid->object()));
1797     assert(mid->is_free(), "invariant");
1798 
1799     // Move the object to the working free list defined by freeHeadp, freeTailp
1800     if (*freeHeadp == NULL) *freeHeadp = mid;
1801     if (*freeTailp != NULL) {
1802       ObjectMonitor * prevtail = *freeTailp;
1803       assert(prevtail->FreeNext == NULL, "cleaned up deflated?");
1804       prevtail->FreeNext = mid;
1805     }
1806     *freeTailp = mid;
1807     deflated = true;
1808   }
1809   return deflated;
1810 }
1811 
1812 // Deflate the specified ObjectMonitor if not in-use using a JavaThread.
1813 // Returns true if it was deflated and false otherwise.
1814 //
1815 // The async deflation protocol sets owner to DEFLATER_MARKER and
1816 // makes ref_count negative as signals to contending threads that
1817 // an async deflation is in progress. There are a number of checks
1818 // as part of the protocol to make sure that the calling thread has
1819 // not lost the race to a contending thread or to a thread that just
1820 // wants to use the ObjectMonitor*.
1821 //
1822 // The ObjectMonitor has been successfully async deflated when:
1823 // (owner == DEFLATER_MARKER && ref_count < 0)
1824 // Contending threads or ObjectMonitor* using threads that see those
1825 // values know to retry their operation.
1826 //
1827 bool ObjectSynchronizer::deflate_monitor_using_JT(ObjectMonitor* mid,
1828                                                   ObjectMonitor** freeHeadp,
1829                                                   ObjectMonitor** freeTailp) {
1830   assert(AsyncDeflateIdleMonitors, "sanity check");
1831   assert(Thread::current()->is_Java_thread(), "precondition");
1832   // A newly allocated ObjectMonitor should not be seen here so we
1833   // avoid an endless inflate/deflate cycle.
1834   assert(mid->is_old(), "must be old: allocation_state=%d",
1835          (int) mid->allocation_state());
1836 
1837   if (mid->is_busy() || mid->ref_count() != 0) {
1838     // Easy checks are first - the ObjectMonitor is busy or ObjectMonitor*
1839     // is in use so no deflation.
1840     return false;
1841   }
1842 
1843   if (Atomic::replace_if_null(DEFLATER_MARKER, &(mid->_owner))) {
1844     // ObjectMonitor is not owned by another thread. Our setting
1845     // owner to DEFLATER_MARKER forces any contending thread through
1846     // the slow path. This is just the first part of the async
1847     // deflation dance.
1848 
1849     if (mid->_contentions != 0 || mid->_waiters != 0) {
1850       // Another thread has raced to enter the ObjectMonitor after
1851       // mid->is_busy() above or has already entered and waited on
1852       // it which makes it busy so no deflation. Restore owner to
1853       // NULL if it is still DEFLATER_MARKER.
1854       Atomic::cmpxchg((void*)NULL, &mid->_owner, DEFLATER_MARKER);
1855       return false;
1856     }
1857 
1858     if (Atomic::cmpxchg(-max_jint, &mid->_ref_count, (jint)0) == 0) {
1859       // Make ref_count negative to force any contending threads or
1860       // ObjectMonitor* using threads to retry. This is the second
1861       // part of the async deflation dance.
1862 
1863       if (mid->_owner == DEFLATER_MARKER) {
1864         // If owner is still DEFLATER_MARKER, then we have successfully
1865         // signaled any contending threads to retry. If it is not, then we
1866         // have lost the race to an entering thread and the ObjectMonitor
1867         // is now busy. This is the third and final part of the async
1868         // deflation dance.
1869         // Note: This owner check solves the ABA problem with ref_count
1870         // where another thread acquired the ObjectMonitor, finished
1871         // using it and restored the ref_count to zero.
1872 
1873         // Sanity checks for the races:
1874         guarantee(mid->_contentions == 0, "must be 0: contentions=%d",
1875                   mid->_contentions);
1876         guarantee(mid->_waiters == 0, "must be 0: waiters=%d", mid->_waiters);
1877         guarantee(mid->_cxq == NULL, "must be no contending threads: cxq="
1878                   INTPTR_FORMAT, p2i(mid->_cxq));
1879         guarantee(mid->_EntryList == NULL,
1880                   "must be no entering threads: EntryList=" INTPTR_FORMAT,
1881                   p2i(mid->_EntryList));
1882 
1883         const oop obj = (oop) mid->object();
1884         if (log_is_enabled(Trace, monitorinflation)) {
1885           ResourceMark rm;
1886           log_trace(monitorinflation)("deflate_monitor_using_JT: "
1887                                       "object=" INTPTR_FORMAT ", mark="
1888                                       INTPTR_FORMAT ", type='%s'",
1889                                       p2i(obj), p2i(obj->mark()),
1890                                       obj->klass()->external_name());
1891         }
1892 
1893         // Install the old mark word if nobody else has already done it.
1894         mid->install_displaced_markword_in_object(obj);
1895         mid->clear_using_JT();
1896 
1897         assert(mid->object() == NULL, "must be NULL: object=" INTPTR_FORMAT,
1898                p2i(mid->object()));
1899         assert(mid->is_free(), "must be free: allocation_state=%d",
1900                (int) mid->allocation_state());
1901 
1902         // Move the deflated ObjectMonitor to the working free list
1903         // defined by freeHeadp and freeTailp.
1904         if (*freeHeadp == NULL) {
1905           // First one on the list.
1906           *freeHeadp = mid;
1907         }
1908         if (*freeTailp != NULL) {
1909           // We append to the list so the caller can use mid->FreeNext
1910           // to fix the linkages in its context.
1911           ObjectMonitor * prevtail = *freeTailp;
1912           // Should have been cleaned up by the caller:
1913           assert(prevtail->FreeNext == NULL, "must be NULL: FreeNext="
1914                  INTPTR_FORMAT, p2i(prevtail->FreeNext));
1915           prevtail->FreeNext = mid;
1916         }
1917         *freeTailp = mid;
1918 
1919         // At this point, mid->FreeNext still refers to its current
1920         // value and another ObjectMonitor's FreeNext field still
1921         // refers to this ObjectMonitor. Those linkages have to be
1922         // cleaned up by the caller who has the complete context.
1923 
1924         // We leave owner == DEFLATER_MARKER and ref_count < 0
1925         // to force any racing threads to retry.
1926         return true;  // Success, ObjectMonitor has been deflated.
1927       }
1928 
1929       // The owner was changed from DEFLATER_MARKER so we lost the
1930       // race since the ObjectMonitor is now busy.
1931 
1932       // Add back max_jint to restore the ref_count field to its
1933       // proper value (which may not be what we saw above):
1934       Atomic::add(max_jint, &mid->_ref_count);
1935 
1936       assert(mid->ref_count() >= 0, "must not be negative: ref_count=%d",
1937              mid->ref_count());
1938       return false;
1939     }
1940 
1941     // The ref_count was no longer 0 so we lost the race since the
1942     // ObjectMonitor is now busy or the ObjectMonitor* is now is use.
1943     // Restore owner to NULL if it is still DEFLATER_MARKER:
1944     Atomic::cmpxchg((void*)NULL, &mid->_owner, DEFLATER_MARKER);
1945   }
1946 
1947   // The owner field is no longer NULL so we lost the race since the
1948   // ObjectMonitor is now busy.
1949   return false;
1950 }
1951 
1952 // Walk a given monitor list, and deflate idle monitors
1953 // The given list could be a per-thread list or a global list
1954 // Caller acquires gListLock as needed.
1955 //
1956 // In the case of parallel processing of thread local monitor lists,
1957 // work is done by Threads::parallel_threads_do() which ensures that
1958 // each Java thread is processed by exactly one worker thread, and
1959 // thus avoid conflicts that would arise when worker threads would
1960 // process the same monitor lists concurrently.
1961 //
1962 // See also ParallelSPCleanupTask and
1963 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
1964 // Threads::parallel_java_threads_do() in thread.cpp.
1965 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** listHeadp,
1966                                              ObjectMonitor** freeHeadp,
1967                                              ObjectMonitor** freeTailp) {
1968   ObjectMonitor* mid;
1969   ObjectMonitor* next;
1970   ObjectMonitor* cur_mid_in_use = NULL;
1971   int deflated_count = 0;


1975     if (obj != NULL && deflate_monitor(mid, obj, freeHeadp, freeTailp)) {
1976       // if deflate_monitor succeeded,
1977       // extract from per-thread in-use list
1978       if (mid == *listHeadp) {
1979         *listHeadp = mid->FreeNext;
1980       } else if (cur_mid_in_use != NULL) {
1981         cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1982       }
1983       next = mid->FreeNext;
1984       mid->FreeNext = NULL;  // This mid is current tail in the freeHeadp list
1985       mid = next;
1986       deflated_count++;
1987     } else {
1988       cur_mid_in_use = mid;
1989       mid = mid->FreeNext;
1990     }
1991   }
1992   return deflated_count;
1993 }
1994 
1995 // Walk a given ObjectMonitor list and deflate idle ObjectMonitors using
1996 // a JavaThread. Returns the number of deflated ObjectMonitors. The given
1997 // list could be a per-thread in-use list or the global in-use list.
1998 // Caller acquires gListLock as appropriate. If a safepoint has started,
1999 // then we save state via savedMidInUsep and return to the caller to
2000 // honor the safepoint.
2001 //
2002 int ObjectSynchronizer::deflate_monitor_list_using_JT(ObjectMonitor** listHeadp,
2003                                                       ObjectMonitor** freeHeadp,
2004                                                       ObjectMonitor** freeTailp,
2005                                                       ObjectMonitor** savedMidInUsep) {
2006   assert(AsyncDeflateIdleMonitors, "sanity check");
2007   assert(Thread::current()->is_Java_thread(), "precondition");
2008 
2009   ObjectMonitor* mid;
2010   ObjectMonitor* next;
2011   ObjectMonitor* cur_mid_in_use = NULL;
2012   int deflated_count = 0;
2013 
2014   if (*savedMidInUsep == NULL) {
2015     // No saved state so start at the beginning.
2016     mid = *listHeadp;
2017   } else {
2018     // We're restarting after a safepoint so restore the necessary state
2019     // before we resume.
2020     cur_mid_in_use = *savedMidInUsep;
2021     mid = cur_mid_in_use->FreeNext;
2022   }
2023   while (mid != NULL) {
2024     // Only try to deflate if there is an associated Java object and if
2025     // mid is old (is not newly allocated and is not newly freed).
2026     if (mid->object() != NULL && mid->is_old() &&
2027         deflate_monitor_using_JT(mid, freeHeadp, freeTailp)) {
2028       // Deflation succeeded so update the in-use list.
2029       if (mid == *listHeadp) {
2030         *listHeadp = mid->FreeNext;
2031       } else if (cur_mid_in_use != NULL) {
2032         // Maintain the current in-use list.
2033         cur_mid_in_use->FreeNext = mid->FreeNext;
2034       }
2035       next = mid->FreeNext;
2036       mid->FreeNext = NULL;
2037       // At this point mid is disconnected from the in-use list
2038       // and is the current tail in the freeHeadp list.
2039       mid = next;
2040       deflated_count++;
2041     } else {
2042       // mid is considered in-use if it does not have an associated
2043       // Java object or mid is not old or deflation did not succeed.
2044       // A mid->is_new() node can be seen here when it is freshly
2045       // returned by omAlloc() (and skips the deflation code path).
2046       // A mid->is_old() node can be seen here when deflation failed.
2047       // A mid->is_free() node can be seen here when a fresh node from
2048       // omAlloc() is released by omRelease() due to losing the race
2049       // in inflate().
2050 
2051       cur_mid_in_use = mid;
2052       mid = mid->FreeNext;
2053 
2054       if (SafepointSynchronize::is_synchronizing() &&
2055           cur_mid_in_use != *listHeadp && cur_mid_in_use->is_old()) {
2056         // If a safepoint has started and cur_mid_in_use is not the list
2057         // head and is old, then it is safe to use as saved state. Return
2058         // to the caller so gListLock can be dropped as appropriate
2059         // before blocking.
2060         *savedMidInUsep = cur_mid_in_use;
2061         return deflated_count;
2062       }
2063     }
2064   }
2065   // We finished the list without a safepoint starting so there's
2066   // no need to save state.
2067   *savedMidInUsep = NULL;
2068   return deflated_count;
2069 }
2070 
2071 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2072   counters->nInuse = 0;              // currently associated with objects
2073   counters->nInCirculation = 0;      // extant
2074   counters->nScavenged = 0;          // reclaimed (global and per-thread)
2075   counters->perThreadScavenged = 0;  // per-thread scavenge total
2076   counters->perThreadTimes = 0.0;    // per-thread scavenge times
2077 }
2078 
2079 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
2080   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2081 
2082   if (AsyncDeflateIdleMonitors) {
2083     // Nothing to do when global idle ObjectMonitors are deflated using
2084     // a JavaThread unless a special deflation has been requested.
2085     if (!is_special_deflation_requested()) {
2086       return;
2087     }
2088   }
2089 
2090   bool deflated = false;
2091 
2092   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
2093   ObjectMonitor * freeTailp = NULL;
2094   elapsedTimer timer;
2095 
2096   if (log_is_enabled(Info, monitorinflation)) {
2097     timer.start();
2098   }
2099 
2100   // Prevent omFlush from changing mids in Thread dtor's during deflation
2101   // And in case the vm thread is acquiring a lock during a safepoint
2102   // See e.g. 6320749
2103   Thread::muxAcquire(&gListLock, "deflate_idle_monitors");
2104 
2105   // Note: the thread-local monitors lists get deflated in
2106   // a separate pass. See deflate_thread_local_monitors().
2107 
2108   // For moribund threads, scan gOmInUseList
2109   int deflated_count = 0;


2122     // constant-time list splice - prepend scavenged segment to gFreeList
2123     freeTailp->FreeNext = gFreeList;
2124     gFreeList = freeHeadp;
2125   }
2126   Thread::muxRelease(&gListLock);
2127   timer.stop();
2128 
2129   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2130   LogStreamHandle(Info, monitorinflation) lsh_info;
2131   LogStream * ls = NULL;
2132   if (log_is_enabled(Debug, monitorinflation)) {
2133     ls = &lsh_debug;
2134   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2135     ls = &lsh_info;
2136   }
2137   if (ls != NULL) {
2138     ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2139   }
2140 }
2141 
2142 // Deflate global idle ObjectMonitors using a JavaThread.
2143 //
2144 void ObjectSynchronizer::deflate_global_idle_monitors_using_JT() {
2145   assert(AsyncDeflateIdleMonitors, "sanity check");
2146   assert(Thread::current()->is_Java_thread(), "precondition");
2147   JavaThread * self = JavaThread::current();
2148 
2149   deflate_common_idle_monitors_using_JT(true /* is_global */, self);
2150 }
2151 
2152 // Deflate per-thread idle ObjectMonitors using a JavaThread.
2153 //
2154 void ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT() {
2155   assert(AsyncDeflateIdleMonitors, "sanity check");
2156   assert(Thread::current()->is_Java_thread(), "precondition");
2157   JavaThread * self = JavaThread::current();
2158 
2159   self->omShouldDeflateIdleMonitors = false;
2160 
2161   deflate_common_idle_monitors_using_JT(false /* !is_global */, self);
2162 }
2163 
2164 // Deflate global or per-thread idle ObjectMonitors using a JavaThread.
2165 //
2166 void ObjectSynchronizer::deflate_common_idle_monitors_using_JT(bool is_global, JavaThread * self) {
2167   int deflated_count = 0;
2168   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged ObjectMonitors
2169   ObjectMonitor * freeTailp = NULL;
2170   ObjectMonitor * savedMidInUsep = NULL;
2171   elapsedTimer timer;
2172 
2173   if (log_is_enabled(Info, monitorinflation)) {
2174     timer.start();
2175   }
2176 
2177   if (is_global) {
2178     Thread::muxAcquire(&gListLock, "deflate_global_idle_monitors_using_JT(1)");
2179     OM_PERFDATA_OP(MonExtant, set_value(gOmInUseCount));
2180   } else {
2181     OM_PERFDATA_OP(MonExtant, inc(self->omInUseCount));
2182   }
2183 
2184   do {
2185     int local_deflated_count;
2186     if (is_global) {
2187       local_deflated_count = deflate_monitor_list_using_JT((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp, &savedMidInUsep);
2188       gOmInUseCount -= local_deflated_count;
2189     } else {
2190       local_deflated_count = deflate_monitor_list_using_JT(self->omInUseList_addr(), &freeHeadp, &freeTailp, &savedMidInUsep);
2191       self->omInUseCount -= local_deflated_count;
2192     }
2193     deflated_count += local_deflated_count;
2194 
2195     if (freeHeadp != NULL) {
2196       // Move the scavenged ObjectMonitors to the global free list.
2197       guarantee(freeTailp != NULL && local_deflated_count > 0, "freeTailp=" INTPTR_FORMAT ", local_deflated_count=%d", p2i(freeTailp), local_deflated_count);
2198       assert(freeTailp->FreeNext == NULL, "invariant");
2199 
2200       if (!is_global) {
2201         Thread::muxAcquire(&gListLock, "deflate_per_thread_idle_monitors_using_JT(2)");
2202       }
2203       // Constant-time list splice - prepend scavenged segment to gFreeList.
2204       freeTailp->FreeNext = gFreeList;
2205       gFreeList = freeHeadp;
2206 
2207       gMonitorFreeCount += local_deflated_count;
2208       OM_PERFDATA_OP(Deflations, inc(local_deflated_count));
2209       if (!is_global) {
2210         Thread::muxRelease(&gListLock);
2211       }
2212     }
2213 
2214     if (savedMidInUsep != NULL) {
2215       // deflate_monitor_list_using_JT() detected a safepoint starting.
2216       if (is_global) {
2217         Thread::muxRelease(&gListLock);
2218       }
2219       timer.stop();
2220       {
2221         if (is_global) {
2222           log_debug(monitorinflation)("pausing deflation of global idle monitors for a safepoint.");
2223         } else {
2224           log_debug(monitorinflation)("jt=" INTPTR_FORMAT ": pausing deflation of per-thread idle monitors for a safepoint.", p2i(self));
2225         }
2226         assert(SafepointSynchronize::is_synchronizing(), "sanity check");
2227         ThreadBlockInVM blocker(self);
2228       }
2229       // Prepare for another loop after the safepoint.
2230       freeHeadp = NULL;
2231       freeTailp = NULL;
2232       if (log_is_enabled(Info, monitorinflation)) {
2233         timer.start();
2234       }
2235       if (is_global) {
2236         Thread::muxAcquire(&gListLock, "deflate_global_idle_monitors_using_JT(3)");
2237       }
2238     }
2239   } while (savedMidInUsep != NULL);
2240   if (is_global) {
2241     Thread::muxRelease(&gListLock);
2242   }
2243   timer.stop();
2244 
2245   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2246   LogStreamHandle(Info, monitorinflation) lsh_info;
2247   LogStream * ls = NULL;
2248   if (log_is_enabled(Debug, monitorinflation)) {
2249     ls = &lsh_debug;
2250   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2251     ls = &lsh_info;
2252   }
2253   if (ls != NULL) {
2254     if (is_global) {
2255       ls->print_cr("async-deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2256     } else {
2257       ls->print_cr("jt=" INTPTR_FORMAT ": async-deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(self), timer.seconds(), deflated_count);
2258     }
2259   }
2260 }
2261 
2262 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2263   // Report the cumulative time for deflating each thread's idle
2264   // monitors. Note: if the work is split among more than one
2265   // worker thread, then the reported time will likely be more
2266   // than a beginning to end measurement of the phase.
2267   // Note: AsyncDeflateIdleMonitors only deflates per-thread idle
2268   // monitors at a safepoint when a special deflation has been requested.
2269   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d", counters->perThreadTimes, counters->perThreadScavenged);
2270 
2271   bool needs_special_deflation = is_special_deflation_requested();
2272   if (!AsyncDeflateIdleMonitors || needs_special_deflation) {
2273     // AsyncDeflateIdleMonitors does not use these counters unless
2274     // there is a special deflation request.
2275 
2276     gMonitorFreeCount += counters->nScavenged;
2277 
2278     OM_PERFDATA_OP(Deflations, inc(counters->nScavenged));
2279     OM_PERFDATA_OP(MonExtant, set_value(counters->nInCirculation));
2280   }
2281 
2282   if (log_is_enabled(Debug, monitorinflation)) {
2283     // exit_globals()'s call to audit_and_print_stats() is done
2284     // at the Info level.
2285     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2286   } else if (log_is_enabled(Info, monitorinflation)) {
2287     Thread::muxAcquire(&gListLock, "finish_deflate_idle_monitors");
2288     log_info(monitorinflation)("gMonitorPopulation=%d, gOmInUseCount=%d, "
2289                                "gMonitorFreeCount=%d", gMonitorPopulation,
2290                                gOmInUseCount, gMonitorFreeCount);
2291     Thread::muxRelease(&gListLock);
2292   }
2293 
2294   ForceMonitorScavenge = 0;    // Reset




2295   GVars.stwRandom = os::random();
2296   GVars.stwCycle++;
2297   if (needs_special_deflation) {
2298     set_is_special_deflation_requested(false);  // special deflation is done
2299   }
2300 }
2301 
2302 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
2303   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2304 
2305   if (AsyncDeflateIdleMonitors) {
2306     if (!is_special_deflation_requested()) {
2307       // Mark the JavaThread for idle monitor deflation if a special
2308       // deflation has NOT been requested.
2309       if (thread->omInUseCount > 0) {
2310         // This JavaThread is using monitors so mark it.
2311         thread->omShouldDeflateIdleMonitors = true;
2312       }
2313       return;
2314     }
2315   }
2316 
2317   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
2318   ObjectMonitor * freeTailp = NULL;
2319   elapsedTimer timer;
2320 
2321   if (log_is_enabled(Info, safepoint, cleanup) ||
2322       log_is_enabled(Info, monitorinflation)) {
2323     timer.start();
2324   }
2325 
2326   int deflated_count = deflate_monitor_list(thread->omInUseList_addr(), &freeHeadp, &freeTailp);
2327 
2328   Thread::muxAcquire(&gListLock, "deflate_thread_local_monitors");
2329 
2330   // Adjust counters
2331   counters->nInCirculation += thread->omInUseCount;
2332   thread->omInUseCount -= deflated_count;
2333   counters->nScavenged += deflated_count;
2334   counters->nInuse += thread->omInUseCount;
2335   counters->perThreadScavenged += deflated_count;
2336 


2505   } else {
2506     log_error(monitorinflation)("found monitor list errors: error_cnt=%d", error_cnt);
2507   }
2508 
2509   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
2510       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
2511     // When exiting this log output is at the Info level. When called
2512     // at a safepoint, this log output is at the Trace level since
2513     // there can be a lot of it.
2514     log_in_use_monitor_details(ls, on_exit);
2515   }
2516 
2517   ls->flush();
2518 
2519   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
2520 }
2521 
2522 // Check a free monitor entry; log any errors.
2523 void ObjectSynchronizer::chk_free_entry(JavaThread * jt, ObjectMonitor * n,
2524                                         outputStream * out, int *error_cnt_p) {
2525   if ((!AsyncDeflateIdleMonitors && n->is_busy()) ||
2526       (AsyncDeflateIdleMonitors && n->is_busy_async())) {
2527     if (jt != NULL) {
2528       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2529                     ": free per-thread monitor must not be busy.", p2i(jt),
2530                     p2i(n));
2531     } else {
2532       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2533                     "must not be busy.", p2i(n));
2534     }
2535     *error_cnt_p = *error_cnt_p + 1;
2536   }
2537   if (n->header() != NULL) {
2538     if (jt != NULL) {
2539       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2540                     ": free per-thread monitor must have NULL _header "
2541                     "field: _header=" INTPTR_FORMAT, p2i(jt), p2i(n),
2542                     p2i(n->header()));
2543       *error_cnt_p = *error_cnt_p + 1;
2544     } else if (!AsyncDeflateIdleMonitors) {
2545       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2546                     "must have NULL _header field: _header=" INTPTR_FORMAT,
2547                     p2i(n), p2i(n->header()));

2548       *error_cnt_p = *error_cnt_p + 1;
2549     }
2550   }
2551   if (n->object() != NULL) {
2552     if (jt != NULL) {
2553       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2554                     ": free per-thread monitor must have NULL _object "
2555                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
2556                     p2i(n->object()));
2557     } else {
2558       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2559                     "must have NULL _object field: _object=" INTPTR_FORMAT,
2560                     p2i(n), p2i(n->object()));
2561     }
2562     *error_cnt_p = *error_cnt_p + 1;
2563   }
2564 }
2565 
2566 // Check the global free list and count; log the results of the checks.
2567 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
2568                                                         int *error_cnt_p) {
2569   int chkMonitorFreeCount = 0;
2570   for (ObjectMonitor * n = gFreeList; n != NULL; n = n->FreeNext) {


2696     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": omInUseCount=%d is not "
2697                   "equal to chkOmInUseCount=%d", p2i(jt), jt->omInUseCount,
2698                   chkOmInUseCount);
2699     *error_cnt_p = *error_cnt_p + 1;
2700   }
2701 }
2702 
2703 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
2704 // flags indicate why the entry is in-use, 'object' and 'object type'
2705 // indicate the associated object and its type.
2706 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out,
2707                                                     bool on_exit) {
2708   if (!on_exit) {
2709     // Not at VM exit so grab the global list lock.
2710     Thread::muxAcquire(&gListLock, "log_in_use_monitor_details");
2711   }
2712 
2713   if (gOmInUseCount > 0) {
2714     out->print_cr("In-use global monitor info:");
2715     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2716     out->print_cr("%18s  %s  %7s  %18s  %18s",
2717                   "monitor", "BHL", "ref_cnt", "object", "object type");
2718     out->print_cr("==================  ===  =======  ==================  ==================");
2719     for (ObjectMonitor * n = gOmInUseList; n != NULL; n = n->FreeNext) {
2720       const oop obj = (oop) n->object();
2721       const markOop mark = n->header();
2722       ResourceMark rm;
2723       out->print_cr(INTPTR_FORMAT "  %d%d%d  %7d  " INTPTR_FORMAT "  %s",
2724                     p2i(n), n->is_busy() != 0, mark->hash() != 0,
2725                     n->owner() != NULL, (int)n->ref_count(), p2i(obj),
2726                     obj->klass()->external_name());
2727     }
2728   }
2729 
2730   if (!on_exit) {
2731     Thread::muxRelease(&gListLock);
2732   }
2733 
2734   out->print_cr("In-use per-thread monitor info:");
2735   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2736   out->print_cr("%18s  %18s  %s  %7s  %18s  %18s",
2737                 "jt", "monitor", "BHL", "ref_cnt", "object", "object type");
2738   out->print_cr("==================  ==================  ===  =======  ==================  ==================");
2739   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2740     for (ObjectMonitor * n = jt->omInUseList; n != NULL; n = n->FreeNext) {
2741       const oop obj = (oop) n->object();
2742       const markOop mark = n->header();
2743       ResourceMark rm;
2744       out->print_cr(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  %7d  "
2745                     INTPTR_FORMAT "  %s", p2i(jt), p2i(n), n->is_busy() != 0,
2746                     mark->hash() != 0, n->owner() != NULL, (int)n->ref_count(),
2747                     p2i(obj), obj->klass()->external_name());
2748     }
2749   }
2750 
2751   out->flush();
2752 }
2753 
2754 // Log counts for the global and per-thread monitor lists and return
2755 // the population count.
2756 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
2757   int popCount = 0;
2758   out->print_cr("%18s  %10s  %10s  %10s",
2759                 "Global Lists:", "InUse", "Free", "Total");
2760   out->print_cr("==================  ==========  ==========  ==========");
2761   out->print_cr("%18s  %10d  %10d  %10d", "",
2762                 gOmInUseCount, gMonitorFreeCount, gMonitorPopulation);
2763   popCount += gOmInUseCount + gMonitorFreeCount;
2764 
2765   out->print_cr("%18s  %10s  %10s  %10s",
2766                 "Per-Thread Lists:", "InUse", "Free", "Provision");
2767   out->print_cr("==================  ==========  ==========  ==========");


< prev index next >