1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/compiledMethod.inline.hpp"
  35 #include "code/scopeDesc.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/abstractCompiler.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/interpreterRuntime.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "memory/universe.hpp"
  49 #include "oops/klass.hpp"
  50 #include "oops/method.inline.hpp"
  51 #include "oops/objArrayKlass.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "prims/forte.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/methodHandles.hpp"
  56 #include "prims/nativeLookup.hpp"
  57 #include "runtime/arguments.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/biasedLocking.hpp"
  60 #include "runtime/compilationPolicy.hpp"
  61 #include "runtime/frame.inline.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/init.hpp"
  64 #include "runtime/interfaceSupport.inline.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/javaCalls.hpp"
  67 #include "runtime/objectMonitor.hpp"
  68 #include "runtime/sharedRuntime.hpp"
  69 #include "runtime/stubRoutines.hpp"
  70 #include "runtime/synchronizer.hpp"
  71 #include "runtime/vframe.inline.hpp"
  72 #include "runtime/vframeArray.hpp"
  73 #include "utilities/copy.hpp"
  74 #include "utilities/dtrace.hpp"
  75 #include "utilities/events.hpp"
  76 #include "utilities/hashtable.inline.hpp"
  77 #include "utilities/macros.hpp"
  78 #include "utilities/xmlstream.hpp"
  79 #ifdef COMPILER1
  80 #include "c1/c1_Runtime1.hpp"
  81 #endif
  82 
  83 // Shared stub locations
  84 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  85 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  86 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  87 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  88 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  89 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  90 address             SharedRuntime::_resolve_static_call_entry;
  91 
  92 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  93 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  94 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  95 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  96 
  97 #ifdef COMPILER2
  98 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  99 #endif // COMPILER2
 100 
 101 
 102 //----------------------------generate_stubs-----------------------------------
 103 void SharedRuntime::generate_stubs() {
 104   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 105   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 106   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 107   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 108   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 109   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 110   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 111 
 112 #if COMPILER2_OR_JVMCI
 113   // Vectors are generated only by C2 and JVMCI.
 114   bool support_wide = is_wide_vector(MaxVectorSize);
 115   if (support_wide) {
 116     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 117   }
 118 #endif // COMPILER2_OR_JVMCI
 119   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 120   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 121 
 122   generate_deopt_blob();
 123 
 124 #ifdef COMPILER2
 125   generate_uncommon_trap_blob();
 126 #endif // COMPILER2
 127 }
 128 
 129 #include <math.h>
 130 
 131 // Implementation of SharedRuntime
 132 
 133 #ifndef PRODUCT
 134 // For statistics
 135 int SharedRuntime::_ic_miss_ctr = 0;
 136 int SharedRuntime::_wrong_method_ctr = 0;
 137 int SharedRuntime::_resolve_static_ctr = 0;
 138 int SharedRuntime::_resolve_virtual_ctr = 0;
 139 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 140 int SharedRuntime::_implicit_null_throws = 0;
 141 int SharedRuntime::_implicit_div0_throws = 0;
 142 int SharedRuntime::_throw_null_ctr = 0;
 143 
 144 int SharedRuntime::_nof_normal_calls = 0;
 145 int SharedRuntime::_nof_optimized_calls = 0;
 146 int SharedRuntime::_nof_inlined_calls = 0;
 147 int SharedRuntime::_nof_megamorphic_calls = 0;
 148 int SharedRuntime::_nof_static_calls = 0;
 149 int SharedRuntime::_nof_inlined_static_calls = 0;
 150 int SharedRuntime::_nof_interface_calls = 0;
 151 int SharedRuntime::_nof_optimized_interface_calls = 0;
 152 int SharedRuntime::_nof_inlined_interface_calls = 0;
 153 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 154 int SharedRuntime::_nof_removable_exceptions = 0;
 155 
 156 int SharedRuntime::_new_instance_ctr=0;
 157 int SharedRuntime::_new_array_ctr=0;
 158 int SharedRuntime::_multi1_ctr=0;
 159 int SharedRuntime::_multi2_ctr=0;
 160 int SharedRuntime::_multi3_ctr=0;
 161 int SharedRuntime::_multi4_ctr=0;
 162 int SharedRuntime::_multi5_ctr=0;
 163 int SharedRuntime::_mon_enter_stub_ctr=0;
 164 int SharedRuntime::_mon_exit_stub_ctr=0;
 165 int SharedRuntime::_mon_enter_ctr=0;
 166 int SharedRuntime::_mon_exit_ctr=0;
 167 int SharedRuntime::_partial_subtype_ctr=0;
 168 int SharedRuntime::_jbyte_array_copy_ctr=0;
 169 int SharedRuntime::_jshort_array_copy_ctr=0;
 170 int SharedRuntime::_jint_array_copy_ctr=0;
 171 int SharedRuntime::_jlong_array_copy_ctr=0;
 172 int SharedRuntime::_oop_array_copy_ctr=0;
 173 int SharedRuntime::_checkcast_array_copy_ctr=0;
 174 int SharedRuntime::_unsafe_array_copy_ctr=0;
 175 int SharedRuntime::_generic_array_copy_ctr=0;
 176 int SharedRuntime::_slow_array_copy_ctr=0;
 177 int SharedRuntime::_find_handler_ctr=0;
 178 int SharedRuntime::_rethrow_ctr=0;
 179 
 180 int     SharedRuntime::_ICmiss_index                    = 0;
 181 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 182 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 183 
 184 
 185 void SharedRuntime::trace_ic_miss(address at) {
 186   for (int i = 0; i < _ICmiss_index; i++) {
 187     if (_ICmiss_at[i] == at) {
 188       _ICmiss_count[i]++;
 189       return;
 190     }
 191   }
 192   int index = _ICmiss_index++;
 193   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 194   _ICmiss_at[index] = at;
 195   _ICmiss_count[index] = 1;
 196 }
 197 
 198 void SharedRuntime::print_ic_miss_histogram() {
 199   if (ICMissHistogram) {
 200     tty->print_cr("IC Miss Histogram:");
 201     int tot_misses = 0;
 202     for (int i = 0; i < _ICmiss_index; i++) {
 203       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 204       tot_misses += _ICmiss_count[i];
 205     }
 206     tty->print_cr("Total IC misses: %7d", tot_misses);
 207   }
 208 }
 209 #endif // PRODUCT
 210 
 211 
 212 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 213   return x * y;
 214 JRT_END
 215 
 216 
 217 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 218   if (x == min_jlong && y == CONST64(-1)) {
 219     return x;
 220   } else {
 221     return x / y;
 222   }
 223 JRT_END
 224 
 225 
 226 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 227   if (x == min_jlong && y == CONST64(-1)) {
 228     return 0;
 229   } else {
 230     return x % y;
 231   }
 232 JRT_END
 233 
 234 
 235 const juint  float_sign_mask  = 0x7FFFFFFF;
 236 const juint  float_infinity   = 0x7F800000;
 237 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 238 const julong double_infinity  = CONST64(0x7FF0000000000000);
 239 
 240 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 241 #ifdef _WIN64
 242   // 64-bit Windows on amd64 returns the wrong values for
 243   // infinity operands.
 244   union { jfloat f; juint i; } xbits, ybits;
 245   xbits.f = x;
 246   ybits.f = y;
 247   // x Mod Infinity == x unless x is infinity
 248   if (((xbits.i & float_sign_mask) != float_infinity) &&
 249        ((ybits.i & float_sign_mask) == float_infinity) ) {
 250     return x;
 251   }
 252   return ((jfloat)fmod_winx64((double)x, (double)y));
 253 #else
 254   return ((jfloat)fmod((double)x,(double)y));
 255 #endif
 256 JRT_END
 257 
 258 
 259 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 260 #ifdef _WIN64
 261   union { jdouble d; julong l; } xbits, ybits;
 262   xbits.d = x;
 263   ybits.d = y;
 264   // x Mod Infinity == x unless x is infinity
 265   if (((xbits.l & double_sign_mask) != double_infinity) &&
 266        ((ybits.l & double_sign_mask) == double_infinity) ) {
 267     return x;
 268   }
 269   return ((jdouble)fmod_winx64((double)x, (double)y));
 270 #else
 271   return ((jdouble)fmod((double)x,(double)y));
 272 #endif
 273 JRT_END
 274 
 275 #ifdef __SOFTFP__
 276 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 277   return x + y;
 278 JRT_END
 279 
 280 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 281   return x - y;
 282 JRT_END
 283 
 284 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 285   return x * y;
 286 JRT_END
 287 
 288 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 289   return x / y;
 290 JRT_END
 291 
 292 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 293   return x + y;
 294 JRT_END
 295 
 296 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 297   return x - y;
 298 JRT_END
 299 
 300 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 301   return x * y;
 302 JRT_END
 303 
 304 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 305   return x / y;
 306 JRT_END
 307 
 308 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 309   return (jfloat)x;
 310 JRT_END
 311 
 312 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 313   return (jdouble)x;
 314 JRT_END
 315 
 316 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 317   return (jdouble)x;
 318 JRT_END
 319 
 320 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 321   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 322 JRT_END
 323 
 324 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 325   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 326 JRT_END
 327 
 328 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 329   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 330 JRT_END
 331 
 332 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 333   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 334 JRT_END
 335 
 336 // Functions to return the opposite of the aeabi functions for nan.
 337 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 338   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 339 JRT_END
 340 
 341 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 342   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 343 JRT_END
 344 
 345 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 346   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 347 JRT_END
 348 
 349 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 350   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 351 JRT_END
 352 
 353 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 354   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 355 JRT_END
 356 
 357 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 358   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 359 JRT_END
 360 
 361 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 362   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 363 JRT_END
 364 
 365 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 366   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 367 JRT_END
 368 
 369 // Intrinsics make gcc generate code for these.
 370 float  SharedRuntime::fneg(float f)   {
 371   return -f;
 372 }
 373 
 374 double SharedRuntime::dneg(double f)  {
 375   return -f;
 376 }
 377 
 378 #endif // __SOFTFP__
 379 
 380 #if defined(__SOFTFP__) || defined(E500V2)
 381 // Intrinsics make gcc generate code for these.
 382 double SharedRuntime::dabs(double f)  {
 383   return (f <= (double)0.0) ? (double)0.0 - f : f;
 384 }
 385 
 386 #endif
 387 
 388 #if defined(__SOFTFP__) || defined(PPC)
 389 double SharedRuntime::dsqrt(double f) {
 390   return sqrt(f);
 391 }
 392 #endif
 393 
 394 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 395   if (g_isnan(x))
 396     return 0;
 397   if (x >= (jfloat) max_jint)
 398     return max_jint;
 399   if (x <= (jfloat) min_jint)
 400     return min_jint;
 401   return (jint) x;
 402 JRT_END
 403 
 404 
 405 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 406   if (g_isnan(x))
 407     return 0;
 408   if (x >= (jfloat) max_jlong)
 409     return max_jlong;
 410   if (x <= (jfloat) min_jlong)
 411     return min_jlong;
 412   return (jlong) x;
 413 JRT_END
 414 
 415 
 416 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 417   if (g_isnan(x))
 418     return 0;
 419   if (x >= (jdouble) max_jint)
 420     return max_jint;
 421   if (x <= (jdouble) min_jint)
 422     return min_jint;
 423   return (jint) x;
 424 JRT_END
 425 
 426 
 427 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 428   if (g_isnan(x))
 429     return 0;
 430   if (x >= (jdouble) max_jlong)
 431     return max_jlong;
 432   if (x <= (jdouble) min_jlong)
 433     return min_jlong;
 434   return (jlong) x;
 435 JRT_END
 436 
 437 
 438 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 439   return (jfloat)x;
 440 JRT_END
 441 
 442 
 443 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 444   return (jfloat)x;
 445 JRT_END
 446 
 447 
 448 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 449   return (jdouble)x;
 450 JRT_END
 451 
 452 // Exception handling across interpreter/compiler boundaries
 453 //
 454 // exception_handler_for_return_address(...) returns the continuation address.
 455 // The continuation address is the entry point of the exception handler of the
 456 // previous frame depending on the return address.
 457 
 458 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 459   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 460   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 461 
 462   // Reset method handle flag.
 463   thread->set_is_method_handle_return(false);
 464 
 465 #if INCLUDE_JVMCI
 466   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 467   // and other exception handler continuations do not read it
 468   thread->set_exception_pc(NULL);
 469 #endif // INCLUDE_JVMCI
 470 
 471   // The fastest case first
 472   CodeBlob* blob = CodeCache::find_blob(return_address);
 473   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 474   if (nm != NULL) {
 475     // Set flag if return address is a method handle call site.
 476     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 477     // native nmethods don't have exception handlers
 478     assert(!nm->is_native_method(), "no exception handler");
 479     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 480     if (nm->is_deopt_pc(return_address)) {
 481       // If we come here because of a stack overflow, the stack may be
 482       // unguarded. Reguard the stack otherwise if we return to the
 483       // deopt blob and the stack bang causes a stack overflow we
 484       // crash.
 485       bool guard_pages_enabled = thread->stack_guards_enabled();
 486       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 487       if (thread->reserved_stack_activation() != thread->stack_base()) {
 488         thread->set_reserved_stack_activation(thread->stack_base());
 489       }
 490       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 491       return SharedRuntime::deopt_blob()->unpack_with_exception();
 492     } else {
 493       return nm->exception_begin();
 494     }
 495   }
 496 
 497   // Entry code
 498   if (StubRoutines::returns_to_call_stub(return_address)) {
 499     return StubRoutines::catch_exception_entry();
 500   }
 501   // Interpreted code
 502   if (Interpreter::contains(return_address)) {
 503     return Interpreter::rethrow_exception_entry();
 504   }
 505 
 506   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 507   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 508 
 509 #ifndef PRODUCT
 510   { ResourceMark rm;
 511     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 512     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 513     tty->print_cr("b) other problem");
 514   }
 515 #endif // PRODUCT
 516 
 517   ShouldNotReachHere();
 518   return NULL;
 519 }
 520 
 521 
 522 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 523   return raw_exception_handler_for_return_address(thread, return_address);
 524 JRT_END
 525 
 526 
 527 address SharedRuntime::get_poll_stub(address pc) {
 528   address stub;
 529   // Look up the code blob
 530   CodeBlob *cb = CodeCache::find_blob(pc);
 531 
 532   // Should be an nmethod
 533   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 534 
 535   // Look up the relocation information
 536   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 537     "safepoint polling: type must be poll");
 538 
 539 #ifdef ASSERT
 540   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 541     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 542     Disassembler::decode(cb);
 543     fatal("Only polling locations are used for safepoint");
 544   }
 545 #endif
 546 
 547   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 548   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 549   if (at_poll_return) {
 550     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 551            "polling page return stub not created yet");
 552     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 553   } else if (has_wide_vectors) {
 554     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 555            "polling page vectors safepoint stub not created yet");
 556     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 557   } else {
 558     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 559            "polling page safepoint stub not created yet");
 560     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 561   }
 562   log_debug(safepoint)("... found polling page %s exception at pc = "
 563                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 564                        at_poll_return ? "return" : "loop",
 565                        (intptr_t)pc, (intptr_t)stub);
 566   return stub;
 567 }
 568 
 569 
 570 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 571   assert(caller.is_interpreted_frame(), "");
 572   int args_size = ArgumentSizeComputer(sig).size() + 1;
 573   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 574   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 575   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 576   return result;
 577 }
 578 
 579 
 580 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 581   if (JvmtiExport::can_post_on_exceptions()) {
 582     vframeStream vfst(thread, true);
 583     methodHandle method = methodHandle(thread, vfst.method());
 584     address bcp = method()->bcp_from(vfst.bci());
 585     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 586   }
 587   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 588 }
 589 
 590 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 591   Handle h_exception = Exceptions::new_exception(thread, name, message);
 592   throw_and_post_jvmti_exception(thread, h_exception);
 593 }
 594 
 595 // The interpreter code to call this tracing function is only
 596 // called/generated when UL is on for redefine, class and has the right level
 597 // and tags. Since obsolete methods are never compiled, we don't have
 598 // to modify the compilers to generate calls to this function.
 599 //
 600 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 601     JavaThread* thread, Method* method))
 602   if (method->is_obsolete()) {
 603     // We are calling an obsolete method, but this is not necessarily
 604     // an error. Our method could have been redefined just after we
 605     // fetched the Method* from the constant pool.
 606     ResourceMark rm;
 607     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 608   }
 609   return 0;
 610 JRT_END
 611 
 612 // ret_pc points into caller; we are returning caller's exception handler
 613 // for given exception
 614 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 615                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 616   assert(cm != NULL, "must exist");
 617   ResourceMark rm;
 618 
 619 #if INCLUDE_JVMCI
 620   if (cm->is_compiled_by_jvmci()) {
 621     // lookup exception handler for this pc
 622     int catch_pco = ret_pc - cm->code_begin();
 623     ExceptionHandlerTable table(cm);
 624     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 625     if (t != NULL) {
 626       return cm->code_begin() + t->pco();
 627     } else {
 628       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 629     }
 630   }
 631 #endif // INCLUDE_JVMCI
 632 
 633   nmethod* nm = cm->as_nmethod();
 634   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 635   // determine handler bci, if any
 636   EXCEPTION_MARK;
 637 
 638   int handler_bci = -1;
 639   int scope_depth = 0;
 640   if (!force_unwind) {
 641     int bci = sd->bci();
 642     bool recursive_exception = false;
 643     do {
 644       bool skip_scope_increment = false;
 645       // exception handler lookup
 646       Klass* ek = exception->klass();
 647       methodHandle mh(THREAD, sd->method());
 648       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 649       if (HAS_PENDING_EXCEPTION) {
 650         recursive_exception = true;
 651         // We threw an exception while trying to find the exception handler.
 652         // Transfer the new exception to the exception handle which will
 653         // be set into thread local storage, and do another lookup for an
 654         // exception handler for this exception, this time starting at the
 655         // BCI of the exception handler which caused the exception to be
 656         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 657         // argument to ensure that the correct exception is thrown (4870175).
 658         recursive_exception_occurred = true;
 659         exception = Handle(THREAD, PENDING_EXCEPTION);
 660         CLEAR_PENDING_EXCEPTION;
 661         if (handler_bci >= 0) {
 662           bci = handler_bci;
 663           handler_bci = -1;
 664           skip_scope_increment = true;
 665         }
 666       }
 667       else {
 668         recursive_exception = false;
 669       }
 670       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 671         sd = sd->sender();
 672         if (sd != NULL) {
 673           bci = sd->bci();
 674         }
 675         ++scope_depth;
 676       }
 677     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 678   }
 679 
 680   // found handling method => lookup exception handler
 681   int catch_pco = ret_pc - nm->code_begin();
 682 
 683   ExceptionHandlerTable table(nm);
 684   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 685   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 686     // Allow abbreviated catch tables.  The idea is to allow a method
 687     // to materialize its exceptions without committing to the exact
 688     // routing of exceptions.  In particular this is needed for adding
 689     // a synthetic handler to unlock monitors when inlining
 690     // synchronized methods since the unlock path isn't represented in
 691     // the bytecodes.
 692     t = table.entry_for(catch_pco, -1, 0);
 693   }
 694 
 695 #ifdef COMPILER1
 696   if (t == NULL && nm->is_compiled_by_c1()) {
 697     assert(nm->unwind_handler_begin() != NULL, "");
 698     return nm->unwind_handler_begin();
 699   }
 700 #endif
 701 
 702   if (t == NULL) {
 703     ttyLocker ttyl;
 704     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 705     tty->print_cr("   Exception:");
 706     exception->print();
 707     tty->cr();
 708     tty->print_cr(" Compiled exception table :");
 709     table.print();
 710     nm->print_code();
 711     guarantee(false, "missing exception handler");
 712     return NULL;
 713   }
 714 
 715   return nm->code_begin() + t->pco();
 716 }
 717 
 718 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 719   // These errors occur only at call sites
 720   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 721 JRT_END
 722 
 723 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 724   // These errors occur only at call sites
 725   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 726 JRT_END
 727 
 728 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 729   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 730 JRT_END
 731 
 732 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 733   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 734 JRT_END
 735 
 736 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 737   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 738   // cache sites (when the callee activation is not yet set up) so we are at a call site
 739   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 740 JRT_END
 741 
 742 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 743   throw_StackOverflowError_common(thread, false);
 744 JRT_END
 745 
 746 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 747   throw_StackOverflowError_common(thread, true);
 748 JRT_END
 749 
 750 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 751   // We avoid using the normal exception construction in this case because
 752   // it performs an upcall to Java, and we're already out of stack space.
 753   Thread* THREAD = thread;
 754   Klass* k = SystemDictionary::StackOverflowError_klass();
 755   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 756   if (delayed) {
 757     java_lang_Throwable::set_message(exception_oop,
 758                                      Universe::delayed_stack_overflow_error_message());
 759   }
 760   Handle exception (thread, exception_oop);
 761   if (StackTraceInThrowable) {
 762     java_lang_Throwable::fill_in_stack_trace(exception);
 763   }
 764   // Increment counter for hs_err file reporting
 765   Atomic::inc(&Exceptions::_stack_overflow_errors);
 766   throw_and_post_jvmti_exception(thread, exception);
 767 }
 768 
 769 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 770                                                            address pc,
 771                                                            ImplicitExceptionKind exception_kind)
 772 {
 773   address target_pc = NULL;
 774 
 775   if (Interpreter::contains(pc)) {
 776 #ifdef CC_INTERP
 777     // C++ interpreter doesn't throw implicit exceptions
 778     ShouldNotReachHere();
 779 #else
 780     switch (exception_kind) {
 781       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 782       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 783       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 784       default:                      ShouldNotReachHere();
 785     }
 786 #endif // !CC_INTERP
 787   } else {
 788     switch (exception_kind) {
 789       case STACK_OVERFLOW: {
 790         // Stack overflow only occurs upon frame setup; the callee is
 791         // going to be unwound. Dispatch to a shared runtime stub
 792         // which will cause the StackOverflowError to be fabricated
 793         // and processed.
 794         // Stack overflow should never occur during deoptimization:
 795         // the compiled method bangs the stack by as much as the
 796         // interpreter would need in case of a deoptimization. The
 797         // deoptimization blob and uncommon trap blob bang the stack
 798         // in a debug VM to verify the correctness of the compiled
 799         // method stack banging.
 800         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 801         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 802         return StubRoutines::throw_StackOverflowError_entry();
 803       }
 804 
 805       case IMPLICIT_NULL: {
 806         if (VtableStubs::contains(pc)) {
 807           // We haven't yet entered the callee frame. Fabricate an
 808           // exception and begin dispatching it in the caller. Since
 809           // the caller was at a call site, it's safe to destroy all
 810           // caller-saved registers, as these entry points do.
 811           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 812 
 813           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 814           if (vt_stub == NULL) return NULL;
 815 
 816           if (vt_stub->is_abstract_method_error(pc)) {
 817             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 818             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 819             // Instead of throwing the abstract method error here directly, we re-resolve
 820             // and will throw the AbstractMethodError during resolve. As a result, we'll
 821             // get a more detailed error message.
 822             return SharedRuntime::get_handle_wrong_method_stub();
 823           } else {
 824             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 825             // Assert that the signal comes from the expected location in stub code.
 826             assert(vt_stub->is_null_pointer_exception(pc),
 827                    "obtained signal from unexpected location in stub code");
 828             return StubRoutines::throw_NullPointerException_at_call_entry();
 829           }
 830         } else {
 831           CodeBlob* cb = CodeCache::find_blob(pc);
 832 
 833           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 834           if (cb == NULL) return NULL;
 835 
 836           // Exception happened in CodeCache. Must be either:
 837           // 1. Inline-cache check in C2I handler blob,
 838           // 2. Inline-cache check in nmethod, or
 839           // 3. Implicit null exception in nmethod
 840 
 841           if (!cb->is_compiled()) {
 842             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 843             if (!is_in_blob) {
 844               // Allow normal crash reporting to handle this
 845               return NULL;
 846             }
 847             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 848             // There is no handler here, so we will simply unwind.
 849             return StubRoutines::throw_NullPointerException_at_call_entry();
 850           }
 851 
 852           // Otherwise, it's a compiled method.  Consult its exception handlers.
 853           CompiledMethod* cm = (CompiledMethod*)cb;
 854           if (cm->inlinecache_check_contains(pc)) {
 855             // exception happened inside inline-cache check code
 856             // => the nmethod is not yet active (i.e., the frame
 857             // is not set up yet) => use return address pushed by
 858             // caller => don't push another return address
 859             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 860             return StubRoutines::throw_NullPointerException_at_call_entry();
 861           }
 862 
 863           if (cm->method()->is_method_handle_intrinsic()) {
 864             // exception happened inside MH dispatch code, similar to a vtable stub
 865             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 866             return StubRoutines::throw_NullPointerException_at_call_entry();
 867           }
 868 
 869 #ifndef PRODUCT
 870           _implicit_null_throws++;
 871 #endif
 872           target_pc = cm->continuation_for_implicit_null_exception(pc);
 873           // If there's an unexpected fault, target_pc might be NULL,
 874           // in which case we want to fall through into the normal
 875           // error handling code.
 876         }
 877 
 878         break; // fall through
 879       }
 880 
 881 
 882       case IMPLICIT_DIVIDE_BY_ZERO: {
 883         CompiledMethod* cm = CodeCache::find_compiled(pc);
 884         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 885 #ifndef PRODUCT
 886         _implicit_div0_throws++;
 887 #endif
 888         target_pc = cm->continuation_for_implicit_div0_exception(pc);
 889         // If there's an unexpected fault, target_pc might be NULL,
 890         // in which case we want to fall through into the normal
 891         // error handling code.
 892         break; // fall through
 893       }
 894 
 895       default: ShouldNotReachHere();
 896     }
 897 
 898     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 899 
 900     if (exception_kind == IMPLICIT_NULL) {
 901 #ifndef PRODUCT
 902       // for AbortVMOnException flag
 903       Exceptions::debug_check_abort("java.lang.NullPointerException");
 904 #endif //PRODUCT
 905       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 906     } else {
 907 #ifndef PRODUCT
 908       // for AbortVMOnException flag
 909       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 910 #endif //PRODUCT
 911       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 912     }
 913     return target_pc;
 914   }
 915 
 916   ShouldNotReachHere();
 917   return NULL;
 918 }
 919 
 920 
 921 /**
 922  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 923  * installed in the native function entry of all native Java methods before
 924  * they get linked to their actual native methods.
 925  *
 926  * \note
 927  * This method actually never gets called!  The reason is because
 928  * the interpreter's native entries call NativeLookup::lookup() which
 929  * throws the exception when the lookup fails.  The exception is then
 930  * caught and forwarded on the return from NativeLookup::lookup() call
 931  * before the call to the native function.  This might change in the future.
 932  */
 933 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 934 {
 935   // We return a bad value here to make sure that the exception is
 936   // forwarded before we look at the return value.
 937   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 938 }
 939 JNI_END
 940 
 941 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 942   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 943 }
 944 
 945 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 946 #if INCLUDE_JVMCI
 947   if (!obj->klass()->has_finalizer()) {
 948     return;
 949   }
 950 #endif // INCLUDE_JVMCI
 951   assert(oopDesc::is_oop(obj), "must be a valid oop");
 952   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 953   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 954 JRT_END
 955 
 956 
 957 jlong SharedRuntime::get_java_tid(Thread* thread) {
 958   if (thread != NULL) {
 959     if (thread->is_Java_thread()) {
 960       oop obj = ((JavaThread*)thread)->threadObj();
 961       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 962     }
 963   }
 964   return 0;
 965 }
 966 
 967 /**
 968  * This function ought to be a void function, but cannot be because
 969  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 970  * 6254741.  Once that is fixed we can remove the dummy return value.
 971  */
 972 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 973   return dtrace_object_alloc_base(Thread::current(), o, size);
 974 }
 975 
 976 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 977   assert(DTraceAllocProbes, "wrong call");
 978   Klass* klass = o->klass();
 979   Symbol* name = klass->name();
 980   HOTSPOT_OBJECT_ALLOC(
 981                    get_java_tid(thread),
 982                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 983   return 0;
 984 }
 985 
 986 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 987     JavaThread* thread, Method* method))
 988   assert(DTraceMethodProbes, "wrong call");
 989   Symbol* kname = method->klass_name();
 990   Symbol* name = method->name();
 991   Symbol* sig = method->signature();
 992   HOTSPOT_METHOD_ENTRY(
 993       get_java_tid(thread),
 994       (char *) kname->bytes(), kname->utf8_length(),
 995       (char *) name->bytes(), name->utf8_length(),
 996       (char *) sig->bytes(), sig->utf8_length());
 997   return 0;
 998 JRT_END
 999 
1000 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1001     JavaThread* thread, Method* method))
1002   assert(DTraceMethodProbes, "wrong call");
1003   Symbol* kname = method->klass_name();
1004   Symbol* name = method->name();
1005   Symbol* sig = method->signature();
1006   HOTSPOT_METHOD_RETURN(
1007       get_java_tid(thread),
1008       (char *) kname->bytes(), kname->utf8_length(),
1009       (char *) name->bytes(), name->utf8_length(),
1010       (char *) sig->bytes(), sig->utf8_length());
1011   return 0;
1012 JRT_END
1013 
1014 
1015 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1016 // for a call current in progress, i.e., arguments has been pushed on stack
1017 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1018 // vtable updates, etc.  Caller frame must be compiled.
1019 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1020   ResourceMark rm(THREAD);
1021 
1022   // last java frame on stack (which includes native call frames)
1023   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1024 
1025   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1026 }
1027 
1028 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1029   CompiledMethod* caller = vfst.nm();
1030 
1031   nmethodLocker caller_lock(caller);
1032 
1033   address pc = vfst.frame_pc();
1034   { // Get call instruction under lock because another thread may be busy patching it.
1035     CompiledICLocker ic_locker(caller);
1036     return caller->attached_method_before_pc(pc);
1037   }
1038   return NULL;
1039 }
1040 
1041 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1042 // for a call current in progress, i.e., arguments has been pushed on stack
1043 // but callee has not been invoked yet.  Caller frame must be compiled.
1044 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1045                                               vframeStream& vfst,
1046                                               Bytecodes::Code& bc,
1047                                               CallInfo& callinfo, TRAPS) {
1048   Handle receiver;
1049   Handle nullHandle;  //create a handy null handle for exception returns
1050 
1051   assert(!vfst.at_end(), "Java frame must exist");
1052 
1053   // Find caller and bci from vframe
1054   methodHandle caller(THREAD, vfst.method());
1055   int          bci   = vfst.bci();
1056 
1057   Bytecode_invoke bytecode(caller, bci);
1058   int bytecode_index = bytecode.index();
1059   bc = bytecode.invoke_code();
1060 
1061   methodHandle attached_method = extract_attached_method(vfst);
1062   if (attached_method.not_null()) {
1063     methodHandle callee = bytecode.static_target(CHECK_NH);
1064     vmIntrinsics::ID id = callee->intrinsic_id();
1065     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1066     // it attaches statically resolved method to the call site.
1067     if (MethodHandles::is_signature_polymorphic(id) &&
1068         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1069       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1070 
1071       // Adjust invocation mode according to the attached method.
1072       switch (bc) {
1073         case Bytecodes::_invokevirtual:
1074           if (attached_method->method_holder()->is_interface()) {
1075             bc = Bytecodes::_invokeinterface;
1076           }
1077           break;
1078         case Bytecodes::_invokeinterface:
1079           if (!attached_method->method_holder()->is_interface()) {
1080             bc = Bytecodes::_invokevirtual;
1081           }
1082           break;
1083         case Bytecodes::_invokehandle:
1084           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1085             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1086                                               : Bytecodes::_invokevirtual;
1087           }
1088           break;
1089         default:
1090           break;
1091       }
1092     }
1093   }
1094 
1095   assert(bc != Bytecodes::_illegal, "not initialized");
1096 
1097   bool has_receiver = bc != Bytecodes::_invokestatic &&
1098                       bc != Bytecodes::_invokedynamic &&
1099                       bc != Bytecodes::_invokehandle;
1100 
1101   // Find receiver for non-static call
1102   if (has_receiver) {
1103     // This register map must be update since we need to find the receiver for
1104     // compiled frames. The receiver might be in a register.
1105     RegisterMap reg_map2(thread);
1106     frame stubFrame   = thread->last_frame();
1107     // Caller-frame is a compiled frame
1108     frame callerFrame = stubFrame.sender(&reg_map2);
1109 
1110     if (attached_method.is_null()) {
1111       methodHandle callee = bytecode.static_target(CHECK_NH);
1112       if (callee.is_null()) {
1113         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1114       }
1115     }
1116 
1117     // Retrieve from a compiled argument list
1118     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1119 
1120     if (receiver.is_null()) {
1121       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1122     }
1123   }
1124 
1125   // Resolve method
1126   if (attached_method.not_null()) {
1127     // Parameterized by attached method.
1128     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1129   } else {
1130     // Parameterized by bytecode.
1131     constantPoolHandle constants(THREAD, caller->constants());
1132     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1133   }
1134 
1135 #ifdef ASSERT
1136   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1137   if (has_receiver) {
1138     assert(receiver.not_null(), "should have thrown exception");
1139     Klass* receiver_klass = receiver->klass();
1140     Klass* rk = NULL;
1141     if (attached_method.not_null()) {
1142       // In case there's resolved method attached, use its holder during the check.
1143       rk = attached_method->method_holder();
1144     } else {
1145       // Klass is already loaded.
1146       constantPoolHandle constants(THREAD, caller->constants());
1147       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1148     }
1149     Klass* static_receiver_klass = rk;
1150     methodHandle callee = callinfo.selected_method();
1151     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1152            "actual receiver must be subclass of static receiver klass");
1153     if (receiver_klass->is_instance_klass()) {
1154       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1155         tty->print_cr("ERROR: Klass not yet initialized!!");
1156         receiver_klass->print();
1157       }
1158       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1159     }
1160   }
1161 #endif
1162 
1163   return receiver;
1164 }
1165 
1166 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1167   ResourceMark rm(THREAD);
1168   // We need first to check if any Java activations (compiled, interpreted)
1169   // exist on the stack since last JavaCall.  If not, we need
1170   // to get the target method from the JavaCall wrapper.
1171   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1172   methodHandle callee_method;
1173   if (vfst.at_end()) {
1174     // No Java frames were found on stack since we did the JavaCall.
1175     // Hence the stack can only contain an entry_frame.  We need to
1176     // find the target method from the stub frame.
1177     RegisterMap reg_map(thread, false);
1178     frame fr = thread->last_frame();
1179     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1180     fr = fr.sender(&reg_map);
1181     assert(fr.is_entry_frame(), "must be");
1182     // fr is now pointing to the entry frame.
1183     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1184   } else {
1185     Bytecodes::Code bc;
1186     CallInfo callinfo;
1187     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1188     callee_method = callinfo.selected_method();
1189   }
1190   assert(callee_method()->is_method(), "must be");
1191   return callee_method;
1192 }
1193 
1194 // Resolves a call.
1195 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1196                                            bool is_virtual,
1197                                            bool is_optimized, TRAPS) {
1198   methodHandle callee_method;
1199   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1200   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1201     int retry_count = 0;
1202     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1203            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1204       // If has a pending exception then there is no need to re-try to
1205       // resolve this method.
1206       // If the method has been redefined, we need to try again.
1207       // Hack: we have no way to update the vtables of arrays, so don't
1208       // require that java.lang.Object has been updated.
1209 
1210       // It is very unlikely that method is redefined more than 100 times
1211       // in the middle of resolve. If it is looping here more than 100 times
1212       // means then there could be a bug here.
1213       guarantee((retry_count++ < 100),
1214                 "Could not resolve to latest version of redefined method");
1215       // method is redefined in the middle of resolve so re-try.
1216       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1217     }
1218   }
1219   return callee_method;
1220 }
1221 
1222 // This fails if resolution required refilling of IC stubs
1223 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1224                                                 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1225                                                 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1226   StaticCallInfo static_call_info;
1227   CompiledICInfo virtual_call_info;
1228 
1229   // Make sure the callee nmethod does not get deoptimized and removed before
1230   // we are done patching the code.
1231   CompiledMethod* callee = callee_method->code();
1232 
1233   if (callee != NULL) {
1234     assert(callee->is_compiled(), "must be nmethod for patching");
1235   }
1236 
1237   if (callee != NULL && !callee->is_in_use()) {
1238     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1239     callee = NULL;
1240   }
1241   nmethodLocker nl_callee(callee);
1242 #ifdef ASSERT
1243   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1244 #endif
1245 
1246   bool is_nmethod = caller_nm->is_nmethod();
1247 
1248   if (is_virtual) {
1249     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1250     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1251     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1252     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1253                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1254                      CHECK_false);
1255   } else {
1256     // static call
1257     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1258   }
1259 
1260   // grab lock, check for deoptimization and potentially patch caller
1261   {
1262     CompiledICLocker ml(caller_nm);
1263 
1264     // Lock blocks for safepoint during which both nmethods can change state.
1265 
1266     // Now that we are ready to patch if the Method* was redefined then
1267     // don't update call site and let the caller retry.
1268     // Don't update call site if callee nmethod was unloaded or deoptimized.
1269     // Don't update call site if callee nmethod was replaced by an other nmethod
1270     // which may happen when multiply alive nmethod (tiered compilation)
1271     // will be supported.
1272     if (!callee_method->is_old() &&
1273         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1274 #ifdef ASSERT
1275       // We must not try to patch to jump to an already unloaded method.
1276       if (dest_entry_point != 0) {
1277         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1278         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1279                "should not call unloaded nmethod");
1280       }
1281 #endif
1282       if (is_virtual) {
1283         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1284         if (inline_cache->is_clean()) {
1285           if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1286             return false;
1287           }
1288         }
1289       } else {
1290         if (VM_Version::supports_fast_class_init_checks() &&
1291             invoke_code == Bytecodes::_invokestatic &&
1292             callee_method->needs_clinit_barrier() &&
1293             callee != NULL && (callee->is_compiled_by_jvmci() || callee->is_aot())) {
1294           return true; // skip patching for JVMCI or AOT code
1295         }
1296         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1297         if (ssc->is_clean()) ssc->set(static_call_info);
1298       }
1299     }
1300   } // unlock CompiledICLocker
1301   return true;
1302 }
1303 
1304 // Resolves a call.  The compilers generate code for calls that go here
1305 // and are patched with the real destination of the call.
1306 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1307                                                bool is_virtual,
1308                                                bool is_optimized, TRAPS) {
1309 
1310   ResourceMark rm(thread);
1311   RegisterMap cbl_map(thread, false);
1312   frame caller_frame = thread->last_frame().sender(&cbl_map);
1313 
1314   CodeBlob* caller_cb = caller_frame.cb();
1315   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1316   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1317 
1318   // make sure caller is not getting deoptimized
1319   // and removed before we are done with it.
1320   // CLEANUP - with lazy deopt shouldn't need this lock
1321   nmethodLocker caller_lock(caller_nm);
1322 
1323   // determine call info & receiver
1324   // note: a) receiver is NULL for static calls
1325   //       b) an exception is thrown if receiver is NULL for non-static calls
1326   CallInfo call_info;
1327   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1328   Handle receiver = find_callee_info(thread, invoke_code,
1329                                      call_info, CHECK_(methodHandle()));
1330   methodHandle callee_method = call_info.selected_method();
1331 
1332   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1333          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1334          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1335          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1336          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1337 
1338   assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1339 
1340 #ifndef PRODUCT
1341   // tracing/debugging/statistics
1342   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1343                 (is_virtual) ? (&_resolve_virtual_ctr) :
1344                                (&_resolve_static_ctr);
1345   Atomic::inc(addr);
1346 
1347   if (TraceCallFixup) {
1348     ResourceMark rm(thread);
1349     tty->print("resolving %s%s (%s) call to",
1350       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1351       Bytecodes::name(invoke_code));
1352     callee_method->print_short_name(tty);
1353     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1354                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1355   }
1356 #endif
1357 
1358   if (invoke_code == Bytecodes::_invokestatic) {
1359     assert(callee_method->method_holder()->is_initialized() ||
1360            callee_method->method_holder()->is_reentrant_initialization(thread),
1361            "invalid class initialization state for invoke_static");
1362     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1363       // In order to keep class initialization check, do not patch call
1364       // site for static call when the class is not fully initialized.
1365       // Proper check is enforced by call site re-resolution on every invocation.
1366       //
1367       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1368       // explicit class initialization check is put in nmethod entry (VEP).
1369       assert(callee_method->method_holder()->is_linked(), "must be");
1370       return callee_method;
1371     }
1372   }
1373 
1374   // JSR 292 key invariant:
1375   // If the resolved method is a MethodHandle invoke target, the call
1376   // site must be a MethodHandle call site, because the lambda form might tail-call
1377   // leaving the stack in a state unknown to either caller or callee
1378   // TODO detune for now but we might need it again
1379 //  assert(!callee_method->is_compiled_lambda_form() ||
1380 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1381 
1382   // Compute entry points. This might require generation of C2I converter
1383   // frames, so we cannot be holding any locks here. Furthermore, the
1384   // computation of the entry points is independent of patching the call.  We
1385   // always return the entry-point, but we only patch the stub if the call has
1386   // not been deoptimized.  Return values: For a virtual call this is an
1387   // (cached_oop, destination address) pair. For a static call/optimized
1388   // virtual this is just a destination address.
1389 
1390   // Patching IC caches may fail if we run out if transition stubs.
1391   // We refill the ic stubs then and try again.
1392   for (;;) {
1393     ICRefillVerifier ic_refill_verifier;
1394     bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1395                                                   is_virtual, is_optimized, receiver,
1396                                                   call_info, invoke_code, CHECK_(methodHandle()));
1397     if (successful) {
1398       return callee_method;
1399     } else {
1400       InlineCacheBuffer::refill_ic_stubs();
1401     }
1402   }
1403 
1404 }
1405 
1406 
1407 // Inline caches exist only in compiled code
1408 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1409 #ifdef ASSERT
1410   RegisterMap reg_map(thread, false);
1411   frame stub_frame = thread->last_frame();
1412   assert(stub_frame.is_runtime_frame(), "sanity check");
1413   frame caller_frame = stub_frame.sender(&reg_map);
1414   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1415 #endif /* ASSERT */
1416 
1417   methodHandle callee_method;
1418   JRT_BLOCK
1419     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1420     // Return Method* through TLS
1421     thread->set_vm_result_2(callee_method());
1422   JRT_BLOCK_END
1423   // return compiled code entry point after potential safepoints
1424   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1425   return callee_method->verified_code_entry();
1426 JRT_END
1427 
1428 
1429 // Handle call site that has been made non-entrant
1430 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1431   // 6243940 We might end up in here if the callee is deoptimized
1432   // as we race to call it.  We don't want to take a safepoint if
1433   // the caller was interpreted because the caller frame will look
1434   // interpreted to the stack walkers and arguments are now
1435   // "compiled" so it is much better to make this transition
1436   // invisible to the stack walking code. The i2c path will
1437   // place the callee method in the callee_target. It is stashed
1438   // there because if we try and find the callee by normal means a
1439   // safepoint is possible and have trouble gc'ing the compiled args.
1440   RegisterMap reg_map(thread, false);
1441   frame stub_frame = thread->last_frame();
1442   assert(stub_frame.is_runtime_frame(), "sanity check");
1443   frame caller_frame = stub_frame.sender(&reg_map);
1444 
1445   if (caller_frame.is_interpreted_frame() ||
1446       caller_frame.is_entry_frame()) {
1447     Method* callee = thread->callee_target();
1448     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1449     thread->set_vm_result_2(callee);
1450     thread->set_callee_target(NULL);
1451     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1452       // Bypass class initialization checks in c2i when caller is in native.
1453       // JNI calls to static methods don't have class initialization checks.
1454       // Fast class initialization checks are present in c2i adapters and call into
1455       // SharedRuntime::handle_wrong_method() on the slow path.
1456       //
1457       // JVM upcalls may land here as well, but there's a proper check present in
1458       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1459       // so bypassing it in c2i adapter is benign.
1460       return callee->get_c2i_no_clinit_check_entry();
1461     } else {
1462       return callee->get_c2i_entry();
1463     }
1464   }
1465 
1466   // Must be compiled to compiled path which is safe to stackwalk
1467   methodHandle callee_method;
1468   JRT_BLOCK
1469     // Force resolving of caller (if we called from compiled frame)
1470     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1471     thread->set_vm_result_2(callee_method());
1472   JRT_BLOCK_END
1473   // return compiled code entry point after potential safepoints
1474   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1475   return callee_method->verified_code_entry();
1476 JRT_END
1477 
1478 // Handle abstract method call
1479 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1480   // Verbose error message for AbstractMethodError.
1481   // Get the called method from the invoke bytecode.
1482   vframeStream vfst(thread, true);
1483   assert(!vfst.at_end(), "Java frame must exist");
1484   methodHandle caller(vfst.method());
1485   Bytecode_invoke invoke(caller, vfst.bci());
1486   DEBUG_ONLY( invoke.verify(); )
1487 
1488   // Find the compiled caller frame.
1489   RegisterMap reg_map(thread);
1490   frame stubFrame = thread->last_frame();
1491   assert(stubFrame.is_runtime_frame(), "must be");
1492   frame callerFrame = stubFrame.sender(&reg_map);
1493   assert(callerFrame.is_compiled_frame(), "must be");
1494 
1495   // Install exception and return forward entry.
1496   address res = StubRoutines::throw_AbstractMethodError_entry();
1497   JRT_BLOCK
1498     methodHandle callee = invoke.static_target(thread);
1499     if (!callee.is_null()) {
1500       oop recv = callerFrame.retrieve_receiver(&reg_map);
1501       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1502       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1503       res = StubRoutines::forward_exception_entry();
1504     }
1505   JRT_BLOCK_END
1506   return res;
1507 JRT_END
1508 
1509 
1510 // resolve a static call and patch code
1511 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1512   methodHandle callee_method;
1513   JRT_BLOCK
1514     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1515     thread->set_vm_result_2(callee_method());
1516   JRT_BLOCK_END
1517   // return compiled code entry point after potential safepoints
1518   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1519   return callee_method->verified_code_entry();
1520 JRT_END
1521 
1522 
1523 // resolve virtual call and update inline cache to monomorphic
1524 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1525   methodHandle callee_method;
1526   JRT_BLOCK
1527     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1528     thread->set_vm_result_2(callee_method());
1529   JRT_BLOCK_END
1530   // return compiled code entry point after potential safepoints
1531   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1532   return callee_method->verified_code_entry();
1533 JRT_END
1534 
1535 
1536 // Resolve a virtual call that can be statically bound (e.g., always
1537 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1538 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1539   methodHandle callee_method;
1540   JRT_BLOCK
1541     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1542     thread->set_vm_result_2(callee_method());
1543   JRT_BLOCK_END
1544   // return compiled code entry point after potential safepoints
1545   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1546   return callee_method->verified_code_entry();
1547 JRT_END
1548 
1549 // The handle_ic_miss_helper_internal function returns false if it failed due
1550 // to either running out of vtable stubs or ic stubs due to IC transitions
1551 // to transitional states. The needs_ic_stub_refill value will be set if
1552 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1553 // refills the IC stubs and tries again.
1554 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1555                                                    const frame& caller_frame, methodHandle callee_method,
1556                                                    Bytecodes::Code bc, CallInfo& call_info,
1557                                                    bool& needs_ic_stub_refill, TRAPS) {
1558   CompiledICLocker ml(caller_nm);
1559   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1560   bool should_be_mono = false;
1561   if (inline_cache->is_optimized()) {
1562     if (TraceCallFixup) {
1563       ResourceMark rm(THREAD);
1564       tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1565       callee_method->print_short_name(tty);
1566       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1567     }
1568     should_be_mono = true;
1569   } else if (inline_cache->is_icholder_call()) {
1570     CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1571     if (ic_oop != NULL) {
1572       if (!ic_oop->is_loader_alive()) {
1573         // Deferred IC cleaning due to concurrent class unloading
1574         if (!inline_cache->set_to_clean()) {
1575           needs_ic_stub_refill = true;
1576           return false;
1577         }
1578       } else if (receiver()->klass() == ic_oop->holder_klass()) {
1579         // This isn't a real miss. We must have seen that compiled code
1580         // is now available and we want the call site converted to a
1581         // monomorphic compiled call site.
1582         // We can't assert for callee_method->code() != NULL because it
1583         // could have been deoptimized in the meantime
1584         if (TraceCallFixup) {
1585           ResourceMark rm(THREAD);
1586           tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1587           callee_method->print_short_name(tty);
1588           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1589         }
1590         should_be_mono = true;
1591       }
1592     }
1593   }
1594 
1595   if (should_be_mono) {
1596     // We have a path that was monomorphic but was going interpreted
1597     // and now we have (or had) a compiled entry. We correct the IC
1598     // by using a new icBuffer.
1599     CompiledICInfo info;
1600     Klass* receiver_klass = receiver()->klass();
1601     inline_cache->compute_monomorphic_entry(callee_method,
1602                                             receiver_klass,
1603                                             inline_cache->is_optimized(),
1604                                             false, caller_nm->is_nmethod(),
1605                                             info, CHECK_false);
1606     if (!inline_cache->set_to_monomorphic(info)) {
1607       needs_ic_stub_refill = true;
1608       return false;
1609     }
1610   } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1611     // Potential change to megamorphic
1612 
1613     bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false);
1614     if (needs_ic_stub_refill) {
1615       return false;
1616     }
1617     if (!successful) {
1618       if (!inline_cache->set_to_clean()) {
1619         needs_ic_stub_refill = true;
1620         return false;
1621       }
1622     }
1623   } else {
1624     // Either clean or megamorphic
1625   }
1626   return true;
1627 }
1628 
1629 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1630   ResourceMark rm(thread);
1631   CallInfo call_info;
1632   Bytecodes::Code bc;
1633 
1634   // receiver is NULL for static calls. An exception is thrown for NULL
1635   // receivers for non-static calls
1636   Handle receiver = find_callee_info(thread, bc, call_info,
1637                                      CHECK_(methodHandle()));
1638   // Compiler1 can produce virtual call sites that can actually be statically bound
1639   // If we fell thru to below we would think that the site was going megamorphic
1640   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1641   // we'd try and do a vtable dispatch however methods that can be statically bound
1642   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1643   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1644   // plain ic_miss) and the site will be converted to an optimized virtual call site
1645   // never to miss again. I don't believe C2 will produce code like this but if it
1646   // did this would still be the correct thing to do for it too, hence no ifdef.
1647   //
1648   if (call_info.resolved_method()->can_be_statically_bound()) {
1649     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1650     if (TraceCallFixup) {
1651       RegisterMap reg_map(thread, false);
1652       frame caller_frame = thread->last_frame().sender(&reg_map);
1653       ResourceMark rm(thread);
1654       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1655       callee_method->print_short_name(tty);
1656       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1657       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1658     }
1659     return callee_method;
1660   }
1661 
1662   methodHandle callee_method = call_info.selected_method();
1663 
1664 #ifndef PRODUCT
1665   Atomic::inc(&_ic_miss_ctr);
1666 
1667   // Statistics & Tracing
1668   if (TraceCallFixup) {
1669     ResourceMark rm(thread);
1670     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1671     callee_method->print_short_name(tty);
1672     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1673   }
1674 
1675   if (ICMissHistogram) {
1676     MutexLocker m(VMStatistic_lock);
1677     RegisterMap reg_map(thread, false);
1678     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1679     // produce statistics under the lock
1680     trace_ic_miss(f.pc());
1681   }
1682 #endif
1683 
1684   // install an event collector so that when a vtable stub is created the
1685   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1686   // event can't be posted when the stub is created as locks are held
1687   // - instead the event will be deferred until the event collector goes
1688   // out of scope.
1689   JvmtiDynamicCodeEventCollector event_collector;
1690 
1691   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1692   // Transitioning IC caches may require transition stubs. If we run out
1693   // of transition stubs, we have to drop locks and perform a safepoint
1694   // that refills them.
1695   RegisterMap reg_map(thread, false);
1696   frame caller_frame = thread->last_frame().sender(&reg_map);
1697   CodeBlob* cb = caller_frame.cb();
1698   CompiledMethod* caller_nm = cb->as_compiled_method();
1699 
1700   for (;;) {
1701     ICRefillVerifier ic_refill_verifier;
1702     bool needs_ic_stub_refill = false;
1703     bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1704                                                      bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle()));
1705     if (successful || !needs_ic_stub_refill) {
1706       return callee_method;
1707     } else {
1708       InlineCacheBuffer::refill_ic_stubs();
1709     }
1710   }
1711 }
1712 
1713 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1714   CompiledICLocker ml(caller_nm);
1715   if (is_static_call) {
1716     CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1717     if (!ssc->is_clean()) {
1718       return ssc->set_to_clean();
1719     }
1720   } else {
1721     // compiled, dispatched call (which used to call an interpreted method)
1722     CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1723     if (!inline_cache->is_clean()) {
1724       return inline_cache->set_to_clean();
1725     }
1726   }
1727   return true;
1728 }
1729 
1730 //
1731 // Resets a call-site in compiled code so it will get resolved again.
1732 // This routines handles both virtual call sites, optimized virtual call
1733 // sites, and static call sites. Typically used to change a call sites
1734 // destination from compiled to interpreted.
1735 //
1736 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1737   ResourceMark rm(thread);
1738   RegisterMap reg_map(thread, false);
1739   frame stub_frame = thread->last_frame();
1740   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1741   frame caller = stub_frame.sender(&reg_map);
1742 
1743   // Do nothing if the frame isn't a live compiled frame.
1744   // nmethod could be deoptimized by the time we get here
1745   // so no update to the caller is needed.
1746 
1747   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1748 
1749     address pc = caller.pc();
1750 
1751     // Check for static or virtual call
1752     bool is_static_call = false;
1753     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1754 
1755     // Default call_addr is the location of the "basic" call.
1756     // Determine the address of the call we a reresolving. With
1757     // Inline Caches we will always find a recognizable call.
1758     // With Inline Caches disabled we may or may not find a
1759     // recognizable call. We will always find a call for static
1760     // calls and for optimized virtual calls. For vanilla virtual
1761     // calls it depends on the state of the UseInlineCaches switch.
1762     //
1763     // With Inline Caches disabled we can get here for a virtual call
1764     // for two reasons:
1765     //   1 - calling an abstract method. The vtable for abstract methods
1766     //       will run us thru handle_wrong_method and we will eventually
1767     //       end up in the interpreter to throw the ame.
1768     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1769     //       call and between the time we fetch the entry address and
1770     //       we jump to it the target gets deoptimized. Similar to 1
1771     //       we will wind up in the interprter (thru a c2i with c2).
1772     //
1773     address call_addr = NULL;
1774     {
1775       // Get call instruction under lock because another thread may be
1776       // busy patching it.
1777       CompiledICLocker ml(caller_nm);
1778       // Location of call instruction
1779       call_addr = caller_nm->call_instruction_address(pc);
1780     }
1781     // Make sure nmethod doesn't get deoptimized and removed until
1782     // this is done with it.
1783     // CLEANUP - with lazy deopt shouldn't need this lock
1784     nmethodLocker nmlock(caller_nm);
1785 
1786     if (call_addr != NULL) {
1787       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1788       int ret = iter.next(); // Get item
1789       if (ret) {
1790         assert(iter.addr() == call_addr, "must find call");
1791         if (iter.type() == relocInfo::static_call_type) {
1792           is_static_call = true;
1793         } else {
1794           assert(iter.type() == relocInfo::virtual_call_type ||
1795                  iter.type() == relocInfo::opt_virtual_call_type
1796                 , "unexpected relocInfo. type");
1797         }
1798       } else {
1799         assert(!UseInlineCaches, "relocation info. must exist for this address");
1800       }
1801 
1802       // Cleaning the inline cache will force a new resolve. This is more robust
1803       // than directly setting it to the new destination, since resolving of calls
1804       // is always done through the same code path. (experience shows that it
1805       // leads to very hard to track down bugs, if an inline cache gets updated
1806       // to a wrong method). It should not be performance critical, since the
1807       // resolve is only done once.
1808 
1809       for (;;) {
1810         ICRefillVerifier ic_refill_verifier;
1811         if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1812           InlineCacheBuffer::refill_ic_stubs();
1813         } else {
1814           break;
1815         }
1816       }
1817     }
1818   }
1819 
1820   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1821 
1822 
1823 #ifndef PRODUCT
1824   Atomic::inc(&_wrong_method_ctr);
1825 
1826   if (TraceCallFixup) {
1827     ResourceMark rm(thread);
1828     tty->print("handle_wrong_method reresolving call to");
1829     callee_method->print_short_name(tty);
1830     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1831   }
1832 #endif
1833 
1834   return callee_method;
1835 }
1836 
1837 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1838   // The faulting unsafe accesses should be changed to throw the error
1839   // synchronously instead. Meanwhile the faulting instruction will be
1840   // skipped over (effectively turning it into a no-op) and an
1841   // asynchronous exception will be raised which the thread will
1842   // handle at a later point. If the instruction is a load it will
1843   // return garbage.
1844 
1845   // Request an async exception.
1846   thread->set_pending_unsafe_access_error();
1847 
1848   // Return address of next instruction to execute.
1849   return next_pc;
1850 }
1851 
1852 #ifdef ASSERT
1853 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1854                                                                 const BasicType* sig_bt,
1855                                                                 const VMRegPair* regs) {
1856   ResourceMark rm;
1857   const int total_args_passed = method->size_of_parameters();
1858   const VMRegPair*    regs_with_member_name = regs;
1859         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1860 
1861   const int member_arg_pos = total_args_passed - 1;
1862   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1863   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1864 
1865   const bool is_outgoing = method->is_method_handle_intrinsic();
1866   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1867 
1868   for (int i = 0; i < member_arg_pos; i++) {
1869     VMReg a =    regs_with_member_name[i].first();
1870     VMReg b = regs_without_member_name[i].first();
1871     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1872   }
1873   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1874 }
1875 #endif
1876 
1877 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1878   if (destination != entry_point) {
1879     CodeBlob* callee = CodeCache::find_blob(destination);
1880     // callee == cb seems weird. It means calling interpreter thru stub.
1881     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1882       // static call or optimized virtual
1883       if (TraceCallFixup) {
1884         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1885         moop->print_short_name(tty);
1886         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1887       }
1888       return true;
1889     } else {
1890       if (TraceCallFixup) {
1891         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1892         moop->print_short_name(tty);
1893         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1894       }
1895       // assert is too strong could also be resolve destinations.
1896       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1897     }
1898   } else {
1899     if (TraceCallFixup) {
1900       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1901       moop->print_short_name(tty);
1902       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1903     }
1904   }
1905   return false;
1906 }
1907 
1908 // ---------------------------------------------------------------------------
1909 // We are calling the interpreter via a c2i. Normally this would mean that
1910 // we were called by a compiled method. However we could have lost a race
1911 // where we went int -> i2c -> c2i and so the caller could in fact be
1912 // interpreted. If the caller is compiled we attempt to patch the caller
1913 // so he no longer calls into the interpreter.
1914 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1915   Method* moop(method);
1916 
1917   address entry_point = moop->from_compiled_entry_no_trampoline();
1918 
1919   // It's possible that deoptimization can occur at a call site which hasn't
1920   // been resolved yet, in which case this function will be called from
1921   // an nmethod that has been patched for deopt and we can ignore the
1922   // request for a fixup.
1923   // Also it is possible that we lost a race in that from_compiled_entry
1924   // is now back to the i2c in that case we don't need to patch and if
1925   // we did we'd leap into space because the callsite needs to use
1926   // "to interpreter" stub in order to load up the Method*. Don't
1927   // ask me how I know this...
1928 
1929   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1930   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1931     return;
1932   }
1933 
1934   // The check above makes sure this is a nmethod.
1935   CompiledMethod* nm = cb->as_compiled_method_or_null();
1936   assert(nm, "must be");
1937 
1938   // Get the return PC for the passed caller PC.
1939   address return_pc = caller_pc + frame::pc_return_offset;
1940 
1941   // There is a benign race here. We could be attempting to patch to a compiled
1942   // entry point at the same time the callee is being deoptimized. If that is
1943   // the case then entry_point may in fact point to a c2i and we'd patch the
1944   // call site with the same old data. clear_code will set code() to NULL
1945   // at the end of it. If we happen to see that NULL then we can skip trying
1946   // to patch. If we hit the window where the callee has a c2i in the
1947   // from_compiled_entry and the NULL isn't present yet then we lose the race
1948   // and patch the code with the same old data. Asi es la vida.
1949 
1950   if (moop->code() == NULL) return;
1951 
1952   if (nm->is_in_use()) {
1953     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1954     CompiledICLocker ic_locker(nm);
1955     if (NativeCall::is_call_before(return_pc)) {
1956       ResourceMark mark;
1957       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1958       //
1959       // bug 6281185. We might get here after resolving a call site to a vanilla
1960       // virtual call. Because the resolvee uses the verified entry it may then
1961       // see compiled code and attempt to patch the site by calling us. This would
1962       // then incorrectly convert the call site to optimized and its downhill from
1963       // there. If you're lucky you'll get the assert in the bugid, if not you've
1964       // just made a call site that could be megamorphic into a monomorphic site
1965       // for the rest of its life! Just another racing bug in the life of
1966       // fixup_callers_callsite ...
1967       //
1968       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1969       iter.next();
1970       assert(iter.has_current(), "must have a reloc at java call site");
1971       relocInfo::relocType typ = iter.reloc()->type();
1972       if (typ != relocInfo::static_call_type &&
1973            typ != relocInfo::opt_virtual_call_type &&
1974            typ != relocInfo::static_stub_type) {
1975         return;
1976       }
1977       address destination = call->destination();
1978       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1979         call->set_destination_mt_safe(entry_point);
1980       }
1981     }
1982   }
1983 JRT_END
1984 
1985 
1986 // same as JVM_Arraycopy, but called directly from compiled code
1987 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1988                                                 oopDesc* dest, jint dest_pos,
1989                                                 jint length,
1990                                                 JavaThread* thread)) {
1991 #ifndef PRODUCT
1992   _slow_array_copy_ctr++;
1993 #endif
1994   // Check if we have null pointers
1995   if (src == NULL || dest == NULL) {
1996     THROW(vmSymbols::java_lang_NullPointerException());
1997   }
1998   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1999   // even though the copy_array API also performs dynamic checks to ensure
2000   // that src and dest are truly arrays (and are conformable).
2001   // The copy_array mechanism is awkward and could be removed, but
2002   // the compilers don't call this function except as a last resort,
2003   // so it probably doesn't matter.
2004   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2005                                         (arrayOopDesc*)dest, dest_pos,
2006                                         length, thread);
2007 }
2008 JRT_END
2009 
2010 // The caller of generate_class_cast_message() (or one of its callers)
2011 // must use a ResourceMark in order to correctly free the result.
2012 char* SharedRuntime::generate_class_cast_message(
2013     JavaThread* thread, Klass* caster_klass) {
2014 
2015   // Get target class name from the checkcast instruction
2016   vframeStream vfst(thread, true);
2017   assert(!vfst.at_end(), "Java frame must exist");
2018   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2019   constantPoolHandle cpool(thread, vfst.method()->constants());
2020   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2021   Symbol* target_klass_name = NULL;
2022   if (target_klass == NULL) {
2023     // This klass should be resolved, but just in case, get the name in the klass slot.
2024     target_klass_name = cpool->klass_name_at(cc.index());
2025   }
2026   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2027 }
2028 
2029 
2030 // The caller of generate_class_cast_message() (or one of its callers)
2031 // must use a ResourceMark in order to correctly free the result.
2032 char* SharedRuntime::generate_class_cast_message(
2033     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2034   const char* caster_name = caster_klass->external_name();
2035 
2036   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2037   const char* target_name = target_klass == NULL ? target_klass_name->as_klass_external_name() :
2038                                                    target_klass->external_name();
2039 
2040   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2041 
2042   const char* caster_klass_description = "";
2043   const char* target_klass_description = "";
2044   const char* klass_separator = "";
2045   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2046     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2047   } else {
2048     caster_klass_description = caster_klass->class_in_module_of_loader();
2049     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2050     klass_separator = (target_klass != NULL) ? "; " : "";
2051   }
2052 
2053   // add 3 for parenthesis and preceeding space
2054   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2055 
2056   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2057   if (message == NULL) {
2058     // Shouldn't happen, but don't cause even more problems if it does
2059     message = const_cast<char*>(caster_klass->external_name());
2060   } else {
2061     jio_snprintf(message,
2062                  msglen,
2063                  "class %s cannot be cast to class %s (%s%s%s)",
2064                  caster_name,
2065                  target_name,
2066                  caster_klass_description,
2067                  klass_separator,
2068                  target_klass_description
2069                  );
2070   }
2071   return message;
2072 }
2073 
2074 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2075   (void) JavaThread::current()->reguard_stack();
2076 JRT_END
2077 
2078 
2079 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2080 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2081   if (!SafepointSynchronize::is_synchronizing()) {
2082     // Only try quick_enter() if we're not trying to reach a safepoint
2083     // so that the calling thread reaches the safepoint more quickly.
2084     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2085   }
2086   // NO_ASYNC required because an async exception on the state transition destructor
2087   // would leave you with the lock held and it would never be released.
2088   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2089   // and the model is that an exception implies the method failed.
2090   JRT_BLOCK_NO_ASYNC
2091   oop obj(_obj);
2092   if (PrintBiasedLockingStatistics) {
2093     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2094   }
2095   Handle h_obj(THREAD, obj);
2096   if (UseBiasedLocking) {
2097     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2098     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2099   } else {
2100     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2101   }
2102   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2103   JRT_BLOCK_END
2104 JRT_END
2105 
2106 // Handles the uncommon cases of monitor unlocking in compiled code
2107 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2108    oop obj(_obj);
2109   assert(JavaThread::current() == THREAD, "invariant");
2110   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2111   // testing was unable to ever fire the assert that guarded it so I have removed it.
2112   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2113 #undef MIGHT_HAVE_PENDING
2114 #ifdef MIGHT_HAVE_PENDING
2115   // Save and restore any pending_exception around the exception mark.
2116   // While the slow_exit must not throw an exception, we could come into
2117   // this routine with one set.
2118   oop pending_excep = NULL;
2119   const char* pending_file;
2120   int pending_line;
2121   if (HAS_PENDING_EXCEPTION) {
2122     pending_excep = PENDING_EXCEPTION;
2123     pending_file  = THREAD->exception_file();
2124     pending_line  = THREAD->exception_line();
2125     CLEAR_PENDING_EXCEPTION;
2126   }
2127 #endif /* MIGHT_HAVE_PENDING */
2128 
2129   {
2130     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2131     EXCEPTION_MARK;
2132     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2133   }
2134 
2135 #ifdef MIGHT_HAVE_PENDING
2136   if (pending_excep != NULL) {
2137     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2138   }
2139 #endif /* MIGHT_HAVE_PENDING */
2140 JRT_END
2141 
2142 #ifndef PRODUCT
2143 
2144 void SharedRuntime::print_statistics() {
2145   ttyLocker ttyl;
2146   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2147 
2148   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2149 
2150   SharedRuntime::print_ic_miss_histogram();
2151 
2152   if (CountRemovableExceptions) {
2153     if (_nof_removable_exceptions > 0) {
2154       Unimplemented(); // this counter is not yet incremented
2155       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2156     }
2157   }
2158 
2159   // Dump the JRT_ENTRY counters
2160   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2161   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2162   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2163   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2164   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2165   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2166   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2167 
2168   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2169   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2170   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2171   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2172   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2173 
2174   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2175   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2176   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2177   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2178   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2179   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2180   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2181   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2182   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2183   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2184   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2185   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2186   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2187   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2188   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2189   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2190 
2191   AdapterHandlerLibrary::print_statistics();
2192 
2193   if (xtty != NULL)  xtty->tail("statistics");
2194 }
2195 
2196 inline double percent(int x, int y) {
2197   return 100.0 * x / MAX2(y, 1);
2198 }
2199 
2200 class MethodArityHistogram {
2201  public:
2202   enum { MAX_ARITY = 256 };
2203  private:
2204   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2205   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2206   static int _max_arity;                      // max. arity seen
2207   static int _max_size;                       // max. arg size seen
2208 
2209   static void add_method_to_histogram(nmethod* nm) {
2210     if (CompiledMethod::nmethod_access_is_safe(nm)) {
2211       Method* method = nm->method();
2212       ArgumentCount args(method->signature());
2213       int arity   = args.size() + (method->is_static() ? 0 : 1);
2214       int argsize = method->size_of_parameters();
2215       arity   = MIN2(arity, MAX_ARITY-1);
2216       argsize = MIN2(argsize, MAX_ARITY-1);
2217       int count = method->compiled_invocation_count();
2218       _arity_histogram[arity]  += count;
2219       _size_histogram[argsize] += count;
2220       _max_arity = MAX2(_max_arity, arity);
2221       _max_size  = MAX2(_max_size, argsize);
2222     }
2223   }
2224 
2225   void print_histogram_helper(int n, int* histo, const char* name) {
2226     const int N = MIN2(5, n);
2227     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2228     double sum = 0;
2229     double weighted_sum = 0;
2230     int i;
2231     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2232     double rest = sum;
2233     double percent = sum / 100;
2234     for (i = 0; i <= N; i++) {
2235       rest -= histo[i];
2236       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2237     }
2238     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2239     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2240   }
2241 
2242   void print_histogram() {
2243     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2244     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2245     tty->print_cr("\nSame for parameter size (in words):");
2246     print_histogram_helper(_max_size, _size_histogram, "size");
2247     tty->cr();
2248   }
2249 
2250  public:
2251   MethodArityHistogram() {
2252     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2253     _max_arity = _max_size = 0;
2254     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2255     CodeCache::nmethods_do(add_method_to_histogram);
2256     print_histogram();
2257   }
2258 };
2259 
2260 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2261 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2262 int MethodArityHistogram::_max_arity;
2263 int MethodArityHistogram::_max_size;
2264 
2265 void SharedRuntime::print_call_statistics(int comp_total) {
2266   tty->print_cr("Calls from compiled code:");
2267   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2268   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2269   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2270   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2271   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2272   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2273   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2274   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2275   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2276   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2277   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2278   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2279   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2280   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2281   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2282   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2283   tty->cr();
2284   tty->print_cr("Note 1: counter updates are not MT-safe.");
2285   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2286   tty->print_cr("        %% in nested categories are relative to their category");
2287   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2288   tty->cr();
2289 
2290   MethodArityHistogram h;
2291 }
2292 #endif
2293 
2294 
2295 // A simple wrapper class around the calling convention information
2296 // that allows sharing of adapters for the same calling convention.
2297 class AdapterFingerPrint : public CHeapObj<mtCode> {
2298  private:
2299   enum {
2300     _basic_type_bits = 4,
2301     _basic_type_mask = right_n_bits(_basic_type_bits),
2302     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2303     _compact_int_count = 3
2304   };
2305   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2306   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2307 
2308   union {
2309     int  _compact[_compact_int_count];
2310     int* _fingerprint;
2311   } _value;
2312   int _length; // A negative length indicates the fingerprint is in the compact form,
2313                // Otherwise _value._fingerprint is the array.
2314 
2315   // Remap BasicTypes that are handled equivalently by the adapters.
2316   // These are correct for the current system but someday it might be
2317   // necessary to make this mapping platform dependent.
2318   static int adapter_encoding(BasicType in) {
2319     switch (in) {
2320       case T_BOOLEAN:
2321       case T_BYTE:
2322       case T_SHORT:
2323       case T_CHAR:
2324         // There are all promoted to T_INT in the calling convention
2325         return T_INT;
2326 
2327       case T_OBJECT:
2328       case T_ARRAY:
2329         // In other words, we assume that any register good enough for
2330         // an int or long is good enough for a managed pointer.
2331 #ifdef _LP64
2332         return T_LONG;
2333 #else
2334         return T_INT;
2335 #endif
2336 
2337       case T_INT:
2338       case T_LONG:
2339       case T_FLOAT:
2340       case T_DOUBLE:
2341       case T_VOID:
2342         return in;
2343 
2344       default:
2345         ShouldNotReachHere();
2346         return T_CONFLICT;
2347     }
2348   }
2349 
2350  public:
2351   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2352     // The fingerprint is based on the BasicType signature encoded
2353     // into an array of ints with eight entries per int.
2354     int* ptr;
2355     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2356     if (len <= _compact_int_count) {
2357       assert(_compact_int_count == 3, "else change next line");
2358       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2359       // Storing the signature encoded as signed chars hits about 98%
2360       // of the time.
2361       _length = -len;
2362       ptr = _value._compact;
2363     } else {
2364       _length = len;
2365       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2366       ptr = _value._fingerprint;
2367     }
2368 
2369     // Now pack the BasicTypes with 8 per int
2370     int sig_index = 0;
2371     for (int index = 0; index < len; index++) {
2372       int value = 0;
2373       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2374         int bt = ((sig_index < total_args_passed)
2375                   ? adapter_encoding(sig_bt[sig_index++])
2376                   : 0);
2377         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2378         value = (value << _basic_type_bits) | bt;
2379       }
2380       ptr[index] = value;
2381     }
2382   }
2383 
2384   ~AdapterFingerPrint() {
2385     if (_length > 0) {
2386       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2387     }
2388   }
2389 
2390   int value(int index) {
2391     if (_length < 0) {
2392       return _value._compact[index];
2393     }
2394     return _value._fingerprint[index];
2395   }
2396   int length() {
2397     if (_length < 0) return -_length;
2398     return _length;
2399   }
2400 
2401   bool is_compact() {
2402     return _length <= 0;
2403   }
2404 
2405   unsigned int compute_hash() {
2406     int hash = 0;
2407     for (int i = 0; i < length(); i++) {
2408       int v = value(i);
2409       hash = (hash << 8) ^ v ^ (hash >> 5);
2410     }
2411     return (unsigned int)hash;
2412   }
2413 
2414   const char* as_string() {
2415     stringStream st;
2416     st.print("0x");
2417     for (int i = 0; i < length(); i++) {
2418       st.print("%08x", value(i));
2419     }
2420     return st.as_string();
2421   }
2422 
2423   bool equals(AdapterFingerPrint* other) {
2424     if (other->_length != _length) {
2425       return false;
2426     }
2427     if (_length < 0) {
2428       assert(_compact_int_count == 3, "else change next line");
2429       return _value._compact[0] == other->_value._compact[0] &&
2430              _value._compact[1] == other->_value._compact[1] &&
2431              _value._compact[2] == other->_value._compact[2];
2432     } else {
2433       for (int i = 0; i < _length; i++) {
2434         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2435           return false;
2436         }
2437       }
2438     }
2439     return true;
2440   }
2441 };
2442 
2443 
2444 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2445 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2446   friend class AdapterHandlerTableIterator;
2447 
2448  private:
2449 
2450 #ifndef PRODUCT
2451   static int _lookups; // number of calls to lookup
2452   static int _buckets; // number of buckets checked
2453   static int _equals;  // number of buckets checked with matching hash
2454   static int _hits;    // number of successful lookups
2455   static int _compact; // number of equals calls with compact signature
2456 #endif
2457 
2458   AdapterHandlerEntry* bucket(int i) {
2459     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2460   }
2461 
2462  public:
2463   AdapterHandlerTable()
2464     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2465 
2466   // Create a new entry suitable for insertion in the table
2467   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry, address c2i_no_clinit_check_entry) {
2468     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2469     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
2470     if (DumpSharedSpaces) {
2471       ((CDSAdapterHandlerEntry*)entry)->init();
2472     }
2473     return entry;
2474   }
2475 
2476   // Insert an entry into the table
2477   void add(AdapterHandlerEntry* entry) {
2478     int index = hash_to_index(entry->hash());
2479     add_entry(index, entry);
2480   }
2481 
2482   void free_entry(AdapterHandlerEntry* entry) {
2483     entry->deallocate();
2484     BasicHashtable<mtCode>::free_entry(entry);
2485   }
2486 
2487   // Find a entry with the same fingerprint if it exists
2488   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2489     NOT_PRODUCT(_lookups++);
2490     AdapterFingerPrint fp(total_args_passed, sig_bt);
2491     unsigned int hash = fp.compute_hash();
2492     int index = hash_to_index(hash);
2493     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2494       NOT_PRODUCT(_buckets++);
2495       if (e->hash() == hash) {
2496         NOT_PRODUCT(_equals++);
2497         if (fp.equals(e->fingerprint())) {
2498 #ifndef PRODUCT
2499           if (fp.is_compact()) _compact++;
2500           _hits++;
2501 #endif
2502           return e;
2503         }
2504       }
2505     }
2506     return NULL;
2507   }
2508 
2509 #ifndef PRODUCT
2510   void print_statistics() {
2511     ResourceMark rm;
2512     int longest = 0;
2513     int empty = 0;
2514     int total = 0;
2515     int nonempty = 0;
2516     for (int index = 0; index < table_size(); index++) {
2517       int count = 0;
2518       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2519         count++;
2520       }
2521       if (count != 0) nonempty++;
2522       if (count == 0) empty++;
2523       if (count > longest) longest = count;
2524       total += count;
2525     }
2526     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2527                   empty, longest, total, total / (double)nonempty);
2528     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2529                   _lookups, _buckets, _equals, _hits, _compact);
2530   }
2531 #endif
2532 };
2533 
2534 
2535 #ifndef PRODUCT
2536 
2537 int AdapterHandlerTable::_lookups;
2538 int AdapterHandlerTable::_buckets;
2539 int AdapterHandlerTable::_equals;
2540 int AdapterHandlerTable::_hits;
2541 int AdapterHandlerTable::_compact;
2542 
2543 #endif
2544 
2545 class AdapterHandlerTableIterator : public StackObj {
2546  private:
2547   AdapterHandlerTable* _table;
2548   int _index;
2549   AdapterHandlerEntry* _current;
2550 
2551   void scan() {
2552     while (_index < _table->table_size()) {
2553       AdapterHandlerEntry* a = _table->bucket(_index);
2554       _index++;
2555       if (a != NULL) {
2556         _current = a;
2557         return;
2558       }
2559     }
2560   }
2561 
2562  public:
2563   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2564     scan();
2565   }
2566   bool has_next() {
2567     return _current != NULL;
2568   }
2569   AdapterHandlerEntry* next() {
2570     if (_current != NULL) {
2571       AdapterHandlerEntry* result = _current;
2572       _current = _current->next();
2573       if (_current == NULL) scan();
2574       return result;
2575     } else {
2576       return NULL;
2577     }
2578   }
2579 };
2580 
2581 
2582 // ---------------------------------------------------------------------------
2583 // Implementation of AdapterHandlerLibrary
2584 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2585 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2586 const int AdapterHandlerLibrary_size = 16*K;
2587 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2588 
2589 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2590   // Should be called only when AdapterHandlerLibrary_lock is active.
2591   if (_buffer == NULL) // Initialize lazily
2592       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2593   return _buffer;
2594 }
2595 
2596 extern "C" void unexpected_adapter_call() {
2597   ShouldNotCallThis();
2598 }
2599 
2600 void AdapterHandlerLibrary::initialize() {
2601   if (_adapters != NULL) return;
2602   _adapters = new AdapterHandlerTable();
2603 
2604   // Create a special handler for abstract methods.  Abstract methods
2605   // are never compiled so an i2c entry is somewhat meaningless, but
2606   // throw AbstractMethodError just in case.
2607   // Pass wrong_method_abstract for the c2i transitions to return
2608   // AbstractMethodError for invalid invocations.
2609   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2610   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2611                                                               StubRoutines::throw_AbstractMethodError_entry(),
2612                                                               wrong_method_abstract, wrong_method_abstract);
2613 }
2614 
2615 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2616                                                       address i2c_entry,
2617                                                       address c2i_entry,
2618                                                       address c2i_unverified_entry,
2619                                                       address c2i_no_clinit_check_entry) {
2620   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
2621 }
2622 
2623 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2624   AdapterHandlerEntry* entry = get_adapter0(method);
2625   if (method->is_shared()) {
2626     // See comments around Method::link_method()
2627     MutexLocker mu(AdapterHandlerLibrary_lock);
2628     if (method->adapter() == NULL) {
2629       method->update_adapter_trampoline(entry);
2630     }
2631     address trampoline = method->from_compiled_entry();
2632     if (*(int*)trampoline == 0) {
2633       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2634       MacroAssembler _masm(&buffer);
2635       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2636       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2637 
2638       if (PrintInterpreter) {
2639         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2640       }
2641     }
2642   }
2643 
2644   return entry;
2645 }
2646 
2647 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2648   // Use customized signature handler.  Need to lock around updates to
2649   // the AdapterHandlerTable (it is not safe for concurrent readers
2650   // and a single writer: this could be fixed if it becomes a
2651   // problem).
2652 
2653   ResourceMark rm;
2654 
2655   NOT_PRODUCT(int insts_size);
2656   AdapterBlob* new_adapter = NULL;
2657   AdapterHandlerEntry* entry = NULL;
2658   AdapterFingerPrint* fingerprint = NULL;
2659   {
2660     MutexLocker mu(AdapterHandlerLibrary_lock);
2661     // make sure data structure is initialized
2662     initialize();
2663 
2664     if (method->is_abstract()) {
2665       return _abstract_method_handler;
2666     }
2667 
2668     // Fill in the signature array, for the calling-convention call.
2669     int total_args_passed = method->size_of_parameters(); // All args on stack
2670 
2671     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2672     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2673     int i = 0;
2674     if (!method->is_static())  // Pass in receiver first
2675       sig_bt[i++] = T_OBJECT;
2676     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2677       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2678       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2679         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2680     }
2681     assert(i == total_args_passed, "");
2682 
2683     // Lookup method signature's fingerprint
2684     entry = _adapters->lookup(total_args_passed, sig_bt);
2685 
2686 #ifdef ASSERT
2687     AdapterHandlerEntry* shared_entry = NULL;
2688     // Start adapter sharing verification only after the VM is booted.
2689     if (VerifyAdapterSharing && (entry != NULL)) {
2690       shared_entry = entry;
2691       entry = NULL;
2692     }
2693 #endif
2694 
2695     if (entry != NULL) {
2696       return entry;
2697     }
2698 
2699     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2700     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2701 
2702     // Make a C heap allocated version of the fingerprint to store in the adapter
2703     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2704 
2705     // StubRoutines::code2() is initialized after this function can be called. As a result,
2706     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2707     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2708     // stub that ensure that an I2C stub is called from an interpreter frame.
2709     bool contains_all_checks = StubRoutines::code2() != NULL;
2710 
2711     // Create I2C & C2I handlers
2712     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2713     if (buf != NULL) {
2714       CodeBuffer buffer(buf);
2715       short buffer_locs[20];
2716       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2717                                              sizeof(buffer_locs)/sizeof(relocInfo));
2718 
2719       MacroAssembler _masm(&buffer);
2720       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2721                                                      total_args_passed,
2722                                                      comp_args_on_stack,
2723                                                      sig_bt,
2724                                                      regs,
2725                                                      fingerprint);
2726 #ifdef ASSERT
2727       if (VerifyAdapterSharing) {
2728         if (shared_entry != NULL) {
2729           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2730           // Release the one just created and return the original
2731           _adapters->free_entry(entry);
2732           return shared_entry;
2733         } else  {
2734           entry->save_code(buf->code_begin(), buffer.insts_size());
2735         }
2736       }
2737 #endif
2738 
2739       new_adapter = AdapterBlob::create(&buffer);
2740       NOT_PRODUCT(insts_size = buffer.insts_size());
2741     }
2742     if (new_adapter == NULL) {
2743       // CodeCache is full, disable compilation
2744       // Ought to log this but compile log is only per compile thread
2745       // and we're some non descript Java thread.
2746       return NULL; // Out of CodeCache space
2747     }
2748     entry->relocate(new_adapter->content_begin());
2749 #ifndef PRODUCT
2750     // debugging suppport
2751     if (PrintAdapterHandlers || PrintStubCode) {
2752       ttyLocker ttyl;
2753       entry->print_adapter_on(tty);
2754       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2755                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2756                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2757       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2758       if (Verbose || PrintStubCode) {
2759         address first_pc = entry->base_address();
2760         if (first_pc != NULL) {
2761           Disassembler::decode(first_pc, first_pc + insts_size);
2762           tty->cr();
2763         }
2764       }
2765     }
2766 #endif
2767     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2768     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2769     if (contains_all_checks || !VerifyAdapterCalls) {
2770       _adapters->add(entry);
2771     }
2772   }
2773   // Outside of the lock
2774   if (new_adapter != NULL) {
2775     char blob_id[256];
2776     jio_snprintf(blob_id,
2777                  sizeof(blob_id),
2778                  "%s(%s)@" PTR_FORMAT,
2779                  new_adapter->name(),
2780                  fingerprint->as_string(),
2781                  new_adapter->content_begin());
2782     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2783 
2784     if (JvmtiExport::should_post_dynamic_code_generated()) {
2785       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2786     }
2787   }
2788   return entry;
2789 }
2790 
2791 address AdapterHandlerEntry::base_address() {
2792   address base = _i2c_entry;
2793   if (base == NULL)  base = _c2i_entry;
2794   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2795   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2796   assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == NULL, "");
2797   return base;
2798 }
2799 
2800 void AdapterHandlerEntry::relocate(address new_base) {
2801   address old_base = base_address();
2802   assert(old_base != NULL, "");
2803   ptrdiff_t delta = new_base - old_base;
2804   if (_i2c_entry != NULL)
2805     _i2c_entry += delta;
2806   if (_c2i_entry != NULL)
2807     _c2i_entry += delta;
2808   if (_c2i_unverified_entry != NULL)
2809     _c2i_unverified_entry += delta;
2810   if (_c2i_no_clinit_check_entry != NULL)
2811     _c2i_no_clinit_check_entry += delta;
2812   assert(base_address() == new_base, "");
2813 }
2814 
2815 
2816 void AdapterHandlerEntry::deallocate() {
2817   delete _fingerprint;
2818 #ifdef ASSERT
2819   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2820 #endif
2821 }
2822 
2823 
2824 #ifdef ASSERT
2825 // Capture the code before relocation so that it can be compared
2826 // against other versions.  If the code is captured after relocation
2827 // then relative instructions won't be equivalent.
2828 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2829   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2830   _saved_code_length = length;
2831   memcpy(_saved_code, buffer, length);
2832 }
2833 
2834 
2835 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2836   if (length != _saved_code_length) {
2837     return false;
2838   }
2839 
2840   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2841 }
2842 #endif
2843 
2844 
2845 /**
2846  * Create a native wrapper for this native method.  The wrapper converts the
2847  * Java-compiled calling convention to the native convention, handles
2848  * arguments, and transitions to native.  On return from the native we transition
2849  * back to java blocking if a safepoint is in progress.
2850  */
2851 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2852   ResourceMark rm;
2853   nmethod* nm = NULL;
2854   address critical_entry = NULL;
2855 
2856   assert(method->is_native(), "must be native");
2857   assert(method->is_method_handle_intrinsic() ||
2858          method->has_native_function(), "must have something valid to call!");
2859 
2860   if (CriticalJNINatives && !method->is_method_handle_intrinsic()) {
2861     // We perform the I/O with transition to native before acquiring AdapterHandlerLibrary_lock.
2862     critical_entry = NativeLookup::lookup_critical_entry(method);
2863   }
2864 
2865   {
2866     // Perform the work while holding the lock, but perform any printing outside the lock
2867     MutexLocker mu(AdapterHandlerLibrary_lock);
2868     // See if somebody beat us to it
2869     if (method->code() != NULL) {
2870       return;
2871     }
2872 
2873     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2874     assert(compile_id > 0, "Must generate native wrapper");
2875 
2876 
2877     ResourceMark rm;
2878     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2879     if (buf != NULL) {
2880       CodeBuffer buffer(buf);
2881       double locs_buf[20];
2882       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2883       MacroAssembler _masm(&buffer);
2884 
2885       // Fill in the signature array, for the calling-convention call.
2886       const int total_args_passed = method->size_of_parameters();
2887 
2888       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2889       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2890       int i=0;
2891       if (!method->is_static())  // Pass in receiver first
2892         sig_bt[i++] = T_OBJECT;
2893       SignatureStream ss(method->signature());
2894       for (; !ss.at_return_type(); ss.next()) {
2895         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2896         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2897           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2898       }
2899       assert(i == total_args_passed, "");
2900       BasicType ret_type = ss.type();
2901 
2902       // Now get the compiled-Java layout as input (or output) arguments.
2903       // NOTE: Stubs for compiled entry points of method handle intrinsics
2904       // are just trampolines so the argument registers must be outgoing ones.
2905       const bool is_outgoing = method->is_method_handle_intrinsic();
2906       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2907 
2908       // Generate the compiled-to-native wrapper code
2909       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type, critical_entry);
2910 
2911       if (nm != NULL) {
2912         method->set_code(method, nm);
2913 
2914         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2915         if (directive->PrintAssemblyOption) {
2916           nm->print_code();
2917         }
2918         DirectivesStack::release(directive);
2919       }
2920     }
2921   } // Unlock AdapterHandlerLibrary_lock
2922 
2923 
2924   // Install the generated code.
2925   if (nm != NULL) {
2926     const char *msg = method->is_static() ? "(static)" : "";
2927     CompileTask::print_ul(nm, msg);
2928     if (PrintCompilation) {
2929       ttyLocker ttyl;
2930       CompileTask::print(tty, nm, msg);
2931     }
2932     nm->post_compiled_method_load_event();
2933   }
2934 }
2935 
2936 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2937   assert(thread == JavaThread::current(), "must be");
2938   // The code is about to enter a JNI lazy critical native method and
2939   // _needs_gc is true, so if this thread is already in a critical
2940   // section then just return, otherwise this thread should block
2941   // until needs_gc has been cleared.
2942   if (thread->in_critical()) {
2943     return;
2944   }
2945   // Lock and unlock a critical section to give the system a chance to block
2946   GCLocker::lock_critical(thread);
2947   GCLocker::unlock_critical(thread);
2948 JRT_END
2949 
2950 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
2951   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2952   assert(obj != NULL, "Should not be null");
2953   oop o(obj);
2954   o = Universe::heap()->pin_object(thread, o);
2955   assert(o != NULL, "Should not be null");
2956   return o;
2957 JRT_END
2958 
2959 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
2960   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2961   assert(obj != NULL, "Should not be null");
2962   oop o(obj);
2963   Universe::heap()->unpin_object(thread, o);
2964 JRT_END
2965 
2966 // -------------------------------------------------------------------------
2967 // Java-Java calling convention
2968 // (what you use when Java calls Java)
2969 
2970 //------------------------------name_for_receiver----------------------------------
2971 // For a given signature, return the VMReg for parameter 0.
2972 VMReg SharedRuntime::name_for_receiver() {
2973   VMRegPair regs;
2974   BasicType sig_bt = T_OBJECT;
2975   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2976   // Return argument 0 register.  In the LP64 build pointers
2977   // take 2 registers, but the VM wants only the 'main' name.
2978   return regs.first();
2979 }
2980 
2981 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2982   // This method is returning a data structure allocating as a
2983   // ResourceObject, so do not put any ResourceMarks in here.
2984   char *s = sig->as_C_string();
2985   int len = (int)strlen(s);
2986   s++; len--;                   // Skip opening paren
2987 
2988   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2989   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2990   int cnt = 0;
2991   if (has_receiver) {
2992     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2993   }
2994 
2995   while (*s != ')') {          // Find closing right paren
2996     switch (*s++) {            // Switch on signature character
2997     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2998     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2999     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
3000     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
3001     case 'I': sig_bt[cnt++] = T_INT;     break;
3002     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
3003     case 'S': sig_bt[cnt++] = T_SHORT;   break;
3004     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
3005     case 'V': sig_bt[cnt++] = T_VOID;    break;
3006     case 'L':                   // Oop
3007       while (*s++ != ';');   // Skip signature
3008       sig_bt[cnt++] = T_OBJECT;
3009       break;
3010     case '[': {                 // Array
3011       do {                      // Skip optional size
3012         while (*s >= '0' && *s <= '9') s++;
3013       } while (*s++ == '[');   // Nested arrays?
3014       // Skip element type
3015       if (s[-1] == 'L')
3016         while (*s++ != ';'); // Skip signature
3017       sig_bt[cnt++] = T_ARRAY;
3018       break;
3019     }
3020     default : ShouldNotReachHere();
3021     }
3022   }
3023 
3024   if (has_appendix) {
3025     sig_bt[cnt++] = T_OBJECT;
3026   }
3027 
3028   assert(cnt < 256, "grow table size");
3029 
3030   int comp_args_on_stack;
3031   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3032 
3033   // the calling convention doesn't count out_preserve_stack_slots so
3034   // we must add that in to get "true" stack offsets.
3035 
3036   if (comp_args_on_stack) {
3037     for (int i = 0; i < cnt; i++) {
3038       VMReg reg1 = regs[i].first();
3039       if (reg1->is_stack()) {
3040         // Yuck
3041         reg1 = reg1->bias(out_preserve_stack_slots());
3042       }
3043       VMReg reg2 = regs[i].second();
3044       if (reg2->is_stack()) {
3045         // Yuck
3046         reg2 = reg2->bias(out_preserve_stack_slots());
3047       }
3048       regs[i].set_pair(reg2, reg1);
3049     }
3050   }
3051 
3052   // results
3053   *arg_size = cnt;
3054   return regs;
3055 }
3056 
3057 // OSR Migration Code
3058 //
3059 // This code is used convert interpreter frames into compiled frames.  It is
3060 // called from very start of a compiled OSR nmethod.  A temp array is
3061 // allocated to hold the interesting bits of the interpreter frame.  All
3062 // active locks are inflated to allow them to move.  The displaced headers and
3063 // active interpreter locals are copied into the temp buffer.  Then we return
3064 // back to the compiled code.  The compiled code then pops the current
3065 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3066 // copies the interpreter locals and displaced headers where it wants.
3067 // Finally it calls back to free the temp buffer.
3068 //
3069 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3070 
3071 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3072 
3073   //
3074   // This code is dependent on the memory layout of the interpreter local
3075   // array and the monitors. On all of our platforms the layout is identical
3076   // so this code is shared. If some platform lays the their arrays out
3077   // differently then this code could move to platform specific code or
3078   // the code here could be modified to copy items one at a time using
3079   // frame accessor methods and be platform independent.
3080 
3081   frame fr = thread->last_frame();
3082   assert(fr.is_interpreted_frame(), "");
3083   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3084 
3085   // Figure out how many monitors are active.
3086   int active_monitor_count = 0;
3087   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3088        kptr < fr.interpreter_frame_monitor_begin();
3089        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3090     if (kptr->obj() != NULL) active_monitor_count++;
3091   }
3092 
3093   // QQQ we could place number of active monitors in the array so that compiled code
3094   // could double check it.
3095 
3096   Method* moop = fr.interpreter_frame_method();
3097   int max_locals = moop->max_locals();
3098   // Allocate temp buffer, 1 word per local & 2 per active monitor
3099   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3100   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3101 
3102   // Copy the locals.  Order is preserved so that loading of longs works.
3103   // Since there's no GC I can copy the oops blindly.
3104   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3105   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3106                        (HeapWord*)&buf[0],
3107                        max_locals);
3108 
3109   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3110   int i = max_locals;
3111   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3112        kptr2 < fr.interpreter_frame_monitor_begin();
3113        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3114     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3115       BasicLock *lock = kptr2->lock();
3116       // Disallow async deflation of the inflated monitor so the
3117       // displaced header stays stable until we've copied it.
3118       ObjectMonitorHandle omh;
3119       // Inflate so the displaced header becomes position-independent
3120       if (lock->displaced_header().is_unlocked()) {
3121         ObjectSynchronizer::inflate_helper(&omh, kptr2->obj());
3122       }
3123       // Now the displaced header is free to move
3124       buf[i++] = (intptr_t)lock->displaced_header().value();
3125       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3126     }
3127   }
3128   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3129 
3130   return buf;
3131 JRT_END
3132 
3133 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3134   FREE_C_HEAP_ARRAY(intptr_t, buf);
3135 JRT_END
3136 
3137 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3138   AdapterHandlerTableIterator iter(_adapters);
3139   while (iter.has_next()) {
3140     AdapterHandlerEntry* a = iter.next();
3141     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3142   }
3143   return false;
3144 }
3145 
3146 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3147   AdapterHandlerTableIterator iter(_adapters);
3148   while (iter.has_next()) {
3149     AdapterHandlerEntry* a = iter.next();
3150     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3151       st->print("Adapter for signature: ");
3152       a->print_adapter_on(tty);
3153       return;
3154     }
3155   }
3156   assert(false, "Should have found handler");
3157 }
3158 
3159 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3160   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3161   if (get_i2c_entry() != NULL) {
3162     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3163   }
3164   if (get_c2i_entry() != NULL) {
3165     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3166   }
3167   if (get_c2i_unverified_entry() != NULL) {
3168     st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3169   }
3170   if (get_c2i_no_clinit_check_entry() != NULL) {
3171     st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3172   }
3173   st->cr();
3174 }
3175 
3176 #if INCLUDE_CDS
3177 
3178 void CDSAdapterHandlerEntry::init() {
3179   assert(DumpSharedSpaces, "used during dump time only");
3180   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3181   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3182 };
3183 
3184 #endif // INCLUDE_CDS
3185 
3186 
3187 #ifndef PRODUCT
3188 
3189 void AdapterHandlerLibrary::print_statistics() {
3190   _adapters->print_statistics();
3191 }
3192 
3193 #endif /* PRODUCT */
3194 
3195 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3196   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3197   if (thread->stack_reserved_zone_disabled()) {
3198   thread->enable_stack_reserved_zone();
3199   }
3200   thread->set_reserved_stack_activation(thread->stack_base());
3201 JRT_END
3202 
3203 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3204   ResourceMark rm(thread);
3205   frame activation;
3206   CompiledMethod* nm = NULL;
3207   int count = 1;
3208 
3209   assert(fr.is_java_frame(), "Must start on Java frame");
3210 
3211   while (true) {
3212     Method* method = NULL;
3213     bool found = false;
3214     if (fr.is_interpreted_frame()) {
3215       method = fr.interpreter_frame_method();
3216       if (method != NULL && method->has_reserved_stack_access()) {
3217         found = true;
3218       }
3219     } else {
3220       CodeBlob* cb = fr.cb();
3221       if (cb != NULL && cb->is_compiled()) {
3222         nm = cb->as_compiled_method();
3223         method = nm->method();
3224         // scope_desc_near() must be used, instead of scope_desc_at() because on
3225         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3226         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3227           method = sd->method();
3228           if (method != NULL && method->has_reserved_stack_access()) {
3229             found = true;
3230       }
3231     }
3232       }
3233     }
3234     if (found) {
3235       activation = fr;
3236       warning("Potentially dangerous stack overflow in "
3237               "ReservedStackAccess annotated method %s [%d]",
3238               method->name_and_sig_as_C_string(), count++);
3239       EventReservedStackActivation event;
3240       if (event.should_commit()) {
3241         event.set_method(method);
3242         event.commit();
3243       }
3244     }
3245     if (fr.is_first_java_frame()) {
3246       break;
3247     } else {
3248       fr = fr.java_sender();
3249     }
3250   }
3251   return activation;
3252 }
3253 
3254 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3255   // After any safepoint, just before going back to compiled code,
3256   // we inform the GC that we will be doing initializing writes to
3257   // this object in the future without emitting card-marks, so
3258   // GC may take any compensating steps.
3259 
3260   oop new_obj = thread->vm_result();
3261   if (new_obj == NULL) return;
3262 
3263   BarrierSet *bs = BarrierSet::barrier_set();
3264   bs->on_slowpath_allocation_exit(thread, new_obj);
3265 }