/* * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/vmSymbols.hpp" #include "logging/log.hpp" #include "logging/logStream.hpp" #include "jfr/jfrEvents.hpp" #include "memory/allocation.inline.hpp" #include "memory/metaspaceShared.hpp" #include "memory/padded.hpp" #include "memory/resourceArea.hpp" #include "memory/universe.hpp" #include "oops/markWord.hpp" #include "oops/oop.inline.hpp" #include "runtime/atomic.hpp" #include "runtime/biasedLocking.hpp" #include "runtime/handles.inline.hpp" #include "runtime/interfaceSupport.inline.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/objectMonitor.hpp" #include "runtime/objectMonitor.inline.hpp" #include "runtime/osThread.hpp" #include "runtime/safepointVerifiers.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/synchronizer.hpp" #include "runtime/thread.inline.hpp" #include "runtime/timer.hpp" #include "runtime/vframe.hpp" #include "runtime/vmThread.hpp" #include "utilities/align.hpp" #include "utilities/dtrace.hpp" #include "utilities/events.hpp" #include "utilities/preserveException.hpp" // The "core" versions of monitor enter and exit reside in this file. // The interpreter and compilers contain specialized transliterated // variants of the enter-exit fast-path operations. See i486.ad fast_lock(), // for instance. If you make changes here, make sure to modify the // interpreter, and both C1 and C2 fast-path inline locking code emission. // // ----------------------------------------------------------------------------- #ifdef DTRACE_ENABLED // Only bother with this argument setup if dtrace is available // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ char* bytes = NULL; \ int len = 0; \ jlong jtid = SharedRuntime::get_java_tid(thread); \ Symbol* klassname = ((oop)(obj))->klass()->name(); \ if (klassname != NULL) { \ bytes = (char*)klassname->bytes(); \ len = klassname->utf8_length(); \ } #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ { \ if (DTraceMonitorProbes) { \ DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ HOTSPOT_MONITOR_WAIT(jtid, \ (uintptr_t)(monitor), bytes, len, (millis)); \ } \ } #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ { \ if (DTraceMonitorProbes) { \ DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */ \ (uintptr_t)(monitor), bytes, len); \ } \ } #else // ndef DTRACE_ENABLED #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} #endif // ndef DTRACE_ENABLED // This exists only as a workaround of dtrace bug 6254741 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) { DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr); return 0; } #define NINFLATIONLOCKS 256 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS]; // global list of blocks of monitors PaddedObjectMonitor* volatile ObjectSynchronizer::g_block_list = NULL; bool volatile ObjectSynchronizer::_is_async_deflation_requested = false; bool volatile ObjectSynchronizer::_is_special_deflation_requested = false; jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0; // Global ObjectMonitor free list. Newly allocated and deflated // ObjectMonitors are prepended here. static ObjectMonitor* volatile g_free_list = NULL; // Global ObjectMonitor in-use list. When a JavaThread is exiting, // ObjectMonitors on its per-thread in-use list are prepended here. static ObjectMonitor* volatile g_om_in_use_list = NULL; static volatile intptr_t gListLock = 0; // protects global monitor lists static volatile int g_om_free_count = 0; // # on g_free_list static volatile int g_om_in_use_count = 0; // # on g_om_in_use_list static volatile int g_om_population = 0; // # Extant -- in circulation #define CHAINMARKER (cast_to_oop(-1)) // =====================> Quick functions // The quick_* forms are special fast-path variants used to improve // performance. In the simplest case, a "quick_*" implementation could // simply return false, in which case the caller will perform the necessary // state transitions and call the slow-path form. // The fast-path is designed to handle frequently arising cases in an efficient // manner and is just a degenerate "optimistic" variant of the slow-path. // returns true -- to indicate the call was satisfied. // returns false -- to indicate the call needs the services of the slow-path. // A no-loitering ordinance is in effect for code in the quick_* family // operators: safepoints or indefinite blocking (blocking that might span a // safepoint) are forbidden. Generally the thread_state() is _in_Java upon // entry. // // Consider: An interesting optimization is to have the JIT recognize the // following common idiom: // synchronized (someobj) { .... ; notify(); } // That is, we find a notify() or notifyAll() call that immediately precedes // the monitorexit operation. In that case the JIT could fuse the operations // into a single notifyAndExit() runtime primitive. bool ObjectSynchronizer::quick_notify(oopDesc* obj, Thread* self, bool all) { assert(!SafepointSynchronize::is_at_safepoint(), "invariant"); assert(self->is_Java_thread(), "invariant"); assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant"); NoSafepointVerifier nsv; if (obj == NULL) return false; // slow-path for invalid obj const markWord mark = obj->mark(); if (mark.has_locker() && self->is_lock_owned((address)mark.locker())) { // Degenerate notify // stack-locked by caller so by definition the implied waitset is empty. return true; } if (mark.has_monitor()) { ObjectMonitor* const mon = mark.monitor(); assert(oopDesc::equals((oop) mon->object(), obj), "invariant"); if (mon->owner() != self) return false; // slow-path for IMS exception if (mon->first_waiter() != NULL) { // We have one or more waiters. Since this is an inflated monitor // that we own, we can transfer one or more threads from the waitset // to the entrylist here and now, avoiding the slow-path. if (all) { DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self); } else { DTRACE_MONITOR_PROBE(notify, mon, obj, self); } int free_count = 0; do { mon->INotify(self); ++free_count; } while (mon->first_waiter() != NULL && all); OM_PERFDATA_OP(Notifications, inc(free_count)); } return true; } // biased locking and any other IMS exception states take the slow-path return false; } // The LockNode emitted directly at the synchronization site would have // been too big if it were to have included support for the cases of inflated // recursive enter and exit, so they go here instead. // Note that we can't safely call AsyncPrintJavaStack() from within // quick_enter() as our thread state remains _in_Java. bool ObjectSynchronizer::quick_enter(oop obj, Thread* self, BasicLock * lock) { assert(!SafepointSynchronize::is_at_safepoint(), "invariant"); assert(self->is_Java_thread(), "invariant"); assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant"); NoSafepointVerifier nsv; if (obj == NULL) return false; // Need to throw NPE while (true) { const markWord mark = obj->mark(); if (mark.has_monitor()) { ObjectMonitorHandle omh; if (!omh.save_om_ptr(obj, mark)) { // Lost a race with async deflation so try again. assert(AsyncDeflateIdleMonitors, "sanity check"); continue; } ObjectMonitor* const m = omh.om_ptr(); assert(oopDesc::equals((oop) m->object(), obj), "invariant"); Thread* const owner = (Thread *) m->_owner; // Lock contention and Transactional Lock Elision (TLE) diagnostics // and observability // Case: light contention possibly amenable to TLE // Case: TLE inimical operations such as nested/recursive synchronization if (owner == self) { m->_recursions++; return true; } // This Java Monitor is inflated so obj's header will never be // displaced to this thread's BasicLock. Make the displaced header // non-NULL so this BasicLock is not seen as recursive nor as // being locked. We do this unconditionally so that this thread's // BasicLock cannot be mis-interpreted by any stack walkers. For // performance reasons, stack walkers generally first check for // Biased Locking in the object's header, the second check is for // stack-locking in the object's header, the third check is for // recursive stack-locking in the displaced header in the BasicLock, // and last are the inflated Java Monitor (ObjectMonitor) checks. lock->set_displaced_header(markWord::unused_mark()); if (owner == NULL && Atomic::replace_if_null(self, &(m->_owner))) { assert(m->_recursions == 0, "invariant"); return true; } if (AsyncDeflateIdleMonitors && Atomic::cmpxchg(self, &m->_owner, DEFLATER_MARKER) == DEFLATER_MARKER) { // The deflation protocol finished the first part (setting owner), // but it failed the second part (making ref_count negative) and // bailed. Or the ObjectMonitor was async deflated and reused. // Acquired the monitor. assert(m->_recursions == 0, "invariant"); return true; } } break; } // Note that we could inflate in quick_enter. // This is likely a useful optimization // Critically, in quick_enter() we must not: // -- perform bias revocation, or // -- block indefinitely, or // -- reach a safepoint return false; // revert to slow-path } // ----------------------------------------------------------------------------- // Fast Monitor Enter/Exit // This the fast monitor enter. The interpreter and compiler use // some assembly copies of this code. Make sure update those code // if the following function is changed. The implementation is // extremely sensitive to race condition. Be careful. void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) { if (UseBiasedLocking) { if (!SafepointSynchronize::is_at_safepoint()) { BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD); if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) { return; } } else { assert(!attempt_rebias, "can not rebias toward VM thread"); BiasedLocking::revoke_at_safepoint(obj); } assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); } slow_enter(obj, lock, THREAD); } void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) { markWord mark = object->mark(); // We cannot check for Biased Locking if we are racing an inflation. assert(mark == markWord::INFLATING() || !mark.has_bias_pattern(), "should not see bias pattern here"); markWord dhw = lock->displaced_header(); if (dhw.value() == 0) { // If the displaced header is NULL, then this exit matches up with // a recursive enter. No real work to do here except for diagnostics. #ifndef PRODUCT if (mark != markWord::INFLATING()) { // Only do diagnostics if we are not racing an inflation. Simply // exiting a recursive enter of a Java Monitor that is being // inflated is safe; see the has_monitor() comment below. assert(!mark.is_neutral(), "invariant"); assert(!mark.has_locker() || THREAD->is_lock_owned((address)mark.locker()), "invariant"); if (mark.has_monitor()) { // The BasicLock's displaced_header is marked as a recursive // enter and we have an inflated Java Monitor (ObjectMonitor). // This is a special case where the Java Monitor was inflated // after this thread entered the stack-lock recursively. When a // Java Monitor is inflated, we cannot safely walk the Java // Monitor owner's stack and update the BasicLocks because a // Java Monitor can be asynchronously inflated by a thread that // does not own the Java Monitor. ObjectMonitor* m = mark.monitor(); assert(((oop)(m->object()))->mark() == mark, "invariant"); assert(m->is_entered(THREAD), "invariant"); } } #endif return; } if (mark == markWord::from_pointer(lock)) { // If the object is stack-locked by the current thread, try to // swing the displaced header from the BasicLock back to the mark. assert(dhw.is_neutral(), "invariant"); if (object->cas_set_mark(dhw, mark) == mark) { return; } } // We have to take the slow-path of possible inflation and then exit. ObjectMonitorHandle omh; inflate(&omh, THREAD, object, inflate_cause_vm_internal); omh.om_ptr()->exit(true, THREAD); } // ----------------------------------------------------------------------------- // Interpreter/Compiler Slow Case // This routine is used to handle interpreter/compiler slow case // We don't need to use fast path here, because it must have been // failed in the interpreter/compiler code. void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) { markWord mark = obj->mark(); assert(!mark.has_bias_pattern(), "should not see bias pattern here"); if (mark.is_neutral()) { // Anticipate successful CAS -- the ST of the displaced mark must // be visible <= the ST performed by the CAS. lock->set_displaced_header(mark); if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) { return; } // Fall through to inflate() ... } else if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) { assert(lock != mark.locker(), "must not re-lock the same lock"); assert(lock != (BasicLock*)obj->mark().value(), "don't relock with same BasicLock"); lock->set_displaced_header(markWord::from_pointer(NULL)); return; } // The object header will never be displaced to this lock, // so it does not matter what the value is, except that it // must be non-zero to avoid looking like a re-entrant lock, // and must not look locked either. lock->set_displaced_header(markWord::unused_mark()); ObjectMonitorHandle omh; inflate(&omh, THREAD, obj(), inflate_cause_monitor_enter); omh.om_ptr()->enter(THREAD); } // This routine is used to handle interpreter/compiler slow case // We don't need to use fast path here, because it must have // failed in the interpreter/compiler code. Simply use the heavy // weight monitor should be ok, unless someone find otherwise. void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) { fast_exit(object, lock, THREAD); } // ----------------------------------------------------------------------------- // Class Loader support to workaround deadlocks on the class loader lock objects // Also used by GC // complete_exit()/reenter() are used to wait on a nested lock // i.e. to give up an outer lock completely and then re-enter // Used when holding nested locks - lock acquisition order: lock1 then lock2 // 1) complete_exit lock1 - saving recursion count // 2) wait on lock2 // 3) when notified on lock2, unlock lock2 // 4) reenter lock1 with original recursion count // 5) lock lock2 // NOTE: must use heavy weight monitor to handle complete_exit/reenter() intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) { if (UseBiasedLocking) { BiasedLocking::revoke_and_rebias(obj, false, THREAD); assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); } ObjectMonitorHandle omh; inflate(&omh, THREAD, obj(), inflate_cause_vm_internal); intptr_t ret_code = omh.om_ptr()->complete_exit(THREAD); return ret_code; } // NOTE: must use heavy weight monitor to handle complete_exit/reenter() void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) { if (UseBiasedLocking) { BiasedLocking::revoke_and_rebias(obj, false, THREAD); assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); } ObjectMonitorHandle omh; inflate(&omh, THREAD, obj(), inflate_cause_vm_internal); omh.om_ptr()->reenter(recursion, THREAD); } // ----------------------------------------------------------------------------- // JNI locks on java objects // NOTE: must use heavy weight monitor to handle jni monitor enter void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { // the current locking is from JNI instead of Java code if (UseBiasedLocking) { BiasedLocking::revoke_and_rebias(obj, false, THREAD); assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); } THREAD->set_current_pending_monitor_is_from_java(false); ObjectMonitorHandle omh; inflate(&omh, THREAD, obj(), inflate_cause_jni_enter); omh.om_ptr()->enter(THREAD); THREAD->set_current_pending_monitor_is_from_java(true); } // NOTE: must use heavy weight monitor to handle jni monitor exit void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) { if (UseBiasedLocking) { Handle h_obj(THREAD, obj); BiasedLocking::revoke_and_rebias(h_obj, false, THREAD); obj = h_obj(); } assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); ObjectMonitorHandle omh; inflate(&omh, THREAD, obj, inflate_cause_jni_exit); ObjectMonitor* monitor = omh.om_ptr(); // If this thread has locked the object, exit the monitor. We // intentionally do not use CHECK here because we must exit the // monitor even if an exception is pending. if (monitor->check_owner(THREAD)) { monitor->exit(true, THREAD); } } // ----------------------------------------------------------------------------- // Internal VM locks on java objects // standard constructor, allows locking failures ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool do_lock) { _dolock = do_lock; _thread = thread; _thread->check_for_valid_safepoint_state(false); _obj = obj; if (_dolock) { ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread); } } ObjectLocker::~ObjectLocker() { if (_dolock) { ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread); } } // ----------------------------------------------------------------------------- // Wait/Notify/NotifyAll // NOTE: must use heavy weight monitor to handle wait() int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) { if (UseBiasedLocking) { BiasedLocking::revoke_and_rebias(obj, false, THREAD); assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); } if (millis < 0) { THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); } ObjectMonitorHandle omh; inflate(&omh, THREAD, obj(), inflate_cause_wait); ObjectMonitor* monitor = omh.om_ptr(); DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis); monitor->wait(millis, true, THREAD); // This dummy call is in place to get around dtrace bug 6254741. Once // that's fixed we can uncomment the following line, remove the call // and change this function back into a "void" func. // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD); int ret_code = dtrace_waited_probe(monitor, obj, THREAD); return ret_code; } void ObjectSynchronizer::wait_uninterruptibly(Handle obj, jlong millis, TRAPS) { if (UseBiasedLocking) { BiasedLocking::revoke_and_rebias(obj, false, THREAD); assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); } if (millis < 0) { THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); } ObjectMonitorHandle omh; inflate(&omh, THREAD, obj(), inflate_cause_wait); omh.om_ptr()->wait(millis, false, THREAD); } void ObjectSynchronizer::notify(Handle obj, TRAPS) { if (UseBiasedLocking) { BiasedLocking::revoke_and_rebias(obj, false, THREAD); assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); } markWord mark = obj->mark(); if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) { return; } ObjectMonitorHandle omh; inflate(&omh, THREAD, obj(), inflate_cause_notify); omh.om_ptr()->notify(THREAD); } // NOTE: see comment of notify() void ObjectSynchronizer::notifyall(Handle obj, TRAPS) { if (UseBiasedLocking) { BiasedLocking::revoke_and_rebias(obj, false, THREAD); assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); } markWord mark = obj->mark(); if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) { return; } ObjectMonitorHandle omh; inflate(&omh, THREAD, obj(), inflate_cause_notify); omh.om_ptr()->notifyAll(THREAD); } // ----------------------------------------------------------------------------- // Hash Code handling // // Performance concern: // OrderAccess::storestore() calls release() which at one time stored 0 // into the global volatile OrderAccess::dummy variable. This store was // unnecessary for correctness. Many threads storing into a common location // causes considerable cache migration or "sloshing" on large SMP systems. // As such, I avoided using OrderAccess::storestore(). In some cases // OrderAccess::fence() -- which incurs local latency on the executing // processor -- is a better choice as it scales on SMP systems. // // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for // a discussion of coherency costs. Note that all our current reference // platforms provide strong ST-ST order, so the issue is moot on IA32, // x64, and SPARC. // // As a general policy we use "volatile" to control compiler-based reordering // and explicit fences (barriers) to control for architectural reordering // performed by the CPU(s) or platform. struct SharedGlobals { char _pad_prefix[OM_CACHE_LINE_SIZE]; // These are highly shared mostly-read variables. // To avoid false-sharing they need to be the sole occupants of a cache line. volatile int stw_random; volatile int stw_cycle; DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int) * 2); // Hot RW variable -- Sequester to avoid false-sharing volatile int hc_sequence; DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int)); }; static SharedGlobals GVars; static int MonitorScavengeThreshold = 1000000; static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending static markWord read_stable_mark(oop obj) { markWord mark = obj->mark(); if (!mark.is_being_inflated()) { return mark; // normal fast-path return } int its = 0; for (;;) { markWord mark = obj->mark(); if (!mark.is_being_inflated()) { return mark; // normal fast-path return } // The object is being inflated by some other thread. // The caller of read_stable_mark() must wait for inflation to complete. // Avoid live-lock // TODO: consider calling SafepointSynchronize::do_call_back() while // spinning to see if there's a safepoint pending. If so, immediately // yielding or blocking would be appropriate. Avoid spinning while // there is a safepoint pending. // TODO: add inflation contention performance counters. // TODO: restrict the aggregate number of spinners. ++its; if (its > 10000 || !os::is_MP()) { if (its & 1) { os::naked_yield(); } else { // Note that the following code attenuates the livelock problem but is not // a complete remedy. A more complete solution would require that the inflating // thread hold the associated inflation lock. The following code simply restricts // the number of spinners to at most one. We'll have N-2 threads blocked // on the inflationlock, 1 thread holding the inflation lock and using // a yield/park strategy, and 1 thread in the midst of inflation. // A more refined approach would be to change the encoding of INFLATING // to allow encapsulation of a native thread pointer. Threads waiting for // inflation to complete would use CAS to push themselves onto a singly linked // list rooted at the markword. Once enqueued, they'd loop, checking a per-thread flag // and calling park(). When inflation was complete the thread that accomplished inflation // would detach the list and set the markword to inflated with a single CAS and // then for each thread on the list, set the flag and unpark() the thread. // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease // wakes at most one thread whereas we need to wake the entire list. int ix = (cast_from_oop(obj) >> 5) & (NINFLATIONLOCKS-1); int YieldThenBlock = 0; assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant"); assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant"); Thread::muxAcquire(gInflationLocks + ix, "gInflationLock"); while (obj->mark() == markWord::INFLATING()) { // Beware: NakedYield() is advisory and has almost no effect on some platforms // so we periodically call self->_ParkEvent->park(1). // We use a mixed spin/yield/block mechanism. if ((YieldThenBlock++) >= 16) { Thread::current()->_ParkEvent->park(1); } else { os::naked_yield(); } } Thread::muxRelease(gInflationLocks + ix); } } else { SpinPause(); // SMP-polite spinning } } } // hashCode() generation : // // Possibilities: // * MD5Digest of {obj,stw_random} // * CRC32 of {obj,stw_random} or any linear-feedback shift register function. // * A DES- or AES-style SBox[] mechanism // * One of the Phi-based schemes, such as: // 2654435761 = 2^32 * Phi (golden ratio) // HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ; // * A variation of Marsaglia's shift-xor RNG scheme. // * (obj ^ stw_random) is appealing, but can result // in undesirable regularity in the hashCode values of adjacent objects // (objects allocated back-to-back, in particular). This could potentially // result in hashtable collisions and reduced hashtable efficiency. // There are simple ways to "diffuse" the middle address bits over the // generated hashCode values: static inline intptr_t get_next_hash(Thread* self, oop obj) { intptr_t value = 0; if (hashCode == 0) { // This form uses global Park-Miller RNG. // On MP system we'll have lots of RW access to a global, so the // mechanism induces lots of coherency traffic. value = os::random(); } else if (hashCode == 1) { // This variation has the property of being stable (idempotent) // between STW operations. This can be useful in some of the 1-0 // synchronization schemes. intptr_t addr_bits = cast_from_oop(obj) >> 3; value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random; } else if (hashCode == 2) { value = 1; // for sensitivity testing } else if (hashCode == 3) { value = ++GVars.hc_sequence; } else if (hashCode == 4) { value = cast_from_oop(obj); } else { // Marsaglia's xor-shift scheme with thread-specific state // This is probably the best overall implementation -- we'll // likely make this the default in future releases. unsigned t = self->_hashStateX; t ^= (t << 11); self->_hashStateX = self->_hashStateY; self->_hashStateY = self->_hashStateZ; self->_hashStateZ = self->_hashStateW; unsigned v = self->_hashStateW; v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)); self->_hashStateW = v; value = v; } value &= markWord::hash_mask; if (value == 0) value = 0xBAD; assert(value != markWord::no_hash, "invariant"); return value; } intptr_t ObjectSynchronizer::FastHashCode(Thread* self, oop obj) { if (UseBiasedLocking) { // NOTE: many places throughout the JVM do not expect a safepoint // to be taken here, in particular most operations on perm gen // objects. However, we only ever bias Java instances and all of // the call sites of identity_hash that might revoke biases have // been checked to make sure they can handle a safepoint. The // added check of the bias pattern is to avoid useless calls to // thread-local storage. if (obj->mark().has_bias_pattern()) { // Handle for oop obj in case of STW safepoint Handle hobj(self, obj); // Relaxing assertion for bug 6320749. assert(Universe::verify_in_progress() || !SafepointSynchronize::is_at_safepoint(), "biases should not be seen by VM thread here"); BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current()); obj = hobj(); assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); } } // hashCode() is a heap mutator ... // Relaxing assertion for bug 6320749. assert(Universe::verify_in_progress() || DumpSharedSpaces || !SafepointSynchronize::is_at_safepoint(), "invariant"); assert(Universe::verify_in_progress() || DumpSharedSpaces || self->is_Java_thread() , "invariant"); assert(Universe::verify_in_progress() || DumpSharedSpaces || ((JavaThread *)self)->thread_state() != _thread_blocked, "invariant"); while (true) { ObjectMonitor* monitor = NULL; markWord temp, test; intptr_t hash; markWord mark = read_stable_mark(obj); // object should remain ineligible for biased locking assert(!mark.has_bias_pattern(), "invariant"); if (mark.is_neutral()) { hash = mark.hash(); // this is a normal header if (hash != 0) { // if it has hash, just return it return hash; } hash = get_next_hash(self, obj); // allocate a new hash code temp = mark.copy_set_hash(hash); // merge the hash code into header // use (machine word version) atomic operation to install the hash test = obj->cas_set_mark(temp, mark); if (test == mark) { return hash; } // If atomic operation failed, we must inflate the header // into heavy weight monitor. We could add more code here // for fast path, but it does not worth the complexity. } else if (mark.has_monitor()) { ObjectMonitorHandle omh; if (!omh.save_om_ptr(obj, mark)) { // Lost a race with async deflation so try again. assert(AsyncDeflateIdleMonitors, "sanity check"); continue; } monitor = omh.om_ptr(); temp = monitor->header(); assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); hash = temp.hash(); if (hash != 0) { return hash; } // Skip to the following code to reduce code size } else if (self->is_lock_owned((address)mark.locker())) { temp = mark.displaced_mark_helper(); // this is a lightweight monitor owned assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); hash = temp.hash(); // by current thread, check if the displaced if (hash != 0) { // header contains hash code return hash; } // WARNING: // The displaced header in the BasicLock on a thread's stack // is strictly immutable. It CANNOT be changed in ANY cases. // So we have to inflate the stack lock into an ObjectMonitor // even if the current thread owns the lock. The BasicLock on // a thread's stack can be asynchronously read by other threads // during an inflate() call so any change to that stack memory // may not propagate to other threads correctly. } // Inflate the monitor to set hash code ObjectMonitorHandle omh; inflate(&omh, self, obj, inflate_cause_hash_code); monitor = omh.om_ptr(); // Load displaced header and check it has hash code mark = monitor->header(); assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); hash = mark.hash(); if (hash == 0) { hash = get_next_hash(self, obj); temp = mark.copy_set_hash(hash); // merge hash code into header assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); uintptr_t v = Atomic::cmpxchg(temp.value(), (volatile uintptr_t*)monitor->header_addr(), mark.value()); test = markWord(v); if (test != mark) { // The only non-deflation update to the ObjectMonitor's // header/dmw field is to merge in the hash code. If someone // adds a new usage of the header/dmw field, please update // this code. // ObjectMonitor::install_displaced_markword_in_object() // does mark the header/dmw field as part of async deflation, // but that protocol cannot happen now due to the // ObjectMonitorHandle above. hash = test.hash(); assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value()); assert(hash != 0, "Trivial unexpected object/monitor header usage."); } } // We finally get the hash return hash; } } // Deprecated -- use FastHashCode() instead. intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) { return FastHashCode(Thread::current(), obj()); } bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread, Handle h_obj) { if (UseBiasedLocking) { BiasedLocking::revoke_and_rebias(h_obj, false, thread); assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now"); } assert(thread == JavaThread::current(), "Can only be called on current thread"); oop obj = h_obj(); while (true) { markWord mark = read_stable_mark(obj); // Uncontended case, header points to stack if (mark.has_locker()) { return thread->is_lock_owned((address)mark.locker()); } // Contended case, header points to ObjectMonitor (tagged pointer) if (mark.has_monitor()) { ObjectMonitorHandle omh; if (!omh.save_om_ptr(obj, mark)) { // Lost a race with async deflation so try again. assert(AsyncDeflateIdleMonitors, "sanity check"); continue; } bool ret_code = omh.om_ptr()->is_entered(thread) != 0; return ret_code; } // Unlocked case, header in place assert(mark.is_neutral(), "sanity check"); return false; } } // Be aware of this method could revoke bias of the lock object. // This method queries the ownership of the lock handle specified by 'h_obj'. // If the current thread owns the lock, it returns owner_self. If no // thread owns the lock, it returns owner_none. Otherwise, it will return // owner_other. ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership (JavaThread *self, Handle h_obj) { // The caller must beware this method can revoke bias, and // revocation can result in a safepoint. assert(!SafepointSynchronize::is_at_safepoint(), "invariant"); assert(self->thread_state() != _thread_blocked, "invariant"); // Possible mark states: neutral, biased, stack-locked, inflated if (UseBiasedLocking && h_obj()->mark().has_bias_pattern()) { // CASE: biased BiasedLocking::revoke_and_rebias(h_obj, false, self); assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now"); } assert(self == JavaThread::current(), "Can only be called on current thread"); oop obj = h_obj(); while (true) { markWord mark = read_stable_mark(obj); // CASE: stack-locked. Mark points to a BasicLock on the owner's stack. if (mark.has_locker()) { return self->is_lock_owned((address)mark.locker()) ? owner_self : owner_other; } // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor. // The Object:ObjectMonitor relationship is stable as long as we're // not at a safepoint and AsyncDeflateIdleMonitors is false. if (mark.has_monitor()) { ObjectMonitorHandle omh; if (!omh.save_om_ptr(obj, mark)) { // Lost a race with async deflation so try again. assert(AsyncDeflateIdleMonitors, "sanity check"); continue; } ObjectMonitor* monitor = omh.om_ptr(); void* owner = monitor->_owner; if (owner == NULL) return owner_none; return (owner == self || self->is_lock_owned((address)owner)) ? owner_self : owner_other; } // CASE: neutral assert(mark.is_neutral(), "sanity check"); return owner_none; // it's unlocked } } // FIXME: jvmti should call this JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) { if (UseBiasedLocking) { if (SafepointSynchronize::is_at_safepoint()) { BiasedLocking::revoke_at_safepoint(h_obj); } else { BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current()); } assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now"); } oop obj = h_obj(); while (true) { address owner = NULL; markWord mark = read_stable_mark(obj); // Uncontended case, header points to stack if (mark.has_locker()) { owner = (address) mark.locker(); } // Contended case, header points to ObjectMonitor (tagged pointer) else if (mark.has_monitor()) { ObjectMonitorHandle omh; if (!omh.save_om_ptr(obj, mark)) { // Lost a race with async deflation so try again. assert(AsyncDeflateIdleMonitors, "sanity check"); continue; } ObjectMonitor* monitor = omh.om_ptr(); assert(monitor != NULL, "monitor should be non-null"); owner = (address) monitor->owner(); } if (owner != NULL) { // owning_thread_from_monitor_owner() may also return NULL here return Threads::owning_thread_from_monitor_owner(t_list, owner); } // Unlocked case, header in place // Cannot have assertion since this object may have been // locked by another thread when reaching here. // assert(mark.is_neutral(), "sanity check"); return NULL; } } // Visitors ... void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) { PaddedObjectMonitor* block = OrderAccess::load_acquire(&g_block_list); while (block != NULL) { assert(block->object() == CHAINMARKER, "must be a block header"); for (int i = _BLOCKSIZE - 1; i > 0; i--) { ObjectMonitor* mid = (ObjectMonitor *)(block + i); if (mid->is_active()) { ObjectMonitorHandle omh(mid); if (mid->object() == NULL || (AsyncDeflateIdleMonitors && mid->ref_count() < 0)) { // Only process with closure if the object is set. // For async deflation, race here if monitor is not owned! // The above ref_count bump (in ObjectMonitorHandle ctr) // will cause subsequent async deflation to skip it. // However, previous or concurrent async deflation is a race // so skip this ObjectMonitor if it is being async deflated. continue; } closure->do_monitor(mid); } } block = (PaddedObjectMonitor*)block->_next_om; } } static bool monitors_used_above_threshold() { if (g_om_population == 0) { return false; } if (MonitorUsedDeflationThreshold > 0) { int monitors_used = g_om_population - g_om_free_count; int monitor_usage = (monitors_used * 100LL) / g_om_population; return monitor_usage > MonitorUsedDeflationThreshold; } return false; } // Returns true if MonitorBound is set (> 0) and if the specified // cnt is > MonitorBound. Otherwise returns false. static bool is_MonitorBound_exceeded(const int cnt) { const int mx = MonitorBound; return mx > 0 && cnt > mx; } bool ObjectSynchronizer::is_async_deflation_needed() { if (!AsyncDeflateIdleMonitors) { return false; } if (is_async_deflation_requested()) { // Async deflation request. return true; } if (AsyncDeflationInterval > 0 && time_since_last_async_deflation_ms() > AsyncDeflationInterval && monitors_used_above_threshold()) { // It's been longer than our specified deflate interval and there // are too many monitors in use. We don't deflate more frequently // than AsyncDeflationInterval (unless is_async_deflation_requested) // in order to not swamp the ServiceThread. _last_async_deflation_time_ns = os::javaTimeNanos(); return true; } if (is_MonitorBound_exceeded(g_om_population - g_om_free_count)) { // Not enough ObjectMonitors on the global free list. return true; } return false; } bool ObjectSynchronizer::is_safepoint_deflation_needed() { if (!AsyncDeflateIdleMonitors) { if (monitors_used_above_threshold()) { // Too many monitors in use. return true; } return false; } if (is_special_deflation_requested()) { // For AsyncDeflateIdleMonitors only do a safepoint deflation // if there is a special deflation request. return true; } return false; } jlong ObjectSynchronizer::time_since_last_async_deflation_ms() { return (os::javaTimeNanos() - _last_async_deflation_time_ns) / (NANOUNITS / MILLIUNITS); } void ObjectSynchronizer::oops_do(OopClosure* f) { // We only scan the global used list here (for moribund threads), and // the thread-local monitors in Thread::oops_do(). global_used_oops_do(f); } void ObjectSynchronizer::global_used_oops_do(OopClosure* f) { assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint"); list_oops_do(g_om_in_use_list, f); } void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) { assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint"); list_oops_do(thread->om_in_use_list, f); } void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) { assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint"); // The oops_do() phase does not overlap with monitor deflation // so no need to update the ObjectMonitor's ref_count for this // ObjectMonitor* use. for (ObjectMonitor* mid = list; mid != NULL; mid = mid->_next_om) { if (mid->object() != NULL) { f->do_oop((oop*)mid->object_addr()); } } } // ----------------------------------------------------------------------------- // ObjectMonitor Lifecycle // ----------------------- // Inflation unlinks monitors from the global g_free_list and // associates them with objects. Deflation -- which occurs at // STW-time -- disassociates idle monitors from objects. Such // scavenged monitors are returned to the g_free_list. // // The global list is protected by gListLock. All the critical sections // are short and operate in constant-time. // // ObjectMonitors reside in type-stable memory (TSM) and are immortal. // // Lifecycle: // -- unassigned and on the global free list // -- unassigned and on a thread's private om_free_list // -- assigned to an object. The object is inflated and the mark refers // to the objectmonitor. // Constraining monitor pool growth via MonitorBound ... // // If MonitorBound is not set (<= 0), MonitorBound checks are disabled. // // When safepoint deflation is being used (!AsyncDeflateIdleMonitors): // The monitor pool is grow-only. We scavenge at STW safepoint-time, but the // the rate of scavenging is driven primarily by GC. As such, we can find // an inordinate number of monitors in circulation. // To avoid that scenario we can artificially induce a STW safepoint // if the pool appears to be growing past some reasonable bound. // Generally we favor time in space-time tradeoffs, but as there's no // natural back-pressure on the # of extant monitors we need to impose some // type of limit. Beware that if MonitorBound is set to too low a value // we could just loop. In addition, if MonitorBound is set to a low value // we'll incur more safepoints, which are harmful to performance. // See also: GuaranteedSafepointInterval // // The current implementation uses asynchronous VM operations. // // When safepoint deflation is being used and MonitorBound is set, the // boundry applies to // (g_om_population - g_om_free_count) // i.e., if there are not enough ObjectMonitors on the global free list, // then a safepoint deflation is induced. Picking a good MonitorBound value // is non-trivial. // // When async deflation is being used: // The monitor pool is still grow-only. Async deflation is requested // by a safepoint's cleanup phase or by the ServiceThread at periodic // intervals when is_async_deflation_needed() returns true. In // addition to other policies that are checked, if there are not // enough ObjectMonitors on the global free list, then // is_async_deflation_needed() will return true. The ServiceThread // calls deflate_global_idle_monitors_using_JT() and also sets the // per-thread om_request_deflation flag as needed. static void InduceScavenge(Thread* self, const char * Whence) { assert(!AsyncDeflateIdleMonitors, "is not used by async deflation"); // Induce STW safepoint to trim monitors // Ultimately, this results in a call to deflate_idle_monitors() in the near future. // More precisely, trigger an asynchronous STW safepoint as the number // of active monitors passes the specified threshold. // TODO: assert thread state is reasonable if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) { // Induce a 'null' safepoint to scavenge monitors // Must VM_Operation instance be heap allocated as the op will be enqueue and posted // to the VMthread and have a lifespan longer than that of this activation record. // The VMThread will delete the op when completed. VMThread::execute(new VM_ScavengeMonitors()); } } ObjectMonitor* ObjectSynchronizer::om_alloc(Thread* self, const InflateCause cause) { // A large MAXPRIVATE value reduces both list lock contention // and list coherency traffic, but also tends to increase the // number of ObjectMonitors in circulation as well as the STW // scavenge costs. As usual, we lean toward time in space-time // tradeoffs. const int MAXPRIVATE = 1024; if (AsyncDeflateIdleMonitors) { JavaThread* jt = (JavaThread *)self; if (jt->om_request_deflation && jt->om_in_use_count > 0 && cause != inflate_cause_vm_internal) { // Deflate any per-thread idle monitors for this JavaThread if // this is not an internal inflation; internal inflations can // occur in places where it is not safe to pause for a safepoint. // Clean up your own mess (Gibbs Rule 45). Otherwise, skip this // deflation. deflate_global_idle_monitors_using_JT() is called // by the ServiceThread. Per-thread async deflation is triggered // by the ServiceThread via om_request_deflation. debug_only(jt->check_for_valid_safepoint_state(false);) ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT(jt); } } stringStream ss; for (;;) { ObjectMonitor* m; // 1: try to allocate from the thread's local om_free_list. // Threads will attempt to allocate first from their local list, then // from the global list, and only after those attempts fail will the thread // attempt to instantiate new monitors. Thread-local free lists take // heat off the gListLock and improve allocation latency, as well as reducing // coherency traffic on the shared global list. m = self->om_free_list; if (m != NULL) { self->om_free_list = m->_next_om; self->om_free_count--; guarantee(m->object() == NULL, "invariant"); m->set_allocation_state(ObjectMonitor::New); m->_next_om = self->om_in_use_list; self->om_in_use_list = m; self->om_in_use_count++; return m; } // 2: try to allocate from the global g_free_list // CONSIDER: use muxTry() instead of muxAcquire(). // If the muxTry() fails then drop immediately into case 3. // If we're using thread-local free lists then try // to reprovision the caller's free list. if (g_free_list != NULL) { // Reprovision the thread's om_free_list. // Use bulk transfers to reduce the allocation rate and heat // on various locks. Thread::muxAcquire(&gListLock, "om_alloc(1)"); for (int i = self->om_free_provision; --i >= 0 && g_free_list != NULL;) { g_om_free_count--; ObjectMonitor* take = g_free_list; g_free_list = take->_next_om; guarantee(take->object() == NULL, "invariant"); if (AsyncDeflateIdleMonitors) { // We allowed 3 field values to linger during async deflation. // We clear header and restore ref_count here, but we leave // owner == DEFLATER_MARKER so the simple C2 ObjectMonitor // enter optimization can no longer race with async deflation // and reuse. take->set_header(markWord::zero()); if (take->ref_count() < 0) { // Add back max_jint to restore the ref_count field to its // proper value. Atomic::add(max_jint, &take->_ref_count); assert(take->ref_count() >= 0, "must not be negative: ref_count=%d", take->ref_count()); } } take->Recycle(); assert(take->is_free(), "invariant"); om_release(self, take, false); } Thread::muxRelease(&gListLock); self->om_free_provision += 1 + (self->om_free_provision/2); if (self->om_free_provision > MAXPRIVATE) self->om_free_provision = MAXPRIVATE; if (!AsyncDeflateIdleMonitors && is_MonitorBound_exceeded(g_om_population - g_om_free_count)) { // Not enough ObjectMonitors on the global free list. // We can't safely induce a STW safepoint from om_alloc() as our thread // state may not be appropriate for such activities and callers may hold // naked oops, so instead we defer the action. InduceScavenge(self, "om_alloc"); } continue; } // 3: allocate a block of new ObjectMonitors // Both the local and global free lists are empty -- resort to malloc(). // In the current implementation ObjectMonitors are TSM - immortal. // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want // each ObjectMonitor to start at the beginning of a cache line, // so we use align_up(). // A better solution would be to use C++ placement-new. // BEWARE: As it stands currently, we don't run the ctors! assert(_BLOCKSIZE > 1, "invariant"); size_t neededsize = sizeof(PaddedObjectMonitor) * _BLOCKSIZE; PaddedObjectMonitor* temp; size_t aligned_size = neededsize + (OM_CACHE_LINE_SIZE - 1); void* real_malloc_addr = (void*)NEW_C_HEAP_ARRAY(char, aligned_size, mtInternal); temp = (PaddedObjectMonitor*)align_up(real_malloc_addr, OM_CACHE_LINE_SIZE); // NOTE: (almost) no way to recover if allocation failed. // We might be able to induce a STW safepoint and scavenge enough // ObjectMonitors to permit progress. if (temp == NULL) { vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR, "Allocate ObjectMonitors"); } (void)memset((void *) temp, 0, neededsize); // Format the block. // initialize the linked list, each monitor points to its next // forming the single linked free list, the very first monitor // will points to next block, which forms the block list. // The trick of using the 1st element in the block as g_block_list // linkage should be reconsidered. A better implementation would // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; } for (int i = 1; i < _BLOCKSIZE; i++) { temp[i]._next_om = (ObjectMonitor *)&temp[i+1]; assert(temp[i].is_free(), "invariant"); } // terminate the last monitor as the end of list temp[_BLOCKSIZE - 1]._next_om = NULL; // Element [0] is reserved for global list linkage temp[0].set_object(CHAINMARKER); // Consider carving out this thread's current request from the // block in hand. This avoids some lock traffic and redundant // list activity. // Acquire the gListLock to manipulate g_block_list and g_free_list. // An Oyama-Taura-Yonezawa scheme might be more efficient. Thread::muxAcquire(&gListLock, "om_alloc(2)"); g_om_population += _BLOCKSIZE-1; g_om_free_count += _BLOCKSIZE-1; // Add the new block to the list of extant blocks (g_block_list). // The very first ObjectMonitor in a block is reserved and dedicated. // It serves as blocklist "next" linkage. temp[0]._next_om = g_block_list; // There are lock-free uses of g_block_list so make sure that // the previous stores happen before we update g_block_list. OrderAccess::release_store(&g_block_list, temp); // Add the new string of ObjectMonitors to the global free list temp[_BLOCKSIZE - 1]._next_om = g_free_list; g_free_list = temp + 1; Thread::muxRelease(&gListLock); } } // Place "m" on the caller's private per-thread om_free_list. // In practice there's no need to clamp or limit the number of // monitors on a thread's om_free_list as the only non-allocation time // we'll call om_release() is to return a monitor to the free list after // a CAS attempt failed. This doesn't allow unbounded #s of monitors to // accumulate on a thread's free list. // // Key constraint: all ObjectMonitors on a thread's free list and the global // free list must have their object field set to null. This prevents the // scavenger -- deflate_monitor_list() or deflate_monitor_list_using_JT() // -- from reclaiming them while we are trying to release them. void ObjectSynchronizer::om_release(Thread* self, ObjectMonitor* m, bool from_per_thread_alloc) { guarantee(m->header().value() == 0, "invariant"); guarantee(m->object() == NULL, "invariant"); stringStream ss; guarantee((m->is_busy() | m->_recursions) == 0, "freeing in-use monitor: " "%s, recursions=" INTPTR_FORMAT, m->is_busy_to_string(&ss), m->_recursions); m->set_allocation_state(ObjectMonitor::Free); // _next_om is used for both per-thread in-use and free lists so // we have to remove 'm' from the in-use list first (as needed). if (from_per_thread_alloc) { // Need to remove 'm' from om_in_use_list. ObjectMonitor* cur_mid_in_use = NULL; bool extracted = false; for (ObjectMonitor* mid = self->om_in_use_list; mid != NULL; cur_mid_in_use = mid, mid = mid->_next_om) { if (m == mid) { // extract from per-thread in-use list if (mid == self->om_in_use_list) { self->om_in_use_list = mid->_next_om; } else if (cur_mid_in_use != NULL) { cur_mid_in_use->_next_om = mid->_next_om; // maintain the current thread in-use list } extracted = true; self->om_in_use_count--; break; } } assert(extracted, "Should have extracted from in-use list"); } m->_next_om = self->om_free_list; guarantee(m->is_free(), "invariant"); self->om_free_list = m; self->om_free_count++; } // Return ObjectMonitors on a moribund thread's free and in-use // lists to the appropriate global lists. The ObjectMonitors on the // per-thread in-use list may still be in use by other threads. // // We currently call om_flush() from Threads::remove() before the // thread has been excised from the thread list and is no longer a // mutator. This means that om_flush() cannot run concurrently with // a safepoint and interleave with deflate_idle_monitors(). In // particular, this ensures that the thread's in-use monitors are // scanned by a GC safepoint, either via Thread::oops_do() (before // om_flush() is called) or via ObjectSynchronizer::oops_do() (after // om_flush() is called). // // With AsyncDeflateIdleMonitors, deflate_global_idle_monitors_using_JT() // and deflate_per_thread_idle_monitors_using_JT() (in another thread) can // run at the same time as om_flush() so we have to be careful. void ObjectSynchronizer::om_flush(Thread* self) { int in_use_count = 0; ObjectMonitor* in_use_list = self->om_in_use_list; ObjectMonitor* in_use_tail = NULL; if (in_use_list != NULL) { // The thread is going away, however the ObjectMonitors on the // om_in_use_list may still be in-use by other threads. Link // them to in_use_tail, which will be linked into the global // in-use list g_om_in_use_list below, under the gListLock. for (ObjectMonitor* cur_om = in_use_list; cur_om != NULL; cur_om = cur_om->_next_om) { in_use_tail = cur_om; in_use_count++; ADIM_guarantee(cur_om->is_active(), "invariant"); } guarantee(in_use_tail != NULL, "invariant"); ADIM_guarantee(self->om_in_use_count == in_use_count, "in-use count off"); self->om_in_use_list = NULL; self->om_in_use_count = 0; } int free_count = 0; ObjectMonitor* free_list = self->om_free_list; ObjectMonitor* free_tail = NULL; if (free_list != NULL) { // The thread is going away. Set 'free_tail' to the last per-thread free // monitor which will be linked to g_free_list below under the gListLock. stringStream ss; for (ObjectMonitor* s = free_list; s != NULL; s = s->_next_om) { free_count++; free_tail = s; guarantee(s->object() == NULL, "invariant"); guarantee(!s->is_busy(), "must be !is_busy: %s", s->is_busy_to_string(&ss)); } guarantee(free_tail != NULL, "invariant"); ADIM_guarantee(self->om_free_count == free_count, "free-count off"); self->om_free_list = NULL; self->om_free_count = 0; } Thread::muxAcquire(&gListLock, "om_flush"); if (free_tail != NULL) { free_tail->_next_om = g_free_list; g_free_list = free_list; g_om_free_count += free_count; } if (in_use_tail != NULL) { in_use_tail->_next_om = g_om_in_use_list; g_om_in_use_list = in_use_list; g_om_in_use_count += in_use_count; } Thread::muxRelease(&gListLock); LogStreamHandle(Debug, monitorinflation) lsh_debug; LogStreamHandle(Info, monitorinflation) lsh_info; LogStream* ls = NULL; if (log_is_enabled(Debug, monitorinflation)) { ls = &lsh_debug; } else if ((free_count != 0 || in_use_count != 0) && log_is_enabled(Info, monitorinflation)) { ls = &lsh_info; } if (ls != NULL) { ls->print_cr("om_flush: jt=" INTPTR_FORMAT ", free_count=%d" ", in_use_count=%d" ", om_free_provision=%d", p2i(self), free_count, in_use_count, self->om_free_provision); } } static void post_monitor_inflate_event(EventJavaMonitorInflate* event, const oop obj, ObjectSynchronizer::InflateCause cause) { assert(event != NULL, "invariant"); assert(event->should_commit(), "invariant"); event->set_monitorClass(obj->klass()); event->set_address((uintptr_t)(void*)obj); event->set_cause((u1)cause); event->commit(); } // Fast path code shared by multiple functions void ObjectSynchronizer::inflate_helper(ObjectMonitorHandle* omh_p, oop obj) { while (true) { markWord mark = obj->mark(); if (mark.has_monitor()) { if (!omh_p->save_om_ptr(obj, mark)) { // Lost a race with async deflation so try again. assert(AsyncDeflateIdleMonitors, "sanity check"); continue; } ObjectMonitor* monitor = omh_p->om_ptr(); assert(ObjectSynchronizer::verify_objmon_isinpool(monitor), "monitor is invalid"); markWord dmw = monitor->header(); assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value()); return; } inflate(omh_p, Thread::current(), obj, inflate_cause_vm_internal); return; } } void ObjectSynchronizer::inflate(ObjectMonitorHandle* omh_p, Thread* self, oop object, const InflateCause cause) { // Inflate mutates the heap ... // Relaxing assertion for bug 6320749. assert(Universe::verify_in_progress() || !SafepointSynchronize::is_at_safepoint(), "invariant"); EventJavaMonitorInflate event; for (;;) { const markWord mark = object->mark(); assert(!mark.has_bias_pattern(), "invariant"); // The mark can be in one of the following states: // * Inflated - just return // * Stack-locked - coerce it to inflated // * INFLATING - busy wait for conversion to complete // * Neutral - aggressively inflate the object. // * BIASED - Illegal. We should never see this // CASE: inflated if (mark.has_monitor()) { if (!omh_p->save_om_ptr(object, mark)) { // Lost a race with async deflation so try again. assert(AsyncDeflateIdleMonitors, "sanity check"); continue; } ObjectMonitor* inf = omh_p->om_ptr(); markWord dmw = inf->header(); assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); assert(oopDesc::equals((oop) inf->object(), object), "invariant"); assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid"); return; } // CASE: inflation in progress - inflating over a stack-lock. // Some other thread is converting from stack-locked to inflated. // Only that thread can complete inflation -- other threads must wait. // The INFLATING value is transient. // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish. // We could always eliminate polling by parking the thread on some auxiliary list. if (mark == markWord::INFLATING()) { read_stable_mark(object); continue; } // CASE: stack-locked // Could be stack-locked either by this thread or by some other thread. // // Note that we allocate the objectmonitor speculatively, _before_ attempting // to install INFLATING into the mark word. We originally installed INFLATING, // allocated the objectmonitor, and then finally STed the address of the // objectmonitor into the mark. This was correct, but artificially lengthened // the interval in which INFLATED appeared in the mark, thus increasing // the odds of inflation contention. // // We now use per-thread private objectmonitor free lists. // These list are reprovisioned from the global free list outside the // critical INFLATING...ST interval. A thread can transfer // multiple objectmonitors en-mass from the global free list to its local free list. // This reduces coherency traffic and lock contention on the global free list. // Using such local free lists, it doesn't matter if the om_alloc() call appears // before or after the CAS(INFLATING) operation. // See the comments in om_alloc(). LogStreamHandle(Trace, monitorinflation) lsh; if (mark.has_locker()) { ObjectMonitor* m; if (!AsyncDeflateIdleMonitors || cause == inflate_cause_vm_internal) { // If !AsyncDeflateIdleMonitors or if an internal inflation, then // we won't stop for a potential safepoint in om_alloc. m = om_alloc(self, cause); } else { // If AsyncDeflateIdleMonitors and not an internal inflation, then // we may stop for a safepoint in om_alloc() so protect object. Handle h_obj(self, object); m = om_alloc(self, cause); object = h_obj(); // Refresh object. } // Optimistically prepare the objectmonitor - anticipate successful CAS // We do this before the CAS in order to minimize the length of time // in which INFLATING appears in the mark. m->Recycle(); m->_Responsible = NULL; m->_SpinDuration = ObjectMonitor::Knob_SpinLimit; // Consider: maintain by type/class markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark); if (cmp != mark) { om_release(self, m, true); continue; // Interference -- just retry } // We've successfully installed INFLATING (0) into the mark-word. // This is the only case where 0 will appear in a mark-word. // Only the singular thread that successfully swings the mark-word // to 0 can perform (or more precisely, complete) inflation. // // Why do we CAS a 0 into the mark-word instead of just CASing the // mark-word from the stack-locked value directly to the new inflated state? // Consider what happens when a thread unlocks a stack-locked object. // It attempts to use CAS to swing the displaced header value from the // on-stack BasicLock back into the object header. Recall also that the // header value (hash code, etc) can reside in (a) the object header, or // (b) a displaced header associated with the stack-lock, or (c) a displaced // header in an ObjectMonitor. The inflate() routine must copy the header // value from the BasicLock on the owner's stack to the ObjectMonitor, all // the while preserving the hashCode stability invariants. If the owner // decides to release the lock while the value is 0, the unlock will fail // and control will eventually pass from slow_exit() to inflate. The owner // will then spin, waiting for the 0 value to disappear. Put another way, // the 0 causes the owner to stall if the owner happens to try to // drop the lock (restoring the header from the BasicLock to the object) // while inflation is in-progress. This protocol avoids races that might // would otherwise permit hashCode values to change or "flicker" for an object. // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable. // 0 serves as a "BUSY" inflate-in-progress indicator. // fetch the displaced mark from the owner's stack. // The owner can't die or unwind past the lock while our INFLATING // object is in the mark. Furthermore the owner can't complete // an unlock on the object, either. markWord dmw = mark.displaced_mark_helper(); // Catch if the object's header is not neutral (not locked and // not marked is what we care about here). ADIM_guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); // Setup monitor fields to proper values -- prepare the monitor m->set_header(dmw); // Optimization: if the mark.locker stack address is associated // with this thread we could simply set m->_owner = self. // Note that a thread can inflate an object // that it has stack-locked -- as might happen in wait() -- directly // with CAS. That is, we can avoid the xchg-NULL .... ST idiom. m->set_owner(mark.locker()); m->set_object(object); // TODO-FIXME: assert BasicLock->dhw != 0. omh_p->set_om_ptr(m); assert(m->is_new(), "freshly allocated monitor must be new"); m->set_allocation_state(ObjectMonitor::Old); // Must preserve store ordering. The monitor state must // be stable at the time of publishing the monitor address. guarantee(object->mark() == markWord::INFLATING(), "invariant"); object->release_set_mark(markWord::encode(m)); // Hopefully the performance counters are allocated on distinct cache lines // to avoid false sharing on MP systems ... OM_PERFDATA_OP(Inflations, inc()); if (log_is_enabled(Trace, monitorinflation)) { ResourceMark rm(self); lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", type='%s'", p2i(object), object->mark().value(), object->klass()->external_name()); } if (event.should_commit()) { post_monitor_inflate_event(&event, object, cause); } ADIM_guarantee(!m->is_free(), "inflated monitor to be returned cannot be free"); return; } // CASE: neutral // TODO-FIXME: for entry we currently inflate and then try to CAS _owner. // If we know we're inflating for entry it's better to inflate by swinging a // pre-locked ObjectMonitor pointer into the object header. A successful // CAS inflates the object *and* confers ownership to the inflating thread. // In the current implementation we use a 2-step mechanism where we CAS() // to inflate and then CAS() again to try to swing _owner from NULL to self. // An inflateTry() method that we could call from fast_enter() and slow_enter() // would be useful. // Catch if the object's header is not neutral (not locked and // not marked is what we care about here). ADIM_guarantee(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); ObjectMonitor* m; if (!AsyncDeflateIdleMonitors || cause == inflate_cause_vm_internal) { // If !AsyncDeflateIdleMonitors or if an internal inflation, then // we won't stop for a potential safepoint in om_alloc. m = om_alloc(self, cause); } else { // If AsyncDeflateIdleMonitors and not an internal inflation, then // we may stop for a safepoint in om_alloc() so protect object. Handle h_obj(self, object); m = om_alloc(self, cause); object = h_obj(); // Refresh object. } // prepare m for installation - set monitor to initial state m->Recycle(); m->set_header(mark); // If we leave _owner == DEFLATER_MARKER here, then the simple C2 // ObjectMonitor enter optimization can no longer race with async // deflation and reuse. m->set_object(object); m->_Responsible = NULL; m->_SpinDuration = ObjectMonitor::Knob_SpinLimit; // consider: keep metastats by type/class omh_p->set_om_ptr(m); assert(m->is_new(), "freshly allocated monitor must be new"); m->set_allocation_state(ObjectMonitor::Old); if (object->cas_set_mark(markWord::encode(m), mark) != mark) { m->set_header(markWord::zero()); m->set_object(NULL); m->Recycle(); omh_p->set_om_ptr(NULL); // om_release() will reset the allocation state om_release(self, m, true); m = NULL; continue; // interference - the markword changed - just retry. // The state-transitions are one-way, so there's no chance of // live-lock -- "Inflated" is an absorbing state. } // Hopefully the performance counters are allocated on distinct // cache lines to avoid false sharing on MP systems ... OM_PERFDATA_OP(Inflations, inc()); if (log_is_enabled(Trace, monitorinflation)) { ResourceMark rm(self); lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", type='%s'", p2i(object), object->mark().value(), object->klass()->external_name()); } if (event.should_commit()) { post_monitor_inflate_event(&event, object, cause); } ADIM_guarantee(!m->is_free(), "inflated monitor to be returned cannot be free"); return; } } // We maintain a list of in-use monitors for each thread. // // For safepoint based deflation: // deflate_thread_local_monitors() scans a single thread's in-use list, while // deflate_idle_monitors() scans only a global list of in-use monitors which // is populated only as a thread dies (see om_flush()). // // These operations are called at all safepoints, immediately after mutators // are stopped, but before any objects have moved. Collectively they traverse // the population of in-use monitors, deflating where possible. The scavenged // monitors are returned to the global monitor free list. // // Beware that we scavenge at *every* stop-the-world point. Having a large // number of monitors in-use could negatively impact performance. We also want // to minimize the total # of monitors in circulation, as they incur a small // footprint penalty. // // Perversely, the heap size -- and thus the STW safepoint rate -- // typically drives the scavenge rate. Large heaps can mean infrequent GC, // which in turn can mean large(r) numbers of ObjectMonitors in circulation. // This is an unfortunate aspect of this design. // // For async deflation: // If a special deflation request is made, then the safepoint based // deflation mechanism is used. Otherwise, an async deflation request // is registered with the ServiceThread and it is notified. void ObjectSynchronizer::do_safepoint_work(DeflateMonitorCounters* _counters) { assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint"); // The per-thread in-use lists are handled in // ParallelSPCleanupThreadClosure::do_thread(). if (!AsyncDeflateIdleMonitors || is_special_deflation_requested()) { // Use the older mechanism for the global in-use list or if a // special deflation has been requested before the safepoint. ObjectSynchronizer::deflate_idle_monitors(_counters); return; } log_debug(monitorinflation)("requesting async deflation of idle monitors."); // Request deflation of idle monitors by the ServiceThread: set_is_async_deflation_requested(true); MonitorLocker ml(Service_lock, Mutex::_no_safepoint_check_flag); ml.notify_all(); } // Deflate a single monitor if not in-use // Return true if deflated, false if in-use bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj, ObjectMonitor** free_head_p, ObjectMonitor** free_tail_p) { bool deflated; // Normal case ... The monitor is associated with obj. const markWord mark = obj->mark(); guarantee(mark == markWord::encode(mid), "should match: mark=" INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, mark.value(), markWord::encode(mid).value()); // Make sure that mark.monitor() and markWord::encode() agree: guarantee(mark.monitor() == mid, "should match: monitor()=" INTPTR_FORMAT ", mid=" INTPTR_FORMAT, p2i(mark.monitor()), p2i(mid)); const markWord dmw = mid->header(); guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); if (mid->is_busy() || mid->ref_count() != 0) { // Easy checks are first - the ObjectMonitor is busy or ObjectMonitor* // is in use so no deflation. deflated = false; } else { // Deflate the monitor if it is no longer being used // It's idle - scavenge and return to the global free list // plain old deflation ... if (log_is_enabled(Trace, monitorinflation)) { ResourceMark rm; log_trace(monitorinflation)("deflate_monitor: " "object=" INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", type='%s'", p2i(obj), mark.value(), obj->klass()->external_name()); } // Restore the header back to obj obj->release_set_mark(dmw); if (AsyncDeflateIdleMonitors) { // clear() expects the owner field to be NULL and we won't race // with the simple C2 ObjectMonitor enter optimization since // we're at a safepoint. mid->set_owner(NULL); } mid->clear(); assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT, p2i(mid->object())); assert(mid->is_free(), "invariant"); // Move the deflated ObjectMonitor to the working free list // defined by free_head_p and free_tail_p. if (*free_head_p == NULL) *free_head_p = mid; if (*free_tail_p != NULL) { // We append to the list so the caller can use mid->_next_om // to fix the linkages in its context. ObjectMonitor* prevtail = *free_tail_p; // Should have been cleaned up by the caller: assert(prevtail->_next_om == NULL, "must be NULL: _next_om=" INTPTR_FORMAT, p2i(prevtail->_next_om)); prevtail->_next_om = mid; } *free_tail_p = mid; // At this point, mid->_next_om still refers to its current // value and another ObjectMonitor's _next_om field still // refers to this ObjectMonitor. Those linkages have to be // cleaned up by the caller who has the complete context. deflated = true; } return deflated; } // Deflate the specified ObjectMonitor if not in-use using a JavaThread. // Returns true if it was deflated and false otherwise. // // The async deflation protocol sets owner to DEFLATER_MARKER and // makes ref_count negative as signals to contending threads that // an async deflation is in progress. There are a number of checks // as part of the protocol to make sure that the calling thread has // not lost the race to a contending thread or to a thread that just // wants to use the ObjectMonitor*. // // The ObjectMonitor has been successfully async deflated when: // (owner == DEFLATER_MARKER && ref_count < 0) // Contending threads or ObjectMonitor* using threads that see those // values know to retry their operation. // bool ObjectSynchronizer::deflate_monitor_using_JT(ObjectMonitor* mid, ObjectMonitor** free_head_p, ObjectMonitor** free_tail_p) { assert(AsyncDeflateIdleMonitors, "sanity check"); assert(Thread::current()->is_Java_thread(), "precondition"); // A newly allocated ObjectMonitor should not be seen here so we // avoid an endless inflate/deflate cycle. assert(mid->is_old(), "must be old: allocation_state=%d", (int) mid->allocation_state()); if (mid->is_busy() || mid->ref_count() != 0) { // Easy checks are first - the ObjectMonitor is busy or ObjectMonitor* // is in use so no deflation. return false; } if (Atomic::replace_if_null(DEFLATER_MARKER, &(mid->_owner))) { // ObjectMonitor is not owned by another thread. Our setting // owner to DEFLATER_MARKER forces any contending thread through // the slow path. This is just the first part of the async // deflation dance. if (mid->_contentions != 0 || mid->_waiters != 0) { // Another thread has raced to enter the ObjectMonitor after // mid->is_busy() above or has already entered and waited on // it which makes it busy so no deflation. Restore owner to // NULL if it is still DEFLATER_MARKER. Atomic::cmpxchg((void*)NULL, &mid->_owner, DEFLATER_MARKER); return false; } if (Atomic::cmpxchg(-max_jint, &mid->_ref_count, (jint)0) == 0) { // Make ref_count negative to force any contending threads or // ObjectMonitor* using threads to retry. This is the second // part of the async deflation dance. if (mid->owner_is_DEFLATER_MARKER()) { // If owner is still DEFLATER_MARKER, then we have successfully // signaled any contending threads to retry. If it is not, then we // have lost the race to an entering thread and the ObjectMonitor // is now busy. This is the third and final part of the async // deflation dance. // Note: This owner check solves the ABA problem with ref_count // where another thread acquired the ObjectMonitor, finished // using it and restored the ref_count to zero. // Sanity checks for the races: guarantee(mid->_contentions == 0, "must be 0: contentions=%d", mid->_contentions); guarantee(mid->_waiters == 0, "must be 0: waiters=%d", mid->_waiters); guarantee(mid->_cxq == NULL, "must be no contending threads: cxq=" INTPTR_FORMAT, p2i(mid->_cxq)); guarantee(mid->_EntryList == NULL, "must be no entering threads: EntryList=" INTPTR_FORMAT, p2i(mid->_EntryList)); const oop obj = (oop) mid->object(); if (log_is_enabled(Trace, monitorinflation)) { ResourceMark rm; log_trace(monitorinflation)("deflate_monitor_using_JT: " "object=" INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", type='%s'", p2i(obj), obj->mark().value(), obj->klass()->external_name()); } // Install the old mark word if nobody else has already done it. mid->install_displaced_markword_in_object(obj); mid->clear_using_JT(); assert(mid->object() == NULL, "must be NULL: object=" INTPTR_FORMAT, p2i(mid->object())); assert(mid->is_free(), "must be free: allocation_state=%d", (int) mid->allocation_state()); // Move the deflated ObjectMonitor to the working free list // defined by free_head_p and free_tail_p. if (*free_head_p == NULL) { // First one on the list. *free_head_p = mid; } if (*free_tail_p != NULL) { // We append to the list so the caller can use mid->_next_om // to fix the linkages in its context. ObjectMonitor* prevtail = *free_tail_p; // Should have been cleaned up by the caller: assert(prevtail->_next_om == NULL, "must be NULL: _next_om=" INTPTR_FORMAT, p2i(prevtail->_next_om)); prevtail->_next_om = mid; } *free_tail_p = mid; // At this point, mid->_next_om still refers to its current // value and another ObjectMonitor's _next_om field still // refers to this ObjectMonitor. Those linkages have to be // cleaned up by the caller who has the complete context. // We leave owner == DEFLATER_MARKER and ref_count < 0 // to force any racing threads to retry. return true; // Success, ObjectMonitor has been deflated. } // The owner was changed from DEFLATER_MARKER so we lost the // race since the ObjectMonitor is now busy. // Add back max_jint to restore the ref_count field to its // proper value (which may not be what we saw above): Atomic::add(max_jint, &mid->_ref_count); assert(mid->ref_count() >= 0, "must not be negative: ref_count=%d", mid->ref_count()); return false; } // The ref_count was no longer 0 so we lost the race since the // ObjectMonitor is now busy or the ObjectMonitor* is now is use. // Restore owner to NULL if it is still DEFLATER_MARKER: Atomic::cmpxchg((void*)NULL, &mid->_owner, DEFLATER_MARKER); } // The owner field is no longer NULL so we lost the race since the // ObjectMonitor is now busy. return false; } // Walk a given monitor list, and deflate idle monitors // The given list could be a per-thread list or a global list // Caller acquires gListLock as needed. // // In the case of parallel processing of thread local monitor lists, // work is done by Threads::parallel_threads_do() which ensures that // each Java thread is processed by exactly one worker thread, and // thus avoid conflicts that would arise when worker threads would // process the same monitor lists concurrently. // // See also ParallelSPCleanupTask and // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and // Threads::parallel_java_threads_do() in thread.cpp. int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** list_p, int* count_p, ObjectMonitor** free_head_p, ObjectMonitor** free_tail_p) { ObjectMonitor* cur_mid_in_use = NULL; ObjectMonitor* mid; ObjectMonitor* next; int deflated_count = 0; for (mid = *list_p; mid != NULL;) { oop obj = (oop) mid->object(); if (obj != NULL && deflate_monitor(mid, obj, free_head_p, free_tail_p)) { // Deflation succeeded and already updated free_head_p and // free_tail_p as needed. Finish the move to the local free list // by unlinking mid from the global or per-thread in-use list. if (mid == *list_p) { *list_p = mid->_next_om; } else if (cur_mid_in_use != NULL) { cur_mid_in_use->_next_om = mid->_next_om; // maintain the current thread in-use list } next = mid->_next_om; mid->_next_om = NULL; // This mid is current tail in the free_head_p list mid = next; deflated_count++; *count_p = *count_p - 1; } else { cur_mid_in_use = mid; mid = mid->_next_om; } } return deflated_count; } // Walk a given ObjectMonitor list and deflate idle ObjectMonitors using // a JavaThread. Returns the number of deflated ObjectMonitors. The given // list could be a per-thread in-use list or the global in-use list. // Caller acquires gListLock as appropriate. If a safepoint has started, // then we save state via saved_mid_in_use_p and return to the caller to // honor the safepoint. // int ObjectSynchronizer::deflate_monitor_list_using_JT(ObjectMonitor** list_p, int* count_p, ObjectMonitor** free_head_p, ObjectMonitor** free_tail_p, ObjectMonitor** saved_mid_in_use_p) { assert(AsyncDeflateIdleMonitors, "sanity check"); assert(Thread::current()->is_Java_thread(), "precondition"); ObjectMonitor* cur_mid_in_use = NULL; ObjectMonitor* mid; ObjectMonitor* next; int deflated_count = 0; if (*saved_mid_in_use_p == NULL) { // No saved state so start at the beginning. mid = *list_p; } else { // We're restarting after a safepoint so restore the necessary state // before we resume. cur_mid_in_use = *saved_mid_in_use_p; mid = cur_mid_in_use->_next_om; } while (mid != NULL) { // Only try to deflate if there is an associated Java object and if // mid is old (is not newly allocated and is not newly freed). if (mid->object() != NULL && mid->is_old() && deflate_monitor_using_JT(mid, free_head_p, free_tail_p)) { // Deflation succeeded and already updated free_head_p and // free_tail_p as needed. Finish the move to the local free list // by unlinking mid from the global or per-thread in-use list. if (mid == *list_p) { *list_p = mid->_next_om; } else if (cur_mid_in_use != NULL) { // Maintain the current in-use list. cur_mid_in_use->_next_om = mid->_next_om; } next = mid->_next_om; mid->_next_om = NULL; // At this point mid is disconnected from the in-use list // and is the current tail in the free_head_p list. mid = next; deflated_count++; *count_p = *count_p - 1; } else { // mid is considered in-use if it does not have an associated // Java object or mid is not old or deflation did not succeed. // A mid->is_new() node can be seen here when it is freshly // returned by om_alloc() (and skips the deflation code path). // A mid->is_old() node can be seen here when deflation failed. // A mid->is_free() node can be seen here when a fresh node from // om_alloc() is released by om_release() due to losing the race // in inflate(). cur_mid_in_use = mid; mid = mid->_next_om; if (SafepointSynchronize::is_synchronizing() && cur_mid_in_use != *list_p && cur_mid_in_use->is_old()) { // If a safepoint has started and cur_mid_in_use is not the list // head and is old, then it is safe to use as saved state. Return // to the caller so gListLock can be dropped as appropriate // before blocking. *saved_mid_in_use_p = cur_mid_in_use; return deflated_count; } } } // We finished the list without a safepoint starting so there's // no need to save state. *saved_mid_in_use_p = NULL; return deflated_count; } void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) { counters->n_in_use = 0; // currently associated with objects counters->n_in_circulation = 0; // extant counters->n_scavenged = 0; // reclaimed (global and per-thread) counters->per_thread_scavenged = 0; // per-thread scavenge total counters->per_thread_times = 0.0; // per-thread scavenge times } void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) { assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint"); if (AsyncDeflateIdleMonitors) { // Nothing to do when global idle ObjectMonitors are deflated using // a JavaThread unless a special deflation has been requested. if (!is_special_deflation_requested()) { return; } } bool deflated = false; ObjectMonitor* free_head_p = NULL; // Local SLL of scavenged monitors ObjectMonitor* free_tail_p = NULL; elapsedTimer timer; if (log_is_enabled(Info, monitorinflation)) { timer.start(); } // Prevent om_flush from changing mids in Thread dtor's during deflation // And in case the vm thread is acquiring a lock during a safepoint // See e.g. 6320749 Thread::muxAcquire(&gListLock, "deflate_idle_monitors"); // Note: the thread-local monitors lists get deflated in // a separate pass. See deflate_thread_local_monitors(). // For moribund threads, scan g_om_in_use_list int deflated_count = 0; if (g_om_in_use_list != NULL) { // Update n_in_circulation before g_om_in_use_count is updated by deflation. counters->n_in_circulation += g_om_in_use_count; deflated_count = deflate_monitor_list((ObjectMonitor**)&g_om_in_use_list, (int*)&g_om_in_use_count, &free_head_p, &free_tail_p); counters->n_in_use += g_om_in_use_count; } if (free_head_p != NULL) { // Move the deflated ObjectMonitors back to the global free list. guarantee(free_tail_p != NULL && deflated_count > 0, "invariant"); assert(free_tail_p->_next_om == NULL, "must be NULL: _next_om=" INTPTR_FORMAT, p2i(free_tail_p->_next_om)); // constant-time list splice - prepend scavenged segment to g_free_list free_tail_p->_next_om = g_free_list; g_free_list = free_head_p; counters->n_scavenged += deflated_count; } Thread::muxRelease(&gListLock); timer.stop(); LogStreamHandle(Debug, monitorinflation) lsh_debug; LogStreamHandle(Info, monitorinflation) lsh_info; LogStream* ls = NULL; if (log_is_enabled(Debug, monitorinflation)) { ls = &lsh_debug; } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) { ls = &lsh_info; } if (ls != NULL) { ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count); } } // Deflate global idle ObjectMonitors using a JavaThread. // void ObjectSynchronizer::deflate_global_idle_monitors_using_JT() { assert(AsyncDeflateIdleMonitors, "sanity check"); assert(Thread::current()->is_Java_thread(), "precondition"); JavaThread* self = JavaThread::current(); deflate_common_idle_monitors_using_JT(true /* is_global */, self); } // Deflate the specified JavaThread's idle ObjectMonitors using a JavaThread. // void ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT(JavaThread* target) { assert(AsyncDeflateIdleMonitors, "sanity check"); assert(Thread::current()->is_Java_thread(), "precondition"); target->om_request_deflation = false; deflate_common_idle_monitors_using_JT(false /* !is_global */, target); } // Deflate global or per-thread idle ObjectMonitors using a JavaThread. // void ObjectSynchronizer::deflate_common_idle_monitors_using_JT(bool is_global, JavaThread* target) { JavaThread* self = JavaThread::current(); int deflated_count = 0; ObjectMonitor* free_head_p = NULL; // Local SLL of scavenged ObjectMonitors ObjectMonitor* free_tail_p = NULL; ObjectMonitor* saved_mid_in_use_p = NULL; elapsedTimer timer; if (log_is_enabled(Info, monitorinflation)) { timer.start(); } if (is_global) { Thread::muxAcquire(&gListLock, "deflate_global_idle_monitors_using_JT(1)"); OM_PERFDATA_OP(MonExtant, set_value(g_om_in_use_count)); } else { OM_PERFDATA_OP(MonExtant, inc(target->om_in_use_count)); } do { int local_deflated_count; if (is_global) { local_deflated_count = deflate_monitor_list_using_JT((ObjectMonitor**)&g_om_in_use_list, (int*)&g_om_in_use_count, &free_head_p, &free_tail_p, &saved_mid_in_use_p); } else { local_deflated_count = deflate_monitor_list_using_JT(&target->om_in_use_list, &target->om_in_use_count, &free_head_p, &free_tail_p, &saved_mid_in_use_p); } deflated_count += local_deflated_count; if (free_head_p != NULL) { // Move the deflated ObjectMonitors to the global free list. guarantee(free_tail_p != NULL && local_deflated_count > 0, "free_tail_p=" INTPTR_FORMAT ", local_deflated_count=%d", p2i(free_tail_p), local_deflated_count); assert(free_tail_p->_next_om == NULL, "must be NULL: _next_om=" INTPTR_FORMAT, p2i(free_tail_p->_next_om)); if (!is_global) { Thread::muxAcquire(&gListLock, "deflate_per_thread_idle_monitors_using_JT(2)"); } // Constant-time list splice - prepend scavenged segment to g_free_list. free_tail_p->_next_om = g_free_list; g_free_list = free_head_p; OM_PERFDATA_OP(Deflations, inc(local_deflated_count)); if (!is_global) { Thread::muxRelease(&gListLock); } } if (saved_mid_in_use_p != NULL) { // deflate_monitor_list_using_JT() detected a safepoint starting. if (is_global) { Thread::muxRelease(&gListLock); } timer.stop(); { if (is_global) { log_debug(monitorinflation)("pausing deflation of global idle monitors for a safepoint."); } else { log_debug(monitorinflation)("jt=" INTPTR_FORMAT ": pausing deflation of per-thread idle monitors for a safepoint.", p2i(target)); } assert(SafepointSynchronize::is_synchronizing(), "sanity check"); ThreadBlockInVM blocker(self); } // Prepare for another loop after the safepoint. free_head_p = NULL; free_tail_p = NULL; if (log_is_enabled(Info, monitorinflation)) { timer.start(); } if (is_global) { Thread::muxAcquire(&gListLock, "deflate_global_idle_monitors_using_JT(3)"); } } } while (saved_mid_in_use_p != NULL); if (is_global) { Thread::muxRelease(&gListLock); } timer.stop(); LogStreamHandle(Debug, monitorinflation) lsh_debug; LogStreamHandle(Info, monitorinflation) lsh_info; LogStream* ls = NULL; if (log_is_enabled(Debug, monitorinflation)) { ls = &lsh_debug; } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) { ls = &lsh_info; } if (ls != NULL) { if (is_global) { ls->print_cr("async-deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count); } else { ls->print_cr("jt=" INTPTR_FORMAT ": async-deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(target), timer.seconds(), deflated_count); } } } void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) { // Report the cumulative time for deflating each thread's idle // monitors. Note: if the work is split among more than one // worker thread, then the reported time will likely be more // than a beginning to end measurement of the phase. // Note: AsyncDeflateIdleMonitors only deflates per-thread idle // monitors at a safepoint when a special deflation has been requested. log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d", counters->per_thread_times, counters->per_thread_scavenged); bool needs_special_deflation = is_special_deflation_requested(); if (!AsyncDeflateIdleMonitors || needs_special_deflation) { // AsyncDeflateIdleMonitors does not use these counters unless // there is a special deflation request. OM_PERFDATA_OP(Deflations, inc(counters->n_scavenged)); OM_PERFDATA_OP(MonExtant, set_value(counters->n_in_circulation)); } if (log_is_enabled(Debug, monitorinflation)) { // exit_globals()'s call to audit_and_print_stats() is done // at the Info level. ObjectSynchronizer::audit_and_print_stats(false /* on_exit */); } else if (log_is_enabled(Info, monitorinflation)) { Thread::muxAcquire(&gListLock, "finish_deflate_idle_monitors"); log_info(monitorinflation)("g_om_population=%d, g_om_in_use_count=%d, " "g_om_free_count=%d", g_om_population, g_om_in_use_count, g_om_free_count); Thread::muxRelease(&gListLock); } ForceMonitorScavenge = 0; // Reset GVars.stw_random = os::random(); GVars.stw_cycle++; if (needs_special_deflation) { set_is_special_deflation_requested(false); // special deflation is done } } void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) { assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint"); if (AsyncDeflateIdleMonitors) { if (!is_special_deflation_requested()) { // Mark the JavaThread for idle monitor deflation if a special // deflation has NOT been requested. if (thread->om_in_use_count > 0) { // This JavaThread is using monitors so mark it. thread->om_request_deflation = true; } return; } } ObjectMonitor* free_head_p = NULL; // Local SLL of scavenged monitors ObjectMonitor* free_tail_p = NULL; elapsedTimer timer; if (log_is_enabled(Info, safepoint, cleanup) || log_is_enabled(Info, monitorinflation)) { timer.start(); } // Update n_in_circulation before om_in_use_count is updated by deflation. counters->n_in_circulation += thread->om_in_use_count; int deflated_count = deflate_monitor_list(&thread->om_in_use_list, &thread->om_in_use_count, &free_head_p, &free_tail_p); counters->n_in_use += thread->om_in_use_count; Thread::muxAcquire(&gListLock, "deflate_thread_local_monitors"); if (free_head_p != NULL) { // Move the deflated ObjectMonitors back to the global free list. guarantee(free_tail_p != NULL && deflated_count > 0, "invariant"); assert(free_tail_p->_next_om == NULL, "must be NULL: _next_om=" INTPTR_FORMAT, p2i(free_tail_p->_next_om)); // constant-time list splice - prepend scavenged segment to g_free_list free_tail_p->_next_om = g_free_list; g_free_list = free_head_p; counters->n_scavenged += deflated_count; counters->per_thread_scavenged += deflated_count; } timer.stop(); // Safepoint logging cares about cumulative per_thread_times and // we'll capture most of the cost, but not the muxRelease() which // should be cheap. counters->per_thread_times += timer.seconds(); Thread::muxRelease(&gListLock); LogStreamHandle(Debug, monitorinflation) lsh_debug; LogStreamHandle(Info, monitorinflation) lsh_info; LogStream* ls = NULL; if (log_is_enabled(Debug, monitorinflation)) { ls = &lsh_debug; } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) { ls = &lsh_info; } if (ls != NULL) { ls->print_cr("jt=" INTPTR_FORMAT ": deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(thread), timer.seconds(), deflated_count); } } // Monitor cleanup on JavaThread::exit // Iterate through monitor cache and attempt to release thread's monitors // Gives up on a particular monitor if an exception occurs, but continues // the overall iteration, swallowing the exception. class ReleaseJavaMonitorsClosure: public MonitorClosure { private: TRAPS; public: ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {} void do_monitor(ObjectMonitor* mid) { if (mid->owner() == THREAD) { (void)mid->complete_exit(CHECK); } } }; // Release all inflated monitors owned by THREAD. Lightweight monitors are // ignored. This is meant to be called during JNI thread detach which assumes // all remaining monitors are heavyweight. All exceptions are swallowed. // Scanning the extant monitor list can be time consuming. // A simple optimization is to add a per-thread flag that indicates a thread // called jni_monitorenter() during its lifetime. // // Instead of No_Savepoint_Verifier it might be cheaper to // use an idiom of the form: // auto int tmp = SafepointSynchronize::_safepoint_counter ; // // guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ; // Since the tests are extremely cheap we could leave them enabled // for normal product builds. void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) { assert(THREAD == JavaThread::current(), "must be current Java thread"); NoSafepointVerifier nsv; ReleaseJavaMonitorsClosure rjmc(THREAD); Thread::muxAcquire(&gListLock, "release_monitors_owned_by_thread"); ObjectSynchronizer::monitors_iterate(&rjmc); Thread::muxRelease(&gListLock); THREAD->clear_pending_exception(); } const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) { switch (cause) { case inflate_cause_vm_internal: return "VM Internal"; case inflate_cause_monitor_enter: return "Monitor Enter"; case inflate_cause_wait: return "Monitor Wait"; case inflate_cause_notify: return "Monitor Notify"; case inflate_cause_hash_code: return "Monitor Hash Code"; case inflate_cause_jni_enter: return "JNI Monitor Enter"; case inflate_cause_jni_exit: return "JNI Monitor Exit"; default: ShouldNotReachHere(); } return "Unknown"; } //------------------------------------------------------------------------------ // Debugging code u_char* ObjectSynchronizer::get_gvars_addr() { return (u_char*)&GVars; } u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() { return (u_char*)&GVars.hc_sequence; } size_t ObjectSynchronizer::get_gvars_size() { return sizeof(SharedGlobals); } u_char* ObjectSynchronizer::get_gvars_stw_random_addr() { return (u_char*)&GVars.stw_random; } void ObjectSynchronizer::audit_and_print_stats(bool on_exit) { assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant"); LogStreamHandle(Debug, monitorinflation) lsh_debug; LogStreamHandle(Info, monitorinflation) lsh_info; LogStreamHandle(Trace, monitorinflation) lsh_trace; LogStream* ls = NULL; if (log_is_enabled(Trace, monitorinflation)) { ls = &lsh_trace; } else if (log_is_enabled(Debug, monitorinflation)) { ls = &lsh_debug; } else if (log_is_enabled(Info, monitorinflation)) { ls = &lsh_info; } assert(ls != NULL, "sanity check"); if (!on_exit) { // Not at VM exit so grab the global list lock. Thread::muxAcquire(&gListLock, "audit_and_print_stats"); } // Log counts for the global and per-thread monitor lists: int chk_om_population = log_monitor_list_counts(ls); int error_cnt = 0; ls->print_cr("Checking global lists:"); // Check g_om_population: if (g_om_population == chk_om_population) { ls->print_cr("g_om_population=%d equals chk_om_population=%d", g_om_population, chk_om_population); } else { ls->print_cr("ERROR: g_om_population=%d is not equal to " "chk_om_population=%d", g_om_population, chk_om_population); error_cnt++; } // Check g_om_in_use_list and g_om_in_use_count: chk_global_in_use_list_and_count(ls, &error_cnt); // Check g_free_list and g_om_free_count: chk_global_free_list_and_count(ls, &error_cnt); if (!on_exit) { Thread::muxRelease(&gListLock); } ls->print_cr("Checking per-thread lists:"); for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) { // Check om_in_use_list and om_in_use_count: chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt); // Check om_free_list and om_free_count: chk_per_thread_free_list_and_count(jt, ls, &error_cnt); } if (error_cnt == 0) { ls->print_cr("No errors found in monitor list checks."); } else { log_error(monitorinflation)("found monitor list errors: error_cnt=%d", error_cnt); } if ((on_exit && log_is_enabled(Info, monitorinflation)) || (!on_exit && log_is_enabled(Trace, monitorinflation))) { // When exiting this log output is at the Info level. When called // at a safepoint, this log output is at the Trace level since // there can be a lot of it. log_in_use_monitor_details(ls, on_exit); } ls->flush(); guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt); } // Check a free monitor entry; log any errors. void ObjectSynchronizer::chk_free_entry(JavaThread* jt, ObjectMonitor* n, outputStream * out, int *error_cnt_p) { stringStream ss; if (n->is_busy()) { if (jt != NULL) { out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT ": free per-thread monitor must not be busy: %s", p2i(jt), p2i(n), n->is_busy_to_string(&ss)); } else { out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor " "must not be busy: %s", p2i(n), n->is_busy_to_string(&ss)); } *error_cnt_p = *error_cnt_p + 1; } if (n->header().value() != 0) { if (jt != NULL) { out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT ": free per-thread monitor must have NULL _header " "field: _header=" INTPTR_FORMAT, p2i(jt), p2i(n), n->header().value()); *error_cnt_p = *error_cnt_p + 1; } else if (!AsyncDeflateIdleMonitors) { out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor " "must have NULL _header field: _header=" INTPTR_FORMAT, p2i(n), n->header().value()); *error_cnt_p = *error_cnt_p + 1; } } if (n->object() != NULL) { if (jt != NULL) { out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT ": free per-thread monitor must have NULL _object " "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n), p2i(n->object())); } else { out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor " "must have NULL _object field: _object=" INTPTR_FORMAT, p2i(n), p2i(n->object())); } *error_cnt_p = *error_cnt_p + 1; } } // Check the global free list and count; log the results of the checks. void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out, int *error_cnt_p) { int chk_om_free_count = 0; for (ObjectMonitor* n = g_free_list; n != NULL; n = n->_next_om) { chk_free_entry(NULL /* jt */, n, out, error_cnt_p); chk_om_free_count++; } if (g_om_free_count == chk_om_free_count) { out->print_cr("g_om_free_count=%d equals chk_om_free_count=%d", g_om_free_count, chk_om_free_count); } else { out->print_cr("ERROR: g_om_free_count=%d is not equal to " "chk_om_free_count=%d", g_om_free_count, chk_om_free_count); *error_cnt_p = *error_cnt_p + 1; } } // Check the global in-use list and count; log the results of the checks. void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out, int *error_cnt_p) { int chk_om_in_use_count = 0; for (ObjectMonitor* n = g_om_in_use_list; n != NULL; n = n->_next_om) { chk_in_use_entry(NULL /* jt */, n, out, error_cnt_p); chk_om_in_use_count++; } if (g_om_in_use_count == chk_om_in_use_count) { out->print_cr("g_om_in_use_count=%d equals chk_om_in_use_count=%d", g_om_in_use_count, chk_om_in_use_count); } else { out->print_cr("ERROR: g_om_in_use_count=%d is not equal to chk_om_in_use_count=%d", g_om_in_use_count, chk_om_in_use_count); *error_cnt_p = *error_cnt_p + 1; } } // Check an in-use monitor entry; log any errors. void ObjectSynchronizer::chk_in_use_entry(JavaThread* jt, ObjectMonitor* n, outputStream * out, int *error_cnt_p) { if (n->header().value() == 0) { if (jt != NULL) { out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT ": in-use per-thread monitor must have non-NULL _header " "field.", p2i(jt), p2i(n)); } else { out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor " "must have non-NULL _header field.", p2i(n)); } *error_cnt_p = *error_cnt_p + 1; } if (n->object() == NULL) { if (jt != NULL) { out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT ": in-use per-thread monitor must have non-NULL _object " "field.", p2i(jt), p2i(n)); } else { out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor " "must have non-NULL _object field.", p2i(n)); } *error_cnt_p = *error_cnt_p + 1; } const oop obj = (oop)n->object(); const markWord mark = obj->mark(); if (!mark.has_monitor()) { if (jt != NULL) { out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT ": in-use per-thread monitor's object does not think " "it has a monitor: obj=" INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(jt), p2i(n), p2i(obj), mark.value()); } else { out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global " "monitor's object does not think it has a monitor: obj=" INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n), p2i(obj), mark.value()); } *error_cnt_p = *error_cnt_p + 1; } ObjectMonitor* const obj_mon = mark.monitor(); if (n != obj_mon) { if (jt != NULL) { out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT ": in-use per-thread monitor's object does not refer " "to the same monitor: obj=" INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt), p2i(n), p2i(obj), mark.value(), p2i(obj_mon)); } else { out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global " "monitor's object does not refer to the same monitor: obj=" INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon)); } *error_cnt_p = *error_cnt_p + 1; } } // Check the thread's free list and count; log the results of the checks. void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt, outputStream * out, int *error_cnt_p) { int chk_om_free_count = 0; for (ObjectMonitor* n = jt->om_free_list; n != NULL; n = n->_next_om) { chk_free_entry(jt, n, out, error_cnt_p); chk_om_free_count++; } if (jt->om_free_count == chk_om_free_count) { out->print_cr("jt=" INTPTR_FORMAT ": om_free_count=%d equals " "chk_om_free_count=%d", p2i(jt), jt->om_free_count, chk_om_free_count); } else { out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_free_count=%d is not " "equal to chk_om_free_count=%d", p2i(jt), jt->om_free_count, chk_om_free_count); *error_cnt_p = *error_cnt_p + 1; } } // Check the thread's in-use list and count; log the results of the checks. void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt, outputStream * out, int *error_cnt_p) { int chk_om_in_use_count = 0; for (ObjectMonitor* n = jt->om_in_use_list; n != NULL; n = n->_next_om) { chk_in_use_entry(jt, n, out, error_cnt_p); chk_om_in_use_count++; } if (jt->om_in_use_count == chk_om_in_use_count) { out->print_cr("jt=" INTPTR_FORMAT ": om_in_use_count=%d equals " "chk_om_in_use_count=%d", p2i(jt), jt->om_in_use_count, chk_om_in_use_count); } else { out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_in_use_count=%d is not " "equal to chk_om_in_use_count=%d", p2i(jt), jt->om_in_use_count, chk_om_in_use_count); *error_cnt_p = *error_cnt_p + 1; } } // Log details about ObjectMonitors on the in-use lists. The 'BHL' // flags indicate why the entry is in-use, 'object' and 'object type' // indicate the associated object and its type. void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out, bool on_exit) { if (!on_exit) { // Not at VM exit so grab the global list lock. Thread::muxAcquire(&gListLock, "log_in_use_monitor_details"); } stringStream ss; if (g_om_in_use_count > 0) { out->print_cr("In-use global monitor info:"); out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)"); out->print_cr("%18s %s %7s %18s %18s", "monitor", "BHL", "ref_cnt", "object", "object type"); out->print_cr("================== === ======= ================== =================="); for (ObjectMonitor* n = g_om_in_use_list; n != NULL; n = n->_next_om) { const oop obj = (oop) n->object(); const markWord mark = n->header(); ResourceMark rm; out->print(INTPTR_FORMAT " %d%d%d %7d " INTPTR_FORMAT " %s", p2i(n), n->is_busy() != 0, mark.hash() != 0, n->owner() != NULL, (int)n->ref_count(), p2i(obj), obj->klass()->external_name()); if (n->is_busy() != 0) { out->print(" (%s)", n->is_busy_to_string(&ss)); ss.reset(); } out->cr(); } } if (!on_exit) { Thread::muxRelease(&gListLock); } out->print_cr("In-use per-thread monitor info:"); out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)"); out->print_cr("%18s %18s %s %7s %18s %18s", "jt", "monitor", "BHL", "ref_cnt", "object", "object type"); out->print_cr("================== ================== === ======= ================== =================="); for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) { for (ObjectMonitor* n = jt->om_in_use_list; n != NULL; n = n->_next_om) { const oop obj = (oop) n->object(); const markWord mark = n->header(); ResourceMark rm; out->print(INTPTR_FORMAT " " INTPTR_FORMAT " %d%d%d %7d " INTPTR_FORMAT " %s", p2i(jt), p2i(n), n->is_busy() != 0, mark.hash() != 0, n->owner() != NULL, (int)n->ref_count(), p2i(obj), obj->klass()->external_name()); if (n->is_busy() != 0) { out->print(" (%s)", n->is_busy_to_string(&ss)); ss.reset(); } out->cr(); } } out->flush(); } // Log counts for the global and per-thread monitor lists and return // the population count. int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) { int pop_count = 0; out->print_cr("%18s %10s %10s %10s", "Global Lists:", "InUse", "Free", "Total"); out->print_cr("================== ========== ========== =========="); out->print_cr("%18s %10d %10d %10d", "", g_om_in_use_count, g_om_free_count, g_om_population); pop_count += g_om_in_use_count + g_om_free_count; out->print_cr("%18s %10s %10s %10s", "Per-Thread Lists:", "InUse", "Free", "Provision"); out->print_cr("================== ========== ========== =========="); for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) { out->print_cr(INTPTR_FORMAT " %10d %10d %10d", p2i(jt), jt->om_in_use_count, jt->om_free_count, jt->om_free_provision); pop_count += jt->om_in_use_count + jt->om_free_count; } return pop_count; } #ifndef PRODUCT // Check if monitor belongs to the monitor cache // The list is grow-only so it's *relatively* safe to traverse // the list of extant blocks without taking a lock. int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) { PaddedObjectMonitor* block = OrderAccess::load_acquire(&g_block_list); while (block != NULL) { assert(block->object() == CHAINMARKER, "must be a block header"); if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) { address mon = (address)monitor; address blk = (address)block; size_t diff = mon - blk; assert((diff % sizeof(PaddedObjectMonitor)) == 0, "must be aligned"); return 1; } block = (PaddedObjectMonitor*)block->_next_om; } return 0; } #endif