1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "logging/logStream.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/metaspaceShared.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/markOop.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/handles.inline.hpp"
  40 #include "runtime/interfaceSupport.inline.hpp"
  41 #include "runtime/mutexLocker.hpp"
  42 #include "runtime/objectMonitor.hpp"
  43 #include "runtime/objectMonitor.inline.hpp"
  44 #include "runtime/osThread.hpp"
  45 #include "runtime/safepointVerifiers.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/synchronizer.hpp"
  49 #include "runtime/thread.inline.hpp"
  50 #include "runtime/timer.hpp"
  51 #include "runtime/vframe.hpp"
  52 #include "runtime/vmThread.hpp"
  53 #include "utilities/align.hpp"
  54 #include "utilities/dtrace.hpp"
  55 #include "utilities/events.hpp"
  56 #include "utilities/preserveException.hpp"
  57 
  58 // The "core" versions of monitor enter and exit reside in this file.
  59 // The interpreter and compilers contain specialized transliterated
  60 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  61 // for instance.  If you make changes here, make sure to modify the
  62 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  63 //
  64 // -----------------------------------------------------------------------------
  65 
  66 #ifdef DTRACE_ENABLED
  67 
  68 // Only bother with this argument setup if dtrace is available
  69 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  70 
  71 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  72   char* bytes = NULL;                                                      \
  73   int len = 0;                                                             \
  74   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  75   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  76   if (klassname != NULL) {                                                 \
  77     bytes = (char*)klassname->bytes();                                     \
  78     len = klassname->utf8_length();                                        \
  79   }
  80 
  81 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  82   {                                                                        \
  83     if (DTraceMonitorProbes) {                                             \
  84       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  85       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  86                            (uintptr_t)(monitor), bytes, len, (millis));    \
  87     }                                                                      \
  88   }
  89 
  90 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  91 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  92 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  93 
  94 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  95   {                                                                        \
  96     if (DTraceMonitorProbes) {                                             \
  97       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  98       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
  99                                     (uintptr_t)(monitor), bytes, len);     \
 100     }                                                                      \
 101   }
 102 
 103 #else //  ndef DTRACE_ENABLED
 104 
 105 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 106 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 107 
 108 #endif // ndef DTRACE_ENABLED
 109 
 110 // This exists only as a workaround of dtrace bug 6254741
 111 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 112   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 113   return 0;
 114 }
 115 
 116 #define NINFLATIONLOCKS 256
 117 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 118 
 119 // global list of blocks of monitors
 120 PaddedEnd<ObjectMonitor> * volatile ObjectSynchronizer::gBlockList = NULL;
 121 // global monitor free list
 122 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL;
 123 // global monitor in-use list, for moribund threads,
 124 // monitors they inflated need to be scanned for deflation
 125 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL;
 126 // count of entries in gOmInUseList
 127 int ObjectSynchronizer::gOmInUseCount = 0;
 128 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false;
 129 bool volatile ObjectSynchronizer::_is_special_deflation_requested = false;
 130 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0;
 131 
 132 static volatile intptr_t gListLock = 0;      // protects global monitor lists
 133 static volatile int gMonitorFreeCount  = 0;  // # on gFreeList
 134 static volatile int gMonitorPopulation = 0;  // # Extant -- in circulation
 135 
 136 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 137 
 138 
 139 // =====================> Quick functions
 140 
 141 // The quick_* forms are special fast-path variants used to improve
 142 // performance.  In the simplest case, a "quick_*" implementation could
 143 // simply return false, in which case the caller will perform the necessary
 144 // state transitions and call the slow-path form.
 145 // The fast-path is designed to handle frequently arising cases in an efficient
 146 // manner and is just a degenerate "optimistic" variant of the slow-path.
 147 // returns true  -- to indicate the call was satisfied.
 148 // returns false -- to indicate the call needs the services of the slow-path.
 149 // A no-loitering ordinance is in effect for code in the quick_* family
 150 // operators: safepoints or indefinite blocking (blocking that might span a
 151 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 152 // entry.
 153 //
 154 // Consider: An interesting optimization is to have the JIT recognize the
 155 // following common idiom:
 156 //   synchronized (someobj) { .... ; notify(); }
 157 // That is, we find a notify() or notifyAll() call that immediately precedes
 158 // the monitorexit operation.  In that case the JIT could fuse the operations
 159 // into a single notifyAndExit() runtime primitive.
 160 
 161 bool ObjectSynchronizer::quick_notify(oopDesc * obj, Thread * self, bool all) {
 162   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 163   assert(self->is_Java_thread(), "invariant");
 164   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 165   NoSafepointVerifier nsv;
 166   if (obj == NULL) return false;  // slow-path for invalid obj
 167   const markOop mark = obj->mark();
 168 
 169   if (mark->has_locker() && self->is_lock_owned((address)mark->locker())) {
 170     // Degenerate notify
 171     // stack-locked by caller so by definition the implied waitset is empty.
 172     return true;
 173   }
 174 
 175   if (mark->has_monitor()) {
 176     ObjectMonitor * const mon = mark->monitor();
 177     assert(oopDesc::equals((oop) mon->object(), obj), "invariant");
 178     if (mon->owner() != self) return false;  // slow-path for IMS exception
 179 
 180     if (mon->first_waiter() != NULL) {
 181       // We have one or more waiters. Since this is an inflated monitor
 182       // that we own, we can transfer one or more threads from the waitset
 183       // to the entrylist here and now, avoiding the slow-path.
 184       if (all) {
 185         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
 186       } else {
 187         DTRACE_MONITOR_PROBE(notify, mon, obj, self);
 188       }
 189       int tally = 0;
 190       do {
 191         mon->INotify(self);
 192         ++tally;
 193       } while (mon->first_waiter() != NULL && all);
 194       OM_PERFDATA_OP(Notifications, inc(tally));
 195     }
 196     return true;
 197   }
 198 
 199   // biased locking and any other IMS exception states take the slow-path
 200   return false;
 201 }
 202 
 203 
 204 // The LockNode emitted directly at the synchronization site would have
 205 // been too big if it were to have included support for the cases of inflated
 206 // recursive enter and exit, so they go here instead.
 207 // Note that we can't safely call AsyncPrintJavaStack() from within
 208 // quick_enter() as our thread state remains _in_Java.
 209 
 210 bool ObjectSynchronizer::quick_enter(oop obj, Thread * Self,
 211                                      BasicLock * lock) {
 212   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 213   assert(Self->is_Java_thread(), "invariant");
 214   assert(((JavaThread *) Self)->thread_state() == _thread_in_Java, "invariant");
 215   NoSafepointVerifier nsv;
 216   if (obj == NULL) return false;       // Need to throw NPE
 217 
 218   while (true) {
 219     const markOop mark = obj->mark();
 220 
 221     if (mark->has_monitor()) {
 222       ObjectMonitorHandle omh;
 223       if (!omh.save_om_ptr(obj, mark)) {
 224         // Lost a race with async deflation so try again.
 225         assert(AsyncDeflateIdleMonitors, "sanity check");
 226         continue;
 227       }
 228       ObjectMonitor * const m = omh.om_ptr();
 229       assert(oopDesc::equals((oop) m->object(), obj), "invariant");
 230       Thread * const owner = (Thread *) m->_owner;
 231 
 232       // Lock contention and Transactional Lock Elision (TLE) diagnostics
 233       // and observability
 234       // Case: light contention possibly amenable to TLE
 235       // Case: TLE inimical operations such as nested/recursive synchronization
 236 
 237       if (owner == Self) {
 238         m->_recursions++;
 239         return true;
 240       }
 241 
 242       // This Java Monitor is inflated so obj's header will never be
 243       // displaced to this thread's BasicLock. Make the displaced header
 244       // non-NULL so this BasicLock is not seen as recursive nor as
 245       // being locked. We do this unconditionally so that this thread's
 246       // BasicLock cannot be mis-interpreted by any stack walkers. For
 247       // performance reasons, stack walkers generally first check for
 248       // Biased Locking in the object's header, the second check is for
 249       // stack-locking in the object's header, the third check is for
 250       // recursive stack-locking in the displaced header in the BasicLock,
 251       // and last are the inflated Java Monitor (ObjectMonitor) checks.
 252       lock->set_displaced_header(markOopDesc::unused_mark());
 253 
 254       if (owner == NULL && Atomic::replace_if_null(Self, &(m->_owner))) {
 255         assert(m->_recursions == 0, "invariant");
 256         assert(m->_owner == Self, "invariant");
 257         return true;
 258       }
 259     }
 260     break;
 261   }
 262 
 263   // Note that we could inflate in quick_enter.
 264   // This is likely a useful optimization
 265   // Critically, in quick_enter() we must not:
 266   // -- perform bias revocation, or
 267   // -- block indefinitely, or
 268   // -- reach a safepoint
 269 
 270   return false;        // revert to slow-path
 271 }
 272 
 273 // -----------------------------------------------------------------------------
 274 //  Fast Monitor Enter/Exit
 275 // This the fast monitor enter. The interpreter and compiler use
 276 // some assembly copies of this code. Make sure update those code
 277 // if the following function is changed. The implementation is
 278 // extremely sensitive to race condition. Be careful.
 279 
 280 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock,
 281                                     bool attempt_rebias, TRAPS) {
 282   if (UseBiasedLocking) {
 283     if (!SafepointSynchronize::is_at_safepoint()) {
 284       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
 285       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
 286         return;
 287       }
 288     } else {
 289       assert(!attempt_rebias, "can not rebias toward VM thread");
 290       BiasedLocking::revoke_at_safepoint(obj);
 291     }
 292     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 293   }
 294 
 295   slow_enter(obj, lock, THREAD);
 296 }
 297 
 298 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
 299   markOop mark = object->mark();
 300   // We cannot check for Biased Locking if we are racing an inflation.
 301   assert(mark == markOopDesc::INFLATING() ||
 302          !mark->has_bias_pattern(), "should not see bias pattern here");
 303 
 304   markOop dhw = lock->displaced_header();
 305   if (dhw == NULL) {
 306     // If the displaced header is NULL, then this exit matches up with
 307     // a recursive enter. No real work to do here except for diagnostics.
 308 #ifndef PRODUCT
 309     if (mark != markOopDesc::INFLATING()) {
 310       // Only do diagnostics if we are not racing an inflation. Simply
 311       // exiting a recursive enter of a Java Monitor that is being
 312       // inflated is safe; see the has_monitor() comment below.
 313       assert(!mark->is_neutral(), "invariant");
 314       assert(!mark->has_locker() ||
 315              THREAD->is_lock_owned((address)mark->locker()), "invariant");
 316       if (mark->has_monitor()) {
 317         // The BasicLock's displaced_header is marked as a recursive
 318         // enter and we have an inflated Java Monitor (ObjectMonitor).
 319         // This is a special case where the Java Monitor was inflated
 320         // after this thread entered the stack-lock recursively. When a
 321         // Java Monitor is inflated, we cannot safely walk the Java
 322         // Monitor owner's stack and update the BasicLocks because a
 323         // Java Monitor can be asynchronously inflated by a thread that
 324         // does not own the Java Monitor.
 325         ObjectMonitor * m = mark->monitor();
 326         assert(((oop)(m->object()))->mark() == mark, "invariant");
 327         assert(m->is_entered(THREAD), "invariant");
 328       }
 329     }
 330 #endif
 331     return;
 332   }
 333 
 334   if (mark == (markOop) lock) {
 335     // If the object is stack-locked by the current thread, try to
 336     // swing the displaced header from the BasicLock back to the mark.
 337     assert(dhw->is_neutral(), "invariant");
 338     if (object->cas_set_mark(dhw, mark) == mark) {
 339       return;
 340     }
 341   }
 342 
 343   // We have to take the slow-path of possible inflation and then exit.
 344   ObjectMonitorHandle omh;
 345   inflate(&omh, THREAD, object, inflate_cause_vm_internal);
 346   omh.om_ptr()->exit(true, THREAD);
 347 }
 348 
 349 // -----------------------------------------------------------------------------
 350 // Interpreter/Compiler Slow Case
 351 // This routine is used to handle interpreter/compiler slow case
 352 // We don't need to use fast path here, because it must have been
 353 // failed in the interpreter/compiler code.
 354 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 355   markOop mark = obj->mark();
 356   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
 357 
 358   if (mark->is_neutral()) {
 359     // Anticipate successful CAS -- the ST of the displaced mark must
 360     // be visible <= the ST performed by the CAS.
 361     lock->set_displaced_header(mark);
 362     if (mark == obj()->cas_set_mark((markOop) lock, mark)) {
 363       return;
 364     }
 365     // Fall through to inflate() ...
 366   } else if (mark->has_locker() &&
 367              THREAD->is_lock_owned((address)mark->locker())) {
 368     assert(lock != mark->locker(), "must not re-lock the same lock");
 369     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
 370     lock->set_displaced_header(NULL);
 371     return;
 372   }
 373 
 374   // The object header will never be displaced to this lock,
 375   // so it does not matter what the value is, except that it
 376   // must be non-zero to avoid looking like a re-entrant lock,
 377   // and must not look locked either.
 378   lock->set_displaced_header(markOopDesc::unused_mark());
 379   ObjectMonitorHandle omh;
 380   inflate(&omh, THREAD, obj(), inflate_cause_monitor_enter);
 381   omh.om_ptr()->enter(THREAD);
 382 }
 383 
 384 // This routine is used to handle interpreter/compiler slow case
 385 // We don't need to use fast path here, because it must have
 386 // failed in the interpreter/compiler code. Simply use the heavy
 387 // weight monitor should be ok, unless someone find otherwise.
 388 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 389   fast_exit(object, lock, THREAD);
 390 }
 391 
 392 // -----------------------------------------------------------------------------
 393 // Class Loader  support to workaround deadlocks on the class loader lock objects
 394 // Also used by GC
 395 // complete_exit()/reenter() are used to wait on a nested lock
 396 // i.e. to give up an outer lock completely and then re-enter
 397 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 398 //  1) complete_exit lock1 - saving recursion count
 399 //  2) wait on lock2
 400 //  3) when notified on lock2, unlock lock2
 401 //  4) reenter lock1 with original recursion count
 402 //  5) lock lock2
 403 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 404 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 405   if (UseBiasedLocking) {
 406     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 407     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 408   }
 409 
 410   ObjectMonitorHandle omh;
 411   inflate(&omh, THREAD, obj(), inflate_cause_vm_internal);
 412   intptr_t ret_code = omh.om_ptr()->complete_exit(THREAD);
 413   return ret_code;
 414 }
 415 
 416 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 417 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 418   if (UseBiasedLocking) {
 419     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 420     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 421   }
 422 
 423   ObjectMonitorHandle omh;
 424   inflate(&omh, THREAD, obj(), inflate_cause_vm_internal);
 425   omh.om_ptr()->reenter(recursion, THREAD);
 426 }
 427 // -----------------------------------------------------------------------------
 428 // JNI locks on java objects
 429 // NOTE: must use heavy weight monitor to handle jni monitor enter
 430 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 431   // the current locking is from JNI instead of Java code
 432   if (UseBiasedLocking) {
 433     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 434     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 435   }
 436   THREAD->set_current_pending_monitor_is_from_java(false);
 437   ObjectMonitorHandle omh;
 438   inflate(&omh, THREAD, obj(), inflate_cause_jni_enter);
 439   omh.om_ptr()->enter(THREAD);
 440   THREAD->set_current_pending_monitor_is_from_java(true);
 441 }
 442 
 443 // NOTE: must use heavy weight monitor to handle jni monitor exit
 444 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 445   if (UseBiasedLocking) {
 446     Handle h_obj(THREAD, obj);
 447     BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
 448     obj = h_obj();
 449   }
 450   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 451 
 452   ObjectMonitorHandle omh;
 453   inflate(&omh, THREAD, obj, inflate_cause_jni_exit);
 454   ObjectMonitor * monitor = omh.om_ptr();
 455   // If this thread has locked the object, exit the monitor.  Note:  can't use
 456   // monitor->check(CHECK); must exit even if an exception is pending.
 457   if (monitor->check(THREAD)) {
 458     monitor->exit(true, THREAD);
 459   }
 460 }
 461 
 462 // -----------------------------------------------------------------------------
 463 // Internal VM locks on java objects
 464 // standard constructor, allows locking failures
 465 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
 466   _dolock = doLock;
 467   _thread = thread;
 468   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
 469   _obj = obj;
 470 
 471   if (_dolock) {
 472     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 473   }
 474 }
 475 
 476 ObjectLocker::~ObjectLocker() {
 477   if (_dolock) {
 478     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 479   }
 480 }
 481 
 482 
 483 // -----------------------------------------------------------------------------
 484 //  Wait/Notify/NotifyAll
 485 // NOTE: must use heavy weight monitor to handle wait()
 486 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 487   if (UseBiasedLocking) {
 488     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 489     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 490   }
 491   if (millis < 0) {
 492     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 493   }
 494   ObjectMonitorHandle omh;
 495   inflate(&omh, THREAD, obj(), inflate_cause_wait);
 496   ObjectMonitor * monitor = omh.om_ptr();
 497 
 498   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 499   monitor->wait(millis, true, THREAD);
 500 
 501   // This dummy call is in place to get around dtrace bug 6254741.  Once
 502   // that's fixed we can uncomment the following line, remove the call
 503   // and change this function back into a "void" func.
 504   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 505   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 506   return ret_code;
 507 }
 508 
 509 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) {
 510   if (UseBiasedLocking) {
 511     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 512     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 513   }
 514   if (millis < 0) {
 515     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 516   }
 517   ObjectMonitorHandle omh;
 518   inflate(&omh, THREAD, obj(), inflate_cause_wait);
 519   omh.om_ptr()->wait(millis, false, THREAD);
 520 }
 521 
 522 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 523   if (UseBiasedLocking) {
 524     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 525     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 526   }
 527 
 528   markOop mark = obj->mark();
 529   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 530     return;
 531   }
 532   ObjectMonitorHandle omh;
 533   inflate(&omh, THREAD, obj(), inflate_cause_notify);
 534   omh.om_ptr()->notify(THREAD);
 535 }
 536 
 537 // NOTE: see comment of notify()
 538 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 539   if (UseBiasedLocking) {
 540     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 541     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 542   }
 543 
 544   markOop mark = obj->mark();
 545   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 546     return;
 547   }
 548   ObjectMonitorHandle omh;
 549   inflate(&omh, THREAD, obj(), inflate_cause_notify);
 550   omh.om_ptr()->notifyAll(THREAD);
 551 }
 552 
 553 // -----------------------------------------------------------------------------
 554 // Hash Code handling
 555 //
 556 // Performance concern:
 557 // OrderAccess::storestore() calls release() which at one time stored 0
 558 // into the global volatile OrderAccess::dummy variable. This store was
 559 // unnecessary for correctness. Many threads storing into a common location
 560 // causes considerable cache migration or "sloshing" on large SMP systems.
 561 // As such, I avoided using OrderAccess::storestore(). In some cases
 562 // OrderAccess::fence() -- which incurs local latency on the executing
 563 // processor -- is a better choice as it scales on SMP systems.
 564 //
 565 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 566 // a discussion of coherency costs. Note that all our current reference
 567 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 568 // x64, and SPARC.
 569 //
 570 // As a general policy we use "volatile" to control compiler-based reordering
 571 // and explicit fences (barriers) to control for architectural reordering
 572 // performed by the CPU(s) or platform.
 573 
 574 struct SharedGlobals {
 575   char         _pad_prefix[DEFAULT_CACHE_LINE_SIZE];
 576   // These are highly shared mostly-read variables.
 577   // To avoid false-sharing they need to be the sole occupants of a cache line.
 578   volatile int stwRandom;
 579   volatile int stwCycle;
 580   DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 581   // Hot RW variable -- Sequester to avoid false-sharing
 582   volatile int hcSequence;
 583   DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int));
 584 };
 585 
 586 static SharedGlobals GVars;
 587 static int MonitorScavengeThreshold = 1000000;
 588 static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending
 589 
 590 static markOop ReadStableMark(oop obj) {
 591   markOop mark = obj->mark();
 592   if (!mark->is_being_inflated()) {
 593     return mark;       // normal fast-path return
 594   }
 595 
 596   int its = 0;
 597   for (;;) {
 598     markOop mark = obj->mark();
 599     if (!mark->is_being_inflated()) {
 600       return mark;    // normal fast-path return
 601     }
 602 
 603     // The object is being inflated by some other thread.
 604     // The caller of ReadStableMark() must wait for inflation to complete.
 605     // Avoid live-lock
 606     // TODO: consider calling SafepointSynchronize::do_call_back() while
 607     // spinning to see if there's a safepoint pending.  If so, immediately
 608     // yielding or blocking would be appropriate.  Avoid spinning while
 609     // there is a safepoint pending.
 610     // TODO: add inflation contention performance counters.
 611     // TODO: restrict the aggregate number of spinners.
 612 
 613     ++its;
 614     if (its > 10000 || !os::is_MP()) {
 615       if (its & 1) {
 616         os::naked_yield();
 617       } else {
 618         // Note that the following code attenuates the livelock problem but is not
 619         // a complete remedy.  A more complete solution would require that the inflating
 620         // thread hold the associated inflation lock.  The following code simply restricts
 621         // the number of spinners to at most one.  We'll have N-2 threads blocked
 622         // on the inflationlock, 1 thread holding the inflation lock and using
 623         // a yield/park strategy, and 1 thread in the midst of inflation.
 624         // A more refined approach would be to change the encoding of INFLATING
 625         // to allow encapsulation of a native thread pointer.  Threads waiting for
 626         // inflation to complete would use CAS to push themselves onto a singly linked
 627         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 628         // and calling park().  When inflation was complete the thread that accomplished inflation
 629         // would detach the list and set the markword to inflated with a single CAS and
 630         // then for each thread on the list, set the flag and unpark() the thread.
 631         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 632         // wakes at most one thread whereas we need to wake the entire list.
 633         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 634         int YieldThenBlock = 0;
 635         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 636         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 637         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 638         while (obj->mark() == markOopDesc::INFLATING()) {
 639           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 640           // so we periodically call Self->_ParkEvent->park(1).
 641           // We use a mixed spin/yield/block mechanism.
 642           if ((YieldThenBlock++) >= 16) {
 643             Thread::current()->_ParkEvent->park(1);
 644           } else {
 645             os::naked_yield();
 646           }
 647         }
 648         Thread::muxRelease(gInflationLocks + ix);
 649       }
 650     } else {
 651       SpinPause();       // SMP-polite spinning
 652     }
 653   }
 654 }
 655 
 656 // hashCode() generation :
 657 //
 658 // Possibilities:
 659 // * MD5Digest of {obj,stwRandom}
 660 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
 661 // * A DES- or AES-style SBox[] mechanism
 662 // * One of the Phi-based schemes, such as:
 663 //   2654435761 = 2^32 * Phi (golden ratio)
 664 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
 665 // * A variation of Marsaglia's shift-xor RNG scheme.
 666 // * (obj ^ stwRandom) is appealing, but can result
 667 //   in undesirable regularity in the hashCode values of adjacent objects
 668 //   (objects allocated back-to-back, in particular).  This could potentially
 669 //   result in hashtable collisions and reduced hashtable efficiency.
 670 //   There are simple ways to "diffuse" the middle address bits over the
 671 //   generated hashCode values:
 672 
 673 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
 674   intptr_t value = 0;
 675   if (hashCode == 0) {
 676     // This form uses global Park-Miller RNG.
 677     // On MP system we'll have lots of RW access to a global, so the
 678     // mechanism induces lots of coherency traffic.
 679     value = os::random();
 680   } else if (hashCode == 1) {
 681     // This variation has the property of being stable (idempotent)
 682     // between STW operations.  This can be useful in some of the 1-0
 683     // synchronization schemes.
 684     intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3;
 685     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom;
 686   } else if (hashCode == 2) {
 687     value = 1;            // for sensitivity testing
 688   } else if (hashCode == 3) {
 689     value = ++GVars.hcSequence;
 690   } else if (hashCode == 4) {
 691     value = cast_from_oop<intptr_t>(obj);
 692   } else {
 693     // Marsaglia's xor-shift scheme with thread-specific state
 694     // This is probably the best overall implementation -- we'll
 695     // likely make this the default in future releases.
 696     unsigned t = Self->_hashStateX;
 697     t ^= (t << 11);
 698     Self->_hashStateX = Self->_hashStateY;
 699     Self->_hashStateY = Self->_hashStateZ;
 700     Self->_hashStateZ = Self->_hashStateW;
 701     unsigned v = Self->_hashStateW;
 702     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 703     Self->_hashStateW = v;
 704     value = v;
 705   }
 706 
 707   value &= markOopDesc::hash_mask;
 708   if (value == 0) value = 0xBAD;
 709   assert(value != markOopDesc::no_hash, "invariant");
 710   return value;
 711 }
 712 
 713 intptr_t ObjectSynchronizer::FastHashCode(Thread * Self, oop obj) {
 714   if (UseBiasedLocking) {
 715     // NOTE: many places throughout the JVM do not expect a safepoint
 716     // to be taken here, in particular most operations on perm gen
 717     // objects. However, we only ever bias Java instances and all of
 718     // the call sites of identity_hash that might revoke biases have
 719     // been checked to make sure they can handle a safepoint. The
 720     // added check of the bias pattern is to avoid useless calls to
 721     // thread-local storage.
 722     if (obj->mark()->has_bias_pattern()) {
 723       // Handle for oop obj in case of STW safepoint
 724       Handle hobj(Self, obj);
 725       // Relaxing assertion for bug 6320749.
 726       assert(Universe::verify_in_progress() ||
 727              !SafepointSynchronize::is_at_safepoint(),
 728              "biases should not be seen by VM thread here");
 729       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
 730       obj = hobj();
 731       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 732     }
 733   }
 734 
 735   // hashCode() is a heap mutator ...
 736   // Relaxing assertion for bug 6320749.
 737   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 738          !SafepointSynchronize::is_at_safepoint(), "invariant");
 739   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 740          Self->is_Java_thread() , "invariant");
 741   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 742          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 743 
 744   while (true) {
 745     ObjectMonitor* monitor = NULL;
 746     markOop temp, test;
 747     intptr_t hash;
 748     markOop mark = ReadStableMark(obj);
 749 
 750     // object should remain ineligible for biased locking
 751     assert(!mark->has_bias_pattern(), "invariant");
 752 
 753     if (mark->is_neutral()) {
 754       hash = mark->hash();              // this is a normal header
 755       if (hash != 0) {                  // if it has hash, just return it
 756         return hash;
 757       }
 758       hash = get_next_hash(Self, obj);  // allocate a new hash code
 759       temp = mark->copy_set_hash(hash); // merge the hash code into header
 760       // use (machine word version) atomic operation to install the hash
 761       test = obj->cas_set_mark(temp, mark);
 762       if (test == mark) {
 763         return hash;
 764       }
 765       // If atomic operation failed, we must inflate the header
 766       // into heavy weight monitor. We could add more code here
 767       // for fast path, but it does not worth the complexity.
 768     } else if (mark->has_monitor()) {
 769       ObjectMonitorHandle omh;
 770       if (!omh.save_om_ptr(obj, mark)) {
 771         // Lost a race with async deflation so try again.
 772         assert(AsyncDeflateIdleMonitors, "sanity check");
 773         continue;
 774       }
 775       monitor = omh.om_ptr();
 776       temp = monitor->header();
 777       assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 778       hash = temp->hash();
 779       if (hash != 0) {
 780         return hash;
 781       }
 782       // Skip to the following code to reduce code size
 783     } else if (Self->is_lock_owned((address)mark->locker())) {
 784       temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
 785       assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 786       hash = temp->hash();              // by current thread, check if the displaced
 787       if (hash != 0) {                  // header contains hash code
 788         return hash;
 789       }
 790       // WARNING:
 791       // The displaced header in the BasicLock on a thread's stack
 792       // is strictly immutable. It CANNOT be changed in ANY cases.
 793       // So we have to inflate the stack lock into an ObjectMonitor
 794       // even if the current thread owns the lock. The BasicLock on
 795       // a thread's stack can be asynchronously read by other threads
 796       // during an inflate() call so any change to that stack memory
 797       // may not propagate to other threads correctly.
 798     }
 799 
 800     // Inflate the monitor to set hash code
 801     ObjectMonitorHandle omh;
 802     inflate(&omh, Self, obj, inflate_cause_hash_code);
 803     monitor = omh.om_ptr();
 804     // Load displaced header and check it has hash code
 805     mark = monitor->header();
 806     assert(mark->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(mark));
 807     hash = mark->hash();
 808     if (hash == 0) {
 809       hash = get_next_hash(Self, obj);
 810       temp = mark->copy_set_hash(hash); // merge hash code into header
 811       assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 812       test = Atomic::cmpxchg(temp, monitor->header_addr(), mark);
 813       if (test != mark) {
 814         // The only non-deflation update to the ObjectMonitor's
 815         // header/dmw field is to merge in the hash code. If someone
 816         // adds a new usage of the header/dmw field, please update
 817         // this code.
 818         // ObjectMonitor::install_displaced_markword_in_object()
 819         // does mark the header/dmw field as part of async deflation,
 820         // but that protocol cannot happen now due to the
 821         // ObjectMonitorHandle above.
 822         hash = test->hash();
 823         assert(test->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(test));
 824         assert(hash != 0, "Trivial unexpected object/monitor header usage.");
 825       }
 826     }
 827     // We finally get the hash
 828     return hash;
 829   }
 830 }
 831 
 832 // Deprecated -- use FastHashCode() instead.
 833 
 834 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 835   return FastHashCode(Thread::current(), obj());
 836 }
 837 
 838 
 839 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 840                                                    Handle h_obj) {
 841   if (UseBiasedLocking) {
 842     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
 843     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 844   }
 845 
 846   assert(thread == JavaThread::current(), "Can only be called on current thread");
 847   oop obj = h_obj();
 848 
 849   while (true) {
 850     markOop mark = ReadStableMark(obj);
 851 
 852     // Uncontended case, header points to stack
 853     if (mark->has_locker()) {
 854       return thread->is_lock_owned((address)mark->locker());
 855     }
 856     // Contended case, header points to ObjectMonitor (tagged pointer)
 857     if (mark->has_monitor()) {
 858       ObjectMonitorHandle omh;
 859       if (!omh.save_om_ptr(obj, mark)) {
 860         // Lost a race with async deflation so try again.
 861         assert(AsyncDeflateIdleMonitors, "sanity check");
 862         continue;
 863       }
 864       bool ret_code = omh.om_ptr()->is_entered(thread) != 0;
 865       return ret_code;
 866     }
 867     // Unlocked case, header in place
 868     assert(mark->is_neutral(), "sanity check");
 869     return false;
 870   }
 871 }
 872 
 873 // Be aware of this method could revoke bias of the lock object.
 874 // This method queries the ownership of the lock handle specified by 'h_obj'.
 875 // If the current thread owns the lock, it returns owner_self. If no
 876 // thread owns the lock, it returns owner_none. Otherwise, it will return
 877 // owner_other.
 878 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 879 (JavaThread *self, Handle h_obj) {
 880   // The caller must beware this method can revoke bias, and
 881   // revocation can result in a safepoint.
 882   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 883   assert(self->thread_state() != _thread_blocked, "invariant");
 884 
 885   // Possible mark states: neutral, biased, stack-locked, inflated
 886 
 887   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
 888     // CASE: biased
 889     BiasedLocking::revoke_and_rebias(h_obj, false, self);
 890     assert(!h_obj->mark()->has_bias_pattern(),
 891            "biases should be revoked by now");
 892   }
 893 
 894   assert(self == JavaThread::current(), "Can only be called on current thread");
 895   oop obj = h_obj();
 896 
 897   while (true) {
 898     markOop mark = ReadStableMark(obj);
 899 
 900     // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 901     if (mark->has_locker()) {
 902       return self->is_lock_owned((address)mark->locker()) ?
 903         owner_self : owner_other;
 904     }
 905 
 906     // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor.
 907     // The Object:ObjectMonitor relationship is stable as long as we're
 908     // not at a safepoint and AsyncDeflateIdleMonitors is false.
 909     if (mark->has_monitor()) {
 910       ObjectMonitorHandle omh;
 911       if (!omh.save_om_ptr(obj, mark)) {
 912         // Lost a race with async deflation so try again.
 913         assert(AsyncDeflateIdleMonitors, "sanity check");
 914         continue;
 915       }
 916       ObjectMonitor * monitor = omh.om_ptr();
 917       void * owner = monitor->_owner;
 918       if (owner == NULL) return owner_none;
 919       return (owner == self ||
 920               self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 921     }
 922 
 923     // CASE: neutral
 924     assert(mark->is_neutral(), "sanity check");
 925     return owner_none;           // it's unlocked
 926   }
 927 }
 928 
 929 // FIXME: jvmti should call this
 930 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
 931   if (UseBiasedLocking) {
 932     if (SafepointSynchronize::is_at_safepoint()) {
 933       BiasedLocking::revoke_at_safepoint(h_obj);
 934     } else {
 935       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
 936     }
 937     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 938   }
 939 
 940   oop obj = h_obj();
 941 
 942   while (true) {
 943     address owner = NULL;
 944     markOop mark = ReadStableMark(obj);
 945 
 946     // Uncontended case, header points to stack
 947     if (mark->has_locker()) {
 948       owner = (address) mark->locker();
 949     }
 950 
 951     // Contended case, header points to ObjectMonitor (tagged pointer)
 952     else if (mark->has_monitor()) {
 953       ObjectMonitorHandle omh;
 954       if (!omh.save_om_ptr(obj, mark)) {
 955         // Lost a race with async deflation so try again.
 956         assert(AsyncDeflateIdleMonitors, "sanity check");
 957         continue;
 958       }
 959       ObjectMonitor* monitor = omh.om_ptr();
 960       assert(monitor != NULL, "monitor should be non-null");
 961       owner = (address) monitor->owner();
 962     }
 963 
 964     if (owner != NULL) {
 965       // owning_thread_from_monitor_owner() may also return NULL here
 966       return Threads::owning_thread_from_monitor_owner(t_list, owner);
 967     }
 968 
 969     // Unlocked case, header in place
 970     // Cannot have assertion since this object may have been
 971     // locked by another thread when reaching here.
 972     // assert(mark->is_neutral(), "sanity check");
 973 
 974     return NULL;
 975   }
 976 }
 977 
 978 // Visitors ...
 979 
 980 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 981   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
 982   while (block != NULL) {
 983     assert(block->object() == CHAINMARKER, "must be a block header");
 984     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 985       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
 986       if (mid->is_active()) {
 987         ObjectMonitorHandle omh(mid);
 988 
 989         if (mid->object() == NULL ||
 990             (AsyncDeflateIdleMonitors && mid->_owner == DEFLATER_MARKER)) {
 991           // Only process with closure if the object is set.
 992           // For async deflation, race here if monitor is not owned!
 993           // The above ref_count bump (in ObjectMonitorHandle ctr)
 994           // will cause subsequent async deflation to skip it.
 995           // However, previous or concurrent async deflation is a race.
 996           continue;
 997         }
 998         closure->do_monitor(mid);
 999       }
1000     }
1001     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
1002   }
1003 }
1004 
1005 // Get the next block in the block list.
1006 static inline PaddedEnd<ObjectMonitor>* next(PaddedEnd<ObjectMonitor>* block) {
1007   assert(block->object() == CHAINMARKER, "must be a block header");
1008   block = (PaddedEnd<ObjectMonitor>*) block->FreeNext;
1009   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
1010   return block;
1011 }
1012 
1013 static bool monitors_used_above_threshold() {
1014   if (gMonitorPopulation == 0) {
1015     return false;
1016   }
1017   if (MonitorUsedDeflationThreshold > 0) {
1018     int monitors_used = gMonitorPopulation - gMonitorFreeCount;
1019     int monitor_usage = (monitors_used * 100LL) / gMonitorPopulation;
1020     return monitor_usage > MonitorUsedDeflationThreshold;
1021   }
1022   return false;
1023 }
1024 
1025 bool ObjectSynchronizer::is_async_deflation_needed() {
1026   if (!AsyncDeflateIdleMonitors) {
1027     return false;
1028   }
1029   if (is_async_deflation_requested()) {
1030     // Async deflation request.
1031     return true;
1032   }
1033   if (AsyncDeflationInterval > 0 &&
1034       time_since_last_async_deflation_ms() > AsyncDeflationInterval &&
1035       monitors_used_above_threshold()) {
1036     // It's been longer than our specified deflate interval and there
1037     // are too many monitors in use. We don't deflate more frequently
1038     // than AsyncDeflationInterval (unless is_async_deflation_requested)
1039     // in order to not swamp the ServiceThread.
1040     _last_async_deflation_time_ns = os::javaTimeNanos();
1041     return true;
1042   }
1043   return false;
1044 }
1045 
1046 bool ObjectSynchronizer::is_safepoint_deflation_needed() {
1047   if (!AsyncDeflateIdleMonitors) {
1048     if (monitors_used_above_threshold()) {
1049       // Too many monitors in use.
1050       return true;
1051     }
1052     return false;
1053   }
1054   if (is_special_deflation_requested()) {
1055     // For AsyncDeflateIdleMonitors only do a safepoint deflation
1056     // if there is a special deflation request.
1057     return true;
1058   }
1059   return false;
1060 }
1061 
1062 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1063   return (os::javaTimeNanos() - _last_async_deflation_time_ns) / (NANOUNITS / MILLIUNITS);
1064 }
1065 
1066 void ObjectSynchronizer::oops_do(OopClosure* f) {
1067   // We only scan the global used list here (for moribund threads), and
1068   // the thread-local monitors in Thread::oops_do().
1069   global_used_oops_do(f);
1070 }
1071 
1072 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
1073   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1074   list_oops_do(gOmInUseList, f);
1075 }
1076 
1077 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
1078   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1079   list_oops_do(thread->omInUseList, f);
1080 }
1081 
1082 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) {
1083   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1084   ObjectMonitor* mid;
1085   for (mid = list; mid != NULL; mid = mid->FreeNext) {
1086     if (mid->object() != NULL) {
1087       f->do_oop((oop*)mid->object_addr());
1088     }
1089   }
1090 }
1091 
1092 
1093 // -----------------------------------------------------------------------------
1094 // ObjectMonitor Lifecycle
1095 // -----------------------
1096 // Inflation unlinks monitors from the global gFreeList and
1097 // associates them with objects.  Deflation -- which occurs at
1098 // STW-time -- disassociates idle monitors from objects.  Such
1099 // scavenged monitors are returned to the gFreeList.
1100 //
1101 // The global list is protected by gListLock.  All the critical sections
1102 // are short and operate in constant-time.
1103 //
1104 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
1105 //
1106 // Lifecycle:
1107 // --   unassigned and on the global free list
1108 // --   unassigned and on a thread's private omFreeList
1109 // --   assigned to an object.  The object is inflated and the mark refers
1110 //      to the objectmonitor.
1111 
1112 
1113 // Constraining monitor pool growth via MonitorBound ...
1114 //
1115 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
1116 // the rate of scavenging is driven primarily by GC.  As such,  we can find
1117 // an inordinate number of monitors in circulation.
1118 // To avoid that scenario we can artificially induce a STW safepoint
1119 // if the pool appears to be growing past some reasonable bound.
1120 // Generally we favor time in space-time tradeoffs, but as there's no
1121 // natural back-pressure on the # of extant monitors we need to impose some
1122 // type of limit.  Beware that if MonitorBound is set to too low a value
1123 // we could just loop. In addition, if MonitorBound is set to a low value
1124 // we'll incur more safepoints, which are harmful to performance.
1125 // See also: GuaranteedSafepointInterval
1126 //
1127 // The current implementation uses asynchronous VM operations.
1128 
1129 static void InduceScavenge(Thread * Self, const char * Whence) {
1130   // Induce STW safepoint to trim monitors
1131   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1132   // More precisely, trigger an asynchronous STW safepoint as the number
1133   // of active monitors passes the specified threshold.
1134   // TODO: assert thread state is reasonable
1135 
1136   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
1137     // Induce a 'null' safepoint to scavenge monitors
1138     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
1139     // to the VMthread and have a lifespan longer than that of this activation record.
1140     // The VMThread will delete the op when completed.
1141     VMThread::execute(new VM_ScavengeMonitors());
1142   }
1143 }
1144 
1145 ObjectMonitor* ObjectSynchronizer::omAlloc(Thread * Self,
1146                                            const InflateCause cause) {
1147   // A large MAXPRIVATE value reduces both list lock contention
1148   // and list coherency traffic, but also tends to increase the
1149   // number of objectMonitors in circulation as well as the STW
1150   // scavenge costs.  As usual, we lean toward time in space-time
1151   // tradeoffs.
1152   const int MAXPRIVATE = 1024;
1153 
1154   if (AsyncDeflateIdleMonitors) {
1155     JavaThread * jt = (JavaThread *)Self;
1156     if (jt->omShouldDeflateIdleMonitors && jt->omInUseCount > 0 &&
1157         cause != inflate_cause_vm_internal) {
1158       // Deflate any per-thread idle monitors for this JavaThread if
1159       // this is not an internal inflation; internal inflations can
1160       // occur in places where it is not safe to pause for a safepoint.
1161       // Clean up your own mess. (Gibbs Rule 45) Otherwise, skip this
1162       // deflation. deflate_global_idle_monitors_using_JT() is called
1163       // by the ServiceThread.
1164       debug_only(jt->check_for_valid_safepoint_state(false);)
1165       ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT();
1166     }
1167   }
1168 
1169   for (;;) {
1170     ObjectMonitor * m;
1171 
1172     // 1: try to allocate from the thread's local omFreeList.
1173     // Threads will attempt to allocate first from their local list, then
1174     // from the global list, and only after those attempts fail will the thread
1175     // attempt to instantiate new monitors.   Thread-local free lists take
1176     // heat off the gListLock and improve allocation latency, as well as reducing
1177     // coherency traffic on the shared global list.
1178     m = Self->omFreeList;
1179     if (m != NULL) {
1180       Self->omFreeList = m->FreeNext;
1181       Self->omFreeCount--;
1182       guarantee(m->object() == NULL, "invariant");
1183       m->set_allocation_state(ObjectMonitor::New);
1184       m->FreeNext = Self->omInUseList;
1185       Self->omInUseList = m;
1186       Self->omInUseCount++;
1187       return m;
1188     }
1189 
1190     // 2: try to allocate from the global gFreeList
1191     // CONSIDER: use muxTry() instead of muxAcquire().
1192     // If the muxTry() fails then drop immediately into case 3.
1193     // If we're using thread-local free lists then try
1194     // to reprovision the caller's free list.
1195     if (gFreeList != NULL) {
1196       // Reprovision the thread's omFreeList.
1197       // Use bulk transfers to reduce the allocation rate and heat
1198       // on various locks.
1199       Thread::muxAcquire(&gListLock, "omAlloc(1)");
1200       for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL;) {
1201         gMonitorFreeCount--;
1202         ObjectMonitor * take = gFreeList;
1203         gFreeList = take->FreeNext;
1204         guarantee(take->object() == NULL, "invariant");
1205         if (AsyncDeflateIdleMonitors) {
1206           // Clear any values we allowed to linger during async deflation.
1207           take->_header = NULL;
1208           take->set_owner(NULL);
1209 
1210           if (take->ref_count() < 0) {
1211             // Add back max_jint to restore the ref_count field to its
1212             // proper value.
1213             Atomic::add(max_jint, &take->_ref_count);
1214 
1215             assert(take->ref_count() >= 0, "must not be negative: ref_count=%d",
1216                    take->ref_count());
1217           }
1218         }
1219         guarantee(!take->is_busy(), "invariant");
1220         take->Recycle();
1221         assert(take->is_free(), "invariant");
1222         omRelease(Self, take, false);
1223       }
1224       Thread::muxRelease(&gListLock);
1225       Self->omFreeProvision += 1 + (Self->omFreeProvision/2);
1226       if (Self->omFreeProvision > MAXPRIVATE) Self->omFreeProvision = MAXPRIVATE;
1227 
1228       const int mx = MonitorBound;
1229       if (mx > 0 && (gMonitorPopulation-gMonitorFreeCount) > mx) {
1230         // We can't safely induce a STW safepoint from omAlloc() as our thread
1231         // state may not be appropriate for such activities and callers may hold
1232         // naked oops, so instead we defer the action.
1233         InduceScavenge(Self, "omAlloc");
1234       }
1235       continue;
1236     }
1237 
1238     // 3: allocate a block of new ObjectMonitors
1239     // Both the local and global free lists are empty -- resort to malloc().
1240     // In the current implementation objectMonitors are TSM - immortal.
1241     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1242     // each ObjectMonitor to start at the beginning of a cache line,
1243     // so we use align_up().
1244     // A better solution would be to use C++ placement-new.
1245     // BEWARE: As it stands currently, we don't run the ctors!
1246     assert(_BLOCKSIZE > 1, "invariant");
1247     size_t neededsize = sizeof(PaddedEnd<ObjectMonitor>) * _BLOCKSIZE;
1248     PaddedEnd<ObjectMonitor> * temp;
1249     size_t aligned_size = neededsize + (DEFAULT_CACHE_LINE_SIZE - 1);
1250     void* real_malloc_addr = (void *)NEW_C_HEAP_ARRAY(char, aligned_size,
1251                                                       mtInternal);
1252     temp = (PaddedEnd<ObjectMonitor> *)
1253              align_up(real_malloc_addr, DEFAULT_CACHE_LINE_SIZE);
1254 
1255     // NOTE: (almost) no way to recover if allocation failed.
1256     // We might be able to induce a STW safepoint and scavenge enough
1257     // objectMonitors to permit progress.
1258     if (temp == NULL) {
1259       vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR,
1260                             "Allocate ObjectMonitors");
1261     }
1262     (void)memset((void *) temp, 0, neededsize);
1263 
1264     // Format the block.
1265     // initialize the linked list, each monitor points to its next
1266     // forming the single linked free list, the very first monitor
1267     // will points to next block, which forms the block list.
1268     // The trick of using the 1st element in the block as gBlockList
1269     // linkage should be reconsidered.  A better implementation would
1270     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1271 
1272     for (int i = 1; i < _BLOCKSIZE; i++) {
1273       temp[i].FreeNext = (ObjectMonitor *)&temp[i+1];
1274       assert(temp[i].is_free(), "invariant");
1275     }
1276 
1277     // terminate the last monitor as the end of list
1278     temp[_BLOCKSIZE - 1].FreeNext = NULL;
1279 
1280     // Element [0] is reserved for global list linkage
1281     temp[0].set_object(CHAINMARKER);
1282 
1283     // Consider carving out this thread's current request from the
1284     // block in hand.  This avoids some lock traffic and redundant
1285     // list activity.
1286 
1287     // Acquire the gListLock to manipulate gBlockList and gFreeList.
1288     // An Oyama-Taura-Yonezawa scheme might be more efficient.
1289     Thread::muxAcquire(&gListLock, "omAlloc(2)");
1290     gMonitorPopulation += _BLOCKSIZE-1;
1291     gMonitorFreeCount += _BLOCKSIZE-1;
1292 
1293     // Add the new block to the list of extant blocks (gBlockList).
1294     // The very first objectMonitor in a block is reserved and dedicated.
1295     // It serves as blocklist "next" linkage.
1296     temp[0].FreeNext = gBlockList;
1297     // There are lock-free uses of gBlockList so make sure that
1298     // the previous stores happen before we update gBlockList.
1299     OrderAccess::release_store(&gBlockList, temp);
1300 
1301     // Add the new string of objectMonitors to the global free list
1302     temp[_BLOCKSIZE - 1].FreeNext = gFreeList;
1303     gFreeList = temp + 1;
1304     Thread::muxRelease(&gListLock);
1305   }
1306 }
1307 
1308 // Place "m" on the caller's private per-thread omFreeList.
1309 // In practice there's no need to clamp or limit the number of
1310 // monitors on a thread's omFreeList as the only time we'll call
1311 // omRelease is to return a monitor to the free list after a CAS
1312 // attempt failed.  This doesn't allow unbounded #s of monitors to
1313 // accumulate on a thread's free list.
1314 //
1315 // Key constraint: all ObjectMonitors on a thread's free list and the global
1316 // free list must have their object field set to null. This prevents the
1317 // scavenger -- deflate_monitor_list() or deflate_monitor_list_using_JT()
1318 // -- from reclaiming them while we are trying to release them.
1319 
1320 void ObjectSynchronizer::omRelease(Thread * Self, ObjectMonitor * m,
1321                                    bool fromPerThreadAlloc) {
1322   guarantee(m->header() == NULL, "invariant");
1323   guarantee(m->object() == NULL, "invariant");
1324   guarantee(((m->is_busy()|m->_recursions) == 0), "freeing in-use monitor");
1325   m->set_allocation_state(ObjectMonitor::Free);
1326   // Remove from omInUseList
1327   if (fromPerThreadAlloc) {
1328     ObjectMonitor* cur_mid_in_use = NULL;
1329     bool extracted = false;
1330     for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; cur_mid_in_use = mid, mid = mid->FreeNext) {
1331       if (m == mid) {
1332         // extract from per-thread in-use list
1333         if (mid == Self->omInUseList) {
1334           Self->omInUseList = mid->FreeNext;
1335         } else if (cur_mid_in_use != NULL) {
1336           cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1337         }
1338         extracted = true;
1339         Self->omInUseCount--;
1340         break;
1341       }
1342     }
1343     assert(extracted, "Should have extracted from in-use list");
1344   }
1345 
1346   // FreeNext is used for both omInUseList and omFreeList, so clear old before setting new
1347   m->FreeNext = Self->omFreeList;
1348   guarantee(m->is_free(), "invariant");
1349   Self->omFreeList = m;
1350   Self->omFreeCount++;
1351 }
1352 
1353 // Return the monitors of a moribund thread's local free list to
1354 // the global free list.  Typically a thread calls omFlush() when
1355 // it's dying.  We could also consider having the VM thread steal
1356 // monitors from threads that have not run java code over a few
1357 // consecutive STW safepoints.  Relatedly, we might decay
1358 // omFreeProvision at STW safepoints.
1359 //
1360 // Also return the monitors of a moribund thread's omInUseList to
1361 // a global gOmInUseList under the global list lock so these
1362 // will continue to be scanned.
1363 //
1364 // We currently call omFlush() from Threads::remove() _before the thread
1365 // has been excised from the thread list and is no longer a mutator.
1366 // This means that omFlush() cannot run concurrently with a safepoint and
1367 // interleave with the deflate_idle_monitors scavenge operator. In particular,
1368 // this ensures that the thread's monitors are scanned by a GC safepoint,
1369 // either via Thread::oops_do() (if safepoint happens before omFlush()) or via
1370 // ObjectSynchronizer::oops_do() (if it happens after omFlush() and the thread's
1371 // monitors have been transferred to the global in-use list).
1372 //
1373 // With AsyncDeflateIdleMonitors, deflate_global_idle_monitors_using_JT()
1374 // and deflate_per_thread_idle_monitors_using_JT() (in another thread) can
1375 // run at the same time as omFlush() so we have to be careful.
1376 
1377 void ObjectSynchronizer::omFlush(Thread * Self) {
1378   ObjectMonitor * list = Self->omFreeList;  // Null-terminated SLL
1379   ObjectMonitor * tail = NULL;
1380   int tally = 0;
1381   if (list != NULL) {
1382     ObjectMonitor * s;
1383     // The thread is going away, the per-thread free monitors
1384     // are freed via set_owner(NULL)
1385     // Link them to tail, which will be linked into the global free list
1386     // gFreeList below, under the gListLock
1387     for (s = list; s != NULL; s = s->FreeNext) {
1388       tally++;
1389       tail = s;
1390       guarantee(s->object() == NULL, "invariant");
1391       guarantee(!s->is_busy(), "invariant");
1392       s->set_owner(NULL);   // redundant but good hygiene
1393     }
1394     guarantee(tail != NULL, "invariant");
1395     ADIM_guarantee(Self->omFreeCount == tally, "free-count off");
1396     Self->omFreeList = NULL;
1397     Self->omFreeCount = 0;
1398   }
1399 
1400   ObjectMonitor * inUseList = Self->omInUseList;
1401   ObjectMonitor * inUseTail = NULL;
1402   int inUseTally = 0;
1403   if (inUseList != NULL) {
1404     ObjectMonitor *cur_om;
1405     // The thread is going away, however the omInUseList inflated
1406     // monitors may still be in-use by other threads.
1407     // Link them to inUseTail, which will be linked into the global in-use list
1408     // gOmInUseList below, under the gListLock
1409     for (cur_om = inUseList; cur_om != NULL; cur_om = cur_om->FreeNext) {
1410       inUseTail = cur_om;
1411       inUseTally++;
1412       ADIM_guarantee(cur_om->is_active(), "invariant");
1413     }
1414     guarantee(inUseTail != NULL, "invariant");
1415     ADIM_guarantee(Self->omInUseCount == inUseTally, "in-use count off");
1416     Self->omInUseList = NULL;
1417     Self->omInUseCount = 0;
1418   }
1419 
1420   Thread::muxAcquire(&gListLock, "omFlush");
1421   if (tail != NULL) {
1422     tail->FreeNext = gFreeList;
1423     gFreeList = list;
1424     gMonitorFreeCount += tally;
1425   }
1426 
1427   if (inUseTail != NULL) {
1428     inUseTail->FreeNext = gOmInUseList;
1429     gOmInUseList = inUseList;
1430     gOmInUseCount += inUseTally;
1431   }
1432 
1433   Thread::muxRelease(&gListLock);
1434 
1435   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1436   LogStreamHandle(Info, monitorinflation) lsh_info;
1437   LogStream * ls = NULL;
1438   if (log_is_enabled(Debug, monitorinflation)) {
1439     ls = &lsh_debug;
1440   } else if ((tally != 0 || inUseTally != 0) &&
1441              log_is_enabled(Info, monitorinflation)) {
1442     ls = &lsh_info;
1443   }
1444   if (ls != NULL) {
1445     ls->print_cr("omFlush: jt=" INTPTR_FORMAT ", free_monitor_tally=%d"
1446                  ", in_use_monitor_tally=%d" ", omFreeProvision=%d",
1447                  p2i(Self), tally, inUseTally, Self->omFreeProvision);
1448   }
1449 }
1450 
1451 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1452                                        const oop obj,
1453                                        ObjectSynchronizer::InflateCause cause) {
1454   assert(event != NULL, "invariant");
1455   assert(event->should_commit(), "invariant");
1456   event->set_monitorClass(obj->klass());
1457   event->set_address((uintptr_t)(void*)obj);
1458   event->set_cause((u1)cause);
1459   event->commit();
1460 }
1461 
1462 // Fast path code shared by multiple functions
1463 void ObjectSynchronizer::inflate_helper(ObjectMonitorHandle * omh_p, oop obj) {
1464   while (true) {
1465     markOop mark = obj->mark();
1466     if (mark->has_monitor()) {
1467       if (!omh_p->save_om_ptr(obj, mark)) {
1468         // Lost a race with async deflation so try again.
1469         assert(AsyncDeflateIdleMonitors, "sanity check");
1470         continue;
1471       }
1472       ObjectMonitor * monitor = omh_p->om_ptr();
1473       assert(ObjectSynchronizer::verify_objmon_isinpool(monitor), "monitor is invalid");
1474       markOop dmw = monitor->header();
1475       assert(dmw->is_neutral(), "sanity check: header=" INTPTR_FORMAT, p2i(dmw));
1476       return;
1477     }
1478     inflate(omh_p, Thread::current(), obj, inflate_cause_vm_internal);
1479     return;
1480   }
1481 }
1482 
1483 void ObjectSynchronizer::inflate(ObjectMonitorHandle * omh_p, Thread * Self,
1484                                  oop object, const InflateCause cause) {
1485   // Inflate mutates the heap ...
1486   // Relaxing assertion for bug 6320749.
1487   assert(Universe::verify_in_progress() ||
1488          !SafepointSynchronize::is_at_safepoint(), "invariant");
1489 
1490   EventJavaMonitorInflate event;
1491 
1492   for (;;) {
1493     const markOop mark = object->mark();
1494     assert(!mark->has_bias_pattern(), "invariant");
1495 
1496     // The mark can be in one of the following states:
1497     // *  Inflated     - just return
1498     // *  Stack-locked - coerce it to inflated
1499     // *  INFLATING    - busy wait for conversion to complete
1500     // *  Neutral      - aggressively inflate the object.
1501     // *  BIASED       - Illegal.  We should never see this
1502 
1503     // CASE: inflated
1504     if (mark->has_monitor()) {
1505       if (!omh_p->save_om_ptr(object, mark)) {
1506         // Lost a race with async deflation so try again.
1507         assert(AsyncDeflateIdleMonitors, "sanity check");
1508         continue;
1509       }
1510       ObjectMonitor * inf = omh_p->om_ptr();
1511       markOop dmw = inf->header();
1512       assert(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1513       assert(oopDesc::equals((oop) inf->object(), object), "invariant");
1514       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1515       return;
1516     }
1517 
1518     // CASE: inflation in progress - inflating over a stack-lock.
1519     // Some other thread is converting from stack-locked to inflated.
1520     // Only that thread can complete inflation -- other threads must wait.
1521     // The INFLATING value is transient.
1522     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1523     // We could always eliminate polling by parking the thread on some auxiliary list.
1524     if (mark == markOopDesc::INFLATING()) {
1525       ReadStableMark(object);
1526       continue;
1527     }
1528 
1529     // CASE: stack-locked
1530     // Could be stack-locked either by this thread or by some other thread.
1531     //
1532     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1533     // to install INFLATING into the mark word.  We originally installed INFLATING,
1534     // allocated the objectmonitor, and then finally STed the address of the
1535     // objectmonitor into the mark.  This was correct, but artificially lengthened
1536     // the interval in which INFLATED appeared in the mark, thus increasing
1537     // the odds of inflation contention.
1538     //
1539     // We now use per-thread private objectmonitor free lists.
1540     // These list are reprovisioned from the global free list outside the
1541     // critical INFLATING...ST interval.  A thread can transfer
1542     // multiple objectmonitors en-mass from the global free list to its local free list.
1543     // This reduces coherency traffic and lock contention on the global free list.
1544     // Using such local free lists, it doesn't matter if the omAlloc() call appears
1545     // before or after the CAS(INFLATING) operation.
1546     // See the comments in omAlloc().
1547 
1548     LogStreamHandle(Trace, monitorinflation) lsh;
1549 
1550     if (mark->has_locker()) {
1551       ObjectMonitor * m;
1552       if (!AsyncDeflateIdleMonitors || cause == inflate_cause_vm_internal) {
1553         // If !AsyncDeflateIdleMonitors or if an internal inflation, then
1554         // we won't stop for a potential safepoint in omAlloc.
1555         m = omAlloc(Self, cause);
1556       } else {
1557         // If AsyncDeflateIdleMonitors and not an internal inflation, then
1558         // we may stop for a safepoint in omAlloc() so protect object.
1559         Handle h_obj(Self, object);
1560         m = omAlloc(Self, cause);
1561         object = h_obj();  // Refresh object.
1562       }
1563       // Optimistically prepare the objectmonitor - anticipate successful CAS
1564       // We do this before the CAS in order to minimize the length of time
1565       // in which INFLATING appears in the mark.
1566       m->Recycle();
1567       m->_Responsible  = NULL;
1568       m->_recursions   = 0;
1569       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1570 
1571       markOop cmp = object->cas_set_mark(markOopDesc::INFLATING(), mark);
1572       if (cmp != mark) {
1573         omRelease(Self, m, true);
1574         continue;       // Interference -- just retry
1575       }
1576 
1577       // We've successfully installed INFLATING (0) into the mark-word.
1578       // This is the only case where 0 will appear in a mark-word.
1579       // Only the singular thread that successfully swings the mark-word
1580       // to 0 can perform (or more precisely, complete) inflation.
1581       //
1582       // Why do we CAS a 0 into the mark-word instead of just CASing the
1583       // mark-word from the stack-locked value directly to the new inflated state?
1584       // Consider what happens when a thread unlocks a stack-locked object.
1585       // It attempts to use CAS to swing the displaced header value from the
1586       // on-stack basiclock back into the object header.  Recall also that the
1587       // header value (hash code, etc) can reside in (a) the object header, or
1588       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1589       // header in an objectMonitor.  The inflate() routine must copy the header
1590       // value from the basiclock on the owner's stack to the objectMonitor, all
1591       // the while preserving the hashCode stability invariants.  If the owner
1592       // decides to release the lock while the value is 0, the unlock will fail
1593       // and control will eventually pass from slow_exit() to inflate.  The owner
1594       // will then spin, waiting for the 0 value to disappear.   Put another way,
1595       // the 0 causes the owner to stall if the owner happens to try to
1596       // drop the lock (restoring the header from the basiclock to the object)
1597       // while inflation is in-progress.  This protocol avoids races that might
1598       // would otherwise permit hashCode values to change or "flicker" for an object.
1599       // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1600       // 0 serves as a "BUSY" inflate-in-progress indicator.
1601 
1602 
1603       // fetch the displaced mark from the owner's stack.
1604       // The owner can't die or unwind past the lock while our INFLATING
1605       // object is in the mark.  Furthermore the owner can't complete
1606       // an unlock on the object, either.
1607       markOop dmw = mark->displaced_mark_helper();
1608       // Catch if the object's header is not neutral (not locked and
1609       // not marked is what we care about here).
1610       ADIM_guarantee(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1611 
1612       // Setup monitor fields to proper values -- prepare the monitor
1613       m->set_header(dmw);
1614 
1615       // Optimization: if the mark->locker stack address is associated
1616       // with this thread we could simply set m->_owner = Self.
1617       // Note that a thread can inflate an object
1618       // that it has stack-locked -- as might happen in wait() -- directly
1619       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1620       m->set_owner(mark->locker());
1621       m->set_object(object);
1622       // TODO-FIXME: assert BasicLock->dhw != 0.
1623 
1624       omh_p->set_om_ptr(m);
1625       assert(m->is_new(), "freshly allocated monitor must be new");
1626       m->set_allocation_state(ObjectMonitor::Old);
1627 
1628       // Must preserve store ordering. The monitor state must
1629       // be stable at the time of publishing the monitor address.
1630       guarantee(object->mark() == markOopDesc::INFLATING(), "invariant");
1631       object->release_set_mark(markOopDesc::encode(m));
1632 
1633       // Hopefully the performance counters are allocated on distinct cache lines
1634       // to avoid false sharing on MP systems ...
1635       OM_PERFDATA_OP(Inflations, inc());
1636       if (log_is_enabled(Trace, monitorinflation)) {
1637         ResourceMark rm(Self);
1638         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1639                      INTPTR_FORMAT ", type='%s'", p2i(object),
1640                      p2i(object->mark()), object->klass()->external_name());
1641       }
1642       if (event.should_commit()) {
1643         post_monitor_inflate_event(&event, object, cause);
1644       }
1645       ADIM_guarantee(!m->is_free(), "inflated monitor to be returned cannot be free");
1646       return;
1647     }
1648 
1649     // CASE: neutral
1650     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1651     // If we know we're inflating for entry it's better to inflate by swinging a
1652     // pre-locked objectMonitor pointer into the object header.   A successful
1653     // CAS inflates the object *and* confers ownership to the inflating thread.
1654     // In the current implementation we use a 2-step mechanism where we CAS()
1655     // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1656     // An inflateTry() method that we could call from fast_enter() and slow_enter()
1657     // would be useful.
1658 
1659     // Catch if the object's header is not neutral (not locked and
1660     // not marked is what we care about here).
1661     ADIM_guarantee(mark->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(mark));
1662     ObjectMonitor * m;
1663     if (!AsyncDeflateIdleMonitors || cause == inflate_cause_vm_internal) {
1664       // If !AsyncDeflateIdleMonitors or if an internal inflation, then
1665       // we won't stop for a potential safepoint in omAlloc.
1666       m = omAlloc(Self, cause);
1667     } else {
1668       // If AsyncDeflateIdleMonitors and not an internal inflation, then
1669       // we may stop for a safepoint in omAlloc() so protect object.
1670       Handle h_obj(Self, object);
1671       m = omAlloc(Self, cause);
1672       object = h_obj();  // Refresh object.
1673     }
1674     // prepare m for installation - set monitor to initial state
1675     m->Recycle();
1676     m->set_header(mark);
1677     m->set_owner(NULL);
1678     m->set_object(object);
1679     m->_recursions   = 0;
1680     m->_Responsible  = NULL;
1681     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1682 
1683     omh_p->set_om_ptr(m);
1684     assert(m->is_new(), "freshly allocated monitor must be new");
1685     m->set_allocation_state(ObjectMonitor::Old);
1686 
1687     if (object->cas_set_mark(markOopDesc::encode(m), mark) != mark) {
1688       m->set_header(NULL);
1689       m->set_object(NULL);
1690       m->Recycle();
1691       omh_p->set_om_ptr(NULL);
1692       // omRelease() will reset the allocation state
1693       omRelease(Self, m, true);
1694       m = NULL;
1695       continue;
1696       // interference - the markword changed - just retry.
1697       // The state-transitions are one-way, so there's no chance of
1698       // live-lock -- "Inflated" is an absorbing state.
1699     }
1700 
1701     // Hopefully the performance counters are allocated on distinct
1702     // cache lines to avoid false sharing on MP systems ...
1703     OM_PERFDATA_OP(Inflations, inc());
1704     if (log_is_enabled(Trace, monitorinflation)) {
1705       ResourceMark rm(Self);
1706       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
1707                    INTPTR_FORMAT ", type='%s'", p2i(object),
1708                    p2i(object->mark()), object->klass()->external_name());
1709     }
1710     if (event.should_commit()) {
1711       post_monitor_inflate_event(&event, object, cause);
1712     }
1713     ADIM_guarantee(!m->is_free(), "inflated monitor to be returned cannot be free");
1714     return;
1715   }
1716 }
1717 
1718 
1719 // We maintain a list of in-use monitors for each thread.
1720 //
1721 // deflate_thread_local_monitors() scans a single thread's in-use list, while
1722 // deflate_idle_monitors() scans only a global list of in-use monitors which
1723 // is populated only as a thread dies (see omFlush()).
1724 //
1725 // These operations are called at all safepoints, immediately after mutators
1726 // are stopped, but before any objects have moved. Collectively they traverse
1727 // the population of in-use monitors, deflating where possible. The scavenged
1728 // monitors are returned to the global monitor free list.
1729 //
1730 // Beware that we scavenge at *every* stop-the-world point. Having a large
1731 // number of monitors in-use could negatively impact performance. We also want
1732 // to minimize the total # of monitors in circulation, as they incur a small
1733 // footprint penalty.
1734 //
1735 // Perversely, the heap size -- and thus the STW safepoint rate --
1736 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1737 // which in turn can mean large(r) numbers of ObjectMonitors in circulation.
1738 // This is an unfortunate aspect of this design.
1739 
1740 void ObjectSynchronizer::do_safepoint_work(DeflateMonitorCounters* _counters) {
1741   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1742 
1743   // The per-thread in-use lists are handled in
1744   // ParallelSPCleanupThreadClosure::do_thread().
1745 
1746   if (!AsyncDeflateIdleMonitors || is_special_deflation_requested()) {
1747     // Use the older mechanism for the global in-use list or if a
1748     // special deflation has been requested before the safepoint.
1749     ObjectSynchronizer::deflate_idle_monitors(_counters);
1750     return;
1751   }
1752 
1753   log_debug(monitorinflation)("requesting async deflation of idle monitors.");
1754   // Request deflation of idle monitors by the ServiceThread:
1755   set_is_async_deflation_requested(true);
1756   MonitorLocker ml(Service_lock, Mutex::_no_safepoint_check_flag);
1757   ml.notify_all();
1758 }
1759 
1760 // Deflate a single monitor if not in-use
1761 // Return true if deflated, false if in-use
1762 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1763                                          ObjectMonitor** freeHeadp,
1764                                          ObjectMonitor** freeTailp) {
1765   bool deflated;
1766   // Normal case ... The monitor is associated with obj.
1767   const markOop mark = obj->mark();
1768   guarantee(mark == markOopDesc::encode(mid), "should match: mark="
1769             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, p2i(mark),
1770             p2i(markOopDesc::encode(mid)));
1771   // Make sure that mark->monitor() and markOopDesc::encode() agree:
1772   guarantee(mark->monitor() == mid, "should match: monitor()=" INTPTR_FORMAT
1773             ", mid=" INTPTR_FORMAT, p2i(mark->monitor()), p2i(mid));
1774   const markOop dmw = mid->header();
1775   guarantee(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1776 
1777   if (mid->is_busy()) {
1778     deflated = false;
1779   } else {
1780     // Deflate the monitor if it is no longer being used
1781     // It's idle - scavenge and return to the global free list
1782     // plain old deflation ...
1783     if (log_is_enabled(Trace, monitorinflation)) {
1784       ResourceMark rm;
1785       log_trace(monitorinflation)("deflate_monitor: "
1786                                   "object=" INTPTR_FORMAT ", mark="
1787                                   INTPTR_FORMAT ", type='%s'", p2i(obj),
1788                                   p2i(mark), obj->klass()->external_name());
1789     }
1790 
1791     // Restore the header back to obj
1792     obj->release_set_mark(dmw);
1793     mid->clear();
1794 
1795     assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT,
1796            p2i(mid->object()));
1797     assert(mid->is_free(), "invariant");
1798 
1799     // Move the object to the working free list defined by freeHeadp, freeTailp
1800     if (*freeHeadp == NULL) *freeHeadp = mid;
1801     if (*freeTailp != NULL) {
1802       ObjectMonitor * prevtail = *freeTailp;
1803       assert(prevtail->FreeNext == NULL, "cleaned up deflated?");
1804       prevtail->FreeNext = mid;
1805     }
1806     *freeTailp = mid;
1807     deflated = true;
1808   }
1809   return deflated;
1810 }
1811 
1812 // Deflate the specified ObjectMonitor if not in-use using a JavaThread.
1813 // Returns true if it was deflated and false otherwise.
1814 //
1815 // The async deflation protocol sets owner to DEFLATER_MARKER and
1816 // makes ref_count negative as signals to contending threads that
1817 // an async deflation is in progress. There are a number of checks
1818 // as part of the protocol to make sure that the calling thread has
1819 // not lost the race to a contending thread or to a thread that just
1820 // wants to use the ObjectMonitor*.
1821 //
1822 // The ObjectMonitor has been successfully async deflated when:
1823 // (owner == DEFLATER_MARKER && ref_count < 0)
1824 // Contending threads or ObjectMonitor* using threads that see those
1825 // values know to retry their operation.
1826 //
1827 bool ObjectSynchronizer::deflate_monitor_using_JT(ObjectMonitor* mid,
1828                                                   ObjectMonitor** freeHeadp,
1829                                                   ObjectMonitor** freeTailp) {
1830   assert(AsyncDeflateIdleMonitors, "sanity check");
1831   assert(Thread::current()->is_Java_thread(), "precondition");
1832   // A newly allocated ObjectMonitor should not be seen here so we
1833   // avoid an endless inflate/deflate cycle.
1834   assert(mid->is_old(), "must be old: allocation_state=%d",
1835          (int) mid->allocation_state());
1836 
1837   if (mid->is_busy() || mid->ref_count() != 0) {
1838     // Easy checks are first - the ObjectMonitor is busy or ObjectMonitor*
1839     // is in use so no deflation.
1840     return false;
1841   }
1842 
1843   if (Atomic::replace_if_null(DEFLATER_MARKER, &(mid->_owner))) {
1844     // ObjectMonitor is not owned by another thread. Our setting
1845     // owner to DEFLATER_MARKER forces any contending thread through
1846     // the slow path. This is just the first part of the async
1847     // deflation dance.
1848 
1849     if (mid->_contentions != 0 || mid->_waiters != 0) {
1850       // Another thread has raced to enter the ObjectMonitor after
1851       // mid->is_busy() above or has already entered and waited on
1852       // it which makes it busy so no deflation. Restore owner to
1853       // NULL if it is still DEFLATER_MARKER.
1854       Atomic::cmpxchg((void*)NULL, &mid->_owner, DEFLATER_MARKER);
1855       return false;
1856     }
1857 
1858     if (Atomic::cmpxchg(-max_jint, &mid->_ref_count, (jint)0) == 0) {
1859       // Make ref_count negative to force any contending threads or
1860       // ObjectMonitor* using threads to retry. This is the second
1861       // part of the async deflation dance.
1862 
1863       if (mid->_owner == DEFLATER_MARKER) {
1864         // If owner is still DEFLATER_MARKER, then we have successfully
1865         // signaled any contending threads to retry. If it is not, then we
1866         // have lost the race to an entering thread and the ObjectMonitor
1867         // is now busy. This is the third and final part of the async
1868         // deflation dance.
1869         // Note: This owner check solves the ABA problem with ref_count
1870         // where another thread acquired the ObjectMonitor, finished
1871         // using it and restored the ref_count to zero.
1872 
1873         // Sanity checks for the races:
1874         guarantee(mid->_contentions == 0, "must be 0: contentions=%d",
1875                   mid->_contentions);
1876         guarantee(mid->_waiters == 0, "must be 0: waiters=%d", mid->_waiters);
1877         guarantee(mid->_cxq == NULL, "must be no contending threads: cxq="
1878                   INTPTR_FORMAT, p2i(mid->_cxq));
1879         guarantee(mid->_EntryList == NULL,
1880                   "must be no entering threads: EntryList=" INTPTR_FORMAT,
1881                   p2i(mid->_EntryList));
1882 
1883         const oop obj = (oop) mid->object();
1884         if (log_is_enabled(Trace, monitorinflation)) {
1885           ResourceMark rm;
1886           log_trace(monitorinflation)("deflate_monitor_using_JT: "
1887                                       "object=" INTPTR_FORMAT ", mark="
1888                                       INTPTR_FORMAT ", type='%s'",
1889                                       p2i(obj), p2i(obj->mark()),
1890                                       obj->klass()->external_name());
1891         }
1892 
1893         // Install the old mark word if nobody else has already done it.
1894         mid->install_displaced_markword_in_object(obj);
1895         mid->clear_using_JT();
1896 
1897         assert(mid->object() == NULL, "must be NULL: object=" INTPTR_FORMAT,
1898                p2i(mid->object()));
1899         assert(mid->is_free(), "must be free: allocation_state=%d",
1900                (int) mid->allocation_state());
1901 
1902         // Move the deflated ObjectMonitor to the working free list
1903         // defined by freeHeadp and freeTailp.
1904         if (*freeHeadp == NULL) {
1905           // First one on the list.
1906           *freeHeadp = mid;
1907         }
1908         if (*freeTailp != NULL) {
1909           // We append to the list so the caller can use mid->FreeNext
1910           // to fix the linkages in its context.
1911           ObjectMonitor * prevtail = *freeTailp;
1912           // Should have been cleaned up by the caller:
1913           assert(prevtail->FreeNext == NULL, "must be NULL: FreeNext="
1914                  INTPTR_FORMAT, p2i(prevtail->FreeNext));
1915           prevtail->FreeNext = mid;
1916         }
1917         *freeTailp = mid;
1918 
1919         // At this point, mid->FreeNext still refers to its current
1920         // value and another ObjectMonitor's FreeNext field still
1921         // refers to this ObjectMonitor. Those linkages have to be
1922         // cleaned up by the caller who has the complete context.
1923 
1924         // We leave owner == DEFLATER_MARKER and ref_count < 0
1925         // to force any racing threads to retry.
1926         return true;  // Success, ObjectMonitor has been deflated.
1927       }
1928 
1929       // The owner was changed from DEFLATER_MARKER so we lost the
1930       // race since the ObjectMonitor is now busy.
1931 
1932       // Add back max_jint to restore the ref_count field to its
1933       // proper value (which may not be what we saw above):
1934       Atomic::add(max_jint, &mid->_ref_count);
1935 
1936       assert(mid->ref_count() >= 0, "must not be negative: ref_count=%d",
1937              mid->ref_count());
1938       return false;
1939     }
1940 
1941     // The ref_count was no longer 0 so we lost the race since the
1942     // ObjectMonitor is now busy or the ObjectMonitor* is now is use.
1943     // Restore owner to NULL if it is still DEFLATER_MARKER:
1944     Atomic::cmpxchg((void*)NULL, &mid->_owner, DEFLATER_MARKER);
1945   }
1946 
1947   // The owner field is no longer NULL so we lost the race since the
1948   // ObjectMonitor is now busy.
1949   return false;
1950 }
1951 
1952 // Walk a given monitor list, and deflate idle monitors
1953 // The given list could be a per-thread list or a global list
1954 // Caller acquires gListLock as needed.
1955 //
1956 // In the case of parallel processing of thread local monitor lists,
1957 // work is done by Threads::parallel_threads_do() which ensures that
1958 // each Java thread is processed by exactly one worker thread, and
1959 // thus avoid conflicts that would arise when worker threads would
1960 // process the same monitor lists concurrently.
1961 //
1962 // See also ParallelSPCleanupTask and
1963 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
1964 // Threads::parallel_java_threads_do() in thread.cpp.
1965 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** listHeadp,
1966                                              ObjectMonitor** freeHeadp,
1967                                              ObjectMonitor** freeTailp) {
1968   ObjectMonitor* mid;
1969   ObjectMonitor* next;
1970   ObjectMonitor* cur_mid_in_use = NULL;
1971   int deflated_count = 0;
1972 
1973   for (mid = *listHeadp; mid != NULL;) {
1974     oop obj = (oop) mid->object();
1975     if (obj != NULL && deflate_monitor(mid, obj, freeHeadp, freeTailp)) {
1976       // if deflate_monitor succeeded,
1977       // extract from per-thread in-use list
1978       if (mid == *listHeadp) {
1979         *listHeadp = mid->FreeNext;
1980       } else if (cur_mid_in_use != NULL) {
1981         cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1982       }
1983       next = mid->FreeNext;
1984       mid->FreeNext = NULL;  // This mid is current tail in the freeHeadp list
1985       mid = next;
1986       deflated_count++;
1987     } else {
1988       cur_mid_in_use = mid;
1989       mid = mid->FreeNext;
1990     }
1991   }
1992   return deflated_count;
1993 }
1994 
1995 // Walk a given ObjectMonitor list and deflate idle ObjectMonitors using
1996 // a JavaThread. Returns the number of deflated ObjectMonitors. The given
1997 // list could be a per-thread in-use list or the global in-use list.
1998 // Caller acquires gListLock as appropriate. If a safepoint has started,
1999 // then we save state via savedMidInUsep and return to the caller to
2000 // honor the safepoint.
2001 //
2002 int ObjectSynchronizer::deflate_monitor_list_using_JT(ObjectMonitor** listHeadp,
2003                                                       ObjectMonitor** freeHeadp,
2004                                                       ObjectMonitor** freeTailp,
2005                                                       ObjectMonitor** savedMidInUsep) {
2006   assert(AsyncDeflateIdleMonitors, "sanity check");
2007   assert(Thread::current()->is_Java_thread(), "precondition");
2008 
2009   ObjectMonitor* mid;
2010   ObjectMonitor* next;
2011   ObjectMonitor* cur_mid_in_use = NULL;
2012   int deflated_count = 0;
2013 
2014   if (*savedMidInUsep == NULL) {
2015     // No saved state so start at the beginning.
2016     mid = *listHeadp;
2017   } else {
2018     // We're restarting after a safepoint so restore the necessary state
2019     // before we resume.
2020     cur_mid_in_use = *savedMidInUsep;
2021     mid = cur_mid_in_use->FreeNext;
2022   }
2023   while (mid != NULL) {
2024     // Only try to deflate if there is an associated Java object and if
2025     // mid is old (is not newly allocated and is not newly freed).
2026     if (mid->object() != NULL && mid->is_old() &&
2027         deflate_monitor_using_JT(mid, freeHeadp, freeTailp)) {
2028       // Deflation succeeded so update the in-use list.
2029       if (mid == *listHeadp) {
2030         *listHeadp = mid->FreeNext;
2031       } else if (cur_mid_in_use != NULL) {
2032         // Maintain the current in-use list.
2033         cur_mid_in_use->FreeNext = mid->FreeNext;
2034       }
2035       next = mid->FreeNext;
2036       mid->FreeNext = NULL;
2037       // At this point mid is disconnected from the in-use list
2038       // and is the current tail in the freeHeadp list.
2039       mid = next;
2040       deflated_count++;
2041     } else {
2042       // mid is considered in-use if it does not have an associated
2043       // Java object or mid is not old or deflation did not succeed.
2044       // A mid->is_new() node can be seen here when it is freshly
2045       // returned by omAlloc() (and skips the deflation code path).
2046       // A mid->is_old() node can be seen here when deflation failed.
2047       // A mid->is_free() node can be seen here when a fresh node from
2048       // omAlloc() is released by omRelease() due to losing the race
2049       // in inflate().
2050 
2051       cur_mid_in_use = mid;
2052       mid = mid->FreeNext;
2053 
2054       if (SafepointSynchronize::is_synchronizing() &&
2055           cur_mid_in_use != *listHeadp && cur_mid_in_use->is_old()) {
2056         // If a safepoint has started and cur_mid_in_use is not the list
2057         // head and is old, then it is safe to use as saved state. Return
2058         // to the caller so gListLock can be dropped as appropriate
2059         // before blocking.
2060         *savedMidInUsep = cur_mid_in_use;
2061         return deflated_count;
2062       }
2063     }
2064   }
2065   // We finished the list without a safepoint starting so there's
2066   // no need to save state.
2067   *savedMidInUsep = NULL;
2068   return deflated_count;
2069 }
2070 
2071 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2072   counters->nInuse = 0;              // currently associated with objects
2073   counters->nInCirculation = 0;      // extant
2074   counters->nScavenged = 0;          // reclaimed (global and per-thread)
2075   counters->perThreadScavenged = 0;  // per-thread scavenge total
2076   counters->perThreadTimes = 0.0;    // per-thread scavenge times
2077 }
2078 
2079 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
2080   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2081 
2082   if (AsyncDeflateIdleMonitors) {
2083     // Nothing to do when global idle ObjectMonitors are deflated using
2084     // a JavaThread unless a special deflation has been requested.
2085     if (!is_special_deflation_requested()) {
2086       return;
2087     }
2088   }
2089 
2090   bool deflated = false;
2091 
2092   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
2093   ObjectMonitor * freeTailp = NULL;
2094   elapsedTimer timer;
2095 
2096   if (log_is_enabled(Info, monitorinflation)) {
2097     timer.start();
2098   }
2099 
2100   // Prevent omFlush from changing mids in Thread dtor's during deflation
2101   // And in case the vm thread is acquiring a lock during a safepoint
2102   // See e.g. 6320749
2103   Thread::muxAcquire(&gListLock, "deflate_idle_monitors");
2104 
2105   // Note: the thread-local monitors lists get deflated in
2106   // a separate pass. See deflate_thread_local_monitors().
2107 
2108   // For moribund threads, scan gOmInUseList
2109   int deflated_count = 0;
2110   if (gOmInUseList) {
2111     counters->nInCirculation += gOmInUseCount;
2112     deflated_count = deflate_monitor_list((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp);
2113     gOmInUseCount -= deflated_count;
2114     counters->nScavenged += deflated_count;
2115     counters->nInuse += gOmInUseCount;
2116   }
2117 
2118   // Move the scavenged monitors back to the global free list.
2119   if (freeHeadp != NULL) {
2120     guarantee(freeTailp != NULL && counters->nScavenged > 0, "invariant");
2121     assert(freeTailp->FreeNext == NULL, "invariant");
2122     // constant-time list splice - prepend scavenged segment to gFreeList
2123     freeTailp->FreeNext = gFreeList;
2124     gFreeList = freeHeadp;
2125   }
2126   Thread::muxRelease(&gListLock);
2127   timer.stop();
2128 
2129   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2130   LogStreamHandle(Info, monitorinflation) lsh_info;
2131   LogStream * ls = NULL;
2132   if (log_is_enabled(Debug, monitorinflation)) {
2133     ls = &lsh_debug;
2134   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2135     ls = &lsh_info;
2136   }
2137   if (ls != NULL) {
2138     ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2139   }
2140 }
2141 
2142 // Deflate global idle ObjectMonitors using a JavaThread.
2143 //
2144 void ObjectSynchronizer::deflate_global_idle_monitors_using_JT() {
2145   assert(AsyncDeflateIdleMonitors, "sanity check");
2146   assert(Thread::current()->is_Java_thread(), "precondition");
2147   JavaThread * self = JavaThread::current();
2148 
2149   deflate_common_idle_monitors_using_JT(true /* is_global */, self);
2150 }
2151 
2152 // Deflate per-thread idle ObjectMonitors using a JavaThread.
2153 //
2154 void ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT() {
2155   assert(AsyncDeflateIdleMonitors, "sanity check");
2156   assert(Thread::current()->is_Java_thread(), "precondition");
2157   JavaThread * self = JavaThread::current();
2158 
2159   self->omShouldDeflateIdleMonitors = false;
2160 
2161   deflate_common_idle_monitors_using_JT(false /* !is_global */, self);
2162 }
2163 
2164 // Deflate global or per-thread idle ObjectMonitors using a JavaThread.
2165 //
2166 void ObjectSynchronizer::deflate_common_idle_monitors_using_JT(bool is_global, JavaThread * self) {
2167   int deflated_count = 0;
2168   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged ObjectMonitors
2169   ObjectMonitor * freeTailp = NULL;
2170   ObjectMonitor * savedMidInUsep = NULL;
2171   elapsedTimer timer;
2172 
2173   if (log_is_enabled(Info, monitorinflation)) {
2174     timer.start();
2175   }
2176 
2177   if (is_global) {
2178     Thread::muxAcquire(&gListLock, "deflate_global_idle_monitors_using_JT(1)");
2179     OM_PERFDATA_OP(MonExtant, set_value(gOmInUseCount));
2180   } else {
2181     OM_PERFDATA_OP(MonExtant, inc(self->omInUseCount));
2182   }
2183 
2184   do {
2185     int local_deflated_count;
2186     if (is_global) {
2187       local_deflated_count = deflate_monitor_list_using_JT((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp, &savedMidInUsep);
2188       gOmInUseCount -= local_deflated_count;
2189     } else {
2190       local_deflated_count = deflate_monitor_list_using_JT(self->omInUseList_addr(), &freeHeadp, &freeTailp, &savedMidInUsep);
2191       self->omInUseCount -= local_deflated_count;
2192     }
2193     deflated_count += local_deflated_count;
2194 
2195     if (freeHeadp != NULL) {
2196       // Move the scavenged ObjectMonitors to the global free list.
2197       guarantee(freeTailp != NULL && local_deflated_count > 0, "freeTailp=" INTPTR_FORMAT ", local_deflated_count=%d", p2i(freeTailp), local_deflated_count);
2198       assert(freeTailp->FreeNext == NULL, "invariant");
2199 
2200       if (!is_global) {
2201         Thread::muxAcquire(&gListLock, "deflate_per_thread_idle_monitors_using_JT(2)");
2202       }
2203       // Constant-time list splice - prepend scavenged segment to gFreeList.
2204       freeTailp->FreeNext = gFreeList;
2205       gFreeList = freeHeadp;
2206 
2207       gMonitorFreeCount += local_deflated_count;
2208       OM_PERFDATA_OP(Deflations, inc(local_deflated_count));
2209       if (!is_global) {
2210         Thread::muxRelease(&gListLock);
2211       }
2212     }
2213 
2214     if (savedMidInUsep != NULL) {
2215       // deflate_monitor_list_using_JT() detected a safepoint starting.
2216       if (is_global) {
2217         Thread::muxRelease(&gListLock);
2218       }
2219       timer.stop();
2220       {
2221         if (is_global) {
2222           log_debug(monitorinflation)("pausing deflation of global idle monitors for a safepoint.");
2223         } else {
2224           log_debug(monitorinflation)("jt=" INTPTR_FORMAT ": pausing deflation of per-thread idle monitors for a safepoint.", p2i(self));
2225         }
2226         assert(SafepointSynchronize::is_synchronizing(), "sanity check");
2227         ThreadBlockInVM blocker(self);
2228       }
2229       // Prepare for another loop after the safepoint.
2230       freeHeadp = NULL;
2231       freeTailp = NULL;
2232       if (log_is_enabled(Info, monitorinflation)) {
2233         timer.start();
2234       }
2235       if (is_global) {
2236         Thread::muxAcquire(&gListLock, "deflate_global_idle_monitors_using_JT(3)");
2237       }
2238     }
2239   } while (savedMidInUsep != NULL);
2240   if (is_global) {
2241     Thread::muxRelease(&gListLock);
2242   }
2243   timer.stop();
2244 
2245   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2246   LogStreamHandle(Info, monitorinflation) lsh_info;
2247   LogStream * ls = NULL;
2248   if (log_is_enabled(Debug, monitorinflation)) {
2249     ls = &lsh_debug;
2250   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2251     ls = &lsh_info;
2252   }
2253   if (ls != NULL) {
2254     if (is_global) {
2255       ls->print_cr("async-deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2256     } else {
2257       ls->print_cr("jt=" INTPTR_FORMAT ": async-deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(self), timer.seconds(), deflated_count);
2258     }
2259   }
2260 }
2261 
2262 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2263   // Report the cumulative time for deflating each thread's idle
2264   // monitors. Note: if the work is split among more than one
2265   // worker thread, then the reported time will likely be more
2266   // than a beginning to end measurement of the phase.
2267   // Note: AsyncDeflateIdleMonitors only deflates per-thread idle
2268   // monitors at a safepoint when a special deflation has been requested.
2269   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d", counters->perThreadTimes, counters->perThreadScavenged);
2270 
2271   bool needs_special_deflation = is_special_deflation_requested();
2272   if (!AsyncDeflateIdleMonitors || needs_special_deflation) {
2273     // AsyncDeflateIdleMonitors does not use these counters unless
2274     // there is a special deflation request.
2275 
2276     gMonitorFreeCount += counters->nScavenged;
2277 
2278     OM_PERFDATA_OP(Deflations, inc(counters->nScavenged));
2279     OM_PERFDATA_OP(MonExtant, set_value(counters->nInCirculation));
2280   }
2281 
2282   if (log_is_enabled(Debug, monitorinflation)) {
2283     // exit_globals()'s call to audit_and_print_stats() is done
2284     // at the Info level.
2285     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2286   } else if (log_is_enabled(Info, monitorinflation)) {
2287     Thread::muxAcquire(&gListLock, "finish_deflate_idle_monitors");
2288     log_info(monitorinflation)("gMonitorPopulation=%d, gOmInUseCount=%d, "
2289                                "gMonitorFreeCount=%d", gMonitorPopulation,
2290                                gOmInUseCount, gMonitorFreeCount);
2291     Thread::muxRelease(&gListLock);
2292   }
2293 
2294   ForceMonitorScavenge = 0;    // Reset
2295   GVars.stwRandom = os::random();
2296   GVars.stwCycle++;
2297   if (needs_special_deflation) {
2298     set_is_special_deflation_requested(false);  // special deflation is done
2299   }
2300 }
2301 
2302 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
2303   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2304 
2305   if (AsyncDeflateIdleMonitors) {
2306     if (!is_special_deflation_requested()) {
2307       // Mark the JavaThread for idle monitor deflation if a special
2308       // deflation has NOT been requested.
2309       if (thread->omInUseCount > 0) {
2310         // This JavaThread is using monitors so mark it.
2311         thread->omShouldDeflateIdleMonitors = true;
2312       }
2313       return;
2314     }
2315   }
2316 
2317   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
2318   ObjectMonitor * freeTailp = NULL;
2319   elapsedTimer timer;
2320 
2321   if (log_is_enabled(Info, safepoint, cleanup) ||
2322       log_is_enabled(Info, monitorinflation)) {
2323     timer.start();
2324   }
2325 
2326   int deflated_count = deflate_monitor_list(thread->omInUseList_addr(), &freeHeadp, &freeTailp);
2327 
2328   Thread::muxAcquire(&gListLock, "deflate_thread_local_monitors");
2329 
2330   // Adjust counters
2331   counters->nInCirculation += thread->omInUseCount;
2332   thread->omInUseCount -= deflated_count;
2333   counters->nScavenged += deflated_count;
2334   counters->nInuse += thread->omInUseCount;
2335   counters->perThreadScavenged += deflated_count;
2336 
2337   // Move the scavenged monitors back to the global free list.
2338   if (freeHeadp != NULL) {
2339     guarantee(freeTailp != NULL && deflated_count > 0, "invariant");
2340     assert(freeTailp->FreeNext == NULL, "invariant");
2341 
2342     // constant-time list splice - prepend scavenged segment to gFreeList
2343     freeTailp->FreeNext = gFreeList;
2344     gFreeList = freeHeadp;
2345   }
2346 
2347   timer.stop();
2348   // Safepoint logging cares about cumulative perThreadTimes and
2349   // we'll capture most of the cost, but not the muxRelease() which
2350   // should be cheap.
2351   counters->perThreadTimes += timer.seconds();
2352 
2353   Thread::muxRelease(&gListLock);
2354 
2355   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2356   LogStreamHandle(Info, monitorinflation) lsh_info;
2357   LogStream * ls = NULL;
2358   if (log_is_enabled(Debug, monitorinflation)) {
2359     ls = &lsh_debug;
2360   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2361     ls = &lsh_info;
2362   }
2363   if (ls != NULL) {
2364     ls->print_cr("jt=" INTPTR_FORMAT ": deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(thread), timer.seconds(), deflated_count);
2365   }
2366 }
2367 
2368 // Monitor cleanup on JavaThread::exit
2369 
2370 // Iterate through monitor cache and attempt to release thread's monitors
2371 // Gives up on a particular monitor if an exception occurs, but continues
2372 // the overall iteration, swallowing the exception.
2373 class ReleaseJavaMonitorsClosure: public MonitorClosure {
2374  private:
2375   TRAPS;
2376 
2377  public:
2378   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
2379   void do_monitor(ObjectMonitor* mid) {
2380     if (mid->owner() == THREAD) {
2381       (void)mid->complete_exit(CHECK);
2382     }
2383   }
2384 };
2385 
2386 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
2387 // ignored.  This is meant to be called during JNI thread detach which assumes
2388 // all remaining monitors are heavyweight.  All exceptions are swallowed.
2389 // Scanning the extant monitor list can be time consuming.
2390 // A simple optimization is to add a per-thread flag that indicates a thread
2391 // called jni_monitorenter() during its lifetime.
2392 //
2393 // Instead of No_Savepoint_Verifier it might be cheaper to
2394 // use an idiom of the form:
2395 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
2396 //   <code that must not run at safepoint>
2397 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
2398 // Since the tests are extremely cheap we could leave them enabled
2399 // for normal product builds.
2400 
2401 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
2402   assert(THREAD == JavaThread::current(), "must be current Java thread");
2403   NoSafepointVerifier nsv;
2404   ReleaseJavaMonitorsClosure rjmc(THREAD);
2405   Thread::muxAcquire(&gListLock, "release_monitors_owned_by_thread");
2406   ObjectSynchronizer::monitors_iterate(&rjmc);
2407   Thread::muxRelease(&gListLock);
2408   THREAD->clear_pending_exception();
2409 }
2410 
2411 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
2412   switch (cause) {
2413     case inflate_cause_vm_internal:    return "VM Internal";
2414     case inflate_cause_monitor_enter:  return "Monitor Enter";
2415     case inflate_cause_wait:           return "Monitor Wait";
2416     case inflate_cause_notify:         return "Monitor Notify";
2417     case inflate_cause_hash_code:      return "Monitor Hash Code";
2418     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
2419     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
2420     default:
2421       ShouldNotReachHere();
2422   }
2423   return "Unknown";
2424 }
2425 
2426 //------------------------------------------------------------------------------
2427 // Debugging code
2428 
2429 u_char* ObjectSynchronizer::get_gvars_addr() {
2430   return (u_char*)&GVars;
2431 }
2432 
2433 u_char* ObjectSynchronizer::get_gvars_hcSequence_addr() {
2434   return (u_char*)&GVars.hcSequence;
2435 }
2436 
2437 size_t ObjectSynchronizer::get_gvars_size() {
2438   return sizeof(SharedGlobals);
2439 }
2440 
2441 u_char* ObjectSynchronizer::get_gvars_stwRandom_addr() {
2442   return (u_char*)&GVars.stwRandom;
2443 }
2444 
2445 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) {
2446   assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant");
2447 
2448   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2449   LogStreamHandle(Info, monitorinflation) lsh_info;
2450   LogStreamHandle(Trace, monitorinflation) lsh_trace;
2451   LogStream * ls = NULL;
2452   if (log_is_enabled(Trace, monitorinflation)) {
2453     ls = &lsh_trace;
2454   } else if (log_is_enabled(Debug, monitorinflation)) {
2455     ls = &lsh_debug;
2456   } else if (log_is_enabled(Info, monitorinflation)) {
2457     ls = &lsh_info;
2458   }
2459   assert(ls != NULL, "sanity check");
2460 
2461   if (!on_exit) {
2462     // Not at VM exit so grab the global list lock.
2463     Thread::muxAcquire(&gListLock, "audit_and_print_stats");
2464   }
2465 
2466   // Log counts for the global and per-thread monitor lists:
2467   int chkMonitorPopulation = log_monitor_list_counts(ls);
2468   int error_cnt = 0;
2469 
2470   ls->print_cr("Checking global lists:");
2471 
2472   // Check gMonitorPopulation:
2473   if (gMonitorPopulation == chkMonitorPopulation) {
2474     ls->print_cr("gMonitorPopulation=%d equals chkMonitorPopulation=%d",
2475                  gMonitorPopulation, chkMonitorPopulation);
2476   } else {
2477     ls->print_cr("ERROR: gMonitorPopulation=%d is not equal to "
2478                  "chkMonitorPopulation=%d", gMonitorPopulation,
2479                  chkMonitorPopulation);
2480     error_cnt++;
2481   }
2482 
2483   // Check gOmInUseList and gOmInUseCount:
2484   chk_global_in_use_list_and_count(ls, &error_cnt);
2485 
2486   // Check gFreeList and gMonitorFreeCount:
2487   chk_global_free_list_and_count(ls, &error_cnt);
2488 
2489   if (!on_exit) {
2490     Thread::muxRelease(&gListLock);
2491   }
2492 
2493   ls->print_cr("Checking per-thread lists:");
2494 
2495   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2496     // Check omInUseList and omInUseCount:
2497     chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt);
2498 
2499     // Check omFreeList and omFreeCount:
2500     chk_per_thread_free_list_and_count(jt, ls, &error_cnt);
2501   }
2502 
2503   if (error_cnt == 0) {
2504     ls->print_cr("No errors found in monitor list checks.");
2505   } else {
2506     log_error(monitorinflation)("found monitor list errors: error_cnt=%d", error_cnt);
2507   }
2508 
2509   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
2510       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
2511     // When exiting this log output is at the Info level. When called
2512     // at a safepoint, this log output is at the Trace level since
2513     // there can be a lot of it.
2514     log_in_use_monitor_details(ls, on_exit);
2515   }
2516 
2517   ls->flush();
2518 
2519   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
2520 }
2521 
2522 // Check a free monitor entry; log any errors.
2523 void ObjectSynchronizer::chk_free_entry(JavaThread * jt, ObjectMonitor * n,
2524                                         outputStream * out, int *error_cnt_p) {
2525   if ((!AsyncDeflateIdleMonitors && n->is_busy()) ||
2526       (AsyncDeflateIdleMonitors && n->is_busy_async())) {
2527     if (jt != NULL) {
2528       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2529                     ": free per-thread monitor must not be busy.", p2i(jt),
2530                     p2i(n));
2531     } else {
2532       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2533                     "must not be busy.", p2i(n));
2534     }
2535     *error_cnt_p = *error_cnt_p + 1;
2536   }
2537   if (n->header() != NULL) {
2538     if (jt != NULL) {
2539       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2540                     ": free per-thread monitor must have NULL _header "
2541                     "field: _header=" INTPTR_FORMAT, p2i(jt), p2i(n),
2542                     p2i(n->header()));
2543       *error_cnt_p = *error_cnt_p + 1;
2544     } else if (!AsyncDeflateIdleMonitors) {
2545       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2546                     "must have NULL _header field: _header=" INTPTR_FORMAT,
2547                     p2i(n), p2i(n->header()));
2548       *error_cnt_p = *error_cnt_p + 1;
2549     }
2550   }
2551   if (n->object() != NULL) {
2552     if (jt != NULL) {
2553       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2554                     ": free per-thread monitor must have NULL _object "
2555                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
2556                     p2i(n->object()));
2557     } else {
2558       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2559                     "must have NULL _object field: _object=" INTPTR_FORMAT,
2560                     p2i(n), p2i(n->object()));
2561     }
2562     *error_cnt_p = *error_cnt_p + 1;
2563   }
2564 }
2565 
2566 // Check the global free list and count; log the results of the checks.
2567 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
2568                                                         int *error_cnt_p) {
2569   int chkMonitorFreeCount = 0;
2570   for (ObjectMonitor * n = gFreeList; n != NULL; n = n->FreeNext) {
2571     chk_free_entry(NULL /* jt */, n, out, error_cnt_p);
2572     chkMonitorFreeCount++;
2573   }
2574   if (gMonitorFreeCount == chkMonitorFreeCount) {
2575     out->print_cr("gMonitorFreeCount=%d equals chkMonitorFreeCount=%d",
2576                   gMonitorFreeCount, chkMonitorFreeCount);
2577   } else {
2578     out->print_cr("ERROR: gMonitorFreeCount=%d is not equal to "
2579                   "chkMonitorFreeCount=%d", gMonitorFreeCount,
2580                   chkMonitorFreeCount);
2581     *error_cnt_p = *error_cnt_p + 1;
2582   }
2583 }
2584 
2585 // Check the global in-use list and count; log the results of the checks.
2586 void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out,
2587                                                           int *error_cnt_p) {
2588   int chkOmInUseCount = 0;
2589   for (ObjectMonitor * n = gOmInUseList; n != NULL; n = n->FreeNext) {
2590     chk_in_use_entry(NULL /* jt */, n, out, error_cnt_p);
2591     chkOmInUseCount++;
2592   }
2593   if (gOmInUseCount == chkOmInUseCount) {
2594     out->print_cr("gOmInUseCount=%d equals chkOmInUseCount=%d", gOmInUseCount,
2595                   chkOmInUseCount);
2596   } else {
2597     out->print_cr("ERROR: gOmInUseCount=%d is not equal to chkOmInUseCount=%d",
2598                   gOmInUseCount, chkOmInUseCount);
2599     *error_cnt_p = *error_cnt_p + 1;
2600   }
2601 }
2602 
2603 // Check an in-use monitor entry; log any errors.
2604 void ObjectSynchronizer::chk_in_use_entry(JavaThread * jt, ObjectMonitor * n,
2605                                           outputStream * out, int *error_cnt_p) {
2606   if (n->header() == NULL) {
2607     if (jt != NULL) {
2608       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2609                     ": in-use per-thread monitor must have non-NULL _header "
2610                     "field.", p2i(jt), p2i(n));
2611     } else {
2612       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
2613                     "must have non-NULL _header field.", p2i(n));
2614     }
2615     *error_cnt_p = *error_cnt_p + 1;
2616   }
2617   if (n->object() == NULL) {
2618     if (jt != NULL) {
2619       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2620                     ": in-use per-thread monitor must have non-NULL _object "
2621                     "field.", p2i(jt), p2i(n));
2622     } else {
2623       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
2624                     "must have non-NULL _object field.", p2i(n));
2625     }
2626     *error_cnt_p = *error_cnt_p + 1;
2627   }
2628   const oop obj = (oop)n->object();
2629   const markOop mark = obj->mark();
2630   if (!mark->has_monitor()) {
2631     if (jt != NULL) {
2632       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2633                     ": in-use per-thread monitor's object does not think "
2634                     "it has a monitor: obj=" INTPTR_FORMAT ", mark="
2635                     INTPTR_FORMAT,  p2i(jt), p2i(n), p2i(obj), p2i(mark));
2636     } else {
2637       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2638                     "monitor's object does not think it has a monitor: obj="
2639                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
2640                     p2i(obj), p2i(mark));
2641     }
2642     *error_cnt_p = *error_cnt_p + 1;
2643   }
2644   ObjectMonitor * const obj_mon = mark->monitor();
2645   if (n != obj_mon) {
2646     if (jt != NULL) {
2647       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2648                     ": in-use per-thread monitor's object does not refer "
2649                     "to the same monitor: obj=" INTPTR_FORMAT ", mark="
2650                     INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt),
2651                     p2i(n), p2i(obj), p2i(mark), p2i(obj_mon));
2652     } else {
2653       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2654                     "monitor's object does not refer to the same monitor: obj="
2655                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
2656                     INTPTR_FORMAT, p2i(n), p2i(obj), p2i(mark), p2i(obj_mon));
2657     }
2658     *error_cnt_p = *error_cnt_p + 1;
2659   }
2660 }
2661 
2662 // Check the thread's free list and count; log the results of the checks.
2663 void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt,
2664                                                             outputStream * out,
2665                                                             int *error_cnt_p) {
2666   int chkOmFreeCount = 0;
2667   for (ObjectMonitor * n = jt->omFreeList; n != NULL; n = n->FreeNext) {
2668     chk_free_entry(jt, n, out, error_cnt_p);
2669     chkOmFreeCount++;
2670   }
2671   if (jt->omFreeCount == chkOmFreeCount) {
2672     out->print_cr("jt=" INTPTR_FORMAT ": omFreeCount=%d equals "
2673                   "chkOmFreeCount=%d", p2i(jt), jt->omFreeCount, chkOmFreeCount);
2674   } else {
2675     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": omFreeCount=%d is not "
2676                   "equal to chkOmFreeCount=%d", p2i(jt), jt->omFreeCount,
2677                   chkOmFreeCount);
2678     *error_cnt_p = *error_cnt_p + 1;
2679   }
2680 }
2681 
2682 // Check the thread's in-use list and count; log the results of the checks.
2683 void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt,
2684                                                               outputStream * out,
2685                                                               int *error_cnt_p) {
2686   int chkOmInUseCount = 0;
2687   for (ObjectMonitor * n = jt->omInUseList; n != NULL; n = n->FreeNext) {
2688     chk_in_use_entry(jt, n, out, error_cnt_p);
2689     chkOmInUseCount++;
2690   }
2691   if (jt->omInUseCount == chkOmInUseCount) {
2692     out->print_cr("jt=" INTPTR_FORMAT ": omInUseCount=%d equals "
2693                   "chkOmInUseCount=%d", p2i(jt), jt->omInUseCount,
2694                   chkOmInUseCount);
2695   } else {
2696     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": omInUseCount=%d is not "
2697                   "equal to chkOmInUseCount=%d", p2i(jt), jt->omInUseCount,
2698                   chkOmInUseCount);
2699     *error_cnt_p = *error_cnt_p + 1;
2700   }
2701 }
2702 
2703 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
2704 // flags indicate why the entry is in-use, 'object' and 'object type'
2705 // indicate the associated object and its type.
2706 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out,
2707                                                     bool on_exit) {
2708   if (!on_exit) {
2709     // Not at VM exit so grab the global list lock.
2710     Thread::muxAcquire(&gListLock, "log_in_use_monitor_details");
2711   }
2712 
2713   if (gOmInUseCount > 0) {
2714     out->print_cr("In-use global monitor info:");
2715     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2716     out->print_cr("%18s  %s  %7s  %18s  %18s",
2717                   "monitor", "BHL", "ref_cnt", "object", "object type");
2718     out->print_cr("==================  ===  =======  ==================  ==================");
2719     for (ObjectMonitor * n = gOmInUseList; n != NULL; n = n->FreeNext) {
2720       const oop obj = (oop) n->object();
2721       const markOop mark = n->header();
2722       ResourceMark rm;
2723       out->print_cr(INTPTR_FORMAT "  %d%d%d  %7d  " INTPTR_FORMAT "  %s",
2724                     p2i(n), n->is_busy() != 0, mark->hash() != 0,
2725                     n->owner() != NULL, (int)n->ref_count(), p2i(obj),
2726                     obj->klass()->external_name());
2727     }
2728   }
2729 
2730   if (!on_exit) {
2731     Thread::muxRelease(&gListLock);
2732   }
2733 
2734   out->print_cr("In-use per-thread monitor info:");
2735   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2736   out->print_cr("%18s  %18s  %s  %7s  %18s  %18s",
2737                 "jt", "monitor", "BHL", "ref_cnt", "object", "object type");
2738   out->print_cr("==================  ==================  ===  =======  ==================  ==================");
2739   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2740     for (ObjectMonitor * n = jt->omInUseList; n != NULL; n = n->FreeNext) {
2741       const oop obj = (oop) n->object();
2742       const markOop mark = n->header();
2743       ResourceMark rm;
2744       out->print_cr(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  %7d  "
2745                     INTPTR_FORMAT "  %s", p2i(jt), p2i(n), n->is_busy() != 0,
2746                     mark->hash() != 0, n->owner() != NULL, (int)n->ref_count(),
2747                     p2i(obj), obj->klass()->external_name());
2748     }
2749   }
2750 
2751   out->flush();
2752 }
2753 
2754 // Log counts for the global and per-thread monitor lists and return
2755 // the population count.
2756 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
2757   int popCount = 0;
2758   out->print_cr("%18s  %10s  %10s  %10s",
2759                 "Global Lists:", "InUse", "Free", "Total");
2760   out->print_cr("==================  ==========  ==========  ==========");
2761   out->print_cr("%18s  %10d  %10d  %10d", "",
2762                 gOmInUseCount, gMonitorFreeCount, gMonitorPopulation);
2763   popCount += gOmInUseCount + gMonitorFreeCount;
2764 
2765   out->print_cr("%18s  %10s  %10s  %10s",
2766                 "Per-Thread Lists:", "InUse", "Free", "Provision");
2767   out->print_cr("==================  ==========  ==========  ==========");
2768 
2769   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2770     out->print_cr(INTPTR_FORMAT "  %10d  %10d  %10d", p2i(jt),
2771                   jt->omInUseCount, jt->omFreeCount, jt->omFreeProvision);
2772     popCount += jt->omInUseCount + jt->omFreeCount;
2773   }
2774   return popCount;
2775 }
2776 
2777 #ifndef PRODUCT
2778 
2779 // Check if monitor belongs to the monitor cache
2780 // The list is grow-only so it's *relatively* safe to traverse
2781 // the list of extant blocks without taking a lock.
2782 
2783 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
2784   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
2785   while (block != NULL) {
2786     assert(block->object() == CHAINMARKER, "must be a block header");
2787     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
2788       address mon = (address)monitor;
2789       address blk = (address)block;
2790       size_t diff = mon - blk;
2791       assert((diff % sizeof(PaddedEnd<ObjectMonitor>)) == 0, "must be aligned");
2792       return 1;
2793     }
2794     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
2795   }
2796   return 0;
2797 }
2798 
2799 #endif