1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "classfile/moduleEntry.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compileTask.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/gcId.hpp"
  39 #include "gc/shared/gcLocker.inline.hpp"
  40 #include "gc/shared/workgroup.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "interpreter/oopMapCache.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "jvmtifiles/jvmtiEnv.hpp"
  46 #include "logging/log.hpp"
  47 #include "logging/logConfiguration.hpp"
  48 #include "logging/logStream.hpp"
  49 #include "memory/allocation.inline.hpp"
  50 #include "memory/metaspaceShared.hpp"
  51 #include "memory/oopFactory.hpp"
  52 #include "memory/resourceArea.hpp"
  53 #include "memory/universe.hpp"
  54 #include "oops/access.inline.hpp"
  55 #include "oops/instanceKlass.hpp"
  56 #include "oops/objArrayOop.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/symbol.hpp"
  59 #include "oops/typeArrayOop.inline.hpp"
  60 #include "oops/verifyOopClosure.hpp"
  61 #include "prims/jvm_misc.hpp"
  62 #include "prims/jvmtiExport.hpp"
  63 #include "prims/jvmtiThreadState.hpp"
  64 #include "runtime/arguments.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/biasedLocking.hpp"
  67 #include "runtime/fieldDescriptor.inline.hpp"
  68 #include "runtime/flags/jvmFlagConstraintList.hpp"
  69 #include "runtime/flags/jvmFlagRangeList.hpp"
  70 #include "runtime/flags/jvmFlagWriteableList.hpp"
  71 #include "runtime/deoptimization.hpp"
  72 #include "runtime/frame.inline.hpp"
  73 #include "runtime/handles.inline.hpp"
  74 #include "runtime/handshake.hpp"
  75 #include "runtime/init.hpp"
  76 #include "runtime/interfaceSupport.inline.hpp"
  77 #include "runtime/java.hpp"
  78 #include "runtime/javaCalls.hpp"
  79 #include "runtime/jniHandles.inline.hpp"
  80 #include "runtime/jniPeriodicChecker.hpp"
  81 #include "runtime/memprofiler.hpp"
  82 #include "runtime/mutexLocker.hpp"
  83 #include "runtime/objectMonitor.hpp"
  84 #include "runtime/orderAccess.hpp"
  85 #include "runtime/osThread.hpp"
  86 #include "runtime/prefetch.inline.hpp"
  87 #include "runtime/safepoint.hpp"
  88 #include "runtime/safepointMechanism.inline.hpp"
  89 #include "runtime/safepointVerifiers.hpp"
  90 #include "runtime/sharedRuntime.hpp"
  91 #include "runtime/statSampler.hpp"
  92 #include "runtime/stubRoutines.hpp"
  93 #include "runtime/sweeper.hpp"
  94 #include "runtime/task.hpp"
  95 #include "runtime/thread.inline.hpp"
  96 #include "runtime/threadCritical.hpp"
  97 #include "runtime/threadSMR.inline.hpp"
  98 #include "runtime/threadStatisticalInfo.hpp"
  99 #include "runtime/timer.hpp"
 100 #include "runtime/timerTrace.hpp"
 101 #include "runtime/vframe.inline.hpp"
 102 #include "runtime/vframeArray.hpp"
 103 #include "runtime/vframe_hp.hpp"
 104 #include "runtime/vmThread.hpp"
 105 #include "runtime/vmOperations.hpp"
 106 #include "runtime/vm_version.hpp"
 107 #include "services/attachListener.hpp"
 108 #include "services/management.hpp"
 109 #include "services/memTracker.hpp"
 110 #include "services/threadService.hpp"
 111 #include "utilities/align.hpp"
 112 #include "utilities/copy.hpp"
 113 #include "utilities/defaultStream.hpp"
 114 #include "utilities/dtrace.hpp"
 115 #include "utilities/events.hpp"
 116 #include "utilities/macros.hpp"
 117 #include "utilities/preserveException.hpp"
 118 #include "utilities/singleWriterSynchronizer.hpp"
 119 #include "utilities/vmError.hpp"
 120 #if INCLUDE_JVMCI
 121 #include "jvmci/jvmci.hpp"
 122 #include "jvmci/jvmciEnv.hpp"
 123 #endif
 124 #ifdef COMPILER1
 125 #include "c1/c1_Compiler.hpp"
 126 #endif
 127 #ifdef COMPILER2
 128 #include "opto/c2compiler.hpp"
 129 #include "opto/idealGraphPrinter.hpp"
 130 #endif
 131 #if INCLUDE_RTM_OPT
 132 #include "runtime/rtmLocking.hpp"
 133 #endif
 134 #if INCLUDE_JFR
 135 #include "jfr/jfr.hpp"
 136 #endif
 137 
 138 // Initialization after module runtime initialization
 139 void universe_post_module_init();  // must happen after call_initPhase2
 140 
 141 #ifdef DTRACE_ENABLED
 142 
 143 // Only bother with this argument setup if dtrace is available
 144 
 145   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 146   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 147 
 148   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 149     {                                                                      \
 150       ResourceMark rm(this);                                               \
 151       int len = 0;                                                         \
 152       const char* name = (javathread)->get_thread_name();                  \
 153       len = strlen(name);                                                  \
 154       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 155         (char *) name, len,                                                \
 156         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 157         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 158         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 159     }
 160 
 161 #else //  ndef DTRACE_ENABLED
 162 
 163   #define DTRACE_THREAD_PROBE(probe, javathread)
 164 
 165 #endif // ndef DTRACE_ENABLED
 166 
 167 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 168 // Current thread is maintained as a thread-local variable
 169 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 170 #endif
 171 
 172 // ======= Thread ========
 173 // Support for forcing alignment of thread objects for biased locking
 174 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 175   if (UseBiasedLocking) {
 176     const int alignment = markWord::biased_lock_alignment;
 177     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 178     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 179                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 180                                                          AllocFailStrategy::RETURN_NULL);
 181     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 182     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 183            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 184            "JavaThread alignment code overflowed allocated storage");
 185     if (aligned_addr != real_malloc_addr) {
 186       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 187                               p2i(real_malloc_addr),
 188                               p2i(aligned_addr));
 189     }
 190     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 191     return aligned_addr;
 192   } else {
 193     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 194                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 195   }
 196 }
 197 
 198 void Thread::operator delete(void* p) {
 199   if (UseBiasedLocking) {
 200     FreeHeap(((Thread*) p)->_real_malloc_address);
 201   } else {
 202     FreeHeap(p);
 203   }
 204 }
 205 
 206 void JavaThread::smr_delete() {
 207   if (_on_thread_list) {
 208     ThreadsSMRSupport::smr_delete(this);
 209   } else {
 210     delete this;
 211   }
 212 }
 213 
 214 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 215 // JavaThread
 216 
 217 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 218 
 219 Thread::Thread() {
 220 
 221   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 222 
 223   // stack and get_thread
 224   set_stack_base(NULL);
 225   set_stack_size(0);
 226   set_lgrp_id(-1);
 227   DEBUG_ONLY(clear_suspendible_thread();)
 228 
 229   // allocated data structures
 230   set_osthread(NULL);
 231   set_resource_area(new (mtThread)ResourceArea());
 232   DEBUG_ONLY(_current_resource_mark = NULL;)
 233   set_handle_area(new (mtThread) HandleArea(NULL));
 234   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 235   set_active_handles(NULL);
 236   set_free_handle_block(NULL);
 237   set_last_handle_mark(NULL);
 238   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 239 
 240   // Initial value of zero ==> never claimed.
 241   _threads_do_token = 0;
 242   _threads_hazard_ptr = NULL;
 243   _threads_list_ptr = NULL;
 244   _nested_threads_hazard_ptr_cnt = 0;
 245   _rcu_counter = 0;
 246 
 247   // the handle mark links itself to last_handle_mark
 248   new HandleMark(this);
 249 
 250   // plain initialization
 251   debug_only(_owned_locks = NULL;)
 252   NOT_PRODUCT(_no_safepoint_count = 0;)
 253   NOT_PRODUCT(_skip_gcalot = false;)
 254   _jvmti_env_iteration_count = 0;
 255   set_allocated_bytes(0);
 256   _vm_operation_started_count = 0;
 257   _vm_operation_completed_count = 0;
 258   _current_pending_monitor = NULL;
 259   _current_pending_monitor_is_from_java = true;
 260   _current_waiting_monitor = NULL;
 261   _num_nested_signal = 0;
 262   om_free_list = NULL;
 263   om_free_count = 0;
 264   om_free_provision = 32;
 265   om_in_use_list = NULL;
 266   om_in_use_count = 0;
 267   om_request_deflation = false;
 268 
 269 #ifdef ASSERT
 270   _visited_for_critical_count = false;
 271 #endif
 272 
 273   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 274                          Monitor::_safepoint_check_sometimes);
 275   _suspend_flags = 0;
 276 
 277   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 278   _hashStateX = os::random();
 279   _hashStateY = 842502087;
 280   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 281   _hashStateW = 273326509;
 282 
 283   _OnTrap   = 0;
 284   _Stalled  = 0;
 285   _TypeTag  = 0x2BAD;
 286 
 287   // Many of the following fields are effectively final - immutable
 288   // Note that nascent threads can't use the Native Monitor-Mutex
 289   // construct until the _MutexEvent is initialized ...
 290   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 291   // we might instead use a stack of ParkEvents that we could provision on-demand.
 292   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 293   // and ::Release()
 294   _ParkEvent   = ParkEvent::Allocate(this);
 295   _SleepEvent  = ParkEvent::Allocate(this);
 296   _MuxEvent    = ParkEvent::Allocate(this);
 297 
 298 #ifdef CHECK_UNHANDLED_OOPS
 299   if (CheckUnhandledOops) {
 300     _unhandled_oops = new UnhandledOops(this);
 301   }
 302 #endif // CHECK_UNHANDLED_OOPS
 303 #ifdef ASSERT
 304   if (UseBiasedLocking) {
 305     assert((((uintptr_t) this) & (markWord::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 306     assert(this == _real_malloc_address ||
 307            this == align_up(_real_malloc_address, (int)markWord::biased_lock_alignment),
 308            "bug in forced alignment of thread objects");
 309   }
 310 #endif // ASSERT
 311 
 312   // Notify the barrier set that a thread is being created. The initial
 313   // thread is created before the barrier set is available.  The call to
 314   // BarrierSet::on_thread_create() for this thread is therefore deferred
 315   // to BarrierSet::set_barrier_set().
 316   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 317   if (barrier_set != NULL) {
 318     barrier_set->on_thread_create(this);
 319   } else {
 320     // Only the main thread should be created before the barrier set
 321     // and that happens just before Thread::current is set. No other thread
 322     // can attach as the VM is not created yet, so they can't execute this code.
 323     // If the main thread creates other threads before the barrier set that is an error.
 324     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 325   }
 326 }
 327 
 328 void Thread::initialize_thread_current() {
 329 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 330   assert(_thr_current == NULL, "Thread::current already initialized");
 331   _thr_current = this;
 332 #endif
 333   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 334   ThreadLocalStorage::set_thread(this);
 335   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 336 }
 337 
 338 void Thread::clear_thread_current() {
 339   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 340 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 341   _thr_current = NULL;
 342 #endif
 343   ThreadLocalStorage::set_thread(NULL);
 344 }
 345 
 346 void Thread::record_stack_base_and_size() {
 347   // Note: at this point, Thread object is not yet initialized. Do not rely on
 348   // any members being initialized. Do not rely on Thread::current() being set.
 349   // If possible, refrain from doing anything which may crash or assert since
 350   // quite probably those crash dumps will be useless.
 351   set_stack_base(os::current_stack_base());
 352   set_stack_size(os::current_stack_size());
 353 
 354 #ifdef SOLARIS
 355   if (os::is_primordial_thread()) {
 356     os::Solaris::correct_stack_boundaries_for_primordial_thread(this);
 357   }
 358 #endif
 359 
 360   // Set stack limits after thread is initialized.
 361   if (is_Java_thread()) {
 362     ((JavaThread*) this)->set_stack_overflow_limit();
 363     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 364   }
 365 }
 366 
 367 #if INCLUDE_NMT
 368 void Thread::register_thread_stack_with_NMT() {
 369   MemTracker::record_thread_stack(stack_end(), stack_size());
 370 }
 371 #endif // INCLUDE_NMT
 372 
 373 void Thread::call_run() {
 374   DEBUG_ONLY(_run_state = CALL_RUN;)
 375 
 376   // At this point, Thread object should be fully initialized and
 377   // Thread::current() should be set.
 378 
 379   assert(Thread::current_or_null() != NULL, "current thread is unset");
 380   assert(Thread::current_or_null() == this, "current thread is wrong");
 381 
 382   // Perform common initialization actions
 383 
 384   register_thread_stack_with_NMT();
 385 
 386   JFR_ONLY(Jfr::on_thread_start(this);)
 387 
 388   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 389     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 390     os::current_thread_id(), p2i(stack_base() - stack_size()),
 391     p2i(stack_base()), stack_size()/1024);
 392 
 393   // Perform <ChildClass> initialization actions
 394   DEBUG_ONLY(_run_state = PRE_RUN;)
 395   this->pre_run();
 396 
 397   // Invoke <ChildClass>::run()
 398   DEBUG_ONLY(_run_state = RUN;)
 399   this->run();
 400   // Returned from <ChildClass>::run(). Thread finished.
 401 
 402   // Perform common tear-down actions
 403 
 404   assert(Thread::current_or_null() != NULL, "current thread is unset");
 405   assert(Thread::current_or_null() == this, "current thread is wrong");
 406 
 407   // Perform <ChildClass> tear-down actions
 408   DEBUG_ONLY(_run_state = POST_RUN;)
 409   this->post_run();
 410 
 411   // Note: at this point the thread object may already have deleted itself,
 412   // so from here on do not dereference *this*. Not all thread types currently
 413   // delete themselves when they terminate. But no thread should ever be deleted
 414   // asynchronously with respect to its termination - that is what _run_state can
 415   // be used to check.
 416 
 417   assert(Thread::current_or_null() == NULL, "current thread still present");
 418 }
 419 
 420 Thread::~Thread() {
 421 
 422   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 423   // get started due to errors etc. Any active thread should at least reach post_run
 424   // before it is deleted (usually in post_run()).
 425   assert(_run_state == PRE_CALL_RUN ||
 426          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 427          "_run_state=%d", (int)_run_state);
 428 
 429   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 430   // set might not be available if we encountered errors during bootstrapping.
 431   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 432   if (barrier_set != NULL) {
 433     barrier_set->on_thread_destroy(this);
 434   }
 435 
 436   // stack_base can be NULL if the thread is never started or exited before
 437   // record_stack_base_and_size called. Although, we would like to ensure
 438   // that all started threads do call record_stack_base_and_size(), there is
 439   // not proper way to enforce that.
 440 #if INCLUDE_NMT
 441   if (_stack_base != NULL) {
 442     MemTracker::release_thread_stack(stack_end(), stack_size());
 443 #ifdef ASSERT
 444     set_stack_base(NULL);
 445 #endif
 446   }
 447 #endif // INCLUDE_NMT
 448 
 449   // deallocate data structures
 450   delete resource_area();
 451   // since the handle marks are using the handle area, we have to deallocated the root
 452   // handle mark before deallocating the thread's handle area,
 453   assert(last_handle_mark() != NULL, "check we have an element");
 454   delete last_handle_mark();
 455   assert(last_handle_mark() == NULL, "check we have reached the end");
 456 
 457   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 458   // We NULL out the fields for good hygiene.
 459   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 460   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 461   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 462 
 463   delete handle_area();
 464   delete metadata_handles();
 465 
 466   // SR_handler uses this as a termination indicator -
 467   // needs to happen before os::free_thread()
 468   delete _SR_lock;
 469   _SR_lock = NULL;
 470 
 471   // osthread() can be NULL, if creation of thread failed.
 472   if (osthread() != NULL) os::free_thread(osthread());
 473 
 474   // Clear Thread::current if thread is deleting itself and it has not
 475   // already been done. This must be done before the memory is deallocated.
 476   // Needed to ensure JNI correctly detects non-attached threads.
 477   if (this == Thread::current_or_null()) {
 478     Thread::clear_thread_current();
 479   }
 480 
 481   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 482 }
 483 
 484 #ifdef ASSERT
 485 // A JavaThread is considered "dangling" if it is not the current
 486 // thread, has been added the Threads list, the system is not at a
 487 // safepoint and the Thread is not "protected".
 488 //
 489 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 490   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 491          !((JavaThread *) thread)->on_thread_list() ||
 492          SafepointSynchronize::is_at_safepoint() ||
 493          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 494          "possibility of dangling Thread pointer");
 495 }
 496 #endif
 497 
 498 ThreadPriority Thread::get_priority(const Thread* const thread) {
 499   ThreadPriority priority;
 500   // Can return an error!
 501   (void)os::get_priority(thread, priority);
 502   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 503   return priority;
 504 }
 505 
 506 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 507   debug_only(check_for_dangling_thread_pointer(thread);)
 508   // Can return an error!
 509   (void)os::set_priority(thread, priority);
 510 }
 511 
 512 
 513 void Thread::start(Thread* thread) {
 514   // Start is different from resume in that its safety is guaranteed by context or
 515   // being called from a Java method synchronized on the Thread object.
 516   if (!DisableStartThread) {
 517     if (thread->is_Java_thread()) {
 518       // Initialize the thread state to RUNNABLE before starting this thread.
 519       // Can not set it after the thread started because we do not know the
 520       // exact thread state at that time. It could be in MONITOR_WAIT or
 521       // in SLEEPING or some other state.
 522       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 523                                           java_lang_Thread::RUNNABLE);
 524     }
 525     os::start_thread(thread);
 526   }
 527 }
 528 
 529 // Enqueue a VM_Operation to do the job for us - sometime later
 530 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 531   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 532   VMThread::execute(vm_stop);
 533 }
 534 
 535 
 536 // Check if an external suspend request has completed (or has been
 537 // cancelled). Returns true if the thread is externally suspended and
 538 // false otherwise.
 539 //
 540 // The bits parameter returns information about the code path through
 541 // the routine. Useful for debugging:
 542 //
 543 // set in is_ext_suspend_completed():
 544 // 0x00000001 - routine was entered
 545 // 0x00000010 - routine return false at end
 546 // 0x00000100 - thread exited (return false)
 547 // 0x00000200 - suspend request cancelled (return false)
 548 // 0x00000400 - thread suspended (return true)
 549 // 0x00001000 - thread is in a suspend equivalent state (return true)
 550 // 0x00002000 - thread is native and walkable (return true)
 551 // 0x00004000 - thread is native_trans and walkable (needed retry)
 552 //
 553 // set in wait_for_ext_suspend_completion():
 554 // 0x00010000 - routine was entered
 555 // 0x00020000 - suspend request cancelled before loop (return false)
 556 // 0x00040000 - thread suspended before loop (return true)
 557 // 0x00080000 - suspend request cancelled in loop (return false)
 558 // 0x00100000 - thread suspended in loop (return true)
 559 // 0x00200000 - suspend not completed during retry loop (return false)
 560 
 561 // Helper class for tracing suspend wait debug bits.
 562 //
 563 // 0x00000100 indicates that the target thread exited before it could
 564 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 565 // 0x00080000 each indicate a cancelled suspend request so they don't
 566 // count as wait failures either.
 567 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 568 
 569 class TraceSuspendDebugBits : public StackObj {
 570  private:
 571   JavaThread * jt;
 572   bool         is_wait;
 573   bool         called_by_wait;  // meaningful when !is_wait
 574   uint32_t *   bits;
 575 
 576  public:
 577   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 578                         uint32_t *_bits) {
 579     jt             = _jt;
 580     is_wait        = _is_wait;
 581     called_by_wait = _called_by_wait;
 582     bits           = _bits;
 583   }
 584 
 585   ~TraceSuspendDebugBits() {
 586     if (!is_wait) {
 587 #if 1
 588       // By default, don't trace bits for is_ext_suspend_completed() calls.
 589       // That trace is very chatty.
 590       return;
 591 #else
 592       if (!called_by_wait) {
 593         // If tracing for is_ext_suspend_completed() is enabled, then only
 594         // trace calls to it from wait_for_ext_suspend_completion()
 595         return;
 596       }
 597 #endif
 598     }
 599 
 600     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 601       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 602         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 603         ResourceMark rm;
 604 
 605         tty->print_cr(
 606                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 607                       jt->get_thread_name(), *bits);
 608 
 609         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 610       }
 611     }
 612   }
 613 };
 614 #undef DEBUG_FALSE_BITS
 615 
 616 
 617 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 618                                           uint32_t *bits) {
 619   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 620 
 621   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 622   bool do_trans_retry;           // flag to force the retry
 623 
 624   *bits |= 0x00000001;
 625 
 626   do {
 627     do_trans_retry = false;
 628 
 629     if (is_exiting()) {
 630       // Thread is in the process of exiting. This is always checked
 631       // first to reduce the risk of dereferencing a freed JavaThread.
 632       *bits |= 0x00000100;
 633       return false;
 634     }
 635 
 636     if (!is_external_suspend()) {
 637       // Suspend request is cancelled. This is always checked before
 638       // is_ext_suspended() to reduce the risk of a rogue resume
 639       // confusing the thread that made the suspend request.
 640       *bits |= 0x00000200;
 641       return false;
 642     }
 643 
 644     if (is_ext_suspended()) {
 645       // thread is suspended
 646       *bits |= 0x00000400;
 647       return true;
 648     }
 649 
 650     // Now that we no longer do hard suspends of threads running
 651     // native code, the target thread can be changing thread state
 652     // while we are in this routine:
 653     //
 654     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 655     //
 656     // We save a copy of the thread state as observed at this moment
 657     // and make our decision about suspend completeness based on the
 658     // copy. This closes the race where the thread state is seen as
 659     // _thread_in_native_trans in the if-thread_blocked check, but is
 660     // seen as _thread_blocked in if-thread_in_native_trans check.
 661     JavaThreadState save_state = thread_state();
 662 
 663     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 664       // If the thread's state is _thread_blocked and this blocking
 665       // condition is known to be equivalent to a suspend, then we can
 666       // consider the thread to be externally suspended. This means that
 667       // the code that sets _thread_blocked has been modified to do
 668       // self-suspension if the blocking condition releases. We also
 669       // used to check for CONDVAR_WAIT here, but that is now covered by
 670       // the _thread_blocked with self-suspension check.
 671       //
 672       // Return true since we wouldn't be here unless there was still an
 673       // external suspend request.
 674       *bits |= 0x00001000;
 675       return true;
 676     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 677       // Threads running native code will self-suspend on native==>VM/Java
 678       // transitions. If its stack is walkable (should always be the case
 679       // unless this function is called before the actual java_suspend()
 680       // call), then the wait is done.
 681       *bits |= 0x00002000;
 682       return true;
 683     } else if (!called_by_wait && !did_trans_retry &&
 684                save_state == _thread_in_native_trans &&
 685                frame_anchor()->walkable()) {
 686       // The thread is transitioning from thread_in_native to another
 687       // thread state. check_safepoint_and_suspend_for_native_trans()
 688       // will force the thread to self-suspend. If it hasn't gotten
 689       // there yet we may have caught the thread in-between the native
 690       // code check above and the self-suspend. Lucky us. If we were
 691       // called by wait_for_ext_suspend_completion(), then it
 692       // will be doing the retries so we don't have to.
 693       //
 694       // Since we use the saved thread state in the if-statement above,
 695       // there is a chance that the thread has already transitioned to
 696       // _thread_blocked by the time we get here. In that case, we will
 697       // make a single unnecessary pass through the logic below. This
 698       // doesn't hurt anything since we still do the trans retry.
 699 
 700       *bits |= 0x00004000;
 701 
 702       // Once the thread leaves thread_in_native_trans for another
 703       // thread state, we break out of this retry loop. We shouldn't
 704       // need this flag to prevent us from getting back here, but
 705       // sometimes paranoia is good.
 706       did_trans_retry = true;
 707 
 708       // We wait for the thread to transition to a more usable state.
 709       for (int i = 1; i <= SuspendRetryCount; i++) {
 710         // We used to do an "os::yield_all(i)" call here with the intention
 711         // that yielding would increase on each retry. However, the parameter
 712         // is ignored on Linux which means the yield didn't scale up. Waiting
 713         // on the SR_lock below provides a much more predictable scale up for
 714         // the delay. It also provides a simple/direct point to check for any
 715         // safepoint requests from the VMThread
 716 
 717         // temporarily drops SR_lock while doing wait with safepoint check
 718         // (if we're a JavaThread - the WatcherThread can also call this)
 719         // and increase delay with each retry
 720         if (Thread::current()->is_Java_thread()) {
 721           SR_lock()->wait(i * delay);
 722         } else {
 723           SR_lock()->wait_without_safepoint_check(i * delay);
 724         }
 725 
 726         // check the actual thread state instead of what we saved above
 727         if (thread_state() != _thread_in_native_trans) {
 728           // the thread has transitioned to another thread state so
 729           // try all the checks (except this one) one more time.
 730           do_trans_retry = true;
 731           break;
 732         }
 733       } // end retry loop
 734 
 735 
 736     }
 737   } while (do_trans_retry);
 738 
 739   *bits |= 0x00000010;
 740   return false;
 741 }
 742 
 743 // Wait for an external suspend request to complete (or be cancelled).
 744 // Returns true if the thread is externally suspended and false otherwise.
 745 //
 746 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 747                                                  uint32_t *bits) {
 748   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 749                              false /* !called_by_wait */, bits);
 750 
 751   // local flag copies to minimize SR_lock hold time
 752   bool is_suspended;
 753   bool pending;
 754   uint32_t reset_bits;
 755 
 756   // set a marker so is_ext_suspend_completed() knows we are the caller
 757   *bits |= 0x00010000;
 758 
 759   // We use reset_bits to reinitialize the bits value at the top of
 760   // each retry loop. This allows the caller to make use of any
 761   // unused bits for their own marking purposes.
 762   reset_bits = *bits;
 763 
 764   {
 765     MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 766     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 767                                             delay, bits);
 768     pending = is_external_suspend();
 769   }
 770   // must release SR_lock to allow suspension to complete
 771 
 772   if (!pending) {
 773     // A cancelled suspend request is the only false return from
 774     // is_ext_suspend_completed() that keeps us from entering the
 775     // retry loop.
 776     *bits |= 0x00020000;
 777     return false;
 778   }
 779 
 780   if (is_suspended) {
 781     *bits |= 0x00040000;
 782     return true;
 783   }
 784 
 785   for (int i = 1; i <= retries; i++) {
 786     *bits = reset_bits;  // reinit to only track last retry
 787 
 788     // We used to do an "os::yield_all(i)" call here with the intention
 789     // that yielding would increase on each retry. However, the parameter
 790     // is ignored on Linux which means the yield didn't scale up. Waiting
 791     // on the SR_lock below provides a much more predictable scale up for
 792     // the delay. It also provides a simple/direct point to check for any
 793     // safepoint requests from the VMThread
 794 
 795     {
 796       Thread* t = Thread::current();
 797       MonitorLocker ml(SR_lock(),
 798                        t->is_Java_thread() ? Mutex::_safepoint_check_flag : Mutex::_no_safepoint_check_flag);
 799       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 800       // can also call this)  and increase delay with each retry
 801       ml.wait(i * delay);
 802 
 803       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 804                                               delay, bits);
 805 
 806       // It is possible for the external suspend request to be cancelled
 807       // (by a resume) before the actual suspend operation is completed.
 808       // Refresh our local copy to see if we still need to wait.
 809       pending = is_external_suspend();
 810     }
 811 
 812     if (!pending) {
 813       // A cancelled suspend request is the only false return from
 814       // is_ext_suspend_completed() that keeps us from staying in the
 815       // retry loop.
 816       *bits |= 0x00080000;
 817       return false;
 818     }
 819 
 820     if (is_suspended) {
 821       *bits |= 0x00100000;
 822       return true;
 823     }
 824   } // end retry loop
 825 
 826   // thread did not suspend after all our retries
 827   *bits |= 0x00200000;
 828   return false;
 829 }
 830 
 831 // Called from API entry points which perform stack walking. If the
 832 // associated JavaThread is the current thread, then wait_for_suspend
 833 // is not used. Otherwise, it determines if we should wait for the
 834 // "other" thread to complete external suspension. (NOTE: in future
 835 // releases the suspension mechanism should be reimplemented so this
 836 // is not necessary.)
 837 //
 838 bool
 839 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 840   if (this != JavaThread::current()) {
 841     // "other" threads require special handling.
 842     if (wait_for_suspend) {
 843       // We are allowed to wait for the external suspend to complete
 844       // so give the other thread a chance to get suspended.
 845       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 846                                            SuspendRetryDelay, bits)) {
 847         // Didn't make it so let the caller know.
 848         return false;
 849       }
 850     }
 851     // We aren't allowed to wait for the external suspend to complete
 852     // so if the other thread isn't externally suspended we need to
 853     // let the caller know.
 854     else if (!is_ext_suspend_completed_with_lock(bits)) {
 855       return false;
 856     }
 857   }
 858 
 859   return true;
 860 }
 861 
 862 void Thread::interrupt(Thread* thread) {
 863   debug_only(check_for_dangling_thread_pointer(thread);)
 864   os::interrupt(thread);
 865 }
 866 
 867 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 868   debug_only(check_for_dangling_thread_pointer(thread);)
 869   // Note:  If clear_interrupted==false, this simply fetches and
 870   // returns the value of the field osthread()->interrupted().
 871   return os::is_interrupted(thread, clear_interrupted);
 872 }
 873 
 874 
 875 // GC Support
 876 bool Thread::claim_par_threads_do(uintx claim_token) {
 877   uintx token = _threads_do_token;
 878   if (token != claim_token) {
 879     uintx res = Atomic::cmpxchg(claim_token, &_threads_do_token, token);
 880     if (res == token) {
 881       return true;
 882     }
 883     guarantee(res == claim_token, "invariant");
 884   }
 885   return false;
 886 }
 887 
 888 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 889   active_handles()->oops_do(f);
 890   // Do oop for ThreadShadow
 891   f->do_oop((oop*)&_pending_exception);
 892   handle_area()->oops_do(f);
 893 
 894   // We scan thread local monitor lists here, and the remaining global
 895   // monitors in ObjectSynchronizer::oops_do().
 896   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 897 }
 898 
 899 void Thread::metadata_handles_do(void f(Metadata*)) {
 900   // Only walk the Handles in Thread.
 901   if (metadata_handles() != NULL) {
 902     for (int i = 0; i< metadata_handles()->length(); i++) {
 903       f(metadata_handles()->at(i));
 904     }
 905   }
 906 }
 907 
 908 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 909   // get_priority assumes osthread initialized
 910   if (osthread() != NULL) {
 911     int os_prio;
 912     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 913       st->print("os_prio=%d ", os_prio);
 914     }
 915 
 916     st->print("cpu=%.2fms ",
 917               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 918               );
 919     st->print("elapsed=%.2fs ",
 920               _statistical_info.getElapsedTime() / 1000.0
 921               );
 922     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 923       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 924       st->print("allocated=" SIZE_FORMAT "%s ",
 925                 byte_size_in_proper_unit(allocated_bytes),
 926                 proper_unit_for_byte_size(allocated_bytes)
 927                 );
 928       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 929     }
 930 
 931     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 932     osthread()->print_on(st);
 933   }
 934   ThreadsSMRSupport::print_info_on(this, st);
 935   st->print(" ");
 936   debug_only(if (WizardMode) print_owned_locks_on(st);)
 937 }
 938 
 939 void Thread::print() const { print_on(tty); }
 940 
 941 // Thread::print_on_error() is called by fatal error handler. Don't use
 942 // any lock or allocate memory.
 943 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 944   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 945 
 946   if (is_VM_thread())                 { st->print("VMThread"); }
 947   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 948   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 949   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 950   else                                { st->print("Thread"); }
 951 
 952   if (is_Named_thread()) {
 953     st->print(" \"%s\"", name());
 954   }
 955 
 956   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 957             p2i(stack_end()), p2i(stack_base()));
 958 
 959   if (osthread()) {
 960     st->print(" [id=%d]", osthread()->thread_id());
 961   }
 962 
 963   ThreadsSMRSupport::print_info_on(this, st);
 964 }
 965 
 966 void Thread::print_value_on(outputStream* st) const {
 967   if (is_Named_thread()) {
 968     st->print(" \"%s\" ", name());
 969   }
 970   st->print(INTPTR_FORMAT, p2i(this));   // print address
 971 }
 972 
 973 #ifdef ASSERT
 974 void Thread::print_owned_locks_on(outputStream* st) const {
 975   Monitor *cur = _owned_locks;
 976   if (cur == NULL) {
 977     st->print(" (no locks) ");
 978   } else {
 979     st->print_cr(" Locks owned:");
 980     while (cur) {
 981       cur->print_on(st);
 982       cur = cur->next();
 983     }
 984   }
 985 }
 986 
 987 // Checks safepoint allowed and clears unhandled oops at potential safepoints.
 988 void Thread::check_possible_safepoint() {
 989   if (!is_Java_thread()) return;
 990 
 991   if (_no_safepoint_count > 0) {
 992     fatal("Possible safepoint reached by thread that does not allow it");
 993   }
 994 #ifdef CHECK_UNHANDLED_OOPS
 995   // Clear unhandled oops in JavaThreads so we get a crash right away.
 996   clear_unhandled_oops();
 997 #endif // CHECK_UNHANDLED_OOPS
 998 }
 999 
1000 // The flag: potential_vm_operation notifies if this particular safepoint state could potentially
1001 // invoke the vm-thread (e.g., an oop allocation). In that case, we also have to make sure that
1002 // no locks which allow_vm_block's are held
1003 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
1004   if (!is_Java_thread()) return;
1005 
1006   check_possible_safepoint();
1007 
1008   if (((JavaThread*)this)->thread_state() != _thread_in_vm) {
1009     fatal("LEAF method calling lock?");
1010   }
1011 
1012   if (potential_vm_operation && !Universe::is_bootstrapping()) {
1013     // Make sure we do not hold any locks that the VM thread also uses.
1014     // This could potentially lead to deadlocks
1015     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
1016       // Threads_lock is special, since the safepoint synchronization will not start before this is
1017       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
1018       // since it is used to transfer control between JavaThreads and the VMThread
1019       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
1020       if ((cur->allow_vm_block() &&
1021            cur != Threads_lock &&
1022            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
1023            cur != VMOperationRequest_lock &&
1024            cur != VMOperationQueue_lock) ||
1025            cur->rank() == Mutex::special) {
1026         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
1027       }
1028     }
1029   }
1030 
1031   if (GCALotAtAllSafepoints) {
1032     // We could enter a safepoint here and thus have a gc
1033     InterfaceSupport::check_gc_alot();
1034   }
1035 }
1036 #endif // ASSERT
1037 
1038 bool Thread::is_in_stack(address adr) const {
1039   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1040   address end = os::current_stack_pointer();
1041   // Allow non Java threads to call this without stack_base
1042   if (_stack_base == NULL) return true;
1043   if (stack_base() >= adr && adr >= end) return true;
1044 
1045   return false;
1046 }
1047 
1048 bool Thread::is_in_usable_stack(address adr) const {
1049   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1050   size_t usable_stack_size = _stack_size - stack_guard_size;
1051 
1052   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1053 }
1054 
1055 
1056 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1057 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1058 // used for compilation in the future. If that change is made, the need for these methods
1059 // should be revisited, and they should be removed if possible.
1060 
1061 bool Thread::is_lock_owned(address adr) const {
1062   return on_local_stack(adr);
1063 }
1064 
1065 bool Thread::set_as_starting_thread() {
1066   assert(_starting_thread == NULL, "already initialized: "
1067          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1068   // NOTE: this must be called inside the main thread.
1069   DEBUG_ONLY(_starting_thread = this;)
1070   return os::create_main_thread((JavaThread*)this);
1071 }
1072 
1073 static void initialize_class(Symbol* class_name, TRAPS) {
1074   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1075   InstanceKlass::cast(klass)->initialize(CHECK);
1076 }
1077 
1078 
1079 // Creates the initial ThreadGroup
1080 static Handle create_initial_thread_group(TRAPS) {
1081   Handle system_instance = JavaCalls::construct_new_instance(
1082                             SystemDictionary::ThreadGroup_klass(),
1083                             vmSymbols::void_method_signature(),
1084                             CHECK_NH);
1085   Universe::set_system_thread_group(system_instance());
1086 
1087   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1088   Handle main_instance = JavaCalls::construct_new_instance(
1089                             SystemDictionary::ThreadGroup_klass(),
1090                             vmSymbols::threadgroup_string_void_signature(),
1091                             system_instance,
1092                             string,
1093                             CHECK_NH);
1094   return main_instance;
1095 }
1096 
1097 // Creates the initial Thread
1098 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1099                                  TRAPS) {
1100   InstanceKlass* ik = SystemDictionary::Thread_klass();
1101   assert(ik->is_initialized(), "must be");
1102   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1103 
1104   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1105   // constructor calls Thread.current(), which must be set here for the
1106   // initial thread.
1107   java_lang_Thread::set_thread(thread_oop(), thread);
1108   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1109   thread->set_threadObj(thread_oop());
1110 
1111   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1112 
1113   JavaValue result(T_VOID);
1114   JavaCalls::call_special(&result, thread_oop,
1115                           ik,
1116                           vmSymbols::object_initializer_name(),
1117                           vmSymbols::threadgroup_string_void_signature(),
1118                           thread_group,
1119                           string,
1120                           CHECK_NULL);
1121   return thread_oop();
1122 }
1123 
1124 char java_runtime_name[128] = "";
1125 char java_runtime_version[128] = "";
1126 
1127 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1128 static const char* get_java_runtime_name(TRAPS) {
1129   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1130                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1131   fieldDescriptor fd;
1132   bool found = k != NULL &&
1133                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1134                                                         vmSymbols::string_signature(), &fd);
1135   if (found) {
1136     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1137     if (name_oop == NULL) {
1138       return NULL;
1139     }
1140     const char* name = java_lang_String::as_utf8_string(name_oop,
1141                                                         java_runtime_name,
1142                                                         sizeof(java_runtime_name));
1143     return name;
1144   } else {
1145     return NULL;
1146   }
1147 }
1148 
1149 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1150 static const char* get_java_runtime_version(TRAPS) {
1151   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1152                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1153   fieldDescriptor fd;
1154   bool found = k != NULL &&
1155                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1156                                                         vmSymbols::string_signature(), &fd);
1157   if (found) {
1158     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1159     if (name_oop == NULL) {
1160       return NULL;
1161     }
1162     const char* name = java_lang_String::as_utf8_string(name_oop,
1163                                                         java_runtime_version,
1164                                                         sizeof(java_runtime_version));
1165     return name;
1166   } else {
1167     return NULL;
1168   }
1169 }
1170 
1171 // General purpose hook into Java code, run once when the VM is initialized.
1172 // The Java library method itself may be changed independently from the VM.
1173 static void call_postVMInitHook(TRAPS) {
1174   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1175   if (klass != NULL) {
1176     JavaValue result(T_VOID);
1177     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1178                            vmSymbols::void_method_signature(),
1179                            CHECK);
1180   }
1181 }
1182 
1183 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1184                                     bool daemon, TRAPS) {
1185   assert(thread_group.not_null(), "thread group should be specified");
1186   assert(threadObj() == NULL, "should only create Java thread object once");
1187 
1188   InstanceKlass* ik = SystemDictionary::Thread_klass();
1189   assert(ik->is_initialized(), "must be");
1190   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1191 
1192   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1193   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1194   // constructor calls Thread.current(), which must be set here.
1195   java_lang_Thread::set_thread(thread_oop(), this);
1196   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1197   set_threadObj(thread_oop());
1198 
1199   JavaValue result(T_VOID);
1200   if (thread_name != NULL) {
1201     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1202     // Thread gets assigned specified name and null target
1203     JavaCalls::call_special(&result,
1204                             thread_oop,
1205                             ik,
1206                             vmSymbols::object_initializer_name(),
1207                             vmSymbols::threadgroup_string_void_signature(),
1208                             thread_group,
1209                             name,
1210                             THREAD);
1211   } else {
1212     // Thread gets assigned name "Thread-nnn" and null target
1213     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1214     JavaCalls::call_special(&result,
1215                             thread_oop,
1216                             ik,
1217                             vmSymbols::object_initializer_name(),
1218                             vmSymbols::threadgroup_runnable_void_signature(),
1219                             thread_group,
1220                             Handle(),
1221                             THREAD);
1222   }
1223 
1224 
1225   if (daemon) {
1226     java_lang_Thread::set_daemon(thread_oop());
1227   }
1228 
1229   if (HAS_PENDING_EXCEPTION) {
1230     return;
1231   }
1232 
1233   Klass* group =  SystemDictionary::ThreadGroup_klass();
1234   Handle threadObj(THREAD, this->threadObj());
1235 
1236   JavaCalls::call_special(&result,
1237                           thread_group,
1238                           group,
1239                           vmSymbols::add_method_name(),
1240                           vmSymbols::thread_void_signature(),
1241                           threadObj,          // Arg 1
1242                           THREAD);
1243 }
1244 
1245 // List of all NonJavaThreads and safe iteration over that list.
1246 
1247 class NonJavaThread::List {
1248 public:
1249   NonJavaThread* volatile _head;
1250   SingleWriterSynchronizer _protect;
1251 
1252   List() : _head(NULL), _protect() {}
1253 };
1254 
1255 NonJavaThread::List NonJavaThread::_the_list;
1256 
1257 NonJavaThread::Iterator::Iterator() :
1258   _protect_enter(_the_list._protect.enter()),
1259   _current(OrderAccess::load_acquire(&_the_list._head))
1260 {}
1261 
1262 NonJavaThread::Iterator::~Iterator() {
1263   _the_list._protect.exit(_protect_enter);
1264 }
1265 
1266 void NonJavaThread::Iterator::step() {
1267   assert(!end(), "precondition");
1268   _current = OrderAccess::load_acquire(&_current->_next);
1269 }
1270 
1271 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1272   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1273 }
1274 
1275 NonJavaThread::~NonJavaThread() { }
1276 
1277 void NonJavaThread::add_to_the_list() {
1278   MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1279   // Initialize BarrierSet-related data before adding to list.
1280   BarrierSet::barrier_set()->on_thread_attach(this);
1281   OrderAccess::release_store(&_next, _the_list._head);
1282   OrderAccess::release_store(&_the_list._head, this);
1283 }
1284 
1285 void NonJavaThread::remove_from_the_list() {
1286   {
1287     MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1288     // Cleanup BarrierSet-related data before removing from list.
1289     BarrierSet::barrier_set()->on_thread_detach(this);
1290     NonJavaThread* volatile* p = &_the_list._head;
1291     for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1292       if (t == this) {
1293         *p = _next;
1294         break;
1295       }
1296     }
1297   }
1298   // Wait for any in-progress iterators.  Concurrent synchronize is not
1299   // allowed, so do it while holding a dedicated lock.  Outside and distinct
1300   // from NJTList_lock in case an iteration attempts to lock it.
1301   MutexLocker ml(NonJavaThreadsListSync_lock, Mutex::_no_safepoint_check_flag);
1302   _the_list._protect.synchronize();
1303   _next = NULL;                 // Safe to drop the link now.
1304 }
1305 
1306 void NonJavaThread::pre_run() {
1307   add_to_the_list();
1308 
1309   // This is slightly odd in that NamedThread is a subclass, but
1310   // in fact name() is defined in Thread
1311   assert(this->name() != NULL, "thread name was not set before it was started");
1312   this->set_native_thread_name(this->name());
1313 }
1314 
1315 void NonJavaThread::post_run() {
1316   JFR_ONLY(Jfr::on_thread_exit(this);)
1317   remove_from_the_list();
1318   // Ensure thread-local-storage is cleared before termination.
1319   Thread::clear_thread_current();
1320 }
1321 
1322 // NamedThread --  non-JavaThread subclasses with multiple
1323 // uniquely named instances should derive from this.
1324 NamedThread::NamedThread() :
1325   NonJavaThread(),
1326   _name(NULL),
1327   _processed_thread(NULL),
1328   _gc_id(GCId::undefined())
1329 {}
1330 
1331 NamedThread::~NamedThread() {
1332   if (_name != NULL) {
1333     FREE_C_HEAP_ARRAY(char, _name);
1334     _name = NULL;
1335   }
1336 }
1337 
1338 void NamedThread::set_name(const char* format, ...) {
1339   guarantee(_name == NULL, "Only get to set name once.");
1340   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1341   guarantee(_name != NULL, "alloc failure");
1342   va_list ap;
1343   va_start(ap, format);
1344   jio_vsnprintf(_name, max_name_len, format, ap);
1345   va_end(ap);
1346 }
1347 
1348 void NamedThread::print_on(outputStream* st) const {
1349   st->print("\"%s\" ", name());
1350   Thread::print_on(st);
1351   st->cr();
1352 }
1353 
1354 
1355 // ======= WatcherThread ========
1356 
1357 // The watcher thread exists to simulate timer interrupts.  It should
1358 // be replaced by an abstraction over whatever native support for
1359 // timer interrupts exists on the platform.
1360 
1361 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1362 bool WatcherThread::_startable = false;
1363 volatile bool  WatcherThread::_should_terminate = false;
1364 
1365 WatcherThread::WatcherThread() : NonJavaThread() {
1366   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1367   if (os::create_thread(this, os::watcher_thread)) {
1368     _watcher_thread = this;
1369 
1370     // Set the watcher thread to the highest OS priority which should not be
1371     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1372     // is created. The only normal thread using this priority is the reference
1373     // handler thread, which runs for very short intervals only.
1374     // If the VMThread's priority is not lower than the WatcherThread profiling
1375     // will be inaccurate.
1376     os::set_priority(this, MaxPriority);
1377     if (!DisableStartThread) {
1378       os::start_thread(this);
1379     }
1380   }
1381 }
1382 
1383 int WatcherThread::sleep() const {
1384   // The WatcherThread does not participate in the safepoint protocol
1385   // for the PeriodicTask_lock because it is not a JavaThread.
1386   MonitorLocker ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1387 
1388   if (_should_terminate) {
1389     // check for termination before we do any housekeeping or wait
1390     return 0;  // we did not sleep.
1391   }
1392 
1393   // remaining will be zero if there are no tasks,
1394   // causing the WatcherThread to sleep until a task is
1395   // enrolled
1396   int remaining = PeriodicTask::time_to_wait();
1397   int time_slept = 0;
1398 
1399   // we expect this to timeout - we only ever get unparked when
1400   // we should terminate or when a new task has been enrolled
1401   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1402 
1403   jlong time_before_loop = os::javaTimeNanos();
1404 
1405   while (true) {
1406     bool timedout = ml.wait(remaining);
1407     jlong now = os::javaTimeNanos();
1408 
1409     if (remaining == 0) {
1410       // if we didn't have any tasks we could have waited for a long time
1411       // consider the time_slept zero and reset time_before_loop
1412       time_slept = 0;
1413       time_before_loop = now;
1414     } else {
1415       // need to recalculate since we might have new tasks in _tasks
1416       time_slept = (int) ((now - time_before_loop) / 1000000);
1417     }
1418 
1419     // Change to task list or spurious wakeup of some kind
1420     if (timedout || _should_terminate) {
1421       break;
1422     }
1423 
1424     remaining = PeriodicTask::time_to_wait();
1425     if (remaining == 0) {
1426       // Last task was just disenrolled so loop around and wait until
1427       // another task gets enrolled
1428       continue;
1429     }
1430 
1431     remaining -= time_slept;
1432     if (remaining <= 0) {
1433       break;
1434     }
1435   }
1436 
1437   return time_slept;
1438 }
1439 
1440 void WatcherThread::run() {
1441   assert(this == watcher_thread(), "just checking");
1442 
1443   this->set_active_handles(JNIHandleBlock::allocate_block());
1444   while (true) {
1445     assert(watcher_thread() == Thread::current(), "thread consistency check");
1446     assert(watcher_thread() == this, "thread consistency check");
1447 
1448     // Calculate how long it'll be until the next PeriodicTask work
1449     // should be done, and sleep that amount of time.
1450     int time_waited = sleep();
1451 
1452     if (VMError::is_error_reported()) {
1453       // A fatal error has happened, the error handler(VMError::report_and_die)
1454       // should abort JVM after creating an error log file. However in some
1455       // rare cases, the error handler itself might deadlock. Here periodically
1456       // check for error reporting timeouts, and if it happens, just proceed to
1457       // abort the VM.
1458 
1459       // This code is in WatcherThread because WatcherThread wakes up
1460       // periodically so the fatal error handler doesn't need to do anything;
1461       // also because the WatcherThread is less likely to crash than other
1462       // threads.
1463 
1464       for (;;) {
1465         // Note: we use naked sleep in this loop because we want to avoid using
1466         // any kind of VM infrastructure which may be broken at this point.
1467         if (VMError::check_timeout()) {
1468           // We hit error reporting timeout. Error reporting was interrupted and
1469           // will be wrapping things up now (closing files etc). Give it some more
1470           // time, then quit the VM.
1471           os::naked_short_sleep(200);
1472           // Print a message to stderr.
1473           fdStream err(defaultStream::output_fd());
1474           err.print_raw_cr("# [ timer expired, abort... ]");
1475           // skip atexit/vm_exit/vm_abort hooks
1476           os::die();
1477         }
1478 
1479         // Wait a second, then recheck for timeout.
1480         os::naked_short_sleep(999);
1481       }
1482     }
1483 
1484     if (_should_terminate) {
1485       // check for termination before posting the next tick
1486       break;
1487     }
1488 
1489     PeriodicTask::real_time_tick(time_waited);
1490   }
1491 
1492   // Signal that it is terminated
1493   {
1494     MutexLocker mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1495     _watcher_thread = NULL;
1496     Terminator_lock->notify_all();
1497   }
1498 }
1499 
1500 void WatcherThread::start() {
1501   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1502 
1503   if (watcher_thread() == NULL && _startable) {
1504     _should_terminate = false;
1505     // Create the single instance of WatcherThread
1506     new WatcherThread();
1507   }
1508 }
1509 
1510 void WatcherThread::make_startable() {
1511   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1512   _startable = true;
1513 }
1514 
1515 void WatcherThread::stop() {
1516   {
1517     // Follow normal safepoint aware lock enter protocol since the
1518     // WatcherThread is stopped by another JavaThread.
1519     MutexLocker ml(PeriodicTask_lock);
1520     _should_terminate = true;
1521 
1522     WatcherThread* watcher = watcher_thread();
1523     if (watcher != NULL) {
1524       // unpark the WatcherThread so it can see that it should terminate
1525       watcher->unpark();
1526     }
1527   }
1528 
1529   MonitorLocker mu(Terminator_lock);
1530 
1531   while (watcher_thread() != NULL) {
1532     // This wait should make safepoint checks, wait without a timeout,
1533     // and wait as a suspend-equivalent condition.
1534     mu.wait(0, Mutex::_as_suspend_equivalent_flag);
1535   }
1536 }
1537 
1538 void WatcherThread::unpark() {
1539   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1540   PeriodicTask_lock->notify();
1541 }
1542 
1543 void WatcherThread::print_on(outputStream* st) const {
1544   st->print("\"%s\" ", name());
1545   Thread::print_on(st);
1546   st->cr();
1547 }
1548 
1549 // ======= JavaThread ========
1550 
1551 #if INCLUDE_JVMCI
1552 
1553 jlong* JavaThread::_jvmci_old_thread_counters;
1554 
1555 bool jvmci_counters_include(JavaThread* thread) {
1556   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1557 }
1558 
1559 void JavaThread::collect_counters(jlong* array, int length) {
1560   assert(length == JVMCICounterSize, "wrong value");
1561   for (int i = 0; i < length; i++) {
1562     array[i] = _jvmci_old_thread_counters[i];
1563   }
1564   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1565     if (jvmci_counters_include(tp)) {
1566       for (int i = 0; i < length; i++) {
1567         array[i] += tp->_jvmci_counters[i];
1568       }
1569     }
1570   }
1571 }
1572 
1573 // Attempt to enlarge the array for per thread counters.
1574 jlong* resize_counters_array(jlong* old_counters, int current_size, int new_size) {
1575   jlong* new_counters = NEW_C_HEAP_ARRAY(jlong, new_size, mtJVMCI);
1576   if (new_counters == NULL) {
1577     return NULL;
1578   }
1579   if (old_counters == NULL) {
1580     old_counters = new_counters;
1581     memset(old_counters, 0, sizeof(jlong) * new_size);
1582   } else {
1583     for (int i = 0; i < MIN2((int) current_size, new_size); i++) {
1584       new_counters[i] = old_counters[i];
1585     }
1586     if (new_size > current_size) {
1587       memset(new_counters + current_size, 0, sizeof(jlong) * (new_size - current_size));
1588     }
1589     FREE_C_HEAP_ARRAY(jlong, old_counters);
1590   }
1591   return new_counters;
1592 }
1593 
1594 // Attempt to enlarge the array for per thread counters.
1595 bool JavaThread::resize_counters(int current_size, int new_size) {
1596   jlong* new_counters = resize_counters_array(_jvmci_counters, current_size, new_size);
1597   if (new_counters == NULL) {
1598     return false;
1599   } else {
1600     _jvmci_counters = new_counters;
1601     return true;
1602   }
1603 }
1604 
1605 class VM_JVMCIResizeCounters : public VM_Operation {
1606  private:
1607   int _new_size;
1608   bool _failed;
1609 
1610  public:
1611   VM_JVMCIResizeCounters(int new_size) : _new_size(new_size), _failed(false) { }
1612   VMOp_Type type()                  const        { return VMOp_JVMCIResizeCounters; }
1613   bool allow_nested_vm_operations() const        { return true; }
1614   void doit() {
1615     // Resize the old thread counters array
1616     jlong* new_counters = resize_counters_array(JavaThread::_jvmci_old_thread_counters, JVMCICounterSize, _new_size);
1617     if (new_counters == NULL) {
1618       _failed = true;
1619       return;
1620     } else {
1621       JavaThread::_jvmci_old_thread_counters = new_counters;
1622     }
1623 
1624     // Now resize each threads array
1625     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1626       if (!tp->resize_counters(JVMCICounterSize, _new_size)) {
1627         _failed = true;
1628         break;
1629       }
1630     }
1631     if (!_failed) {
1632       JVMCICounterSize = _new_size;
1633     }
1634   }
1635 
1636   bool failed() { return _failed; }
1637 };
1638 
1639 bool JavaThread::resize_all_jvmci_counters(int new_size) {
1640   VM_JVMCIResizeCounters op(new_size);
1641   VMThread::execute(&op);
1642   return !op.failed();
1643 }
1644 
1645 #endif // INCLUDE_JVMCI
1646 
1647 // A JavaThread is a normal Java thread
1648 
1649 void JavaThread::initialize() {
1650   // Initialize fields
1651 
1652   set_saved_exception_pc(NULL);
1653   set_threadObj(NULL);
1654   _anchor.clear();
1655   set_entry_point(NULL);
1656   set_jni_functions(jni_functions());
1657   set_callee_target(NULL);
1658   set_vm_result(NULL);
1659   set_vm_result_2(NULL);
1660   set_vframe_array_head(NULL);
1661   set_vframe_array_last(NULL);
1662   set_deferred_locals(NULL);
1663   set_deopt_mark(NULL);
1664   set_deopt_compiled_method(NULL);
1665   set_monitor_chunks(NULL);
1666   _on_thread_list = false;
1667   set_thread_state(_thread_new);
1668   _terminated = _not_terminated;
1669   _array_for_gc = NULL;
1670   _suspend_equivalent = false;
1671   _in_deopt_handler = 0;
1672   _doing_unsafe_access = false;
1673   _stack_guard_state = stack_guard_unused;
1674 #if INCLUDE_JVMCI
1675   _pending_monitorenter = false;
1676   _pending_deoptimization = -1;
1677   _pending_failed_speculation = 0;
1678   _pending_transfer_to_interpreter = false;
1679   _in_retryable_allocation = false;
1680   _jvmci._alternate_call_target = NULL;
1681   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1682   _jvmci_counters = NULL;
1683   if (JVMCICounterSize > 0) {
1684     resize_counters(0, (int) JVMCICounterSize);
1685   }
1686 #endif // INCLUDE_JVMCI
1687   _reserved_stack_activation = NULL;  // stack base not known yet
1688   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1689   _exception_pc  = 0;
1690   _exception_handler_pc = 0;
1691   _is_method_handle_return = 0;
1692   _jvmti_thread_state= NULL;
1693   _should_post_on_exceptions_flag = JNI_FALSE;
1694   _interp_only_mode    = 0;
1695   _special_runtime_exit_condition = _no_async_condition;
1696   _pending_async_exception = NULL;
1697   _thread_stat = NULL;
1698   _thread_stat = new ThreadStatistics();
1699   _jni_active_critical = 0;
1700   _pending_jni_exception_check_fn = NULL;
1701   _do_not_unlock_if_synchronized = false;
1702   _cached_monitor_info = NULL;
1703   _parker = Parker::Allocate(this);
1704 
1705   // Setup safepoint state info for this thread
1706   ThreadSafepointState::create(this);
1707 
1708   debug_only(_java_call_counter = 0);
1709 
1710   // JVMTI PopFrame support
1711   _popframe_condition = popframe_inactive;
1712   _popframe_preserved_args = NULL;
1713   _popframe_preserved_args_size = 0;
1714   _frames_to_pop_failed_realloc = 0;
1715 
1716   if (SafepointMechanism::uses_thread_local_poll()) {
1717     SafepointMechanism::initialize_header(this);
1718   }
1719 
1720   _class_to_be_initialized = NULL;
1721 
1722   pd_initialize();
1723 }
1724 
1725 JavaThread::JavaThread(bool is_attaching_via_jni) :
1726                        Thread() {
1727   initialize();
1728   if (is_attaching_via_jni) {
1729     _jni_attach_state = _attaching_via_jni;
1730   } else {
1731     _jni_attach_state = _not_attaching_via_jni;
1732   }
1733   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1734 }
1735 
1736 bool JavaThread::reguard_stack(address cur_sp) {
1737   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1738       && _stack_guard_state != stack_guard_reserved_disabled) {
1739     return true; // Stack already guarded or guard pages not needed.
1740   }
1741 
1742   if (register_stack_overflow()) {
1743     // For those architectures which have separate register and
1744     // memory stacks, we must check the register stack to see if
1745     // it has overflowed.
1746     return false;
1747   }
1748 
1749   // Java code never executes within the yellow zone: the latter is only
1750   // there to provoke an exception during stack banging.  If java code
1751   // is executing there, either StackShadowPages should be larger, or
1752   // some exception code in c1, c2 or the interpreter isn't unwinding
1753   // when it should.
1754   guarantee(cur_sp > stack_reserved_zone_base(),
1755             "not enough space to reguard - increase StackShadowPages");
1756   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1757     enable_stack_yellow_reserved_zone();
1758     if (reserved_stack_activation() != stack_base()) {
1759       set_reserved_stack_activation(stack_base());
1760     }
1761   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1762     set_reserved_stack_activation(stack_base());
1763     enable_stack_reserved_zone();
1764   }
1765   return true;
1766 }
1767 
1768 bool JavaThread::reguard_stack(void) {
1769   return reguard_stack(os::current_stack_pointer());
1770 }
1771 
1772 
1773 void JavaThread::block_if_vm_exited() {
1774   if (_terminated == _vm_exited) {
1775     // _vm_exited is set at safepoint, and Threads_lock is never released
1776     // we will block here forever
1777     Threads_lock->lock();
1778     ShouldNotReachHere();
1779   }
1780 }
1781 
1782 
1783 // Remove this ifdef when C1 is ported to the compiler interface.
1784 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1785 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1786 
1787 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1788                        Thread() {
1789   initialize();
1790   _jni_attach_state = _not_attaching_via_jni;
1791   set_entry_point(entry_point);
1792   // Create the native thread itself.
1793   // %note runtime_23
1794   os::ThreadType thr_type = os::java_thread;
1795   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1796                                                      os::java_thread;
1797   os::create_thread(this, thr_type, stack_sz);
1798   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1799   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1800   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1801   // the exception consists of creating the exception object & initializing it, initialization
1802   // will leave the VM via a JavaCall and then all locks must be unlocked).
1803   //
1804   // The thread is still suspended when we reach here. Thread must be explicit started
1805   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1806   // by calling Threads:add. The reason why this is not done here, is because the thread
1807   // object must be fully initialized (take a look at JVM_Start)
1808 }
1809 
1810 JavaThread::~JavaThread() {
1811 
1812   // JSR166 -- return the parker to the free list
1813   Parker::Release(_parker);
1814   _parker = NULL;
1815 
1816   // Free any remaining  previous UnrollBlock
1817   vframeArray* old_array = vframe_array_last();
1818 
1819   if (old_array != NULL) {
1820     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1821     old_array->set_unroll_block(NULL);
1822     delete old_info;
1823     delete old_array;
1824   }
1825 
1826   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1827   if (deferred != NULL) {
1828     // This can only happen if thread is destroyed before deoptimization occurs.
1829     assert(deferred->length() != 0, "empty array!");
1830     do {
1831       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1832       deferred->remove_at(0);
1833       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1834       delete dlv;
1835     } while (deferred->length() != 0);
1836     delete deferred;
1837   }
1838 
1839   // All Java related clean up happens in exit
1840   ThreadSafepointState::destroy(this);
1841   if (_thread_stat != NULL) delete _thread_stat;
1842 
1843 #if INCLUDE_JVMCI
1844   if (JVMCICounterSize > 0) {
1845     if (jvmci_counters_include(this)) {
1846       for (int i = 0; i < JVMCICounterSize; i++) {
1847         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1848       }
1849     }
1850     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1851   }
1852 #endif // INCLUDE_JVMCI
1853 }
1854 
1855 
1856 // First JavaThread specific code executed by a new Java thread.
1857 void JavaThread::pre_run() {
1858   // empty - see comments in run()
1859 }
1860 
1861 // The main routine called by a new Java thread. This isn't overridden
1862 // by subclasses, instead different subclasses define a different "entry_point"
1863 // which defines the actual logic for that kind of thread.
1864 void JavaThread::run() {
1865   // initialize thread-local alloc buffer related fields
1866   this->initialize_tlab();
1867 
1868   // Used to test validity of stack trace backs.
1869   // This can't be moved into pre_run() else we invalidate
1870   // the requirement that thread_main_inner is lower on
1871   // the stack. Consequently all the initialization logic
1872   // stays here in run() rather than pre_run().
1873   this->record_base_of_stack_pointer();
1874 
1875   this->create_stack_guard_pages();
1876 
1877   this->cache_global_variables();
1878 
1879   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1880   // in the VM. Change thread state from _thread_new to _thread_in_vm
1881   ThreadStateTransition::transition(this, _thread_new, _thread_in_vm);
1882   // Before a thread is on the threads list it is always safe, so after leaving the
1883   // _thread_new we should emit a instruction barrier. The distance to modified code
1884   // from here is probably far enough, but this is consistent and safe.
1885   OrderAccess::cross_modify_fence();
1886 
1887   assert(JavaThread::current() == this, "sanity check");
1888   assert(!Thread::current()->owns_locks(), "sanity check");
1889 
1890   DTRACE_THREAD_PROBE(start, this);
1891 
1892   // This operation might block. We call that after all safepoint checks for a new thread has
1893   // been completed.
1894   this->set_active_handles(JNIHandleBlock::allocate_block());
1895 
1896   if (JvmtiExport::should_post_thread_life()) {
1897     JvmtiExport::post_thread_start(this);
1898 
1899   }
1900 
1901   // We call another function to do the rest so we are sure that the stack addresses used
1902   // from there will be lower than the stack base just computed.
1903   thread_main_inner();
1904 }
1905 
1906 void JavaThread::thread_main_inner() {
1907   assert(JavaThread::current() == this, "sanity check");
1908   assert(this->threadObj() != NULL, "just checking");
1909 
1910   // Execute thread entry point unless this thread has a pending exception
1911   // or has been stopped before starting.
1912   // Note: Due to JVM_StopThread we can have pending exceptions already!
1913   if (!this->has_pending_exception() &&
1914       !java_lang_Thread::is_stillborn(this->threadObj())) {
1915     {
1916       ResourceMark rm(this);
1917       this->set_native_thread_name(this->get_thread_name());
1918     }
1919     HandleMark hm(this);
1920     this->entry_point()(this, this);
1921   }
1922 
1923   DTRACE_THREAD_PROBE(stop, this);
1924 
1925   // Cleanup is handled in post_run()
1926 }
1927 
1928 // Shared teardown for all JavaThreads
1929 void JavaThread::post_run() {
1930   this->exit(false);
1931   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1932   // for any shared tear-down.
1933   this->smr_delete();
1934 }
1935 
1936 static void ensure_join(JavaThread* thread) {
1937   // We do not need to grab the Threads_lock, since we are operating on ourself.
1938   Handle threadObj(thread, thread->threadObj());
1939   assert(threadObj.not_null(), "java thread object must exist");
1940   ObjectLocker lock(threadObj, thread);
1941   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1942   thread->clear_pending_exception();
1943   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1944   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1945   // Clear the native thread instance - this makes isAlive return false and allows the join()
1946   // to complete once we've done the notify_all below
1947   java_lang_Thread::set_thread(threadObj(), NULL);
1948   lock.notify_all(thread);
1949   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1950   thread->clear_pending_exception();
1951 }
1952 
1953 static bool is_daemon(oop threadObj) {
1954   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
1955 }
1956 
1957 // For any new cleanup additions, please check to see if they need to be applied to
1958 // cleanup_failed_attach_current_thread as well.
1959 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1960   assert(this == JavaThread::current(), "thread consistency check");
1961 
1962   elapsedTimer _timer_exit_phase1;
1963   elapsedTimer _timer_exit_phase2;
1964   elapsedTimer _timer_exit_phase3;
1965   elapsedTimer _timer_exit_phase4;
1966 
1967   if (log_is_enabled(Debug, os, thread, timer)) {
1968     _timer_exit_phase1.start();
1969   }
1970 
1971   HandleMark hm(this);
1972   Handle uncaught_exception(this, this->pending_exception());
1973   this->clear_pending_exception();
1974   Handle threadObj(this, this->threadObj());
1975   assert(threadObj.not_null(), "Java thread object should be created");
1976 
1977   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1978   {
1979     EXCEPTION_MARK;
1980 
1981     CLEAR_PENDING_EXCEPTION;
1982   }
1983   if (!destroy_vm) {
1984     if (uncaught_exception.not_null()) {
1985       EXCEPTION_MARK;
1986       // Call method Thread.dispatchUncaughtException().
1987       Klass* thread_klass = SystemDictionary::Thread_klass();
1988       JavaValue result(T_VOID);
1989       JavaCalls::call_virtual(&result,
1990                               threadObj, thread_klass,
1991                               vmSymbols::dispatchUncaughtException_name(),
1992                               vmSymbols::throwable_void_signature(),
1993                               uncaught_exception,
1994                               THREAD);
1995       if (HAS_PENDING_EXCEPTION) {
1996         ResourceMark rm(this);
1997         jio_fprintf(defaultStream::error_stream(),
1998                     "\nException: %s thrown from the UncaughtExceptionHandler"
1999                     " in thread \"%s\"\n",
2000                     pending_exception()->klass()->external_name(),
2001                     get_thread_name());
2002         CLEAR_PENDING_EXCEPTION;
2003       }
2004     }
2005     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
2006 
2007     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
2008     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
2009     // is deprecated anyhow.
2010     if (!is_Compiler_thread()) {
2011       int count = 3;
2012       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
2013         EXCEPTION_MARK;
2014         JavaValue result(T_VOID);
2015         Klass* thread_klass = SystemDictionary::Thread_klass();
2016         JavaCalls::call_virtual(&result,
2017                                 threadObj, thread_klass,
2018                                 vmSymbols::exit_method_name(),
2019                                 vmSymbols::void_method_signature(),
2020                                 THREAD);
2021         CLEAR_PENDING_EXCEPTION;
2022       }
2023     }
2024     // notify JVMTI
2025     if (JvmtiExport::should_post_thread_life()) {
2026       JvmtiExport::post_thread_end(this);
2027     }
2028 
2029     // We have notified the agents that we are exiting, before we go on,
2030     // we must check for a pending external suspend request and honor it
2031     // in order to not surprise the thread that made the suspend request.
2032     while (true) {
2033       {
2034         MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2035         if (!is_external_suspend()) {
2036           set_terminated(_thread_exiting);
2037           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
2038           break;
2039         }
2040         // Implied else:
2041         // Things get a little tricky here. We have a pending external
2042         // suspend request, but we are holding the SR_lock so we
2043         // can't just self-suspend. So we temporarily drop the lock
2044         // and then self-suspend.
2045       }
2046 
2047       ThreadBlockInVM tbivm(this);
2048       java_suspend_self();
2049 
2050       // We're done with this suspend request, but we have to loop around
2051       // and check again. Eventually we will get SR_lock without a pending
2052       // external suspend request and will be able to mark ourselves as
2053       // exiting.
2054     }
2055     // no more external suspends are allowed at this point
2056   } else {
2057     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2058     // before_exit() has already posted JVMTI THREAD_END events
2059   }
2060 
2061   if (log_is_enabled(Debug, os, thread, timer)) {
2062     _timer_exit_phase1.stop();
2063     _timer_exit_phase2.start();
2064   }
2065 
2066   // Capture daemon status before the thread is marked as terminated.
2067   bool daemon = is_daemon(threadObj());
2068 
2069   // Notify waiters on thread object. This has to be done after exit() is called
2070   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2071   // group should have the destroyed bit set before waiters are notified).
2072   ensure_join(this);
2073   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2074 
2075   if (log_is_enabled(Debug, os, thread, timer)) {
2076     _timer_exit_phase2.stop();
2077     _timer_exit_phase3.start();
2078   }
2079   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2080   // held by this thread must be released. The spec does not distinguish
2081   // between JNI-acquired and regular Java monitors. We can only see
2082   // regular Java monitors here if monitor enter-exit matching is broken.
2083   //
2084   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2085   // ObjectSynchronizer::release_monitors_owned_by_thread().
2086   if (exit_type == jni_detach) {
2087     // Sanity check even though JNI DetachCurrentThread() would have
2088     // returned JNI_ERR if there was a Java frame. JavaThread exit
2089     // should be done executing Java code by the time we get here.
2090     assert(!this->has_last_Java_frame(),
2091            "should not have a Java frame when detaching or exiting");
2092     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2093     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2094   }
2095 
2096   // These things needs to be done while we are still a Java Thread. Make sure that thread
2097   // is in a consistent state, in case GC happens
2098   JFR_ONLY(Jfr::on_thread_exit(this);)
2099 
2100   if (active_handles() != NULL) {
2101     JNIHandleBlock* block = active_handles();
2102     set_active_handles(NULL);
2103     JNIHandleBlock::release_block(block);
2104   }
2105 
2106   if (free_handle_block() != NULL) {
2107     JNIHandleBlock* block = free_handle_block();
2108     set_free_handle_block(NULL);
2109     JNIHandleBlock::release_block(block);
2110   }
2111 
2112   // These have to be removed while this is still a valid thread.
2113   remove_stack_guard_pages();
2114 
2115   if (UseTLAB) {
2116     tlab().retire();
2117   }
2118 
2119   if (JvmtiEnv::environments_might_exist()) {
2120     JvmtiExport::cleanup_thread(this);
2121   }
2122 
2123   // We must flush any deferred card marks and other various GC barrier
2124   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2125   // before removing a thread from the list of active threads.
2126   BarrierSet::barrier_set()->on_thread_detach(this);
2127 
2128   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2129     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2130     os::current_thread_id());
2131 
2132   if (log_is_enabled(Debug, os, thread, timer)) {
2133     _timer_exit_phase3.stop();
2134     _timer_exit_phase4.start();
2135   }
2136   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2137   Threads::remove(this, daemon);
2138 
2139   if (log_is_enabled(Debug, os, thread, timer)) {
2140     _timer_exit_phase4.stop();
2141     ResourceMark rm(this);
2142     log_debug(os, thread, timer)("name='%s'"
2143                                  ", exit-phase1=" JLONG_FORMAT
2144                                  ", exit-phase2=" JLONG_FORMAT
2145                                  ", exit-phase3=" JLONG_FORMAT
2146                                  ", exit-phase4=" JLONG_FORMAT,
2147                                  get_thread_name(),
2148                                  _timer_exit_phase1.milliseconds(),
2149                                  _timer_exit_phase2.milliseconds(),
2150                                  _timer_exit_phase3.milliseconds(),
2151                                  _timer_exit_phase4.milliseconds());
2152   }
2153 }
2154 
2155 void JavaThread::cleanup_failed_attach_current_thread(bool is_daemon) {
2156   if (active_handles() != NULL) {
2157     JNIHandleBlock* block = active_handles();
2158     set_active_handles(NULL);
2159     JNIHandleBlock::release_block(block);
2160   }
2161 
2162   if (free_handle_block() != NULL) {
2163     JNIHandleBlock* block = free_handle_block();
2164     set_free_handle_block(NULL);
2165     JNIHandleBlock::release_block(block);
2166   }
2167 
2168   // These have to be removed while this is still a valid thread.
2169   remove_stack_guard_pages();
2170 
2171   if (UseTLAB) {
2172     tlab().retire();
2173   }
2174 
2175   BarrierSet::barrier_set()->on_thread_detach(this);
2176 
2177   Threads::remove(this, is_daemon);
2178   this->smr_delete();
2179 }
2180 
2181 JavaThread* JavaThread::active() {
2182   Thread* thread = Thread::current();
2183   if (thread->is_Java_thread()) {
2184     return (JavaThread*) thread;
2185   } else {
2186     assert(thread->is_VM_thread(), "this must be a vm thread");
2187     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2188     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2189     assert(ret->is_Java_thread(), "must be a Java thread");
2190     return ret;
2191   }
2192 }
2193 
2194 bool JavaThread::is_lock_owned(address adr) const {
2195   if (Thread::is_lock_owned(adr)) return true;
2196 
2197   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2198     if (chunk->contains(adr)) return true;
2199   }
2200 
2201   return false;
2202 }
2203 
2204 
2205 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2206   chunk->set_next(monitor_chunks());
2207   set_monitor_chunks(chunk);
2208 }
2209 
2210 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2211   guarantee(monitor_chunks() != NULL, "must be non empty");
2212   if (monitor_chunks() == chunk) {
2213     set_monitor_chunks(chunk->next());
2214   } else {
2215     MonitorChunk* prev = monitor_chunks();
2216     while (prev->next() != chunk) prev = prev->next();
2217     prev->set_next(chunk->next());
2218   }
2219 }
2220 
2221 // JVM support.
2222 
2223 // Note: this function shouldn't block if it's called in
2224 // _thread_in_native_trans state (such as from
2225 // check_special_condition_for_native_trans()).
2226 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2227 
2228   if (has_last_Java_frame() && has_async_condition()) {
2229     // If we are at a polling page safepoint (not a poll return)
2230     // then we must defer async exception because live registers
2231     // will be clobbered by the exception path. Poll return is
2232     // ok because the call we a returning from already collides
2233     // with exception handling registers and so there is no issue.
2234     // (The exception handling path kills call result registers but
2235     //  this is ok since the exception kills the result anyway).
2236 
2237     if (is_at_poll_safepoint()) {
2238       // if the code we are returning to has deoptimized we must defer
2239       // the exception otherwise live registers get clobbered on the
2240       // exception path before deoptimization is able to retrieve them.
2241       //
2242       RegisterMap map(this, false);
2243       frame caller_fr = last_frame().sender(&map);
2244       assert(caller_fr.is_compiled_frame(), "what?");
2245       if (caller_fr.is_deoptimized_frame()) {
2246         log_info(exceptions)("deferred async exception at compiled safepoint");
2247         return;
2248       }
2249     }
2250   }
2251 
2252   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2253   if (condition == _no_async_condition) {
2254     // Conditions have changed since has_special_runtime_exit_condition()
2255     // was called:
2256     // - if we were here only because of an external suspend request,
2257     //   then that was taken care of above (or cancelled) so we are done
2258     // - if we were here because of another async request, then it has
2259     //   been cleared between the has_special_runtime_exit_condition()
2260     //   and now so again we are done
2261     return;
2262   }
2263 
2264   // Check for pending async. exception
2265   if (_pending_async_exception != NULL) {
2266     // Only overwrite an already pending exception, if it is not a threadDeath.
2267     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2268 
2269       // We cannot call Exceptions::_throw(...) here because we cannot block
2270       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2271 
2272       LogTarget(Info, exceptions) lt;
2273       if (lt.is_enabled()) {
2274         ResourceMark rm;
2275         LogStream ls(lt);
2276         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2277           if (has_last_Java_frame()) {
2278             frame f = last_frame();
2279            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2280           }
2281         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2282       }
2283       _pending_async_exception = NULL;
2284       clear_has_async_exception();
2285     }
2286   }
2287 
2288   if (check_unsafe_error &&
2289       condition == _async_unsafe_access_error && !has_pending_exception()) {
2290     condition = _no_async_condition;  // done
2291     switch (thread_state()) {
2292     case _thread_in_vm: {
2293       JavaThread* THREAD = this;
2294       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2295     }
2296     case _thread_in_native: {
2297       ThreadInVMfromNative tiv(this);
2298       JavaThread* THREAD = this;
2299       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2300     }
2301     case _thread_in_Java: {
2302       ThreadInVMfromJava tiv(this);
2303       JavaThread* THREAD = this;
2304       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2305     }
2306     default:
2307       ShouldNotReachHere();
2308     }
2309   }
2310 
2311   assert(condition == _no_async_condition || has_pending_exception() ||
2312          (!check_unsafe_error && condition == _async_unsafe_access_error),
2313          "must have handled the async condition, if no exception");
2314 }
2315 
2316 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2317 
2318   // Check for pending external suspend.
2319   if (is_external_suspend_with_lock()) {
2320     frame_anchor()->make_walkable(this);
2321     java_suspend_self_with_safepoint_check();
2322   }
2323 
2324   // We might be here for reasons in addition to the self-suspend request
2325   // so check for other async requests.
2326   if (check_asyncs) {
2327     check_and_handle_async_exceptions();
2328   }
2329 
2330   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2331 }
2332 
2333 void JavaThread::send_thread_stop(oop java_throwable)  {
2334   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2335   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2336   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2337 
2338   // Do not throw asynchronous exceptions against the compiler thread
2339   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2340   if (!can_call_java()) return;
2341 
2342   {
2343     // Actually throw the Throwable against the target Thread - however
2344     // only if there is no thread death exception installed already.
2345     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2346       // If the topmost frame is a runtime stub, then we are calling into
2347       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2348       // must deoptimize the caller before continuing, as the compiled  exception handler table
2349       // may not be valid
2350       if (has_last_Java_frame()) {
2351         frame f = last_frame();
2352         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2353           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2354           RegisterMap reg_map(this, UseBiasedLocking);
2355           frame compiled_frame = f.sender(&reg_map);
2356           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2357             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2358           }
2359         }
2360       }
2361 
2362       // Set async. pending exception in thread.
2363       set_pending_async_exception(java_throwable);
2364 
2365       if (log_is_enabled(Info, exceptions)) {
2366          ResourceMark rm;
2367         log_info(exceptions)("Pending Async. exception installed of type: %s",
2368                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2369       }
2370       // for AbortVMOnException flag
2371       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2372     }
2373   }
2374 
2375 
2376   // Interrupt thread so it will wake up from a potential wait()
2377   Thread::interrupt(this);
2378 }
2379 
2380 // External suspension mechanism.
2381 //
2382 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2383 // to any VM_locks and it is at a transition
2384 // Self-suspension will happen on the transition out of the vm.
2385 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2386 //
2387 // Guarantees on return:
2388 //   + Target thread will not execute any new bytecode (that's why we need to
2389 //     force a safepoint)
2390 //   + Target thread will not enter any new monitors
2391 //
2392 void JavaThread::java_suspend() {
2393   ThreadsListHandle tlh;
2394   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2395     return;
2396   }
2397 
2398   { MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2399     if (!is_external_suspend()) {
2400       // a racing resume has cancelled us; bail out now
2401       return;
2402     }
2403 
2404     // suspend is done
2405     uint32_t debug_bits = 0;
2406     // Warning: is_ext_suspend_completed() may temporarily drop the
2407     // SR_lock to allow the thread to reach a stable thread state if
2408     // it is currently in a transient thread state.
2409     if (is_ext_suspend_completed(false /* !called_by_wait */,
2410                                  SuspendRetryDelay, &debug_bits)) {
2411       return;
2412     }
2413   }
2414 
2415   if (Thread::current() == this) {
2416     // Safely self-suspend.
2417     // If we don't do this explicitly it will implicitly happen
2418     // before we transition back to Java, and on some other thread-state
2419     // transition paths, but not as we exit a JVM TI SuspendThread call.
2420     // As SuspendThread(current) must not return (until resumed) we must
2421     // self-suspend here.
2422     ThreadBlockInVM tbivm(this);
2423     java_suspend_self();
2424   } else {
2425     VM_ThreadSuspend vm_suspend;
2426     VMThread::execute(&vm_suspend);
2427   }
2428 }
2429 
2430 // Part II of external suspension.
2431 // A JavaThread self suspends when it detects a pending external suspend
2432 // request. This is usually on transitions. It is also done in places
2433 // where continuing to the next transition would surprise the caller,
2434 // e.g., monitor entry.
2435 //
2436 // Returns the number of times that the thread self-suspended.
2437 //
2438 // Note: DO NOT call java_suspend_self() when you just want to block current
2439 //       thread. java_suspend_self() is the second stage of cooperative
2440 //       suspension for external suspend requests and should only be used
2441 //       to complete an external suspend request.
2442 //
2443 int JavaThread::java_suspend_self() {
2444   assert(thread_state() == _thread_blocked, "wrong state for java_suspend_self()");
2445   int ret = 0;
2446 
2447   // we are in the process of exiting so don't suspend
2448   if (is_exiting()) {
2449     clear_external_suspend();
2450     return ret;
2451   }
2452 
2453   assert(_anchor.walkable() ||
2454          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2455          "must have walkable stack");
2456 
2457   MonitorLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2458 
2459   assert(!this->is_ext_suspended(),
2460          "a thread trying to self-suspend should not already be suspended");
2461 
2462   if (this->is_suspend_equivalent()) {
2463     // If we are self-suspending as a result of the lifting of a
2464     // suspend equivalent condition, then the suspend_equivalent
2465     // flag is not cleared until we set the ext_suspended flag so
2466     // that wait_for_ext_suspend_completion() returns consistent
2467     // results.
2468     this->clear_suspend_equivalent();
2469   }
2470 
2471   // A racing resume may have cancelled us before we grabbed SR_lock
2472   // above. Or another external suspend request could be waiting for us
2473   // by the time we return from SR_lock()->wait(). The thread
2474   // that requested the suspension may already be trying to walk our
2475   // stack and if we return now, we can change the stack out from under
2476   // it. This would be a "bad thing (TM)" and cause the stack walker
2477   // to crash. We stay self-suspended until there are no more pending
2478   // external suspend requests.
2479   while (is_external_suspend()) {
2480     ret++;
2481     this->set_ext_suspended();
2482 
2483     // _ext_suspended flag is cleared by java_resume()
2484     while (is_ext_suspended()) {
2485       ml.wait();
2486     }
2487   }
2488   return ret;
2489 }
2490 
2491 // Helper routine to set up the correct thread state before calling java_suspend_self.
2492 // This is called when regular thread-state transition helpers can't be used because
2493 // we can be in various states, in particular _thread_in_native_trans.
2494 // Because this thread is external suspended the safepoint code will count it as at
2495 // a safepoint, regardless of what its actual current thread-state is. But
2496 // is_ext_suspend_completed() may be waiting to see a thread transition from
2497 // _thread_in_native_trans to _thread_blocked. So we set the thread state directly
2498 // to _thread_blocked. The problem with setting thread state directly is that a
2499 // safepoint could happen just after java_suspend_self() returns after being resumed,
2500 // and the VM thread will see the _thread_blocked state. So we must check for a safepoint
2501 // after restoring the state to make sure we won't leave while a safepoint is in progress.
2502 // However, not all initial-states are allowed when performing a safepoint check, as we
2503 // should never be blocking at a safepoint whilst in those states. Of these 'bad' states
2504 // only _thread_in_native is possible when executing this code (based on our two callers).
2505 // A thread that is _thread_in_native is already safepoint-safe and so it doesn't matter
2506 // whether the VMThread sees the _thread_blocked state, or the _thread_in_native state,
2507 // and so we don't need the explicit safepoint check.
2508 
2509 void JavaThread::java_suspend_self_with_safepoint_check() {
2510   assert(this == Thread::current(), "invariant");
2511   JavaThreadState state = thread_state();
2512   set_thread_state(_thread_blocked);
2513   java_suspend_self();
2514   set_thread_state_fence(state);
2515   // Since we are not using a regular thread-state transition helper here,
2516   // we must manually emit the instruction barrier after leaving a safe state.
2517   OrderAccess::cross_modify_fence();
2518   if (state != _thread_in_native) {
2519     SafepointMechanism::block_if_requested(this);
2520   }
2521 }
2522 
2523 #ifdef ASSERT
2524 // Verify the JavaThread has not yet been published in the Threads::list, and
2525 // hence doesn't need protection from concurrent access at this stage.
2526 void JavaThread::verify_not_published() {
2527   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2528   // since an unpublished JavaThread doesn't participate in the
2529   // Thread-SMR protocol for keeping a ThreadsList alive.
2530   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2531 }
2532 #endif
2533 
2534 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2535 // progress or when _suspend_flags is non-zero.
2536 // Current thread needs to self-suspend if there is a suspend request and/or
2537 // block if a safepoint is in progress.
2538 // Async exception ISN'T checked.
2539 // Note only the ThreadInVMfromNative transition can call this function
2540 // directly and when thread state is _thread_in_native_trans
2541 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2542   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2543 
2544   assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2545 
2546   if (thread->is_external_suspend()) {
2547     thread->java_suspend_self_with_safepoint_check();
2548   } else {
2549     SafepointMechanism::block_if_requested(thread);
2550   }
2551 
2552   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2553 }
2554 
2555 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2556 // progress or when _suspend_flags is non-zero.
2557 // Current thread needs to self-suspend if there is a suspend request and/or
2558 // block if a safepoint is in progress.
2559 // Also check for pending async exception (not including unsafe access error).
2560 // Note only the native==>VM/Java barriers can call this function and when
2561 // thread state is _thread_in_native_trans.
2562 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2563   check_safepoint_and_suspend_for_native_trans(thread);
2564 
2565   if (thread->has_async_exception()) {
2566     // We are in _thread_in_native_trans state, don't handle unsafe
2567     // access error since that may block.
2568     thread->check_and_handle_async_exceptions(false);
2569   }
2570 }
2571 
2572 // This is a variant of the normal
2573 // check_special_condition_for_native_trans with slightly different
2574 // semantics for use by critical native wrappers.  It does all the
2575 // normal checks but also performs the transition back into
2576 // thread_in_Java state.  This is required so that critical natives
2577 // can potentially block and perform a GC if they are the last thread
2578 // exiting the GCLocker.
2579 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2580   check_special_condition_for_native_trans(thread);
2581 
2582   // Finish the transition
2583   thread->set_thread_state(_thread_in_Java);
2584 
2585   if (thread->do_critical_native_unlock()) {
2586     ThreadInVMfromJavaNoAsyncException tiv(thread);
2587     GCLocker::unlock_critical(thread);
2588     thread->clear_critical_native_unlock();
2589   }
2590 }
2591 
2592 // We need to guarantee the Threads_lock here, since resumes are not
2593 // allowed during safepoint synchronization
2594 // Can only resume from an external suspension
2595 void JavaThread::java_resume() {
2596   assert_locked_or_safepoint(Threads_lock);
2597 
2598   // Sanity check: thread is gone, has started exiting or the thread
2599   // was not externally suspended.
2600   ThreadsListHandle tlh;
2601   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2602     return;
2603   }
2604 
2605   MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2606 
2607   clear_external_suspend();
2608 
2609   if (is_ext_suspended()) {
2610     clear_ext_suspended();
2611     SR_lock()->notify_all();
2612   }
2613 }
2614 
2615 size_t JavaThread::_stack_red_zone_size = 0;
2616 size_t JavaThread::_stack_yellow_zone_size = 0;
2617 size_t JavaThread::_stack_reserved_zone_size = 0;
2618 size_t JavaThread::_stack_shadow_zone_size = 0;
2619 
2620 void JavaThread::create_stack_guard_pages() {
2621   if (!os::uses_stack_guard_pages() ||
2622       _stack_guard_state != stack_guard_unused ||
2623       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2624       log_info(os, thread)("Stack guard page creation for thread "
2625                            UINTX_FORMAT " disabled", os::current_thread_id());
2626     return;
2627   }
2628   address low_addr = stack_end();
2629   size_t len = stack_guard_zone_size();
2630 
2631   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2632   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2633 
2634   int must_commit = os::must_commit_stack_guard_pages();
2635   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2636 
2637   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2638     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2639     return;
2640   }
2641 
2642   if (os::guard_memory((char *) low_addr, len)) {
2643     _stack_guard_state = stack_guard_enabled;
2644   } else {
2645     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2646       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2647     if (os::uncommit_memory((char *) low_addr, len)) {
2648       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2649     }
2650     return;
2651   }
2652 
2653   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2654     PTR_FORMAT "-" PTR_FORMAT ".",
2655     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2656 }
2657 
2658 void JavaThread::remove_stack_guard_pages() {
2659   assert(Thread::current() == this, "from different thread");
2660   if (_stack_guard_state == stack_guard_unused) return;
2661   address low_addr = stack_end();
2662   size_t len = stack_guard_zone_size();
2663 
2664   if (os::must_commit_stack_guard_pages()) {
2665     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2666       _stack_guard_state = stack_guard_unused;
2667     } else {
2668       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2669         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2670       return;
2671     }
2672   } else {
2673     if (_stack_guard_state == stack_guard_unused) return;
2674     if (os::unguard_memory((char *) low_addr, len)) {
2675       _stack_guard_state = stack_guard_unused;
2676     } else {
2677       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2678         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2679       return;
2680     }
2681   }
2682 
2683   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2684     PTR_FORMAT "-" PTR_FORMAT ".",
2685     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2686 }
2687 
2688 void JavaThread::enable_stack_reserved_zone() {
2689   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2690 
2691   // The base notation is from the stack's point of view, growing downward.
2692   // We need to adjust it to work correctly with guard_memory()
2693   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2694 
2695   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2696   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2697 
2698   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2699     _stack_guard_state = stack_guard_enabled;
2700   } else {
2701     warning("Attempt to guard stack reserved zone failed.");
2702   }
2703   enable_register_stack_guard();
2704 }
2705 
2706 void JavaThread::disable_stack_reserved_zone() {
2707   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2708 
2709   // Simply return if called for a thread that does not use guard pages.
2710   if (_stack_guard_state != stack_guard_enabled) return;
2711 
2712   // The base notation is from the stack's point of view, growing downward.
2713   // We need to adjust it to work correctly with guard_memory()
2714   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2715 
2716   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2717     _stack_guard_state = stack_guard_reserved_disabled;
2718   } else {
2719     warning("Attempt to unguard stack reserved zone failed.");
2720   }
2721   disable_register_stack_guard();
2722 }
2723 
2724 void JavaThread::enable_stack_yellow_reserved_zone() {
2725   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2726   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2727 
2728   // The base notation is from the stacks point of view, growing downward.
2729   // We need to adjust it to work correctly with guard_memory()
2730   address base = stack_red_zone_base();
2731 
2732   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2733   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2734 
2735   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2736     _stack_guard_state = stack_guard_enabled;
2737   } else {
2738     warning("Attempt to guard stack yellow zone failed.");
2739   }
2740   enable_register_stack_guard();
2741 }
2742 
2743 void JavaThread::disable_stack_yellow_reserved_zone() {
2744   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2745   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2746 
2747   // Simply return if called for a thread that does not use guard pages.
2748   if (_stack_guard_state == stack_guard_unused) return;
2749 
2750   // The base notation is from the stacks point of view, growing downward.
2751   // We need to adjust it to work correctly with guard_memory()
2752   address base = stack_red_zone_base();
2753 
2754   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2755     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2756   } else {
2757     warning("Attempt to unguard stack yellow zone failed.");
2758   }
2759   disable_register_stack_guard();
2760 }
2761 
2762 void JavaThread::enable_stack_red_zone() {
2763   // The base notation is from the stacks point of view, growing downward.
2764   // We need to adjust it to work correctly with guard_memory()
2765   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2766   address base = stack_red_zone_base() - stack_red_zone_size();
2767 
2768   guarantee(base < stack_base(), "Error calculating stack red zone");
2769   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2770 
2771   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2772     warning("Attempt to guard stack red zone failed.");
2773   }
2774 }
2775 
2776 void JavaThread::disable_stack_red_zone() {
2777   // The base notation is from the stacks point of view, growing downward.
2778   // We need to adjust it to work correctly with guard_memory()
2779   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2780   address base = stack_red_zone_base() - stack_red_zone_size();
2781   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2782     warning("Attempt to unguard stack red zone failed.");
2783   }
2784 }
2785 
2786 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2787   // ignore is there is no stack
2788   if (!has_last_Java_frame()) return;
2789   // traverse the stack frames. Starts from top frame.
2790   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2791     frame* fr = fst.current();
2792     f(fr, fst.register_map());
2793   }
2794 }
2795 
2796 
2797 #ifndef PRODUCT
2798 // Deoptimization
2799 // Function for testing deoptimization
2800 void JavaThread::deoptimize() {
2801   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2802   StackFrameStream fst(this, UseBiasedLocking);
2803   bool deopt = false;           // Dump stack only if a deopt actually happens.
2804   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2805   // Iterate over all frames in the thread and deoptimize
2806   for (; !fst.is_done(); fst.next()) {
2807     if (fst.current()->can_be_deoptimized()) {
2808 
2809       if (only_at) {
2810         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2811         // consists of comma or carriage return separated numbers so
2812         // search for the current bci in that string.
2813         address pc = fst.current()->pc();
2814         nmethod* nm =  (nmethod*) fst.current()->cb();
2815         ScopeDesc* sd = nm->scope_desc_at(pc);
2816         char buffer[8];
2817         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2818         size_t len = strlen(buffer);
2819         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2820         while (found != NULL) {
2821           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2822               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2823             // Check that the bci found is bracketed by terminators.
2824             break;
2825           }
2826           found = strstr(found + 1, buffer);
2827         }
2828         if (!found) {
2829           continue;
2830         }
2831       }
2832 
2833       if (DebugDeoptimization && !deopt) {
2834         deopt = true; // One-time only print before deopt
2835         tty->print_cr("[BEFORE Deoptimization]");
2836         trace_frames();
2837         trace_stack();
2838       }
2839       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2840     }
2841   }
2842 
2843   if (DebugDeoptimization && deopt) {
2844     tty->print_cr("[AFTER Deoptimization]");
2845     trace_frames();
2846   }
2847 }
2848 
2849 
2850 // Make zombies
2851 void JavaThread::make_zombies() {
2852   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2853     if (fst.current()->can_be_deoptimized()) {
2854       // it is a Java nmethod
2855       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2856       nm->make_not_entrant();
2857     }
2858   }
2859 }
2860 #endif // PRODUCT
2861 
2862 
2863 void JavaThread::deoptimized_wrt_marked_nmethods() {
2864   if (!has_last_Java_frame()) return;
2865   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2866   StackFrameStream fst(this, UseBiasedLocking);
2867   for (; !fst.is_done(); fst.next()) {
2868     if (fst.current()->should_be_deoptimized()) {
2869       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2870     }
2871   }
2872 }
2873 
2874 
2875 // If the caller is a NamedThread, then remember, in the current scope,
2876 // the given JavaThread in its _processed_thread field.
2877 class RememberProcessedThread: public StackObj {
2878   NamedThread* _cur_thr;
2879  public:
2880   RememberProcessedThread(JavaThread* jthr) {
2881     Thread* thread = Thread::current();
2882     if (thread->is_Named_thread()) {
2883       _cur_thr = (NamedThread *)thread;
2884       _cur_thr->set_processed_thread(jthr);
2885     } else {
2886       _cur_thr = NULL;
2887     }
2888   }
2889 
2890   ~RememberProcessedThread() {
2891     if (_cur_thr) {
2892       _cur_thr->set_processed_thread(NULL);
2893     }
2894   }
2895 };
2896 
2897 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2898   // Verify that the deferred card marks have been flushed.
2899   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2900 
2901   // Traverse the GCHandles
2902   Thread::oops_do(f, cf);
2903 
2904   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2905          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2906 
2907   if (has_last_Java_frame()) {
2908     // Record JavaThread to GC thread
2909     RememberProcessedThread rpt(this);
2910 
2911     // traverse the registered growable array
2912     if (_array_for_gc != NULL) {
2913       for (int index = 0; index < _array_for_gc->length(); index++) {
2914         f->do_oop(_array_for_gc->adr_at(index));
2915       }
2916     }
2917 
2918     // Traverse the monitor chunks
2919     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2920       chunk->oops_do(f);
2921     }
2922 
2923     // Traverse the execution stack
2924     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2925       fst.current()->oops_do(f, cf, fst.register_map());
2926     }
2927   }
2928 
2929   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2930   // If we have deferred set_locals there might be oops waiting to be
2931   // written
2932   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2933   if (list != NULL) {
2934     for (int i = 0; i < list->length(); i++) {
2935       list->at(i)->oops_do(f);
2936     }
2937   }
2938 
2939   // Traverse instance variables at the end since the GC may be moving things
2940   // around using this function
2941   f->do_oop((oop*) &_threadObj);
2942   f->do_oop((oop*) &_vm_result);
2943   f->do_oop((oop*) &_exception_oop);
2944   f->do_oop((oop*) &_pending_async_exception);
2945 
2946   if (jvmti_thread_state() != NULL) {
2947     jvmti_thread_state()->oops_do(f);
2948   }
2949 }
2950 
2951 #ifdef ASSERT
2952 void JavaThread::verify_states_for_handshake() {
2953   // This checks that the thread has a correct frame state during a handshake.
2954   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2955          (has_last_Java_frame() && java_call_counter() > 0),
2956          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2957          has_last_Java_frame(), java_call_counter());
2958 }
2959 #endif
2960 
2961 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2962   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2963          (has_last_Java_frame() && java_call_counter() > 0),
2964          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2965          has_last_Java_frame(), java_call_counter());
2966 
2967   if (has_last_Java_frame()) {
2968     // Traverse the execution stack
2969     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2970       fst.current()->nmethods_do(cf);
2971     }
2972   }
2973 }
2974 
2975 void JavaThread::metadata_do(MetadataClosure* f) {
2976   if (has_last_Java_frame()) {
2977     // Traverse the execution stack to call f() on the methods in the stack
2978     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2979       fst.current()->metadata_do(f);
2980     }
2981   } else if (is_Compiler_thread()) {
2982     // need to walk ciMetadata in current compile tasks to keep alive.
2983     CompilerThread* ct = (CompilerThread*)this;
2984     if (ct->env() != NULL) {
2985       ct->env()->metadata_do(f);
2986     }
2987     CompileTask* task = ct->task();
2988     if (task != NULL) {
2989       task->metadata_do(f);
2990     }
2991   }
2992 }
2993 
2994 // Printing
2995 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2996   switch (_thread_state) {
2997   case _thread_uninitialized:     return "_thread_uninitialized";
2998   case _thread_new:               return "_thread_new";
2999   case _thread_new_trans:         return "_thread_new_trans";
3000   case _thread_in_native:         return "_thread_in_native";
3001   case _thread_in_native_trans:   return "_thread_in_native_trans";
3002   case _thread_in_vm:             return "_thread_in_vm";
3003   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
3004   case _thread_in_Java:           return "_thread_in_Java";
3005   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
3006   case _thread_blocked:           return "_thread_blocked";
3007   case _thread_blocked_trans:     return "_thread_blocked_trans";
3008   default:                        return "unknown thread state";
3009   }
3010 }
3011 
3012 #ifndef PRODUCT
3013 void JavaThread::print_thread_state_on(outputStream *st) const {
3014   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
3015 };
3016 #endif // PRODUCT
3017 
3018 // Called by Threads::print() for VM_PrintThreads operation
3019 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3020   st->print_raw("\"");
3021   st->print_raw(get_thread_name());
3022   st->print_raw("\" ");
3023   oop thread_oop = threadObj();
3024   if (thread_oop != NULL) {
3025     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3026     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3027     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3028   }
3029   Thread::print_on(st, print_extended_info);
3030   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3031   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3032   if (thread_oop != NULL) {
3033     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3034   }
3035 #ifndef PRODUCT
3036   _safepoint_state->print_on(st);
3037 #endif // PRODUCT
3038   if (is_Compiler_thread()) {
3039     CompileTask *task = ((CompilerThread*)this)->task();
3040     if (task != NULL) {
3041       st->print("   Compiling: ");
3042       task->print(st, NULL, true, false);
3043     } else {
3044       st->print("   No compile task");
3045     }
3046     st->cr();
3047   }
3048 }
3049 
3050 void JavaThread::print() const { print_on(tty); }
3051 
3052 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3053   st->print("%s", get_thread_name_string(buf, buflen));
3054 }
3055 
3056 // Called by fatal error handler. The difference between this and
3057 // JavaThread::print() is that we can't grab lock or allocate memory.
3058 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3059   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3060   oop thread_obj = threadObj();
3061   if (thread_obj != NULL) {
3062     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3063   }
3064   st->print(" [");
3065   st->print("%s", _get_thread_state_name(_thread_state));
3066   if (osthread()) {
3067     st->print(", id=%d", osthread()->thread_id());
3068   }
3069   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3070             p2i(stack_end()), p2i(stack_base()));
3071   st->print("]");
3072 
3073   ThreadsSMRSupport::print_info_on(this, st);
3074   return;
3075 }
3076 
3077 // Verification
3078 
3079 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3080 
3081 void JavaThread::verify() {
3082   // Verify oops in the thread.
3083   oops_do(&VerifyOopClosure::verify_oop, NULL);
3084 
3085   // Verify the stack frames.
3086   frames_do(frame_verify);
3087 }
3088 
3089 // CR 6300358 (sub-CR 2137150)
3090 // Most callers of this method assume that it can't return NULL but a
3091 // thread may not have a name whilst it is in the process of attaching to
3092 // the VM - see CR 6412693, and there are places where a JavaThread can be
3093 // seen prior to having it's threadObj set (eg JNI attaching threads and
3094 // if vm exit occurs during initialization). These cases can all be accounted
3095 // for such that this method never returns NULL.
3096 const char* JavaThread::get_thread_name() const {
3097 #ifdef ASSERT
3098   // early safepoints can hit while current thread does not yet have TLS
3099   if (!SafepointSynchronize::is_at_safepoint()) {
3100     Thread *cur = Thread::current();
3101     if (!(cur->is_Java_thread() && cur == this)) {
3102       // Current JavaThreads are allowed to get their own name without
3103       // the Threads_lock.
3104       assert_locked_or_safepoint(Threads_lock);
3105     }
3106   }
3107 #endif // ASSERT
3108   return get_thread_name_string();
3109 }
3110 
3111 // Returns a non-NULL representation of this thread's name, or a suitable
3112 // descriptive string if there is no set name
3113 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3114   const char* name_str;
3115   oop thread_obj = threadObj();
3116   if (thread_obj != NULL) {
3117     oop name = java_lang_Thread::name(thread_obj);
3118     if (name != NULL) {
3119       if (buf == NULL) {
3120         name_str = java_lang_String::as_utf8_string(name);
3121       } else {
3122         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3123       }
3124     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3125       name_str = "<no-name - thread is attaching>";
3126     } else {
3127       name_str = Thread::name();
3128     }
3129   } else {
3130     name_str = Thread::name();
3131   }
3132   assert(name_str != NULL, "unexpected NULL thread name");
3133   return name_str;
3134 }
3135 
3136 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3137 
3138   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3139   assert(NoPriority <= prio && prio <= MaxPriority, "sanity check");
3140   // Link Java Thread object <-> C++ Thread
3141 
3142   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3143   // and put it into a new Handle.  The Handle "thread_oop" can then
3144   // be used to pass the C++ thread object to other methods.
3145 
3146   // Set the Java level thread object (jthread) field of the
3147   // new thread (a JavaThread *) to C++ thread object using the
3148   // "thread_oop" handle.
3149 
3150   // Set the thread field (a JavaThread *) of the
3151   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3152 
3153   Handle thread_oop(Thread::current(),
3154                     JNIHandles::resolve_non_null(jni_thread));
3155   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3156          "must be initialized");
3157   set_threadObj(thread_oop());
3158   java_lang_Thread::set_thread(thread_oop(), this);
3159 
3160   if (prio == NoPriority) {
3161     prio = java_lang_Thread::priority(thread_oop());
3162     assert(prio != NoPriority, "A valid priority should be present");
3163   }
3164 
3165   // Push the Java priority down to the native thread; needs Threads_lock
3166   Thread::set_priority(this, prio);
3167 
3168   // Add the new thread to the Threads list and set it in motion.
3169   // We must have threads lock in order to call Threads::add.
3170   // It is crucial that we do not block before the thread is
3171   // added to the Threads list for if a GC happens, then the java_thread oop
3172   // will not be visited by GC.
3173   Threads::add(this);
3174 }
3175 
3176 oop JavaThread::current_park_blocker() {
3177   // Support for JSR-166 locks
3178   oop thread_oop = threadObj();
3179   if (thread_oop != NULL) {
3180     return java_lang_Thread::park_blocker(thread_oop);
3181   }
3182   return NULL;
3183 }
3184 
3185 
3186 void JavaThread::print_stack_on(outputStream* st) {
3187   if (!has_last_Java_frame()) return;
3188   ResourceMark rm;
3189   HandleMark   hm;
3190 
3191   RegisterMap reg_map(this);
3192   vframe* start_vf = last_java_vframe(&reg_map);
3193   int count = 0;
3194   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3195     if (f->is_java_frame()) {
3196       javaVFrame* jvf = javaVFrame::cast(f);
3197       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3198 
3199       // Print out lock information
3200       if (JavaMonitorsInStackTrace) {
3201         jvf->print_lock_info_on(st, count);
3202       }
3203     } else {
3204       // Ignore non-Java frames
3205     }
3206 
3207     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3208     count++;
3209     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3210   }
3211 }
3212 
3213 
3214 // JVMTI PopFrame support
3215 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3216   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3217   if (in_bytes(size_in_bytes) != 0) {
3218     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3219     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3220     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3221   }
3222 }
3223 
3224 void* JavaThread::popframe_preserved_args() {
3225   return _popframe_preserved_args;
3226 }
3227 
3228 ByteSize JavaThread::popframe_preserved_args_size() {
3229   return in_ByteSize(_popframe_preserved_args_size);
3230 }
3231 
3232 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3233   int sz = in_bytes(popframe_preserved_args_size());
3234   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3235   return in_WordSize(sz / wordSize);
3236 }
3237 
3238 void JavaThread::popframe_free_preserved_args() {
3239   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3240   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3241   _popframe_preserved_args = NULL;
3242   _popframe_preserved_args_size = 0;
3243 }
3244 
3245 #ifndef PRODUCT
3246 
3247 void JavaThread::trace_frames() {
3248   tty->print_cr("[Describe stack]");
3249   int frame_no = 1;
3250   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3251     tty->print("  %d. ", frame_no++);
3252     fst.current()->print_value_on(tty, this);
3253     tty->cr();
3254   }
3255 }
3256 
3257 class PrintAndVerifyOopClosure: public OopClosure {
3258  protected:
3259   template <class T> inline void do_oop_work(T* p) {
3260     oop obj = RawAccess<>::oop_load(p);
3261     if (obj == NULL) return;
3262     tty->print(INTPTR_FORMAT ": ", p2i(p));
3263     if (oopDesc::is_oop_or_null(obj)) {
3264       if (obj->is_objArray()) {
3265         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3266       } else {
3267         obj->print();
3268       }
3269     } else {
3270       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3271     }
3272     tty->cr();
3273   }
3274  public:
3275   virtual void do_oop(oop* p) { do_oop_work(p); }
3276   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3277 };
3278 
3279 #ifdef ASSERT
3280 // Print or validate the layout of stack frames
3281 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3282   ResourceMark rm;
3283   PRESERVE_EXCEPTION_MARK;
3284   FrameValues values;
3285   int frame_no = 0;
3286   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3287     fst.current()->describe(values, ++frame_no);
3288     if (depth == frame_no) break;
3289   }
3290   if (validate_only) {
3291     values.validate();
3292   } else {
3293     tty->print_cr("[Describe stack layout]");
3294     values.print(this);
3295   }
3296 }
3297 #endif
3298 
3299 void JavaThread::trace_stack_from(vframe* start_vf) {
3300   ResourceMark rm;
3301   int vframe_no = 1;
3302   for (vframe* f = start_vf; f; f = f->sender()) {
3303     if (f->is_java_frame()) {
3304       javaVFrame::cast(f)->print_activation(vframe_no++);
3305     } else {
3306       f->print();
3307     }
3308     if (vframe_no > StackPrintLimit) {
3309       tty->print_cr("...<more frames>...");
3310       return;
3311     }
3312   }
3313 }
3314 
3315 
3316 void JavaThread::trace_stack() {
3317   if (!has_last_Java_frame()) return;
3318   ResourceMark rm;
3319   HandleMark   hm;
3320   RegisterMap reg_map(this);
3321   trace_stack_from(last_java_vframe(&reg_map));
3322 }
3323 
3324 
3325 #endif // PRODUCT
3326 
3327 
3328 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3329   assert(reg_map != NULL, "a map must be given");
3330   frame f = last_frame();
3331   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3332     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3333   }
3334   return NULL;
3335 }
3336 
3337 
3338 Klass* JavaThread::security_get_caller_class(int depth) {
3339   vframeStream vfst(this);
3340   vfst.security_get_caller_frame(depth);
3341   if (!vfst.at_end()) {
3342     return vfst.method()->method_holder();
3343   }
3344   return NULL;
3345 }
3346 
3347 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3348   assert(thread->is_Compiler_thread(), "must be compiler thread");
3349   CompileBroker::compiler_thread_loop();
3350 }
3351 
3352 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3353   NMethodSweeper::sweeper_loop();
3354 }
3355 
3356 // Create a CompilerThread
3357 CompilerThread::CompilerThread(CompileQueue* queue,
3358                                CompilerCounters* counters)
3359                                : JavaThread(&compiler_thread_entry) {
3360   _env   = NULL;
3361   _log   = NULL;
3362   _task  = NULL;
3363   _queue = queue;
3364   _counters = counters;
3365   _buffer_blob = NULL;
3366   _compiler = NULL;
3367 
3368   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3369   resource_area()->bias_to(mtCompiler);
3370 
3371 #ifndef PRODUCT
3372   _ideal_graph_printer = NULL;
3373 #endif
3374 }
3375 
3376 CompilerThread::~CompilerThread() {
3377   // Delete objects which were allocated on heap.
3378   delete _counters;
3379 }
3380 
3381 bool CompilerThread::can_call_java() const {
3382   return _compiler != NULL && _compiler->is_jvmci();
3383 }
3384 
3385 // Create sweeper thread
3386 CodeCacheSweeperThread::CodeCacheSweeperThread()
3387 : JavaThread(&sweeper_thread_entry) {
3388   _scanned_compiled_method = NULL;
3389 }
3390 
3391 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3392   JavaThread::oops_do(f, cf);
3393   if (_scanned_compiled_method != NULL && cf != NULL) {
3394     // Safepoints can occur when the sweeper is scanning an nmethod so
3395     // process it here to make sure it isn't unloaded in the middle of
3396     // a scan.
3397     cf->do_code_blob(_scanned_compiled_method);
3398   }
3399 }
3400 
3401 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3402   JavaThread::nmethods_do(cf);
3403   if (_scanned_compiled_method != NULL && cf != NULL) {
3404     // Safepoints can occur when the sweeper is scanning an nmethod so
3405     // process it here to make sure it isn't unloaded in the middle of
3406     // a scan.
3407     cf->do_code_blob(_scanned_compiled_method);
3408   }
3409 }
3410 
3411 
3412 // ======= Threads ========
3413 
3414 // The Threads class links together all active threads, and provides
3415 // operations over all threads. It is protected by the Threads_lock,
3416 // which is also used in other global contexts like safepointing.
3417 // ThreadsListHandles are used to safely perform operations on one
3418 // or more threads without the risk of the thread exiting during the
3419 // operation.
3420 //
3421 // Note: The Threads_lock is currently more widely used than we
3422 // would like. We are actively migrating Threads_lock uses to other
3423 // mechanisms in order to reduce Threads_lock contention.
3424 
3425 int         Threads::_number_of_threads = 0;
3426 int         Threads::_number_of_non_daemon_threads = 0;
3427 int         Threads::_return_code = 0;
3428 uintx       Threads::_thread_claim_token = 1; // Never zero.
3429 size_t      JavaThread::_stack_size_at_create = 0;
3430 
3431 #ifdef ASSERT
3432 bool        Threads::_vm_complete = false;
3433 #endif
3434 
3435 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3436   Prefetch::read((void*)addr, prefetch_interval);
3437   return *addr;
3438 }
3439 
3440 // Possibly the ugliest for loop the world has seen. C++ does not allow
3441 // multiple types in the declaration section of the for loop. In this case
3442 // we are only dealing with pointers and hence can cast them. It looks ugly
3443 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3444 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3445     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3446              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3447              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3448              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3449              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3450          MACRO_current_p != MACRO_end;                                                                                    \
3451          MACRO_current_p++,                                                                                               \
3452              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3453 
3454 // All JavaThreads
3455 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3456 
3457 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3458 void Threads::non_java_threads_do(ThreadClosure* tc) {
3459   NoSafepointVerifier nsv;
3460   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3461     tc->do_thread(njti.current());
3462   }
3463 }
3464 
3465 // All JavaThreads
3466 void Threads::java_threads_do(ThreadClosure* tc) {
3467   assert_locked_or_safepoint(Threads_lock);
3468   // ALL_JAVA_THREADS iterates through all JavaThreads.
3469   ALL_JAVA_THREADS(p) {
3470     tc->do_thread(p);
3471   }
3472 }
3473 
3474 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3475   assert_locked_or_safepoint(Threads_lock);
3476   java_threads_do(tc);
3477   tc->do_thread(VMThread::vm_thread());
3478 }
3479 
3480 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3481 void Threads::threads_do(ThreadClosure* tc) {
3482   assert_locked_or_safepoint(Threads_lock);
3483   java_threads_do(tc);
3484   non_java_threads_do(tc);
3485 }
3486 
3487 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3488   uintx claim_token = Threads::thread_claim_token();
3489   ALL_JAVA_THREADS(p) {
3490     if (p->claim_threads_do(is_par, claim_token)) {
3491       tc->do_thread(p);
3492     }
3493   }
3494   VMThread* vmt = VMThread::vm_thread();
3495   if (vmt->claim_threads_do(is_par, claim_token)) {
3496     tc->do_thread(vmt);
3497   }
3498 }
3499 
3500 // The system initialization in the library has three phases.
3501 //
3502 // Phase 1: java.lang.System class initialization
3503 //     java.lang.System is a primordial class loaded and initialized
3504 //     by the VM early during startup.  java.lang.System.<clinit>
3505 //     only does registerNatives and keeps the rest of the class
3506 //     initialization work later until thread initialization completes.
3507 //
3508 //     System.initPhase1 initializes the system properties, the static
3509 //     fields in, out, and err. Set up java signal handlers, OS-specific
3510 //     system settings, and thread group of the main thread.
3511 static void call_initPhase1(TRAPS) {
3512   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3513   JavaValue result(T_VOID);
3514   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3515                                          vmSymbols::void_method_signature(), CHECK);
3516 }
3517 
3518 // Phase 2. Module system initialization
3519 //     This will initialize the module system.  Only java.base classes
3520 //     can be loaded until phase 2 completes.
3521 //
3522 //     Call System.initPhase2 after the compiler initialization and jsr292
3523 //     classes get initialized because module initialization runs a lot of java
3524 //     code, that for performance reasons, should be compiled.  Also, this will
3525 //     enable the startup code to use lambda and other language features in this
3526 //     phase and onward.
3527 //
3528 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3529 static void call_initPhase2(TRAPS) {
3530   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3531 
3532   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3533 
3534   JavaValue result(T_INT);
3535   JavaCallArguments args;
3536   args.push_int(DisplayVMOutputToStderr);
3537   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3538   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3539                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3540   if (result.get_jint() != JNI_OK) {
3541     vm_exit_during_initialization(); // no message or exception
3542   }
3543 
3544   universe_post_module_init();
3545 }
3546 
3547 // Phase 3. final setup - set security manager, system class loader and TCCL
3548 //
3549 //     This will instantiate and set the security manager, set the system class
3550 //     loader as well as the thread context class loader.  The security manager
3551 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3552 //     other modules or the application's classpath.
3553 static void call_initPhase3(TRAPS) {
3554   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3555   JavaValue result(T_VOID);
3556   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3557                                          vmSymbols::void_method_signature(), CHECK);
3558 }
3559 
3560 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3561   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3562 
3563   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3564     create_vm_init_libraries();
3565   }
3566 
3567   initialize_class(vmSymbols::java_lang_String(), CHECK);
3568 
3569   // Inject CompactStrings value after the static initializers for String ran.
3570   java_lang_String::set_compact_strings(CompactStrings);
3571 
3572   // Initialize java_lang.System (needed before creating the thread)
3573   initialize_class(vmSymbols::java_lang_System(), CHECK);
3574   // The VM creates & returns objects of this class. Make sure it's initialized.
3575   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3576   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3577   Handle thread_group = create_initial_thread_group(CHECK);
3578   Universe::set_main_thread_group(thread_group());
3579   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3580   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3581   main_thread->set_threadObj(thread_object);
3582 
3583   // Set thread status to running since main thread has
3584   // been started and running.
3585   java_lang_Thread::set_thread_status(thread_object,
3586                                       java_lang_Thread::RUNNABLE);
3587 
3588   // The VM creates objects of this class.
3589   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3590 
3591 #ifdef ASSERT
3592   InstanceKlass *k = SystemDictionary::UnsafeConstants_klass();
3593   assert(k->is_not_initialized(), "UnsafeConstants should not already be initialized");
3594 #endif
3595 
3596   // initialize the hardware-specific constants needed by Unsafe
3597   initialize_class(vmSymbols::jdk_internal_misc_UnsafeConstants(), CHECK);
3598   jdk_internal_misc_UnsafeConstants::set_unsafe_constants();
3599 
3600   // The VM preresolves methods to these classes. Make sure that they get initialized
3601   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3602   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3603 
3604   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3605   call_initPhase1(CHECK);
3606 
3607   // get the Java runtime name after java.lang.System is initialized
3608   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3609   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3610 
3611   // an instance of OutOfMemory exception has been allocated earlier
3612   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3613   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3614   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3615   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3616   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3617   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3618   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3619   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3620 
3621   // Eager box cache initialization only if AOT is on and any library is loaded.
3622   AOTLoader::initialize_box_caches(CHECK);
3623 }
3624 
3625 void Threads::initialize_jsr292_core_classes(TRAPS) {
3626   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3627 
3628   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3629   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3630   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3631   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3632 }
3633 
3634 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3635   extern void JDK_Version_init();
3636 
3637   // Preinitialize version info.
3638   VM_Version::early_initialize();
3639 
3640   // Check version
3641   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3642 
3643   // Initialize library-based TLS
3644   ThreadLocalStorage::init();
3645 
3646   // Initialize the output stream module
3647   ostream_init();
3648 
3649   // Process java launcher properties.
3650   Arguments::process_sun_java_launcher_properties(args);
3651 
3652   // Initialize the os module
3653   os::init();
3654 
3655   // Record VM creation timing statistics
3656   TraceVmCreationTime create_vm_timer;
3657   create_vm_timer.start();
3658 
3659   // Initialize system properties.
3660   Arguments::init_system_properties();
3661 
3662   // So that JDK version can be used as a discriminator when parsing arguments
3663   JDK_Version_init();
3664 
3665   // Update/Initialize System properties after JDK version number is known
3666   Arguments::init_version_specific_system_properties();
3667 
3668   // Make sure to initialize log configuration *before* parsing arguments
3669   LogConfiguration::initialize(create_vm_timer.begin_time());
3670 
3671   // Parse arguments
3672   // Note: this internally calls os::init_container_support()
3673   jint parse_result = Arguments::parse(args);
3674   if (parse_result != JNI_OK) return parse_result;
3675 
3676   os::init_before_ergo();
3677 
3678   jint ergo_result = Arguments::apply_ergo();
3679   if (ergo_result != JNI_OK) return ergo_result;
3680 
3681   // Final check of all ranges after ergonomics which may change values.
3682   if (!JVMFlagRangeList::check_ranges()) {
3683     return JNI_EINVAL;
3684   }
3685 
3686   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3687   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3688   if (!constraint_result) {
3689     return JNI_EINVAL;
3690   }
3691 
3692   JVMFlagWriteableList::mark_startup();
3693 
3694   if (PauseAtStartup) {
3695     os::pause();
3696   }
3697 
3698   HOTSPOT_VM_INIT_BEGIN();
3699 
3700   // Timing (must come after argument parsing)
3701   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3702 
3703   // Initialize the os module after parsing the args
3704   jint os_init_2_result = os::init_2();
3705   if (os_init_2_result != JNI_OK) return os_init_2_result;
3706 
3707 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3708   // Initialize assert poison page mechanism.
3709   if (ShowRegistersOnAssert) {
3710     initialize_assert_poison();
3711   }
3712 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3713 
3714   SafepointMechanism::initialize();
3715 
3716   jint adjust_after_os_result = Arguments::adjust_after_os();
3717   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3718 
3719   // Initialize output stream logging
3720   ostream_init_log();
3721 
3722   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3723   // Must be before create_vm_init_agents()
3724   if (Arguments::init_libraries_at_startup()) {
3725     convert_vm_init_libraries_to_agents();
3726   }
3727 
3728   // Launch -agentlib/-agentpath and converted -Xrun agents
3729   if (Arguments::init_agents_at_startup()) {
3730     create_vm_init_agents();
3731   }
3732 
3733   // Initialize Threads state
3734   _number_of_threads = 0;
3735   _number_of_non_daemon_threads = 0;
3736 
3737   // Initialize global data structures and create system classes in heap
3738   vm_init_globals();
3739 
3740 #if INCLUDE_JVMCI
3741   if (JVMCICounterSize > 0) {
3742     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtJVMCI);
3743     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3744   } else {
3745     JavaThread::_jvmci_old_thread_counters = NULL;
3746   }
3747 #endif // INCLUDE_JVMCI
3748 
3749   // Attach the main thread to this os thread
3750   JavaThread* main_thread = new JavaThread();
3751   main_thread->set_thread_state(_thread_in_vm);
3752   main_thread->initialize_thread_current();
3753   // must do this before set_active_handles
3754   main_thread->record_stack_base_and_size();
3755   main_thread->register_thread_stack_with_NMT();
3756   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3757 
3758   if (!main_thread->set_as_starting_thread()) {
3759     vm_shutdown_during_initialization(
3760                                       "Failed necessary internal allocation. Out of swap space");
3761     main_thread->smr_delete();
3762     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3763     return JNI_ENOMEM;
3764   }
3765 
3766   // Enable guard page *after* os::create_main_thread(), otherwise it would
3767   // crash Linux VM, see notes in os_linux.cpp.
3768   main_thread->create_stack_guard_pages();
3769 
3770   // Initialize Java-Level synchronization subsystem
3771   ObjectMonitor::Initialize();
3772 
3773   // Initialize global modules
3774   jint status = init_globals();
3775   if (status != JNI_OK) {
3776     main_thread->smr_delete();
3777     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3778     return status;
3779   }
3780 
3781   JFR_ONLY(Jfr::on_vm_init();)
3782 
3783   // Should be done after the heap is fully created
3784   main_thread->cache_global_variables();
3785 
3786   HandleMark hm;
3787 
3788   { MutexLocker mu(Threads_lock);
3789     Threads::add(main_thread);
3790   }
3791 
3792   // Any JVMTI raw monitors entered in onload will transition into
3793   // real raw monitor. VM is setup enough here for raw monitor enter.
3794   JvmtiExport::transition_pending_onload_raw_monitors();
3795 
3796   // Create the VMThread
3797   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3798 
3799   VMThread::create();
3800     Thread* vmthread = VMThread::vm_thread();
3801 
3802     if (!os::create_thread(vmthread, os::vm_thread)) {
3803       vm_exit_during_initialization("Cannot create VM thread. "
3804                                     "Out of system resources.");
3805     }
3806 
3807     // Wait for the VM thread to become ready, and VMThread::run to initialize
3808     // Monitors can have spurious returns, must always check another state flag
3809     {
3810       MonitorLocker ml(Notify_lock);
3811       os::start_thread(vmthread);
3812       while (vmthread->active_handles() == NULL) {
3813         ml.wait();
3814       }
3815     }
3816   }
3817 
3818   assert(Universe::is_fully_initialized(), "not initialized");
3819   if (VerifyDuringStartup) {
3820     // Make sure we're starting with a clean slate.
3821     VM_Verify verify_op;
3822     VMThread::execute(&verify_op);
3823   }
3824 
3825   // We need this to update the java.vm.info property in case any flags used
3826   // to initially define it have been changed. This is needed for both CDS and
3827   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3828   // is initially computed. See Abstract_VM_Version::vm_info_string().
3829   // This update must happen before we initialize the java classes, but
3830   // after any initialization logic that might modify the flags.
3831   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3832 
3833   Thread* THREAD = Thread::current();
3834 
3835   // Always call even when there are not JVMTI environments yet, since environments
3836   // may be attached late and JVMTI must track phases of VM execution
3837   JvmtiExport::enter_early_start_phase();
3838 
3839   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3840   JvmtiExport::post_early_vm_start();
3841 
3842   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3843 
3844   quicken_jni_functions();
3845 
3846   // No more stub generation allowed after that point.
3847   StubCodeDesc::freeze();
3848 
3849   // Set flag that basic initialization has completed. Used by exceptions and various
3850   // debug stuff, that does not work until all basic classes have been initialized.
3851   set_init_completed();
3852 
3853   LogConfiguration::post_initialize();
3854   Metaspace::post_initialize();
3855 
3856   HOTSPOT_VM_INIT_END();
3857 
3858   // record VM initialization completion time
3859 #if INCLUDE_MANAGEMENT
3860   Management::record_vm_init_completed();
3861 #endif // INCLUDE_MANAGEMENT
3862 
3863   // Signal Dispatcher needs to be started before VMInit event is posted
3864   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3865 
3866   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3867   if (!DisableAttachMechanism) {
3868     AttachListener::vm_start();
3869     if (StartAttachListener || AttachListener::init_at_startup()) {
3870       AttachListener::init();
3871     }
3872   }
3873 
3874   // Launch -Xrun agents
3875   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3876   // back-end can launch with -Xdebug -Xrunjdwp.
3877   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3878     create_vm_init_libraries();
3879   }
3880 
3881   if (CleanChunkPoolAsync) {
3882     Chunk::start_chunk_pool_cleaner_task();
3883   }
3884 
3885 
3886   // initialize compiler(s)
3887 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3888 #if INCLUDE_JVMCI
3889   bool force_JVMCI_intialization = false;
3890   if (EnableJVMCI) {
3891     // Initialize JVMCI eagerly when it is explicitly requested.
3892     // Or when JVMCILibDumpJNIConfig or JVMCIPrintProperties is enabled.
3893     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties || JVMCILibDumpJNIConfig;
3894 
3895     if (!force_JVMCI_intialization) {
3896       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3897       // compilations via JVMCI will not actually block until JVMCI is initialized.
3898       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3899     }
3900   }
3901 #endif
3902   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
3903   // Postpone completion of compiler initialization to after JVMCI
3904   // is initialized to avoid timeouts of blocking compilations.
3905   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
3906     CompileBroker::compilation_init_phase2();
3907   }
3908 #endif
3909 
3910   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3911   // It is done after compilers are initialized, because otherwise compilations of
3912   // signature polymorphic MH intrinsics can be missed
3913   // (see SystemDictionary::find_method_handle_intrinsic).
3914   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3915 
3916   // This will initialize the module system.  Only java.base classes can be
3917   // loaded until phase 2 completes
3918   call_initPhase2(CHECK_JNI_ERR);
3919 
3920   // Always call even when there are not JVMTI environments yet, since environments
3921   // may be attached late and JVMTI must track phases of VM execution
3922   JvmtiExport::enter_start_phase();
3923 
3924   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3925   JvmtiExport::post_vm_start();
3926 
3927   // Final system initialization including security manager and system class loader
3928   call_initPhase3(CHECK_JNI_ERR);
3929 
3930   // cache the system and platform class loaders
3931   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3932 
3933 #if INCLUDE_CDS
3934   // capture the module path info from the ModuleEntryTable
3935   ClassLoader::initialize_module_path(THREAD);
3936 #endif
3937 
3938 #if INCLUDE_JVMCI
3939   if (force_JVMCI_intialization) {
3940     JVMCI::initialize_compiler(CHECK_JNI_ERR);
3941     CompileBroker::compilation_init_phase2();
3942   }
3943 #endif
3944 
3945   // Always call even when there are not JVMTI environments yet, since environments
3946   // may be attached late and JVMTI must track phases of VM execution
3947   JvmtiExport::enter_live_phase();
3948 
3949   // Make perfmemory accessible
3950   PerfMemory::set_accessible(true);
3951 
3952   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3953   JvmtiExport::post_vm_initialized();
3954 
3955   JFR_ONLY(Jfr::on_vm_start();)
3956 
3957 #if INCLUDE_MANAGEMENT
3958   Management::initialize(THREAD);
3959 
3960   if (HAS_PENDING_EXCEPTION) {
3961     // management agent fails to start possibly due to
3962     // configuration problem and is responsible for printing
3963     // stack trace if appropriate. Simply exit VM.
3964     vm_exit(1);
3965   }
3966 #endif // INCLUDE_MANAGEMENT
3967 
3968   if (MemProfiling)                   MemProfiler::engage();
3969   StatSampler::engage();
3970   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3971 
3972   BiasedLocking::init();
3973 
3974 #if INCLUDE_RTM_OPT
3975   RTMLockingCounters::init();
3976 #endif
3977 
3978   call_postVMInitHook(THREAD);
3979   // The Java side of PostVMInitHook.run must deal with all
3980   // exceptions and provide means of diagnosis.
3981   if (HAS_PENDING_EXCEPTION) {
3982     CLEAR_PENDING_EXCEPTION;
3983   }
3984 
3985   {
3986     MutexLocker ml(PeriodicTask_lock);
3987     // Make sure the WatcherThread can be started by WatcherThread::start()
3988     // or by dynamic enrollment.
3989     WatcherThread::make_startable();
3990     // Start up the WatcherThread if there are any periodic tasks
3991     // NOTE:  All PeriodicTasks should be registered by now. If they
3992     //   aren't, late joiners might appear to start slowly (we might
3993     //   take a while to process their first tick).
3994     if (PeriodicTask::num_tasks() > 0) {
3995       WatcherThread::start();
3996     }
3997   }
3998 
3999   create_vm_timer.end();
4000 #ifdef ASSERT
4001   _vm_complete = true;
4002 #endif
4003 
4004   if (DumpSharedSpaces) {
4005     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4006     ShouldNotReachHere();
4007   }
4008 
4009   return JNI_OK;
4010 }
4011 
4012 // type for the Agent_OnLoad and JVM_OnLoad entry points
4013 extern "C" {
4014   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4015 }
4016 // Find a command line agent library and return its entry point for
4017 //         -agentlib:  -agentpath:   -Xrun
4018 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4019 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4020                                     const char *on_load_symbols[],
4021                                     size_t num_symbol_entries) {
4022   OnLoadEntry_t on_load_entry = NULL;
4023   void *library = NULL;
4024 
4025   if (!agent->valid()) {
4026     char buffer[JVM_MAXPATHLEN];
4027     char ebuf[1024] = "";
4028     const char *name = agent->name();
4029     const char *msg = "Could not find agent library ";
4030 
4031     // First check to see if agent is statically linked into executable
4032     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4033       library = agent->os_lib();
4034     } else if (agent->is_absolute_path()) {
4035       library = os::dll_load(name, ebuf, sizeof ebuf);
4036       if (library == NULL) {
4037         const char *sub_msg = " in absolute path, with error: ";
4038         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4039         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4040         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4041         // If we can't find the agent, exit.
4042         vm_exit_during_initialization(buf, NULL);
4043         FREE_C_HEAP_ARRAY(char, buf);
4044       }
4045     } else {
4046       // Try to load the agent from the standard dll directory
4047       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4048                              name)) {
4049         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4050       }
4051       if (library == NULL) { // Try the library path directory.
4052         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4053           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4054         }
4055         if (library == NULL) {
4056           const char *sub_msg = " on the library path, with error: ";
4057           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4058 
4059           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4060                        strlen(ebuf) + strlen(sub_msg2) + 1;
4061           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4062           if (!agent->is_instrument_lib()) {
4063             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4064           } else {
4065             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4066           }
4067           // If we can't find the agent, exit.
4068           vm_exit_during_initialization(buf, NULL);
4069           FREE_C_HEAP_ARRAY(char, buf);
4070         }
4071       }
4072     }
4073     agent->set_os_lib(library);
4074     agent->set_valid();
4075   }
4076 
4077   // Find the OnLoad function.
4078   on_load_entry =
4079     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4080                                                           false,
4081                                                           on_load_symbols,
4082                                                           num_symbol_entries));
4083   return on_load_entry;
4084 }
4085 
4086 // Find the JVM_OnLoad entry point
4087 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4088   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4089   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4090 }
4091 
4092 // Find the Agent_OnLoad entry point
4093 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4094   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4095   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4096 }
4097 
4098 // For backwards compatibility with -Xrun
4099 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4100 // treated like -agentpath:
4101 // Must be called before agent libraries are created
4102 void Threads::convert_vm_init_libraries_to_agents() {
4103   AgentLibrary* agent;
4104   AgentLibrary* next;
4105 
4106   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4107     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4108     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4109 
4110     // If there is an JVM_OnLoad function it will get called later,
4111     // otherwise see if there is an Agent_OnLoad
4112     if (on_load_entry == NULL) {
4113       on_load_entry = lookup_agent_on_load(agent);
4114       if (on_load_entry != NULL) {
4115         // switch it to the agent list -- so that Agent_OnLoad will be called,
4116         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4117         Arguments::convert_library_to_agent(agent);
4118       } else {
4119         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4120       }
4121     }
4122   }
4123 }
4124 
4125 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4126 // Invokes Agent_OnLoad
4127 // Called very early -- before JavaThreads exist
4128 void Threads::create_vm_init_agents() {
4129   extern struct JavaVM_ main_vm;
4130   AgentLibrary* agent;
4131 
4132   JvmtiExport::enter_onload_phase();
4133 
4134   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4135     // CDS dumping does not support native JVMTI agent.
4136     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4137     if (DumpSharedSpaces || DynamicDumpSharedSpaces) {
4138       if(!agent->is_instrument_lib()) {
4139         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4140       } else if (!AllowArchivingWithJavaAgent) {
4141         vm_exit_during_cds_dumping(
4142           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4143       }
4144     }
4145 
4146     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4147 
4148     if (on_load_entry != NULL) {
4149       // Invoke the Agent_OnLoad function
4150       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4151       if (err != JNI_OK) {
4152         vm_exit_during_initialization("agent library failed to init", agent->name());
4153       }
4154     } else {
4155       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4156     }
4157   }
4158 
4159   JvmtiExport::enter_primordial_phase();
4160 }
4161 
4162 extern "C" {
4163   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4164 }
4165 
4166 void Threads::shutdown_vm_agents() {
4167   // Send any Agent_OnUnload notifications
4168   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4169   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4170   extern struct JavaVM_ main_vm;
4171   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4172 
4173     // Find the Agent_OnUnload function.
4174     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4175                                                    os::find_agent_function(agent,
4176                                                    false,
4177                                                    on_unload_symbols,
4178                                                    num_symbol_entries));
4179 
4180     // Invoke the Agent_OnUnload function
4181     if (unload_entry != NULL) {
4182       JavaThread* thread = JavaThread::current();
4183       ThreadToNativeFromVM ttn(thread);
4184       HandleMark hm(thread);
4185       (*unload_entry)(&main_vm);
4186     }
4187   }
4188 }
4189 
4190 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4191 // Invokes JVM_OnLoad
4192 void Threads::create_vm_init_libraries() {
4193   extern struct JavaVM_ main_vm;
4194   AgentLibrary* agent;
4195 
4196   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4197     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4198 
4199     if (on_load_entry != NULL) {
4200       // Invoke the JVM_OnLoad function
4201       JavaThread* thread = JavaThread::current();
4202       ThreadToNativeFromVM ttn(thread);
4203       HandleMark hm(thread);
4204       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4205       if (err != JNI_OK) {
4206         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4207       }
4208     } else {
4209       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4210     }
4211   }
4212 }
4213 
4214 
4215 // Last thread running calls java.lang.Shutdown.shutdown()
4216 void JavaThread::invoke_shutdown_hooks() {
4217   HandleMark hm(this);
4218 
4219   // We could get here with a pending exception, if so clear it now.
4220   if (this->has_pending_exception()) {
4221     this->clear_pending_exception();
4222   }
4223 
4224   EXCEPTION_MARK;
4225   Klass* shutdown_klass =
4226     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4227                                       THREAD);
4228   if (shutdown_klass != NULL) {
4229     // SystemDictionary::resolve_or_null will return null if there was
4230     // an exception.  If we cannot load the Shutdown class, just don't
4231     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4232     // won't be run.  Note that if a shutdown hook was registered,
4233     // the Shutdown class would have already been loaded
4234     // (Runtime.addShutdownHook will load it).
4235     JavaValue result(T_VOID);
4236     JavaCalls::call_static(&result,
4237                            shutdown_klass,
4238                            vmSymbols::shutdown_name(),
4239                            vmSymbols::void_method_signature(),
4240                            THREAD);
4241   }
4242   CLEAR_PENDING_EXCEPTION;
4243 }
4244 
4245 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4246 // the program falls off the end of main(). Another VM exit path is through
4247 // vm_exit() when the program calls System.exit() to return a value or when
4248 // there is a serious error in VM. The two shutdown paths are not exactly
4249 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4250 // and VM_Exit op at VM level.
4251 //
4252 // Shutdown sequence:
4253 //   + Shutdown native memory tracking if it is on
4254 //   + Wait until we are the last non-daemon thread to execute
4255 //     <-- every thing is still working at this moment -->
4256 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4257 //        shutdown hooks
4258 //   + Call before_exit(), prepare for VM exit
4259 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4260 //        currently the only user of this mechanism is File.deleteOnExit())
4261 //      > stop StatSampler, watcher thread, CMS threads,
4262 //        post thread end and vm death events to JVMTI,
4263 //        stop signal thread
4264 //   + Call JavaThread::exit(), it will:
4265 //      > release JNI handle blocks, remove stack guard pages
4266 //      > remove this thread from Threads list
4267 //     <-- no more Java code from this thread after this point -->
4268 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4269 //     the compiler threads at safepoint
4270 //     <-- do not use anything that could get blocked by Safepoint -->
4271 //   + Disable tracing at JNI/JVM barriers
4272 //   + Set _vm_exited flag for threads that are still running native code
4273 //   + Call exit_globals()
4274 //      > deletes tty
4275 //      > deletes PerfMemory resources
4276 //   + Delete this thread
4277 //   + Return to caller
4278 
4279 bool Threads::destroy_vm() {
4280   JavaThread* thread = JavaThread::current();
4281 
4282 #ifdef ASSERT
4283   _vm_complete = false;
4284 #endif
4285   // Wait until we are the last non-daemon thread to execute
4286   { MonitorLocker nu(Threads_lock);
4287     while (Threads::number_of_non_daemon_threads() > 1)
4288       // This wait should make safepoint checks, wait without a timeout,
4289       // and wait as a suspend-equivalent condition.
4290       nu.wait(0, Mutex::_as_suspend_equivalent_flag);
4291   }
4292 
4293   EventShutdown e;
4294   if (e.should_commit()) {
4295     e.set_reason("No remaining non-daemon Java threads");
4296     e.commit();
4297   }
4298 
4299   // Hang forever on exit if we are reporting an error.
4300   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4301     os::infinite_sleep();
4302   }
4303   os::wait_for_keypress_at_exit();
4304 
4305   // run Java level shutdown hooks
4306   thread->invoke_shutdown_hooks();
4307 
4308   before_exit(thread);
4309 
4310   thread->exit(true);
4311 
4312   // Stop VM thread.
4313   {
4314     // 4945125 The vm thread comes to a safepoint during exit.
4315     // GC vm_operations can get caught at the safepoint, and the
4316     // heap is unparseable if they are caught. Grab the Heap_lock
4317     // to prevent this. The GC vm_operations will not be able to
4318     // queue until after the vm thread is dead. After this point,
4319     // we'll never emerge out of the safepoint before the VM exits.
4320 
4321     MutexLocker ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4322 
4323     VMThread::wait_for_vm_thread_exit();
4324     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4325     VMThread::destroy();
4326   }
4327 
4328   // Now, all Java threads are gone except daemon threads. Daemon threads
4329   // running Java code or in VM are stopped by the Safepoint. However,
4330   // daemon threads executing native code are still running.  But they
4331   // will be stopped at native=>Java/VM barriers. Note that we can't
4332   // simply kill or suspend them, as it is inherently deadlock-prone.
4333 
4334   VM_Exit::set_vm_exited();
4335 
4336   // Clean up ideal graph printers after the VMThread has started
4337   // the final safepoint which will block all the Compiler threads.
4338   // Note that this Thread has already logically exited so the
4339   // clean_up() function's use of a JavaThreadIteratorWithHandle
4340   // would be a problem except set_vm_exited() has remembered the
4341   // shutdown thread which is granted a policy exception.
4342 #if defined(COMPILER2) && !defined(PRODUCT)
4343   IdealGraphPrinter::clean_up();
4344 #endif
4345 
4346   notify_vm_shutdown();
4347 
4348   // exit_globals() will delete tty
4349   exit_globals();
4350 
4351   // We are after VM_Exit::set_vm_exited() so we can't call
4352   // thread->smr_delete() or we will block on the Threads_lock.
4353   // Deleting the shutdown thread here is safe because another
4354   // JavaThread cannot have an active ThreadsListHandle for
4355   // this JavaThread.
4356   delete thread;
4357 
4358 #if INCLUDE_JVMCI
4359   if (JVMCICounterSize > 0) {
4360     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4361   }
4362 #endif
4363 
4364   LogConfiguration::finalize();
4365 
4366   return true;
4367 }
4368 
4369 
4370 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4371   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4372   return is_supported_jni_version(version);
4373 }
4374 
4375 
4376 jboolean Threads::is_supported_jni_version(jint version) {
4377   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4378   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4379   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4380   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4381   if (version == JNI_VERSION_9) return JNI_TRUE;
4382   if (version == JNI_VERSION_10) return JNI_TRUE;
4383   return JNI_FALSE;
4384 }
4385 
4386 
4387 void Threads::add(JavaThread* p, bool force_daemon) {
4388   // The threads lock must be owned at this point
4389   assert(Threads_lock->owned_by_self(), "must have threads lock");
4390 
4391   BarrierSet::barrier_set()->on_thread_attach(p);
4392 
4393   // Once a JavaThread is added to the Threads list, smr_delete() has
4394   // to be used to delete it. Otherwise we can just delete it directly.
4395   p->set_on_thread_list();
4396 
4397   _number_of_threads++;
4398   oop threadObj = p->threadObj();
4399   bool daemon = true;
4400   // Bootstrapping problem: threadObj can be null for initial
4401   // JavaThread (or for threads attached via JNI)
4402   if ((!force_daemon) && !is_daemon((threadObj))) {
4403     _number_of_non_daemon_threads++;
4404     daemon = false;
4405   }
4406 
4407   ThreadService::add_thread(p, daemon);
4408 
4409   // Maintain fast thread list
4410   ThreadsSMRSupport::add_thread(p);
4411 
4412   // Possible GC point.
4413   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4414 }
4415 
4416 void Threads::remove(JavaThread* p, bool is_daemon) {
4417 
4418   // Reclaim the ObjectMonitors from the om_in_use_list and om_free_list of the moribund thread.
4419   ObjectSynchronizer::om_flush(p);
4420 
4421   // Extra scope needed for Thread_lock, so we can check
4422   // that we do not remove thread without safepoint code notice
4423   { MonitorLocker ml(Threads_lock);
4424 
4425     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4426 
4427     // Maintain fast thread list
4428     ThreadsSMRSupport::remove_thread(p);
4429 
4430     _number_of_threads--;
4431     if (!is_daemon) {
4432       _number_of_non_daemon_threads--;
4433 
4434       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4435       // on destroy_vm will wake up.
4436       if (number_of_non_daemon_threads() == 1) {
4437         ml.notify_all();
4438       }
4439     }
4440     ThreadService::remove_thread(p, is_daemon);
4441 
4442     // Make sure that safepoint code disregard this thread. This is needed since
4443     // the thread might mess around with locks after this point. This can cause it
4444     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4445     // of this thread since it is removed from the queue.
4446     p->set_terminated_value();
4447   } // unlock Threads_lock
4448 
4449   // Since Events::log uses a lock, we grab it outside the Threads_lock
4450   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4451 }
4452 
4453 // Operations on the Threads list for GC.  These are not explicitly locked,
4454 // but the garbage collector must provide a safe context for them to run.
4455 // In particular, these things should never be called when the Threads_lock
4456 // is held by some other thread. (Note: the Safepoint abstraction also
4457 // uses the Threads_lock to guarantee this property. It also makes sure that
4458 // all threads gets blocked when exiting or starting).
4459 
4460 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4461   ALL_JAVA_THREADS(p) {
4462     p->oops_do(f, cf);
4463   }
4464   VMThread::vm_thread()->oops_do(f, cf);
4465 }
4466 
4467 void Threads::change_thread_claim_token() {
4468   if (++_thread_claim_token == 0) {
4469     // On overflow of the token counter, there is a risk of future
4470     // collisions between a new global token value and a stale token
4471     // for a thread, because not all iterations visit all threads.
4472     // (Though it's pretty much a theoretical concern for non-trivial
4473     // token counter sizes.)  To deal with the possibility, reset all
4474     // the thread tokens to zero on global token overflow.
4475     struct ResetClaims : public ThreadClosure {
4476       virtual void do_thread(Thread* t) {
4477         t->claim_threads_do(false, 0);
4478       }
4479     } reset_claims;
4480     Threads::threads_do(&reset_claims);
4481     // On overflow, update the global token to non-zero, to
4482     // avoid the special "never claimed" initial thread value.
4483     _thread_claim_token = 1;
4484   }
4485 }
4486 
4487 #ifdef ASSERT
4488 void assert_thread_claimed(const char* kind, Thread* t, uintx expected) {
4489   const uintx token = t->threads_do_token();
4490   assert(token == expected,
4491          "%s " PTR_FORMAT " has incorrect value " UINTX_FORMAT " != "
4492          UINTX_FORMAT, kind, p2i(t), token, expected);
4493 }
4494 
4495 void Threads::assert_all_threads_claimed() {
4496   ALL_JAVA_THREADS(p) {
4497     assert_thread_claimed("Thread", p, _thread_claim_token);
4498   }
4499   assert_thread_claimed("VMThread", VMThread::vm_thread(), _thread_claim_token);
4500 }
4501 #endif // ASSERT
4502 
4503 class ParallelOopsDoThreadClosure : public ThreadClosure {
4504 private:
4505   OopClosure* _f;
4506   CodeBlobClosure* _cf;
4507 public:
4508   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4509   void do_thread(Thread* t) {
4510     t->oops_do(_f, _cf);
4511   }
4512 };
4513 
4514 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4515   ParallelOopsDoThreadClosure tc(f, cf);
4516   possibly_parallel_threads_do(is_par, &tc);
4517 }
4518 
4519 void Threads::nmethods_do(CodeBlobClosure* cf) {
4520   ALL_JAVA_THREADS(p) {
4521     // This is used by the code cache sweeper to mark nmethods that are active
4522     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4523     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4524     if(!p->is_Code_cache_sweeper_thread()) {
4525       p->nmethods_do(cf);
4526     }
4527   }
4528 }
4529 
4530 void Threads::metadata_do(MetadataClosure* f) {
4531   ALL_JAVA_THREADS(p) {
4532     p->metadata_do(f);
4533   }
4534 }
4535 
4536 class ThreadHandlesClosure : public ThreadClosure {
4537   void (*_f)(Metadata*);
4538  public:
4539   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4540   virtual void do_thread(Thread* thread) {
4541     thread->metadata_handles_do(_f);
4542   }
4543 };
4544 
4545 void Threads::metadata_handles_do(void f(Metadata*)) {
4546   // Only walk the Handles in Thread.
4547   ThreadHandlesClosure handles_closure(f);
4548   threads_do(&handles_closure);
4549 }
4550 
4551 void Threads::deoptimized_wrt_marked_nmethods() {
4552   ALL_JAVA_THREADS(p) {
4553     p->deoptimized_wrt_marked_nmethods();
4554   }
4555 }
4556 
4557 
4558 // Get count Java threads that are waiting to enter the specified monitor.
4559 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4560                                                          int count,
4561                                                          address monitor) {
4562   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4563 
4564   int i = 0;
4565   DO_JAVA_THREADS(t_list, p) {
4566     if (!p->can_call_java()) continue;
4567 
4568     address pending = (address)p->current_pending_monitor();
4569     if (pending == monitor) {             // found a match
4570       if (i < count) result->append(p);   // save the first count matches
4571       i++;
4572     }
4573   }
4574 
4575   return result;
4576 }
4577 
4578 
4579 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4580                                                       address owner) {
4581   // NULL owner means not locked so we can skip the search
4582   if (owner == NULL) return NULL;
4583 
4584   DO_JAVA_THREADS(t_list, p) {
4585     // first, see if owner is the address of a Java thread
4586     if (owner == (address)p) return p;
4587   }
4588 
4589   // Cannot assert on lack of success here since this function may be
4590   // used by code that is trying to report useful problem information
4591   // like deadlock detection.
4592   if (UseHeavyMonitors) return NULL;
4593 
4594   // If we didn't find a matching Java thread and we didn't force use of
4595   // heavyweight monitors, then the owner is the stack address of the
4596   // Lock Word in the owning Java thread's stack.
4597   //
4598   JavaThread* the_owner = NULL;
4599   DO_JAVA_THREADS(t_list, q) {
4600     if (q->is_lock_owned(owner)) {
4601       the_owner = q;
4602       break;
4603     }
4604   }
4605 
4606   // cannot assert on lack of success here; see above comment
4607   return the_owner;
4608 }
4609 
4610 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4611 void Threads::print_on(outputStream* st, bool print_stacks,
4612                        bool internal_format, bool print_concurrent_locks,
4613                        bool print_extended_info) {
4614   char buf[32];
4615   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4616 
4617   st->print_cr("Full thread dump %s (%s %s):",
4618                VM_Version::vm_name(),
4619                VM_Version::vm_release(),
4620                VM_Version::vm_info_string());
4621   st->cr();
4622 
4623 #if INCLUDE_SERVICES
4624   // Dump concurrent locks
4625   ConcurrentLocksDump concurrent_locks;
4626   if (print_concurrent_locks) {
4627     concurrent_locks.dump_at_safepoint();
4628   }
4629 #endif // INCLUDE_SERVICES
4630 
4631   ThreadsSMRSupport::print_info_on(st);
4632   st->cr();
4633 
4634   ALL_JAVA_THREADS(p) {
4635     ResourceMark rm;
4636     p->print_on(st, print_extended_info);
4637     if (print_stacks) {
4638       if (internal_format) {
4639         p->trace_stack();
4640       } else {
4641         p->print_stack_on(st);
4642       }
4643     }
4644     st->cr();
4645 #if INCLUDE_SERVICES
4646     if (print_concurrent_locks) {
4647       concurrent_locks.print_locks_on(p, st);
4648     }
4649 #endif // INCLUDE_SERVICES
4650   }
4651 
4652   VMThread::vm_thread()->print_on(st);
4653   st->cr();
4654   Universe::heap()->print_gc_threads_on(st);
4655   WatcherThread* wt = WatcherThread::watcher_thread();
4656   if (wt != NULL) {
4657     wt->print_on(st);
4658     st->cr();
4659   }
4660 
4661   st->flush();
4662 }
4663 
4664 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4665                              int buflen, bool* found_current) {
4666   if (this_thread != NULL) {
4667     bool is_current = (current == this_thread);
4668     *found_current = *found_current || is_current;
4669     st->print("%s", is_current ? "=>" : "  ");
4670 
4671     st->print(PTR_FORMAT, p2i(this_thread));
4672     st->print(" ");
4673     this_thread->print_on_error(st, buf, buflen);
4674     st->cr();
4675   }
4676 }
4677 
4678 class PrintOnErrorClosure : public ThreadClosure {
4679   outputStream* _st;
4680   Thread* _current;
4681   char* _buf;
4682   int _buflen;
4683   bool* _found_current;
4684  public:
4685   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4686                       int buflen, bool* found_current) :
4687    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4688 
4689   virtual void do_thread(Thread* thread) {
4690     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4691   }
4692 };
4693 
4694 // Threads::print_on_error() is called by fatal error handler. It's possible
4695 // that VM is not at safepoint and/or current thread is inside signal handler.
4696 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4697 // memory (even in resource area), it might deadlock the error handler.
4698 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4699                              int buflen) {
4700   ThreadsSMRSupport::print_info_on(st);
4701   st->cr();
4702 
4703   bool found_current = false;
4704   st->print_cr("Java Threads: ( => current thread )");
4705   ALL_JAVA_THREADS(thread) {
4706     print_on_error(thread, st, current, buf, buflen, &found_current);
4707   }
4708   st->cr();
4709 
4710   st->print_cr("Other Threads:");
4711   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4712   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4713 
4714   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4715   Universe::heap()->gc_threads_do(&print_closure);
4716 
4717   if (!found_current) {
4718     st->cr();
4719     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4720     current->print_on_error(st, buf, buflen);
4721     st->cr();
4722   }
4723   st->cr();
4724 
4725   st->print_cr("Threads with active compile tasks:");
4726   print_threads_compiling(st, buf, buflen);
4727 }
4728 
4729 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
4730   ALL_JAVA_THREADS(thread) {
4731     if (thread->is_Compiler_thread()) {
4732       CompilerThread* ct = (CompilerThread*) thread;
4733 
4734       // Keep task in local variable for NULL check.
4735       // ct->_task might be set to NULL by concurring compiler thread
4736       // because it completed the compilation. The task is never freed,
4737       // though, just returned to a free list.
4738       CompileTask* task = ct->task();
4739       if (task != NULL) {
4740         thread->print_name_on_error(st, buf, buflen);
4741         st->print("  ");
4742         task->print(st, NULL, short_form, true);
4743       }
4744     }
4745   }
4746 }
4747 
4748 
4749 // Internal SpinLock and Mutex
4750 // Based on ParkEvent
4751 
4752 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4753 //
4754 // We employ SpinLocks _only for low-contention, fixed-length
4755 // short-duration critical sections where we're concerned
4756 // about native mutex_t or HotSpot Mutex:: latency.
4757 // The mux construct provides a spin-then-block mutual exclusion
4758 // mechanism.
4759 //
4760 // Testing has shown that contention on the ListLock guarding gFreeList
4761 // is common.  If we implement ListLock as a simple SpinLock it's common
4762 // for the JVM to devolve to yielding with little progress.  This is true
4763 // despite the fact that the critical sections protected by ListLock are
4764 // extremely short.
4765 //
4766 // TODO-FIXME: ListLock should be of type SpinLock.
4767 // We should make this a 1st-class type, integrated into the lock
4768 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4769 // should have sufficient padding to avoid false-sharing and excessive
4770 // cache-coherency traffic.
4771 
4772 
4773 typedef volatile int SpinLockT;
4774 
4775 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4776   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4777     return;   // normal fast-path return
4778   }
4779 
4780   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4781   int ctr = 0;
4782   int Yields = 0;
4783   for (;;) {
4784     while (*adr != 0) {
4785       ++ctr;
4786       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4787         if (Yields > 5) {
4788           os::naked_short_sleep(1);
4789         } else {
4790           os::naked_yield();
4791           ++Yields;
4792         }
4793       } else {
4794         SpinPause();
4795       }
4796     }
4797     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4798   }
4799 }
4800 
4801 void Thread::SpinRelease(volatile int * adr) {
4802   assert(*adr != 0, "invariant");
4803   OrderAccess::fence();      // guarantee at least release consistency.
4804   // Roach-motel semantics.
4805   // It's safe if subsequent LDs and STs float "up" into the critical section,
4806   // but prior LDs and STs within the critical section can't be allowed
4807   // to reorder or float past the ST that releases the lock.
4808   // Loads and stores in the critical section - which appear in program
4809   // order before the store that releases the lock - must also appear
4810   // before the store that releases the lock in memory visibility order.
4811   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4812   // the ST of 0 into the lock-word which releases the lock, so fence
4813   // more than covers this on all platforms.
4814   *adr = 0;
4815 }
4816 
4817 // muxAcquire and muxRelease:
4818 //
4819 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4820 //    The LSB of the word is set IFF the lock is held.
4821 //    The remainder of the word points to the head of a singly-linked list
4822 //    of threads blocked on the lock.
4823 //
4824 // *  The current implementation of muxAcquire-muxRelease uses its own
4825 //    dedicated Thread._MuxEvent instance.  If we're interested in
4826 //    minimizing the peak number of extant ParkEvent instances then
4827 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4828 //    as certain invariants were satisfied.  Specifically, care would need
4829 //    to be taken with regards to consuming unpark() "permits".
4830 //    A safe rule of thumb is that a thread would never call muxAcquire()
4831 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4832 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4833 //    consume an unpark() permit intended for monitorenter, for instance.
4834 //    One way around this would be to widen the restricted-range semaphore
4835 //    implemented in park().  Another alternative would be to provide
4836 //    multiple instances of the PlatformEvent() for each thread.  One
4837 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4838 //
4839 // *  Usage:
4840 //    -- Only as leaf locks
4841 //    -- for short-term locking only as muxAcquire does not perform
4842 //       thread state transitions.
4843 //
4844 // Alternatives:
4845 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4846 //    but with parking or spin-then-park instead of pure spinning.
4847 // *  Use Taura-Oyama-Yonenzawa locks.
4848 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4849 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4850 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4851 //    acquiring threads use timers (ParkTimed) to detect and recover from
4852 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4853 //    boundaries by using placement-new.
4854 // *  Augment MCS with advisory back-link fields maintained with CAS().
4855 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4856 //    The validity of the backlinks must be ratified before we trust the value.
4857 //    If the backlinks are invalid the exiting thread must back-track through the
4858 //    the forward links, which are always trustworthy.
4859 // *  Add a successor indication.  The LockWord is currently encoded as
4860 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4861 //    to provide the usual futile-wakeup optimization.
4862 //    See RTStt for details.
4863 //
4864 
4865 
4866 const intptr_t LOCKBIT = 1;
4867 
4868 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4869   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4870   if (w == 0) return;
4871   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4872     return;
4873   }
4874 
4875   ParkEvent * const Self = Thread::current()->_MuxEvent;
4876   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4877   for (;;) {
4878     int its = (os::is_MP() ? 100 : 0) + 1;
4879 
4880     // Optional spin phase: spin-then-park strategy
4881     while (--its >= 0) {
4882       w = *Lock;
4883       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4884         return;
4885       }
4886     }
4887 
4888     Self->reset();
4889     Self->OnList = intptr_t(Lock);
4890     // The following fence() isn't _strictly necessary as the subsequent
4891     // CAS() both serializes execution and ratifies the fetched *Lock value.
4892     OrderAccess::fence();
4893     for (;;) {
4894       w = *Lock;
4895       if ((w & LOCKBIT) == 0) {
4896         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4897           Self->OnList = 0;   // hygiene - allows stronger asserts
4898           return;
4899         }
4900         continue;      // Interference -- *Lock changed -- Just retry
4901       }
4902       assert(w & LOCKBIT, "invariant");
4903       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4904       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4905     }
4906 
4907     while (Self->OnList != 0) {
4908       Self->park();
4909     }
4910   }
4911 }
4912 
4913 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4914   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4915   if (w == 0) return;
4916   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4917     return;
4918   }
4919 
4920   ParkEvent * ReleaseAfter = NULL;
4921   if (ev == NULL) {
4922     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4923   }
4924   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4925   for (;;) {
4926     guarantee(ev->OnList == 0, "invariant");
4927     int its = (os::is_MP() ? 100 : 0) + 1;
4928 
4929     // Optional spin phase: spin-then-park strategy
4930     while (--its >= 0) {
4931       w = *Lock;
4932       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4933         if (ReleaseAfter != NULL) {
4934           ParkEvent::Release(ReleaseAfter);
4935         }
4936         return;
4937       }
4938     }
4939 
4940     ev->reset();
4941     ev->OnList = intptr_t(Lock);
4942     // The following fence() isn't _strictly necessary as the subsequent
4943     // CAS() both serializes execution and ratifies the fetched *Lock value.
4944     OrderAccess::fence();
4945     for (;;) {
4946       w = *Lock;
4947       if ((w & LOCKBIT) == 0) {
4948         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4949           ev->OnList = 0;
4950           // We call ::Release while holding the outer lock, thus
4951           // artificially lengthening the critical section.
4952           // Consider deferring the ::Release() until the subsequent unlock(),
4953           // after we've dropped the outer lock.
4954           if (ReleaseAfter != NULL) {
4955             ParkEvent::Release(ReleaseAfter);
4956           }
4957           return;
4958         }
4959         continue;      // Interference -- *Lock changed -- Just retry
4960       }
4961       assert(w & LOCKBIT, "invariant");
4962       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4963       if (Atomic::cmpxchg(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4964     }
4965 
4966     while (ev->OnList != 0) {
4967       ev->park();
4968     }
4969   }
4970 }
4971 
4972 // Release() must extract a successor from the list and then wake that thread.
4973 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4974 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4975 // Release() would :
4976 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4977 // (B) Extract a successor from the private list "in-hand"
4978 // (C) attempt to CAS() the residual back into *Lock over null.
4979 //     If there were any newly arrived threads and the CAS() would fail.
4980 //     In that case Release() would detach the RATs, re-merge the list in-hand
4981 //     with the RATs and repeat as needed.  Alternately, Release() might
4982 //     detach and extract a successor, but then pass the residual list to the wakee.
4983 //     The wakee would be responsible for reattaching and remerging before it
4984 //     competed for the lock.
4985 //
4986 // Both "pop" and DMR are immune from ABA corruption -- there can be
4987 // multiple concurrent pushers, but only one popper or detacher.
4988 // This implementation pops from the head of the list.  This is unfair,
4989 // but tends to provide excellent throughput as hot threads remain hot.
4990 // (We wake recently run threads first).
4991 //
4992 // All paths through muxRelease() will execute a CAS.
4993 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4994 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4995 // executed within the critical section are complete and globally visible before the
4996 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4997 void Thread::muxRelease(volatile intptr_t * Lock)  {
4998   for (;;) {
4999     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
5000     assert(w & LOCKBIT, "invariant");
5001     if (w == LOCKBIT) return;
5002     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5003     assert(List != NULL, "invariant");
5004     assert(List->OnList == intptr_t(Lock), "invariant");
5005     ParkEvent * const nxt = List->ListNext;
5006     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5007 
5008     // The following CAS() releases the lock and pops the head element.
5009     // The CAS() also ratifies the previously fetched lock-word value.
5010     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
5011       continue;
5012     }
5013     List->OnList = 0;
5014     OrderAccess::fence();
5015     List->unpark();
5016     return;
5017   }
5018 }
5019 
5020 
5021 void Threads::verify() {
5022   ALL_JAVA_THREADS(p) {
5023     p->verify();
5024   }
5025   VMThread* thread = VMThread::vm_thread();
5026   if (thread != NULL) thread->verify();
5027 }