1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "logging/logStream.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/metaspaceShared.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/handles.inline.hpp"
  40 #include "runtime/interfaceSupport.inline.hpp"
  41 #include "runtime/mutexLocker.hpp"
  42 #include "runtime/objectMonitor.hpp"
  43 #include "runtime/objectMonitor.inline.hpp"
  44 #include "runtime/osThread.hpp"
  45 #include "runtime/safepointVerifiers.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/synchronizer.hpp"
  49 #include "runtime/thread.inline.hpp"
  50 #include "runtime/timer.hpp"
  51 #include "runtime/vframe.hpp"
  52 #include "runtime/vmThread.hpp"
  53 #include "utilities/align.hpp"
  54 #include "utilities/dtrace.hpp"
  55 #include "utilities/events.hpp"
  56 #include "utilities/preserveException.hpp"
  57 
  58 // The "core" versions of monitor enter and exit reside in this file.
  59 // The interpreter and compilers contain specialized transliterated
  60 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  61 // for instance.  If you make changes here, make sure to modify the
  62 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  63 //
  64 // -----------------------------------------------------------------------------
  65 
  66 #ifdef DTRACE_ENABLED
  67 
  68 // Only bother with this argument setup if dtrace is available
  69 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  70 
  71 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  72   char* bytes = NULL;                                                      \
  73   int len = 0;                                                             \
  74   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  75   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  76   if (klassname != NULL) {                                                 \
  77     bytes = (char*)klassname->bytes();                                     \
  78     len = klassname->utf8_length();                                        \
  79   }
  80 
  81 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  82   {                                                                        \
  83     if (DTraceMonitorProbes) {                                             \
  84       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  85       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  86                            (uintptr_t)(monitor), bytes, len, (millis));    \
  87     }                                                                      \
  88   }
  89 
  90 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  91 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  92 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  93 
  94 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  95   {                                                                        \
  96     if (DTraceMonitorProbes) {                                             \
  97       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  98       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
  99                                     (uintptr_t)(monitor), bytes, len);     \
 100     }                                                                      \
 101   }
 102 
 103 #else //  ndef DTRACE_ENABLED
 104 
 105 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 106 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 107 
 108 #endif // ndef DTRACE_ENABLED
 109 
 110 // This exists only as a workaround of dtrace bug 6254741
 111 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 112   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 113   return 0;
 114 }
 115 
 116 #define NINFLATIONLOCKS 256
 117 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 118 
 119 // global list of blocks of monitors
 120 PaddedObjectMonitor* volatile ObjectSynchronizer::g_block_list = NULL;
 121 // Global ObjectMonitor free list. Newly allocated and deflated
 122 // ObjectMonitors are prepended here.
 123 ObjectMonitor* volatile ObjectSynchronizer::g_free_list = NULL;
 124 // Global ObjectMonitor in-use list. When a JavaThread is exiting,
 125 // ObjectMonitors on its per-thread in-use list are prepended here.
 126 ObjectMonitor* volatile ObjectSynchronizer::g_om_in_use_list = NULL;
 127 int ObjectSynchronizer::g_om_in_use_count = 0;  // # on g_om_in_use_list
 128 
 129 static volatile intptr_t gListLock = 0;   // protects global monitor lists
 130 static volatile int g_om_free_count = 0;  // # on g_free_list
 131 static volatile int g_om_population = 0;  // # Extant -- in circulation
 132 
 133 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 134 
 135 
 136 // =====================> Quick functions
 137 
 138 // The quick_* forms are special fast-path variants used to improve
 139 // performance.  In the simplest case, a "quick_*" implementation could
 140 // simply return false, in which case the caller will perform the necessary
 141 // state transitions and call the slow-path form.
 142 // The fast-path is designed to handle frequently arising cases in an efficient
 143 // manner and is just a degenerate "optimistic" variant of the slow-path.
 144 // returns true  -- to indicate the call was satisfied.
 145 // returns false -- to indicate the call needs the services of the slow-path.
 146 // A no-loitering ordinance is in effect for code in the quick_* family
 147 // operators: safepoints or indefinite blocking (blocking that might span a
 148 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 149 // entry.
 150 //
 151 // Consider: An interesting optimization is to have the JIT recognize the
 152 // following common idiom:
 153 //   synchronized (someobj) { .... ; notify(); }
 154 // That is, we find a notify() or notifyAll() call that immediately precedes
 155 // the monitorexit operation.  In that case the JIT could fuse the operations
 156 // into a single notifyAndExit() runtime primitive.
 157 
 158 bool ObjectSynchronizer::quick_notify(oopDesc* obj, Thread* self, bool all) {
 159   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 160   assert(self->is_Java_thread(), "invariant");
 161   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 162   NoSafepointVerifier nsv;
 163   if (obj == NULL) return false;  // slow-path for invalid obj
 164   const markWord mark = obj->mark();
 165 
 166   if (mark.has_locker() && self->is_lock_owned((address)mark.locker())) {
 167     // Degenerate notify
 168     // stack-locked by caller so by definition the implied waitset is empty.
 169     return true;
 170   }
 171 
 172   if (mark.has_monitor()) {
 173     ObjectMonitor* const mon = mark.monitor();
 174     assert(oopDesc::equals((oop) mon->object(), obj), "invariant");
 175     if (mon->owner() != self) return false;  // slow-path for IMS exception
 176 
 177     if (mon->first_waiter() != NULL) {
 178       // We have one or more waiters. Since this is an inflated monitor
 179       // that we own, we can transfer one or more threads from the waitset
 180       // to the entrylist here and now, avoiding the slow-path.
 181       if (all) {
 182         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
 183       } else {
 184         DTRACE_MONITOR_PROBE(notify, mon, obj, self);
 185       }
 186       int free_count = 0;
 187       do {
 188         mon->INotify(self);
 189         ++free_count;
 190       } while (mon->first_waiter() != NULL && all);
 191       OM_PERFDATA_OP(Notifications, inc(free_count));
 192     }
 193     return true;
 194   }
 195 
 196   // biased locking and any other IMS exception states take the slow-path
 197   return false;
 198 }
 199 
 200 
 201 // The LockNode emitted directly at the synchronization site would have
 202 // been too big if it were to have included support for the cases of inflated
 203 // recursive enter and exit, so they go here instead.
 204 // Note that we can't safely call AsyncPrintJavaStack() from within
 205 // quick_enter() as our thread state remains _in_Java.
 206 
 207 bool ObjectSynchronizer::quick_enter(oop obj, Thread* self,
 208                                      BasicLock * lock) {
 209   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 210   assert(self->is_Java_thread(), "invariant");
 211   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 212   NoSafepointVerifier nsv;
 213   if (obj == NULL) return false;       // Need to throw NPE
 214   const markWord mark = obj->mark();
 215 
 216   if (mark.has_monitor()) {
 217     ObjectMonitor* const m = mark.monitor();
 218     assert(oopDesc::equals((oop) m->object(), obj), "invariant");
 219     Thread* const owner = (Thread *) m->_owner;
 220 
 221     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 222     // and observability
 223     // Case: light contention possibly amenable to TLE
 224     // Case: TLE inimical operations such as nested/recursive synchronization
 225 
 226     if (owner == self) {
 227       m->_recursions++;
 228       return true;
 229     }
 230 
 231     // This Java Monitor is inflated so obj's header will never be
 232     // displaced to this thread's BasicLock. Make the displaced header
 233     // non-NULL so this BasicLock is not seen as recursive nor as
 234     // being locked. We do this unconditionally so that this thread's
 235     // BasicLock cannot be mis-interpreted by any stack walkers. For
 236     // performance reasons, stack walkers generally first check for
 237     // Biased Locking in the object's header, the second check is for
 238     // stack-locking in the object's header, the third check is for
 239     // recursive stack-locking in the displaced header in the BasicLock,
 240     // and last are the inflated Java Monitor (ObjectMonitor) checks.
 241     lock->set_displaced_header(markWord::unused_mark());
 242 
 243     if (owner == NULL && Atomic::replace_if_null(self, &(m->_owner))) {
 244       assert(m->_recursions == 0, "invariant");
 245       return true;
 246     }
 247   }
 248 
 249   // Note that we could inflate in quick_enter.
 250   // This is likely a useful optimization
 251   // Critically, in quick_enter() we must not:
 252   // -- perform bias revocation, or
 253   // -- block indefinitely, or
 254   // -- reach a safepoint
 255 
 256   return false;        // revert to slow-path
 257 }
 258 
 259 // -----------------------------------------------------------------------------
 260 //  Fast Monitor Enter/Exit
 261 // This the fast monitor enter. The interpreter and compiler use
 262 // some assembly copies of this code. Make sure update those code
 263 // if the following function is changed. The implementation is
 264 // extremely sensitive to race condition. Be careful.
 265 
 266 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock,
 267                                     bool attempt_rebias, TRAPS) {
 268   if (UseBiasedLocking) {
 269     if (!SafepointSynchronize::is_at_safepoint()) {
 270       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
 271       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
 272         return;
 273       }
 274     } else {
 275       assert(!attempt_rebias, "can not rebias toward VM thread");
 276       BiasedLocking::revoke_at_safepoint(obj);
 277     }
 278     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 279   }
 280 
 281   slow_enter(obj, lock, THREAD);
 282 }
 283 
 284 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
 285   markWord mark = object->mark();
 286   // We cannot check for Biased Locking if we are racing an inflation.
 287   assert(mark == markWord::INFLATING() ||
 288          !mark.has_bias_pattern(), "should not see bias pattern here");
 289 
 290   markWord dhw = lock->displaced_header();
 291   if (dhw.value() == 0) {
 292     // If the displaced header is NULL, then this exit matches up with
 293     // a recursive enter. No real work to do here except for diagnostics.
 294 #ifndef PRODUCT
 295     if (mark != markWord::INFLATING()) {
 296       // Only do diagnostics if we are not racing an inflation. Simply
 297       // exiting a recursive enter of a Java Monitor that is being
 298       // inflated is safe; see the has_monitor() comment below.
 299       assert(!mark.is_neutral(), "invariant");
 300       assert(!mark.has_locker() ||
 301              THREAD->is_lock_owned((address)mark.locker()), "invariant");
 302       if (mark.has_monitor()) {
 303         // The BasicLock's displaced_header is marked as a recursive
 304         // enter and we have an inflated Java Monitor (ObjectMonitor).
 305         // This is a special case where the Java Monitor was inflated
 306         // after this thread entered the stack-lock recursively. When a
 307         // Java Monitor is inflated, we cannot safely walk the Java
 308         // Monitor owner's stack and update the BasicLocks because a
 309         // Java Monitor can be asynchronously inflated by a thread that
 310         // does not own the Java Monitor.
 311         ObjectMonitor* m = mark.monitor();
 312         assert(((oop)(m->object()))->mark() == mark, "invariant");
 313         assert(m->is_entered(THREAD), "invariant");
 314       }
 315     }
 316 #endif
 317     return;
 318   }
 319 
 320   if (mark == markWord::from_pointer(lock)) {
 321     // If the object is stack-locked by the current thread, try to
 322     // swing the displaced header from the BasicLock back to the mark.
 323     assert(dhw.is_neutral(), "invariant");
 324     if (object->cas_set_mark(dhw, mark) == mark) {
 325       return;
 326     }
 327   }
 328 
 329   // We have to take the slow-path of possible inflation and then exit.
 330   inflate(THREAD, object, inflate_cause_vm_internal)->exit(true, THREAD);
 331 }
 332 
 333 // -----------------------------------------------------------------------------
 334 // Interpreter/Compiler Slow Case
 335 // This routine is used to handle interpreter/compiler slow case
 336 // We don't need to use fast path here, because it must have been
 337 // failed in the interpreter/compiler code.
 338 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 339   markWord mark = obj->mark();
 340   assert(!mark.has_bias_pattern(), "should not see bias pattern here");
 341 
 342   if (mark.is_neutral()) {
 343     // Anticipate successful CAS -- the ST of the displaced mark must
 344     // be visible <= the ST performed by the CAS.
 345     lock->set_displaced_header(mark);
 346     if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) {
 347       return;
 348     }
 349     // Fall through to inflate() ...
 350   } else if (mark.has_locker() &&
 351              THREAD->is_lock_owned((address)mark.locker())) {
 352     assert(lock != mark.locker(), "must not re-lock the same lock");
 353     assert(lock != (BasicLock*)obj->mark().value(), "don't relock with same BasicLock");
 354     lock->set_displaced_header(markWord::from_pointer(NULL));
 355     return;
 356   }
 357 
 358   // The object header will never be displaced to this lock,
 359   // so it does not matter what the value is, except that it
 360   // must be non-zero to avoid looking like a re-entrant lock,
 361   // and must not look locked either.
 362   lock->set_displaced_header(markWord::unused_mark());
 363   inflate(THREAD, obj(), inflate_cause_monitor_enter)->enter(THREAD);
 364 }
 365 
 366 // This routine is used to handle interpreter/compiler slow case
 367 // We don't need to use fast path here, because it must have
 368 // failed in the interpreter/compiler code. Simply use the heavy
 369 // weight monitor should be ok, unless someone find otherwise.
 370 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 371   fast_exit(object, lock, THREAD);
 372 }
 373 
 374 // -----------------------------------------------------------------------------
 375 // Class Loader  support to workaround deadlocks on the class loader lock objects
 376 // Also used by GC
 377 // complete_exit()/reenter() are used to wait on a nested lock
 378 // i.e. to give up an outer lock completely and then re-enter
 379 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 380 //  1) complete_exit lock1 - saving recursion count
 381 //  2) wait on lock2
 382 //  3) when notified on lock2, unlock lock2
 383 //  4) reenter lock1 with original recursion count
 384 //  5) lock lock2
 385 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 386 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 387   if (UseBiasedLocking) {
 388     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 389     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 390   }
 391 
 392   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal);
 393 
 394   return monitor->complete_exit(THREAD);
 395 }
 396 
 397 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 398 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 399   if (UseBiasedLocking) {
 400     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 401     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 402   }
 403 
 404   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal);
 405 
 406   monitor->reenter(recursion, THREAD);
 407 }
 408 // -----------------------------------------------------------------------------
 409 // JNI locks on java objects
 410 // NOTE: must use heavy weight monitor to handle jni monitor enter
 411 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 412   // the current locking is from JNI instead of Java code
 413   if (UseBiasedLocking) {
 414     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 415     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 416   }
 417   THREAD->set_current_pending_monitor_is_from_java(false);
 418   inflate(THREAD, obj(), inflate_cause_jni_enter)->enter(THREAD);
 419   THREAD->set_current_pending_monitor_is_from_java(true);
 420 }
 421 
 422 // NOTE: must use heavy weight monitor to handle jni monitor exit
 423 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 424   if (UseBiasedLocking) {
 425     Handle h_obj(THREAD, obj);
 426     BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
 427     obj = h_obj();
 428   }
 429   assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 430 
 431   ObjectMonitor* monitor = inflate(THREAD, obj, inflate_cause_jni_exit);
 432   // If this thread has locked the object, exit the monitor. We
 433   // intentionally do not use CHECK here because we must exit the
 434   // monitor even if an exception is pending.
 435   if (monitor->check_owner(THREAD)) {
 436     monitor->exit(true, THREAD);
 437   }
 438 }
 439 
 440 // -----------------------------------------------------------------------------
 441 // Internal VM locks on java objects
 442 // standard constructor, allows locking failures
 443 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool do_lock) {
 444   _dolock = do_lock;
 445   _thread = thread;
 446   _thread->check_for_valid_safepoint_state(false);
 447   _obj = obj;
 448 
 449   if (_dolock) {
 450     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 451   }
 452 }
 453 
 454 ObjectLocker::~ObjectLocker() {
 455   if (_dolock) {
 456     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 457   }
 458 }
 459 
 460 
 461 // -----------------------------------------------------------------------------
 462 //  Wait/Notify/NotifyAll
 463 // NOTE: must use heavy weight monitor to handle wait()
 464 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 465   if (UseBiasedLocking) {
 466     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 467     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 468   }
 469   if (millis < 0) {
 470     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 471   }
 472   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_wait);
 473 
 474   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 475   monitor->wait(millis, true, THREAD);
 476 
 477   // This dummy call is in place to get around dtrace bug 6254741.  Once
 478   // that's fixed we can uncomment the following line, remove the call
 479   // and change this function back into a "void" func.
 480   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 481   return dtrace_waited_probe(monitor, obj, THREAD);
 482 }
 483 
 484 void ObjectSynchronizer::wait_uninterruptibly(Handle obj, jlong millis, TRAPS) {
 485   if (UseBiasedLocking) {
 486     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 487     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 488   }
 489   if (millis < 0) {
 490     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 491   }
 492   inflate(THREAD, obj(), inflate_cause_wait)->wait(millis, false, THREAD);
 493 }
 494 
 495 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 496   if (UseBiasedLocking) {
 497     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 498     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 499   }
 500 
 501   markWord mark = obj->mark();
 502   if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) {
 503     return;
 504   }
 505   inflate(THREAD, obj(), inflate_cause_notify)->notify(THREAD);
 506 }
 507 
 508 // NOTE: see comment of notify()
 509 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 510   if (UseBiasedLocking) {
 511     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 512     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 513   }
 514 
 515   markWord mark = obj->mark();
 516   if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) {
 517     return;
 518   }
 519   inflate(THREAD, obj(), inflate_cause_notify)->notifyAll(THREAD);
 520 }
 521 
 522 // -----------------------------------------------------------------------------
 523 // Hash Code handling
 524 //
 525 // Performance concern:
 526 // OrderAccess::storestore() calls release() which at one time stored 0
 527 // into the global volatile OrderAccess::dummy variable. This store was
 528 // unnecessary for correctness. Many threads storing into a common location
 529 // causes considerable cache migration or "sloshing" on large SMP systems.
 530 // As such, I avoided using OrderAccess::storestore(). In some cases
 531 // OrderAccess::fence() -- which incurs local latency on the executing
 532 // processor -- is a better choice as it scales on SMP systems.
 533 //
 534 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 535 // a discussion of coherency costs. Note that all our current reference
 536 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 537 // x64, and SPARC.
 538 //
 539 // As a general policy we use "volatile" to control compiler-based reordering
 540 // and explicit fences (barriers) to control for architectural reordering
 541 // performed by the CPU(s) or platform.
 542 
 543 struct SharedGlobals {
 544   char         _pad_prefix[DEFAULT_CACHE_LINE_SIZE];
 545   // These are highly shared mostly-read variables.
 546   // To avoid false-sharing they need to be the sole occupants of a cache line.
 547   volatile int stw_random;
 548   volatile int stw_cycle;
 549   DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 550   // Hot RW variable -- Sequester to avoid false-sharing
 551   volatile int hc_sequence;
 552   DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int));
 553 };
 554 
 555 static SharedGlobals GVars;
 556 static int MonitorScavengeThreshold = 1000000;
 557 static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending
 558 
 559 static markWord read_stable_mark(oop obj) {
 560   markWord mark = obj->mark();
 561   if (!mark.is_being_inflated()) {
 562     return mark;       // normal fast-path return
 563   }
 564 
 565   int its = 0;
 566   for (;;) {
 567     markWord mark = obj->mark();
 568     if (!mark.is_being_inflated()) {
 569       return mark;    // normal fast-path return
 570     }
 571 
 572     // The object is being inflated by some other thread.
 573     // The caller of read_stable_mark() must wait for inflation to complete.
 574     // Avoid live-lock
 575     // TODO: consider calling SafepointSynchronize::do_call_back() while
 576     // spinning to see if there's a safepoint pending.  If so, immediately
 577     // yielding or blocking would be appropriate.  Avoid spinning while
 578     // there is a safepoint pending.
 579     // TODO: add inflation contention performance counters.
 580     // TODO: restrict the aggregate number of spinners.
 581 
 582     ++its;
 583     if (its > 10000 || !os::is_MP()) {
 584       if (its & 1) {
 585         os::naked_yield();
 586       } else {
 587         // Note that the following code attenuates the livelock problem but is not
 588         // a complete remedy.  A more complete solution would require that the inflating
 589         // thread hold the associated inflation lock.  The following code simply restricts
 590         // the number of spinners to at most one.  We'll have N-2 threads blocked
 591         // on the inflationlock, 1 thread holding the inflation lock and using
 592         // a yield/park strategy, and 1 thread in the midst of inflation.
 593         // A more refined approach would be to change the encoding of INFLATING
 594         // to allow encapsulation of a native thread pointer.  Threads waiting for
 595         // inflation to complete would use CAS to push themselves onto a singly linked
 596         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 597         // and calling park().  When inflation was complete the thread that accomplished inflation
 598         // would detach the list and set the markword to inflated with a single CAS and
 599         // then for each thread on the list, set the flag and unpark() the thread.
 600         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 601         // wakes at most one thread whereas we need to wake the entire list.
 602         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 603         int YieldThenBlock = 0;
 604         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 605         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 606         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 607         while (obj->mark() == markWord::INFLATING()) {
 608           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 609           // so we periodically call self->_ParkEvent->park(1).
 610           // We use a mixed spin/yield/block mechanism.
 611           if ((YieldThenBlock++) >= 16) {
 612             Thread::current()->_ParkEvent->park(1);
 613           } else {
 614             os::naked_yield();
 615           }
 616         }
 617         Thread::muxRelease(gInflationLocks + ix);
 618       }
 619     } else {
 620       SpinPause();       // SMP-polite spinning
 621     }
 622   }
 623 }
 624 
 625 // hashCode() generation :
 626 //
 627 // Possibilities:
 628 // * MD5Digest of {obj,stw_random}
 629 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function.
 630 // * A DES- or AES-style SBox[] mechanism
 631 // * One of the Phi-based schemes, such as:
 632 //   2654435761 = 2^32 * Phi (golden ratio)
 633 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ;
 634 // * A variation of Marsaglia's shift-xor RNG scheme.
 635 // * (obj ^ stw_random) is appealing, but can result
 636 //   in undesirable regularity in the hashCode values of adjacent objects
 637 //   (objects allocated back-to-back, in particular).  This could potentially
 638 //   result in hashtable collisions and reduced hashtable efficiency.
 639 //   There are simple ways to "diffuse" the middle address bits over the
 640 //   generated hashCode values:
 641 
 642 static inline intptr_t get_next_hash(Thread* self, oop obj) {
 643   intptr_t value = 0;
 644   if (hashCode == 0) {
 645     // This form uses global Park-Miller RNG.
 646     // On MP system we'll have lots of RW access to a global, so the
 647     // mechanism induces lots of coherency traffic.
 648     value = os::random();
 649   } else if (hashCode == 1) {
 650     // This variation has the property of being stable (idempotent)
 651     // between STW operations.  This can be useful in some of the 1-0
 652     // synchronization schemes.
 653     intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3;
 654     value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random;
 655   } else if (hashCode == 2) {
 656     value = 1;            // for sensitivity testing
 657   } else if (hashCode == 3) {
 658     value = ++GVars.hc_sequence;
 659   } else if (hashCode == 4) {
 660     value = cast_from_oop<intptr_t>(obj);
 661   } else {
 662     // Marsaglia's xor-shift scheme with thread-specific state
 663     // This is probably the best overall implementation -- we'll
 664     // likely make this the default in future releases.
 665     unsigned t = self->_hashStateX;
 666     t ^= (t << 11);
 667     self->_hashStateX = self->_hashStateY;
 668     self->_hashStateY = self->_hashStateZ;
 669     self->_hashStateZ = self->_hashStateW;
 670     unsigned v = self->_hashStateW;
 671     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 672     self->_hashStateW = v;
 673     value = v;
 674   }
 675 
 676   value &= markWord::hash_mask;
 677   if (value == 0) value = 0xBAD;
 678   assert(value != markWord::no_hash, "invariant");
 679   return value;
 680 }
 681 
 682 intptr_t ObjectSynchronizer::FastHashCode(Thread* self, oop obj) {
 683   if (UseBiasedLocking) {
 684     // NOTE: many places throughout the JVM do not expect a safepoint
 685     // to be taken here, in particular most operations on perm gen
 686     // objects. However, we only ever bias Java instances and all of
 687     // the call sites of identity_hash that might revoke biases have
 688     // been checked to make sure they can handle a safepoint. The
 689     // added check of the bias pattern is to avoid useless calls to
 690     // thread-local storage.
 691     if (obj->mark().has_bias_pattern()) {
 692       // Handle for oop obj in case of STW safepoint
 693       Handle hobj(self, obj);
 694       // Relaxing assertion for bug 6320749.
 695       assert(Universe::verify_in_progress() ||
 696              !SafepointSynchronize::is_at_safepoint(),
 697              "biases should not be seen by VM thread here");
 698       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
 699       obj = hobj();
 700       assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 701     }
 702   }
 703 
 704   // hashCode() is a heap mutator ...
 705   // Relaxing assertion for bug 6320749.
 706   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 707          !SafepointSynchronize::is_at_safepoint(), "invariant");
 708   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 709          self->is_Java_thread() , "invariant");
 710   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 711          ((JavaThread *)self)->thread_state() != _thread_blocked, "invariant");
 712 
 713   ObjectMonitor* monitor = NULL;
 714   markWord temp, test;
 715   intptr_t hash;
 716   markWord mark = read_stable_mark(obj);
 717 
 718   // object should remain ineligible for biased locking
 719   assert(!mark.has_bias_pattern(), "invariant");
 720 
 721   if (mark.is_neutral()) {
 722     hash = mark.hash();               // this is a normal header
 723     if (hash != 0) {                  // if it has hash, just return it
 724       return hash;
 725     }
 726     hash = get_next_hash(self, obj);  // allocate a new hash code
 727     temp = mark.copy_set_hash(hash);  // merge the hash code into header
 728     // use (machine word version) atomic operation to install the hash
 729     test = obj->cas_set_mark(temp, mark);
 730     if (test == mark) {
 731       return hash;
 732     }
 733     // If atomic operation failed, we must inflate the header
 734     // into heavy weight monitor. We could add more code here
 735     // for fast path, but it does not worth the complexity.
 736   } else if (mark.has_monitor()) {
 737     monitor = mark.monitor();
 738     temp = monitor->header();
 739     assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
 740     hash = temp.hash();
 741     if (hash != 0) {
 742       return hash;
 743     }
 744     // Skip to the following code to reduce code size
 745   } else if (self->is_lock_owned((address)mark.locker())) {
 746     temp = mark.displaced_mark_helper(); // this is a lightweight monitor owned
 747     assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
 748     hash = temp.hash();                  // by current thread, check if the displaced
 749     if (hash != 0) {                     // header contains hash code
 750       return hash;
 751     }
 752     // WARNING:
 753     // The displaced header in the BasicLock on a thread's stack
 754     // is strictly immutable. It CANNOT be changed in ANY cases.
 755     // So we have to inflate the stack lock into an ObjectMonitor
 756     // even if the current thread owns the lock. The BasicLock on
 757     // a thread's stack can be asynchronously read by other threads
 758     // during an inflate() call so any change to that stack memory
 759     // may not propagate to other threads correctly.
 760   }
 761 
 762   // Inflate the monitor to set hash code
 763   monitor = inflate(self, obj, inflate_cause_hash_code);
 764   // Load displaced header and check it has hash code
 765   mark = monitor->header();
 766   assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
 767   hash = mark.hash();
 768   if (hash == 0) {
 769     hash = get_next_hash(self, obj);
 770     temp = mark.copy_set_hash(hash); // merge hash code into header
 771     assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
 772     uintptr_t v = Atomic::cmpxchg(temp.value(), (volatile uintptr_t*)monitor->header_addr(), mark.value());
 773     test = markWord(v);
 774     if (test != mark) {
 775       // The only non-deflation update to the ObjectMonitor's
 776       // header/dmw field is to merge in the hash code. If someone
 777       // adds a new usage of the header/dmw field, please update
 778       // this code.
 779       hash = test.hash();
 780       assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
 781       assert(hash != 0, "Trivial unexpected object/monitor header usage.");
 782     }
 783   }
 784   // We finally get the hash
 785   return hash;
 786 }
 787 
 788 // Deprecated -- use FastHashCode() instead.
 789 
 790 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 791   return FastHashCode(Thread::current(), obj());
 792 }
 793 
 794 
 795 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 796                                                    Handle h_obj) {
 797   if (UseBiasedLocking) {
 798     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
 799     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
 800   }
 801 
 802   assert(thread == JavaThread::current(), "Can only be called on current thread");
 803   oop obj = h_obj();
 804 
 805   markWord mark = read_stable_mark(obj);
 806 
 807   // Uncontended case, header points to stack
 808   if (mark.has_locker()) {
 809     return thread->is_lock_owned((address)mark.locker());
 810   }
 811   // Contended case, header points to ObjectMonitor (tagged pointer)
 812   if (mark.has_monitor()) {
 813     ObjectMonitor* monitor = mark.monitor();
 814     return monitor->is_entered(thread) != 0;
 815   }
 816   // Unlocked case, header in place
 817   assert(mark.is_neutral(), "sanity check");
 818   return false;
 819 }
 820 
 821 // Be aware of this method could revoke bias of the lock object.
 822 // This method queries the ownership of the lock handle specified by 'h_obj'.
 823 // If the current thread owns the lock, it returns owner_self. If no
 824 // thread owns the lock, it returns owner_none. Otherwise, it will return
 825 // owner_other.
 826 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 827 (JavaThread *self, Handle h_obj) {
 828   // The caller must beware this method can revoke bias, and
 829   // revocation can result in a safepoint.
 830   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 831   assert(self->thread_state() != _thread_blocked, "invariant");
 832 
 833   // Possible mark states: neutral, biased, stack-locked, inflated
 834 
 835   if (UseBiasedLocking && h_obj()->mark().has_bias_pattern()) {
 836     // CASE: biased
 837     BiasedLocking::revoke_and_rebias(h_obj, false, self);
 838     assert(!h_obj->mark().has_bias_pattern(),
 839            "biases should be revoked by now");
 840   }
 841 
 842   assert(self == JavaThread::current(), "Can only be called on current thread");
 843   oop obj = h_obj();
 844   markWord mark = read_stable_mark(obj);
 845 
 846   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 847   if (mark.has_locker()) {
 848     return self->is_lock_owned((address)mark.locker()) ?
 849       owner_self : owner_other;
 850   }
 851 
 852   // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor.
 853   // The Object:ObjectMonitor relationship is stable as long as we're
 854   // not at a safepoint.
 855   if (mark.has_monitor()) {
 856     void* owner = mark.monitor()->_owner;
 857     if (owner == NULL) return owner_none;
 858     return (owner == self ||
 859             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 860   }
 861 
 862   // CASE: neutral
 863   assert(mark.is_neutral(), "sanity check");
 864   return owner_none;           // it's unlocked
 865 }
 866 
 867 // FIXME: jvmti should call this
 868 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
 869   if (UseBiasedLocking) {
 870     if (SafepointSynchronize::is_at_safepoint()) {
 871       BiasedLocking::revoke_at_safepoint(h_obj);
 872     } else {
 873       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
 874     }
 875     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
 876   }
 877 
 878   oop obj = h_obj();
 879   address owner = NULL;
 880 
 881   markWord mark = read_stable_mark(obj);
 882 
 883   // Uncontended case, header points to stack
 884   if (mark.has_locker()) {
 885     owner = (address) mark.locker();
 886   }
 887 
 888   // Contended case, header points to ObjectMonitor (tagged pointer)
 889   else if (mark.has_monitor()) {
 890     ObjectMonitor* monitor = mark.monitor();
 891     assert(monitor != NULL, "monitor should be non-null");
 892     owner = (address) monitor->owner();
 893   }
 894 
 895   if (owner != NULL) {
 896     // owning_thread_from_monitor_owner() may also return NULL here
 897     return Threads::owning_thread_from_monitor_owner(t_list, owner);
 898   }
 899 
 900   // Unlocked case, header in place
 901   // Cannot have assertion since this object may have been
 902   // locked by another thread when reaching here.
 903   // assert(mark.is_neutral(), "sanity check");
 904 
 905   return NULL;
 906 }
 907 
 908 // Visitors ...
 909 
 910 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 911   PaddedObjectMonitor* block = OrderAccess::load_acquire(&g_block_list);
 912   while (block != NULL) {
 913     assert(block->object() == CHAINMARKER, "must be a block header");
 914     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 915       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
 916       oop object = (oop)mid->object();
 917       if (object != NULL) {
 918         // Only process with closure if the object is set.
 919         closure->do_monitor(mid);
 920       }
 921     }
 922     block = (PaddedObjectMonitor*)block->_next_om;
 923   }
 924 }
 925 
 926 static bool monitors_used_above_threshold() {
 927   if (g_om_population == 0) {
 928     return false;
 929   }
 930   int monitors_used = g_om_population - g_om_free_count;
 931   int monitor_usage = (monitors_used * 100LL) / g_om_population;
 932   return monitor_usage > MonitorUsedDeflationThreshold;
 933 }
 934 
 935 bool ObjectSynchronizer::is_cleanup_needed() {
 936   if (MonitorUsedDeflationThreshold > 0) {
 937     return monitors_used_above_threshold();
 938   }
 939   return false;
 940 }
 941 
 942 void ObjectSynchronizer::oops_do(OopClosure* f) {
 943   // We only scan the global used list here (for moribund threads), and
 944   // the thread-local monitors in Thread::oops_do().
 945   global_used_oops_do(f);
 946 }
 947 
 948 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
 949   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 950   list_oops_do(g_om_in_use_list, f);
 951 }
 952 
 953 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
 954   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 955   list_oops_do(thread->om_in_use_list, f);
 956 }
 957 
 958 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) {
 959   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 960   ObjectMonitor* mid;
 961   for (mid = list; mid != NULL; mid = mid->_next_om) {
 962     if (mid->object() != NULL) {
 963       f->do_oop((oop*)mid->object_addr());
 964     }
 965   }
 966 }
 967 
 968 
 969 // -----------------------------------------------------------------------------
 970 // ObjectMonitor Lifecycle
 971 // -----------------------
 972 // Inflation unlinks monitors from the global g_free_list and
 973 // associates them with objects.  Deflation -- which occurs at
 974 // STW-time -- disassociates idle monitors from objects.  Such
 975 // scavenged monitors are returned to the g_free_list.
 976 //
 977 // The global list is protected by gListLock.  All the critical sections
 978 // are short and operate in constant-time.
 979 //
 980 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
 981 //
 982 // Lifecycle:
 983 // --   unassigned and on the global free list
 984 // --   unassigned and on a thread's private om_free_list
 985 // --   assigned to an object.  The object is inflated and the mark refers
 986 //      to the objectmonitor.
 987 
 988 
 989 // Constraining monitor pool growth via MonitorBound ...
 990 //
 991 // If MonitorBound is not set (<= 0), MonitorBound checks are disabled.
 992 //
 993 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
 994 // the rate of scavenging is driven primarily by GC.  As such,  we can find
 995 // an inordinate number of monitors in circulation.
 996 // To avoid that scenario we can artificially induce a STW safepoint
 997 // if the pool appears to be growing past some reasonable bound.
 998 // Generally we favor time in space-time tradeoffs, but as there's no
 999 // natural back-pressure on the # of extant monitors we need to impose some
1000 // type of limit.  Beware that if MonitorBound is set to too low a value
1001 // we could just loop. In addition, if MonitorBound is set to a low value
1002 // we'll incur more safepoints, which are harmful to performance.
1003 // See also: GuaranteedSafepointInterval
1004 //
1005 // The current implementation uses asynchronous VM operations.
1006 //
1007 // If MonitorBound is set, the boundry applies to
1008 //     (g_om_population - g_om_free_count)
1009 // i.e., if there are not enough ObjectMonitors on the global free list,
1010 // then a safepoint deflation is induced. Picking a good MonitorBound value
1011 // is non-trivial.
1012 
1013 static void InduceScavenge(Thread* self, const char * Whence) {
1014   // Induce STW safepoint to trim monitors
1015   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1016   // More precisely, trigger an asynchronous STW safepoint as the number
1017   // of active monitors passes the specified threshold.
1018   // TODO: assert thread state is reasonable
1019 
1020   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
1021     // Induce a 'null' safepoint to scavenge monitors
1022     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
1023     // to the VMthread and have a lifespan longer than that of this activation record.
1024     // The VMThread will delete the op when completed.
1025     VMThread::execute(new VM_ScavengeMonitors());
1026   }
1027 }
1028 
1029 ObjectMonitor* ObjectSynchronizer::om_alloc(Thread* self) {
1030   // A large MAXPRIVATE value reduces both list lock contention
1031   // and list coherency traffic, but also tends to increase the
1032   // number of ObjectMonitors in circulation as well as the STW
1033   // scavenge costs.  As usual, we lean toward time in space-time
1034   // tradeoffs.
1035   const int MAXPRIVATE = 1024;
1036   stringStream ss;
1037   for (;;) {
1038     ObjectMonitor* m;
1039 
1040     // 1: try to allocate from the thread's local om_free_list.
1041     // Threads will attempt to allocate first from their local list, then
1042     // from the global list, and only after those attempts fail will the thread
1043     // attempt to instantiate new monitors.   Thread-local free lists take
1044     // heat off the gListLock and improve allocation latency, as well as reducing
1045     // coherency traffic on the shared global list.
1046     m = self->om_free_list;
1047     if (m != NULL) {
1048       self->om_free_list = m->_next_om;
1049       self->om_free_count--;
1050       guarantee(m->object() == NULL, "invariant");
1051       m->_next_om = self->om_in_use_list;
1052       self->om_in_use_list = m;
1053       self->om_in_use_count++;
1054       return m;
1055     }
1056 
1057     // 2: try to allocate from the global g_free_list
1058     // CONSIDER: use muxTry() instead of muxAcquire().
1059     // If the muxTry() fails then drop immediately into case 3.
1060     // If we're using thread-local free lists then try
1061     // to reprovision the caller's free list.
1062     if (g_free_list != NULL) {
1063       // Reprovision the thread's om_free_list.
1064       // Use bulk transfers to reduce the allocation rate and heat
1065       // on various locks.
1066       Thread::muxAcquire(&gListLock, "om_alloc(1)");
1067       for (int i = self->om_free_provision; --i >= 0 && g_free_list != NULL;) {
1068         g_om_free_count--;
1069         ObjectMonitor* take = g_free_list;
1070         g_free_list = take->_next_om;
1071         guarantee(take->object() == NULL, "invariant");
1072         take->Recycle();
1073         om_release(self, take, false);
1074       }
1075       Thread::muxRelease(&gListLock);
1076       self->om_free_provision += 1 + (self->om_free_provision/2);
1077       if (self->om_free_provision > MAXPRIVATE) self->om_free_provision = MAXPRIVATE;
1078 
1079       const int mx = MonitorBound;
1080       if (mx > 0 && (g_om_population-g_om_free_count) > mx) {
1081         // Not enough ObjectMonitors on the global free list.
1082         // We can't safely induce a STW safepoint from om_alloc() as our thread
1083         // state may not be appropriate for such activities and callers may hold
1084         // naked oops, so instead we defer the action.
1085         InduceScavenge(self, "om_alloc");
1086       }
1087       continue;
1088     }
1089 
1090     // 3: allocate a block of new ObjectMonitors
1091     // Both the local and global free lists are empty -- resort to malloc().
1092     // In the current implementation ObjectMonitors are TSM - immortal.
1093     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1094     // each ObjectMonitor to start at the beginning of a cache line,
1095     // so we use align_up().
1096     // A better solution would be to use C++ placement-new.
1097     // BEWARE: As it stands currently, we don't run the ctors!
1098     assert(_BLOCKSIZE > 1, "invariant");
1099     size_t neededsize = sizeof(PaddedObjectMonitor) * _BLOCKSIZE;
1100     PaddedObjectMonitor* temp;
1101     size_t aligned_size = neededsize + (DEFAULT_CACHE_LINE_SIZE - 1);
1102     void* real_malloc_addr = (void*)NEW_C_HEAP_ARRAY(char, aligned_size,
1103                                                      mtInternal);
1104     temp = (PaddedObjectMonitor*)align_up(real_malloc_addr, DEFAULT_CACHE_LINE_SIZE);
1105 
1106     // NOTE: (almost) no way to recover if allocation failed.
1107     // We might be able to induce a STW safepoint and scavenge enough
1108     // ObjectMonitors to permit progress.
1109     if (temp == NULL) {
1110       vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR,
1111                             "Allocate ObjectMonitors");
1112     }
1113     (void)memset((void *) temp, 0, neededsize);
1114 
1115     // Format the block.
1116     // initialize the linked list, each monitor points to its next
1117     // forming the single linked free list, the very first monitor
1118     // will points to next block, which forms the block list.
1119     // The trick of using the 1st element in the block as g_block_list
1120     // linkage should be reconsidered.  A better implementation would
1121     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1122 
1123     for (int i = 1; i < _BLOCKSIZE; i++) {
1124       temp[i]._next_om = (ObjectMonitor *)&temp[i+1];
1125     }
1126 
1127     // terminate the last monitor as the end of list
1128     temp[_BLOCKSIZE - 1]._next_om = NULL;
1129 
1130     // Element [0] is reserved for global list linkage
1131     temp[0].set_object(CHAINMARKER);
1132 
1133     // Consider carving out this thread's current request from the
1134     // block in hand.  This avoids some lock traffic and redundant
1135     // list activity.
1136 
1137     // Acquire the gListLock to manipulate g_block_list and g_free_list.
1138     // An Oyama-Taura-Yonezawa scheme might be more efficient.
1139     Thread::muxAcquire(&gListLock, "om_alloc(2)");
1140     g_om_population += _BLOCKSIZE-1;
1141     g_om_free_count += _BLOCKSIZE-1;
1142 
1143     // Add the new block to the list of extant blocks (g_block_list).
1144     // The very first ObjectMonitor in a block is reserved and dedicated.
1145     // It serves as blocklist "next" linkage.
1146     temp[0]._next_om = g_block_list;
1147     // There are lock-free uses of g_block_list so make sure that
1148     // the previous stores happen before we update g_block_list.
1149     OrderAccess::release_store(&g_block_list, temp);
1150 
1151     // Add the new string of ObjectMonitors to the global free list
1152     temp[_BLOCKSIZE - 1]._next_om = g_free_list;
1153     g_free_list = temp + 1;
1154     Thread::muxRelease(&gListLock);
1155   }
1156 }
1157 
1158 // Place "m" on the caller's private per-thread om_free_list.
1159 // In practice there's no need to clamp or limit the number of
1160 // monitors on a thread's om_free_list as the only non-allocation time
1161 // we'll call om_release() is to return a monitor to the free list after
1162 // a CAS attempt failed. This doesn't allow unbounded #s of monitors to
1163 // accumulate on a thread's free list.
1164 //
1165 // Key constraint: all ObjectMonitors on a thread's free list and the global
1166 // free list must have their object field set to null. This prevents the
1167 // scavenger -- deflate_monitor_list() -- from reclaiming them while we
1168 // are trying to release them.
1169 
1170 void ObjectSynchronizer::om_release(Thread* self, ObjectMonitor* m,
1171                                     bool from_per_thread_alloc) {
1172   guarantee(m->header().value() == 0, "invariant");
1173   guarantee(m->object() == NULL, "invariant");
1174   stringStream ss;
1175   guarantee((m->is_busy() | m->_recursions) == 0, "freeing in-use monitor: "
1176             "%s, recursions=" INTPTR_FORMAT, m->is_busy_to_string(&ss),
1177             m->_recursions);
1178   // _next_om is used for both per-thread in-use and free lists so
1179   // we have to remove 'm' from the in-use list first (as needed).
1180   if (from_per_thread_alloc) {
1181     // Need to remove 'm' from om_in_use_list.
1182     ObjectMonitor* cur_mid_in_use = NULL;
1183     bool extracted = false;
1184     for (ObjectMonitor* mid = self->om_in_use_list; mid != NULL; cur_mid_in_use = mid, mid = mid->_next_om) {
1185       if (m == mid) {
1186         // extract from per-thread in-use list
1187         if (mid == self->om_in_use_list) {
1188           self->om_in_use_list = mid->_next_om;
1189         } else if (cur_mid_in_use != NULL) {
1190           cur_mid_in_use->_next_om = mid->_next_om; // maintain the current thread in-use list
1191         }
1192         extracted = true;
1193         self->om_in_use_count--;
1194         break;
1195       }
1196     }
1197     assert(extracted, "Should have extracted from in-use list");
1198   }
1199 
1200   m->_next_om = self->om_free_list;
1201   self->om_free_list = m;
1202   self->om_free_count++;
1203 }
1204 
1205 // Return ObjectMonitors on a moribund thread's free and in-use
1206 // lists to the appropriate global lists. The ObjectMonitors on the
1207 // per-thread in-use list may still be in use by other threads.
1208 //
1209 // We currently call om_flush() from Threads::remove() before the
1210 // thread has been excised from the thread list and is no longer a
1211 // mutator. This means that om_flush() cannot run concurrently with
1212 // a safepoint and interleave with deflate_idle_monitors(). In
1213 // particular, this ensures that the thread's in-use monitors are
1214 // scanned by a GC safepoint, either via Thread::oops_do() (before
1215 // om_flush() is called) or via ObjectSynchronizer::oops_do() (after
1216 // om_flush() is called).
1217 
1218 void ObjectSynchronizer::om_flush(Thread* self) {
1219   ObjectMonitor* free_list = self->om_free_list;
1220   ObjectMonitor* free_tail = NULL;
1221   int free_count = 0;
1222   if (free_list != NULL) {
1223     ObjectMonitor* s;
1224     // The thread is going away. Set 'free_tail' to the last per-thread free
1225     // monitor which will be linked to g_free_list below under the gListLock.
1226     stringStream ss;
1227     for (s = free_list; s != NULL; s = s->_next_om) {
1228       free_count++;
1229       free_tail = s;
1230       guarantee(s->object() == NULL, "invariant");
1231       guarantee(!s->is_busy(), "must be !is_busy: %s", s->is_busy_to_string(&ss));
1232     }
1233     guarantee(free_tail != NULL, "invariant");
1234     assert(self->om_free_count == free_count, "free-count off");
1235     self->om_free_list = NULL;
1236     self->om_free_count = 0;
1237   }
1238 
1239   ObjectMonitor* in_use_list = self->om_in_use_list;
1240   ObjectMonitor* in_use_tail = NULL;
1241   int in_use_count = 0;
1242   if (in_use_list != NULL) {
1243     // The thread is going away, however the ObjectMonitors on the
1244     // om_in_use_list may still be in-use by other threads. Link
1245     // them to in_use_tail, which will be linked into the global
1246     // in-use list g_om_in_use_list below, under the gListLock.
1247     ObjectMonitor *cur_om;
1248     for (cur_om = in_use_list; cur_om != NULL; cur_om = cur_om->_next_om) {
1249       in_use_tail = cur_om;
1250       in_use_count++;
1251     }
1252     guarantee(in_use_tail != NULL, "invariant");
1253     assert(self->om_in_use_count == in_use_count, "in-use count off");
1254     self->om_in_use_list = NULL;
1255     self->om_in_use_count = 0;
1256   }
1257 
1258   Thread::muxAcquire(&gListLock, "om_flush");
1259   if (free_tail != NULL) {
1260     free_tail->_next_om = g_free_list;
1261     g_free_list = free_list;
1262     g_om_free_count += free_count;
1263   }
1264 
1265   if (in_use_tail != NULL) {
1266     in_use_tail->_next_om = g_om_in_use_list;
1267     g_om_in_use_list = in_use_list;
1268     g_om_in_use_count += in_use_count;
1269   }
1270 
1271   Thread::muxRelease(&gListLock);
1272 
1273   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1274   LogStreamHandle(Info, monitorinflation) lsh_info;
1275   LogStream* ls = NULL;
1276   if (log_is_enabled(Debug, monitorinflation)) {
1277     ls = &lsh_debug;
1278   } else if ((free_count != 0 || in_use_count != 0) &&
1279              log_is_enabled(Info, monitorinflation)) {
1280     ls = &lsh_info;
1281   }
1282   if (ls != NULL) {
1283     ls->print_cr("om_flush: jt=" INTPTR_FORMAT ", free_count=%d"
1284                  ", in_use_count=%d" ", om_free_provision=%d",
1285                  p2i(self), free_count, in_use_count, self->om_free_provision);
1286   }
1287 }
1288 
1289 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1290                                        const oop obj,
1291                                        ObjectSynchronizer::InflateCause cause) {
1292   assert(event != NULL, "invariant");
1293   assert(event->should_commit(), "invariant");
1294   event->set_monitorClass(obj->klass());
1295   event->set_address((uintptr_t)(void*)obj);
1296   event->set_cause((u1)cause);
1297   event->commit();
1298 }
1299 
1300 // Fast path code shared by multiple functions
1301 void ObjectSynchronizer::inflate_helper(oop obj) {
1302   markWord mark = obj->mark();
1303   if (mark.has_monitor()) {
1304     assert(ObjectSynchronizer::verify_objmon_isinpool(mark.monitor()), "monitor is invalid");
1305     assert(mark.monitor()->header().is_neutral(), "monitor must record a good object header");
1306     return;
1307   }
1308   inflate(Thread::current(), obj, inflate_cause_vm_internal);
1309 }
1310 
1311 ObjectMonitor* ObjectSynchronizer::inflate(Thread* self,
1312                                            oop object,
1313                                            const InflateCause cause) {
1314   // Inflate mutates the heap ...
1315   // Relaxing assertion for bug 6320749.
1316   assert(Universe::verify_in_progress() ||
1317          !SafepointSynchronize::is_at_safepoint(), "invariant");
1318 
1319   EventJavaMonitorInflate event;
1320 
1321   for (;;) {
1322     const markWord mark = object->mark();
1323     assert(!mark.has_bias_pattern(), "invariant");
1324 
1325     // The mark can be in one of the following states:
1326     // *  Inflated     - just return
1327     // *  Stack-locked - coerce it to inflated
1328     // *  INFLATING    - busy wait for conversion to complete
1329     // *  Neutral      - aggressively inflate the object.
1330     // *  BIASED       - Illegal.  We should never see this
1331 
1332     // CASE: inflated
1333     if (mark.has_monitor()) {
1334       ObjectMonitor* inf = mark.monitor();
1335       markWord dmw = inf->header();
1336       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1337       assert(oopDesc::equals((oop) inf->object(), object), "invariant");
1338       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1339       return inf;
1340     }
1341 
1342     // CASE: inflation in progress - inflating over a stack-lock.
1343     // Some other thread is converting from stack-locked to inflated.
1344     // Only that thread can complete inflation -- other threads must wait.
1345     // The INFLATING value is transient.
1346     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1347     // We could always eliminate polling by parking the thread on some auxiliary list.
1348     if (mark == markWord::INFLATING()) {
1349       read_stable_mark(object);
1350       continue;
1351     }
1352 
1353     // CASE: stack-locked
1354     // Could be stack-locked either by this thread or by some other thread.
1355     //
1356     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1357     // to install INFLATING into the mark word.  We originally installed INFLATING,
1358     // allocated the objectmonitor, and then finally STed the address of the
1359     // objectmonitor into the mark.  This was correct, but artificially lengthened
1360     // the interval in which INFLATED appeared in the mark, thus increasing
1361     // the odds of inflation contention.
1362     //
1363     // We now use per-thread private objectmonitor free lists.
1364     // These list are reprovisioned from the global free list outside the
1365     // critical INFLATING...ST interval.  A thread can transfer
1366     // multiple objectmonitors en-mass from the global free list to its local free list.
1367     // This reduces coherency traffic and lock contention on the global free list.
1368     // Using such local free lists, it doesn't matter if the om_alloc() call appears
1369     // before or after the CAS(INFLATING) operation.
1370     // See the comments in om_alloc().
1371 
1372     LogStreamHandle(Trace, monitorinflation) lsh;
1373 
1374     if (mark.has_locker()) {
1375       ObjectMonitor* m = om_alloc(self);
1376       // Optimistically prepare the objectmonitor - anticipate successful CAS
1377       // We do this before the CAS in order to minimize the length of time
1378       // in which INFLATING appears in the mark.
1379       m->Recycle();
1380       m->_Responsible  = NULL;
1381       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1382 
1383       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1384       if (cmp != mark) {
1385         om_release(self, m, true);
1386         continue;       // Interference -- just retry
1387       }
1388 
1389       // We've successfully installed INFLATING (0) into the mark-word.
1390       // This is the only case where 0 will appear in a mark-word.
1391       // Only the singular thread that successfully swings the mark-word
1392       // to 0 can perform (or more precisely, complete) inflation.
1393       //
1394       // Why do we CAS a 0 into the mark-word instead of just CASing the
1395       // mark-word from the stack-locked value directly to the new inflated state?
1396       // Consider what happens when a thread unlocks a stack-locked object.
1397       // It attempts to use CAS to swing the displaced header value from the
1398       // on-stack BasicLock back into the object header.  Recall also that the
1399       // header value (hash code, etc) can reside in (a) the object header, or
1400       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1401       // header in an ObjectMonitor.  The inflate() routine must copy the header
1402       // value from the BasicLock on the owner's stack to the ObjectMonitor, all
1403       // the while preserving the hashCode stability invariants.  If the owner
1404       // decides to release the lock while the value is 0, the unlock will fail
1405       // and control will eventually pass from slow_exit() to inflate.  The owner
1406       // will then spin, waiting for the 0 value to disappear.   Put another way,
1407       // the 0 causes the owner to stall if the owner happens to try to
1408       // drop the lock (restoring the header from the BasicLock to the object)
1409       // while inflation is in-progress.  This protocol avoids races that might
1410       // would otherwise permit hashCode values to change or "flicker" for an object.
1411       // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable.
1412       // 0 serves as a "BUSY" inflate-in-progress indicator.
1413 
1414 
1415       // fetch the displaced mark from the owner's stack.
1416       // The owner can't die or unwind past the lock while our INFLATING
1417       // object is in the mark.  Furthermore the owner can't complete
1418       // an unlock on the object, either.
1419       markWord dmw = mark.displaced_mark_helper();
1420       // Catch if the object's header is not neutral (not locked and
1421       // not marked is what we care about here).
1422       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1423 
1424       // Setup monitor fields to proper values -- prepare the monitor
1425       m->set_header(dmw);
1426 
1427       // Optimization: if the mark.locker stack address is associated
1428       // with this thread we could simply set m->_owner = self.
1429       // Note that a thread can inflate an object
1430       // that it has stack-locked -- as might happen in wait() -- directly
1431       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1432       m->set_owner(mark.locker());
1433       m->set_object(object);
1434       // TODO-FIXME: assert BasicLock->dhw != 0.
1435 
1436       // Must preserve store ordering. The monitor state must
1437       // be stable at the time of publishing the monitor address.
1438       guarantee(object->mark() == markWord::INFLATING(), "invariant");
1439       object->release_set_mark(markWord::encode(m));
1440 
1441       // Hopefully the performance counters are allocated on distinct cache lines
1442       // to avoid false sharing on MP systems ...
1443       OM_PERFDATA_OP(Inflations, inc());
1444       if (log_is_enabled(Trace, monitorinflation)) {
1445         ResourceMark rm(self);
1446         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1447                      INTPTR_FORMAT ", type='%s'", p2i(object),
1448                      object->mark().value(), object->klass()->external_name());
1449       }
1450       if (event.should_commit()) {
1451         post_monitor_inflate_event(&event, object, cause);
1452       }
1453       return m;
1454     }
1455 
1456     // CASE: neutral
1457     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1458     // If we know we're inflating for entry it's better to inflate by swinging a
1459     // pre-locked ObjectMonitor pointer into the object header.   A successful
1460     // CAS inflates the object *and* confers ownership to the inflating thread.
1461     // In the current implementation we use a 2-step mechanism where we CAS()
1462     // to inflate and then CAS() again to try to swing _owner from NULL to self.
1463     // An inflateTry() method that we could call from fast_enter() and slow_enter()
1464     // would be useful.
1465 
1466     // Catch if the object's header is not neutral (not locked and
1467     // not marked is what we care about here).
1468     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1469     ObjectMonitor* m = om_alloc(self);
1470     // prepare m for installation - set monitor to initial state
1471     m->Recycle();
1472     m->set_header(mark);
1473     m->set_object(object);
1474     m->_Responsible  = NULL;
1475     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1476 
1477     if (object->cas_set_mark(markWord::encode(m), mark) != mark) {
1478       m->set_header(markWord::zero());
1479       m->set_object(NULL);
1480       m->Recycle();
1481       om_release(self, m, true);
1482       m = NULL;
1483       continue;
1484       // interference - the markword changed - just retry.
1485       // The state-transitions are one-way, so there's no chance of
1486       // live-lock -- "Inflated" is an absorbing state.
1487     }
1488 
1489     // Hopefully the performance counters are allocated on distinct
1490     // cache lines to avoid false sharing on MP systems ...
1491     OM_PERFDATA_OP(Inflations, inc());
1492     if (log_is_enabled(Trace, monitorinflation)) {
1493       ResourceMark rm(self);
1494       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
1495                    INTPTR_FORMAT ", type='%s'", p2i(object),
1496                    object->mark().value(), object->klass()->external_name());
1497     }
1498     if (event.should_commit()) {
1499       post_monitor_inflate_event(&event, object, cause);
1500     }
1501     return m;
1502   }
1503 }
1504 
1505 
1506 // We maintain a list of in-use monitors for each thread.
1507 //
1508 // deflate_thread_local_monitors() scans a single thread's in-use list, while
1509 // deflate_idle_monitors() scans only a global list of in-use monitors which
1510 // is populated only as a thread dies (see om_flush()).
1511 //
1512 // These operations are called at all safepoints, immediately after mutators
1513 // are stopped, but before any objects have moved. Collectively they traverse
1514 // the population of in-use monitors, deflating where possible. The scavenged
1515 // monitors are returned to the global monitor free list.
1516 //
1517 // Beware that we scavenge at *every* stop-the-world point. Having a large
1518 // number of monitors in-use could negatively impact performance. We also want
1519 // to minimize the total # of monitors in circulation, as they incur a small
1520 // footprint penalty.
1521 //
1522 // Perversely, the heap size -- and thus the STW safepoint rate --
1523 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1524 // which in turn can mean large(r) numbers of ObjectMonitors in circulation.
1525 // This is an unfortunate aspect of this design.
1526 
1527 // Deflate a single monitor if not in-use
1528 // Return true if deflated, false if in-use
1529 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1530                                          ObjectMonitor** free_head_p,
1531                                          ObjectMonitor** free_tail_p) {
1532   bool deflated;
1533   // Normal case ... The monitor is associated with obj.
1534   const markWord mark = obj->mark();
1535   guarantee(mark == markWord::encode(mid), "should match: mark="
1536             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, mark.value(),
1537             markWord::encode(mid).value());
1538   // Make sure that mark.monitor() and markWord::encode() agree:
1539   guarantee(mark.monitor() == mid, "should match: monitor()=" INTPTR_FORMAT
1540             ", mid=" INTPTR_FORMAT, p2i(mark.monitor()), p2i(mid));
1541   const markWord dmw = mid->header();
1542   guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1543 
1544   if (mid->is_busy()) {
1545     deflated = false;
1546   } else {
1547     // Deflate the monitor if it is no longer being used
1548     // It's idle - scavenge and return to the global free list
1549     // plain old deflation ...
1550     if (log_is_enabled(Trace, monitorinflation)) {
1551       ResourceMark rm;
1552       log_trace(monitorinflation)("deflate_monitor: "
1553                                   "object=" INTPTR_FORMAT ", mark="
1554                                   INTPTR_FORMAT ", type='%s'", p2i(obj),
1555                                   mark.value(), obj->klass()->external_name());
1556     }
1557 
1558     // Restore the header back to obj
1559     obj->release_set_mark(dmw);
1560     mid->clear();
1561 
1562     assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT,
1563            p2i(mid->object()));
1564 
1565     // Move the deflated ObjectMonitor to the working free list
1566     // defined by free_head_p and free_tail_p.
1567     if (*free_head_p == NULL) *free_head_p = mid;
1568     if (*free_tail_p != NULL) {
1569       // We append to the list so the caller can use mid->_next_om
1570       // to fix the linkages in its context.
1571       ObjectMonitor* prevtail = *free_tail_p;
1572       // Should have been cleaned up by the caller:
1573       assert(prevtail->_next_om == NULL, "cleaned up deflated?");
1574       prevtail->_next_om = mid;
1575     }
1576     *free_tail_p = mid;
1577     // At this point, mid->_next_om still refers to its current
1578     // value and another ObjectMonitor's _next_om field still
1579     // refers to this ObjectMonitor. Those linkages have to be
1580     // cleaned up by the caller who has the complete context.
1581     deflated = true;
1582   }
1583   return deflated;
1584 }
1585 
1586 // Walk a given monitor list, and deflate idle monitors
1587 // The given list could be a per-thread list or a global list
1588 // Caller acquires gListLock as needed.
1589 //
1590 // In the case of parallel processing of thread local monitor lists,
1591 // work is done by Threads::parallel_threads_do() which ensures that
1592 // each Java thread is processed by exactly one worker thread, and
1593 // thus avoid conflicts that would arise when worker threads would
1594 // process the same monitor lists concurrently.
1595 //
1596 // See also ParallelSPCleanupTask and
1597 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
1598 // Threads::parallel_java_threads_do() in thread.cpp.
1599 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** list_p,
1600                                              ObjectMonitor** free_head_p,
1601                                              ObjectMonitor** free_tail_p) {
1602   ObjectMonitor* mid;
1603   ObjectMonitor* next;
1604   ObjectMonitor* cur_mid_in_use = NULL;
1605   int deflated_count = 0;
1606 
1607   for (mid = *list_p; mid != NULL;) {
1608     oop obj = (oop) mid->object();
1609     if (obj != NULL && deflate_monitor(mid, obj, free_head_p, free_tail_p)) {
1610       // Deflation succeeded and already updated free_head_p and
1611       // free_tail_p as needed. Finish the move to the local free list
1612       // by unlinking mid from the global or per-thread in-use list.
1613       if (mid == *list_p) {
1614         *list_p = mid->_next_om;
1615       } else if (cur_mid_in_use != NULL) {
1616         cur_mid_in_use->_next_om = mid->_next_om; // maintain the current thread in-use list
1617       }
1618       next = mid->_next_om;
1619       mid->_next_om = NULL;  // This mid is current tail in the free_head_p list
1620       mid = next;
1621       deflated_count++;
1622     } else {
1623       cur_mid_in_use = mid;
1624       mid = mid->_next_om;
1625     }
1626   }
1627   return deflated_count;
1628 }
1629 
1630 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
1631   counters->n_in_use = 0;              // currently associated with objects
1632   counters->n_in_circulation = 0;      // extant
1633   counters->n_scavenged = 0;           // reclaimed (global and per-thread)
1634   counters->per_thread_scavenged = 0;  // per-thread scavenge total
1635   counters->per_thread_times = 0.0;    // per-thread scavenge times
1636 }
1637 
1638 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
1639   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1640   bool deflated = false;
1641 
1642   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
1643   ObjectMonitor* free_tail_p = NULL;
1644   elapsedTimer timer;
1645 
1646   if (log_is_enabled(Info, monitorinflation)) {
1647     timer.start();
1648   }
1649 
1650   // Prevent om_flush from changing mids in Thread dtor's during deflation
1651   // And in case the vm thread is acquiring a lock during a safepoint
1652   // See e.g. 6320749
1653   Thread::muxAcquire(&gListLock, "deflate_idle_monitors");
1654 
1655   // Note: the thread-local monitors lists get deflated in
1656   // a separate pass. See deflate_thread_local_monitors().
1657 
1658   // For moribund threads, scan g_om_in_use_list
1659   int deflated_count = 0;
1660   if (g_om_in_use_list) {
1661     counters->n_in_circulation += g_om_in_use_count;
1662     deflated_count = deflate_monitor_list((ObjectMonitor **)&g_om_in_use_list, &free_head_p, &free_tail_p);
1663     g_om_in_use_count -= deflated_count;
1664     counters->n_scavenged += deflated_count;
1665     counters->n_in_use += g_om_in_use_count;
1666   }
1667 
1668   if (free_head_p != NULL) {
1669     // Move the deflated ObjectMonitors back to the global free list.
1670     guarantee(free_tail_p != NULL && counters->n_scavenged > 0, "invariant");
1671     assert(free_tail_p->_next_om == NULL, "invariant");
1672     // constant-time list splice - prepend scavenged segment to g_free_list
1673     free_tail_p->_next_om = g_free_list;
1674     g_free_list = free_head_p;
1675   }
1676   Thread::muxRelease(&gListLock);
1677   timer.stop();
1678 
1679   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1680   LogStreamHandle(Info, monitorinflation) lsh_info;
1681   LogStream* ls = NULL;
1682   if (log_is_enabled(Debug, monitorinflation)) {
1683     ls = &lsh_debug;
1684   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
1685     ls = &lsh_info;
1686   }
1687   if (ls != NULL) {
1688     ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
1689   }
1690 }
1691 
1692 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
1693   // Report the cumulative time for deflating each thread's idle
1694   // monitors. Note: if the work is split among more than one
1695   // worker thread, then the reported time will likely be more
1696   // than a beginning to end measurement of the phase.
1697   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d", counters->per_thread_times, counters->per_thread_scavenged);
1698 
1699   g_om_free_count += counters->n_scavenged;
1700 
1701   if (log_is_enabled(Debug, monitorinflation)) {
1702     // exit_globals()'s call to audit_and_print_stats() is done
1703     // at the Info level.
1704     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
1705   } else if (log_is_enabled(Info, monitorinflation)) {
1706     Thread::muxAcquire(&gListLock, "finish_deflate_idle_monitors");
1707     log_info(monitorinflation)("g_om_population=%d, g_om_in_use_count=%d, "
1708                                "g_om_free_count=%d", g_om_population,
1709                                g_om_in_use_count, g_om_free_count);
1710     Thread::muxRelease(&gListLock);
1711   }
1712 
1713   ForceMonitorScavenge = 0;    // Reset
1714 
1715   OM_PERFDATA_OP(Deflations, inc(counters->n_scavenged));
1716   OM_PERFDATA_OP(MonExtant, set_value(counters->n_in_circulation));
1717 
1718   GVars.stw_random = os::random();
1719   GVars.stw_cycle++;
1720 }
1721 
1722 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
1723   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1724 
1725   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
1726   ObjectMonitor* free_tail_p = NULL;
1727   elapsedTimer timer;
1728 
1729   if (log_is_enabled(Info, safepoint, cleanup) ||
1730       log_is_enabled(Info, monitorinflation)) {
1731     timer.start();
1732   }
1733 
1734   int deflated_count = deflate_monitor_list(thread->om_in_use_list_addr(), &free_head_p, &free_tail_p);
1735 
1736   Thread::muxAcquire(&gListLock, "deflate_thread_local_monitors");
1737 
1738   // Adjust counters
1739   counters->n_in_circulation += thread->om_in_use_count;
1740   thread->om_in_use_count -= deflated_count;
1741   counters->n_scavenged += deflated_count;
1742   counters->n_in_use += thread->om_in_use_count;
1743   counters->per_thread_scavenged += deflated_count;
1744 
1745   if (free_head_p != NULL) {
1746     // Move the deflated ObjectMonitors back to the global free list.
1747     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
1748     assert(free_tail_p->_next_om == NULL, "invariant");
1749 
1750     // constant-time list splice - prepend scavenged segment to g_free_list
1751     free_tail_p->_next_om = g_free_list;
1752     g_free_list = free_head_p;
1753   }
1754 
1755   timer.stop();
1756   // Safepoint logging cares about cumulative per_thread_times and
1757   // we'll capture most of the cost, but not the muxRelease() which
1758   // should be cheap.
1759   counters->per_thread_times += timer.seconds();
1760 
1761   Thread::muxRelease(&gListLock);
1762 
1763   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1764   LogStreamHandle(Info, monitorinflation) lsh_info;
1765   LogStream* ls = NULL;
1766   if (log_is_enabled(Debug, monitorinflation)) {
1767     ls = &lsh_debug;
1768   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
1769     ls = &lsh_info;
1770   }
1771   if (ls != NULL) {
1772     ls->print_cr("jt=" INTPTR_FORMAT ": deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(thread), timer.seconds(), deflated_count);
1773   }
1774 }
1775 
1776 // Monitor cleanup on JavaThread::exit
1777 
1778 // Iterate through monitor cache and attempt to release thread's monitors
1779 // Gives up on a particular monitor if an exception occurs, but continues
1780 // the overall iteration, swallowing the exception.
1781 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1782  private:
1783   TRAPS;
1784 
1785  public:
1786   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
1787   void do_monitor(ObjectMonitor* mid) {
1788     if (mid->owner() == THREAD) {
1789       (void)mid->complete_exit(CHECK);
1790     }
1791   }
1792 };
1793 
1794 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
1795 // ignored.  This is meant to be called during JNI thread detach which assumes
1796 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1797 // Scanning the extant monitor list can be time consuming.
1798 // A simple optimization is to add a per-thread flag that indicates a thread
1799 // called jni_monitorenter() during its lifetime.
1800 //
1801 // Instead of No_Savepoint_Verifier it might be cheaper to
1802 // use an idiom of the form:
1803 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1804 //   <code that must not run at safepoint>
1805 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1806 // Since the tests are extremely cheap we could leave them enabled
1807 // for normal product builds.
1808 
1809 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
1810   assert(THREAD == JavaThread::current(), "must be current Java thread");
1811   NoSafepointVerifier nsv;
1812   ReleaseJavaMonitorsClosure rjmc(THREAD);
1813   Thread::muxAcquire(&gListLock, "release_monitors_owned_by_thread");
1814   ObjectSynchronizer::monitors_iterate(&rjmc);
1815   Thread::muxRelease(&gListLock);
1816   THREAD->clear_pending_exception();
1817 }
1818 
1819 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
1820   switch (cause) {
1821     case inflate_cause_vm_internal:    return "VM Internal";
1822     case inflate_cause_monitor_enter:  return "Monitor Enter";
1823     case inflate_cause_wait:           return "Monitor Wait";
1824     case inflate_cause_notify:         return "Monitor Notify";
1825     case inflate_cause_hash_code:      return "Monitor Hash Code";
1826     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
1827     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
1828     default:
1829       ShouldNotReachHere();
1830   }
1831   return "Unknown";
1832 }
1833 
1834 //------------------------------------------------------------------------------
1835 // Debugging code
1836 
1837 u_char* ObjectSynchronizer::get_gvars_addr() {
1838   return (u_char*)&GVars;
1839 }
1840 
1841 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() {
1842   return (u_char*)&GVars.hc_sequence;
1843 }
1844 
1845 size_t ObjectSynchronizer::get_gvars_size() {
1846   return sizeof(SharedGlobals);
1847 }
1848 
1849 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() {
1850   return (u_char*)&GVars.stw_random;
1851 }
1852 
1853 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) {
1854   assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant");
1855 
1856   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1857   LogStreamHandle(Info, monitorinflation) lsh_info;
1858   LogStreamHandle(Trace, monitorinflation) lsh_trace;
1859   LogStream* ls = NULL;
1860   if (log_is_enabled(Trace, monitorinflation)) {
1861     ls = &lsh_trace;
1862   } else if (log_is_enabled(Debug, monitorinflation)) {
1863     ls = &lsh_debug;
1864   } else if (log_is_enabled(Info, monitorinflation)) {
1865     ls = &lsh_info;
1866   }
1867   assert(ls != NULL, "sanity check");
1868 
1869   if (!on_exit) {
1870     // Not at VM exit so grab the global list lock.
1871     Thread::muxAcquire(&gListLock, "audit_and_print_stats");
1872   }
1873 
1874   // Log counts for the global and per-thread monitor lists:
1875   int chk_om_population = log_monitor_list_counts(ls);
1876   int error_cnt = 0;
1877 
1878   ls->print_cr("Checking global lists:");
1879 
1880   // Check g_om_population:
1881   if (g_om_population == chk_om_population) {
1882     ls->print_cr("g_om_population=%d equals chk_om_population=%d",
1883                  g_om_population, chk_om_population);
1884   } else {
1885     ls->print_cr("ERROR: g_om_population=%d is not equal to "
1886                  "chk_om_population=%d", g_om_population,
1887                  chk_om_population);
1888     error_cnt++;
1889   }
1890 
1891   // Check g_om_in_use_list and g_om_in_use_count:
1892   chk_global_in_use_list_and_count(ls, &error_cnt);
1893 
1894   // Check g_free_list and g_om_free_count:
1895   chk_global_free_list_and_count(ls, &error_cnt);
1896 
1897   if (!on_exit) {
1898     Thread::muxRelease(&gListLock);
1899   }
1900 
1901   ls->print_cr("Checking per-thread lists:");
1902 
1903   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1904     // Check om_in_use_list and om_in_use_count:
1905     chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt);
1906 
1907     // Check om_free_list and om_free_count:
1908     chk_per_thread_free_list_and_count(jt, ls, &error_cnt);
1909   }
1910 
1911   if (error_cnt == 0) {
1912     ls->print_cr("No errors found in monitor list checks.");
1913   } else {
1914     log_error(monitorinflation)("found monitor list errors: error_cnt=%d", error_cnt);
1915   }
1916 
1917   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
1918       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
1919     // When exiting this log output is at the Info level. When called
1920     // at a safepoint, this log output is at the Trace level since
1921     // there can be a lot of it.
1922     log_in_use_monitor_details(ls, on_exit);
1923   }
1924 
1925   ls->flush();
1926 
1927   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
1928 }
1929 
1930 // Check a free monitor entry; log any errors.
1931 void ObjectSynchronizer::chk_free_entry(JavaThread* jt, ObjectMonitor* n,
1932                                         outputStream * out, int *error_cnt_p) {
1933   stringStream ss;
1934   if (n->is_busy()) {
1935     if (jt != NULL) {
1936       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
1937                     ": free per-thread monitor must not be busy: %s", p2i(jt),
1938                     p2i(n), n->is_busy_to_string(&ss));
1939     } else {
1940       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
1941                     "must not be busy: %s", p2i(n), n->is_busy_to_string(&ss));
1942     }
1943     *error_cnt_p = *error_cnt_p + 1;
1944   }
1945   if (n->header().value() != 0) {
1946     if (jt != NULL) {
1947       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
1948                     ": free per-thread monitor must have NULL _header "
1949                     "field: _header=" INTPTR_FORMAT, p2i(jt), p2i(n),
1950                     n->header().value());
1951     } else {
1952       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
1953                     "must have NULL _header field: _header=" INTPTR_FORMAT,
1954                     p2i(n), n->header().value());
1955     }
1956     *error_cnt_p = *error_cnt_p + 1;
1957   }
1958   if (n->object() != NULL) {
1959     if (jt != NULL) {
1960       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
1961                     ": free per-thread monitor must have NULL _object "
1962                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
1963                     p2i(n->object()));
1964     } else {
1965       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
1966                     "must have NULL _object field: _object=" INTPTR_FORMAT,
1967                     p2i(n), p2i(n->object()));
1968     }
1969     *error_cnt_p = *error_cnt_p + 1;
1970   }
1971 }
1972 
1973 // Check the global free list and count; log the results of the checks.
1974 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
1975                                                         int *error_cnt_p) {
1976   int chk_om_free_count = 0;
1977   for (ObjectMonitor* n = g_free_list; n != NULL; n = n->_next_om) {
1978     chk_free_entry(NULL /* jt */, n, out, error_cnt_p);
1979     chk_om_free_count++;
1980   }
1981   if (g_om_free_count == chk_om_free_count) {
1982     out->print_cr("g_om_free_count=%d equals chk_om_free_count=%d",
1983                   g_om_free_count, chk_om_free_count);
1984   } else {
1985     out->print_cr("ERROR: g_om_free_count=%d is not equal to "
1986                   "chk_om_free_count=%d", g_om_free_count,
1987                   chk_om_free_count);
1988     *error_cnt_p = *error_cnt_p + 1;
1989   }
1990 }
1991 
1992 // Check the global in-use list and count; log the results of the checks.
1993 void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out,
1994                                                           int *error_cnt_p) {
1995   int chk_om_in_use_count = 0;
1996   for (ObjectMonitor* n = g_om_in_use_list; n != NULL; n = n->_next_om) {
1997     chk_in_use_entry(NULL /* jt */, n, out, error_cnt_p);
1998     chk_om_in_use_count++;
1999   }
2000   if (g_om_in_use_count == chk_om_in_use_count) {
2001     out->print_cr("g_om_in_use_count=%d equals chk_om_in_use_count=%d", g_om_in_use_count,
2002                   chk_om_in_use_count);
2003   } else {
2004     out->print_cr("ERROR: g_om_in_use_count=%d is not equal to chk_om_in_use_count=%d",
2005                   g_om_in_use_count, chk_om_in_use_count);
2006     *error_cnt_p = *error_cnt_p + 1;
2007   }
2008 }
2009 
2010 // Check an in-use monitor entry; log any errors.
2011 void ObjectSynchronizer::chk_in_use_entry(JavaThread* jt, ObjectMonitor* n,
2012                                           outputStream * out, int *error_cnt_p) {
2013   if (n->header().value() == 0) {
2014     if (jt != NULL) {
2015       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2016                     ": in-use per-thread monitor must have non-NULL _header "
2017                     "field.", p2i(jt), p2i(n));
2018     } else {
2019       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
2020                     "must have non-NULL _header field.", p2i(n));
2021     }
2022     *error_cnt_p = *error_cnt_p + 1;
2023   }
2024   if (n->object() == NULL) {
2025     if (jt != NULL) {
2026       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2027                     ": in-use per-thread monitor must have non-NULL _object "
2028                     "field.", p2i(jt), p2i(n));
2029     } else {
2030       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
2031                     "must have non-NULL _object field.", p2i(n));
2032     }
2033     *error_cnt_p = *error_cnt_p + 1;
2034   }
2035   const oop obj = (oop)n->object();
2036   const markWord mark = obj->mark();
2037   if (!mark.has_monitor()) {
2038     if (jt != NULL) {
2039       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2040                     ": in-use per-thread monitor's object does not think "
2041                     "it has a monitor: obj=" INTPTR_FORMAT ", mark="
2042                     INTPTR_FORMAT,  p2i(jt), p2i(n), p2i(obj), mark.value());
2043     } else {
2044       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2045                     "monitor's object does not think it has a monitor: obj="
2046                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
2047                     p2i(obj), mark.value());
2048     }
2049     *error_cnt_p = *error_cnt_p + 1;
2050   }
2051   ObjectMonitor* const obj_mon = mark.monitor();
2052   if (n != obj_mon) {
2053     if (jt != NULL) {
2054       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2055                     ": in-use per-thread monitor's object does not refer "
2056                     "to the same monitor: obj=" INTPTR_FORMAT ", mark="
2057                     INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt),
2058                     p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
2059     } else {
2060       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2061                     "monitor's object does not refer to the same monitor: obj="
2062                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
2063                     INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
2064     }
2065     *error_cnt_p = *error_cnt_p + 1;
2066   }
2067 }
2068 
2069 // Check the thread's free list and count; log the results of the checks.
2070 void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt,
2071                                                             outputStream * out,
2072                                                             int *error_cnt_p) {
2073   int chk_om_free_count = 0;
2074   for (ObjectMonitor* n = jt->om_free_list; n != NULL; n = n->_next_om) {
2075     chk_free_entry(jt, n, out, error_cnt_p);
2076     chk_om_free_count++;
2077   }
2078   if (jt->om_free_count == chk_om_free_count) {
2079     out->print_cr("jt=" INTPTR_FORMAT ": om_free_count=%d equals "
2080                   "chk_om_free_count=%d", p2i(jt), jt->om_free_count, chk_om_free_count);
2081   } else {
2082     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_free_count=%d is not "
2083                   "equal to chk_om_free_count=%d", p2i(jt), jt->om_free_count,
2084                   chk_om_free_count);
2085     *error_cnt_p = *error_cnt_p + 1;
2086   }
2087 }
2088 
2089 // Check the thread's in-use list and count; log the results of the checks.
2090 void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt,
2091                                                               outputStream * out,
2092                                                               int *error_cnt_p) {
2093   int chk_om_in_use_count = 0;
2094   for (ObjectMonitor* n = jt->om_in_use_list; n != NULL; n = n->_next_om) {
2095     chk_in_use_entry(jt, n, out, error_cnt_p);
2096     chk_om_in_use_count++;
2097   }
2098   if (jt->om_in_use_count == chk_om_in_use_count) {
2099     out->print_cr("jt=" INTPTR_FORMAT ": om_in_use_count=%d equals "
2100                   "chk_om_in_use_count=%d", p2i(jt), jt->om_in_use_count,
2101                   chk_om_in_use_count);
2102   } else {
2103     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_in_use_count=%d is not "
2104                   "equal to chk_om_in_use_count=%d", p2i(jt), jt->om_in_use_count,
2105                   chk_om_in_use_count);
2106     *error_cnt_p = *error_cnt_p + 1;
2107   }
2108 }
2109 
2110 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
2111 // flags indicate why the entry is in-use, 'object' and 'object type'
2112 // indicate the associated object and its type.
2113 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out,
2114                                                     bool on_exit) {
2115   if (!on_exit) {
2116     // Not at VM exit so grab the global list lock.
2117     Thread::muxAcquire(&gListLock, "log_in_use_monitor_details");
2118   }
2119 
2120   stringStream ss;
2121   if (g_om_in_use_count > 0) {
2122     out->print_cr("In-use global monitor info:");
2123     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2124     out->print_cr("%18s  %s  %18s  %18s",
2125                   "monitor", "BHL", "object", "object type");
2126     out->print_cr("==================  ===  ==================  ==================");
2127     for (ObjectMonitor* n = g_om_in_use_list; n != NULL; n = n->_next_om) {
2128       const oop obj = (oop) n->object();
2129       const markWord mark = n->header();
2130       ResourceMark rm;
2131       out->print(INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT "  %s", p2i(n),
2132                  n->is_busy() != 0, mark.hash() != 0, n->owner() != NULL,
2133                  p2i(obj), obj->klass()->external_name());
2134       if (n->is_busy() != 0) {
2135         out->print(" (%s)", n->is_busy_to_string(&ss));
2136         ss.reset();
2137       }
2138       out->cr();
2139     }
2140   }
2141 
2142   if (!on_exit) {
2143     Thread::muxRelease(&gListLock);
2144   }
2145 
2146   out->print_cr("In-use per-thread monitor info:");
2147   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2148   out->print_cr("%18s  %18s  %s  %18s  %18s",
2149                 "jt", "monitor", "BHL", "object", "object type");
2150   out->print_cr("==================  ==================  ===  ==================  ==================");
2151   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2152     for (ObjectMonitor* n = jt->om_in_use_list; n != NULL; n = n->_next_om) {
2153       const oop obj = (oop) n->object();
2154       const markWord mark = n->header();
2155       ResourceMark rm;
2156       out->print(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT
2157                  "  %s", p2i(jt), p2i(n), n->is_busy() != 0,
2158                  mark.hash() != 0, n->owner() != NULL, p2i(obj),
2159                  obj->klass()->external_name());
2160       if (n->is_busy() != 0) {
2161         out->print(" (%s)", n->is_busy_to_string(&ss));
2162         ss.reset();
2163       }
2164       out->cr();
2165     }
2166   }
2167 
2168   out->flush();
2169 }
2170 
2171 // Log counts for the global and per-thread monitor lists and return
2172 // the population count.
2173 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
2174   int pop_count = 0;
2175   out->print_cr("%18s  %10s  %10s  %10s",
2176                 "Global Lists:", "InUse", "Free", "Total");
2177   out->print_cr("==================  ==========  ==========  ==========");
2178   out->print_cr("%18s  %10d  %10d  %10d", "",
2179                 g_om_in_use_count, g_om_free_count, g_om_population);
2180   pop_count += g_om_in_use_count + g_om_free_count;
2181 
2182   out->print_cr("%18s  %10s  %10s  %10s",
2183                 "Per-Thread Lists:", "InUse", "Free", "Provision");
2184   out->print_cr("==================  ==========  ==========  ==========");
2185 
2186   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2187     out->print_cr(INTPTR_FORMAT "  %10d  %10d  %10d", p2i(jt),
2188                   jt->om_in_use_count, jt->om_free_count, jt->om_free_provision);
2189     pop_count += jt->om_in_use_count + jt->om_free_count;
2190   }
2191   return pop_count;
2192 }
2193 
2194 #ifndef PRODUCT
2195 
2196 // Check if monitor belongs to the monitor cache
2197 // The list is grow-only so it's *relatively* safe to traverse
2198 // the list of extant blocks without taking a lock.
2199 
2200 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
2201   PaddedObjectMonitor* block = OrderAccess::load_acquire(&g_block_list);
2202   while (block != NULL) {
2203     assert(block->object() == CHAINMARKER, "must be a block header");
2204     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
2205       address mon = (address)monitor;
2206       address blk = (address)block;
2207       size_t diff = mon - blk;
2208       assert((diff % sizeof(PaddedObjectMonitor)) == 0, "must be aligned");
2209       return 1;
2210     }
2211     block = (PaddedObjectMonitor*)block->_next_om;
2212   }
2213   return 0;
2214 }
2215 
2216 #endif