1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "jfr/jfrEvents.hpp"
  28 #include "jfr/support/jfrThreadId.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "oops/markWord.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/atomic.hpp"
  34 #include "runtime/handles.inline.hpp"
  35 #include "runtime/interfaceSupport.inline.hpp"
  36 #include "runtime/mutexLocker.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/objectMonitor.inline.hpp"
  39 #include "runtime/orderAccess.hpp"
  40 #include "runtime/osThread.hpp"
  41 #include "runtime/safepointMechanism.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/thread.inline.hpp"
  45 #include "services/threadService.hpp"
  46 #include "utilities/dtrace.hpp"
  47 #include "utilities/macros.hpp"
  48 #include "utilities/preserveException.hpp"
  49 #if INCLUDE_JFR
  50 #include "jfr/support/jfrFlush.hpp"
  51 #endif
  52 
  53 #ifdef DTRACE_ENABLED
  54 
  55 // Only bother with this argument setup if dtrace is available
  56 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  57 
  58 
  59 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  60   char* bytes = NULL;                                                      \
  61   int len = 0;                                                             \
  62   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  63   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  64   if (klassname != NULL) {                                                 \
  65     bytes = (char*)klassname->bytes();                                     \
  66     len = klassname->utf8_length();                                        \
  67   }
  68 
  69 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  70   {                                                                        \
  71     if (DTraceMonitorProbes) {                                             \
  72       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  73       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  74                            (monitor), bytes, len, (millis));               \
  75     }                                                                      \
  76   }
  77 
  78 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  79 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  80 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  81 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  82 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  83 
  84 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  85   {                                                                        \
  86     if (DTraceMonitorProbes) {                                             \
  87       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  88       HOTSPOT_MONITOR_##probe(jtid,                                        \
  89                               (uintptr_t)(monitor), bytes, len);           \
  90     }                                                                      \
  91   }
  92 
  93 #else //  ndef DTRACE_ENABLED
  94 
  95 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  96 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
  97 
  98 #endif // ndef DTRACE_ENABLED
  99 
 100 // Tunables ...
 101 // The knob* variables are effectively final.  Once set they should
 102 // never be modified hence.  Consider using __read_mostly with GCC.
 103 
 104 int ObjectMonitor::Knob_SpinLimit    = 5000;    // derived by an external tool -
 105 
 106 static int Knob_Bonus               = 100;     // spin success bonus
 107 static int Knob_BonusB              = 100;     // spin success bonus
 108 static int Knob_Penalty             = 200;     // spin failure penalty
 109 static int Knob_Poverty             = 1000;
 110 static int Knob_FixedSpin           = 0;
 111 static int Knob_PreSpin             = 10;      // 20-100 likely better
 112 
 113 DEBUG_ONLY(static volatile bool InitDone = false;)
 114 
 115 // -----------------------------------------------------------------------------
 116 // Theory of operations -- Monitors lists, thread residency, etc:
 117 //
 118 // * A thread acquires ownership of a monitor by successfully
 119 //   CAS()ing the _owner field from null to non-null.
 120 //
 121 // * Invariant: A thread appears on at most one monitor list --
 122 //   cxq, EntryList or WaitSet -- at any one time.
 123 //
 124 // * Contending threads "push" themselves onto the cxq with CAS
 125 //   and then spin/park.
 126 //
 127 // * After a contending thread eventually acquires the lock it must
 128 //   dequeue itself from either the EntryList or the cxq.
 129 //
 130 // * The exiting thread identifies and unparks an "heir presumptive"
 131 //   tentative successor thread on the EntryList.  Critically, the
 132 //   exiting thread doesn't unlink the successor thread from the EntryList.
 133 //   After having been unparked, the wakee will recontend for ownership of
 134 //   the monitor.   The successor (wakee) will either acquire the lock or
 135 //   re-park itself.
 136 //
 137 //   Succession is provided for by a policy of competitive handoff.
 138 //   The exiting thread does _not_ grant or pass ownership to the
 139 //   successor thread.  (This is also referred to as "handoff" succession").
 140 //   Instead the exiting thread releases ownership and possibly wakes
 141 //   a successor, so the successor can (re)compete for ownership of the lock.
 142 //   If the EntryList is empty but the cxq is populated the exiting
 143 //   thread will drain the cxq into the EntryList.  It does so by
 144 //   by detaching the cxq (installing null with CAS) and folding
 145 //   the threads from the cxq into the EntryList.  The EntryList is
 146 //   doubly linked, while the cxq is singly linked because of the
 147 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 148 //
 149 // * Concurrency invariants:
 150 //
 151 //   -- only the monitor owner may access or mutate the EntryList.
 152 //      The mutex property of the monitor itself protects the EntryList
 153 //      from concurrent interference.
 154 //   -- Only the monitor owner may detach the cxq.
 155 //
 156 // * The monitor entry list operations avoid locks, but strictly speaking
 157 //   they're not lock-free.  Enter is lock-free, exit is not.
 158 //   For a description of 'Methods and apparatus providing non-blocking access
 159 //   to a resource,' see U.S. Pat. No. 7844973.
 160 //
 161 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 162 //   detaching thread.  This mechanism is immune from the ABA corruption.
 163 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 164 //
 165 // * Taken together, the cxq and the EntryList constitute or form a
 166 //   single logical queue of threads stalled trying to acquire the lock.
 167 //   We use two distinct lists to improve the odds of a constant-time
 168 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 169 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 170 //   A key desideratum is to minimize queue & monitor metadata manipulation
 171 //   that occurs while holding the monitor lock -- that is, we want to
 172 //   minimize monitor lock holds times.  Note that even a small amount of
 173 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 174 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 175 //   locks and monitor metadata.
 176 //
 177 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 178 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 179 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 180 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 181 //
 182 //   The EntryList is ordered by the prevailing queue discipline and
 183 //   can be organized in any convenient fashion, such as a doubly-linked list or
 184 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 185 //   to operate in constant-time.  If we need a priority queue then something akin
 186 //   to Solaris' sleepq would work nicely.  Viz.,
 187 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 188 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 189 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 190 //   EntryList accordingly.
 191 //
 192 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 193 //   somewhat similar to an elevator-scan.
 194 //
 195 // * The monitor synchronization subsystem avoids the use of native
 196 //   synchronization primitives except for the narrow platform-specific
 197 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 198 //   the semantics of park-unpark.  Put another way, this monitor implementation
 199 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 200 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 201 //   underlying OS manages the READY<->RUN transitions.
 202 //
 203 // * Waiting threads reside on the WaitSet list -- wait() puts
 204 //   the caller onto the WaitSet.
 205 //
 206 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 207 //   either the EntryList or cxq.  Subsequent exit() operations will
 208 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 209 //   it's likely the notifyee would simply impale itself on the lock held
 210 //   by the notifier.
 211 //
 212 // * An interesting alternative is to encode cxq as (List,LockByte) where
 213 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 214 //   variable, like _recursions, in the scheme.  The threads or Events that form
 215 //   the list would have to be aligned in 256-byte addresses.  A thread would
 216 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 217 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 218 //   Note that is is *not* word-tearing, but it does presume that full-word
 219 //   CAS operations are coherent with intermix with STB operations.  That's true
 220 //   on most common processors.
 221 //
 222 // * See also http://blogs.sun.com/dave
 223 
 224 
 225 void* ObjectMonitor::operator new (size_t size) throw() {
 226   return AllocateHeap(size, mtInternal);
 227 }
 228 void* ObjectMonitor::operator new[] (size_t size) throw() {
 229   return operator new (size);
 230 }
 231 void ObjectMonitor::operator delete(void* p) {
 232   FreeHeap(p);
 233 }
 234 void ObjectMonitor::operator delete[] (void *p) {
 235   operator delete(p);
 236 }
 237 
 238 // -----------------------------------------------------------------------------
 239 // Enter support
 240 
 241 void ObjectMonitor::enter(TRAPS) {
 242   ADIM_guarantee(ref_count() > 0, "must be positive: ref_count=%d", ref_count());
 243 
 244   // The following code is ordered to check the most common cases first
 245   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 246   Thread * const Self = THREAD;
 247 
 248   void * cur = Atomic::cmpxchg(Self, &_owner, (void*)NULL);
 249   if (cur == NULL) {
 250     assert(_recursions == 0, "invariant");
 251     return;
 252   }
 253 
 254   if (cur == Self) {
 255     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 256     _recursions++;
 257     return;
 258   }
 259 
 260   if (Self->is_lock_owned ((address)cur)) {
 261     assert(_recursions == 0, "internal state error");
 262     _recursions = 1;
 263     // Commute owner from a thread-specific on-stack BasicLockObject address to
 264     // a full-fledged "Thread *".
 265     _owner = Self;
 266     return;
 267   }
 268 
 269   if (AsyncDeflateIdleMonitors &&
 270       Atomic::cmpxchg(Self, &_owner, DEFLATER_MARKER) == DEFLATER_MARKER) {
 271     // The deflation protocol finished the first part (setting owner),
 272     // but it failed the second part (making ref_count negative) and
 273     // bailed. Or the ObjectMonitor was async deflated and reused.
 274     // Acquired the monitor.
 275     assert(_recursions == 0, "invariant");
 276     return;
 277   }
 278 
 279   // We've encountered genuine contention.
 280   assert(Self->_Stalled == 0, "invariant");
 281   Self->_Stalled = intptr_t(this);
 282 
 283   // Try one round of spinning *before* enqueueing Self
 284   // and before going through the awkward and expensive state
 285   // transitions.  The following spin is strictly optional ...
 286   // Note that if we acquire the monitor from an initial spin
 287   // we forgo posting JVMTI events and firing DTRACE probes.
 288   if (TrySpin(Self) > 0) {
 289     assert(_owner == Self, "must be Self: owner=" INTPTR_FORMAT, p2i(_owner));
 290     assert(_recursions == 0, "must be 0: recursions=" INTPTR_FORMAT,
 291            _recursions);
 292     assert(((oop)object())->mark() == markWord::encode(this),
 293            "object mark must match encoded this: mark=" INTPTR_FORMAT
 294            ", encoded this=" INTPTR_FORMAT, ((oop)object())->mark().value(),
 295            markWord::encode(this).value());
 296     Self->_Stalled = 0;
 297     return;
 298   }
 299 
 300   assert(_owner != Self, "invariant");
 301   assert(_succ != Self, "invariant");
 302   assert(Self->is_Java_thread(), "invariant");
 303   JavaThread * jt = (JavaThread *) Self;
 304   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 305   assert(jt->thread_state() != _thread_blocked, "invariant");
 306   assert(AsyncDeflateIdleMonitors || this->object() != NULL, "invariant");
 307   assert(_contentions >= 0, "must not be negative: contentions=%d", _contentions);
 308 
 309   // Prevent deflation. See ObjectSynchronizer::deflate_monitor(),
 310   // ObjectSynchronizer::deflate_monitor_using_JT() and is_busy().
 311   // Ensure the object <-> monitor relationship remains stable while
 312   // there's contention.
 313   Atomic::add(1, &_contentions);
 314 
 315   JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(jt);)
 316   EventJavaMonitorEnter event;
 317   if (event.should_commit()) {
 318     event.set_monitorClass(((oop)this->object())->klass());
 319     event.set_address((uintptr_t)(this->object_addr()));
 320   }
 321 
 322   { // Change java thread status to indicate blocked on monitor enter.
 323     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 324 
 325     Self->set_current_pending_monitor(this);
 326 
 327     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 328     if (JvmtiExport::should_post_monitor_contended_enter()) {
 329       JvmtiExport::post_monitor_contended_enter(jt, this);
 330 
 331       // The current thread does not yet own the monitor and does not
 332       // yet appear on any queues that would get it made the successor.
 333       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 334       // handler cannot accidentally consume an unpark() meant for the
 335       // ParkEvent associated with this ObjectMonitor.
 336     }
 337 
 338     OSThreadContendState osts(Self->osthread());
 339     ThreadBlockInVM tbivm(jt);
 340 
 341     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 342     for (;;) {
 343       jt->set_suspend_equivalent();
 344       // cleared by handle_special_suspend_equivalent_condition()
 345       // or java_suspend_self()
 346 
 347       EnterI(THREAD);
 348 
 349       if (!ExitSuspendEquivalent(jt)) break;
 350 
 351       // We have acquired the contended monitor, but while we were
 352       // waiting another thread suspended us. We don't want to enter
 353       // the monitor while suspended because that would surprise the
 354       // thread that suspended us.
 355       //
 356       _recursions = 0;
 357       _succ = NULL;
 358       exit(false, Self);
 359 
 360       jt->java_suspend_self();
 361     }
 362     Self->set_current_pending_monitor(NULL);
 363 
 364     // We cleared the pending monitor info since we've just gotten past
 365     // the enter-check-for-suspend dance and we now own the monitor free
 366     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 367     // destructor can go to a safepoint at the end of this block. If we
 368     // do a thread dump during that safepoint, then this thread will show
 369     // as having "-locked" the monitor, but the OS and java.lang.Thread
 370     // states will still report that the thread is blocked trying to
 371     // acquire it.
 372   }
 373 
 374   Atomic::dec(&_contentions);
 375   assert(_contentions >= 0, "must not be negative: contentions=%d", _contentions);
 376   Self->_Stalled = 0;
 377 
 378   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 379   assert(_recursions == 0, "invariant");
 380   assert(_owner == Self, "invariant");
 381   assert(_succ != Self, "invariant");
 382   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
 383 
 384   // The thread -- now the owner -- is back in vm mode.
 385   // Report the glorious news via TI,DTrace and jvmstat.
 386   // The probe effect is non-trivial.  All the reportage occurs
 387   // while we hold the monitor, increasing the length of the critical
 388   // section.  Amdahl's parallel speedup law comes vividly into play.
 389   //
 390   // Another option might be to aggregate the events (thread local or
 391   // per-monitor aggregation) and defer reporting until a more opportune
 392   // time -- such as next time some thread encounters contention but has
 393   // yet to acquire the lock.  While spinning that thread could
 394   // spinning we could increment JVMStat counters, etc.
 395 
 396   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 397   if (JvmtiExport::should_post_monitor_contended_entered()) {
 398     JvmtiExport::post_monitor_contended_entered(jt, this);
 399 
 400     // The current thread already owns the monitor and is not going to
 401     // call park() for the remainder of the monitor enter protocol. So
 402     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 403     // event handler consumed an unpark() issued by the thread that
 404     // just exited the monitor.
 405   }
 406   if (event.should_commit()) {
 407     event.set_previousOwner((uintptr_t)_previous_owner_tid);
 408     event.commit();
 409   }
 410   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 411 }
 412 
 413 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 414 // Callers must compensate as needed.
 415 
 416 int ObjectMonitor::TryLock(Thread * Self) {
 417   void * own = _owner;
 418   if (own != NULL) return 0;
 419   if (Atomic::replace_if_null(Self, &_owner)) {
 420     assert(_recursions == 0, "invariant");
 421     return 1;
 422   }
 423   // The lock had been free momentarily, but we lost the race to the lock.
 424   // Interference -- the CAS failed.
 425   // We can either return -1 or retry.
 426   // Retry doesn't make as much sense because the lock was just acquired.
 427   return -1;
 428 }
 429 
 430 // Install the displaced mark word (dmw) of a deflating ObjectMonitor
 431 // into the header of the object associated with the monitor. This
 432 // idempotent method is called by a thread that is deflating a
 433 // monitor and by other threads that have detected a race with the
 434 // deflation process.
 435 void ObjectMonitor::install_displaced_markword_in_object(const oop obj) {
 436   // This function must only be called when (owner == DEFLATER_MARKER
 437   // && ref_count <= 0), but we can't guarantee that here because
 438   // those values could change when the ObjectMonitor gets moved from
 439   // the global free list to a per-thread free list.
 440 
 441   guarantee(obj != NULL, "must be non-NULL");
 442   if (object() != obj) {
 443     // ObjectMonitor's object ref no longer refers to the target object
 444     // so the object's header has already been restored.
 445     return;
 446   }
 447 
 448   markWord dmw = header();
 449   if (dmw.value() == 0) {
 450     // ObjectMonitor's header/dmw has been cleared so the object's
 451     // header has already been restored.
 452     return;
 453   }
 454 
 455   // A non-NULL dmw has to be either neutral (not locked and not marked)
 456   // or is already participating in this restoration protocol.
 457   assert(dmw.is_neutral() || (dmw.is_marked() && dmw.hash() == 0),
 458          "failed precondition: dmw=" INTPTR_FORMAT, dmw.value());
 459 
 460   markWord marked_dmw = markWord::zero();
 461   if (!dmw.is_marked() && dmw.hash() == 0) {
 462     // This dmw has not yet started the restoration protocol so we
 463     // mark a copy of the dmw to begin the protocol.
 464     // Note: A dmw with a hashcode does not take this code path.
 465     marked_dmw = dmw.set_marked();
 466 
 467     // All of the callers to this function can be racing with each
 468     // other trying to update the _header field.
 469     dmw = (markWord) Atomic::cmpxchg(marked_dmw, &_header, dmw);
 470     if (dmw.value() == 0) {
 471       // ObjectMonitor's header/dmw has been cleared so the object's
 472       // header has already been restored.
 473       return;
 474     }
 475     // The _header field is now marked. The winner's 'dmw' variable
 476     // contains the original, unmarked header/dmw value and any
 477     // losers have a marked header/dmw value that will be cleaned
 478     // up below.
 479   }
 480 
 481   if (dmw.is_marked()) {
 482     // Clear the mark from the header/dmw copy in preparation for
 483     // possible restoration from this thread.
 484     assert(dmw.hash() == 0, "hashcode must be 0: dmw=" INTPTR_FORMAT,
 485            dmw.value());
 486     dmw = dmw.set_unmarked();
 487   }
 488   assert(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value());
 489 
 490   // Install displaced mark word if the object's header still points
 491   // to this ObjectMonitor. All racing callers to this function will
 492   // reach this point, but only one can win.
 493   obj->cas_set_mark(dmw, markWord::encode(this));
 494 
 495   // Note: It does not matter which thread restored the header/dmw
 496   // into the object's header. The thread deflating the monitor just
 497   // wanted the object's header restored and it is. The threads that
 498   // detected a race with the deflation process also wanted the
 499   // object's header restored before they retry their operation and
 500   // because it is restored they will only retry once.
 501 
 502   if (marked_dmw.value() != 0) {
 503     // Clear _header to NULL if it is still marked_dmw so a racing
 504     // install_displaced_markword_in_object() can bail out sooner.
 505     Atomic::cmpxchg(markWord::zero(), &_header, marked_dmw);
 506   }
 507 }
 508 
 509 // Convert the fields used by is_busy() to a string that can be
 510 // used for diagnostic output.
 511 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) {
 512   ss->print("is_busy: contentions=%d, waiters=%d, ", _contentions, _waiters);
 513   if (!AsyncDeflateIdleMonitors) {
 514     ss->print("owner=" INTPTR_FORMAT, p2i(_owner));
 515   } else if (_owner != DEFLATER_MARKER) {
 516     ss->print("owner=" INTPTR_FORMAT, p2i(_owner));
 517   } else {
 518     ss->print("owner=" INTPTR_FORMAT, NULL);
 519   }
 520   ss->print(", cxq=" INTPTR_FORMAT ", EntryList=" INTPTR_FORMAT, p2i(_cxq),
 521             p2i(_EntryList));
 522   return ss->base();
 523 }
 524 
 525 #define MAX_RECHECK_INTERVAL 1000
 526 
 527 void ObjectMonitor::EnterI(TRAPS) {
 528   ADIM_guarantee(ref_count() > 0, "must be positive: ref_count=%d", ref_count());
 529 
 530   Thread * const Self = THREAD;
 531   assert(Self->is_Java_thread(), "invariant");
 532   assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant");
 533 
 534   // Try the lock - TATAS
 535   if (TryLock (Self) > 0) {
 536     assert(_succ != Self, "invariant");
 537     assert(_owner == Self, "invariant");
 538     assert(_Responsible != Self, "invariant");
 539     return;
 540   }
 541 
 542   if (AsyncDeflateIdleMonitors &&
 543       Atomic::cmpxchg(Self, &_owner, DEFLATER_MARKER) == DEFLATER_MARKER) {
 544     // The deflation protocol finished the first part (setting owner),
 545     // but it failed the second part (making ref_count negative) and
 546     // bailed. Or the ObjectMonitor was async deflated and reused.
 547     // Acquired the monitor.
 548     assert(_succ != Self, "invariant");
 549     assert(_Responsible != Self, "invariant");
 550     return;
 551   }
 552 
 553   assert(InitDone, "Unexpectedly not initialized");
 554 
 555   // We try one round of spinning *before* enqueueing Self.
 556   //
 557   // If the _owner is ready but OFFPROC we could use a YieldTo()
 558   // operation to donate the remainder of this thread's quantum
 559   // to the owner.  This has subtle but beneficial affinity
 560   // effects.
 561 
 562   if (TrySpin(Self) > 0) {
 563     assert(_owner == Self, "invariant");
 564     assert(_succ != Self, "invariant");
 565     assert(_Responsible != Self, "invariant");
 566     return;
 567   }
 568 
 569   // The Spin failed -- Enqueue and park the thread ...
 570   assert(_succ != Self, "invariant");
 571   assert(_owner != Self, "invariant");
 572   assert(_Responsible != Self, "invariant");
 573 
 574   // Enqueue "Self" on ObjectMonitor's _cxq.
 575   //
 576   // Node acts as a proxy for Self.
 577   // As an aside, if were to ever rewrite the synchronization code mostly
 578   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 579   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 580   // as well as eliminate a subset of ABA issues.
 581   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 582 
 583   ObjectWaiter node(Self);
 584   Self->_ParkEvent->reset();
 585   node._prev   = (ObjectWaiter *) 0xBAD;
 586   node.TState  = ObjectWaiter::TS_CXQ;
 587 
 588   // Push "Self" onto the front of the _cxq.
 589   // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 590   // Note that spinning tends to reduce the rate at which threads
 591   // enqueue and dequeue on EntryList|cxq.
 592   ObjectWaiter * nxt;
 593   for (;;) {
 594     node._next = nxt = _cxq;
 595     if (Atomic::cmpxchg(&node, &_cxq, nxt) == nxt) break;
 596 
 597     // Interference - the CAS failed because _cxq changed.  Just retry.
 598     // As an optional optimization we retry the lock.
 599     if (TryLock (Self) > 0) {
 600       assert(_succ != Self, "invariant");
 601       assert(_owner == Self, "invariant");
 602       assert(_Responsible != Self, "invariant");
 603       return;
 604     }
 605   }
 606 
 607   // Check for cxq|EntryList edge transition to non-null.  This indicates
 608   // the onset of contention.  While contention persists exiting threads
 609   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 610   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 611   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 612   // arrange for one of the contending thread to use a timed park() operations
 613   // to detect and recover from the race.  (Stranding is form of progress failure
 614   // where the monitor is unlocked but all the contending threads remain parked).
 615   // That is, at least one of the contended threads will periodically poll _owner.
 616   // One of the contending threads will become the designated "Responsible" thread.
 617   // The Responsible thread uses a timed park instead of a normal indefinite park
 618   // operation -- it periodically wakes and checks for and recovers from potential
 619   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 620   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 621   // be responsible for a monitor.
 622   //
 623   // Currently, one of the contended threads takes on the added role of "Responsible".
 624   // A viable alternative would be to use a dedicated "stranding checker" thread
 625   // that periodically iterated over all the threads (or active monitors) and unparked
 626   // successors where there was risk of stranding.  This would help eliminate the
 627   // timer scalability issues we see on some platforms as we'd only have one thread
 628   // -- the checker -- parked on a timer.
 629 
 630   if (nxt == NULL && _EntryList == NULL) {
 631     // Try to assume the role of responsible thread for the monitor.
 632     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 633     Atomic::replace_if_null(Self, &_Responsible);
 634   }
 635 
 636   // The lock might have been released while this thread was occupied queueing
 637   // itself onto _cxq.  To close the race and avoid "stranding" and
 638   // progress-liveness failure we must resample-retry _owner before parking.
 639   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 640   // In this case the ST-MEMBAR is accomplished with CAS().
 641   //
 642   // TODO: Defer all thread state transitions until park-time.
 643   // Since state transitions are heavy and inefficient we'd like
 644   // to defer the state transitions until absolutely necessary,
 645   // and in doing so avoid some transitions ...
 646 
 647   int nWakeups = 0;
 648   int recheckInterval = 1;
 649 
 650   for (;;) {
 651 
 652     if (TryLock(Self) > 0) break;
 653     assert(_owner != Self, "invariant");
 654 
 655     // park self
 656     if (_Responsible == Self) {
 657       Self->_ParkEvent->park((jlong) recheckInterval);
 658       // Increase the recheckInterval, but clamp the value.
 659       recheckInterval *= 8;
 660       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 661         recheckInterval = MAX_RECHECK_INTERVAL;
 662       }
 663     } else {
 664       Self->_ParkEvent->park();
 665     }
 666 
 667     if (TryLock(Self) > 0) break;
 668 
 669     if (AsyncDeflateIdleMonitors &&
 670         Atomic::cmpxchg(Self, &_owner, DEFLATER_MARKER) == DEFLATER_MARKER) {
 671       // The deflation protocol finished the first part (setting owner),
 672       // but it failed the second part (making ref_count negative) and
 673       // bailed. Or the ObjectMonitor was async deflated and reused.
 674       // Acquired the monitor.
 675       break;
 676     }
 677 
 678     // The lock is still contested.
 679     // Keep a tally of the # of futile wakeups.
 680     // Note that the counter is not protected by a lock or updated by atomics.
 681     // That is by design - we trade "lossy" counters which are exposed to
 682     // races during updates for a lower probe effect.
 683 
 684     // This PerfData object can be used in parallel with a safepoint.
 685     // See the work around in PerfDataManager::destroy().
 686     OM_PERFDATA_OP(FutileWakeups, inc());
 687     ++nWakeups;
 688 
 689     // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 690     // We can defer clearing _succ until after the spin completes
 691     // TrySpin() must tolerate being called with _succ == Self.
 692     // Try yet another round of adaptive spinning.
 693     if (TrySpin(Self) > 0) break;
 694 
 695     // We can find that we were unpark()ed and redesignated _succ while
 696     // we were spinning.  That's harmless.  If we iterate and call park(),
 697     // park() will consume the event and return immediately and we'll
 698     // just spin again.  This pattern can repeat, leaving _succ to simply
 699     // spin on a CPU.
 700 
 701     if (_succ == Self) _succ = NULL;
 702 
 703     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 704     OrderAccess::fence();
 705   }
 706 
 707   // Egress :
 708   // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 709   // Normally we'll find Self on the EntryList .
 710   // From the perspective of the lock owner (this thread), the
 711   // EntryList is stable and cxq is prepend-only.
 712   // The head of cxq is volatile but the interior is stable.
 713   // In addition, Self.TState is stable.
 714 
 715   assert(_owner == Self, "invariant");
 716   assert(object() != NULL, "invariant");
 717   // I'd like to write:
 718   //   guarantee (((oop)(object()))->mark() == markWord::encode(this), "invariant") ;
 719   // but as we're at a safepoint that's not safe.
 720 
 721   UnlinkAfterAcquire(Self, &node);
 722   if (_succ == Self) _succ = NULL;
 723 
 724   assert(_succ != Self, "invariant");
 725   if (_Responsible == Self) {
 726     _Responsible = NULL;
 727     OrderAccess::fence(); // Dekker pivot-point
 728 
 729     // We may leave threads on cxq|EntryList without a designated
 730     // "Responsible" thread.  This is benign.  When this thread subsequently
 731     // exits the monitor it can "see" such preexisting "old" threads --
 732     // threads that arrived on the cxq|EntryList before the fence, above --
 733     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 734     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 735     // non-null and elect a new "Responsible" timer thread.
 736     //
 737     // This thread executes:
 738     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 739     //    LD cxq|EntryList               (in subsequent exit)
 740     //
 741     // Entering threads in the slow/contended path execute:
 742     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 743     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 744     //
 745     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 746     // exit operation from floating above the ST Responsible=null.
 747   }
 748 
 749   // We've acquired ownership with CAS().
 750   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 751   // But since the CAS() this thread may have also stored into _succ,
 752   // EntryList, cxq or Responsible.  These meta-data updates must be
 753   // visible __before this thread subsequently drops the lock.
 754   // Consider what could occur if we didn't enforce this constraint --
 755   // STs to monitor meta-data and user-data could reorder with (become
 756   // visible after) the ST in exit that drops ownership of the lock.
 757   // Some other thread could then acquire the lock, but observe inconsistent
 758   // or old monitor meta-data and heap data.  That violates the JMM.
 759   // To that end, the 1-0 exit() operation must have at least STST|LDST
 760   // "release" barrier semantics.  Specifically, there must be at least a
 761   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 762   // the lock.   The barrier ensures that changes to monitor meta-data and data
 763   // protected by the lock will be visible before we release the lock, and
 764   // therefore before some other thread (CPU) has a chance to acquire the lock.
 765   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 766   //
 767   // Critically, any prior STs to _succ or EntryList must be visible before
 768   // the ST of null into _owner in the *subsequent* (following) corresponding
 769   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 770   // execute a serializing instruction.
 771 
 772   return;
 773 }
 774 
 775 // ReenterI() is a specialized inline form of the latter half of the
 776 // contended slow-path from EnterI().  We use ReenterI() only for
 777 // monitor reentry in wait().
 778 //
 779 // In the future we should reconcile EnterI() and ReenterI().
 780 
 781 void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) {
 782   ADIM_guarantee(ref_count() > 0, "must be positive: ref_count=%d", ref_count());
 783 
 784   assert(Self != NULL, "invariant");
 785   assert(SelfNode != NULL, "invariant");
 786   assert(SelfNode->_thread == Self, "invariant");
 787   assert(_waiters > 0, "invariant");
 788   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
 789   assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 790   JavaThread * jt = (JavaThread *) Self;
 791 
 792   int nWakeups = 0;
 793   for (;;) {
 794     ObjectWaiter::TStates v = SelfNode->TState;
 795     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 796     assert(_owner != Self, "invariant");
 797 
 798     if (TryLock(Self) > 0) break;
 799     if (TrySpin(Self) > 0) break;
 800 
 801     if (AsyncDeflateIdleMonitors &&
 802         Atomic::cmpxchg(Self, &_owner, DEFLATER_MARKER) == DEFLATER_MARKER) {
 803       // The deflation protocol finished the first part (setting owner),
 804       // but it failed the second part (making ref_count negative) and
 805       // bailed. Or the ObjectMonitor was async deflated and reused.
 806       // Acquired the monitor.
 807       break;
 808     }
 809 
 810     // State transition wrappers around park() ...
 811     // ReenterI() wisely defers state transitions until
 812     // it's clear we must park the thread.
 813     {
 814       OSThreadContendState osts(Self->osthread());
 815       ThreadBlockInVM tbivm(jt);
 816 
 817       // cleared by handle_special_suspend_equivalent_condition()
 818       // or java_suspend_self()
 819       jt->set_suspend_equivalent();
 820       Self->_ParkEvent->park();
 821 
 822       // were we externally suspended while we were waiting?
 823       for (;;) {
 824         if (!ExitSuspendEquivalent(jt)) break;
 825         if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 826         jt->java_suspend_self();
 827         jt->set_suspend_equivalent();
 828       }
 829     }
 830 
 831     // Try again, but just so we distinguish between futile wakeups and
 832     // successful wakeups.  The following test isn't algorithmically
 833     // necessary, but it helps us maintain sensible statistics.
 834     if (TryLock(Self) > 0) break;
 835 
 836     // The lock is still contested.
 837     // Keep a tally of the # of futile wakeups.
 838     // Note that the counter is not protected by a lock or updated by atomics.
 839     // That is by design - we trade "lossy" counters which are exposed to
 840     // races during updates for a lower probe effect.
 841     ++nWakeups;
 842 
 843     // Assuming this is not a spurious wakeup we'll normally
 844     // find that _succ == Self.
 845     if (_succ == Self) _succ = NULL;
 846 
 847     // Invariant: after clearing _succ a contending thread
 848     // *must* retry  _owner before parking.
 849     OrderAccess::fence();
 850 
 851     // This PerfData object can be used in parallel with a safepoint.
 852     // See the work around in PerfDataManager::destroy().
 853     OM_PERFDATA_OP(FutileWakeups, inc());
 854   }
 855 
 856   // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 857   // Normally we'll find Self on the EntryList.
 858   // Unlinking from the EntryList is constant-time and atomic-free.
 859   // From the perspective of the lock owner (this thread), the
 860   // EntryList is stable and cxq is prepend-only.
 861   // The head of cxq is volatile but the interior is stable.
 862   // In addition, Self.TState is stable.
 863 
 864   assert(_owner == Self, "invariant");
 865   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
 866   UnlinkAfterAcquire(Self, SelfNode);
 867   if (_succ == Self) _succ = NULL;
 868   assert(_succ != Self, "invariant");
 869   SelfNode->TState = ObjectWaiter::TS_RUN;
 870   OrderAccess::fence();      // see comments at the end of EnterI()
 871 }
 872 
 873 // By convention we unlink a contending thread from EntryList|cxq immediately
 874 // after the thread acquires the lock in ::enter().  Equally, we could defer
 875 // unlinking the thread until ::exit()-time.
 876 
 877 void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) {
 878   assert(_owner == Self, "invariant");
 879   assert(SelfNode->_thread == Self, "invariant");
 880 
 881   if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 882     // Normal case: remove Self from the DLL EntryList .
 883     // This is a constant-time operation.
 884     ObjectWaiter * nxt = SelfNode->_next;
 885     ObjectWaiter * prv = SelfNode->_prev;
 886     if (nxt != NULL) nxt->_prev = prv;
 887     if (prv != NULL) prv->_next = nxt;
 888     if (SelfNode == _EntryList) _EntryList = nxt;
 889     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
 890     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
 891   } else {
 892     assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
 893     // Inopportune interleaving -- Self is still on the cxq.
 894     // This usually means the enqueue of self raced an exiting thread.
 895     // Normally we'll find Self near the front of the cxq, so
 896     // dequeueing is typically fast.  If needbe we can accelerate
 897     // this with some MCS/CHL-like bidirectional list hints and advisory
 898     // back-links so dequeueing from the interior will normally operate
 899     // in constant-time.
 900     // Dequeue Self from either the head (with CAS) or from the interior
 901     // with a linear-time scan and normal non-atomic memory operations.
 902     // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 903     // and then unlink Self from EntryList.  We have to drain eventually,
 904     // so it might as well be now.
 905 
 906     ObjectWaiter * v = _cxq;
 907     assert(v != NULL, "invariant");
 908     if (v != SelfNode || Atomic::cmpxchg(SelfNode->_next, &_cxq, v) != v) {
 909       // The CAS above can fail from interference IFF a "RAT" arrived.
 910       // In that case Self must be in the interior and can no longer be
 911       // at the head of cxq.
 912       if (v == SelfNode) {
 913         assert(_cxq != v, "invariant");
 914         v = _cxq;          // CAS above failed - start scan at head of list
 915       }
 916       ObjectWaiter * p;
 917       ObjectWaiter * q = NULL;
 918       for (p = v; p != NULL && p != SelfNode; p = p->_next) {
 919         q = p;
 920         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
 921       }
 922       assert(v != SelfNode, "invariant");
 923       assert(p == SelfNode, "Node not found on cxq");
 924       assert(p != _cxq, "invariant");
 925       assert(q != NULL, "invariant");
 926       assert(q->_next == p, "invariant");
 927       q->_next = p->_next;
 928     }
 929   }
 930 
 931 #ifdef ASSERT
 932   // Diagnostic hygiene ...
 933   SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
 934   SelfNode->_next  = (ObjectWaiter *) 0xBAD;
 935   SelfNode->TState = ObjectWaiter::TS_RUN;
 936 #endif
 937 }
 938 
 939 // -----------------------------------------------------------------------------
 940 // Exit support
 941 //
 942 // exit()
 943 // ~~~~~~
 944 // Note that the collector can't reclaim the objectMonitor or deflate
 945 // the object out from underneath the thread calling ::exit() as the
 946 // thread calling ::exit() never transitions to a stable state.
 947 // This inhibits GC, which in turn inhibits asynchronous (and
 948 // inopportune) reclamation of "this".
 949 //
 950 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 951 // There's one exception to the claim above, however.  EnterI() can call
 952 // exit() to drop a lock if the acquirer has been externally suspended.
 953 // In that case exit() is called with _thread_state as _thread_blocked,
 954 // but the monitor's _contentions field is > 0, which inhibits reclamation.
 955 //
 956 // 1-0 exit
 957 // ~~~~~~~~
 958 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 959 // the fast-path operators have been optimized so the common ::exit()
 960 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
 961 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 962 // greatly improves latency -- MEMBAR and CAS having considerable local
 963 // latency on modern processors -- but at the cost of "stranding".  Absent the
 964 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 965 // ::enter() path, resulting in the entering thread being stranding
 966 // and a progress-liveness failure.   Stranding is extremely rare.
 967 // We use timers (timed park operations) & periodic polling to detect
 968 // and recover from stranding.  Potentially stranded threads periodically
 969 // wake up and poll the lock.  See the usage of the _Responsible variable.
 970 //
 971 // The CAS() in enter provides for safety and exclusion, while the CAS or
 972 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 973 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
 974 // We detect and recover from stranding with timers.
 975 //
 976 // If a thread transiently strands it'll park until (a) another
 977 // thread acquires the lock and then drops the lock, at which time the
 978 // exiting thread will notice and unpark the stranded thread, or, (b)
 979 // the timer expires.  If the lock is high traffic then the stranding latency
 980 // will be low due to (a).  If the lock is low traffic then the odds of
 981 // stranding are lower, although the worst-case stranding latency
 982 // is longer.  Critically, we don't want to put excessive load in the
 983 // platform's timer subsystem.  We want to minimize both the timer injection
 984 // rate (timers created/sec) as well as the number of timers active at
 985 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 986 // the integral of the # of active timers at any instant over time).
 987 // Both impinge on OS scalability.  Given that, at most one thread parked on
 988 // a monitor will use a timer.
 989 //
 990 // There is also the risk of a futile wake-up. If we drop the lock
 991 // another thread can reacquire the lock immediately, and we can
 992 // then wake a thread unnecessarily. This is benign, and we've
 993 // structured the code so the windows are short and the frequency
 994 // of such futile wakups is low.
 995 
 996 void ObjectMonitor::exit(bool not_suspended, TRAPS) {
 997   Thread * const Self = THREAD;
 998   if (THREAD != _owner) {
 999     if (THREAD->is_lock_owned((address) _owner)) {
1000       // Transmute _owner from a BasicLock pointer to a Thread address.
1001       // We don't need to hold _mutex for this transition.
1002       // Non-null to Non-null is safe as long as all readers can
1003       // tolerate either flavor.
1004       assert(_recursions == 0, "invariant");
1005       _owner = THREAD;
1006       _recursions = 0;
1007     } else {
1008       // Apparent unbalanced locking ...
1009       // Naively we'd like to throw IllegalMonitorStateException.
1010       // As a practical matter we can neither allocate nor throw an
1011       // exception as ::exit() can be called from leaf routines.
1012       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
1013       // Upon deeper reflection, however, in a properly run JVM the only
1014       // way we should encounter this situation is in the presence of
1015       // unbalanced JNI locking. TODO: CheckJNICalls.
1016       // See also: CR4414101
1017       assert(false, "Non-balanced monitor enter/exit! Likely JNI locking: "
1018              "owner=" INTPTR_FORMAT, p2i(_owner));
1019       return;
1020     }
1021   }
1022 
1023   if (_recursions != 0) {
1024     _recursions--;        // this is simple recursive enter
1025     return;
1026   }
1027 
1028   // Invariant: after setting Responsible=null an thread must execute
1029   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
1030   _Responsible = NULL;
1031 
1032 #if INCLUDE_JFR
1033   // get the owner's thread id for the MonitorEnter event
1034   // if it is enabled and the thread isn't suspended
1035   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
1036     _previous_owner_tid = JFR_THREAD_ID(Self);
1037   }
1038 #endif
1039 
1040   for (;;) {
1041     assert(THREAD == _owner, "invariant");
1042 
1043     // release semantics: prior loads and stores from within the critical section
1044     // must not float (reorder) past the following store that drops the lock.
1045     // On SPARC that requires MEMBAR #loadstore|#storestore.
1046     // But of course in TSO #loadstore|#storestore is not required.
1047     OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
1048     OrderAccess::storeload();                        // See if we need to wake a successor
1049     if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1050       return;
1051     }
1052     // Other threads are blocked trying to acquire the lock.
1053 
1054     // Normally the exiting thread is responsible for ensuring succession,
1055     // but if other successors are ready or other entering threads are spinning
1056     // then this thread can simply store NULL into _owner and exit without
1057     // waking a successor.  The existence of spinners or ready successors
1058     // guarantees proper succession (liveness).  Responsibility passes to the
1059     // ready or running successors.  The exiting thread delegates the duty.
1060     // More precisely, if a successor already exists this thread is absolved
1061     // of the responsibility of waking (unparking) one.
1062     //
1063     // The _succ variable is critical to reducing futile wakeup frequency.
1064     // _succ identifies the "heir presumptive" thread that has been made
1065     // ready (unparked) but that has not yet run.  We need only one such
1066     // successor thread to guarantee progress.
1067     // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1068     // section 3.3 "Futile Wakeup Throttling" for details.
1069     //
1070     // Note that spinners in Enter() also set _succ non-null.
1071     // In the current implementation spinners opportunistically set
1072     // _succ so that exiting threads might avoid waking a successor.
1073     // Another less appealing alternative would be for the exiting thread
1074     // to drop the lock and then spin briefly to see if a spinner managed
1075     // to acquire the lock.  If so, the exiting thread could exit
1076     // immediately without waking a successor, otherwise the exiting
1077     // thread would need to dequeue and wake a successor.
1078     // (Note that we'd need to make the post-drop spin short, but no
1079     // shorter than the worst-case round-trip cache-line migration time.
1080     // The dropped lock needs to become visible to the spinner, and then
1081     // the acquisition of the lock by the spinner must become visible to
1082     // the exiting thread).
1083 
1084     // It appears that an heir-presumptive (successor) must be made ready.
1085     // Only the current lock owner can manipulate the EntryList or
1086     // drain _cxq, so we need to reacquire the lock.  If we fail
1087     // to reacquire the lock the responsibility for ensuring succession
1088     // falls to the new owner.
1089     //
1090     if (!Atomic::replace_if_null(THREAD, &_owner)) {
1091       return;
1092     }
1093 
1094     guarantee(_owner == THREAD, "invariant");
1095 
1096     ObjectWaiter * w = NULL;
1097 
1098     w = _EntryList;
1099     if (w != NULL) {
1100       // I'd like to write: guarantee (w->_thread != Self).
1101       // But in practice an exiting thread may find itself on the EntryList.
1102       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1103       // then calls exit().  Exit release the lock by setting O._owner to NULL.
1104       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1105       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1106       // release the lock "O".  T2 resumes immediately after the ST of null into
1107       // _owner, above.  T2 notices that the EntryList is populated, so it
1108       // reacquires the lock and then finds itself on the EntryList.
1109       // Given all that, we have to tolerate the circumstance where "w" is
1110       // associated with Self.
1111       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1112       ExitEpilog(Self, w);
1113       return;
1114     }
1115 
1116     // If we find that both _cxq and EntryList are null then just
1117     // re-run the exit protocol from the top.
1118     w = _cxq;
1119     if (w == NULL) continue;
1120 
1121     // Drain _cxq into EntryList - bulk transfer.
1122     // First, detach _cxq.
1123     // The following loop is tantamount to: w = swap(&cxq, NULL)
1124     for (;;) {
1125       assert(w != NULL, "Invariant");
1126       ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1127       if (u == w) break;
1128       w = u;
1129     }
1130 
1131     assert(w != NULL, "invariant");
1132     assert(_EntryList == NULL, "invariant");
1133 
1134     // Convert the LIFO SLL anchored by _cxq into a DLL.
1135     // The list reorganization step operates in O(LENGTH(w)) time.
1136     // It's critical that this step operate quickly as
1137     // "Self" still holds the outer-lock, restricting parallelism
1138     // and effectively lengthening the critical section.
1139     // Invariant: s chases t chases u.
1140     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1141     // we have faster access to the tail.
1142 
1143     _EntryList = w;
1144     ObjectWaiter * q = NULL;
1145     ObjectWaiter * p;
1146     for (p = w; p != NULL; p = p->_next) {
1147       guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1148       p->TState = ObjectWaiter::TS_ENTER;
1149       p->_prev = q;
1150       q = p;
1151     }
1152 
1153     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1154     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1155 
1156     // See if we can abdicate to a spinner instead of waking a thread.
1157     // A primary goal of the implementation is to reduce the
1158     // context-switch rate.
1159     if (_succ != NULL) continue;
1160 
1161     w = _EntryList;
1162     if (w != NULL) {
1163       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1164       ExitEpilog(Self, w);
1165       return;
1166     }
1167   }
1168 }
1169 
1170 // ExitSuspendEquivalent:
1171 // A faster alternate to handle_special_suspend_equivalent_condition()
1172 //
1173 // handle_special_suspend_equivalent_condition() unconditionally
1174 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1175 // operations have high latency.  Note that in ::enter() we call HSSEC
1176 // while holding the monitor, so we effectively lengthen the critical sections.
1177 //
1178 // There are a number of possible solutions:
1179 //
1180 // A.  To ameliorate the problem we might also defer state transitions
1181 //     to as late as possible -- just prior to parking.
1182 //     Given that, we'd call HSSEC after having returned from park(),
1183 //     but before attempting to acquire the monitor.  This is only a
1184 //     partial solution.  It avoids calling HSSEC while holding the
1185 //     monitor (good), but it still increases successor reacquisition latency --
1186 //     the interval between unparking a successor and the time the successor
1187 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1188 //     If we use this technique we can also avoid EnterI()-exit() loop
1189 //     in ::enter() where we iteratively drop the lock and then attempt
1190 //     to reacquire it after suspending.
1191 //
1192 // B.  In the future we might fold all the suspend bits into a
1193 //     composite per-thread suspend flag and then update it with CAS().
1194 //     Alternately, a Dekker-like mechanism with multiple variables
1195 //     would suffice:
1196 //       ST Self->_suspend_equivalent = false
1197 //       MEMBAR
1198 //       LD Self_>_suspend_flags
1199 
1200 bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) {
1201   return jSelf->handle_special_suspend_equivalent_condition();
1202 }
1203 
1204 
1205 void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {
1206   assert(_owner == Self, "invariant");
1207 
1208   // Exit protocol:
1209   // 1. ST _succ = wakee
1210   // 2. membar #loadstore|#storestore;
1211   // 2. ST _owner = NULL
1212   // 3. unpark(wakee)
1213 
1214   _succ = Wakee->_thread;
1215   ParkEvent * Trigger = Wakee->_event;
1216 
1217   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1218   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1219   // out-of-scope (non-extant).
1220   Wakee  = NULL;
1221 
1222   // Drop the lock
1223   OrderAccess::release_store(&_owner, (void*)NULL);
1224   OrderAccess::fence();                               // ST _owner vs LD in unpark()
1225 
1226   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1227   Trigger->unpark();
1228 
1229   // Maintain stats and report events to JVMTI
1230   OM_PERFDATA_OP(Parks, inc());
1231 }
1232 
1233 
1234 // -----------------------------------------------------------------------------
1235 // Class Loader deadlock handling.
1236 //
1237 // complete_exit exits a lock returning recursion count
1238 // complete_exit/reenter operate as a wait without waiting
1239 // complete_exit requires an inflated monitor
1240 // The _owner field is not always the Thread addr even with an
1241 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1242 // thread due to contention.
1243 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1244   Thread * const Self = THREAD;
1245   assert(Self->is_Java_thread(), "Must be Java thread!");
1246   JavaThread *jt = (JavaThread *)THREAD;
1247 
1248   assert(InitDone, "Unexpectedly not initialized");
1249 
1250   if (THREAD != _owner) {
1251     if (THREAD->is_lock_owned ((address)_owner)) {
1252       assert(_recursions == 0, "internal state error");
1253       _owner = THREAD;   // Convert from basiclock addr to Thread addr
1254       _recursions = 0;
1255     }
1256   }
1257 
1258   guarantee(Self == _owner, "complete_exit not owner");
1259   intptr_t save = _recursions; // record the old recursion count
1260   _recursions = 0;        // set the recursion level to be 0
1261   exit(true, Self);           // exit the monitor
1262   guarantee(_owner != Self, "invariant");
1263   return save;
1264 }
1265 
1266 // reenter() enters a lock and sets recursion count
1267 // complete_exit/reenter operate as a wait without waiting
1268 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1269   Thread * const Self = THREAD;
1270   assert(Self->is_Java_thread(), "Must be Java thread!");
1271   JavaThread *jt = (JavaThread *)THREAD;
1272 
1273   guarantee(_owner != Self, "reenter already owner");
1274   enter(THREAD);
1275   // Entered the monitor.
1276   guarantee(_recursions == 0, "reenter recursion");
1277   _recursions = recursions;
1278 }
1279 
1280 // Checks that the current THREAD owns this monitor and causes an
1281 // immediate return if it doesn't. We don't use the CHECK macro
1282 // because we want the IMSE to be the only exception that is thrown
1283 // from the call site when false is returned. Any other pending
1284 // exception is ignored.
1285 #define CHECK_OWNER()                                                  \
1286   do {                                                                 \
1287     if (!check_owner(THREAD)) {                                        \
1288        assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \
1289        return;                                                         \
1290      }                                                                 \
1291   } while (false)
1292 
1293 // Returns true if the specified thread owns the ObjectMonitor.
1294 // Otherwise returns false and throws IllegalMonitorStateException
1295 // (IMSE). If there is a pending exception and the specified thread
1296 // is not the owner, that exception will be replaced by the IMSE.
1297 bool ObjectMonitor::check_owner(Thread* THREAD) {
1298   if (_owner == THREAD) {
1299     return true;
1300   }
1301   if (THREAD->is_lock_owned((address)_owner)) {
1302     _owner = THREAD;  // convert from BasicLock addr to Thread addr
1303     _recursions = 0;
1304     return true;
1305   }
1306   THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
1307              "current thread is not owner", false);
1308 }
1309 
1310 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1311                                     ObjectMonitor* monitor,
1312                                     jlong notifier_tid,
1313                                     jlong timeout,
1314                                     bool timedout) {
1315   assert(event != NULL, "invariant");
1316   assert(monitor != NULL, "invariant");
1317   event->set_monitorClass(((oop)monitor->object())->klass());
1318   event->set_timeout(timeout);
1319   event->set_address((uintptr_t)monitor->object_addr());
1320   event->set_notifier(notifier_tid);
1321   event->set_timedOut(timedout);
1322   event->commit();
1323 }
1324 
1325 // -----------------------------------------------------------------------------
1326 // Wait/Notify/NotifyAll
1327 //
1328 // Note: a subset of changes to ObjectMonitor::wait()
1329 // will need to be replicated in complete_exit
1330 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1331   Thread * const Self = THREAD;
1332   assert(Self->is_Java_thread(), "Must be Java thread!");
1333   JavaThread *jt = (JavaThread *)THREAD;
1334 
1335   assert(InitDone, "Unexpectedly not initialized");
1336 
1337   CHECK_OWNER();  // Throws IMSE if not owner.
1338 
1339   EventJavaMonitorWait event;
1340 
1341   // check for a pending interrupt
1342   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1343     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1344     if (JvmtiExport::should_post_monitor_waited()) {
1345       // Note: 'false' parameter is passed here because the
1346       // wait was not timed out due to thread interrupt.
1347       JvmtiExport::post_monitor_waited(jt, this, false);
1348 
1349       // In this short circuit of the monitor wait protocol, the
1350       // current thread never drops ownership of the monitor and
1351       // never gets added to the wait queue so the current thread
1352       // cannot be made the successor. This means that the
1353       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1354       // consume an unpark() meant for the ParkEvent associated with
1355       // this ObjectMonitor.
1356     }
1357     if (event.should_commit()) {
1358       post_monitor_wait_event(&event, this, 0, millis, false);
1359     }
1360     THROW(vmSymbols::java_lang_InterruptedException());
1361     return;
1362   }
1363 
1364   assert(Self->_Stalled == 0, "invariant");
1365   Self->_Stalled = intptr_t(this);
1366   jt->set_current_waiting_monitor(this);
1367 
1368   // create a node to be put into the queue
1369   // Critically, after we reset() the event but prior to park(), we must check
1370   // for a pending interrupt.
1371   ObjectWaiter node(Self);
1372   node.TState = ObjectWaiter::TS_WAIT;
1373   Self->_ParkEvent->reset();
1374   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1375 
1376   // Enter the waiting queue, which is a circular doubly linked list in this case
1377   // but it could be a priority queue or any data structure.
1378   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1379   // by the the owner of the monitor *except* in the case where park()
1380   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1381   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1382 
1383   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1384   AddWaiter(&node);
1385   Thread::SpinRelease(&_WaitSetLock);
1386 
1387   _Responsible = NULL;
1388 
1389   intptr_t save = _recursions; // record the old recursion count
1390   _waiters++;                  // increment the number of waiters
1391   _recursions = 0;             // set the recursion level to be 1
1392   exit(true, Self);                    // exit the monitor
1393   guarantee(_owner != Self, "invariant");
1394 
1395   // The thread is on the WaitSet list - now park() it.
1396   // On MP systems it's conceivable that a brief spin before we park
1397   // could be profitable.
1398   //
1399   // TODO-FIXME: change the following logic to a loop of the form
1400   //   while (!timeout && !interrupted && _notified == 0) park()
1401 
1402   int ret = OS_OK;
1403   int WasNotified = 0;
1404   { // State transition wrappers
1405     OSThread* osthread = Self->osthread();
1406     OSThreadWaitState osts(osthread, true);
1407     {
1408       ThreadBlockInVM tbivm(jt);
1409       // Thread is in thread_blocked state and oop access is unsafe.
1410       jt->set_suspend_equivalent();
1411 
1412       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1413         // Intentionally empty
1414       } else if (node._notified == 0) {
1415         if (millis <= 0) {
1416           Self->_ParkEvent->park();
1417         } else {
1418           ret = Self->_ParkEvent->park(millis);
1419         }
1420       }
1421 
1422       // were we externally suspended while we were waiting?
1423       if (ExitSuspendEquivalent (jt)) {
1424         // TODO-FIXME: add -- if succ == Self then succ = null.
1425         jt->java_suspend_self();
1426       }
1427 
1428     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1429 
1430     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1431     // from the WaitSet to the EntryList.
1432     // See if we need to remove Node from the WaitSet.
1433     // We use double-checked locking to avoid grabbing _WaitSetLock
1434     // if the thread is not on the wait queue.
1435     //
1436     // Note that we don't need a fence before the fetch of TState.
1437     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1438     // written by the is thread. (perhaps the fetch might even be satisfied
1439     // by a look-aside into the processor's own store buffer, although given
1440     // the length of the code path between the prior ST and this load that's
1441     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1442     // then we'll acquire the lock and then re-fetch a fresh TState value.
1443     // That is, we fail toward safety.
1444 
1445     if (node.TState == ObjectWaiter::TS_WAIT) {
1446       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1447       if (node.TState == ObjectWaiter::TS_WAIT) {
1448         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1449         assert(node._notified == 0, "invariant");
1450         node.TState = ObjectWaiter::TS_RUN;
1451       }
1452       Thread::SpinRelease(&_WaitSetLock);
1453     }
1454 
1455     // The thread is now either on off-list (TS_RUN),
1456     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1457     // The Node's TState variable is stable from the perspective of this thread.
1458     // No other threads will asynchronously modify TState.
1459     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1460     OrderAccess::loadload();
1461     if (_succ == Self) _succ = NULL;
1462     WasNotified = node._notified;
1463 
1464     // Reentry phase -- reacquire the monitor.
1465     // re-enter contended monitor after object.wait().
1466     // retain OBJECT_WAIT state until re-enter successfully completes
1467     // Thread state is thread_in_vm and oop access is again safe,
1468     // although the raw address of the object may have changed.
1469     // (Don't cache naked oops over safepoints, of course).
1470 
1471     // post monitor waited event. Note that this is past-tense, we are done waiting.
1472     if (JvmtiExport::should_post_monitor_waited()) {
1473       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1474 
1475       if (node._notified != 0 && _succ == Self) {
1476         // In this part of the monitor wait-notify-reenter protocol it
1477         // is possible (and normal) for another thread to do a fastpath
1478         // monitor enter-exit while this thread is still trying to get
1479         // to the reenter portion of the protocol.
1480         //
1481         // The ObjectMonitor was notified and the current thread is
1482         // the successor which also means that an unpark() has already
1483         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1484         // consume the unpark() that was done when the successor was
1485         // set because the same ParkEvent is shared between Java
1486         // monitors and JVM/TI RawMonitors (for now).
1487         //
1488         // We redo the unpark() to ensure forward progress, i.e., we
1489         // don't want all pending threads hanging (parked) with none
1490         // entering the unlocked monitor.
1491         node._event->unpark();
1492       }
1493     }
1494 
1495     if (event.should_commit()) {
1496       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1497     }
1498 
1499     OrderAccess::fence();
1500 
1501     assert(Self->_Stalled != 0, "invariant");
1502     Self->_Stalled = 0;
1503 
1504     assert(_owner != Self, "invariant");
1505     ObjectWaiter::TStates v = node.TState;
1506     if (v == ObjectWaiter::TS_RUN) {
1507       enter(Self);
1508     } else {
1509       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1510       ReenterI(Self, &node);
1511       node.wait_reenter_end(this);
1512     }
1513 
1514     // Self has reacquired the lock.
1515     // Lifecycle - the node representing Self must not appear on any queues.
1516     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1517     // want residual elements associated with this thread left on any lists.
1518     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1519     assert(_owner == Self, "invariant");
1520     assert(_succ != Self, "invariant");
1521   } // OSThreadWaitState()
1522 
1523   jt->set_current_waiting_monitor(NULL);
1524 
1525   guarantee(_recursions == 0, "invariant");
1526   _recursions = save;     // restore the old recursion count
1527   _waiters--;             // decrement the number of waiters
1528 
1529   // Verify a few postconditions
1530   assert(_owner == Self, "invariant");
1531   assert(_succ != Self, "invariant");
1532   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
1533 
1534   // check if the notification happened
1535   if (!WasNotified) {
1536     // no, it could be timeout or Thread.interrupt() or both
1537     // check for interrupt event, otherwise it is timeout
1538     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1539       THROW(vmSymbols::java_lang_InterruptedException());
1540     }
1541   }
1542 
1543   // NOTE: Spurious wake up will be consider as timeout.
1544   // Monitor notify has precedence over thread interrupt.
1545 }
1546 
1547 
1548 // Consider:
1549 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1550 // then instead of transferring a thread from the WaitSet to the EntryList
1551 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1552 
1553 void ObjectMonitor::INotify(Thread * Self) {
1554   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1555   ObjectWaiter * iterator = DequeueWaiter();
1556   if (iterator != NULL) {
1557     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1558     guarantee(iterator->_notified == 0, "invariant");
1559     // Disposition - what might we do with iterator ?
1560     // a.  add it directly to the EntryList - either tail (policy == 1)
1561     //     or head (policy == 0).
1562     // b.  push it onto the front of the _cxq (policy == 2).
1563     // For now we use (b).
1564 
1565     iterator->TState = ObjectWaiter::TS_ENTER;
1566 
1567     iterator->_notified = 1;
1568     iterator->_notifier_tid = JFR_THREAD_ID(Self);
1569 
1570     ObjectWaiter * list = _EntryList;
1571     if (list != NULL) {
1572       assert(list->_prev == NULL, "invariant");
1573       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1574       assert(list != iterator, "invariant");
1575     }
1576 
1577     // prepend to cxq
1578     if (list == NULL) {
1579       iterator->_next = iterator->_prev = NULL;
1580       _EntryList = iterator;
1581     } else {
1582       iterator->TState = ObjectWaiter::TS_CXQ;
1583       for (;;) {
1584         ObjectWaiter * front = _cxq;
1585         iterator->_next = front;
1586         if (Atomic::cmpxchg(iterator, &_cxq, front) == front) {
1587           break;
1588         }
1589       }
1590     }
1591 
1592     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1593     // move the add-to-EntryList operation, above, outside the critical section
1594     // protected by _WaitSetLock.  In practice that's not useful.  With the
1595     // exception of  wait() timeouts and interrupts the monitor owner
1596     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1597     // on _WaitSetLock so it's not profitable to reduce the length of the
1598     // critical section.
1599 
1600     iterator->wait_reenter_begin(this);
1601   }
1602   Thread::SpinRelease(&_WaitSetLock);
1603 }
1604 
1605 // Consider: a not-uncommon synchronization bug is to use notify() when
1606 // notifyAll() is more appropriate, potentially resulting in stranded
1607 // threads; this is one example of a lost wakeup. A useful diagnostic
1608 // option is to force all notify() operations to behave as notifyAll().
1609 //
1610 // Note: We can also detect many such problems with a "minimum wait".
1611 // When the "minimum wait" is set to a small non-zero timeout value
1612 // and the program does not hang whereas it did absent "minimum wait",
1613 // that suggests a lost wakeup bug.
1614 
1615 void ObjectMonitor::notify(TRAPS) {
1616   CHECK_OWNER();  // Throws IMSE if not owner.
1617   if (_WaitSet == NULL) {
1618     return;
1619   }
1620   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1621   INotify(THREAD);
1622   OM_PERFDATA_OP(Notifications, inc(1));
1623 }
1624 
1625 
1626 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1627 // from the waitset to the EntryList. This could be done more efficiently with a
1628 // single bulk transfer but in practice it's not time-critical. Beware too,
1629 // that in prepend-mode we invert the order of the waiters. Let's say that the
1630 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1631 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1632 
1633 void ObjectMonitor::notifyAll(TRAPS) {
1634   CHECK_OWNER();  // Throws IMSE if not owner.
1635   if (_WaitSet == NULL) {
1636     return;
1637   }
1638 
1639   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1640   int tally = 0;
1641   while (_WaitSet != NULL) {
1642     tally++;
1643     INotify(THREAD);
1644   }
1645 
1646   OM_PERFDATA_OP(Notifications, inc(tally));
1647 }
1648 
1649 // -----------------------------------------------------------------------------
1650 // Adaptive Spinning Support
1651 //
1652 // Adaptive spin-then-block - rational spinning
1653 //
1654 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1655 // algorithm.  On high order SMP systems it would be better to start with
1656 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1657 // a contending thread could enqueue itself on the cxq and then spin locally
1658 // on a thread-specific variable such as its ParkEvent._Event flag.
1659 // That's left as an exercise for the reader.  Note that global spinning is
1660 // not problematic on Niagara, as the L2 cache serves the interconnect and
1661 // has both low latency and massive bandwidth.
1662 //
1663 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1664 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1665 // (duration) or we can fix the count at approximately the duration of
1666 // a context switch and vary the frequency.   Of course we could also
1667 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1668 // For a description of 'Adaptive spin-then-block mutual exclusion in
1669 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1670 //
1671 // This implementation varies the duration "D", where D varies with
1672 // the success rate of recent spin attempts. (D is capped at approximately
1673 // length of a round-trip context switch).  The success rate for recent
1674 // spin attempts is a good predictor of the success rate of future spin
1675 // attempts.  The mechanism adapts automatically to varying critical
1676 // section length (lock modality), system load and degree of parallelism.
1677 // D is maintained per-monitor in _SpinDuration and is initialized
1678 // optimistically.  Spin frequency is fixed at 100%.
1679 //
1680 // Note that _SpinDuration is volatile, but we update it without locks
1681 // or atomics.  The code is designed so that _SpinDuration stays within
1682 // a reasonable range even in the presence of races.  The arithmetic
1683 // operations on _SpinDuration are closed over the domain of legal values,
1684 // so at worst a race will install and older but still legal value.
1685 // At the very worst this introduces some apparent non-determinism.
1686 // We might spin when we shouldn't or vice-versa, but since the spin
1687 // count are relatively short, even in the worst case, the effect is harmless.
1688 //
1689 // Care must be taken that a low "D" value does not become an
1690 // an absorbing state.  Transient spinning failures -- when spinning
1691 // is overall profitable -- should not cause the system to converge
1692 // on low "D" values.  We want spinning to be stable and predictable
1693 // and fairly responsive to change and at the same time we don't want
1694 // it to oscillate, become metastable, be "too" non-deterministic,
1695 // or converge on or enter undesirable stable absorbing states.
1696 //
1697 // We implement a feedback-based control system -- using past behavior
1698 // to predict future behavior.  We face two issues: (a) if the
1699 // input signal is random then the spin predictor won't provide optimal
1700 // results, and (b) if the signal frequency is too high then the control
1701 // system, which has some natural response lag, will "chase" the signal.
1702 // (b) can arise from multimodal lock hold times.  Transient preemption
1703 // can also result in apparent bimodal lock hold times.
1704 // Although sub-optimal, neither condition is particularly harmful, as
1705 // in the worst-case we'll spin when we shouldn't or vice-versa.
1706 // The maximum spin duration is rather short so the failure modes aren't bad.
1707 // To be conservative, I've tuned the gain in system to bias toward
1708 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1709 // "rings" or oscillates between spinning and not spinning.  This happens
1710 // when spinning is just on the cusp of profitability, however, so the
1711 // situation is not dire.  The state is benign -- there's no need to add
1712 // hysteresis control to damp the transition rate between spinning and
1713 // not spinning.
1714 
1715 // Spinning: Fixed frequency (100%), vary duration
1716 int ObjectMonitor::TrySpin(Thread * Self) {
1717   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1718   int ctr = Knob_FixedSpin;
1719   if (ctr != 0) {
1720     while (--ctr >= 0) {
1721       if (TryLock(Self) > 0) return 1;
1722       SpinPause();
1723     }
1724     return 0;
1725   }
1726 
1727   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1728     if (TryLock(Self) > 0) {
1729       // Increase _SpinDuration ...
1730       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1731       // Raising _SpurDuration to the poverty line is key.
1732       int x = _SpinDuration;
1733       if (x < Knob_SpinLimit) {
1734         if (x < Knob_Poverty) x = Knob_Poverty;
1735         _SpinDuration = x + Knob_BonusB;
1736       }
1737       return 1;
1738     }
1739     SpinPause();
1740   }
1741 
1742   // Admission control - verify preconditions for spinning
1743   //
1744   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1745   // becoming an absorbing state.  Put another way, we spin briefly to
1746   // sample, just in case the system load, parallelism, contention, or lock
1747   // modality changed.
1748   //
1749   // Consider the following alternative:
1750   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1751   // spin attempt.  "Periodically" might mean after a tally of
1752   // the # of failed spin attempts (or iterations) reaches some threshold.
1753   // This takes us into the realm of 1-out-of-N spinning, where we
1754   // hold the duration constant but vary the frequency.
1755 
1756   ctr = _SpinDuration;
1757   if (ctr <= 0) return 0;
1758 
1759   if (NotRunnable(Self, (Thread *) _owner)) {
1760     return 0;
1761   }
1762 
1763   // We're good to spin ... spin ingress.
1764   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1765   // when preparing to LD...CAS _owner, etc and the CAS is likely
1766   // to succeed.
1767   if (_succ == NULL) {
1768     _succ = Self;
1769   }
1770   Thread * prv = NULL;
1771 
1772   // There are three ways to exit the following loop:
1773   // 1.  A successful spin where this thread has acquired the lock.
1774   // 2.  Spin failure with prejudice
1775   // 3.  Spin failure without prejudice
1776 
1777   while (--ctr >= 0) {
1778 
1779     // Periodic polling -- Check for pending GC
1780     // Threads may spin while they're unsafe.
1781     // We don't want spinning threads to delay the JVM from reaching
1782     // a stop-the-world safepoint or to steal cycles from GC.
1783     // If we detect a pending safepoint we abort in order that
1784     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1785     // this thread, if safe, doesn't steal cycles from GC.
1786     // This is in keeping with the "no loitering in runtime" rule.
1787     // We periodically check to see if there's a safepoint pending.
1788     if ((ctr & 0xFF) == 0) {
1789       if (SafepointMechanism::should_block(Self)) {
1790         goto Abort;           // abrupt spin egress
1791       }
1792       SpinPause();
1793     }
1794 
1795     // Probe _owner with TATAS
1796     // If this thread observes the monitor transition or flicker
1797     // from locked to unlocked to locked, then the odds that this
1798     // thread will acquire the lock in this spin attempt go down
1799     // considerably.  The same argument applies if the CAS fails
1800     // or if we observe _owner change from one non-null value to
1801     // another non-null value.   In such cases we might abort
1802     // the spin without prejudice or apply a "penalty" to the
1803     // spin count-down variable "ctr", reducing it by 100, say.
1804 
1805     Thread * ox = (Thread *) _owner;
1806     if (ox == NULL) {
1807       ox = (Thread*)Atomic::cmpxchg(Self, &_owner, (void*)NULL);
1808       if (ox == NULL) {
1809         // The CAS succeeded -- this thread acquired ownership
1810         // Take care of some bookkeeping to exit spin state.
1811         if (_succ == Self) {
1812           _succ = NULL;
1813         }
1814 
1815         // Increase _SpinDuration :
1816         // The spin was successful (profitable) so we tend toward
1817         // longer spin attempts in the future.
1818         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1819         // If we acquired the lock early in the spin cycle it
1820         // makes sense to increase _SpinDuration proportionally.
1821         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1822         int x = _SpinDuration;
1823         if (x < Knob_SpinLimit) {
1824           if (x < Knob_Poverty) x = Knob_Poverty;
1825           _SpinDuration = x + Knob_Bonus;
1826         }
1827         return 1;
1828       }
1829 
1830       // The CAS failed ... we can take any of the following actions:
1831       // * penalize: ctr -= CASPenalty
1832       // * exit spin with prejudice -- goto Abort;
1833       // * exit spin without prejudice.
1834       // * Since CAS is high-latency, retry again immediately.
1835       prv = ox;
1836       goto Abort;
1837     }
1838 
1839     // Did lock ownership change hands ?
1840     if (ox != prv && prv != NULL) {
1841       goto Abort;
1842     }
1843     prv = ox;
1844 
1845     // Abort the spin if the owner is not executing.
1846     // The owner must be executing in order to drop the lock.
1847     // Spinning while the owner is OFFPROC is idiocy.
1848     // Consider: ctr -= RunnablePenalty ;
1849     if (NotRunnable(Self, ox)) {
1850       goto Abort;
1851     }
1852     if (_succ == NULL) {
1853       _succ = Self;
1854     }
1855   }
1856 
1857   // Spin failed with prejudice -- reduce _SpinDuration.
1858   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
1859   // AIMD is globally stable.
1860   {
1861     int x = _SpinDuration;
1862     if (x > 0) {
1863       // Consider an AIMD scheme like: x -= (x >> 3) + 100
1864       // This is globally sample and tends to damp the response.
1865       x -= Knob_Penalty;
1866       if (x < 0) x = 0;
1867       _SpinDuration = x;
1868     }
1869   }
1870 
1871  Abort:
1872   if (_succ == Self) {
1873     _succ = NULL;
1874     // Invariant: after setting succ=null a contending thread
1875     // must recheck-retry _owner before parking.  This usually happens
1876     // in the normal usage of TrySpin(), but it's safest
1877     // to make TrySpin() as foolproof as possible.
1878     OrderAccess::fence();
1879     if (TryLock(Self) > 0) return 1;
1880   }
1881   return 0;
1882 }
1883 
1884 // NotRunnable() -- informed spinning
1885 //
1886 // Don't bother spinning if the owner is not eligible to drop the lock.
1887 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm.
1888 // The thread must be runnable in order to drop the lock in timely fashion.
1889 // If the _owner is not runnable then spinning will not likely be
1890 // successful (profitable).
1891 //
1892 // Beware -- the thread referenced by _owner could have died
1893 // so a simply fetch from _owner->_thread_state might trap.
1894 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
1895 // Because of the lifecycle issues, the _thread_state values
1896 // observed by NotRunnable() might be garbage.  NotRunnable must
1897 // tolerate this and consider the observed _thread_state value
1898 // as advisory.
1899 //
1900 // Beware too, that _owner is sometimes a BasicLock address and sometimes
1901 // a thread pointer.
1902 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
1903 // with the LSB of _owner.  Another option would be to probabilistically probe
1904 // the putative _owner->TypeTag value.
1905 //
1906 // Checking _thread_state isn't perfect.  Even if the thread is
1907 // in_java it might be blocked on a page-fault or have been preempted
1908 // and sitting on a ready/dispatch queue.
1909 //
1910 // The return value from NotRunnable() is *advisory* -- the
1911 // result is based on sampling and is not necessarily coherent.
1912 // The caller must tolerate false-negative and false-positive errors.
1913 // Spinning, in general, is probabilistic anyway.
1914 
1915 
1916 int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) {
1917   // Check ox->TypeTag == 2BAD.
1918   if (ox == NULL) return 0;
1919 
1920   // Avoid transitive spinning ...
1921   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
1922   // Immediately after T1 acquires L it's possible that T2, also
1923   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
1924   // This occurs transiently after T1 acquired L but before
1925   // T1 managed to clear T1.Stalled.  T2 does not need to abort
1926   // its spin in this circumstance.
1927   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
1928 
1929   if (BlockedOn == 1) return 1;
1930   if (BlockedOn != 0) {
1931     return BlockedOn != intptr_t(this) && _owner == ox;
1932   }
1933 
1934   assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
1935   int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
1936   // consider also: jst != _thread_in_Java -- but that's overspecific.
1937   return jst == _thread_blocked || jst == _thread_in_native;
1938 }
1939 
1940 
1941 // -----------------------------------------------------------------------------
1942 // WaitSet management ...
1943 
1944 ObjectWaiter::ObjectWaiter(Thread* thread) {
1945   _next     = NULL;
1946   _prev     = NULL;
1947   _notified = 0;
1948   _notifier_tid = 0;
1949   TState    = TS_RUN;
1950   _thread   = thread;
1951   _event    = thread->_ParkEvent;
1952   _active   = false;
1953   assert(_event != NULL, "invariant");
1954 }
1955 
1956 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
1957   JavaThread *jt = (JavaThread *)this->_thread;
1958   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
1959 }
1960 
1961 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
1962   JavaThread *jt = (JavaThread *)this->_thread;
1963   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
1964 }
1965 
1966 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
1967   assert(node != NULL, "should not add NULL node");
1968   assert(node->_prev == NULL, "node already in list");
1969   assert(node->_next == NULL, "node already in list");
1970   // put node at end of queue (circular doubly linked list)
1971   if (_WaitSet == NULL) {
1972     _WaitSet = node;
1973     node->_prev = node;
1974     node->_next = node;
1975   } else {
1976     ObjectWaiter* head = _WaitSet;
1977     ObjectWaiter* tail = head->_prev;
1978     assert(tail->_next == head, "invariant check");
1979     tail->_next = node;
1980     head->_prev = node;
1981     node->_next = head;
1982     node->_prev = tail;
1983   }
1984 }
1985 
1986 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
1987   // dequeue the very first waiter
1988   ObjectWaiter* waiter = _WaitSet;
1989   if (waiter) {
1990     DequeueSpecificWaiter(waiter);
1991   }
1992   return waiter;
1993 }
1994 
1995 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
1996   assert(node != NULL, "should not dequeue NULL node");
1997   assert(node->_prev != NULL, "node already removed from list");
1998   assert(node->_next != NULL, "node already removed from list");
1999   // when the waiter has woken up because of interrupt,
2000   // timeout or other spurious wake-up, dequeue the
2001   // waiter from waiting list
2002   ObjectWaiter* next = node->_next;
2003   if (next == node) {
2004     assert(node->_prev == node, "invariant check");
2005     _WaitSet = NULL;
2006   } else {
2007     ObjectWaiter* prev = node->_prev;
2008     assert(prev->_next == node, "invariant check");
2009     assert(next->_prev == node, "invariant check");
2010     next->_prev = prev;
2011     prev->_next = next;
2012     if (_WaitSet == node) {
2013       _WaitSet = next;
2014     }
2015   }
2016   node->_next = NULL;
2017   node->_prev = NULL;
2018 }
2019 
2020 // -----------------------------------------------------------------------------
2021 // PerfData support
2022 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
2023 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
2024 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
2025 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
2026 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
2027 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
2028 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
2029 
2030 // One-shot global initialization for the sync subsystem.
2031 // We could also defer initialization and initialize on-demand
2032 // the first time we call ObjectSynchronizer::inflate().
2033 // Initialization would be protected - like so many things - by
2034 // the MonitorCache_lock.
2035 
2036 void ObjectMonitor::Initialize() {
2037   assert(!InitDone, "invariant");
2038 
2039   if (!os::is_MP()) {
2040     Knob_SpinLimit = 0;
2041     Knob_PreSpin   = 0;
2042     Knob_FixedSpin = -1;
2043   }
2044 
2045   if (UsePerfData) {
2046     EXCEPTION_MARK;
2047 #define NEWPERFCOUNTER(n)                                                \
2048   {                                                                      \
2049     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2050                                         CHECK);                          \
2051   }
2052 #define NEWPERFVARIABLE(n)                                                \
2053   {                                                                       \
2054     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2055                                          CHECK);                          \
2056   }
2057     NEWPERFCOUNTER(_sync_Inflations);
2058     NEWPERFCOUNTER(_sync_Deflations);
2059     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2060     NEWPERFCOUNTER(_sync_FutileWakeups);
2061     NEWPERFCOUNTER(_sync_Parks);
2062     NEWPERFCOUNTER(_sync_Notifications);
2063     NEWPERFVARIABLE(_sync_MonExtant);
2064 #undef NEWPERFCOUNTER
2065 #undef NEWPERFVARIABLE
2066   }
2067 
2068   DEBUG_ONLY(InitDone = true;)
2069 }
2070 
2071 // For internal use by ObjectSynchronizer::monitors_iterate().
2072 ObjectMonitorHandle::ObjectMonitorHandle(ObjectMonitor * om_ptr) {
2073   om_ptr->inc_ref_count();
2074   _om_ptr = om_ptr;
2075 }
2076 
2077 ObjectMonitorHandle::~ObjectMonitorHandle() {
2078   if (_om_ptr != NULL) {
2079     _om_ptr->dec_ref_count();
2080     _om_ptr = NULL;
2081   }
2082 }
2083 
2084 // Save the ObjectMonitor* associated with the specified markWord and
2085 // increment the ref_count. This function should only be called if
2086 // the caller has verified mark.has_monitor() == true. The object
2087 // parameter is needed to verify that ObjectMonitor* has not been
2088 // deflated and reused for another object.
2089 //
2090 // This function returns true if the ObjectMonitor* has been safely
2091 // saved. This function returns false if we have lost a race with
2092 // async deflation; the caller should retry as appropriate.
2093 //
2094 bool ObjectMonitorHandle::save_om_ptr(oop object, markWord mark) {
2095   guarantee(mark.has_monitor(), "sanity check: mark=" INTPTR_FORMAT,
2096             mark.value());
2097 
2098   ObjectMonitor * om_ptr = mark.monitor();
2099   om_ptr->inc_ref_count();
2100 
2101   if (AsyncDeflateIdleMonitors) {
2102     // Race here if monitor is not owned! The above ref_count bump
2103     // will cause subsequent async deflation to skip it. However,
2104     // previous or concurrent async deflation is a race.
2105     if (om_ptr->owner_is_DEFLATER_MARKER() && om_ptr->ref_count() <= 0) {
2106       // Async deflation is in progress and our ref_count increment
2107       // above lost the race to async deflation. Attempt to restore
2108       // the header/dmw to the object's header so that we only retry
2109       // once if the deflater thread happens to be slow.
2110       om_ptr->install_displaced_markword_in_object(object);
2111       om_ptr->dec_ref_count();
2112       return false;
2113     }
2114     if (om_ptr->ref_count() <= 0) {
2115       // Async deflation is in the process of bailing out, but has not
2116       // yet restored the ref_count field so we return false to force
2117       // a retry. We want a positive ref_count value for a true return.
2118       om_ptr->dec_ref_count();
2119       return false;
2120     }
2121     // The ObjectMonitor could have been deflated and reused for
2122     // another object before we bumped the ref_count so make sure
2123     // our object still refers to this ObjectMonitor.
2124     const markWord tmp = object->mark();
2125     if (!tmp.has_monitor() || tmp.monitor() != om_ptr) {
2126       // Async deflation and reuse won the race so we have to retry.
2127       // Skip object header restoration since that's already done.
2128       om_ptr->dec_ref_count();
2129       return false;
2130     }
2131   }
2132 
2133   ADIM_guarantee(_om_ptr == NULL, "sanity check: _om_ptr=" INTPTR_FORMAT,
2134                  p2i(_om_ptr));
2135   _om_ptr = om_ptr;
2136   return true;
2137 }
2138 
2139 // For internal use by ObjectSynchronizer::inflate().
2140 void ObjectMonitorHandle::set_om_ptr(ObjectMonitor * om_ptr) {
2141   if (_om_ptr == NULL) {
2142     ADIM_guarantee(om_ptr != NULL, "cannot clear an unset om_ptr");
2143     om_ptr->inc_ref_count();
2144     _om_ptr = om_ptr;
2145   } else {
2146     ADIM_guarantee(om_ptr == NULL, "can only clear a set om_ptr");
2147     _om_ptr->dec_ref_count();
2148     _om_ptr = NULL;
2149   }
2150 }
2151 
2152 void ObjectMonitor::print_on(outputStream* st) const {
2153   // The minimal things to print for markWord printing, more can be added for debugging and logging.
2154   st->print("{contentions=0x%08x,waiters=0x%08x"
2155             ",recursions=" INTPTR_FORMAT ",owner=" INTPTR_FORMAT "}",
2156             contentions(), waiters(), recursions(),
2157             p2i(owner()));
2158 }
2159 void ObjectMonitor::print() const { print_on(tty); }