< prev index next >

src/hotspot/share/runtime/synchronizer.cpp

Print this page
rev 56044 : imported patch 8230184.patch
rev 56046 : v2.00 -> v2.05 (CR5/v2.05/8-for-jdk13) patches combined into one; merge with 8229212.patch; merge with jdk-14+11; merge with 8230184.patch.
rev 56047 : renames, comment cleanups and additions, whitespace and indent fixes; add PaddedObjectMonitor typdef to make 'PaddedEnd<ObjectMonitor' cleanups easier; add a couple of missing 'private' decls; delete unused next() function; merge pieces from dcubed.monitor_deflate_conc.v2.06d in dcubed.monitor_deflate_conc.v2.06[ac]; merge with 8229212.patch; merge with jdk-14+11; merge with 8230184.patch.
rev 56048 : Add OM_CACHE_LINE_SIZE so that ObjectMonitor cache line sizes can be experimented with independently of DEFAULT_CACHE_LINE_SIZE; for SPARC and X64 configs that use 128 for DEFAULT_CACHE_LINE_SIZE, we are experimenting with 64; move _previous_owner_tid and _allocation_state fields to share the cache line with ObjectMonitor::_header; put ObjectMonitor::_ref_count on its own cache line after _owner; add 'int* count_p' parameter to deflate_monitor_list() and deflate_monitor_list_using_JT() and push counter updates down to where the ObjectMonitors are actually removed from the in-use lists; monitors_iterate() async deflation check should use negative ref_count; add 'JavaThread* target' param to deflate_per_thread_idle_monitors_using_JT() add deflate_common_idle_monitors_using_JT() to make it clear which JavaThread* is the target of the work and which is the calling JavaThread* (self); g_free_list, g_om_in_use_list and g_om_in_use_count are now static to synchronizer.cpp (reduce scope); add more diagnostic info to some assert()'s; minor code cleanups and code motion; save_om_ptr() should detect a race with a deflating thread that is bailing out and cause a retry when the ref_count field is not positive; merge with jdk-14+11; add special GC support for TestHumongousClassLoader.java; merge with 8230184.patch.
rev 56049 : Merge the remainder of the lock-free monitor list changes from v2.06 with v2.06a and v2.06b after running the changes through the edit scripts; merge pieces from dcubed.monitor_deflate_conc.v2.06d in dcubed.monitor_deflate_conc.v2.06[ac]; merge pieces from dcubed.monitor_deflate_conc.v2.06e into dcubed.monitor_deflate_conc.v2.06c; merge with jdk-14+11; test work around for test/jdk/tools/jlink/multireleasejar/JLinkMultiReleaseJarTest.java should not been needed anymore.


 101   }
 102 
 103 #else //  ndef DTRACE_ENABLED
 104 
 105 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 106 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 107 
 108 #endif // ndef DTRACE_ENABLED
 109 
 110 // This exists only as a workaround of dtrace bug 6254741
 111 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 112   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 113   return 0;
 114 }
 115 
 116 #define NINFLATIONLOCKS 256
 117 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 118 
 119 // global list of blocks of monitors
 120 PaddedObjectMonitor* volatile ObjectSynchronizer::g_block_list = NULL;




 121 // Global ObjectMonitor free list. Newly allocated and deflated
 122 // ObjectMonitors are prepended here.
 123 ObjectMonitor* volatile ObjectSynchronizer::g_free_list = NULL;
 124 // Global ObjectMonitor in-use list. When a JavaThread is exiting,
 125 // ObjectMonitors on its per-thread in-use list are prepended here.
 126 ObjectMonitor* volatile ObjectSynchronizer::g_om_in_use_list = NULL;
 127 int ObjectSynchronizer::g_om_in_use_count = 0;  // # on g_om_in_use_list
 128 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false;
 129 bool volatile ObjectSynchronizer::_is_special_deflation_requested = false;
 130 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0;
 131 
 132 static volatile intptr_t gListLock = 0;   // protects global monitor lists
 133 static volatile int g_om_free_count = 0;  // # on g_free_list

 134 static volatile int g_om_population = 0;  // # Extant -- in circulation
 135 
 136 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 137 
 138 

































































































































































































































































































































 139 // =====================> Quick functions
 140 
 141 // The quick_* forms are special fast-path variants used to improve
 142 // performance.  In the simplest case, a "quick_*" implementation could
 143 // simply return false, in which case the caller will perform the necessary
 144 // state transitions and call the slow-path form.
 145 // The fast-path is designed to handle frequently arising cases in an efficient
 146 // manner and is just a degenerate "optimistic" variant of the slow-path.
 147 // returns true  -- to indicate the call was satisfied.
 148 // returns false -- to indicate the call needs the services of the slow-path.
 149 // A no-loitering ordinance is in effect for code in the quick_* family
 150 // operators: safepoints or indefinite blocking (blocking that might span a
 151 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 152 // entry.
 153 //
 154 // Consider: An interesting optimization is to have the JIT recognize the
 155 // following common idiom:
 156 //   synchronized (someobj) { .... ; notify(); }
 157 // That is, we find a notify() or notifyAll() call that immediately precedes
 158 // the monitorexit operation.  In that case the JIT could fuse the operations


 565 //
 566 // Performance concern:
 567 // OrderAccess::storestore() calls release() which at one time stored 0
 568 // into the global volatile OrderAccess::dummy variable. This store was
 569 // unnecessary for correctness. Many threads storing into a common location
 570 // causes considerable cache migration or "sloshing" on large SMP systems.
 571 // As such, I avoided using OrderAccess::storestore(). In some cases
 572 // OrderAccess::fence() -- which incurs local latency on the executing
 573 // processor -- is a better choice as it scales on SMP systems.
 574 //
 575 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 576 // a discussion of coherency costs. Note that all our current reference
 577 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 578 // x64, and SPARC.
 579 //
 580 // As a general policy we use "volatile" to control compiler-based reordering
 581 // and explicit fences (barriers) to control for architectural reordering
 582 // performed by the CPU(s) or platform.
 583 
 584 struct SharedGlobals {
 585   char         _pad_prefix[DEFAULT_CACHE_LINE_SIZE];
 586   // These are highly shared mostly-read variables.
 587   // To avoid false-sharing they need to be the sole occupants of a cache line.
 588   volatile int stw_random;
 589   volatile int stw_cycle;
 590   DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 591   // Hot RW variable -- Sequester to avoid false-sharing
 592   volatile int hc_sequence;
 593   DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int));
 594 };
 595 
 596 static SharedGlobals GVars;
 597 static int MonitorScavengeThreshold = 1000000;
 598 static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending
 599 
 600 static markWord read_stable_mark(oop obj) {
 601   markWord mark = obj->mark();
 602   if (!mark.is_being_inflated()) {
 603     return mark;       // normal fast-path return
 604   }
 605 
 606   int its = 0;
 607   for (;;) {
 608     markWord mark = obj->mark();
 609     if (!mark.is_being_inflated()) {
 610       return mark;    // normal fast-path return
 611     }
 612 
 613     // The object is being inflated by some other thread.


 981     // Cannot have assertion since this object may have been
 982     // locked by another thread when reaching here.
 983     // assert(mark.is_neutral(), "sanity check");
 984 
 985     return NULL;
 986   }
 987 }
 988 
 989 // Visitors ...
 990 
 991 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 992   PaddedObjectMonitor* block = OrderAccess::load_acquire(&g_block_list);
 993   while (block != NULL) {
 994     assert(block->object() == CHAINMARKER, "must be a block header");
 995     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 996       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
 997       if (mid->is_active()) {
 998         ObjectMonitorHandle omh(mid);
 999 
1000         if (mid->object() == NULL ||
1001             (AsyncDeflateIdleMonitors && mid->_owner == DEFLATER_MARKER)) {
1002           // Only process with closure if the object is set.
1003           // For async deflation, race here if monitor is not owned!
1004           // The above ref_count bump (in ObjectMonitorHandle ctr)
1005           // will cause subsequent async deflation to skip it.
1006           // However, previous or concurrent async deflation is a race.

1007           continue;
1008         }
1009         closure->do_monitor(mid);
1010       }
1011     }
1012     block = (PaddedObjectMonitor*)block->_next_om;

1013   }
1014 }
1015 
1016 static bool monitors_used_above_threshold() {
1017   if (g_om_population == 0) {
1018     return false;
1019   }
1020   if (MonitorUsedDeflationThreshold > 0) {
1021     int monitors_used = g_om_population - g_om_free_count;
1022     int monitor_usage = (monitors_used * 100LL) / g_om_population;


1023     return monitor_usage > MonitorUsedDeflationThreshold;
1024   }
1025   return false;
1026 }
1027 
1028 // Returns true if MonitorBound is set (> 0) and if the specified
1029 // cnt is > MonitorBound. Otherwise returns false.
1030 static bool is_MonitorBound_exceeded(const int cnt) {
1031   const int mx = MonitorBound;
1032   return mx > 0 && cnt > mx;
1033 }
1034 
1035 bool ObjectSynchronizer::is_async_deflation_needed() {
1036   if (!AsyncDeflateIdleMonitors) {
1037     return false;
1038   }
1039   if (is_async_deflation_requested()) {
1040     // Async deflation request.
1041     return true;
1042   }
1043   if (AsyncDeflationInterval > 0 &&
1044       time_since_last_async_deflation_ms() > AsyncDeflationInterval &&
1045       monitors_used_above_threshold()) {
1046     // It's been longer than our specified deflate interval and there
1047     // are too many monitors in use. We don't deflate more frequently
1048     // than AsyncDeflationInterval (unless is_async_deflation_requested)
1049     // in order to not swamp the ServiceThread.
1050     _last_async_deflation_time_ns = os::javaTimeNanos();
1051     return true;
1052   }
1053   if (is_MonitorBound_exceeded(g_om_population - g_om_free_count)) {

1054     // Not enough ObjectMonitors on the global free list.
1055     return true;
1056   }
1057   return false;
1058 }
1059 
1060 bool ObjectSynchronizer::is_safepoint_deflation_needed() {
1061   if (!AsyncDeflateIdleMonitors) {
1062     if (monitors_used_above_threshold()) {
1063       // Too many monitors in use.
1064       return true;
1065     }
1066     return false;
1067   }
1068   if (is_special_deflation_requested()) {
1069     // For AsyncDeflateIdleMonitors only do a safepoint deflation
1070     // if there is a special deflation request.
1071     return true;
1072   }
1073   return false;
1074 }
1075 
1076 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1077   return (os::javaTimeNanos() - _last_async_deflation_time_ns) / (NANOUNITS / MILLIUNITS);
1078 }
1079 
1080 void ObjectSynchronizer::oops_do(OopClosure* f) {
1081   // We only scan the global used list here (for moribund threads), and
1082   // the thread-local monitors in Thread::oops_do().
1083   global_used_oops_do(f);
1084 }
1085 
1086 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
1087   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1088   list_oops_do(g_om_in_use_list, f);
1089 }
1090 
1091 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
1092   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1093   list_oops_do(thread->om_in_use_list, f);
1094 }
1095 
1096 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) {
1097   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1098   ObjectMonitor* mid;
1099   for (mid = list; mid != NULL; mid = mid->_next_om) {



1100     if (mid->object() != NULL) {
1101       f->do_oop((oop*)mid->object_addr());
1102     }
1103   }
1104 }
1105 
1106 
1107 // -----------------------------------------------------------------------------
1108 // ObjectMonitor Lifecycle
1109 // -----------------------
1110 // Inflation unlinks monitors from the global g_free_list and
1111 // associates them with objects.  Deflation -- which occurs at
1112 // STW-time -- disassociates idle monitors from objects.  Such
1113 // scavenged monitors are returned to the g_free_list.
1114 //
1115 // The global list is protected by gListLock.  All the critical sections
1116 // are short and operate in constant-time.
1117 //
1118 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
1119 //
1120 // Lifecycle:
1121 // --   unassigned and on the global free list
1122 // --   unassigned and on a thread's private om_free_list
1123 // --   assigned to an object.  The object is inflated and the mark refers
1124 //      to the objectmonitor.
1125 
1126 
1127 // Constraining monitor pool growth via MonitorBound ...
1128 //
1129 // If MonitorBound is not set (<= 0), MonitorBound checks are disabled.
1130 //
1131 // When safepoint deflation is being used (!AsyncDeflateIdleMonitors):
1132 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
1133 // the rate of scavenging is driven primarily by GC.  As such,  we can find
1134 // an inordinate number of monitors in circulation.
1135 // To avoid that scenario we can artificially induce a STW safepoint
1136 // if the pool appears to be growing past some reasonable bound.
1137 // Generally we favor time in space-time tradeoffs, but as there's no


1140 // we could just loop. In addition, if MonitorBound is set to a low value
1141 // we'll incur more safepoints, which are harmful to performance.
1142 // See also: GuaranteedSafepointInterval
1143 //
1144 // The current implementation uses asynchronous VM operations.
1145 //
1146 // When safepoint deflation is being used and MonitorBound is set, the
1147 // boundry applies to
1148 //     (g_om_population - g_om_free_count)
1149 // i.e., if there are not enough ObjectMonitors on the global free list,
1150 // then a safepoint deflation is induced. Picking a good MonitorBound value
1151 // is non-trivial.
1152 //
1153 // When async deflation is being used:
1154 // The monitor pool is still grow-only. Async deflation is requested
1155 // by a safepoint's cleanup phase or by the ServiceThread at periodic
1156 // intervals when is_async_deflation_needed() returns true. In
1157 // addition to other policies that are checked, if there are not
1158 // enough ObjectMonitors on the global free list, then
1159 // is_async_deflation_needed() will return true. The ServiceThread
1160 // calls deflate_global_idle_monitors_using_JT() and also sets the
1161 // per-thread om_request_deflation flag as needed.
1162 
1163 static void InduceScavenge(Thread* self, const char * Whence) {
1164   assert(!AsyncDeflateIdleMonitors, "is not used by async deflation");
1165 
1166   // Induce STW safepoint to trim monitors
1167   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1168   // More precisely, trigger an asynchronous STW safepoint as the number
1169   // of active monitors passes the specified threshold.
1170   // TODO: assert thread state is reasonable
1171 
1172   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
1173     // Induce a 'null' safepoint to scavenge monitors
1174     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
1175     // to the VMthread and have a lifespan longer than that of this activation record.
1176     // The VMThread will delete the op when completed.
1177     VMThread::execute(new VM_ScavengeMonitors());
1178   }
1179 }
1180 
1181 ObjectMonitor* ObjectSynchronizer::om_alloc(Thread* self,
1182                                            const InflateCause cause) {
1183   // A large MAXPRIVATE value reduces both list lock contention
1184   // and list coherency traffic, but also tends to increase the
1185   // number of ObjectMonitors in circulation as well as the STW
1186   // scavenge costs.  As usual, we lean toward time in space-time
1187   // tradeoffs.
1188   const int MAXPRIVATE = 1024;
1189 
1190   if (AsyncDeflateIdleMonitors) {
1191     JavaThread* jt = (JavaThread *)self;
1192     if (jt->om_request_deflation && jt->om_in_use_count > 0 &&
1193         cause != inflate_cause_vm_internal) {
1194       // Deflate any per-thread idle monitors for this JavaThread if
1195       // this is not an internal inflation; internal inflations can
1196       // occur in places where it is not safe to pause for a safepoint.
1197       // Clean up your own mess (Gibbs Rule 45). Otherwise, skip this
1198       // deflation. deflate_global_idle_monitors_using_JT() is called
1199       // by the ServiceThread. Per-thread async deflation is triggered
1200       // by the ServiceThread via om_request_deflation.
1201       debug_only(jt->check_for_valid_safepoint_state(false);)
1202       ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT();
1203     }
1204   }
1205 
1206   stringStream ss;
1207   for (;;) {
1208     ObjectMonitor* m;
1209 
1210     // 1: try to allocate from the thread's local om_free_list.
1211     // Threads will attempt to allocate first from their local list, then
1212     // from the global list, and only after those attempts fail will the thread
1213     // attempt to instantiate new monitors.   Thread-local free lists take
1214     // heat off the gListLock and improve allocation latency, as well as reducing
1215     // coherency traffic on the shared global list.
1216     m = self->om_free_list;
1217     if (m != NULL) {
1218       self->om_free_list = m->_next_om;
1219       self->om_free_count--;
1220       guarantee(m->object() == NULL, "invariant");
1221       m->set_allocation_state(ObjectMonitor::New);
1222       m->_next_om = self->om_in_use_list;
1223       self->om_in_use_list = m;
1224       self->om_in_use_count++;
1225       return m;
1226     }
1227 
1228     // 2: try to allocate from the global g_free_list
1229     // CONSIDER: use muxTry() instead of muxAcquire().
1230     // If the muxTry() fails then drop immediately into case 3.
1231     // If we're using thread-local free lists then try
1232     // to reprovision the caller's free list.
1233     if (g_free_list != NULL) {
1234       // Reprovision the thread's om_free_list.
1235       // Use bulk transfers to reduce the allocation rate and heat
1236       // on various locks.
1237       Thread::muxAcquire(&gListLock, "om_alloc(1)");
1238       for (int i = self->om_free_provision; --i >= 0 && g_free_list != NULL;) {
1239         g_om_free_count--;
1240         ObjectMonitor* take = g_free_list;
1241         g_free_list = take->_next_om;
1242         guarantee(take->object() == NULL, "invariant");
1243         if (AsyncDeflateIdleMonitors) {
1244           // We allowed 3 field values to linger during async deflation.
1245           // We clear header and restore ref_count here, but we leave
1246           // owner == DEFLATER_MARKER so the simple C2 ObjectMonitor
1247           // enter optimization can no longer race with async deflation
1248           // and reuse.
1249           take->set_header(markWord::zero());
1250           if (take->ref_count() < 0) {
1251             // Add back max_jint to restore the ref_count field to its
1252             // proper value.
1253             Atomic::add(max_jint, &take->_ref_count);
1254 
1255             assert(take->ref_count() >= 0, "must not be negative: ref_count=%d",
1256                    take->ref_count());
1257           }
1258         }
1259         take->Recycle();
1260         assert(take->is_free(), "invariant");
1261         om_release(self, take, false);
1262       }
1263       Thread::muxRelease(&gListLock);
1264       self->om_free_provision += 1 + (self->om_free_provision/2);
1265       if (self->om_free_provision > MAXPRIVATE) self->om_free_provision = MAXPRIVATE;
1266 
1267       if (!AsyncDeflateIdleMonitors &&
1268           is_MonitorBound_exceeded(g_om_population - g_om_free_count)) {

1269         // Not enough ObjectMonitors on the global free list.
1270         // We can't safely induce a STW safepoint from om_alloc() as our thread
1271         // state may not be appropriate for such activities and callers may hold
1272         // naked oops, so instead we defer the action.
1273         InduceScavenge(self, "om_alloc");
1274       }
1275       continue;
1276     }
1277 
1278     // 3: allocate a block of new ObjectMonitors
1279     // Both the local and global free lists are empty -- resort to malloc().
1280     // In the current implementation ObjectMonitors are TSM - immortal.
1281     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1282     // each ObjectMonitor to start at the beginning of a cache line,
1283     // so we use align_up().
1284     // A better solution would be to use C++ placement-new.
1285     // BEWARE: As it stands currently, we don't run the ctors!
1286     assert(_BLOCKSIZE > 1, "invariant");
1287     size_t neededsize = sizeof(PaddedObjectMonitor) * _BLOCKSIZE;
1288     PaddedObjectMonitor* temp;
1289     size_t aligned_size = neededsize + (DEFAULT_CACHE_LINE_SIZE - 1);
1290     void* real_malloc_addr = (void*)NEW_C_HEAP_ARRAY(char, aligned_size,
1291                                                      mtInternal);
1292     temp = (PaddedObjectMonitor*)align_up(real_malloc_addr, DEFAULT_CACHE_LINE_SIZE);
1293 
1294     // NOTE: (almost) no way to recover if allocation failed.
1295     // We might be able to induce a STW safepoint and scavenge enough
1296     // ObjectMonitors to permit progress.
1297     if (temp == NULL) {
1298       vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR,
1299                             "Allocate ObjectMonitors");
1300     }
1301     (void)memset((void *) temp, 0, neededsize);
1302 
1303     // Format the block.
1304     // initialize the linked list, each monitor points to its next
1305     // forming the single linked free list, the very first monitor
1306     // will points to next block, which forms the block list.
1307     // The trick of using the 1st element in the block as g_block_list
1308     // linkage should be reconsidered.  A better implementation would
1309     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1310 
1311     for (int i = 1; i < _BLOCKSIZE; i++) {
1312       temp[i]._next_om = (ObjectMonitor *)&temp[i+1];
1313       assert(temp[i].is_free(), "invariant");
1314     }
1315 
1316     // terminate the last monitor as the end of list
1317     temp[_BLOCKSIZE - 1]._next_om = NULL;
1318 
1319     // Element [0] is reserved for global list linkage
1320     temp[0].set_object(CHAINMARKER);
1321 
1322     // Consider carving out this thread's current request from the
1323     // block in hand.  This avoids some lock traffic and redundant
1324     // list activity.
1325 
1326     // Acquire the gListLock to manipulate g_block_list and g_free_list.
1327     // An Oyama-Taura-Yonezawa scheme might be more efficient.
1328     Thread::muxAcquire(&gListLock, "om_alloc(2)");
1329     g_om_population += _BLOCKSIZE-1;
1330     g_om_free_count += _BLOCKSIZE-1;
1331 
1332     // Add the new block to the list of extant blocks (g_block_list).
1333     // The very first ObjectMonitor in a block is reserved and dedicated.
1334     // It serves as blocklist "next" linkage.
1335     temp[0]._next_om = g_block_list;
1336     // There are lock-free uses of g_block_list so make sure that
1337     // the previous stores happen before we update g_block_list.
1338     OrderAccess::release_store(&g_block_list, temp);
1339 
1340     // Add the new string of ObjectMonitors to the global free list
1341     temp[_BLOCKSIZE - 1]._next_om = g_free_list;
1342     g_free_list = temp + 1;
1343     Thread::muxRelease(&gListLock);
1344   }
1345 }
1346 
1347 // Place "m" on the caller's private per-thread om_free_list.
1348 // In practice there's no need to clamp or limit the number of
1349 // monitors on a thread's om_free_list as the only non-allocation time
1350 // we'll call om_release() is to return a monitor to the free list after
1351 // a CAS attempt failed. This doesn't allow unbounded #s of monitors to
1352 // accumulate on a thread's free list.
1353 //
1354 // Key constraint: all ObjectMonitors on a thread's free list and the global
1355 // free list must have their object field set to null. This prevents the
1356 // scavenger -- deflate_monitor_list() or deflate_monitor_list_using_JT()
1357 // -- from reclaiming them while we are trying to release them.
1358 
1359 void ObjectSynchronizer::om_release(Thread* self, ObjectMonitor* m,
1360                                     bool from_per_thread_alloc) {
1361   guarantee(m->header().value() == 0, "invariant");
1362   guarantee(m->object() == NULL, "invariant");
1363   stringStream ss;
1364   guarantee((m->is_busy() | m->_recursions) == 0, "freeing in-use monitor: "
1365             "%s, recursions=" INTPTR_FORMAT, m->is_busy_to_string(&ss),
1366             m->_recursions);
1367   m->set_allocation_state(ObjectMonitor::Free);
1368   // _next_om is used for both per-thread in-use and free lists so
1369   // we have to remove 'm' from the in-use list first (as needed).
1370   if (from_per_thread_alloc) {
1371     // Need to remove 'm' from om_in_use_list.


1372     ObjectMonitor* cur_mid_in_use = NULL;


1373     bool extracted = false;
1374     for (ObjectMonitor* mid = self->om_in_use_list; mid != NULL; cur_mid_in_use = mid, mid = mid->_next_om) {




1375       if (m == mid) {
1376         // extract from per-thread in-use list
1377         if (mid == self->om_in_use_list) {
1378           self->om_in_use_list = mid->_next_om;
1379         } else if (cur_mid_in_use != NULL) {
1380           cur_mid_in_use->_next_om = mid->_next_om; // maintain the current thread in-use list














1381         }
1382         extracted = true;
1383         self->om_in_use_count--;




1384         break;
1385       }















1386     }
1387     assert(extracted, "Should have extracted from in-use list");
1388   }
1389 
1390   m->_next_om = self->om_free_list;
1391   guarantee(m->is_free(), "invariant");
1392   self->om_free_list = m;
1393   self->om_free_count++;
1394 }
1395 
1396 // Return ObjectMonitors on a moribund thread's free and in-use
1397 // lists to the appropriate global lists. The ObjectMonitors on the
1398 // per-thread in-use list may still be in use by other threads.
1399 //
1400 // We currently call om_flush() from Threads::remove() before the
1401 // thread has been excised from the thread list and is no longer a
1402 // mutator. This means that om_flush() cannot run concurrently with
1403 // a safepoint and interleave with deflate_idle_monitors(). In
1404 // particular, this ensures that the thread's in-use monitors are
1405 // scanned by a GC safepoint, either via Thread::oops_do() (before
1406 // om_flush() is called) or via ObjectSynchronizer::oops_do() (after
1407 // om_flush() is called).
1408 //
1409 // With AsyncDeflateIdleMonitors, deflate_global_idle_monitors_using_JT()
1410 // and deflate_per_thread_idle_monitors_using_JT() (in another thread) can
1411 // run at the same time as om_flush() so we have to be careful.

1412 
1413 void ObjectSynchronizer::om_flush(Thread* self) {
1414   ObjectMonitor* free_list = self->om_free_list;
1415   ObjectMonitor* free_tail = NULL;
































































1416   int free_count = 0;


1417   if (free_list != NULL) {
1418     ObjectMonitor* s;
1419     // The thread is going away. Set 'free_tail' to the last per-thread free
1420     // monitor which will be linked to g_free_list below under the gListLock.
1421     stringStream ss;
1422     for (s = free_list; s != NULL; s = s->_next_om) {
1423       free_count++;
1424       free_tail = s;
1425       guarantee(s->object() == NULL, "invariant");
1426       guarantee(!s->is_busy(), "must be !is_busy: %s", s->is_busy_to_string(&ss));
1427     }
1428     guarantee(free_tail != NULL, "invariant");
1429     ADIM_guarantee(self->om_free_count == free_count, "free-count off");
1430     self->om_free_list = NULL;
1431     self->om_free_count = 0;



1432   }
1433 
1434   ObjectMonitor* in_use_list = self->om_in_use_list;
1435   ObjectMonitor* in_use_tail = NULL;
1436   int in_use_count = 0;
1437   if (in_use_list != NULL) {
1438     // The thread is going away, however the ObjectMonitors on the
1439     // om_in_use_list may still be in-use by other threads. Link
1440     // them to in_use_tail, which will be linked into the global
1441     // in-use list g_om_in_use_list below, under the gListLock.
1442     ObjectMonitor *cur_om;
1443     for (cur_om = in_use_list; cur_om != NULL; cur_om = cur_om->_next_om) {
1444       in_use_tail = cur_om;
1445       in_use_count++;
1446       ADIM_guarantee(cur_om->is_active(), "invariant");
1447     }
1448     guarantee(in_use_tail != NULL, "invariant");
1449     ADIM_guarantee(self->om_in_use_count == in_use_count, "in-use count off");
1450     self->om_in_use_list = NULL;
1451     self->om_in_use_count = 0;
1452   }
1453 
1454   Thread::muxAcquire(&gListLock, "om_flush");
1455   if (free_tail != NULL) {
1456     free_tail->_next_om = g_free_list;
1457     g_free_list = free_list;
1458     g_om_free_count += free_count;
1459   }
1460 
1461   if (in_use_tail != NULL) {
1462     in_use_tail->_next_om = g_om_in_use_list;
1463     g_om_in_use_list = in_use_list;
1464     g_om_in_use_count += in_use_count;
1465   }
1466 
1467   Thread::muxRelease(&gListLock);
1468 
1469   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1470   LogStreamHandle(Info, monitorinflation) lsh_info;
1471   LogStream* ls = NULL;
1472   if (log_is_enabled(Debug, monitorinflation)) {
1473     ls = &lsh_debug;
1474   } else if ((free_count != 0 || in_use_count != 0) &&
1475              log_is_enabled(Info, monitorinflation)) {
1476     ls = &lsh_info;
1477   }
1478   if (ls != NULL) {
1479     ls->print_cr("om_flush: jt=" INTPTR_FORMAT ", free_count=%d"
1480                  ", in_use_count=%d" ", om_free_provision=%d",
1481                  p2i(self), free_count, in_use_count, self->om_free_provision);
1482   }
1483 }
1484 
1485 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1486                                        const oop obj,
1487                                        ObjectSynchronizer::InflateCause cause) {
1488   assert(event != NULL, "invariant");


1565     //
1566     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1567     // to install INFLATING into the mark word.  We originally installed INFLATING,
1568     // allocated the objectmonitor, and then finally STed the address of the
1569     // objectmonitor into the mark.  This was correct, but artificially lengthened
1570     // the interval in which INFLATED appeared in the mark, thus increasing
1571     // the odds of inflation contention.
1572     //
1573     // We now use per-thread private objectmonitor free lists.
1574     // These list are reprovisioned from the global free list outside the
1575     // critical INFLATING...ST interval.  A thread can transfer
1576     // multiple objectmonitors en-mass from the global free list to its local free list.
1577     // This reduces coherency traffic and lock contention on the global free list.
1578     // Using such local free lists, it doesn't matter if the om_alloc() call appears
1579     // before or after the CAS(INFLATING) operation.
1580     // See the comments in om_alloc().
1581 
1582     LogStreamHandle(Trace, monitorinflation) lsh;
1583 
1584     if (mark.has_locker()) {
1585       ObjectMonitor* m;
1586       if (!AsyncDeflateIdleMonitors || cause == inflate_cause_vm_internal) {
1587         // If !AsyncDeflateIdleMonitors or if an internal inflation, then
1588         // we won't stop for a potential safepoint in om_alloc.
1589         m = om_alloc(self, cause);
1590       } else {
1591         // If AsyncDeflateIdleMonitors and not an internal inflation, then
1592         // we may stop for a safepoint in om_alloc() so protect object.
1593         Handle h_obj(self, object);
1594         m = om_alloc(self, cause);
1595         object = h_obj();  // Refresh object.
1596       }
1597       // Optimistically prepare the objectmonitor - anticipate successful CAS
1598       // We do this before the CAS in order to minimize the length of time
1599       // in which INFLATING appears in the mark.
1600       m->Recycle();
1601       m->_Responsible  = NULL;
1602       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1603 
1604       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1605       if (cmp != mark) {
1606         om_release(self, m, true);
1607         continue;       // Interference -- just retry
1608       }
1609 
1610       // We've successfully installed INFLATING (0) into the mark-word.
1611       // This is the only case where 0 will appear in a mark-word.
1612       // Only the singular thread that successfully swings the mark-word
1613       // to 0 can perform (or more precisely, complete) inflation.
1614       //
1615       // Why do we CAS a 0 into the mark-word instead of just CASing the
1616       // mark-word from the stack-locked value directly to the new inflated state?


1674       }
1675       if (event.should_commit()) {
1676         post_monitor_inflate_event(&event, object, cause);
1677       }
1678       ADIM_guarantee(!m->is_free(), "inflated monitor to be returned cannot be free");
1679       return;
1680     }
1681 
1682     // CASE: neutral
1683     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1684     // If we know we're inflating for entry it's better to inflate by swinging a
1685     // pre-locked ObjectMonitor pointer into the object header.   A successful
1686     // CAS inflates the object *and* confers ownership to the inflating thread.
1687     // In the current implementation we use a 2-step mechanism where we CAS()
1688     // to inflate and then CAS() again to try to swing _owner from NULL to self.
1689     // An inflateTry() method that we could call from fast_enter() and slow_enter()
1690     // would be useful.
1691 
1692     // Catch if the object's header is not neutral (not locked and
1693     // not marked is what we care about here).
1694     ADIM_guarantee(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1695     ObjectMonitor* m;
1696     if (!AsyncDeflateIdleMonitors || cause == inflate_cause_vm_internal) {
1697       // If !AsyncDeflateIdleMonitors or if an internal inflation, then
1698       // we won't stop for a potential safepoint in om_alloc.
1699       m = om_alloc(self, cause);
1700     } else {
1701       // If AsyncDeflateIdleMonitors and not an internal inflation, then
1702       // we may stop for a safepoint in om_alloc() so protect object.
1703       Handle h_obj(self, object);
1704       m = om_alloc(self, cause);
1705       object = h_obj();  // Refresh object.
1706     }
1707     // prepare m for installation - set monitor to initial state
1708     m->Recycle();
1709     m->set_header(mark);
1710     // If we leave _owner == DEFLATER_MARKER here, then the simple C2
1711     // ObjectMonitor enter optimization can no longer race with async
1712     // deflation and reuse.
1713     m->set_object(object);
1714     m->_Responsible  = NULL;
1715     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1716 
1717     omh_p->set_om_ptr(m);
1718     assert(m->is_new(), "freshly allocated monitor must be new");
1719     m->set_allocation_state(ObjectMonitor::Old);
1720 
1721     if (object->cas_set_mark(markWord::encode(m), mark) != mark) {




1722       m->set_header(markWord::zero());
1723       m->set_object(NULL);
1724       m->Recycle();
1725       omh_p->set_om_ptr(NULL);
1726       // om_release() will reset the allocation state
1727       om_release(self, m, true);
1728       m = NULL;
1729       continue;
1730       // interference - the markword changed - just retry.
1731       // The state-transitions are one-way, so there's no chance of
1732       // live-lock -- "Inflated" is an absorbing state.
1733     }
1734 
1735     // Hopefully the performance counters are allocated on distinct
1736     // cache lines to avoid false sharing on MP systems ...
1737     OM_PERFDATA_OP(Inflations, inc());
1738     if (log_is_enabled(Trace, monitorinflation)) {
1739       ResourceMark rm(self);
1740       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
1741                    INTPTR_FORMAT ", type='%s'", p2i(object),


1760 // These operations are called at all safepoints, immediately after mutators
1761 // are stopped, but before any objects have moved. Collectively they traverse
1762 // the population of in-use monitors, deflating where possible. The scavenged
1763 // monitors are returned to the global monitor free list.
1764 //
1765 // Beware that we scavenge at *every* stop-the-world point. Having a large
1766 // number of monitors in-use could negatively impact performance. We also want
1767 // to minimize the total # of monitors in circulation, as they incur a small
1768 // footprint penalty.
1769 //
1770 // Perversely, the heap size -- and thus the STW safepoint rate --
1771 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1772 // which in turn can mean large(r) numbers of ObjectMonitors in circulation.
1773 // This is an unfortunate aspect of this design.
1774 //
1775 // For async deflation:
1776 // If a special deflation request is made, then the safepoint based
1777 // deflation mechanism is used. Otherwise, an async deflation request
1778 // is registered with the ServiceThread and it is notified.
1779 
1780 void ObjectSynchronizer::do_safepoint_work(DeflateMonitorCounters* _counters) {
1781   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1782 
1783   // The per-thread in-use lists are handled in
1784   // ParallelSPCleanupThreadClosure::do_thread().
1785 
1786   if (!AsyncDeflateIdleMonitors || is_special_deflation_requested()) {
1787     // Use the older mechanism for the global in-use list or if a
1788     // special deflation has been requested before the safepoint.
1789     ObjectSynchronizer::deflate_idle_monitors(_counters);
1790     return;
1791   }
1792 
1793   log_debug(monitorinflation)("requesting async deflation of idle monitors.");
1794   // Request deflation of idle monitors by the ServiceThread:
1795   set_is_async_deflation_requested(true);
1796   MonitorLocker ml(Service_lock, Mutex::_no_safepoint_check_flag);
1797   ml.notify_all();
1798 }
1799 
1800 // Deflate a single monitor if not in-use
1801 // Return true if deflated, false if in-use
1802 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1803                                          ObjectMonitor** free_head_p,
1804                                          ObjectMonitor** free_tail_p) {
1805   bool deflated;
1806   // Normal case ... The monitor is associated with obj.
1807   const markWord mark = obj->mark();
1808   guarantee(mark == markWord::encode(mid), "should match: mark="
1809             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, mark.value(),


1828                                   "object=" INTPTR_FORMAT ", mark="
1829                                   INTPTR_FORMAT ", type='%s'", p2i(obj),
1830                                   mark.value(), obj->klass()->external_name());
1831     }
1832 
1833     // Restore the header back to obj
1834     obj->release_set_mark(dmw);
1835     if (AsyncDeflateIdleMonitors) {
1836       // clear() expects the owner field to be NULL and we won't race
1837       // with the simple C2 ObjectMonitor enter optimization since
1838       // we're at a safepoint.
1839       mid->set_owner(NULL);
1840     }
1841     mid->clear();
1842 
1843     assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT,
1844            p2i(mid->object()));
1845     assert(mid->is_free(), "invariant");
1846 
1847     // Move the deflated ObjectMonitor to the working free list
1848     // defined by free_head_p and free_tail_p.

1849     if (*free_head_p == NULL) *free_head_p = mid;
1850     if (*free_tail_p != NULL) {
1851       // We append to the list so the caller can use mid->_next_om
1852       // to fix the linkages in its context.
1853       ObjectMonitor* prevtail = *free_tail_p;
1854       // Should have been cleaned up by the caller:
1855       assert(prevtail->_next_om == NULL, "cleaned up deflated?");
1856       prevtail->_next_om = mid;




1857     }
1858     *free_tail_p = mid;
1859     // At this point, mid->_next_om still refers to its current
1860     // value and another ObjectMonitor's _next_om field still
1861     // refers to this ObjectMonitor. Those linkages have to be
1862     // cleaned up by the caller who has the complete context.
1863     deflated = true;
1864   }
1865   return deflated;
1866 }
1867 
1868 // Deflate the specified ObjectMonitor if not in-use using a JavaThread.
1869 // Returns true if it was deflated and false otherwise.
1870 //
1871 // The async deflation protocol sets owner to DEFLATER_MARKER and
1872 // makes ref_count negative as signals to contending threads that
1873 // an async deflation is in progress. There are a number of checks
1874 // as part of the protocol to make sure that the calling thread has
1875 // not lost the race to a contending thread or to a thread that just
1876 // wants to use the ObjectMonitor*.


1939         const oop obj = (oop) mid->object();
1940         if (log_is_enabled(Trace, monitorinflation)) {
1941           ResourceMark rm;
1942           log_trace(monitorinflation)("deflate_monitor_using_JT: "
1943                                       "object=" INTPTR_FORMAT ", mark="
1944                                       INTPTR_FORMAT ", type='%s'",
1945                                       p2i(obj), obj->mark().value(),
1946                                       obj->klass()->external_name());
1947         }
1948 
1949         // Install the old mark word if nobody else has already done it.
1950         mid->install_displaced_markword_in_object(obj);
1951         mid->clear_using_JT();
1952 
1953         assert(mid->object() == NULL, "must be NULL: object=" INTPTR_FORMAT,
1954                p2i(mid->object()));
1955         assert(mid->is_free(), "must be free: allocation_state=%d",
1956                (int) mid->allocation_state());
1957 
1958         // Move the deflated ObjectMonitor to the working free list
1959         // defined by free_head_p and free_tail_p.

1960         if (*free_head_p == NULL) {
1961           // First one on the list.
1962           *free_head_p = mid;
1963         }
1964         if (*free_tail_p != NULL) {
1965           // We append to the list so the caller can use mid->_next_om
1966           // to fix the linkages in its context.
1967           ObjectMonitor* prevtail = *free_tail_p;
1968           // Should have been cleaned up by the caller:
1969           assert(prevtail->_next_om == NULL, "must be NULL: _next_om="
1970                  INTPTR_FORMAT, p2i(prevtail->_next_om));
1971           prevtail->_next_om = mid;

1972         }
1973         *free_tail_p = mid;
1974 
1975         // At this point, mid->_next_om still refers to its current
1976         // value and another ObjectMonitor's _next_om field still
1977         // refers to this ObjectMonitor. Those linkages have to be
1978         // cleaned up by the caller who has the complete context.
1979 
1980         // We leave owner == DEFLATER_MARKER and ref_count < 0
1981         // to force any racing threads to retry.
1982         return true;  // Success, ObjectMonitor has been deflated.
1983       }
1984 
1985       // The owner was changed from DEFLATER_MARKER so we lost the
1986       // race since the ObjectMonitor is now busy.
1987 
1988       // Add back max_jint to restore the ref_count field to its
1989       // proper value (which may not be what we saw above):
1990       Atomic::add(max_jint, &mid->_ref_count);
1991 
1992       assert(mid->ref_count() >= 0, "must not be negative: ref_count=%d",
1993              mid->ref_count());
1994       return false;
1995     }
1996 
1997     // The ref_count was no longer 0 so we lost the race since the
1998     // ObjectMonitor is now busy or the ObjectMonitor* is now is use.
1999     // Restore owner to NULL if it is still DEFLATER_MARKER:
2000     Atomic::cmpxchg((void*)NULL, &mid->_owner, DEFLATER_MARKER);
2001   }
2002 
2003   // The owner field is no longer NULL so we lost the race since the
2004   // ObjectMonitor is now busy.
2005   return false;
2006 }
2007 
2008 // Walk a given monitor list, and deflate idle monitors
2009 // The given list could be a per-thread list or a global list
2010 // Caller acquires gListLock as needed.
2011 //
2012 // In the case of parallel processing of thread local monitor lists,
2013 // work is done by Threads::parallel_threads_do() which ensures that
2014 // each Java thread is processed by exactly one worker thread, and
2015 // thus avoid conflicts that would arise when worker threads would
2016 // process the same monitor lists concurrently.
2017 //
2018 // See also ParallelSPCleanupTask and
2019 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
2020 // Threads::parallel_java_threads_do() in thread.cpp.
2021 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** list_p,

2022                                              ObjectMonitor** free_head_p,
2023                                              ObjectMonitor** free_tail_p) {
2024   ObjectMonitor* mid;
2025   ObjectMonitor* next;
2026   ObjectMonitor* cur_mid_in_use = NULL;


2027   int deflated_count = 0;
2028 
2029   for (mid = *list_p; mid != NULL;) {






2030     oop obj = (oop) mid->object();
2031     if (obj != NULL && deflate_monitor(mid, obj, free_head_p, free_tail_p)) {
2032       // Deflation succeeded and already updated free_head_p and
2033       // free_tail_p as needed. Finish the move to the local free list
2034       // by unlinking mid from the global or per-thread in-use list.
2035       if (mid == *list_p) {
2036         *list_p = mid->_next_om;
2037       } else if (cur_mid_in_use != NULL) {
2038         cur_mid_in_use->_next_om = mid->_next_om; // maintain the current thread in-use list








2039       }
2040       next = mid->_next_om;
2041       mid->_next_om = NULL;  // This mid is current tail in the free_head_p list
2042       mid = next;
2043       deflated_count++;











2044     } else {



2045       cur_mid_in_use = mid;
2046       mid = mid->_next_om;



2047     }


2048   }
2049   return deflated_count;
2050 }
2051 
2052 // Walk a given ObjectMonitor list and deflate idle ObjectMonitors using
2053 // a JavaThread. Returns the number of deflated ObjectMonitors. The given
2054 // list could be a per-thread in-use list or the global in-use list.
2055 // Caller acquires gListLock as appropriate. If a safepoint has started,
2056 // then we save state via saved_mid_in_use_p and return to the caller to
2057 // honor the safepoint.
2058 //
2059 int ObjectSynchronizer::deflate_monitor_list_using_JT(ObjectMonitor** list_p,

2060                                                       ObjectMonitor** free_head_p,
2061                                                       ObjectMonitor** free_tail_p,
2062                                                       ObjectMonitor** saved_mid_in_use_p) {
2063   assert(AsyncDeflateIdleMonitors, "sanity check");
2064   assert(Thread::current()->is_Java_thread(), "precondition");
2065 
2066   ObjectMonitor* mid;
2067   ObjectMonitor* next;
2068   ObjectMonitor* cur_mid_in_use = NULL;



2069   int deflated_count = 0;
2070 




2071   if (*saved_mid_in_use_p == NULL) {
2072     // No saved state so start at the beginning.
2073     mid = *list_p;



2074   } else {
2075     // We're restarting after a safepoint so restore the necessary state
2076     // before we resume.
2077     cur_mid_in_use = *saved_mid_in_use_p;
2078     mid = cur_mid_in_use->_next_om;









2079   }
2080   while (mid != NULL) {











2081     // Only try to deflate if there is an associated Java object and if
2082     // mid is old (is not newly allocated and is not newly freed).
2083     if (mid->object() != NULL && mid->is_old() &&
2084         deflate_monitor_using_JT(mid, free_head_p, free_tail_p)) {
2085       // Deflation succeeded so update the in-use list.
2086       if (mid == *list_p) {
2087         *list_p = mid->_next_om;
2088       } else if (cur_mid_in_use != NULL) {
2089         // Maintain the current in-use list.
2090         cur_mid_in_use->_next_om = mid->_next_om;
2091       }
2092       next = mid->_next_om;
2093       mid->_next_om = NULL;
2094       // At this point mid is disconnected from the in-use list
2095       // and is the current tail in the free_head_p list.
2096       mid = next;










2097       deflated_count++;












2098     } else {
2099       // mid is considered in-use if it does not have an associated
2100       // Java object or mid is not old or deflation did not succeed.
2101       // A mid->is_new() node can be seen here when it is freshly
2102       // returned by om_alloc() (and skips the deflation code path).
2103       // A mid->is_old() node can be seen here when deflation failed.
2104       // A mid->is_free() node can be seen here when a fresh node from
2105       // om_alloc() is released by om_release() due to losing the race
2106       // in inflate().
2107 







2108       cur_mid_in_use = mid;
2109       mid = mid->_next_om;

2110 
2111       if (SafepointSynchronize::is_synchronizing() &&
2112           cur_mid_in_use != *list_p && cur_mid_in_use->is_old()) {

2113         // If a safepoint has started and cur_mid_in_use is not the list
2114         // head and is old, then it is safe to use as saved state. Return
2115         // to the caller so gListLock can be dropped as appropriate
2116         // before blocking.
2117         *saved_mid_in_use_p = cur_mid_in_use;




2118         return deflated_count;
2119       }
2120     }









2121   }
2122   // We finished the list without a safepoint starting so there's
2123   // no need to save state.
2124   *saved_mid_in_use_p = NULL;
2125   return deflated_count;
2126 }
2127 
2128 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2129   counters->n_in_use = 0;              // currently associated with objects
2130   counters->n_in_circulation = 0;      // extant
2131   counters->n_scavenged = 0;           // reclaimed (global and per-thread)
2132   counters->per_thread_scavenged = 0;  // per-thread scavenge total
2133   counters->per_thread_times = 0.0;    // per-thread scavenge times
2134 }
2135 
2136 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
2137   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2138 
2139   if (AsyncDeflateIdleMonitors) {
2140     // Nothing to do when global idle ObjectMonitors are deflated using
2141     // a JavaThread unless a special deflation has been requested.
2142     if (!is_special_deflation_requested()) {
2143       return;
2144     }
2145   }
2146 
2147   bool deflated = false;
2148 
2149   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
2150   ObjectMonitor* free_tail_p = NULL;
2151   elapsedTimer timer;
2152 
2153   if (log_is_enabled(Info, monitorinflation)) {
2154     timer.start();
2155   }
2156 
2157   // Prevent om_flush from changing mids in Thread dtor's during deflation
2158   // And in case the vm thread is acquiring a lock during a safepoint
2159   // See e.g. 6320749
2160   Thread::muxAcquire(&gListLock, "deflate_idle_monitors");
2161 
2162   // Note: the thread-local monitors lists get deflated in
2163   // a separate pass. See deflate_thread_local_monitors().
2164 
2165   // For moribund threads, scan g_om_in_use_list
2166   int deflated_count = 0;
2167   if (g_om_in_use_list) {
2168     counters->n_in_circulation += g_om_in_use_count;
2169     deflated_count = deflate_monitor_list((ObjectMonitor **)&g_om_in_use_list, &free_head_p, &free_tail_p);
2170     g_om_in_use_count -= deflated_count;
2171     counters->n_scavenged += deflated_count;
2172     counters->n_in_use += g_om_in_use_count;
2173   }
2174 
2175   if (free_head_p != NULL) {
2176     // Move the deflated ObjectMonitors back to the global free list.
2177     guarantee(free_tail_p != NULL && counters->n_scavenged > 0, "invariant");
2178     assert(free_tail_p->_next_om == NULL, "invariant");
2179     // constant-time list splice - prepend scavenged segment to g_free_list
2180     free_tail_p->_next_om = g_free_list;
2181     g_free_list = free_head_p;

2182   }
2183   Thread::muxRelease(&gListLock);
2184   timer.stop();
2185 
2186   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2187   LogStreamHandle(Info, monitorinflation) lsh_info;
2188   LogStream* ls = NULL;
2189   if (log_is_enabled(Debug, monitorinflation)) {
2190     ls = &lsh_debug;
2191   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2192     ls = &lsh_info;
2193   }
2194   if (ls != NULL) {
2195     ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2196   }
2197 }
2198 
2199 // Deflate global idle ObjectMonitors using a JavaThread.
2200 //
2201 void ObjectSynchronizer::deflate_global_idle_monitors_using_JT() {
2202   assert(AsyncDeflateIdleMonitors, "sanity check");
2203   assert(Thread::current()->is_Java_thread(), "precondition");
2204   JavaThread* self = JavaThread::current();
2205 
2206   deflate_common_idle_monitors_using_JT(true /* is_global */, self);
2207 }
2208 
2209 // Deflate per-thread idle ObjectMonitors using a JavaThread.
2210 //
2211 void ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT() {
2212   assert(AsyncDeflateIdleMonitors, "sanity check");
2213   assert(Thread::current()->is_Java_thread(), "precondition");
2214   JavaThread* self = JavaThread::current();
2215 
2216   self->om_request_deflation = false;
2217 
2218   deflate_common_idle_monitors_using_JT(false /* !is_global */, self);
2219 }
2220 
2221 // Deflate global or per-thread idle ObjectMonitors using a JavaThread.
2222 //
2223 void ObjectSynchronizer::deflate_common_idle_monitors_using_JT(bool is_global, JavaThread* self) {


2224   int deflated_count = 0;
2225   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged ObjectMonitors
2226   ObjectMonitor* free_tail_p = NULL;
2227   ObjectMonitor* saved_mid_in_use_p = NULL;
2228   elapsedTimer timer;
2229 
2230   if (log_is_enabled(Info, monitorinflation)) {
2231     timer.start();
2232   }
2233 
2234   if (is_global) {
2235     Thread::muxAcquire(&gListLock, "deflate_global_idle_monitors_using_JT(1)");
2236     OM_PERFDATA_OP(MonExtant, set_value(g_om_in_use_count));
2237   } else {
2238     OM_PERFDATA_OP(MonExtant, inc(self->om_in_use_count));
2239   }
2240 
2241   do {
2242     int local_deflated_count;
2243     if (is_global) {
2244       local_deflated_count = deflate_monitor_list_using_JT((ObjectMonitor **)&g_om_in_use_list, &free_head_p, &free_tail_p, &saved_mid_in_use_p);
2245       g_om_in_use_count -= local_deflated_count;
2246     } else {
2247       local_deflated_count = deflate_monitor_list_using_JT(self->om_in_use_list_addr(), &free_head_p, &free_tail_p, &saved_mid_in_use_p);
2248       self->om_in_use_count -= local_deflated_count;
2249     }
2250     deflated_count += local_deflated_count;
2251 
2252     if (free_head_p != NULL) {
2253       // Move the scavenged ObjectMonitors to the global free list.

2254       guarantee(free_tail_p != NULL && local_deflated_count > 0, "free_tail_p=" INTPTR_FORMAT ", local_deflated_count=%d", p2i(free_tail_p), local_deflated_count);
2255       assert(free_tail_p->_next_om == NULL, "invariant");









2256 
2257       if (!is_global) {
2258         Thread::muxAcquire(&gListLock, "deflate_per_thread_idle_monitors_using_JT(2)");
2259       }
2260       // Constant-time list splice - prepend scavenged segment to g_free_list.
2261       free_tail_p->_next_om = g_free_list;
2262       g_free_list = free_head_p;
2263 
2264       g_om_free_count += local_deflated_count;
2265       OM_PERFDATA_OP(Deflations, inc(local_deflated_count));
2266       if (!is_global) {
2267         Thread::muxRelease(&gListLock);
2268       }
2269     }
2270 
2271     if (saved_mid_in_use_p != NULL) {
2272       // deflate_monitor_list_using_JT() detected a safepoint starting.
2273       if (is_global) {
2274         Thread::muxRelease(&gListLock);
2275       }
2276       timer.stop();
2277       {
2278         if (is_global) {
2279           log_debug(monitorinflation)("pausing deflation of global idle monitors for a safepoint.");
2280         } else {
2281           log_debug(monitorinflation)("jt=" INTPTR_FORMAT ": pausing deflation of per-thread idle monitors for a safepoint.", p2i(self));
2282         }
2283         assert(SafepointSynchronize::is_synchronizing(), "sanity check");
2284         ThreadBlockInVM blocker(self);
2285       }
2286       // Prepare for another loop after the safepoint.
2287       free_head_p = NULL;
2288       free_tail_p = NULL;
2289       if (log_is_enabled(Info, monitorinflation)) {
2290         timer.start();
2291       }
2292       if (is_global) {
2293         Thread::muxAcquire(&gListLock, "deflate_global_idle_monitors_using_JT(3)");
2294       }
2295     }
2296   } while (saved_mid_in_use_p != NULL);
2297   if (is_global) {
2298     Thread::muxRelease(&gListLock);
2299   }
2300   timer.stop();
2301 
2302   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2303   LogStreamHandle(Info, monitorinflation) lsh_info;
2304   LogStream* ls = NULL;
2305   if (log_is_enabled(Debug, monitorinflation)) {
2306     ls = &lsh_debug;
2307   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2308     ls = &lsh_info;
2309   }
2310   if (ls != NULL) {
2311     if (is_global) {
2312       ls->print_cr("async-deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2313     } else {
2314       ls->print_cr("jt=" INTPTR_FORMAT ": async-deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(self), timer.seconds(), deflated_count);
2315     }
2316   }
2317 }
2318 
2319 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2320   // Report the cumulative time for deflating each thread's idle
2321   // monitors. Note: if the work is split among more than one
2322   // worker thread, then the reported time will likely be more
2323   // than a beginning to end measurement of the phase.
2324   // Note: AsyncDeflateIdleMonitors only deflates per-thread idle
2325   // monitors at a safepoint when a special deflation has been requested.
2326   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d", counters->per_thread_times, counters->per_thread_scavenged);


2327 
2328   bool needs_special_deflation = is_special_deflation_requested();
2329   if (!AsyncDeflateIdleMonitors || needs_special_deflation) {
2330     // AsyncDeflateIdleMonitors does not use these counters unless
2331     // there is a special deflation request.
2332 
2333     g_om_free_count += counters->n_scavenged;
2334 
2335     OM_PERFDATA_OP(Deflations, inc(counters->n_scavenged));
2336     OM_PERFDATA_OP(MonExtant, set_value(counters->n_in_circulation));
2337   }
2338 
2339   if (log_is_enabled(Debug, monitorinflation)) {
2340     // exit_globals()'s call to audit_and_print_stats() is done
2341     // at the Info level.
2342     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2343   } else if (log_is_enabled(Info, monitorinflation)) {
2344     Thread::muxAcquire(&gListLock, "finish_deflate_idle_monitors");
2345     log_info(monitorinflation)("g_om_population=%d, g_om_in_use_count=%d, "
2346                                "g_om_free_count=%d", g_om_population,
2347                                g_om_in_use_count, g_om_free_count);
2348     Thread::muxRelease(&gListLock);

2349   }
2350 
2351   ForceMonitorScavenge = 0;    // Reset
2352   GVars.stw_random = os::random();
2353   GVars.stw_cycle++;
2354   if (needs_special_deflation) {
2355     set_is_special_deflation_requested(false);  // special deflation is done
2356   }
2357 }
2358 
2359 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
2360   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2361 
2362   if (AsyncDeflateIdleMonitors) {
2363     if (!is_special_deflation_requested()) {
2364       // Mark the JavaThread for idle monitor deflation if a special
2365       // deflation has NOT been requested.
2366       if (thread->om_in_use_count > 0) {
2367         // This JavaThread is using monitors so mark it.
2368         thread->om_request_deflation = true;
2369       }
2370       return;
2371     }
2372   }
2373 
2374   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
2375   ObjectMonitor* free_tail_p = NULL;
2376   elapsedTimer timer;
2377 
2378   if (log_is_enabled(Info, safepoint, cleanup) ||
2379       log_is_enabled(Info, monitorinflation)) {
2380     timer.start();
2381   }
2382 
2383   int deflated_count = deflate_monitor_list(thread->om_in_use_list_addr(), &free_head_p, &free_tail_p);
2384 
2385   Thread::muxAcquire(&gListLock, "deflate_thread_local_monitors");
2386 
2387   // Adjust counters
2388   counters->n_in_circulation += thread->om_in_use_count;
2389   thread->om_in_use_count -= deflated_count;
2390   counters->n_scavenged += deflated_count;
2391   counters->n_in_use += thread->om_in_use_count;
2392   counters->per_thread_scavenged += deflated_count;
2393 
2394   if (free_head_p != NULL) {
2395     // Move the deflated ObjectMonitors back to the global free list.

2396     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
2397     assert(free_tail_p->_next_om == NULL, "invariant");
2398 
2399     // constant-time list splice - prepend scavenged segment to g_free_list
2400     free_tail_p->_next_om = g_free_list;
2401     g_free_list = free_head_p;
2402   }
2403 
2404   timer.stop();
2405   // Safepoint logging cares about cumulative per_thread_times and
2406   // we'll capture most of the cost, but not the muxRelease() which
2407   // should be cheap.
2408   counters->per_thread_times += timer.seconds();
2409 
2410   Thread::muxRelease(&gListLock);
2411 
2412   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2413   LogStreamHandle(Info, monitorinflation) lsh_info;
2414   LogStream* ls = NULL;
2415   if (log_is_enabled(Debug, monitorinflation)) {
2416     ls = &lsh_debug;
2417   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2418     ls = &lsh_info;
2419   }
2420   if (ls != NULL) {
2421     ls->print_cr("jt=" INTPTR_FORMAT ": deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(thread), timer.seconds(), deflated_count);
2422   }
2423 }
2424 
2425 // Monitor cleanup on JavaThread::exit
2426 
2427 // Iterate through monitor cache and attempt to release thread's monitors
2428 // Gives up on a particular monitor if an exception occurs, but continues
2429 // the overall iteration, swallowing the exception.
2430 class ReleaseJavaMonitorsClosure: public MonitorClosure {
2431  private:


2442 
2443 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
2444 // ignored.  This is meant to be called during JNI thread detach which assumes
2445 // all remaining monitors are heavyweight.  All exceptions are swallowed.
2446 // Scanning the extant monitor list can be time consuming.
2447 // A simple optimization is to add a per-thread flag that indicates a thread
2448 // called jni_monitorenter() during its lifetime.
2449 //
2450 // Instead of No_Savepoint_Verifier it might be cheaper to
2451 // use an idiom of the form:
2452 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
2453 //   <code that must not run at safepoint>
2454 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
2455 // Since the tests are extremely cheap we could leave them enabled
2456 // for normal product builds.
2457 
2458 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
2459   assert(THREAD == JavaThread::current(), "must be current Java thread");
2460   NoSafepointVerifier nsv;
2461   ReleaseJavaMonitorsClosure rjmc(THREAD);
2462   Thread::muxAcquire(&gListLock, "release_monitors_owned_by_thread");
2463   ObjectSynchronizer::monitors_iterate(&rjmc);
2464   Thread::muxRelease(&gListLock);
2465   THREAD->clear_pending_exception();
2466 }
2467 
2468 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
2469   switch (cause) {
2470     case inflate_cause_vm_internal:    return "VM Internal";
2471     case inflate_cause_monitor_enter:  return "Monitor Enter";
2472     case inflate_cause_wait:           return "Monitor Wait";
2473     case inflate_cause_notify:         return "Monitor Notify";
2474     case inflate_cause_hash_code:      return "Monitor Hash Code";
2475     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
2476     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
2477     default:
2478       ShouldNotReachHere();
2479   }
2480   return "Unknown";
2481 }
2482 
2483 //------------------------------------------------------------------------------
2484 // Debugging code


2498 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() {
2499   return (u_char*)&GVars.stw_random;
2500 }
2501 
2502 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) {
2503   assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant");
2504 
2505   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2506   LogStreamHandle(Info, monitorinflation) lsh_info;
2507   LogStreamHandle(Trace, monitorinflation) lsh_trace;
2508   LogStream* ls = NULL;
2509   if (log_is_enabled(Trace, monitorinflation)) {
2510     ls = &lsh_trace;
2511   } else if (log_is_enabled(Debug, monitorinflation)) {
2512     ls = &lsh_debug;
2513   } else if (log_is_enabled(Info, monitorinflation)) {
2514     ls = &lsh_info;
2515   }
2516   assert(ls != NULL, "sanity check");
2517 
2518   if (!on_exit) {
2519     // Not at VM exit so grab the global list lock.
2520     Thread::muxAcquire(&gListLock, "audit_and_print_stats");
2521   }
2522 
2523   // Log counts for the global and per-thread monitor lists:
2524   int chk_om_population = log_monitor_list_counts(ls);
2525   int error_cnt = 0;
2526 
2527   ls->print_cr("Checking global lists:");
2528 
2529   // Check g_om_population:
2530   if (g_om_population == chk_om_population) {
2531     ls->print_cr("g_om_population=%d equals chk_om_population=%d",
2532                  g_om_population, chk_om_population);

2533   } else {
2534     ls->print_cr("ERROR: g_om_population=%d is not equal to "
2535                  "chk_om_population=%d", g_om_population,

2536                  chk_om_population);
2537     error_cnt++;
2538   }
2539 
2540   // Check g_om_in_use_list and g_om_in_use_count:
2541   chk_global_in_use_list_and_count(ls, &error_cnt);
2542 
2543   // Check g_free_list and g_om_free_count:
2544   chk_global_free_list_and_count(ls, &error_cnt);
2545 
2546   if (!on_exit) {
2547     Thread::muxRelease(&gListLock);
2548   }
2549 
2550   ls->print_cr("Checking per-thread lists:");
2551 
2552   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2553     // Check om_in_use_list and om_in_use_count:
2554     chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt);
2555 
2556     // Check om_free_list and om_free_count:
2557     chk_per_thread_free_list_and_count(jt, ls, &error_cnt);
2558   }
2559 
2560   if (error_cnt == 0) {
2561     ls->print_cr("No errors found in monitor list checks.");
2562   } else {
2563     log_error(monitorinflation)("found monitor list errors: error_cnt=%d", error_cnt);
2564   }
2565 
2566   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
2567       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
2568     // When exiting this log output is at the Info level. When called
2569     // at a safepoint, this log output is at the Trace level since
2570     // there can be a lot of it.
2571     log_in_use_monitor_details(ls, on_exit);
2572   }
2573 
2574   ls->flush();
2575 
2576   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
2577 }
2578 
2579 // Check a free monitor entry; log any errors.
2580 void ObjectSynchronizer::chk_free_entry(JavaThread* jt, ObjectMonitor* n,
2581                                         outputStream * out, int *error_cnt_p) {
2582   stringStream ss;
2583   if (n->is_busy()) {
2584     if (jt != NULL) {
2585       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2586                     ": free per-thread monitor must not be busy: %s", p2i(jt),
2587                     p2i(n), n->is_busy_to_string(&ss));
2588     } else {
2589       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2590                     "must not be busy: %s", p2i(n), n->is_busy_to_string(&ss));
2591     }


2607   }
2608   if (n->object() != NULL) {
2609     if (jt != NULL) {
2610       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2611                     ": free per-thread monitor must have NULL _object "
2612                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
2613                     p2i(n->object()));
2614     } else {
2615       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2616                     "must have NULL _object field: _object=" INTPTR_FORMAT,
2617                     p2i(n), p2i(n->object()));
2618     }
2619     *error_cnt_p = *error_cnt_p + 1;
2620   }
2621 }
2622 
2623 // Check the global free list and count; log the results of the checks.
2624 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
2625                                                         int *error_cnt_p) {
2626   int chk_om_free_count = 0;
2627   for (ObjectMonitor* n = g_free_list; n != NULL; n = n->_next_om) {
2628     chk_free_entry(NULL /* jt */, n, out, error_cnt_p);
2629     chk_om_free_count++;
2630   }
2631   if (g_om_free_count == chk_om_free_count) {
2632     out->print_cr("g_om_free_count=%d equals chk_om_free_count=%d",
2633                   g_om_free_count, chk_om_free_count);

2634   } else {
2635     out->print_cr("ERROR: g_om_free_count=%d is not equal to "
2636                   "chk_om_free_count=%d", g_om_free_count,





2637                   chk_om_free_count);
2638     *error_cnt_p = *error_cnt_p + 1;
2639   }
2640 }
2641 
2642 // Check the global in-use list and count; log the results of the checks.
2643 void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out,
2644                                                           int *error_cnt_p) {
2645   int chk_om_in_use_count = 0;
2646   for (ObjectMonitor* n = g_om_in_use_list; n != NULL; n = n->_next_om) {
2647     chk_in_use_entry(NULL /* jt */, n, out, error_cnt_p);
2648     chk_om_in_use_count++;
2649   }
2650   if (g_om_in_use_count == chk_om_in_use_count) {
2651     out->print_cr("g_om_in_use_count=%d equals chk_om_in_use_count=%d", g_om_in_use_count,

2652                   chk_om_in_use_count);
2653   } else {
2654     out->print_cr("ERROR: g_om_in_use_count=%d is not equal to chk_om_in_use_count=%d",
2655                   g_om_in_use_count, chk_om_in_use_count);

2656     *error_cnt_p = *error_cnt_p + 1;
2657   }
2658 }
2659 
2660 // Check an in-use monitor entry; log any errors.
2661 void ObjectSynchronizer::chk_in_use_entry(JavaThread* jt, ObjectMonitor* n,
2662                                           outputStream * out, int *error_cnt_p) {
2663   if (n->header().value() == 0) {
2664     if (jt != NULL) {
2665       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2666                     ": in-use per-thread monitor must have non-NULL _header "
2667                     "field.", p2i(jt), p2i(n));
2668     } else {
2669       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
2670                     "must have non-NULL _header field.", p2i(n));
2671     }
2672     *error_cnt_p = *error_cnt_p + 1;
2673   }
2674   if (n->object() == NULL) {
2675     if (jt != NULL) {


2704       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2705                     ": in-use per-thread monitor's object does not refer "
2706                     "to the same monitor: obj=" INTPTR_FORMAT ", mark="
2707                     INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt),
2708                     p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
2709     } else {
2710       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2711                     "monitor's object does not refer to the same monitor: obj="
2712                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
2713                     INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
2714     }
2715     *error_cnt_p = *error_cnt_p + 1;
2716   }
2717 }
2718 
2719 // Check the thread's free list and count; log the results of the checks.
2720 void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt,
2721                                                             outputStream * out,
2722                                                             int *error_cnt_p) {
2723   int chk_om_free_count = 0;
2724   for (ObjectMonitor* n = jt->om_free_list; n != NULL; n = n->_next_om) {
2725     chk_free_entry(jt, n, out, error_cnt_p);
2726     chk_om_free_count++;
2727   }
2728   if (jt->om_free_count == chk_om_free_count) {
2729     out->print_cr("jt=" INTPTR_FORMAT ": om_free_count=%d equals "
2730                   "chk_om_free_count=%d", p2i(jt), jt->om_free_count, chk_om_free_count);


2731   } else {
2732     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_free_count=%d is not "
2733                   "equal to chk_om_free_count=%d", p2i(jt), jt->om_free_count,

2734                   chk_om_free_count);
2735     *error_cnt_p = *error_cnt_p + 1;
2736   }
2737 }
2738 
2739 // Check the thread's in-use list and count; log the results of the checks.
2740 void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt,
2741                                                               outputStream * out,
2742                                                               int *error_cnt_p) {
2743   int chk_om_in_use_count = 0;
2744   for (ObjectMonitor* n = jt->om_in_use_list; n != NULL; n = n->_next_om) {
2745     chk_in_use_entry(jt, n, out, error_cnt_p);
2746     chk_om_in_use_count++;
2747   }
2748   if (jt->om_in_use_count == chk_om_in_use_count) {
2749     out->print_cr("jt=" INTPTR_FORMAT ": om_in_use_count=%d equals "
2750                   "chk_om_in_use_count=%d", p2i(jt), jt->om_in_use_count,

2751                   chk_om_in_use_count);
2752   } else {
2753     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_in_use_count=%d is not "
2754                   "equal to chk_om_in_use_count=%d", p2i(jt), jt->om_in_use_count,

2755                   chk_om_in_use_count);
2756     *error_cnt_p = *error_cnt_p + 1;
2757   }
2758 }
2759 
2760 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
2761 // flags indicate why the entry is in-use, 'object' and 'object type'
2762 // indicate the associated object and its type.
2763 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out,
2764                                                     bool on_exit) {
2765   if (!on_exit) {
2766     // Not at VM exit so grab the global list lock.
2767     Thread::muxAcquire(&gListLock, "log_in_use_monitor_details");
2768   }
2769 
2770   stringStream ss;
2771   if (g_om_in_use_count > 0) {
2772     out->print_cr("In-use global monitor info:");
2773     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2774     out->print_cr("%18s  %s  %7s  %18s  %18s",
2775                   "monitor", "BHL", "ref_cnt", "object", "object type");
2776     out->print_cr("==================  ===  =======  ==================  ==================");
2777     for (ObjectMonitor* n = g_om_in_use_list; n != NULL; n = n->_next_om) {
2778       const oop obj = (oop) n->object();
2779       const markWord mark = n->header();
2780       ResourceMark rm;
2781       out->print(INTPTR_FORMAT "  %d%d%d  %7d  " INTPTR_FORMAT "  %s",
2782                  p2i(n), n->is_busy() != 0, mark.hash() != 0,
2783                  n->owner() != NULL, (int)n->ref_count(), p2i(obj),
2784                  obj->klass()->external_name());
2785       if (n->is_busy() != 0) {
2786         out->print(" (%s)", n->is_busy_to_string(&ss));
2787         ss.reset();
2788       }
2789       out->cr();
2790     }
2791   }
2792 
2793   if (!on_exit) {
2794     Thread::muxRelease(&gListLock);
2795   }
2796 
2797   out->print_cr("In-use per-thread monitor info:");
2798   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2799   out->print_cr("%18s  %18s  %s  %7s  %18s  %18s",
2800                 "jt", "monitor", "BHL", "ref_cnt", "object", "object type");
2801   out->print_cr("==================  ==================  ===  =======  ==================  ==================");
2802   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2803     for (ObjectMonitor* n = jt->om_in_use_list; n != NULL; n = n->_next_om) {
2804       const oop obj = (oop) n->object();
2805       const markWord mark = n->header();
2806       ResourceMark rm;
2807       out->print(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  %7d  "
2808                  INTPTR_FORMAT "  %s", p2i(jt), p2i(n), n->is_busy() != 0,
2809                  mark.hash() != 0, n->owner() != NULL, (int)n->ref_count(),
2810                  p2i(obj), obj->klass()->external_name());
2811       if (n->is_busy() != 0) {
2812         out->print(" (%s)", n->is_busy_to_string(&ss));
2813         ss.reset();
2814       }
2815       out->cr();
2816     }
2817   }
2818 
2819   out->flush();
2820 }
2821 
2822 // Log counts for the global and per-thread monitor lists and return
2823 // the population count.
2824 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
2825   int pop_count = 0;
2826   out->print_cr("%18s  %10s  %10s  %10s",
2827                 "Global Lists:", "InUse", "Free", "Total");
2828   out->print_cr("==================  ==========  ==========  ==========");
2829   out->print_cr("%18s  %10d  %10d  %10d", "",
2830                 g_om_in_use_count, g_om_free_count, g_om_population);
2831   pop_count += g_om_in_use_count + g_om_free_count;



2832 
2833   out->print_cr("%18s  %10s  %10s  %10s",
2834                 "Per-Thread Lists:", "InUse", "Free", "Provision");
2835   out->print_cr("==================  ==========  ==========  ==========");
2836 
2837   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2838     out->print_cr(INTPTR_FORMAT "  %10d  %10d  %10d", p2i(jt),
2839                   jt->om_in_use_count, jt->om_free_count, jt->om_free_provision);
2840     pop_count += jt->om_in_use_count + jt->om_free_count;



2841   }
2842   return pop_count;
2843 }
2844 
2845 #ifndef PRODUCT
2846 
2847 // Check if monitor belongs to the monitor cache
2848 // The list is grow-only so it's *relatively* safe to traverse
2849 // the list of extant blocks without taking a lock.
2850 
2851 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
2852   PaddedObjectMonitor* block = OrderAccess::load_acquire(&g_block_list);
2853   while (block != NULL) {
2854     assert(block->object() == CHAINMARKER, "must be a block header");
2855     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
2856       address mon = (address)monitor;
2857       address blk = (address)block;
2858       size_t diff = mon - blk;
2859       assert((diff % sizeof(PaddedObjectMonitor)) == 0, "must be aligned");
2860       return 1;
2861     }
2862     block = (PaddedObjectMonitor*)block->_next_om;

2863   }
2864   return 0;
2865 }
2866 
2867 #endif


 101   }
 102 
 103 #else //  ndef DTRACE_ENABLED
 104 
 105 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 106 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 107 
 108 #endif // ndef DTRACE_ENABLED
 109 
 110 // This exists only as a workaround of dtrace bug 6254741
 111 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 112   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 113   return 0;
 114 }
 115 
 116 #define NINFLATIONLOCKS 256
 117 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 118 
 119 // global list of blocks of monitors
 120 PaddedObjectMonitor* volatile ObjectSynchronizer::g_block_list = NULL;
 121 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false;
 122 bool volatile ObjectSynchronizer::_is_special_deflation_requested = false;
 123 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0;
 124 
 125 // Global ObjectMonitor free list. Newly allocated and deflated
 126 // ObjectMonitors are prepended here.
 127 static ObjectMonitor* volatile g_free_list = NULL;
 128 // Global ObjectMonitor in-use list. When a JavaThread is exiting,
 129 // ObjectMonitors on its per-thread in-use list are prepended here.
 130 static ObjectMonitor* volatile g_om_in_use_list = NULL;




 131 

 132 static volatile int g_om_free_count = 0;    // # on g_free_list
 133 static volatile int g_om_in_use_count = 0;  // # on g_om_in_use_list
 134 static volatile int g_om_population = 0;    // # Extant -- in circulation
 135 
 136 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 137 
 138 
 139 // =====================> List Management functions
 140 
 141 // Return true if the ObjectMonitor's next field is marked.
 142 // Otherwise returns false.
 143 static bool is_next_marked(ObjectMonitor* om) {
 144   return ((intptr_t)OrderAccess::load_acquire(&om->_next_om) & 0x1) != 0;
 145 }
 146 
 147 // Mark an ObjectMonitor* and return it. Note: the om parameter
 148 // may or may not have been marked originally.
 149 static ObjectMonitor* mark_om_ptr(ObjectMonitor* om) {
 150   return (ObjectMonitor*)((intptr_t)om | 0x1);
 151 }
 152 
 153 // Mark the next field in an ObjectMonitor. If marking was successful,
 154 // then the unmarked next field is returned via parameter and true is
 155 // returned. Otherwise false is returned.
 156 static bool mark_next(ObjectMonitor* om, ObjectMonitor** next_p) {
 157   // Get current next field without any marking value.
 158   ObjectMonitor* next = (ObjectMonitor*)
 159       ((intptr_t)OrderAccess::load_acquire(&om->_next_om) & ~0x1);
 160   if (Atomic::cmpxchg(mark_om_ptr(next), &om->_next_om, next) != next) {
 161     return false;  // Could not mark the next field or it was already marked.
 162   }
 163   *next_p = next;
 164   return true;
 165 }
 166 
 167 // Loop until we mark the next field in an ObjectMonitor. The unmarked
 168 // next field is returned.
 169 static ObjectMonitor* mark_next_loop(ObjectMonitor* om) {
 170   ObjectMonitor* next;
 171   while (true) {
 172     if (mark_next(om, &next)) {
 173       // Marked om's next field so return the unmarked value.
 174       return next;
 175     }
 176   }
 177 }
 178 
 179 // Set the next field in an ObjectMonitor to the specified value.
 180 // The caller of set_next() must be the same thread that marked the
 181 // ObjectMonitor.
 182 static void set_next(ObjectMonitor* om, ObjectMonitor* value) {
 183   OrderAccess::release_store(&om->_next_om, value);
 184 }
 185 
 186 // Mark the next field in the list head ObjectMonitor. If marking was
 187 // successful, then the mid and the unmarked next field are returned
 188 // via parameter and true is returned. Otherwise false is returned.
 189 static bool mark_list_head(ObjectMonitor* volatile * list_p,
 190                            ObjectMonitor** mid_p, ObjectMonitor** next_p) {
 191   while (true) {
 192     ObjectMonitor* mid = OrderAccess::load_acquire(list_p);
 193     if (mid == NULL) {
 194       return false;  // The list is empty so nothing to mark.
 195     }
 196     if (mark_next(mid, next_p)) {
 197       if (OrderAccess::load_acquire(list_p) != mid) {
 198         // The list head changed so we have to retry.
 199         set_next(mid, *next_p);  // unmark mid
 200         continue;
 201       }
 202       // We marked next field to guard against races.
 203       *mid_p = mid;
 204       return true;
 205     }
 206   }
 207 }
 208 
 209 // Return the unmarked next field in an ObjectMonitor. Note: the next
 210 // field may or may not have been marked originally.
 211 static ObjectMonitor* unmarked_next(ObjectMonitor* om) {
 212   return (ObjectMonitor*)((intptr_t)OrderAccess::load_acquire(&om->_next_om) & ~0x1);
 213 }
 214 
 215 #if 0
 216 // XXX - this is unused
 217 // Unmark the next field in an ObjectMonitor. Requires that the next
 218 // field be marked.
 219 static void unmark_next(ObjectMonitor* om) {
 220   ADIM_guarantee(is_next_marked(om), "next field must be marked: next=" INTPTR_FORMAT, p2i(om->_next_om));
 221 
 222   ObjectMonitor* next = unmarked_next(om);
 223   set_next(om, next);
 224 }
 225 #endif
 226 
 227 volatile int visit_counter = 42;
 228 static void chk_for_list_loop(ObjectMonitor* list, int count) {
 229   if (!CheckMonitorLists) {
 230     return;
 231   }
 232   int l_visit_counter = Atomic::add(1, &visit_counter);
 233   int l_count = 0;
 234   ObjectMonitor* prev = NULL;
 235   for (ObjectMonitor* mid = list; mid != NULL; mid = unmarked_next(mid)) {
 236     if (mid->visit_marker == l_visit_counter) {
 237       log_error(monitorinflation)("ERROR: prev=" INTPTR_FORMAT ", l_count=%d"
 238                                   " refers to an ObjectMonitor that has"
 239                                   " already been visited: mid=" INTPTR_FORMAT,
 240                                   p2i(prev), l_count, p2i(mid));
 241       fatal("list=" INTPTR_FORMAT " of %d items has a loop.", p2i(list), count);
 242     }
 243     mid->visit_marker = l_visit_counter;
 244     prev = mid;
 245     if (++l_count > count + 1024 * 1024) {
 246       fatal("list=" INTPTR_FORMAT " of %d items may have a loop; l_count=%d",
 247             p2i(list), count, l_count);
 248     }
 249   }
 250 }
 251 
 252 static void chk_om_not_on_list(ObjectMonitor* om, ObjectMonitor* list, int count) {
 253   if (!CheckMonitorLists) {
 254     return;
 255   }
 256   guarantee(list != om, "ERROR: om=" INTPTR_FORMAT " must not be head of the "
 257             "list=" INTPTR_FORMAT ", count=%d", p2i(om), p2i(list), count);
 258   int l_count = 0;
 259   for (ObjectMonitor* mid = list; mid != NULL; mid = unmarked_next(mid)) {
 260     if (unmarked_next(mid) == om) {
 261       log_error(monitorinflation)("ERROR: mid=" INTPTR_FORMAT ", l_count=%d"
 262                                   " next_om refers to om=" INTPTR_FORMAT,
 263                                   p2i(mid), l_count, p2i(om));
 264        fatal("list=" INTPTR_FORMAT " of %d items has bad next_om value.",
 265              p2i(list), count);
 266     }
 267     if (++l_count > count + 1024 * 1024) {
 268       fatal("list=" INTPTR_FORMAT " of %d items may have a loop; l_count=%d",
 269             p2i(list), count, l_count);
 270     }
 271   }
 272 }
 273 
 274 static void chk_om_elems_not_on_list(ObjectMonitor* elems, int elems_count,
 275                                      ObjectMonitor* list, int list_count) {
 276   if (!CheckMonitorLists) {
 277     return;
 278   }
 279   chk_for_list_loop(elems, elems_count);
 280   for (ObjectMonitor* mid = elems; mid != NULL; mid = unmarked_next(mid)) {
 281     chk_om_not_on_list(mid, list, list_count);
 282   }
 283 }
 284 
 285 // Prepend a list of ObjectMonitors to the specified *list_p. 'tail' is
 286 // the last ObjectMonitor in the list and there are 'count' on the list.
 287 // Also updates the specified *count_p.
 288 static void prepend_list_to_common(ObjectMonitor* list, ObjectMonitor* tail,
 289                                    int count, ObjectMonitor* volatile* list_p,
 290                                    volatile int* count_p) {
 291   chk_for_list_loop(OrderAccess::load_acquire(list_p),
 292                     OrderAccess::load_acquire(count_p));
 293   chk_om_elems_not_on_list(list, count, OrderAccess::load_acquire(list_p),
 294                            OrderAccess::load_acquire(count_p));
 295   while (true) {
 296     ObjectMonitor* cur = OrderAccess::load_acquire(list_p);
 297     // Prepend list to *list_p.
 298     ObjectMonitor* next = NULL;
 299     if (!mark_next(tail, &next)) {
 300       continue;  // failed to mark next field so try it all again
 301     }
 302     set_next(tail, cur);  // tail now points to cur (and unmarks tail)
 303     if (cur == NULL) {
 304       // No potential race with takers or other prependers since
 305       // *list_p is empty.
 306       if (Atomic::cmpxchg(list, list_p, cur) == cur) {
 307         // Successfully switched *list_p to the list value.
 308         Atomic::add(count, count_p);
 309         break;
 310       }
 311       // Implied else: try it all again
 312     } else {
 313       // Try to mark next field to guard against races:
 314       if (!mark_next(cur, &next)) {
 315         continue;  // failed to mark next field so try it all again
 316       }
 317       // We marked the next field so try to switch *list_p to the list value.
 318       if (Atomic::cmpxchg(list, list_p, cur) != cur) {
 319         // The list head has changed so unmark the next field and try again:
 320         set_next(cur, next);
 321         continue;
 322       }
 323       Atomic::add(count, count_p);
 324       set_next(cur, next);  // unmark next field
 325       break;
 326     }
 327   }
 328 }
 329 
 330 // Prepend a newly allocated block of ObjectMonitors to g_block_list and
 331 // g_free_list. Also updates g_om_population and g_om_free_count.
 332 void ObjectSynchronizer::prepend_block_to_lists(PaddedObjectMonitor* new_blk) {
 333   // First we handle g_block_list:
 334   while (true) {
 335     PaddedObjectMonitor* cur = OrderAccess::load_acquire(&g_block_list);
 336     // Prepend new_blk to g_block_list. The first ObjectMonitor in
 337     // a block is reserved for use as linkage to the next block.
 338     OrderAccess::release_store(&new_blk[0]._next_om, cur);
 339     if (Atomic::cmpxchg(new_blk, &g_block_list, cur) == cur) {
 340       // Successfully switched g_block_list to the new_blk value.
 341       Atomic::add(_BLOCKSIZE - 1, &g_om_population);
 342       break;
 343     }
 344     // Implied else: try it all again
 345   }
 346 
 347   // Second we handle g_free_list:
 348   prepend_list_to_common(new_blk + 1, &new_blk[_BLOCKSIZE - 1], _BLOCKSIZE - 1,
 349                          &g_free_list, &g_om_free_count);
 350 }
 351 
 352 // Prepend a list of ObjectMonitors to g_free_list. 'tail' is the last
 353 // ObjectMonitor in the list and there are 'count' on the list. Also
 354 // updates g_om_free_count.
 355 static void prepend_list_to_g_free_list(ObjectMonitor* list,
 356                                         ObjectMonitor* tail, int count) {
 357   prepend_list_to_common(list, tail, count, &g_free_list, &g_om_free_count);
 358 }
 359 
 360 // Prepend a list of ObjectMonitors to g_om_in_use_list. 'tail' is the last
 361 // ObjectMonitor in the list and there are 'count' on the list. Also
 362 // updates g_om_in_use_list.
 363 static void prepend_list_to_g_om_in_use_list(ObjectMonitor* list,
 364                                              ObjectMonitor* tail, int count) {
 365   prepend_list_to_common(list, tail, count, &g_om_in_use_list, &g_om_in_use_count);
 366 }
 367 
 368 // Prepend an ObjectMonitor to the specified list. Also updates
 369 // the specified counter.
 370 static void prepend_to_common(ObjectMonitor* m, ObjectMonitor* volatile * list_p,
 371                               int volatile * count_p) {
 372   chk_for_list_loop(OrderAccess::load_acquire(list_p),
 373                     OrderAccess::load_acquire(count_p));
 374   chk_om_not_on_list(m, OrderAccess::load_acquire(list_p),
 375                      OrderAccess::load_acquire(count_p));
 376 
 377   while (true) {
 378     ObjectMonitor* cur = OrderAccess::load_acquire(list_p);
 379     // Prepend ObjectMonitor to *list_p.
 380     ObjectMonitor* next = NULL;
 381     if (!mark_next(m, &next)) {
 382       continue;  // failed to mark next field so try it all again
 383     }
 384     set_next(m, cur);  // m now points to cur (and unmarks m)
 385     if (cur == NULL) {
 386       // No potential race with other prependers since *list_p is empty.
 387       if (Atomic::cmpxchg(m, list_p, cur) == cur) {
 388         // Successfully switched *list_p to 'm'.
 389         Atomic::inc(count_p);
 390         break;
 391       }
 392       // Implied else: try it all again
 393     } else {
 394       // Try to mark next field to guard against races:
 395       if (!mark_next(cur, &next)) {
 396         continue;  // failed to mark next field so try it all again
 397       }
 398       // We marked the next field so try to switch *list_p to 'm'.
 399       if (Atomic::cmpxchg(m, list_p, cur) != cur) {
 400         // The list head has changed so unmark the next field and try again:
 401         set_next(cur, next);
 402         continue;
 403       }
 404       Atomic::inc(count_p);
 405       set_next(cur, next);  // unmark next field
 406       break;
 407     }
 408   }
 409 }
 410 
 411 // Prepend an ObjectMonitor to a per-thread om_free_list.
 412 // Also updates the per-thread om_free_count.
 413 static void prepend_to_om_free_list(Thread* self, ObjectMonitor* m) {
 414   prepend_to_common(m, &self->om_free_list, &self->om_free_count);
 415 }
 416 
 417 // Prepend an ObjectMonitor to a per-thread om_in_use_list.
 418 // Also updates the per-thread om_in_use_count.
 419 static void prepend_to_om_in_use_list(Thread* self, ObjectMonitor* m) {
 420   prepend_to_common(m, &self->om_in_use_list, &self->om_in_use_count);
 421 }
 422 
 423 // Take an ObjectMonitor from the start of the specified list. Also
 424 // decrements the specified counter. Returns NULL if none are available.
 425 static ObjectMonitor* take_from_start_of_common(ObjectMonitor* volatile * list_p,
 426                                                 int volatile * count_p) {
 427   chk_for_list_loop(OrderAccess::load_acquire(list_p),
 428                     OrderAccess::load_acquire(count_p));
 429 
 430   ObjectMonitor* next = NULL;
 431   ObjectMonitor* take = NULL;
 432   // Mark the list head to guard against A-B-A race:
 433   if (!mark_list_head(list_p, &take, &next)) {
 434     return NULL;  // None are available.
 435   }
 436   // Switch marked list head to next (which unmarks the list head, but
 437   // leaves take marked):
 438   OrderAccess::release_store(list_p, next);
 439   Atomic::dec(count_p);
 440   // Unmark take, but leave the next value for any lagging list
 441   // walkers. It will get cleaned up when take is prepended to
 442   // the in-use list:
 443   set_next(take, next);
 444   return take;
 445 }
 446 
 447 // Take an ObjectMonitor from the start of the global free-list. Also
 448 // updates g_om_free_count. Returns NULL if none are available.
 449 static ObjectMonitor* take_from_start_of_g_free_list() {
 450   return take_from_start_of_common(&g_free_list, &g_om_free_count);
 451 }
 452 
 453 // Take an ObjectMonitor from the start of a per-thread free-list.
 454 // Also updates om_free_count. Returns NULL if none are available.
 455 static ObjectMonitor* take_from_start_of_om_free_list(Thread* self) {
 456   return take_from_start_of_common(&self->om_free_list, &self->om_free_count);
 457 }
 458 
 459 
 460 // =====================> Quick functions
 461 
 462 // The quick_* forms are special fast-path variants used to improve
 463 // performance.  In the simplest case, a "quick_*" implementation could
 464 // simply return false, in which case the caller will perform the necessary
 465 // state transitions and call the slow-path form.
 466 // The fast-path is designed to handle frequently arising cases in an efficient
 467 // manner and is just a degenerate "optimistic" variant of the slow-path.
 468 // returns true  -- to indicate the call was satisfied.
 469 // returns false -- to indicate the call needs the services of the slow-path.
 470 // A no-loitering ordinance is in effect for code in the quick_* family
 471 // operators: safepoints or indefinite blocking (blocking that might span a
 472 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 473 // entry.
 474 //
 475 // Consider: An interesting optimization is to have the JIT recognize the
 476 // following common idiom:
 477 //   synchronized (someobj) { .... ; notify(); }
 478 // That is, we find a notify() or notifyAll() call that immediately precedes
 479 // the monitorexit operation.  In that case the JIT could fuse the operations


 886 //
 887 // Performance concern:
 888 // OrderAccess::storestore() calls release() which at one time stored 0
 889 // into the global volatile OrderAccess::dummy variable. This store was
 890 // unnecessary for correctness. Many threads storing into a common location
 891 // causes considerable cache migration or "sloshing" on large SMP systems.
 892 // As such, I avoided using OrderAccess::storestore(). In some cases
 893 // OrderAccess::fence() -- which incurs local latency on the executing
 894 // processor -- is a better choice as it scales on SMP systems.
 895 //
 896 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 897 // a discussion of coherency costs. Note that all our current reference
 898 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 899 // x64, and SPARC.
 900 //
 901 // As a general policy we use "volatile" to control compiler-based reordering
 902 // and explicit fences (barriers) to control for architectural reordering
 903 // performed by the CPU(s) or platform.
 904 
 905 struct SharedGlobals {
 906   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 907   // These are highly shared mostly-read variables.
 908   // To avoid false-sharing they need to be the sole occupants of a cache line.
 909   volatile int stw_random;
 910   volatile int stw_cycle;
 911   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 912   // Hot RW variable -- Sequester to avoid false-sharing
 913   volatile int hc_sequence;
 914   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 915 };
 916 
 917 static SharedGlobals GVars;
 918 static int MonitorScavengeThreshold = 1000000;
 919 static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending
 920 
 921 static markWord read_stable_mark(oop obj) {
 922   markWord mark = obj->mark();
 923   if (!mark.is_being_inflated()) {
 924     return mark;       // normal fast-path return
 925   }
 926 
 927   int its = 0;
 928   for (;;) {
 929     markWord mark = obj->mark();
 930     if (!mark.is_being_inflated()) {
 931       return mark;    // normal fast-path return
 932     }
 933 
 934     // The object is being inflated by some other thread.


1302     // Cannot have assertion since this object may have been
1303     // locked by another thread when reaching here.
1304     // assert(mark.is_neutral(), "sanity check");
1305 
1306     return NULL;
1307   }
1308 }
1309 
1310 // Visitors ...
1311 
1312 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
1313   PaddedObjectMonitor* block = OrderAccess::load_acquire(&g_block_list);
1314   while (block != NULL) {
1315     assert(block->object() == CHAINMARKER, "must be a block header");
1316     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
1317       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
1318       if (mid->is_active()) {
1319         ObjectMonitorHandle omh(mid);
1320 
1321         if (mid->object() == NULL ||
1322             (AsyncDeflateIdleMonitors && mid->ref_count() < 0)) {
1323           // Only process with closure if the object is set.
1324           // For async deflation, race here if monitor is not owned!
1325           // The above ref_count bump (in ObjectMonitorHandle ctr)
1326           // will cause subsequent async deflation to skip it.
1327           // However, previous or concurrent async deflation is a race
1328           // so skip this ObjectMonitor if it is being async deflated.
1329           continue;
1330         }
1331         closure->do_monitor(mid);
1332       }
1333     }
1334     // unmarked_next() is not needed with g_block_list (no next field marking).
1335     block = (PaddedObjectMonitor*)OrderAccess::load_acquire(&block->_next_om);
1336   }
1337 }
1338 
1339 static bool monitors_used_above_threshold() {
1340   if (OrderAccess::load_acquire(&g_om_population) == 0) {
1341     return false;
1342   }
1343   if (MonitorUsedDeflationThreshold > 0) {
1344     int monitors_used = OrderAccess::load_acquire(&g_om_population) -
1345                         OrderAccess::load_acquire(&g_om_free_count);
1346     int monitor_usage = (monitors_used * 100LL) /
1347                         OrderAccess::load_acquire(&g_om_population);
1348     return monitor_usage > MonitorUsedDeflationThreshold;
1349   }
1350   return false;
1351 }
1352 
1353 // Returns true if MonitorBound is set (> 0) and if the specified
1354 // cnt is > MonitorBound. Otherwise returns false.
1355 static bool is_MonitorBound_exceeded(const int cnt) {
1356   const int mx = MonitorBound;
1357   return mx > 0 && cnt > mx;
1358 }
1359 
1360 bool ObjectSynchronizer::is_async_deflation_needed() {
1361   if (!AsyncDeflateIdleMonitors) {
1362     return false;
1363   }
1364   if (is_async_deflation_requested()) {
1365     // Async deflation request.
1366     return true;
1367   }
1368   if (AsyncDeflationInterval > 0 &&
1369       time_since_last_async_deflation_ms() > AsyncDeflationInterval &&
1370       monitors_used_above_threshold()) {
1371     // It's been longer than our specified deflate interval and there
1372     // are too many monitors in use. We don't deflate more frequently
1373     // than AsyncDeflationInterval (unless is_async_deflation_requested)
1374     // in order to not swamp the ServiceThread.
1375     _last_async_deflation_time_ns = os::javaTimeNanos();
1376     return true;
1377   }
1378   if (is_MonitorBound_exceeded(OrderAccess::load_acquire(&g_om_population) -
1379                                OrderAccess::load_acquire(&g_om_free_count))) {
1380     // Not enough ObjectMonitors on the global free list.
1381     return true;
1382   }
1383   return false;
1384 }
1385 
1386 bool ObjectSynchronizer::is_safepoint_deflation_needed() {
1387   if (!AsyncDeflateIdleMonitors) {
1388     if (monitors_used_above_threshold()) {
1389       // Too many monitors in use.
1390       return true;
1391     }
1392     return false;
1393   }
1394   if (is_special_deflation_requested()) {
1395     // For AsyncDeflateIdleMonitors only do a safepoint deflation
1396     // if there is a special deflation request.
1397     return true;
1398   }
1399   return false;
1400 }
1401 
1402 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1403   return (os::javaTimeNanos() - _last_async_deflation_time_ns) / (NANOUNITS / MILLIUNITS);
1404 }
1405 
1406 void ObjectSynchronizer::oops_do(OopClosure* f) {
1407   // We only scan the global used list here (for moribund threads), and
1408   // the thread-local monitors in Thread::oops_do().
1409   global_used_oops_do(f);
1410 }
1411 
1412 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
1413   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1414   list_oops_do(OrderAccess::load_acquire(&g_om_in_use_list), OrderAccess::load_acquire(&g_om_in_use_count), f);
1415 }
1416 
1417 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
1418   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1419   list_oops_do(OrderAccess::load_acquire(&thread->om_in_use_list), OrderAccess::load_acquire(&thread->om_in_use_count), f);
1420 }
1421 
1422 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, int count, OopClosure* f) {
1423   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1424   chk_for_list_loop(list, count);
1425   // The oops_do() phase does not overlap with monitor deflation
1426   // so no need to update the ObjectMonitor's ref_count for this
1427   // ObjectMonitor* use.
1428   for (ObjectMonitor* mid = list; mid != NULL; mid = unmarked_next(mid)) {
1429     if (mid->object() != NULL) {
1430       f->do_oop((oop*)mid->object_addr());
1431     }
1432   }
1433 }
1434 
1435 
1436 // -----------------------------------------------------------------------------
1437 // ObjectMonitor Lifecycle
1438 // -----------------------
1439 // Inflation unlinks monitors from the global g_free_list and
1440 // associates them with objects.  Deflation -- which occurs at
1441 // STW-time -- disassociates idle monitors from objects.  Such
1442 // scavenged monitors are returned to the g_free_list.
1443 //



1444 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
1445 //
1446 // Lifecycle:
1447 // --   unassigned and on the global free list
1448 // --   unassigned and on a thread's private om_free_list
1449 // --   assigned to an object.  The object is inflated and the mark refers
1450 //      to the objectmonitor.
1451 
1452 
1453 // Constraining monitor pool growth via MonitorBound ...
1454 //
1455 // If MonitorBound is not set (<= 0), MonitorBound checks are disabled.
1456 //
1457 // When safepoint deflation is being used (!AsyncDeflateIdleMonitors):
1458 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
1459 // the rate of scavenging is driven primarily by GC.  As such,  we can find
1460 // an inordinate number of monitors in circulation.
1461 // To avoid that scenario we can artificially induce a STW safepoint
1462 // if the pool appears to be growing past some reasonable bound.
1463 // Generally we favor time in space-time tradeoffs, but as there's no


1466 // we could just loop. In addition, if MonitorBound is set to a low value
1467 // we'll incur more safepoints, which are harmful to performance.
1468 // See also: GuaranteedSafepointInterval
1469 //
1470 // The current implementation uses asynchronous VM operations.
1471 //
1472 // When safepoint deflation is being used and MonitorBound is set, the
1473 // boundry applies to
1474 //     (g_om_population - g_om_free_count)
1475 // i.e., if there are not enough ObjectMonitors on the global free list,
1476 // then a safepoint deflation is induced. Picking a good MonitorBound value
1477 // is non-trivial.
1478 //
1479 // When async deflation is being used:
1480 // The monitor pool is still grow-only. Async deflation is requested
1481 // by a safepoint's cleanup phase or by the ServiceThread at periodic
1482 // intervals when is_async_deflation_needed() returns true. In
1483 // addition to other policies that are checked, if there are not
1484 // enough ObjectMonitors on the global free list, then
1485 // is_async_deflation_needed() will return true. The ServiceThread
1486 // calls deflate_global_idle_monitors_using_JT() and also calls
1487 // deflate_per_thread_idle_monitors_using_JT() as needed.
1488 
1489 static void InduceScavenge(Thread* self, const char * Whence) {
1490   assert(!AsyncDeflateIdleMonitors, "is not used by async deflation");
1491 
1492   // Induce STW safepoint to trim monitors
1493   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1494   // More precisely, trigger an asynchronous STW safepoint as the number
1495   // of active monitors passes the specified threshold.
1496   // TODO: assert thread state is reasonable
1497 
1498   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
1499     // Induce a 'null' safepoint to scavenge monitors
1500     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
1501     // to the VMthread and have a lifespan longer than that of this activation record.
1502     // The VMThread will delete the op when completed.
1503     VMThread::execute(new VM_ScavengeMonitors());
1504   }
1505 }
1506 
1507 ObjectMonitor* ObjectSynchronizer::om_alloc(Thread* self,
1508                                            const InflateCause cause) {
1509   // A large MAXPRIVATE value reduces both list lock contention
1510   // and list coherency traffic, but also tends to increase the
1511   // number of ObjectMonitors in circulation as well as the STW
1512   // scavenge costs.  As usual, we lean toward time in space-time
1513   // tradeoffs.
1514   const int MAXPRIVATE = 1024;
1515 
















1516   stringStream ss;
1517   for (;;) {
1518     ObjectMonitor* m;
1519 
1520     // 1: try to allocate from the thread's local om_free_list.
1521     // Threads will attempt to allocate first from their local list, then
1522     // from the global list, and only after those attempts fail will the
1523     // thread attempt to instantiate new monitors. Thread-local free lists
1524     // improve allocation latency, as well as reducing coherency traffic
1525     // on the shared global list.
1526     m = take_from_start_of_om_free_list(self);
1527     if (m != NULL) {


1528       guarantee(m->object() == NULL, "invariant");
1529       m->set_allocation_state(ObjectMonitor::New);
1530       prepend_to_om_in_use_list(self, m);


1531       return m;
1532     }
1533 
1534     // 2: try to allocate from the global g_free_list
1535     // CONSIDER: use muxTry() instead of muxAcquire().
1536     // If the muxTry() fails then drop immediately into case 3.
1537     // If we're using thread-local free lists then try
1538     // to reprovision the caller's free list.
1539     if (OrderAccess::load_acquire(&g_free_list) != NULL) {
1540       // Reprovision the thread's om_free_list.
1541       // Use bulk transfers to reduce the allocation rate and heat
1542       // on various locks.
1543       for (int i = self->om_free_provision; --i >= 0;) {
1544         ObjectMonitor* take = take_from_start_of_g_free_list();
1545         if (take == NULL) {
1546           break;  // No more are available.
1547         }
1548         guarantee(take->object() == NULL, "invariant");
1549         if (AsyncDeflateIdleMonitors) {
1550           // We allowed 3 field values to linger during async deflation.
1551           // We clear header and restore ref_count here, but we leave
1552           // owner == DEFLATER_MARKER so the simple C2 ObjectMonitor
1553           // enter optimization can no longer race with async deflation
1554           // and reuse.
1555           take->set_header(markWord::zero());
1556           if (take->ref_count() < 0) {
1557             // Add back max_jint to restore the ref_count field to its
1558             // proper value.
1559             Atomic::add(max_jint, &take->_ref_count);
1560 
1561             assert(take->ref_count() >= 0, "must not be negative: ref_count=%d",
1562                    take->ref_count());
1563           }
1564         }
1565         take->Recycle();
1566         assert(take->is_free(), "invariant");
1567         om_release(self, take, false);
1568       }

1569       self->om_free_provision += 1 + (self->om_free_provision/2);
1570       if (self->om_free_provision > MAXPRIVATE) self->om_free_provision = MAXPRIVATE;
1571 
1572       if (!AsyncDeflateIdleMonitors &&
1573           is_MonitorBound_exceeded(OrderAccess::load_acquire(&g_om_population) -
1574                                    OrderAccess::load_acquire(&g_om_free_count))) {
1575         // Not enough ObjectMonitors on the global free list.
1576         // We can't safely induce a STW safepoint from om_alloc() as our thread
1577         // state may not be appropriate for such activities and callers may hold
1578         // naked oops, so instead we defer the action.
1579         InduceScavenge(self, "om_alloc");
1580       }
1581       continue;
1582     }
1583 
1584     // 3: allocate a block of new ObjectMonitors
1585     // Both the local and global free lists are empty -- resort to malloc().
1586     // In the current implementation ObjectMonitors are TSM - immortal.
1587     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1588     // each ObjectMonitor to start at the beginning of a cache line,
1589     // so we use align_up().
1590     // A better solution would be to use C++ placement-new.
1591     // BEWARE: As it stands currently, we don't run the ctors!
1592     assert(_BLOCKSIZE > 1, "invariant");
1593     size_t neededsize = sizeof(PaddedObjectMonitor) * _BLOCKSIZE;
1594     PaddedObjectMonitor* temp;
1595     size_t aligned_size = neededsize + (OM_CACHE_LINE_SIZE - 1);
1596     void* real_malloc_addr = (void*)NEW_C_HEAP_ARRAY(char, aligned_size,
1597                                                      mtInternal);
1598     temp = (PaddedObjectMonitor*)align_up(real_malloc_addr, OM_CACHE_LINE_SIZE);
1599 
1600     // NOTE: (almost) no way to recover if allocation failed.
1601     // We might be able to induce a STW safepoint and scavenge enough
1602     // ObjectMonitors to permit progress.
1603     if (temp == NULL) {
1604       vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR,
1605                             "Allocate ObjectMonitors");
1606     }
1607     (void)memset((void *) temp, 0, neededsize);
1608 
1609     // Format the block.
1610     // initialize the linked list, each monitor points to its next
1611     // forming the single linked free list, the very first monitor
1612     // will points to next block, which forms the block list.
1613     // The trick of using the 1st element in the block as g_block_list
1614     // linkage should be reconsidered.  A better implementation would
1615     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1616 
1617     for (int i = 1; i < _BLOCKSIZE; i++) {
1618       OrderAccess::release_store(&temp[i]._next_om, (ObjectMonitor*)&temp[i+1]);
1619       assert(temp[i].is_free(), "invariant");
1620     }
1621 
1622     // terminate the last monitor as the end of list
1623     OrderAccess::release_store(&temp[_BLOCKSIZE - 1]._next_om, (ObjectMonitor*)NULL);
1624 
1625     // Element [0] is reserved for global list linkage
1626     temp[0].set_object(CHAINMARKER);
1627 
1628     // Consider carving out this thread's current request from the
1629     // block in hand.  This avoids some lock traffic and redundant
1630     // list activity.
1631 
1632     prepend_block_to_lists(temp);

















1633   }
1634 }
1635 
1636 // Place "m" on the caller's private per-thread om_free_list.
1637 // In practice there's no need to clamp or limit the number of
1638 // monitors on a thread's om_free_list as the only non-allocation time
1639 // we'll call om_release() is to return a monitor to the free list after
1640 // a CAS attempt failed. This doesn't allow unbounded #s of monitors to
1641 // accumulate on a thread's free list.
1642 //
1643 // Key constraint: all ObjectMonitors on a thread's free list and the global
1644 // free list must have their object field set to null. This prevents the
1645 // scavenger -- deflate_monitor_list() or deflate_monitor_list_using_JT()
1646 // -- from reclaiming them while we are trying to release them.
1647 
1648 void ObjectSynchronizer::om_release(Thread* self, ObjectMonitor* m,
1649                                     bool from_per_thread_alloc) {
1650   guarantee(m->header().value() == 0, "invariant");
1651   guarantee(m->object() == NULL, "invariant");
1652   stringStream ss;
1653   guarantee((m->is_busy() | m->_recursions) == 0, "freeing in-use monitor: "
1654             "%s, recursions=" INTPTR_FORMAT, m->is_busy_to_string(&ss),
1655             m->_recursions);
1656   m->set_allocation_state(ObjectMonitor::Free);
1657   // _next_om is used for both per-thread in-use and free lists so
1658   // we have to remove 'm' from the in-use list first (as needed).
1659   if (from_per_thread_alloc) {
1660     // Need to remove 'm' from om_in_use_list.
1661     // We use the more complicated mark-cur_mid_in_use-and-mid-as-we-go
1662     // protocol because async deflation can do list deletions in parallel.
1663     ObjectMonitor* cur_mid_in_use = NULL;
1664     ObjectMonitor* mid = NULL;
1665     ObjectMonitor* next = NULL;
1666     bool extracted = false;
1667 
1668     if (!mark_list_head(&self->om_in_use_list, &mid, &next)) {
1669       fatal("thread=" INTPTR_FORMAT " in-use list must not be empty.", p2i(self));
1670     }
1671     while (true) {
1672       if (m == mid) {
1673         // We found 'm' on the per-thread in-use list so try to extract it.
1674         // First try the list head:
1675         if (Atomic::cmpxchg(next, &self->om_in_use_list, mid) != mid) {
1676           // We could not switch the list head to next.
1677           ObjectMonitor* marked_mid = mark_om_ptr(mid);
1678           // Switch cur_mid_in_use's next field to next (which also
1679           // unmarks cur_mid_in_use):
1680           ADIM_guarantee(cur_mid_in_use != NULL, "must not be NULL");
1681           if (Atomic::cmpxchg(next, &cur_mid_in_use->_next_om, marked_mid)
1682               != marked_mid) {
1683             // We could not switch cur_mid_in_use's next field. This
1684             // should not be possible since it was marked so we:
1685             fatal("mid=" INTPTR_FORMAT " must be referred to by the list "
1686                   "head: &om_in_use_list=" INTPTR_FORMAT " or by "
1687                   "cur_mid_in_use's next field: cur_mid_in_use=" INTPTR_FORMAT
1688                   ", next_om=" INTPTR_FORMAT, p2i(mid),
1689                   p2i((ObjectMonitor**)&self->om_in_use_list),
1690                   p2i(cur_mid_in_use), p2i(cur_mid_in_use->_next_om));
1691           }
1692         }
1693         extracted = true;
1694         Atomic::dec(&self->om_in_use_count);
1695         // Unmark mid, but leave the next value for any lagging list
1696         // walkers. It will get cleaned up when mid is prepended to
1697         // the thread's free list:
1698         set_next(mid, next);
1699         break;
1700       }
1701       if (cur_mid_in_use != NULL) {
1702         set_next(cur_mid_in_use, mid);  // umark cur_mid_in_use
1703       }
1704       // The next cur_mid_in_use keeps mid's marked next field so
1705       // that it is stable for a possible next field change. It
1706       // cannot be deflated while it is marked.
1707       cur_mid_in_use = mid;
1708       mid = next;
1709       if (mid == NULL) {
1710         // Reached end of the list and didn't find m so:
1711         fatal("must find m=" INTPTR_FORMAT "on om_in_use_list=" INTPTR_FORMAT,
1712               p2i(m), p2i(self->om_in_use_list));
1713       }
1714       // Mark mid's next field so we can possibly extract it:
1715       next = mark_next_loop(mid);
1716     }

1717   }
1718 
1719   prepend_to_om_free_list(self, m);
1720   guarantee(m->is_free(), "invariant");


1721 }
1722 
1723 // Return ObjectMonitors on a moribund thread's free and in-use
1724 // lists to the appropriate global lists. The ObjectMonitors on the
1725 // per-thread in-use list may still be in use by other threads.
1726 //
1727 // We currently call om_flush() from Threads::remove() before the
1728 // thread has been excised from the thread list and is no longer a
1729 // mutator. This means that om_flush() cannot run concurrently with
1730 // a safepoint and interleave with deflate_idle_monitors(). In
1731 // particular, this ensures that the thread's in-use monitors are
1732 // scanned by a GC safepoint, either via Thread::oops_do() (before
1733 // om_flush() is called) or via ObjectSynchronizer::oops_do() (after
1734 // om_flush() is called).
1735 //
1736 // With AsyncDeflateIdleMonitors, deflate_global_idle_monitors_using_JT()
1737 // and deflate_per_thread_idle_monitors_using_JT() (in another thread) can
1738 // run at the same time as om_flush() so we have to follow a careful
1739 // protocol to prevent list corruption.
1740 
1741 void ObjectSynchronizer::om_flush(Thread* self) {
1742   // This function can race with an async deflater thread. Since
1743   // deflation has to process the per-thread in-use list before
1744   // prepending the deflated ObjectMonitors to the global free list,
1745   // we process the per-thread lists in the same order to prevent
1746   // ordering races.
1747   int in_use_count = 0;
1748   ObjectMonitor* in_use_list = NULL;
1749   ObjectMonitor* in_use_tail = NULL;
1750   ObjectMonitor* next = NULL;
1751 
1752   // An async deflation thread checks to see if the target thread
1753   // is exiting, but if it has made it past that check before we
1754   // started exiting, then it is racing to get to the in-use list.
1755   if (mark_list_head(&self->om_in_use_list, &in_use_list, &next)) {
1756     chk_for_list_loop(in_use_list, OrderAccess::load_acquire(&self->om_in_use_count));
1757     // At this point, we have marked the in-use list head so an
1758     // async deflation thread cannot come in after us. If an async
1759     // deflation thread is ahead of us, then we'll detect that and
1760     // wait for it to finish its work.
1761     //
1762     // The thread is going away, however the ObjectMonitors on the
1763     // om_in_use_list may still be in-use by other threads. Link
1764     // them to in_use_tail, which will be linked into the global
1765     // in-use list g_om_in_use_list below.
1766     //
1767     // Account for the in-use list head before the loop since it is
1768     // already marked (by this thread):
1769     in_use_tail = in_use_list;
1770     in_use_count++;
1771     for (ObjectMonitor* cur_om = unmarked_next(in_use_list); cur_om != NULL;) {
1772       if (is_next_marked(cur_om)) {
1773         // This next field is marked so there must be an async deflater
1774         // thread ahead of us so we'll give it a chance to finish.
1775         while (is_next_marked(cur_om)) {
1776           os::naked_short_sleep(1);
1777         }
1778         // Refetch the possibly changed next field and try again.
1779         cur_om = unmarked_next(in_use_tail);
1780         continue;
1781       }
1782       if (!cur_om->is_active()) {
1783         // cur_om was deflated and the allocation state was changed
1784         // to Free while it was marked. We happened to see it just
1785         // after it was unmarked (and added to the free list).
1786         // Refetch the possibly changed next field and try again.
1787         cur_om = unmarked_next(in_use_tail);
1788         continue;
1789       }
1790       in_use_tail = cur_om;
1791       in_use_count++;
1792       cur_om = unmarked_next(cur_om);
1793     }
1794     guarantee(in_use_tail != NULL, "invariant");
1795     int l_om_in_use_count = OrderAccess::load_acquire(&self->om_in_use_count);
1796     ADIM_guarantee(l_om_in_use_count == in_use_count, "in-use counts don't "
1797                    "match: l_om_in_use_count=%d, in_use_count=%d",
1798                    l_om_in_use_count, in_use_count);
1799     // Clear the in-use count before unmarking the in-use list head
1800     // to avoid races:
1801     OrderAccess::release_store(&self->om_in_use_count, 0);
1802     // Clear the in-use list head (which also unmarks it):
1803     OrderAccess::release_store(&self->om_in_use_list, (ObjectMonitor*)NULL);
1804     // Unmark the disconnected list head:
1805     set_next(in_use_list, next);
1806   }
1807 
1808   int free_count = 0;
1809   ObjectMonitor* free_list = OrderAccess::load_acquire(&self->om_free_list);
1810   ObjectMonitor* free_tail = NULL;
1811   if (free_list != NULL) {
1812     chk_for_list_loop(free_list, OrderAccess::load_acquire(&self->om_free_count));
1813     // The thread is going away. Set 'free_tail' to the last per-thread free
1814     // monitor which will be linked to g_free_list below.
1815     stringStream ss;
1816     for (ObjectMonitor* s = free_list; s != NULL; s = unmarked_next(s)) {
1817       free_count++;
1818       free_tail = s;
1819       guarantee(s->object() == NULL, "invariant");
1820       guarantee(!s->is_busy(), "must be !is_busy: %s", s->is_busy_to_string(&ss));
1821     }
1822     guarantee(free_tail != NULL, "invariant");
1823     int l_om_free_count = OrderAccess::load_acquire(&self->om_free_count);
1824     ADIM_guarantee(l_om_free_count == free_count, "free counts don't match: "
1825                    "l_om_free_count=%d, free_count=%d", l_om_free_count,
1826                    free_count);
1827     OrderAccess::release_store(&self->om_free_list, (ObjectMonitor*)NULL);
1828     OrderAccess::release_store(&self->om_free_count, 0);
1829   }
1830 





















1831   if (free_tail != NULL) {
1832     prepend_list_to_g_free_list(free_list, free_tail, free_count);


1833   }
1834 
1835   if (in_use_tail != NULL) {
1836     prepend_list_to_g_om_in_use_list(in_use_list, in_use_tail, in_use_count);


1837   }
1838 


1839   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1840   LogStreamHandle(Info, monitorinflation) lsh_info;
1841   LogStream* ls = NULL;
1842   if (log_is_enabled(Debug, monitorinflation)) {
1843     ls = &lsh_debug;
1844   } else if ((free_count != 0 || in_use_count != 0) &&
1845              log_is_enabled(Info, monitorinflation)) {
1846     ls = &lsh_info;
1847   }
1848   if (ls != NULL) {
1849     ls->print_cr("om_flush: jt=" INTPTR_FORMAT ", free_count=%d"
1850                  ", in_use_count=%d" ", om_free_provision=%d",
1851                  p2i(self), free_count, in_use_count, self->om_free_provision);
1852   }
1853 }
1854 
1855 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1856                                        const oop obj,
1857                                        ObjectSynchronizer::InflateCause cause) {
1858   assert(event != NULL, "invariant");


1935     //
1936     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1937     // to install INFLATING into the mark word.  We originally installed INFLATING,
1938     // allocated the objectmonitor, and then finally STed the address of the
1939     // objectmonitor into the mark.  This was correct, but artificially lengthened
1940     // the interval in which INFLATED appeared in the mark, thus increasing
1941     // the odds of inflation contention.
1942     //
1943     // We now use per-thread private objectmonitor free lists.
1944     // These list are reprovisioned from the global free list outside the
1945     // critical INFLATING...ST interval.  A thread can transfer
1946     // multiple objectmonitors en-mass from the global free list to its local free list.
1947     // This reduces coherency traffic and lock contention on the global free list.
1948     // Using such local free lists, it doesn't matter if the om_alloc() call appears
1949     // before or after the CAS(INFLATING) operation.
1950     // See the comments in om_alloc().
1951 
1952     LogStreamHandle(Trace, monitorinflation) lsh;
1953 
1954     if (mark.has_locker()) {
1955       ObjectMonitor* m = om_alloc(self, cause);











1956       // Optimistically prepare the objectmonitor - anticipate successful CAS
1957       // We do this before the CAS in order to minimize the length of time
1958       // in which INFLATING appears in the mark.
1959       m->Recycle();
1960       m->_Responsible  = NULL;
1961       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1962 
1963       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1964       if (cmp != mark) {
1965         om_release(self, m, true);
1966         continue;       // Interference -- just retry
1967       }
1968 
1969       // We've successfully installed INFLATING (0) into the mark-word.
1970       // This is the only case where 0 will appear in a mark-word.
1971       // Only the singular thread that successfully swings the mark-word
1972       // to 0 can perform (or more precisely, complete) inflation.
1973       //
1974       // Why do we CAS a 0 into the mark-word instead of just CASing the
1975       // mark-word from the stack-locked value directly to the new inflated state?


2033       }
2034       if (event.should_commit()) {
2035         post_monitor_inflate_event(&event, object, cause);
2036       }
2037       ADIM_guarantee(!m->is_free(), "inflated monitor to be returned cannot be free");
2038       return;
2039     }
2040 
2041     // CASE: neutral
2042     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
2043     // If we know we're inflating for entry it's better to inflate by swinging a
2044     // pre-locked ObjectMonitor pointer into the object header.   A successful
2045     // CAS inflates the object *and* confers ownership to the inflating thread.
2046     // In the current implementation we use a 2-step mechanism where we CAS()
2047     // to inflate and then CAS() again to try to swing _owner from NULL to self.
2048     // An inflateTry() method that we could call from fast_enter() and slow_enter()
2049     // would be useful.
2050 
2051     // Catch if the object's header is not neutral (not locked and
2052     // not marked is what we care about here).
2053     ADIM_guarantee(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT,mark.value());
2054     ObjectMonitor* m = om_alloc(self, cause);











2055     // prepare m for installation - set monitor to initial state
2056     m->Recycle();
2057     m->set_header(mark);
2058     // If we leave _owner == DEFLATER_MARKER here, then the simple C2
2059     // ObjectMonitor enter optimization can no longer race with async
2060     // deflation and reuse.
2061     m->set_object(object);
2062     m->_Responsible  = NULL;
2063     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
2064 
2065     omh_p->set_om_ptr(m);
2066     assert(m->is_new(), "freshly allocated monitor must be new");
2067     m->set_allocation_state(ObjectMonitor::Old);
2068 
2069     if (object->cas_set_mark(markWord::encode(m), mark) != mark) {
2070       guarantee(!m->owner_is_DEFLATER_MARKER() || m->ref_count() >= 0,
2071                 "race between deflation and om_release() with m=" INTPTR_FORMAT
2072                 ", _owner=" INTPTR_FORMAT ", ref_count=%d", p2i(m),
2073                 p2i(m->_owner), m->ref_count());
2074       m->set_header(markWord::zero());
2075       m->set_object(NULL);
2076       m->Recycle();
2077       omh_p->set_om_ptr(NULL);
2078       // om_release() will reset the allocation state
2079       om_release(self, m, true);
2080       m = NULL;
2081       continue;
2082       // interference - the markword changed - just retry.
2083       // The state-transitions are one-way, so there's no chance of
2084       // live-lock -- "Inflated" is an absorbing state.
2085     }
2086 
2087     // Hopefully the performance counters are allocated on distinct
2088     // cache lines to avoid false sharing on MP systems ...
2089     OM_PERFDATA_OP(Inflations, inc());
2090     if (log_is_enabled(Trace, monitorinflation)) {
2091       ResourceMark rm(self);
2092       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
2093                    INTPTR_FORMAT ", type='%s'", p2i(object),


2112 // These operations are called at all safepoints, immediately after mutators
2113 // are stopped, but before any objects have moved. Collectively they traverse
2114 // the population of in-use monitors, deflating where possible. The scavenged
2115 // monitors are returned to the global monitor free list.
2116 //
2117 // Beware that we scavenge at *every* stop-the-world point. Having a large
2118 // number of monitors in-use could negatively impact performance. We also want
2119 // to minimize the total # of monitors in circulation, as they incur a small
2120 // footprint penalty.
2121 //
2122 // Perversely, the heap size -- and thus the STW safepoint rate --
2123 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
2124 // which in turn can mean large(r) numbers of ObjectMonitors in circulation.
2125 // This is an unfortunate aspect of this design.
2126 //
2127 // For async deflation:
2128 // If a special deflation request is made, then the safepoint based
2129 // deflation mechanism is used. Otherwise, an async deflation request
2130 // is registered with the ServiceThread and it is notified.
2131 
2132 void ObjectSynchronizer::do_safepoint_work(DeflateMonitorCounters* counters) {
2133   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2134 
2135   // The per-thread in-use lists are handled in
2136   // ParallelSPCleanupThreadClosure::do_thread().
2137 
2138   if (!AsyncDeflateIdleMonitors || is_special_deflation_requested()) {
2139     // Use the older mechanism for the global in-use list or if a
2140     // special deflation has been requested before the safepoint.
2141     ObjectSynchronizer::deflate_idle_monitors(counters);
2142     return;
2143   }
2144 
2145   log_debug(monitorinflation)("requesting async deflation of idle monitors.");
2146   // Request deflation of idle monitors by the ServiceThread:
2147   set_is_async_deflation_requested(true);
2148   MonitorLocker ml(Service_lock, Mutex::_no_safepoint_check_flag);
2149   ml.notify_all();
2150 }
2151 
2152 // Deflate a single monitor if not in-use
2153 // Return true if deflated, false if in-use
2154 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
2155                                          ObjectMonitor** free_head_p,
2156                                          ObjectMonitor** free_tail_p) {
2157   bool deflated;
2158   // Normal case ... The monitor is associated with obj.
2159   const markWord mark = obj->mark();
2160   guarantee(mark == markWord::encode(mid), "should match: mark="
2161             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, mark.value(),


2180                                   "object=" INTPTR_FORMAT ", mark="
2181                                   INTPTR_FORMAT ", type='%s'", p2i(obj),
2182                                   mark.value(), obj->klass()->external_name());
2183     }
2184 
2185     // Restore the header back to obj
2186     obj->release_set_mark(dmw);
2187     if (AsyncDeflateIdleMonitors) {
2188       // clear() expects the owner field to be NULL and we won't race
2189       // with the simple C2 ObjectMonitor enter optimization since
2190       // we're at a safepoint.
2191       mid->set_owner(NULL);
2192     }
2193     mid->clear();
2194 
2195     assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT,
2196            p2i(mid->object()));
2197     assert(mid->is_free(), "invariant");
2198 
2199     // Move the deflated ObjectMonitor to the working free list
2200     // defined by free_head_p and free_tail_p. No races on this list
2201     // so no need for load_acquire() or store_release().
2202     if (*free_head_p == NULL) *free_head_p = mid;
2203     if (*free_tail_p != NULL) {
2204       // We append to the list so the caller can use mid->_next_om
2205       // to fix the linkages in its context.
2206       ObjectMonitor* prevtail = *free_tail_p;
2207       // Should have been cleaned up by the caller:
2208       // Note: Should not have to mark prevtail here since we're at a
2209       // safepoint and ObjectMonitors on the local free list should
2210       // not be accessed in parallel.
2211       assert(prevtail->_next_om == NULL, "must be NULL: _next_om="
2212              INTPTR_FORMAT, p2i(prevtail->_next_om));
2213       set_next(prevtail, mid);
2214     }
2215     *free_tail_p = mid;
2216     // At this point, mid->_next_om still refers to its current
2217     // value and another ObjectMonitor's _next_om field still
2218     // refers to this ObjectMonitor. Those linkages have to be
2219     // cleaned up by the caller who has the complete context.
2220     deflated = true;
2221   }
2222   return deflated;
2223 }
2224 
2225 // Deflate the specified ObjectMonitor if not in-use using a JavaThread.
2226 // Returns true if it was deflated and false otherwise.
2227 //
2228 // The async deflation protocol sets owner to DEFLATER_MARKER and
2229 // makes ref_count negative as signals to contending threads that
2230 // an async deflation is in progress. There are a number of checks
2231 // as part of the protocol to make sure that the calling thread has
2232 // not lost the race to a contending thread or to a thread that just
2233 // wants to use the ObjectMonitor*.


2296         const oop obj = (oop) mid->object();
2297         if (log_is_enabled(Trace, monitorinflation)) {
2298           ResourceMark rm;
2299           log_trace(monitorinflation)("deflate_monitor_using_JT: "
2300                                       "object=" INTPTR_FORMAT ", mark="
2301                                       INTPTR_FORMAT ", type='%s'",
2302                                       p2i(obj), obj->mark().value(),
2303                                       obj->klass()->external_name());
2304         }
2305 
2306         // Install the old mark word if nobody else has already done it.
2307         mid->install_displaced_markword_in_object(obj);
2308         mid->clear_using_JT();
2309 
2310         assert(mid->object() == NULL, "must be NULL: object=" INTPTR_FORMAT,
2311                p2i(mid->object()));
2312         assert(mid->is_free(), "must be free: allocation_state=%d",
2313                (int) mid->allocation_state());
2314 
2315         // Move the deflated ObjectMonitor to the working free list
2316         // defined by free_head_p and free_tail_p. No races on this list
2317         // so no need for load_acquire() or store_release().
2318         if (*free_head_p == NULL) {
2319           // First one on the list.
2320           *free_head_p = mid;
2321         }
2322         if (*free_tail_p != NULL) {
2323           // We append to the list so the caller can use mid->_next_om
2324           // to fix the linkages in its context.
2325           ObjectMonitor* prevtail = *free_tail_p;
2326           // Should have been cleaned up by the caller:
2327           ObjectMonitor* next = mark_next_loop(prevtail);
2328           assert(unmarked_next(prevtail) == NULL, "must be NULL: _next_om="
2329                  INTPTR_FORMAT, p2i(unmarked_next(prevtail)));
2330           set_next(prevtail, mid);  // prevtail now points to mid (and is unmarked)
2331         }
2332         *free_tail_p = mid;
2333 
2334         // At this point, mid->_next_om still refers to its current
2335         // value and another ObjectMonitor's _next_om field still
2336         // refers to this ObjectMonitor. Those linkages have to be
2337         // cleaned up by the caller who has the complete context.
2338 
2339         // We leave owner == DEFLATER_MARKER and ref_count < 0
2340         // to force any racing threads to retry.
2341         return true;  // Success, ObjectMonitor has been deflated.
2342       }
2343 
2344       // The owner was changed from DEFLATER_MARKER so we lost the
2345       // race since the ObjectMonitor is now busy.
2346 
2347       // Add back max_jint to restore the ref_count field to its
2348       // proper value (which may not be what we saw above):
2349       Atomic::add(max_jint, &mid->_ref_count);
2350 
2351       assert(mid->ref_count() >= 0, "must not be negative: ref_count=%d",
2352              mid->ref_count());
2353       return false;
2354     }
2355 
2356     // The ref_count was no longer 0 so we lost the race since the
2357     // ObjectMonitor is now busy or the ObjectMonitor* is now is use.
2358     // Restore owner to NULL if it is still DEFLATER_MARKER:
2359     Atomic::cmpxchg((void*)NULL, &mid->_owner, DEFLATER_MARKER);
2360   }
2361 
2362   // The owner field is no longer NULL so we lost the race since the
2363   // ObjectMonitor is now busy.
2364   return false;
2365 }
2366 
2367 // Walk a given monitor list, and deflate idle monitors.
2368 // The given list could be a per-thread list or a global list.

2369 //
2370 // In the case of parallel processing of thread local monitor lists,
2371 // work is done by Threads::parallel_threads_do() which ensures that
2372 // each Java thread is processed by exactly one worker thread, and
2373 // thus avoid conflicts that would arise when worker threads would
2374 // process the same monitor lists concurrently.
2375 //
2376 // See also ParallelSPCleanupTask and
2377 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
2378 // Threads::parallel_java_threads_do() in thread.cpp.
2379 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor* volatile * list_p,
2380                                              int volatile * count_p,
2381                                              ObjectMonitor** free_head_p,
2382                                              ObjectMonitor** free_tail_p) {


2383   ObjectMonitor* cur_mid_in_use = NULL;
2384   ObjectMonitor* mid = NULL;
2385   ObjectMonitor* next = NULL;
2386   int deflated_count = 0;
2387 
2388   // We use the simpler mark-mid-as-we-go protocol since there are no
2389   // parallel list deletions since we are at a safepoint.
2390   if (!mark_list_head(list_p, &mid, &next)) {
2391     return 0;  // The list is empty so nothing to deflate.
2392   }
2393 
2394   while (true) {
2395     oop obj = (oop) mid->object();
2396     if (obj != NULL && deflate_monitor(mid, obj, free_head_p, free_tail_p)) {
2397       // Deflation succeeded and already updated free_head_p and
2398       // free_tail_p as needed. Finish the move to the local free list
2399       // by unlinking mid from the global or per-thread in-use list.
2400       if (Atomic::cmpxchg(next, list_p, mid) != mid) {
2401         // We could not switch the list head to next.
2402         ADIM_guarantee(cur_mid_in_use != NULL, "must not be NULL");
2403         if (Atomic::cmpxchg(next, &cur_mid_in_use->_next_om, mid) != mid) {
2404           // deflate_monitor_list() is called at a safepoint so the
2405           // global or per-thread in-use list should not be modified
2406           // in parallel so we:
2407           fatal("mid=" INTPTR_FORMAT " must be referred to by the list head: "
2408                 "list_p=" INTPTR_FORMAT " or by cur_mid_in_use's next field: "
2409                 "cur_mid_in_use=" INTPTR_FORMAT ", next_om=" INTPTR_FORMAT,
2410                 p2i(mid), p2i((ObjectMonitor**)list_p), p2i(cur_mid_in_use),
2411                 p2i(cur_mid_in_use->_next_om));
2412         }
2413       }
2414       // At this point mid is disconnected from the in-use list so
2415       // its marked next field no longer has any effects.
2416       deflated_count++;
2417       Atomic::dec(count_p);
2418       chk_for_list_loop(OrderAccess::load_acquire(list_p),
2419                         OrderAccess::load_acquire(count_p));
2420       chk_om_not_on_list(mid, OrderAccess::load_acquire(list_p),
2421                          OrderAccess::load_acquire(count_p));
2422       // mid is current tail in the free_head_p list so NULL terminate it
2423       // (which also unmarks it):
2424       set_next(mid, NULL);
2425 
2426       // All the list management is done so move on to the next one:
2427       mid = next;
2428     } else {
2429       set_next(mid, next);  // unmark next field
2430 
2431       // All the list management is done so move on to the next one:
2432       cur_mid_in_use = mid;
2433       mid = next;
2434     }
2435     if (mid == NULL) {
2436       break;  // Reached end of the list so nothing more to deflate.
2437     }
2438     // Mark mid's next field so we can possibly deflate it:
2439     next = mark_next_loop(mid);
2440   }
2441   return deflated_count;
2442 }
2443 
2444 // Walk a given ObjectMonitor list and deflate idle ObjectMonitors using
2445 // a JavaThread. Returns the number of deflated ObjectMonitors. The given
2446 // list could be a per-thread in-use list or the global in-use list.
2447 // If a safepoint has started, then we save state via saved_mid_in_use_p
2448 // and return to the caller to honor the safepoint.

2449 //
2450 int ObjectSynchronizer::deflate_monitor_list_using_JT(ObjectMonitor* volatile * list_p,
2451                                                       int volatile * count_p,
2452                                                       ObjectMonitor** free_head_p,
2453                                                       ObjectMonitor** free_tail_p,
2454                                                       ObjectMonitor** saved_mid_in_use_p) {
2455   assert(AsyncDeflateIdleMonitors, "sanity check");
2456   assert(Thread::current()->is_Java_thread(), "precondition");
2457 


2458   ObjectMonitor* cur_mid_in_use = NULL;
2459   ObjectMonitor* mid = NULL;
2460   ObjectMonitor* next = NULL;
2461   ObjectMonitor* next_next = NULL;
2462   int deflated_count = 0;
2463 
2464   // We use the more complicated mark-cur_mid_in_use-and-mid-as-we-go
2465   // protocol because om_release() can do list deletions in parallel.
2466   // We also mark-next-next-as-we-go to prevent an om_flush() that is
2467   // behind this thread from passing us.
2468   if (*saved_mid_in_use_p == NULL) {
2469     // No saved state so start at the beginning.
2470     // Mark the list head's next field so we can possibly deflate it:
2471     if (!mark_list_head(list_p, &mid, &next)) {
2472       return 0;  // The list is empty so nothing to deflate.
2473     }
2474   } else {
2475     // We're restarting after a safepoint so restore the necessary state
2476     // before we resume.
2477     cur_mid_in_use = *saved_mid_in_use_p;
2478     // Mark cur_mid_in_use's next field so we can possibly update its
2479     // next field to extract a deflated ObjectMonitor.
2480     mid = mark_next_loop(cur_mid_in_use);
2481     if (mid == NULL) {
2482       set_next(cur_mid_in_use, NULL);  // unmark next field
2483       *saved_mid_in_use_p = NULL;
2484       return 0;  // The remainder is empty so nothing more to deflate.
2485     }
2486     // Mark mid's next field so we can possibly deflate it:
2487     next = mark_next_loop(mid);
2488   }
2489 
2490   while (true) {
2491     // The current mid's next field is marked at this point. If we have
2492     // a cur_mid_in_use, then its next field is also marked at this point.
2493 
2494     if (next != NULL) {
2495       // We mark the next -> next field so that an om_flush()
2496       // thread that is behind us cannot pass us when we
2497       // unmark the current mid's next field.
2498       next_next = mark_next_loop(next);
2499     }
2500 
2501     // Only try to deflate if there is an associated Java object and if
2502     // mid is old (is not newly allocated and is not newly freed).
2503     if (mid->object() != NULL && mid->is_old() &&
2504         deflate_monitor_using_JT(mid, free_head_p, free_tail_p)) {
2505       // Deflation succeeded and already updated free_head_p and
2506       // free_tail_p as needed. Finish the move to the local free list
2507       // by unlinking mid from the global or per-thread in-use list.
2508       if (Atomic::cmpxchg(next, list_p, mid) != mid) {
2509         // We could not switch the list head to next.
2510         ObjectMonitor* marked_mid = mark_om_ptr(mid);
2511         ObjectMonitor* marked_next = mark_om_ptr(next);
2512         // Switch cur_mid_in_use's next field to marked next:
2513         ADIM_guarantee(cur_mid_in_use != NULL, "must not be NULL");
2514         if (Atomic::cmpxchg(marked_next, &cur_mid_in_use->_next_om,
2515                             marked_mid) != marked_mid) {
2516           // We could not switch cur_mid_in_use's next field. This
2517           // should not be possible since it was marked so we:
2518           fatal("mid=" INTPTR_FORMAT " must be referred to by the list head: "
2519                 "&list_p=" INTPTR_FORMAT " or by cur_mid_in_use's next field: "
2520                 "cur_mid_in_use=" INTPTR_FORMAT ", next_om=" INTPTR_FORMAT,
2521                 p2i(mid), p2i((ObjectMonitor**)list_p), p2i(cur_mid_in_use),
2522                 p2i(cur_mid_in_use->_next_om));
2523         }
2524       }
2525       // At this point mid is disconnected from the in-use list so
2526       // its marked next field no longer has any effects.
2527       deflated_count++;
2528       Atomic::dec(count_p);
2529       chk_for_list_loop(OrderAccess::load_acquire(list_p),
2530                         OrderAccess::load_acquire(count_p));
2531       chk_om_not_on_list(mid, OrderAccess::load_acquire(list_p),
2532                          OrderAccess::load_acquire(count_p));
2533       // mid is current tail in the free_head_p list so NULL terminate it
2534       // (which also unmarks it):
2535       set_next(mid, NULL);
2536 
2537       // All the list management is done so move on to the next one:
2538       mid = next;  // mid keeps non-NULL next's marked next field
2539       next = next_next;
2540     } else {
2541       // mid is considered in-use if it does not have an associated
2542       // Java object or mid is not old or deflation did not succeed.
2543       // A mid->is_new() node can be seen here when it is freshly
2544       // returned by om_alloc() (and skips the deflation code path).
2545       // A mid->is_old() node can be seen here when deflation failed.
2546       // A mid->is_free() node can be seen here when a fresh node from
2547       // om_alloc() is released by om_release() due to losing the race
2548       // in inflate().
2549 
2550       // All the list management is done so move on to the next one:
2551       if (cur_mid_in_use != NULL) {
2552         set_next(cur_mid_in_use, mid);  // umark cur_mid_in_use
2553       }
2554       // The next cur_mid_in_use keeps mid's marked next field so
2555       // that it is stable for a possible next field change. It
2556       // cannot be modified by om_release() while it is marked.
2557       cur_mid_in_use = mid;
2558       mid = next;  // mid keeps non-NULL next's marked next field
2559       next = next_next;
2560 
2561       if (SafepointSynchronize::is_synchronizing() &&
2562           cur_mid_in_use != OrderAccess::load_acquire(list_p) &&
2563           cur_mid_in_use->is_old()) {
2564         // If a safepoint has started and cur_mid_in_use is not the list
2565         // head and is old, then it is safe to use as saved state. Return
2566         // to the caller before blocking.

2567         *saved_mid_in_use_p = cur_mid_in_use;
2568         set_next(cur_mid_in_use, mid);  // umark cur_mid_in_use
2569         if (mid != NULL) {
2570           set_next(mid, next);  // umark mid
2571         }
2572         return deflated_count;
2573       }
2574     }
2575     if (mid == NULL) {
2576       if (cur_mid_in_use != NULL) {
2577         set_next(cur_mid_in_use, mid);  // umark cur_mid_in_use
2578       }
2579       break;  // Reached end of the list so nothing more to deflate.
2580     }
2581 
2582     // The current mid's next field is marked at this point. If we have
2583     // a cur_mid_in_use, then its next field is also marked at this point.
2584   }
2585   // We finished the list without a safepoint starting so there's
2586   // no need to save state.
2587   *saved_mid_in_use_p = NULL;
2588   return deflated_count;
2589 }
2590 
2591 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2592   OrderAccess::release_store(&counters->n_in_use, 0);              // currently associated with objects
2593   OrderAccess::release_store(&counters->n_in_circulation, 0);      // extant
2594   OrderAccess::release_store(&counters->n_scavenged, 0);           // reclaimed (global and per-thread)
2595   OrderAccess::release_store(&counters->per_thread_scavenged, 0);  // per-thread scavenge total
2596   counters->per_thread_times = 0.0;                                // per-thread scavenge times
2597 }
2598 
2599 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
2600   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2601 
2602   if (AsyncDeflateIdleMonitors) {
2603     // Nothing to do when global idle ObjectMonitors are deflated using
2604     // a JavaThread unless a special deflation has been requested.
2605     if (!is_special_deflation_requested()) {
2606       return;
2607     }
2608   }
2609 
2610   bool deflated = false;
2611 
2612   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
2613   ObjectMonitor* free_tail_p = NULL;
2614   elapsedTimer timer;
2615 
2616   if (log_is_enabled(Info, monitorinflation)) {
2617     timer.start();
2618   }
2619 





2620   // Note: the thread-local monitors lists get deflated in
2621   // a separate pass. See deflate_thread_local_monitors().
2622 
2623   // For moribund threads, scan g_om_in_use_list
2624   int deflated_count = 0;
2625   if (OrderAccess::load_acquire(&g_om_in_use_list) != NULL) {
2626     // Update n_in_circulation before g_om_in_use_count is updated by deflation.
2627     Atomic::add(OrderAccess::load_acquire(&g_om_in_use_count), &counters->n_in_circulation);
2628 
2629     deflated_count = deflate_monitor_list(&g_om_in_use_list, &g_om_in_use_count, &free_head_p, &free_tail_p);
2630     Atomic::add(OrderAccess::load_acquire(&g_om_in_use_count), &counters->n_in_use);
2631   }
2632 
2633   if (free_head_p != NULL) {
2634     // Move the deflated ObjectMonitors back to the global free list.
2635     // No races on the working free list so no need for load_acquire().
2636     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
2637     assert(free_tail_p->_next_om == NULL, "must be NULL: _next_om="
2638            INTPTR_FORMAT, p2i(free_tail_p->_next_om));
2639     prepend_list_to_g_free_list(free_head_p, free_tail_p, deflated_count);
2640     Atomic::add(deflated_count, &counters->n_scavenged);
2641   }

2642   timer.stop();
2643 
2644   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2645   LogStreamHandle(Info, monitorinflation) lsh_info;
2646   LogStream* ls = NULL;
2647   if (log_is_enabled(Debug, monitorinflation)) {
2648     ls = &lsh_debug;
2649   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2650     ls = &lsh_info;
2651   }
2652   if (ls != NULL) {
2653     ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2654   }
2655 }
2656 
2657 // Deflate global idle ObjectMonitors using a JavaThread.
2658 //
2659 void ObjectSynchronizer::deflate_global_idle_monitors_using_JT() {
2660   assert(AsyncDeflateIdleMonitors, "sanity check");
2661   assert(Thread::current()->is_Java_thread(), "precondition");
2662   JavaThread* self = JavaThread::current();
2663 
2664   deflate_common_idle_monitors_using_JT(true /* is_global */, self);
2665 }
2666 
2667 // Deflate the specified JavaThread's idle ObjectMonitors using a JavaThread.
2668 //
2669 void ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT(JavaThread* target) {
2670   assert(AsyncDeflateIdleMonitors, "sanity check");
2671   assert(Thread::current()->is_Java_thread(), "precondition");



2672 
2673   deflate_common_idle_monitors_using_JT(false /* !is_global */, target);
2674 }
2675 
2676 // Deflate global or per-thread idle ObjectMonitors using a JavaThread.
2677 //
2678 void ObjectSynchronizer::deflate_common_idle_monitors_using_JT(bool is_global, JavaThread* target) {
2679   JavaThread* self = JavaThread::current();
2680 
2681   int deflated_count = 0;
2682   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged ObjectMonitors
2683   ObjectMonitor* free_tail_p = NULL;
2684   ObjectMonitor* saved_mid_in_use_p = NULL;
2685   elapsedTimer timer;
2686 
2687   if (log_is_enabled(Info, monitorinflation)) {
2688     timer.start();
2689   }
2690 
2691   if (is_global) {
2692     OM_PERFDATA_OP(MonExtant, set_value(OrderAccess::load_acquire(&g_om_in_use_count)));

2693   } else {
2694     OM_PERFDATA_OP(MonExtant, inc(OrderAccess::load_acquire(&target->om_in_use_count)));
2695   }
2696 
2697   do {
2698     int local_deflated_count;
2699     if (is_global) {
2700       local_deflated_count = deflate_monitor_list_using_JT(&g_om_in_use_list, &g_om_in_use_count, &free_head_p, &free_tail_p, &saved_mid_in_use_p);

2701     } else {
2702       local_deflated_count = deflate_monitor_list_using_JT(&target->om_in_use_list, &target->om_in_use_count, &free_head_p, &free_tail_p, &saved_mid_in_use_p);

2703     }
2704     deflated_count += local_deflated_count;
2705 
2706     if (free_head_p != NULL) {
2707       // Move the deflated ObjectMonitors to the global free list.
2708       // No races on the working list so no need for load_acquire().
2709       guarantee(free_tail_p != NULL && local_deflated_count > 0, "free_tail_p=" INTPTR_FORMAT ", local_deflated_count=%d", p2i(free_tail_p), local_deflated_count);
2710       // Note: The target thread can be doing an om_alloc() that
2711       // is trying to prepend an ObjectMonitor on its in-use list
2712       // at the same time that we have deflated the current in-use
2713       // list head and put it on the local free list. prepend_to_common()
2714       // will detect the race and retry which avoids list corruption,
2715       // but the next field in free_tail_p can flicker to marked
2716       // and then unmarked while prepend_to_common() is sorting it
2717       // all out.
2718       assert(unmarked_next(free_tail_p) == NULL, "must be NULL: _next_om="
2719              INTPTR_FORMAT, p2i(unmarked_next(free_tail_p)));
2720 
2721       prepend_list_to_g_free_list(free_head_p, free_tail_p, local_deflated_count);





2722 

2723       OM_PERFDATA_OP(Deflations, inc(local_deflated_count));



2724     }
2725 
2726     if (saved_mid_in_use_p != NULL) {
2727       // deflate_monitor_list_using_JT() detected a safepoint starting.



2728       timer.stop();
2729       {
2730         if (is_global) {
2731           log_debug(monitorinflation)("pausing deflation of global idle monitors for a safepoint.");
2732         } else {
2733           log_debug(monitorinflation)("jt=" INTPTR_FORMAT ": pausing deflation of per-thread idle monitors for a safepoint.", p2i(target));
2734         }
2735         assert(SafepointSynchronize::is_synchronizing(), "sanity check");
2736         ThreadBlockInVM blocker(self);
2737       }
2738       // Prepare for another loop after the safepoint.
2739       free_head_p = NULL;
2740       free_tail_p = NULL;
2741       if (log_is_enabled(Info, monitorinflation)) {
2742         timer.start();
2743       }



2744     }
2745   } while (saved_mid_in_use_p != NULL);



2746   timer.stop();
2747 
2748   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2749   LogStreamHandle(Info, monitorinflation) lsh_info;
2750   LogStream* ls = NULL;
2751   if (log_is_enabled(Debug, monitorinflation)) {
2752     ls = &lsh_debug;
2753   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2754     ls = &lsh_info;
2755   }
2756   if (ls != NULL) {
2757     if (is_global) {
2758       ls->print_cr("async-deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2759     } else {
2760       ls->print_cr("jt=" INTPTR_FORMAT ": async-deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(target), timer.seconds(), deflated_count);
2761     }
2762   }
2763 }
2764 
2765 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2766   // Report the cumulative time for deflating each thread's idle
2767   // monitors. Note: if the work is split among more than one
2768   // worker thread, then the reported time will likely be more
2769   // than a beginning to end measurement of the phase.
2770   // Note: AsyncDeflateIdleMonitors only deflates per-thread idle
2771   // monitors at a safepoint when a special deflation has been requested.
2772   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d",
2773                                counters->per_thread_times,
2774                                OrderAccess::load_acquire(&counters->per_thread_scavenged));
2775 
2776   bool needs_special_deflation = is_special_deflation_requested();
2777   if (!AsyncDeflateIdleMonitors || needs_special_deflation) {
2778     // AsyncDeflateIdleMonitors does not use these counters unless
2779     // there is a special deflation request.
2780 


2781     OM_PERFDATA_OP(Deflations, inc(counters->n_scavenged));
2782     OM_PERFDATA_OP(MonExtant, set_value(counters->n_in_circulation));
2783   }
2784 
2785   if (log_is_enabled(Debug, monitorinflation)) {
2786     // exit_globals()'s call to audit_and_print_stats() is done
2787     // at the Info level.
2788     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2789   } else if (log_is_enabled(Info, monitorinflation)) {

2790     log_info(monitorinflation)("g_om_population=%d, g_om_in_use_count=%d, "
2791                                "g_om_free_count=%d",
2792                                OrderAccess::load_acquire(&g_om_population),
2793                                OrderAccess::load_acquire(&g_om_in_use_count),
2794                                OrderAccess::load_acquire(&g_om_free_count));
2795   }
2796 
2797   ForceMonitorScavenge = 0;    // Reset
2798   GVars.stw_random = os::random();
2799   GVars.stw_cycle++;
2800   if (needs_special_deflation) {
2801     set_is_special_deflation_requested(false);  // special deflation is done
2802   }
2803 }
2804 
2805 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
2806   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2807 
2808   if (AsyncDeflateIdleMonitors && !is_special_deflation_requested()) {
2809     // Nothing to do if a special deflation has NOT been requested.






2810     return;
2811   }

2812 
2813   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
2814   ObjectMonitor* free_tail_p = NULL;
2815   elapsedTimer timer;
2816 
2817   if (log_is_enabled(Info, safepoint, cleanup) ||
2818       log_is_enabled(Info, monitorinflation)) {
2819     timer.start();
2820   }
2821 
2822   // Update n_in_circulation before om_in_use_count is updated by deflation.
2823   Atomic::add(OrderAccess::load_acquire(&thread->om_in_use_count), &counters->n_in_circulation);

2824 
2825   int deflated_count = deflate_monitor_list(&thread->om_in_use_list, &thread->om_in_use_count, &free_head_p, &free_tail_p);
2826   Atomic::add(OrderAccess::load_acquire(&thread->om_in_use_count), &counters->n_in_use);




2827 
2828   if (free_head_p != NULL) {
2829     // Move the deflated ObjectMonitors back to the global free list.
2830     // No races on the working list so no need for load_acquire().
2831     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
2832     assert(free_tail_p->_next_om == NULL, "must be NULL: _next_om="
2833            INTPTR_FORMAT, p2i(free_tail_p->_next_om));
2834     prepend_list_to_g_free_list(free_head_p, free_tail_p, deflated_count);
2835     Atomic::add(deflated_count, &counters->n_scavenged);
2836     Atomic::add(deflated_count, &counters->per_thread_scavenged);
2837   }
2838 
2839   timer.stop();
2840   // Safepoint logging cares about cumulative per_thread_times and
2841   // we'll capture most of the cost, but not the muxRelease() which
2842   // should be cheap.
2843   counters->per_thread_times += timer.seconds();
2844 


2845   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2846   LogStreamHandle(Info, monitorinflation) lsh_info;
2847   LogStream* ls = NULL;
2848   if (log_is_enabled(Debug, monitorinflation)) {
2849     ls = &lsh_debug;
2850   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2851     ls = &lsh_info;
2852   }
2853   if (ls != NULL) {
2854     ls->print_cr("jt=" INTPTR_FORMAT ": deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(thread), timer.seconds(), deflated_count);
2855   }
2856 }
2857 
2858 // Monitor cleanup on JavaThread::exit
2859 
2860 // Iterate through monitor cache and attempt to release thread's monitors
2861 // Gives up on a particular monitor if an exception occurs, but continues
2862 // the overall iteration, swallowing the exception.
2863 class ReleaseJavaMonitorsClosure: public MonitorClosure {
2864  private:


2875 
2876 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
2877 // ignored.  This is meant to be called during JNI thread detach which assumes
2878 // all remaining monitors are heavyweight.  All exceptions are swallowed.
2879 // Scanning the extant monitor list can be time consuming.
2880 // A simple optimization is to add a per-thread flag that indicates a thread
2881 // called jni_monitorenter() during its lifetime.
2882 //
2883 // Instead of No_Savepoint_Verifier it might be cheaper to
2884 // use an idiom of the form:
2885 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
2886 //   <code that must not run at safepoint>
2887 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
2888 // Since the tests are extremely cheap we could leave them enabled
2889 // for normal product builds.
2890 
2891 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
2892   assert(THREAD == JavaThread::current(), "must be current Java thread");
2893   NoSafepointVerifier nsv;
2894   ReleaseJavaMonitorsClosure rjmc(THREAD);

2895   ObjectSynchronizer::monitors_iterate(&rjmc);

2896   THREAD->clear_pending_exception();
2897 }
2898 
2899 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
2900   switch (cause) {
2901     case inflate_cause_vm_internal:    return "VM Internal";
2902     case inflate_cause_monitor_enter:  return "Monitor Enter";
2903     case inflate_cause_wait:           return "Monitor Wait";
2904     case inflate_cause_notify:         return "Monitor Notify";
2905     case inflate_cause_hash_code:      return "Monitor Hash Code";
2906     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
2907     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
2908     default:
2909       ShouldNotReachHere();
2910   }
2911   return "Unknown";
2912 }
2913 
2914 //------------------------------------------------------------------------------
2915 // Debugging code


2929 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() {
2930   return (u_char*)&GVars.stw_random;
2931 }
2932 
2933 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) {
2934   assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant");
2935 
2936   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2937   LogStreamHandle(Info, monitorinflation) lsh_info;
2938   LogStreamHandle(Trace, monitorinflation) lsh_trace;
2939   LogStream* ls = NULL;
2940   if (log_is_enabled(Trace, monitorinflation)) {
2941     ls = &lsh_trace;
2942   } else if (log_is_enabled(Debug, monitorinflation)) {
2943     ls = &lsh_debug;
2944   } else if (log_is_enabled(Info, monitorinflation)) {
2945     ls = &lsh_info;
2946   }
2947   assert(ls != NULL, "sanity check");
2948 





2949   // Log counts for the global and per-thread monitor lists:
2950   int chk_om_population = log_monitor_list_counts(ls);
2951   int error_cnt = 0;
2952 
2953   ls->print_cr("Checking global lists:");
2954 
2955   // Check g_om_population:
2956   if (OrderAccess::load_acquire(&g_om_population) == chk_om_population) {
2957     ls->print_cr("g_om_population=%d equals chk_om_population=%d",
2958                  OrderAccess::load_acquire(&g_om_population),
2959                  chk_om_population);
2960   } else {
2961     ls->print_cr("ERROR: g_om_population=%d is not equal to "
2962                  "chk_om_population=%d",
2963                  OrderAccess::load_acquire(&g_om_population),
2964                  chk_om_population);
2965     error_cnt++;
2966   }
2967 
2968   // Check g_om_in_use_list and g_om_in_use_count:
2969   chk_global_in_use_list_and_count(ls, &error_cnt);
2970 
2971   // Check g_free_list and g_om_free_count:
2972   chk_global_free_list_and_count(ls, &error_cnt);
2973 




2974   ls->print_cr("Checking per-thread lists:");
2975 
2976   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2977     // Check om_in_use_list and om_in_use_count:
2978     chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt);
2979 
2980     // Check om_free_list and om_free_count:
2981     chk_per_thread_free_list_and_count(jt, ls, &error_cnt);
2982   }
2983 
2984   if (error_cnt == 0) {
2985     ls->print_cr("No errors found in monitor list checks.");
2986   } else {
2987     log_error(monitorinflation)("found monitor list errors: error_cnt=%d", error_cnt);
2988   }
2989 
2990   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
2991       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
2992     // When exiting this log output is at the Info level. When called
2993     // at a safepoint, this log output is at the Trace level since
2994     // there can be a lot of it.
2995     log_in_use_monitor_details(ls);
2996   }
2997 
2998   ls->flush();
2999 
3000   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
3001 }
3002 
3003 // Check a free monitor entry; log any errors.
3004 void ObjectSynchronizer::chk_free_entry(JavaThread* jt, ObjectMonitor* n,
3005                                         outputStream * out, int *error_cnt_p) {
3006   stringStream ss;
3007   if (n->is_busy()) {
3008     if (jt != NULL) {
3009       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3010                     ": free per-thread monitor must not be busy: %s", p2i(jt),
3011                     p2i(n), n->is_busy_to_string(&ss));
3012     } else {
3013       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
3014                     "must not be busy: %s", p2i(n), n->is_busy_to_string(&ss));
3015     }


3031   }
3032   if (n->object() != NULL) {
3033     if (jt != NULL) {
3034       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3035                     ": free per-thread monitor must have NULL _object "
3036                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
3037                     p2i(n->object()));
3038     } else {
3039       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
3040                     "must have NULL _object field: _object=" INTPTR_FORMAT,
3041                     p2i(n), p2i(n->object()));
3042     }
3043     *error_cnt_p = *error_cnt_p + 1;
3044   }
3045 }
3046 
3047 // Check the global free list and count; log the results of the checks.
3048 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
3049                                                         int *error_cnt_p) {
3050   int chk_om_free_count = 0;
3051   for (ObjectMonitor* n = OrderAccess::load_acquire(&g_free_list); n != NULL; n = unmarked_next(n)) {
3052     chk_free_entry(NULL /* jt */, n, out, error_cnt_p);
3053     chk_om_free_count++;
3054   }
3055   if (OrderAccess::load_acquire(&g_om_free_count) == chk_om_free_count) {
3056     out->print_cr("g_om_free_count=%d equals chk_om_free_count=%d",
3057                   OrderAccess::load_acquire(&g_om_free_count),
3058                   chk_om_free_count);
3059   } else {
3060     // With lock free access to g_free_list, it is possible for an
3061     // ObjectMonitor to be prepended to g_free_list after we started
3062     // calculating chk_om_free_count so g_om_free_count may not
3063     // match anymore.
3064     out->print_cr("WARNING: g_om_free_count=%d is not equal to "
3065                   "chk_om_free_count=%d",
3066                   OrderAccess::load_acquire(&g_om_free_count),
3067                   chk_om_free_count);

3068   }
3069 }
3070 
3071 // Check the global in-use list and count; log the results of the checks.
3072 void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out,
3073                                                           int *error_cnt_p) {
3074   int chk_om_in_use_count = 0;
3075   for (ObjectMonitor* n = OrderAccess::load_acquire(&g_om_in_use_list); n != NULL; n = unmarked_next(n)) {
3076     chk_in_use_entry(NULL /* jt */, n, out, error_cnt_p);
3077     chk_om_in_use_count++;
3078   }
3079   if (OrderAccess::load_acquire(&g_om_in_use_count) == chk_om_in_use_count) {
3080     out->print_cr("g_om_in_use_count=%d equals chk_om_in_use_count=%d",
3081                   OrderAccess::load_acquire(&g_om_in_use_count),
3082                   chk_om_in_use_count);
3083   } else {
3084     out->print_cr("ERROR: g_om_in_use_count=%d is not equal to chk_om_in_use_count=%d",
3085                   OrderAccess::load_acquire(&g_om_in_use_count),
3086                   chk_om_in_use_count);
3087     *error_cnt_p = *error_cnt_p + 1;
3088   }
3089 }
3090 
3091 // Check an in-use monitor entry; log any errors.
3092 void ObjectSynchronizer::chk_in_use_entry(JavaThread* jt, ObjectMonitor* n,
3093                                           outputStream * out, int *error_cnt_p) {
3094   if (n->header().value() == 0) {
3095     if (jt != NULL) {
3096       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3097                     ": in-use per-thread monitor must have non-NULL _header "
3098                     "field.", p2i(jt), p2i(n));
3099     } else {
3100       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
3101                     "must have non-NULL _header field.", p2i(n));
3102     }
3103     *error_cnt_p = *error_cnt_p + 1;
3104   }
3105   if (n->object() == NULL) {
3106     if (jt != NULL) {


3135       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3136                     ": in-use per-thread monitor's object does not refer "
3137                     "to the same monitor: obj=" INTPTR_FORMAT ", mark="
3138                     INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt),
3139                     p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
3140     } else {
3141       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
3142                     "monitor's object does not refer to the same monitor: obj="
3143                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
3144                     INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
3145     }
3146     *error_cnt_p = *error_cnt_p + 1;
3147   }
3148 }
3149 
3150 // Check the thread's free list and count; log the results of the checks.
3151 void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt,
3152                                                             outputStream * out,
3153                                                             int *error_cnt_p) {
3154   int chk_om_free_count = 0;
3155   for (ObjectMonitor* n = OrderAccess::load_acquire(&jt->om_free_list); n != NULL; n = unmarked_next(n)) {
3156     chk_free_entry(jt, n, out, error_cnt_p);
3157     chk_om_free_count++;
3158   }
3159   if (OrderAccess::load_acquire(&jt->om_free_count) == chk_om_free_count) {
3160     out->print_cr("jt=" INTPTR_FORMAT ": om_free_count=%d equals "
3161                   "chk_om_free_count=%d", p2i(jt),
3162                   OrderAccess::load_acquire(&jt->om_free_count),
3163                   chk_om_free_count);
3164   } else {
3165     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_free_count=%d is not "
3166                   "equal to chk_om_free_count=%d", p2i(jt),
3167                   OrderAccess::load_acquire(&jt->om_free_count),
3168                   chk_om_free_count);
3169     *error_cnt_p = *error_cnt_p + 1;
3170   }
3171 }
3172 
3173 // Check the thread's in-use list and count; log the results of the checks.
3174 void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt,
3175                                                               outputStream * out,
3176                                                               int *error_cnt_p) {
3177   int chk_om_in_use_count = 0;
3178   for (ObjectMonitor* n = OrderAccess::load_acquire(&jt->om_in_use_list); n != NULL; n = unmarked_next(n)) {
3179     chk_in_use_entry(jt, n, out, error_cnt_p);
3180     chk_om_in_use_count++;
3181   }
3182   if (OrderAccess::load_acquire(&jt->om_in_use_count) == chk_om_in_use_count) {
3183     out->print_cr("jt=" INTPTR_FORMAT ": om_in_use_count=%d equals "
3184                   "chk_om_in_use_count=%d", p2i(jt),
3185                   OrderAccess::load_acquire(&jt->om_in_use_count),
3186                   chk_om_in_use_count);
3187   } else {
3188     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_in_use_count=%d is not "
3189                   "equal to chk_om_in_use_count=%d", p2i(jt),
3190                   OrderAccess::load_acquire(&jt->om_in_use_count),
3191                   chk_om_in_use_count);
3192     *error_cnt_p = *error_cnt_p + 1;
3193   }
3194 }
3195 
3196 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
3197 // flags indicate why the entry is in-use, 'object' and 'object type'
3198 // indicate the associated object and its type.
3199 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out) {






3200   stringStream ss;
3201   if (OrderAccess::load_acquire(&g_om_in_use_count) > 0) {
3202     out->print_cr("In-use global monitor info:");
3203     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
3204     out->print_cr("%18s  %s  %7s  %18s  %18s",
3205                   "monitor", "BHL", "ref_cnt", "object", "object type");
3206     out->print_cr("==================  ===  =======  ==================  ==================");
3207     for (ObjectMonitor* n = OrderAccess::load_acquire(&g_om_in_use_list); n != NULL; n = unmarked_next(n)) {
3208       const oop obj = (oop) n->object();
3209       const markWord mark = n->header();
3210       ResourceMark rm;
3211       out->print(INTPTR_FORMAT "  %d%d%d  %7d  " INTPTR_FORMAT "  %s",
3212                  p2i(n), n->is_busy() != 0, mark.hash() != 0,
3213                  n->owner() != NULL, (int)n->ref_count(), p2i(obj),
3214                  obj->klass()->external_name());
3215       if (n->is_busy() != 0) {
3216         out->print(" (%s)", n->is_busy_to_string(&ss));
3217         ss.reset();
3218       }
3219       out->cr();
3220     }
3221   }
3222 




3223   out->print_cr("In-use per-thread monitor info:");
3224   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
3225   out->print_cr("%18s  %18s  %s  %7s  %18s  %18s",
3226                 "jt", "monitor", "BHL", "ref_cnt", "object", "object type");
3227   out->print_cr("==================  ==================  ===  =======  ==================  ==================");
3228   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
3229     for (ObjectMonitor* n = OrderAccess::load_acquire(&jt->om_in_use_list); n != NULL; n = unmarked_next(n)) {
3230       const oop obj = (oop) n->object();
3231       const markWord mark = n->header();
3232       ResourceMark rm;
3233       out->print(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  %7d  "
3234                  INTPTR_FORMAT "  %s", p2i(jt), p2i(n), n->is_busy() != 0,
3235                  mark.hash() != 0, n->owner() != NULL, (int)n->ref_count(),
3236                  p2i(obj), obj->klass()->external_name());
3237       if (n->is_busy() != 0) {
3238         out->print(" (%s)", n->is_busy_to_string(&ss));
3239         ss.reset();
3240       }
3241       out->cr();
3242     }
3243   }
3244 
3245   out->flush();
3246 }
3247 
3248 // Log counts for the global and per-thread monitor lists and return
3249 // the population count.
3250 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
3251   int pop_count = 0;
3252   out->print_cr("%18s  %10s  %10s  %10s",
3253                 "Global Lists:", "InUse", "Free", "Total");
3254   out->print_cr("==================  ==========  ==========  ==========");
3255   out->print_cr("%18s  %10d  %10d  %10d", "",
3256                 OrderAccess::load_acquire(&g_om_in_use_count),
3257                 OrderAccess::load_acquire(&g_om_free_count),
3258                 OrderAccess::load_acquire(&g_om_population));
3259   pop_count += OrderAccess::load_acquire(&g_om_in_use_count) +
3260                OrderAccess::load_acquire(&g_om_free_count);
3261 
3262   out->print_cr("%18s  %10s  %10s  %10s",
3263                 "Per-Thread Lists:", "InUse", "Free", "Provision");
3264   out->print_cr("==================  ==========  ==========  ==========");
3265 
3266   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
3267     out->print_cr(INTPTR_FORMAT "  %10d  %10d  %10d", p2i(jt),
3268                   OrderAccess::load_acquire(&jt->om_in_use_count),
3269                   OrderAccess::load_acquire(&jt->om_free_count),
3270                   jt->om_free_provision);
3271     pop_count += OrderAccess::load_acquire(&jt->om_in_use_count) +
3272                  OrderAccess::load_acquire(&jt->om_free_count);
3273   }
3274   return pop_count;
3275 }
3276 
3277 #ifndef PRODUCT
3278 
3279 // Check if monitor belongs to the monitor cache
3280 // The list is grow-only so it's *relatively* safe to traverse
3281 // the list of extant blocks without taking a lock.
3282 
3283 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
3284   PaddedObjectMonitor* block = OrderAccess::load_acquire(&g_block_list);
3285   while (block != NULL) {
3286     assert(block->object() == CHAINMARKER, "must be a block header");
3287     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
3288       address mon = (address)monitor;
3289       address blk = (address)block;
3290       size_t diff = mon - blk;
3291       assert((diff % sizeof(PaddedObjectMonitor)) == 0, "must be aligned");
3292       return 1;
3293     }
3294     // unmarked_next() is not needed with g_block_list (no next field marking).
3295     block = (PaddedObjectMonitor*)OrderAccess::load_acquire(&block->_next_om);
3296   }
3297   return 0;
3298 }
3299 
3300 #endif
< prev index next >