1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "logging/logStream.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/metaspaceShared.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/handles.inline.hpp"
  40 #include "runtime/interfaceSupport.inline.hpp"
  41 #include "runtime/mutexLocker.hpp"
  42 #include "runtime/objectMonitor.hpp"
  43 #include "runtime/objectMonitor.inline.hpp"
  44 #include "runtime/osThread.hpp"
  45 #include "runtime/safepointVerifiers.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/synchronizer.hpp"
  49 #include "runtime/thread.inline.hpp"
  50 #include "runtime/timer.hpp"
  51 #include "runtime/vframe.hpp"
  52 #include "runtime/vmThread.hpp"
  53 #include "utilities/align.hpp"
  54 #include "utilities/dtrace.hpp"
  55 #include "utilities/events.hpp"
  56 #include "utilities/preserveException.hpp"
  57 
  58 // The "core" versions of monitor enter and exit reside in this file.
  59 // The interpreter and compilers contain specialized transliterated
  60 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  61 // for instance.  If you make changes here, make sure to modify the
  62 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  63 //
  64 // -----------------------------------------------------------------------------
  65 
  66 #ifdef DTRACE_ENABLED
  67 
  68 // Only bother with this argument setup if dtrace is available
  69 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  70 
  71 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  72   char* bytes = NULL;                                                      \
  73   int len = 0;                                                             \
  74   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  75   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  76   if (klassname != NULL) {                                                 \
  77     bytes = (char*)klassname->bytes();                                     \
  78     len = klassname->utf8_length();                                        \
  79   }
  80 
  81 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  82   {                                                                        \
  83     if (DTraceMonitorProbes) {                                             \
  84       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  85       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  86                            (uintptr_t)(monitor), bytes, len, (millis));    \
  87     }                                                                      \
  88   }
  89 
  90 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  91 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  92 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  93 
  94 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  95   {                                                                        \
  96     if (DTraceMonitorProbes) {                                             \
  97       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  98       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
  99                                     (uintptr_t)(monitor), bytes, len);     \
 100     }                                                                      \
 101   }
 102 
 103 #else //  ndef DTRACE_ENABLED
 104 
 105 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 106 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 107 
 108 #endif // ndef DTRACE_ENABLED
 109 
 110 // This exists only as a workaround of dtrace bug 6254741
 111 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 112   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 113   return 0;
 114 }
 115 
 116 #define NINFLATIONLOCKS 256
 117 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 118 
 119 // global list of blocks of monitors
 120 PaddedObjectMonitor* volatile ObjectSynchronizer::g_block_list = NULL;
 121 // Global ObjectMonitor free list. Newly allocated and deflated
 122 // ObjectMonitors are prepended here.
 123 ObjectMonitor* volatile ObjectSynchronizer::g_free_list = NULL;
 124 // Global ObjectMonitor in-use list. When a JavaThread is exiting,
 125 // ObjectMonitors on its per-thread in-use list are prepended here.
 126 ObjectMonitor* volatile ObjectSynchronizer::g_om_in_use_list = NULL;
 127 int ObjectSynchronizer::g_om_in_use_count = 0;  // # on g_om_in_use_list
 128 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false;
 129 bool volatile ObjectSynchronizer::_is_special_deflation_requested = false;
 130 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0;
 131 
 132 static volatile intptr_t gListLock = 0;   // protects global monitor lists
 133 static volatile int g_om_free_count = 0;  // # on g_free_list
 134 static volatile int g_om_population = 0;  // # Extant -- in circulation
 135 
 136 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 137 
 138 
 139 // =====================> Quick functions
 140 
 141 // The quick_* forms are special fast-path variants used to improve
 142 // performance.  In the simplest case, a "quick_*" implementation could
 143 // simply return false, in which case the caller will perform the necessary
 144 // state transitions and call the slow-path form.
 145 // The fast-path is designed to handle frequently arising cases in an efficient
 146 // manner and is just a degenerate "optimistic" variant of the slow-path.
 147 // returns true  -- to indicate the call was satisfied.
 148 // returns false -- to indicate the call needs the services of the slow-path.
 149 // A no-loitering ordinance is in effect for code in the quick_* family
 150 // operators: safepoints or indefinite blocking (blocking that might span a
 151 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 152 // entry.
 153 //
 154 // Consider: An interesting optimization is to have the JIT recognize the
 155 // following common idiom:
 156 //   synchronized (someobj) { .... ; notify(); }
 157 // That is, we find a notify() or notifyAll() call that immediately precedes
 158 // the monitorexit operation.  In that case the JIT could fuse the operations
 159 // into a single notifyAndExit() runtime primitive.
 160 
 161 bool ObjectSynchronizer::quick_notify(oopDesc* obj, Thread* self, bool all) {
 162   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 163   assert(self->is_Java_thread(), "invariant");
 164   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 165   NoSafepointVerifier nsv;
 166   if (obj == NULL) return false;  // slow-path for invalid obj
 167   const markWord mark = obj->mark();
 168 
 169   if (mark.has_locker() && self->is_lock_owned((address)mark.locker())) {
 170     // Degenerate notify
 171     // stack-locked by caller so by definition the implied waitset is empty.
 172     return true;
 173   }
 174 
 175   if (mark.has_monitor()) {
 176     ObjectMonitor* const mon = mark.monitor();
 177     assert(oopDesc::equals((oop) mon->object(), obj), "invariant");
 178     if (mon->owner() != self) return false;  // slow-path for IMS exception
 179 
 180     if (mon->first_waiter() != NULL) {
 181       // We have one or more waiters. Since this is an inflated monitor
 182       // that we own, we can transfer one or more threads from the waitset
 183       // to the entrylist here and now, avoiding the slow-path.
 184       if (all) {
 185         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
 186       } else {
 187         DTRACE_MONITOR_PROBE(notify, mon, obj, self);
 188       }
 189       int free_count = 0;
 190       do {
 191         mon->INotify(self);
 192         ++free_count;
 193       } while (mon->first_waiter() != NULL && all);
 194       OM_PERFDATA_OP(Notifications, inc(free_count));
 195     }
 196     return true;
 197   }
 198 
 199   // biased locking and any other IMS exception states take the slow-path
 200   return false;
 201 }
 202 
 203 
 204 // The LockNode emitted directly at the synchronization site would have
 205 // been too big if it were to have included support for the cases of inflated
 206 // recursive enter and exit, so they go here instead.
 207 // Note that we can't safely call AsyncPrintJavaStack() from within
 208 // quick_enter() as our thread state remains _in_Java.
 209 
 210 bool ObjectSynchronizer::quick_enter(oop obj, Thread* self,
 211                                      BasicLock * lock) {
 212   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 213   assert(self->is_Java_thread(), "invariant");
 214   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 215   NoSafepointVerifier nsv;
 216   if (obj == NULL) return false;       // Need to throw NPE
 217 
 218   while (true) {
 219     const markWord mark = obj->mark();
 220 
 221     if (mark.has_monitor()) {
 222       ObjectMonitorHandle omh;
 223       if (!omh.save_om_ptr(obj, mark)) {
 224         // Lost a race with async deflation so try again.
 225         assert(AsyncDeflateIdleMonitors, "sanity check");
 226         continue;
 227       }
 228       ObjectMonitor* const m = omh.om_ptr();
 229       assert(oopDesc::equals((oop) m->object(), obj), "invariant");
 230       Thread* const owner = (Thread *) m->_owner;
 231 
 232       // Lock contention and Transactional Lock Elision (TLE) diagnostics
 233       // and observability
 234       // Case: light contention possibly amenable to TLE
 235       // Case: TLE inimical operations such as nested/recursive synchronization
 236 
 237       if (owner == self) {
 238         m->_recursions++;
 239         return true;
 240       }
 241 
 242       // This Java Monitor is inflated so obj's header will never be
 243       // displaced to this thread's BasicLock. Make the displaced header
 244       // non-NULL so this BasicLock is not seen as recursive nor as
 245       // being locked. We do this unconditionally so that this thread's
 246       // BasicLock cannot be mis-interpreted by any stack walkers. For
 247       // performance reasons, stack walkers generally first check for
 248       // Biased Locking in the object's header, the second check is for
 249       // stack-locking in the object's header, the third check is for
 250       // recursive stack-locking in the displaced header in the BasicLock,
 251       // and last are the inflated Java Monitor (ObjectMonitor) checks.
 252       lock->set_displaced_header(markWord::unused_mark());
 253 
 254       if (owner == NULL && Atomic::replace_if_null(self, &(m->_owner))) {
 255         assert(m->_recursions == 0, "invariant");
 256         return true;
 257       }
 258 
 259       if (AsyncDeflateIdleMonitors &&
 260           Atomic::cmpxchg(self, &m->_owner, DEFLATER_MARKER) == DEFLATER_MARKER) {
 261         // The deflation protocol finished the first part (setting owner),
 262         // but it failed the second part (making ref_count negative) and
 263         // bailed. Or the ObjectMonitor was async deflated and reused.
 264         // Acquired the monitor.
 265         assert(m->_recursions == 0, "invariant");
 266         return true;
 267       }
 268     }
 269     break;
 270   }
 271 
 272   // Note that we could inflate in quick_enter.
 273   // This is likely a useful optimization
 274   // Critically, in quick_enter() we must not:
 275   // -- perform bias revocation, or
 276   // -- block indefinitely, or
 277   // -- reach a safepoint
 278 
 279   return false;        // revert to slow-path
 280 }
 281 
 282 // -----------------------------------------------------------------------------
 283 //  Fast Monitor Enter/Exit
 284 // This the fast monitor enter. The interpreter and compiler use
 285 // some assembly copies of this code. Make sure update those code
 286 // if the following function is changed. The implementation is
 287 // extremely sensitive to race condition. Be careful.
 288 
 289 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock,
 290                                     bool attempt_rebias, TRAPS) {
 291   if (UseBiasedLocking) {
 292     if (!SafepointSynchronize::is_at_safepoint()) {
 293       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
 294       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
 295         return;
 296       }
 297     } else {
 298       assert(!attempt_rebias, "can not rebias toward VM thread");
 299       BiasedLocking::revoke_at_safepoint(obj);
 300     }
 301     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 302   }
 303 
 304   slow_enter(obj, lock, THREAD);
 305 }
 306 
 307 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
 308   markWord mark = object->mark();
 309   // We cannot check for Biased Locking if we are racing an inflation.
 310   assert(mark == markWord::INFLATING() ||
 311          !mark.has_bias_pattern(), "should not see bias pattern here");
 312 
 313   markWord dhw = lock->displaced_header();
 314   if (dhw.value() == 0) {
 315     // If the displaced header is NULL, then this exit matches up with
 316     // a recursive enter. No real work to do here except for diagnostics.
 317 #ifndef PRODUCT
 318     if (mark != markWord::INFLATING()) {
 319       // Only do diagnostics if we are not racing an inflation. Simply
 320       // exiting a recursive enter of a Java Monitor that is being
 321       // inflated is safe; see the has_monitor() comment below.
 322       assert(!mark.is_neutral(), "invariant");
 323       assert(!mark.has_locker() ||
 324              THREAD->is_lock_owned((address)mark.locker()), "invariant");
 325       if (mark.has_monitor()) {
 326         // The BasicLock's displaced_header is marked as a recursive
 327         // enter and we have an inflated Java Monitor (ObjectMonitor).
 328         // This is a special case where the Java Monitor was inflated
 329         // after this thread entered the stack-lock recursively. When a
 330         // Java Monitor is inflated, we cannot safely walk the Java
 331         // Monitor owner's stack and update the BasicLocks because a
 332         // Java Monitor can be asynchronously inflated by a thread that
 333         // does not own the Java Monitor.
 334         ObjectMonitor* m = mark.monitor();
 335         assert(((oop)(m->object()))->mark() == mark, "invariant");
 336         assert(m->is_entered(THREAD), "invariant");
 337       }
 338     }
 339 #endif
 340     return;
 341   }
 342 
 343   if (mark == markWord::from_pointer(lock)) {
 344     // If the object is stack-locked by the current thread, try to
 345     // swing the displaced header from the BasicLock back to the mark.
 346     assert(dhw.is_neutral(), "invariant");
 347     if (object->cas_set_mark(dhw, mark) == mark) {
 348       return;
 349     }
 350   }
 351 
 352   // We have to take the slow-path of possible inflation and then exit.
 353   ObjectMonitorHandle omh;
 354   inflate(&omh, THREAD, object, inflate_cause_vm_internal);
 355   omh.om_ptr()->exit(true, THREAD);
 356 }
 357 
 358 // -----------------------------------------------------------------------------
 359 // Interpreter/Compiler Slow Case
 360 // This routine is used to handle interpreter/compiler slow case
 361 // We don't need to use fast path here, because it must have been
 362 // failed in the interpreter/compiler code.
 363 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 364   markWord mark = obj->mark();
 365   assert(!mark.has_bias_pattern(), "should not see bias pattern here");
 366 
 367   if (mark.is_neutral()) {
 368     // Anticipate successful CAS -- the ST of the displaced mark must
 369     // be visible <= the ST performed by the CAS.
 370     lock->set_displaced_header(mark);
 371     if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) {
 372       return;
 373     }
 374     // Fall through to inflate() ...
 375   } else if (mark.has_locker() &&
 376              THREAD->is_lock_owned((address)mark.locker())) {
 377     assert(lock != mark.locker(), "must not re-lock the same lock");
 378     assert(lock != (BasicLock*)obj->mark().value(), "don't relock with same BasicLock");
 379     lock->set_displaced_header(markWord::from_pointer(NULL));
 380     return;
 381   }
 382 
 383   // The object header will never be displaced to this lock,
 384   // so it does not matter what the value is, except that it
 385   // must be non-zero to avoid looking like a re-entrant lock,
 386   // and must not look locked either.
 387   lock->set_displaced_header(markWord::unused_mark());
 388   ObjectMonitorHandle omh;
 389   inflate(&omh, THREAD, obj(), inflate_cause_monitor_enter);
 390   omh.om_ptr()->enter(THREAD);
 391 }
 392 
 393 // This routine is used to handle interpreter/compiler slow case
 394 // We don't need to use fast path here, because it must have
 395 // failed in the interpreter/compiler code. Simply use the heavy
 396 // weight monitor should be ok, unless someone find otherwise.
 397 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 398   fast_exit(object, lock, THREAD);
 399 }
 400 
 401 // -----------------------------------------------------------------------------
 402 // Class Loader  support to workaround deadlocks on the class loader lock objects
 403 // Also used by GC
 404 // complete_exit()/reenter() are used to wait on a nested lock
 405 // i.e. to give up an outer lock completely and then re-enter
 406 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 407 //  1) complete_exit lock1 - saving recursion count
 408 //  2) wait on lock2
 409 //  3) when notified on lock2, unlock lock2
 410 //  4) reenter lock1 with original recursion count
 411 //  5) lock lock2
 412 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 413 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 414   if (UseBiasedLocking) {
 415     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 416     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 417   }
 418 
 419   ObjectMonitorHandle omh;
 420   inflate(&omh, THREAD, obj(), inflate_cause_vm_internal);
 421   intptr_t ret_code = omh.om_ptr()->complete_exit(THREAD);
 422   return ret_code;
 423 }
 424 
 425 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 426 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 427   if (UseBiasedLocking) {
 428     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 429     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 430   }
 431 
 432   ObjectMonitorHandle omh;
 433   inflate(&omh, THREAD, obj(), inflate_cause_vm_internal);
 434   omh.om_ptr()->reenter(recursion, THREAD);
 435 }
 436 // -----------------------------------------------------------------------------
 437 // JNI locks on java objects
 438 // NOTE: must use heavy weight monitor to handle jni monitor enter
 439 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 440   // the current locking is from JNI instead of Java code
 441   if (UseBiasedLocking) {
 442     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 443     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 444   }
 445   THREAD->set_current_pending_monitor_is_from_java(false);
 446   ObjectMonitorHandle omh;
 447   inflate(&omh, THREAD, obj(), inflate_cause_jni_enter);
 448   omh.om_ptr()->enter(THREAD);
 449   THREAD->set_current_pending_monitor_is_from_java(true);
 450 }
 451 
 452 // NOTE: must use heavy weight monitor to handle jni monitor exit
 453 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 454   if (UseBiasedLocking) {
 455     Handle h_obj(THREAD, obj);
 456     BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
 457     obj = h_obj();
 458   }
 459   assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 460 
 461   ObjectMonitorHandle omh;
 462   inflate(&omh, THREAD, obj, inflate_cause_jni_exit);
 463   ObjectMonitor* monitor = omh.om_ptr();
 464   // If this thread has locked the object, exit the monitor. We
 465   // intentionally do not use CHECK here because we must exit the
 466   // monitor even if an exception is pending.
 467   if (monitor->check_owner(THREAD)) {
 468     monitor->exit(true, THREAD);
 469   }
 470 }
 471 
 472 // -----------------------------------------------------------------------------
 473 // Internal VM locks on java objects
 474 // standard constructor, allows locking failures
 475 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool do_lock) {
 476   _dolock = do_lock;
 477   _thread = thread;
 478   _thread->check_for_valid_safepoint_state(false);
 479   _obj = obj;
 480 
 481   if (_dolock) {
 482     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 483   }
 484 }
 485 
 486 ObjectLocker::~ObjectLocker() {
 487   if (_dolock) {
 488     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 489   }
 490 }
 491 
 492 
 493 // -----------------------------------------------------------------------------
 494 //  Wait/Notify/NotifyAll
 495 // NOTE: must use heavy weight monitor to handle wait()
 496 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 497   if (UseBiasedLocking) {
 498     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 499     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 500   }
 501   if (millis < 0) {
 502     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 503   }
 504   ObjectMonitorHandle omh;
 505   inflate(&omh, THREAD, obj(), inflate_cause_wait);
 506   ObjectMonitor* monitor = omh.om_ptr();
 507 
 508   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 509   monitor->wait(millis, true, THREAD);
 510 
 511   // This dummy call is in place to get around dtrace bug 6254741.  Once
 512   // that's fixed we can uncomment the following line, remove the call
 513   // and change this function back into a "void" func.
 514   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 515   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 516   return ret_code;
 517 }
 518 
 519 void ObjectSynchronizer::wait_uninterruptibly(Handle obj, jlong millis, TRAPS) {
 520   if (UseBiasedLocking) {
 521     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 522     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 523   }
 524   if (millis < 0) {
 525     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 526   }
 527   ObjectMonitorHandle omh;
 528   inflate(&omh, THREAD, obj(), inflate_cause_wait);
 529   omh.om_ptr()->wait(millis, false, THREAD);
 530 }
 531 
 532 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 533   if (UseBiasedLocking) {
 534     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 535     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 536   }
 537 
 538   markWord mark = obj->mark();
 539   if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) {
 540     return;
 541   }
 542   ObjectMonitorHandle omh;
 543   inflate(&omh, THREAD, obj(), inflate_cause_notify);
 544   omh.om_ptr()->notify(THREAD);
 545 }
 546 
 547 // NOTE: see comment of notify()
 548 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 549   if (UseBiasedLocking) {
 550     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 551     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 552   }
 553 
 554   markWord mark = obj->mark();
 555   if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) {
 556     return;
 557   }
 558   ObjectMonitorHandle omh;
 559   inflate(&omh, THREAD, obj(), inflate_cause_notify);
 560   omh.om_ptr()->notifyAll(THREAD);
 561 }
 562 
 563 // -----------------------------------------------------------------------------
 564 // Hash Code handling
 565 //
 566 // Performance concern:
 567 // OrderAccess::storestore() calls release() which at one time stored 0
 568 // into the global volatile OrderAccess::dummy variable. This store was
 569 // unnecessary for correctness. Many threads storing into a common location
 570 // causes considerable cache migration or "sloshing" on large SMP systems.
 571 // As such, I avoided using OrderAccess::storestore(). In some cases
 572 // OrderAccess::fence() -- which incurs local latency on the executing
 573 // processor -- is a better choice as it scales on SMP systems.
 574 //
 575 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 576 // a discussion of coherency costs. Note that all our current reference
 577 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 578 // x64, and SPARC.
 579 //
 580 // As a general policy we use "volatile" to control compiler-based reordering
 581 // and explicit fences (barriers) to control for architectural reordering
 582 // performed by the CPU(s) or platform.
 583 
 584 struct SharedGlobals {
 585   char         _pad_prefix[DEFAULT_CACHE_LINE_SIZE];
 586   // These are highly shared mostly-read variables.
 587   // To avoid false-sharing they need to be the sole occupants of a cache line.
 588   volatile int stw_random;
 589   volatile int stw_cycle;
 590   DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 591   // Hot RW variable -- Sequester to avoid false-sharing
 592   volatile int hc_sequence;
 593   DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int));
 594 };
 595 
 596 static SharedGlobals GVars;
 597 static int MonitorScavengeThreshold = 1000000;
 598 static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending
 599 
 600 static markWord read_stable_mark(oop obj) {
 601   markWord mark = obj->mark();
 602   if (!mark.is_being_inflated()) {
 603     return mark;       // normal fast-path return
 604   }
 605 
 606   int its = 0;
 607   for (;;) {
 608     markWord mark = obj->mark();
 609     if (!mark.is_being_inflated()) {
 610       return mark;    // normal fast-path return
 611     }
 612 
 613     // The object is being inflated by some other thread.
 614     // The caller of read_stable_mark() must wait for inflation to complete.
 615     // Avoid live-lock
 616     // TODO: consider calling SafepointSynchronize::do_call_back() while
 617     // spinning to see if there's a safepoint pending.  If so, immediately
 618     // yielding or blocking would be appropriate.  Avoid spinning while
 619     // there is a safepoint pending.
 620     // TODO: add inflation contention performance counters.
 621     // TODO: restrict the aggregate number of spinners.
 622 
 623     ++its;
 624     if (its > 10000 || !os::is_MP()) {
 625       if (its & 1) {
 626         os::naked_yield();
 627       } else {
 628         // Note that the following code attenuates the livelock problem but is not
 629         // a complete remedy.  A more complete solution would require that the inflating
 630         // thread hold the associated inflation lock.  The following code simply restricts
 631         // the number of spinners to at most one.  We'll have N-2 threads blocked
 632         // on the inflationlock, 1 thread holding the inflation lock and using
 633         // a yield/park strategy, and 1 thread in the midst of inflation.
 634         // A more refined approach would be to change the encoding of INFLATING
 635         // to allow encapsulation of a native thread pointer.  Threads waiting for
 636         // inflation to complete would use CAS to push themselves onto a singly linked
 637         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 638         // and calling park().  When inflation was complete the thread that accomplished inflation
 639         // would detach the list and set the markword to inflated with a single CAS and
 640         // then for each thread on the list, set the flag and unpark() the thread.
 641         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 642         // wakes at most one thread whereas we need to wake the entire list.
 643         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 644         int YieldThenBlock = 0;
 645         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 646         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 647         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 648         while (obj->mark() == markWord::INFLATING()) {
 649           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 650           // so we periodically call self->_ParkEvent->park(1).
 651           // We use a mixed spin/yield/block mechanism.
 652           if ((YieldThenBlock++) >= 16) {
 653             Thread::current()->_ParkEvent->park(1);
 654           } else {
 655             os::naked_yield();
 656           }
 657         }
 658         Thread::muxRelease(gInflationLocks + ix);
 659       }
 660     } else {
 661       SpinPause();       // SMP-polite spinning
 662     }
 663   }
 664 }
 665 
 666 // hashCode() generation :
 667 //
 668 // Possibilities:
 669 // * MD5Digest of {obj,stw_random}
 670 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function.
 671 // * A DES- or AES-style SBox[] mechanism
 672 // * One of the Phi-based schemes, such as:
 673 //   2654435761 = 2^32 * Phi (golden ratio)
 674 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ;
 675 // * A variation of Marsaglia's shift-xor RNG scheme.
 676 // * (obj ^ stw_random) is appealing, but can result
 677 //   in undesirable regularity in the hashCode values of adjacent objects
 678 //   (objects allocated back-to-back, in particular).  This could potentially
 679 //   result in hashtable collisions and reduced hashtable efficiency.
 680 //   There are simple ways to "diffuse" the middle address bits over the
 681 //   generated hashCode values:
 682 
 683 static inline intptr_t get_next_hash(Thread* self, oop obj) {
 684   intptr_t value = 0;
 685   if (hashCode == 0) {
 686     // This form uses global Park-Miller RNG.
 687     // On MP system we'll have lots of RW access to a global, so the
 688     // mechanism induces lots of coherency traffic.
 689     value = os::random();
 690   } else if (hashCode == 1) {
 691     // This variation has the property of being stable (idempotent)
 692     // between STW operations.  This can be useful in some of the 1-0
 693     // synchronization schemes.
 694     intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3;
 695     value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random;
 696   } else if (hashCode == 2) {
 697     value = 1;            // for sensitivity testing
 698   } else if (hashCode == 3) {
 699     value = ++GVars.hc_sequence;
 700   } else if (hashCode == 4) {
 701     value = cast_from_oop<intptr_t>(obj);
 702   } else {
 703     // Marsaglia's xor-shift scheme with thread-specific state
 704     // This is probably the best overall implementation -- we'll
 705     // likely make this the default in future releases.
 706     unsigned t = self->_hashStateX;
 707     t ^= (t << 11);
 708     self->_hashStateX = self->_hashStateY;
 709     self->_hashStateY = self->_hashStateZ;
 710     self->_hashStateZ = self->_hashStateW;
 711     unsigned v = self->_hashStateW;
 712     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 713     self->_hashStateW = v;
 714     value = v;
 715   }
 716 
 717   value &= markWord::hash_mask;
 718   if (value == 0) value = 0xBAD;
 719   assert(value != markWord::no_hash, "invariant");
 720   return value;
 721 }
 722 
 723 intptr_t ObjectSynchronizer::FastHashCode(Thread* self, oop obj) {
 724   if (UseBiasedLocking) {
 725     // NOTE: many places throughout the JVM do not expect a safepoint
 726     // to be taken here, in particular most operations on perm gen
 727     // objects. However, we only ever bias Java instances and all of
 728     // the call sites of identity_hash that might revoke biases have
 729     // been checked to make sure they can handle a safepoint. The
 730     // added check of the bias pattern is to avoid useless calls to
 731     // thread-local storage.
 732     if (obj->mark().has_bias_pattern()) {
 733       // Handle for oop obj in case of STW safepoint
 734       Handle hobj(self, obj);
 735       // Relaxing assertion for bug 6320749.
 736       assert(Universe::verify_in_progress() ||
 737              !SafepointSynchronize::is_at_safepoint(),
 738              "biases should not be seen by VM thread here");
 739       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
 740       obj = hobj();
 741       assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 742     }
 743   }
 744 
 745   // hashCode() is a heap mutator ...
 746   // Relaxing assertion for bug 6320749.
 747   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 748          !SafepointSynchronize::is_at_safepoint(), "invariant");
 749   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 750          self->is_Java_thread() , "invariant");
 751   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 752          ((JavaThread *)self)->thread_state() != _thread_blocked, "invariant");
 753 
 754   while (true) {
 755     ObjectMonitor* monitor = NULL;
 756     markWord temp, test;
 757     intptr_t hash;
 758     markWord mark = read_stable_mark(obj);
 759 
 760     // object should remain ineligible for biased locking
 761     assert(!mark.has_bias_pattern(), "invariant");
 762 
 763     if (mark.is_neutral()) {
 764       hash = mark.hash();              // this is a normal header
 765       if (hash != 0) {                  // if it has hash, just return it
 766         return hash;
 767       }
 768       hash = get_next_hash(self, obj);  // allocate a new hash code
 769       temp = mark.copy_set_hash(hash); // merge the hash code into header
 770       // use (machine word version) atomic operation to install the hash
 771       test = obj->cas_set_mark(temp, mark);
 772       if (test == mark) {
 773         return hash;
 774       }
 775       // If atomic operation failed, we must inflate the header
 776       // into heavy weight monitor. We could add more code here
 777       // for fast path, but it does not worth the complexity.
 778     } else if (mark.has_monitor()) {
 779       ObjectMonitorHandle omh;
 780       if (!omh.save_om_ptr(obj, mark)) {
 781         // Lost a race with async deflation so try again.
 782         assert(AsyncDeflateIdleMonitors, "sanity check");
 783         continue;
 784       }
 785       monitor = omh.om_ptr();
 786       temp = monitor->header();
 787       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
 788       hash = temp.hash();
 789       if (hash != 0) {
 790         return hash;
 791       }
 792       // Skip to the following code to reduce code size
 793     } else if (self->is_lock_owned((address)mark.locker())) {
 794       temp = mark.displaced_mark_helper(); // this is a lightweight monitor owned
 795       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
 796       hash = temp.hash();              // by current thread, check if the displaced
 797       if (hash != 0) {                  // header contains hash code
 798         return hash;
 799       }
 800       // WARNING:
 801       // The displaced header in the BasicLock on a thread's stack
 802       // is strictly immutable. It CANNOT be changed in ANY cases.
 803       // So we have to inflate the stack lock into an ObjectMonitor
 804       // even if the current thread owns the lock. The BasicLock on
 805       // a thread's stack can be asynchronously read by other threads
 806       // during an inflate() call so any change to that stack memory
 807       // may not propagate to other threads correctly.
 808     }
 809 
 810     // Inflate the monitor to set hash code
 811     ObjectMonitorHandle omh;
 812     inflate(&omh, self, obj, inflate_cause_hash_code);
 813     monitor = omh.om_ptr();
 814     // Load displaced header and check it has hash code
 815     mark = monitor->header();
 816     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
 817     hash = mark.hash();
 818     if (hash == 0) {
 819       hash = get_next_hash(self, obj);
 820       temp = mark.copy_set_hash(hash); // merge hash code into header
 821       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
 822       uintptr_t v = Atomic::cmpxchg(temp.value(), (volatile uintptr_t*)monitor->header_addr(), mark.value());
 823       test = markWord(v);
 824       if (test != mark) {
 825         // The only non-deflation update to the ObjectMonitor's
 826         // header/dmw field is to merge in the hash code. If someone
 827         // adds a new usage of the header/dmw field, please update
 828         // this code.
 829         // ObjectMonitor::install_displaced_markword_in_object()
 830         // does mark the header/dmw field as part of async deflation,
 831         // but that protocol cannot happen now due to the
 832         // ObjectMonitorHandle above.
 833         hash = test.hash();
 834         assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
 835         assert(hash != 0, "Trivial unexpected object/monitor header usage.");
 836       }
 837     }
 838     // We finally get the hash
 839     return hash;
 840   }
 841 }
 842 
 843 // Deprecated -- use FastHashCode() instead.
 844 
 845 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 846   return FastHashCode(Thread::current(), obj());
 847 }
 848 
 849 
 850 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 851                                                    Handle h_obj) {
 852   if (UseBiasedLocking) {
 853     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
 854     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
 855   }
 856 
 857   assert(thread == JavaThread::current(), "Can only be called on current thread");
 858   oop obj = h_obj();
 859 
 860   while (true) {
 861     markWord mark = read_stable_mark(obj);
 862 
 863     // Uncontended case, header points to stack
 864     if (mark.has_locker()) {
 865       return thread->is_lock_owned((address)mark.locker());
 866     }
 867     // Contended case, header points to ObjectMonitor (tagged pointer)
 868     if (mark.has_monitor()) {
 869       ObjectMonitorHandle omh;
 870       if (!omh.save_om_ptr(obj, mark)) {
 871         // Lost a race with async deflation so try again.
 872         assert(AsyncDeflateIdleMonitors, "sanity check");
 873         continue;
 874       }
 875       bool ret_code = omh.om_ptr()->is_entered(thread) != 0;
 876       return ret_code;
 877     }
 878     // Unlocked case, header in place
 879     assert(mark.is_neutral(), "sanity check");
 880     return false;
 881   }
 882 }
 883 
 884 // Be aware of this method could revoke bias of the lock object.
 885 // This method queries the ownership of the lock handle specified by 'h_obj'.
 886 // If the current thread owns the lock, it returns owner_self. If no
 887 // thread owns the lock, it returns owner_none. Otherwise, it will return
 888 // owner_other.
 889 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 890 (JavaThread *self, Handle h_obj) {
 891   // The caller must beware this method can revoke bias, and
 892   // revocation can result in a safepoint.
 893   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 894   assert(self->thread_state() != _thread_blocked, "invariant");
 895 
 896   // Possible mark states: neutral, biased, stack-locked, inflated
 897 
 898   if (UseBiasedLocking && h_obj()->mark().has_bias_pattern()) {
 899     // CASE: biased
 900     BiasedLocking::revoke_and_rebias(h_obj, false, self);
 901     assert(!h_obj->mark().has_bias_pattern(),
 902            "biases should be revoked by now");
 903   }
 904 
 905   assert(self == JavaThread::current(), "Can only be called on current thread");
 906   oop obj = h_obj();
 907 
 908   while (true) {
 909     markWord mark = read_stable_mark(obj);
 910 
 911     // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 912     if (mark.has_locker()) {
 913       return self->is_lock_owned((address)mark.locker()) ?
 914         owner_self : owner_other;
 915     }
 916 
 917     // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor.
 918     // The Object:ObjectMonitor relationship is stable as long as we're
 919     // not at a safepoint and AsyncDeflateIdleMonitors is false.
 920     if (mark.has_monitor()) {
 921       ObjectMonitorHandle omh;
 922       if (!omh.save_om_ptr(obj, mark)) {
 923         // Lost a race with async deflation so try again.
 924         assert(AsyncDeflateIdleMonitors, "sanity check");
 925         continue;
 926       }
 927       ObjectMonitor* monitor = omh.om_ptr();
 928       void* owner = monitor->_owner;
 929       if (owner == NULL) return owner_none;
 930       return (owner == self ||
 931               self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 932     }
 933 
 934     // CASE: neutral
 935     assert(mark.is_neutral(), "sanity check");
 936     return owner_none;           // it's unlocked
 937   }
 938 }
 939 
 940 // FIXME: jvmti should call this
 941 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
 942   if (UseBiasedLocking) {
 943     if (SafepointSynchronize::is_at_safepoint()) {
 944       BiasedLocking::revoke_at_safepoint(h_obj);
 945     } else {
 946       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
 947     }
 948     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
 949   }
 950 
 951   oop obj = h_obj();
 952 
 953   while (true) {
 954     address owner = NULL;
 955     markWord mark = read_stable_mark(obj);
 956 
 957     // Uncontended case, header points to stack
 958     if (mark.has_locker()) {
 959       owner = (address) mark.locker();
 960     }
 961 
 962     // Contended case, header points to ObjectMonitor (tagged pointer)
 963     else if (mark.has_monitor()) {
 964       ObjectMonitorHandle omh;
 965       if (!omh.save_om_ptr(obj, mark)) {
 966         // Lost a race with async deflation so try again.
 967         assert(AsyncDeflateIdleMonitors, "sanity check");
 968         continue;
 969       }
 970       ObjectMonitor* monitor = omh.om_ptr();
 971       assert(monitor != NULL, "monitor should be non-null");
 972       owner = (address) monitor->owner();
 973     }
 974 
 975     if (owner != NULL) {
 976       // owning_thread_from_monitor_owner() may also return NULL here
 977       return Threads::owning_thread_from_monitor_owner(t_list, owner);
 978     }
 979 
 980     // Unlocked case, header in place
 981     // Cannot have assertion since this object may have been
 982     // locked by another thread when reaching here.
 983     // assert(mark.is_neutral(), "sanity check");
 984 
 985     return NULL;
 986   }
 987 }
 988 
 989 // Visitors ...
 990 
 991 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 992   PaddedObjectMonitor* block = OrderAccess::load_acquire(&g_block_list);
 993   while (block != NULL) {
 994     assert(block->object() == CHAINMARKER, "must be a block header");
 995     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 996       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
 997       if (mid->is_active()) {
 998         ObjectMonitorHandle omh(mid);
 999 
1000         if (mid->object() == NULL ||
1001             (AsyncDeflateIdleMonitors && mid->_owner == DEFLATER_MARKER)) {
1002           // Only process with closure if the object is set.
1003           // For async deflation, race here if monitor is not owned!
1004           // The above ref_count bump (in ObjectMonitorHandle ctr)
1005           // will cause subsequent async deflation to skip it.
1006           // However, previous or concurrent async deflation is a race.
1007           continue;
1008         }
1009         closure->do_monitor(mid);
1010       }
1011     }
1012     block = (PaddedObjectMonitor*)block->_next_om;
1013   }
1014 }
1015 
1016 static bool monitors_used_above_threshold() {
1017   if (g_om_population == 0) {
1018     return false;
1019   }
1020   if (MonitorUsedDeflationThreshold > 0) {
1021     int monitors_used = g_om_population - g_om_free_count;
1022     int monitor_usage = (monitors_used * 100LL) / g_om_population;
1023     return monitor_usage > MonitorUsedDeflationThreshold;
1024   }
1025   return false;
1026 }
1027 
1028 // Returns true if MonitorBound is set (> 0) and if the specified
1029 // cnt is > MonitorBound. Otherwise returns false.
1030 static bool is_MonitorBound_exceeded(const int cnt) {
1031   const int mx = MonitorBound;
1032   return mx > 0 && cnt > mx;
1033 }
1034 
1035 bool ObjectSynchronizer::is_async_deflation_needed() {
1036   if (!AsyncDeflateIdleMonitors) {
1037     return false;
1038   }
1039   if (is_async_deflation_requested()) {
1040     // Async deflation request.
1041     return true;
1042   }
1043   if (AsyncDeflationInterval > 0 &&
1044       time_since_last_async_deflation_ms() > AsyncDeflationInterval &&
1045       monitors_used_above_threshold()) {
1046     // It's been longer than our specified deflate interval and there
1047     // are too many monitors in use. We don't deflate more frequently
1048     // than AsyncDeflationInterval (unless is_async_deflation_requested)
1049     // in order to not swamp the ServiceThread.
1050     _last_async_deflation_time_ns = os::javaTimeNanos();
1051     return true;
1052   }
1053   if (is_MonitorBound_exceeded(g_om_population - g_om_free_count)) {
1054     // Not enough ObjectMonitors on the global free list.
1055     return true;
1056   }
1057   return false;
1058 }
1059 
1060 bool ObjectSynchronizer::is_safepoint_deflation_needed() {
1061   if (!AsyncDeflateIdleMonitors) {
1062     if (monitors_used_above_threshold()) {
1063       // Too many monitors in use.
1064       return true;
1065     }
1066     return false;
1067   }
1068   if (is_special_deflation_requested()) {
1069     // For AsyncDeflateIdleMonitors only do a safepoint deflation
1070     // if there is a special deflation request.
1071     return true;
1072   }
1073   return false;
1074 }
1075 
1076 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1077   return (os::javaTimeNanos() - _last_async_deflation_time_ns) / (NANOUNITS / MILLIUNITS);
1078 }
1079 
1080 void ObjectSynchronizer::oops_do(OopClosure* f) {
1081   // We only scan the global used list here (for moribund threads), and
1082   // the thread-local monitors in Thread::oops_do().
1083   global_used_oops_do(f);
1084 }
1085 
1086 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
1087   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1088   list_oops_do(g_om_in_use_list, f);
1089 }
1090 
1091 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
1092   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1093   list_oops_do(thread->om_in_use_list, f);
1094 }
1095 
1096 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) {
1097   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1098   // The oops_do() phase does not overlap with monitor deflation
1099   // so no need to update the ObjectMonitor's ref_count for this
1100   // ObjectMonitor* use.
1101   ObjectMonitor* mid;
1102   for (mid = list; mid != NULL; mid = mid->_next_om) {
1103     if (mid->object() != NULL) {
1104       f->do_oop((oop*)mid->object_addr());
1105     }
1106   }
1107 }
1108 
1109 
1110 // -----------------------------------------------------------------------------
1111 // ObjectMonitor Lifecycle
1112 // -----------------------
1113 // Inflation unlinks monitors from the global g_free_list and
1114 // associates them with objects.  Deflation -- which occurs at
1115 // STW-time -- disassociates idle monitors from objects.  Such
1116 // scavenged monitors are returned to the g_free_list.
1117 //
1118 // The global list is protected by gListLock.  All the critical sections
1119 // are short and operate in constant-time.
1120 //
1121 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
1122 //
1123 // Lifecycle:
1124 // --   unassigned and on the global free list
1125 // --   unassigned and on a thread's private om_free_list
1126 // --   assigned to an object.  The object is inflated and the mark refers
1127 //      to the objectmonitor.
1128 
1129 
1130 // Constraining monitor pool growth via MonitorBound ...
1131 //
1132 // If MonitorBound is not set (<= 0), MonitorBound checks are disabled.
1133 //
1134 // When safepoint deflation is being used (!AsyncDeflateIdleMonitors):
1135 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
1136 // the rate of scavenging is driven primarily by GC.  As such,  we can find
1137 // an inordinate number of monitors in circulation.
1138 // To avoid that scenario we can artificially induce a STW safepoint
1139 // if the pool appears to be growing past some reasonable bound.
1140 // Generally we favor time in space-time tradeoffs, but as there's no
1141 // natural back-pressure on the # of extant monitors we need to impose some
1142 // type of limit.  Beware that if MonitorBound is set to too low a value
1143 // we could just loop. In addition, if MonitorBound is set to a low value
1144 // we'll incur more safepoints, which are harmful to performance.
1145 // See also: GuaranteedSafepointInterval
1146 //
1147 // The current implementation uses asynchronous VM operations.
1148 //
1149 // When safepoint deflation is being used and MonitorBound is set, the
1150 // boundry applies to
1151 //     (g_om_population - g_om_free_count)
1152 // i.e., if there are not enough ObjectMonitors on the global free list,
1153 // then a safepoint deflation is induced. Picking a good MonitorBound value
1154 // is non-trivial.
1155 //
1156 // When async deflation is being used:
1157 // The monitor pool is still grow-only. Async deflation is requested
1158 // by a safepoint's cleanup phase or by the ServiceThread at periodic
1159 // intervals when is_async_deflation_needed() returns true. In
1160 // addition to other policies that are checked, if there are not
1161 // enough ObjectMonitors on the global free list, then
1162 // is_async_deflation_needed() will return true. The ServiceThread
1163 // calls deflate_global_idle_monitors_using_JT() and also sets the
1164 // per-thread om_request_deflation flag as needed.
1165 
1166 static void InduceScavenge(Thread* self, const char * Whence) {
1167   assert(!AsyncDeflateIdleMonitors, "is not used by async deflation");
1168 
1169   // Induce STW safepoint to trim monitors
1170   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1171   // More precisely, trigger an asynchronous STW safepoint as the number
1172   // of active monitors passes the specified threshold.
1173   // TODO: assert thread state is reasonable
1174 
1175   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
1176     // Induce a 'null' safepoint to scavenge monitors
1177     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
1178     // to the VMthread and have a lifespan longer than that of this activation record.
1179     // The VMThread will delete the op when completed.
1180     VMThread::execute(new VM_ScavengeMonitors());
1181   }
1182 }
1183 
1184 ObjectMonitor* ObjectSynchronizer::om_alloc(Thread* self,
1185                                            const InflateCause cause) {
1186   // A large MAXPRIVATE value reduces both list lock contention
1187   // and list coherency traffic, but also tends to increase the
1188   // number of ObjectMonitors in circulation as well as the STW
1189   // scavenge costs.  As usual, we lean toward time in space-time
1190   // tradeoffs.
1191   const int MAXPRIVATE = 1024;
1192 
1193   if (AsyncDeflateIdleMonitors) {
1194     JavaThread* jt = (JavaThread *)self;
1195     if (jt->om_request_deflation && jt->om_in_use_count > 0 &&
1196         cause != inflate_cause_vm_internal) {
1197       // Deflate any per-thread idle monitors for this JavaThread if
1198       // this is not an internal inflation; internal inflations can
1199       // occur in places where it is not safe to pause for a safepoint.
1200       // Clean up your own mess (Gibbs Rule 45). Otherwise, skip this
1201       // deflation. deflate_global_idle_monitors_using_JT() is called
1202       // by the ServiceThread. Per-thread async deflation is triggered
1203       // by the ServiceThread via om_request_deflation.
1204       debug_only(jt->check_for_valid_safepoint_state(false);)
1205       ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT();
1206     }
1207   }
1208 
1209   stringStream ss;
1210   for (;;) {
1211     ObjectMonitor* m;
1212 
1213     // 1: try to allocate from the thread's local om_free_list.
1214     // Threads will attempt to allocate first from their local list, then
1215     // from the global list, and only after those attempts fail will the thread
1216     // attempt to instantiate new monitors.   Thread-local free lists take
1217     // heat off the gListLock and improve allocation latency, as well as reducing
1218     // coherency traffic on the shared global list.
1219     m = self->om_free_list;
1220     if (m != NULL) {
1221       self->om_free_list = m->_next_om;
1222       self->om_free_count--;
1223       guarantee(m->object() == NULL, "invariant");
1224       m->set_allocation_state(ObjectMonitor::New);
1225       m->_next_om = self->om_in_use_list;
1226       self->om_in_use_list = m;
1227       self->om_in_use_count++;
1228       return m;
1229     }
1230 
1231     // 2: try to allocate from the global g_free_list
1232     // CONSIDER: use muxTry() instead of muxAcquire().
1233     // If the muxTry() fails then drop immediately into case 3.
1234     // If we're using thread-local free lists then try
1235     // to reprovision the caller's free list.
1236     if (g_free_list != NULL) {
1237       // Reprovision the thread's om_free_list.
1238       // Use bulk transfers to reduce the allocation rate and heat
1239       // on various locks.
1240       Thread::muxAcquire(&gListLock, "om_alloc(1)");
1241       for (int i = self->om_free_provision; --i >= 0 && g_free_list != NULL;) {
1242         g_om_free_count--;
1243         ObjectMonitor* take = g_free_list;
1244         g_free_list = take->_next_om;
1245         guarantee(take->object() == NULL, "invariant");
1246         if (AsyncDeflateIdleMonitors) {
1247           // We allowed 3 field values to linger during async deflation.
1248           // We clear header and restore ref_count here, but we leave
1249           // owner == DEFLATER_MARKER so the simple C2 ObjectMonitor
1250           // enter optimization can no longer race with async deflation
1251           // and reuse.
1252           take->set_header(markWord::zero());
1253           if (take->ref_count() < 0) {
1254             // Add back max_jint to restore the ref_count field to its
1255             // proper value.
1256             Atomic::add(max_jint, &take->_ref_count);
1257 
1258             assert(take->ref_count() >= 0, "must not be negative: ref_count=%d",
1259                    take->ref_count());
1260           }
1261         }
1262         take->Recycle();
1263         assert(take->is_free(), "invariant");
1264         om_release(self, take, false);
1265       }
1266       Thread::muxRelease(&gListLock);
1267       self->om_free_provision += 1 + (self->om_free_provision/2);
1268       if (self->om_free_provision > MAXPRIVATE) self->om_free_provision = MAXPRIVATE;
1269 
1270       if (!AsyncDeflateIdleMonitors &&
1271           is_MonitorBound_exceeded(g_om_population - g_om_free_count)) {
1272         // Not enough ObjectMonitors on the global free list.
1273         // We can't safely induce a STW safepoint from om_alloc() as our thread
1274         // state may not be appropriate for such activities and callers may hold
1275         // naked oops, so instead we defer the action.
1276         InduceScavenge(self, "om_alloc");
1277       }
1278       continue;
1279     }
1280 
1281     // 3: allocate a block of new ObjectMonitors
1282     // Both the local and global free lists are empty -- resort to malloc().
1283     // In the current implementation ObjectMonitors are TSM - immortal.
1284     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1285     // each ObjectMonitor to start at the beginning of a cache line,
1286     // so we use align_up().
1287     // A better solution would be to use C++ placement-new.
1288     // BEWARE: As it stands currently, we don't run the ctors!
1289     assert(_BLOCKSIZE > 1, "invariant");
1290     size_t neededsize = sizeof(PaddedObjectMonitor) * _BLOCKSIZE;
1291     PaddedObjectMonitor* temp;
1292     size_t aligned_size = neededsize + (DEFAULT_CACHE_LINE_SIZE - 1);
1293     void* real_malloc_addr = (void*)NEW_C_HEAP_ARRAY(char, aligned_size,
1294                                                      mtInternal);
1295     temp = (PaddedObjectMonitor*)align_up(real_malloc_addr, DEFAULT_CACHE_LINE_SIZE);
1296 
1297     // NOTE: (almost) no way to recover if allocation failed.
1298     // We might be able to induce a STW safepoint and scavenge enough
1299     // ObjectMonitors to permit progress.
1300     if (temp == NULL) {
1301       vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR,
1302                             "Allocate ObjectMonitors");
1303     }
1304     (void)memset((void *) temp, 0, neededsize);
1305 
1306     // Format the block.
1307     // initialize the linked list, each monitor points to its next
1308     // forming the single linked free list, the very first monitor
1309     // will points to next block, which forms the block list.
1310     // The trick of using the 1st element in the block as g_block_list
1311     // linkage should be reconsidered.  A better implementation would
1312     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1313 
1314     for (int i = 1; i < _BLOCKSIZE; i++) {
1315       temp[i]._next_om = (ObjectMonitor *)&temp[i+1];
1316       assert(temp[i].is_free(), "invariant");
1317     }
1318 
1319     // terminate the last monitor as the end of list
1320     temp[_BLOCKSIZE - 1]._next_om = NULL;
1321 
1322     // Element [0] is reserved for global list linkage
1323     temp[0].set_object(CHAINMARKER);
1324 
1325     // Consider carving out this thread's current request from the
1326     // block in hand.  This avoids some lock traffic and redundant
1327     // list activity.
1328 
1329     // Acquire the gListLock to manipulate g_block_list and g_free_list.
1330     // An Oyama-Taura-Yonezawa scheme might be more efficient.
1331     Thread::muxAcquire(&gListLock, "om_alloc(2)");
1332     g_om_population += _BLOCKSIZE-1;
1333     g_om_free_count += _BLOCKSIZE-1;
1334 
1335     // Add the new block to the list of extant blocks (g_block_list).
1336     // The very first ObjectMonitor in a block is reserved and dedicated.
1337     // It serves as blocklist "next" linkage.
1338     temp[0]._next_om = g_block_list;
1339     // There are lock-free uses of g_block_list so make sure that
1340     // the previous stores happen before we update g_block_list.
1341     OrderAccess::release_store(&g_block_list, temp);
1342 
1343     // Add the new string of ObjectMonitors to the global free list
1344     temp[_BLOCKSIZE - 1]._next_om = g_free_list;
1345     g_free_list = temp + 1;
1346     Thread::muxRelease(&gListLock);
1347   }
1348 }
1349 
1350 // Place "m" on the caller's private per-thread om_free_list.
1351 // In practice there's no need to clamp or limit the number of
1352 // monitors on a thread's om_free_list as the only non-allocation time
1353 // we'll call om_release() is to return a monitor to the free list after
1354 // a CAS attempt failed. This doesn't allow unbounded #s of monitors to
1355 // accumulate on a thread's free list.
1356 //
1357 // Key constraint: all ObjectMonitors on a thread's free list and the global
1358 // free list must have their object field set to null. This prevents the
1359 // scavenger -- deflate_monitor_list() or deflate_monitor_list_using_JT()
1360 // -- from reclaiming them while we are trying to release them.
1361 
1362 void ObjectSynchronizer::om_release(Thread* self, ObjectMonitor* m,
1363                                     bool from_per_thread_alloc) {
1364   guarantee(m->header().value() == 0, "invariant");
1365   guarantee(m->object() == NULL, "invariant");
1366   stringStream ss;
1367   guarantee((m->is_busy() | m->_recursions) == 0, "freeing in-use monitor: "
1368             "%s, recursions=" INTPTR_FORMAT, m->is_busy_to_string(&ss),
1369             m->_recursions);
1370   m->set_allocation_state(ObjectMonitor::Free);
1371   // _next_om is used for both per-thread in-use and free lists so
1372   // we have to remove 'm' from the in-use list first (as needed).
1373   if (from_per_thread_alloc) {
1374     // Need to remove 'm' from om_in_use_list.
1375     ObjectMonitor* cur_mid_in_use = NULL;
1376     bool extracted = false;
1377     for (ObjectMonitor* mid = self->om_in_use_list; mid != NULL; cur_mid_in_use = mid, mid = mid->_next_om) {
1378       if (m == mid) {
1379         // extract from per-thread in-use list
1380         if (mid == self->om_in_use_list) {
1381           self->om_in_use_list = mid->_next_om;
1382         } else if (cur_mid_in_use != NULL) {
1383           cur_mid_in_use->_next_om = mid->_next_om; // maintain the current thread in-use list
1384         }
1385         extracted = true;
1386         self->om_in_use_count--;
1387         break;
1388       }
1389     }
1390     assert(extracted, "Should have extracted from in-use list");
1391   }
1392 
1393   m->_next_om = self->om_free_list;
1394   guarantee(m->is_free(), "invariant");
1395   self->om_free_list = m;
1396   self->om_free_count++;
1397 }
1398 
1399 // Return ObjectMonitors on a moribund thread's free and in-use
1400 // lists to the appropriate global lists. The ObjectMonitors on the
1401 // per-thread in-use list may still be in use by other threads.
1402 //
1403 // We currently call om_flush() from Threads::remove() before the
1404 // thread has been excised from the thread list and is no longer a
1405 // mutator. This means that om_flush() cannot run concurrently with
1406 // a safepoint and interleave with deflate_idle_monitors(). In
1407 // particular, this ensures that the thread's in-use monitors are
1408 // scanned by a GC safepoint, either via Thread::oops_do() (before
1409 // om_flush() is called) or via ObjectSynchronizer::oops_do() (after
1410 // om_flush() is called).
1411 //
1412 // With AsyncDeflateIdleMonitors, deflate_global_idle_monitors_using_JT()
1413 // and deflate_per_thread_idle_monitors_using_JT() (in another thread) can
1414 // run at the same time as om_flush() so we have to be careful.
1415 
1416 void ObjectSynchronizer::om_flush(Thread* self) {
1417   ObjectMonitor* free_list = self->om_free_list;
1418   ObjectMonitor* free_tail = NULL;
1419   int free_count = 0;
1420   if (free_list != NULL) {
1421     ObjectMonitor* s;
1422     // The thread is going away. Set 'free_tail' to the last per-thread free
1423     // monitor which will be linked to g_free_list below under the gListLock.
1424     stringStream ss;
1425     for (s = free_list; s != NULL; s = s->_next_om) {
1426       free_count++;
1427       free_tail = s;
1428       guarantee(s->object() == NULL, "invariant");
1429       guarantee(!s->is_busy(), "must be !is_busy: %s", s->is_busy_to_string(&ss));
1430     }
1431     guarantee(free_tail != NULL, "invariant");
1432     ADIM_guarantee(self->om_free_count == free_count, "free-count off");
1433     self->om_free_list = NULL;
1434     self->om_free_count = 0;
1435   }
1436 
1437   ObjectMonitor* in_use_list = self->om_in_use_list;
1438   ObjectMonitor* in_use_tail = NULL;
1439   int in_use_count = 0;
1440   if (in_use_list != NULL) {
1441     // The thread is going away, however the ObjectMonitors on the
1442     // om_in_use_list may still be in-use by other threads. Link
1443     // them to in_use_tail, which will be linked into the global
1444     // in-use list g_om_in_use_list below, under the gListLock.
1445     ObjectMonitor *cur_om;
1446     for (cur_om = in_use_list; cur_om != NULL; cur_om = cur_om->_next_om) {
1447       in_use_tail = cur_om;
1448       in_use_count++;
1449       ADIM_guarantee(cur_om->is_active(), "invariant");
1450     }
1451     guarantee(in_use_tail != NULL, "invariant");
1452     ADIM_guarantee(self->om_in_use_count == in_use_count, "in-use count off");
1453     self->om_in_use_list = NULL;
1454     self->om_in_use_count = 0;
1455   }
1456 
1457   Thread::muxAcquire(&gListLock, "om_flush");
1458   if (free_tail != NULL) {
1459     free_tail->_next_om = g_free_list;
1460     g_free_list = free_list;
1461     g_om_free_count += free_count;
1462   }
1463 
1464   if (in_use_tail != NULL) {
1465     in_use_tail->_next_om = g_om_in_use_list;
1466     g_om_in_use_list = in_use_list;
1467     g_om_in_use_count += in_use_count;
1468   }
1469 
1470   Thread::muxRelease(&gListLock);
1471 
1472   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1473   LogStreamHandle(Info, monitorinflation) lsh_info;
1474   LogStream* ls = NULL;
1475   if (log_is_enabled(Debug, monitorinflation)) {
1476     ls = &lsh_debug;
1477   } else if ((free_count != 0 || in_use_count != 0) &&
1478              log_is_enabled(Info, monitorinflation)) {
1479     ls = &lsh_info;
1480   }
1481   if (ls != NULL) {
1482     ls->print_cr("om_flush: jt=" INTPTR_FORMAT ", free_count=%d"
1483                  ", in_use_count=%d" ", om_free_provision=%d",
1484                  p2i(self), free_count, in_use_count, self->om_free_provision);
1485   }
1486 }
1487 
1488 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1489                                        const oop obj,
1490                                        ObjectSynchronizer::InflateCause cause) {
1491   assert(event != NULL, "invariant");
1492   assert(event->should_commit(), "invariant");
1493   event->set_monitorClass(obj->klass());
1494   event->set_address((uintptr_t)(void*)obj);
1495   event->set_cause((u1)cause);
1496   event->commit();
1497 }
1498 
1499 // Fast path code shared by multiple functions
1500 void ObjectSynchronizer::inflate_helper(ObjectMonitorHandle* omh_p, oop obj) {
1501   while (true) {
1502     markWord mark = obj->mark();
1503     if (mark.has_monitor()) {
1504       if (!omh_p->save_om_ptr(obj, mark)) {
1505         // Lost a race with async deflation so try again.
1506         assert(AsyncDeflateIdleMonitors, "sanity check");
1507         continue;
1508       }
1509       ObjectMonitor* monitor = omh_p->om_ptr();
1510       assert(ObjectSynchronizer::verify_objmon_isinpool(monitor), "monitor is invalid");
1511       markWord dmw = monitor->header();
1512       assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value());
1513       return;
1514     }
1515     inflate(omh_p, Thread::current(), obj, inflate_cause_vm_internal);
1516     return;
1517   }
1518 }
1519 
1520 void ObjectSynchronizer::inflate(ObjectMonitorHandle* omh_p, Thread* self,
1521                                  oop object, const InflateCause cause) {
1522   // Inflate mutates the heap ...
1523   // Relaxing assertion for bug 6320749.
1524   assert(Universe::verify_in_progress() ||
1525          !SafepointSynchronize::is_at_safepoint(), "invariant");
1526 
1527   EventJavaMonitorInflate event;
1528 
1529   for (;;) {
1530     const markWord mark = object->mark();
1531     assert(!mark.has_bias_pattern(), "invariant");
1532 
1533     // The mark can be in one of the following states:
1534     // *  Inflated     - just return
1535     // *  Stack-locked - coerce it to inflated
1536     // *  INFLATING    - busy wait for conversion to complete
1537     // *  Neutral      - aggressively inflate the object.
1538     // *  BIASED       - Illegal.  We should never see this
1539 
1540     // CASE: inflated
1541     if (mark.has_monitor()) {
1542       if (!omh_p->save_om_ptr(object, mark)) {
1543         // Lost a race with async deflation so try again.
1544         assert(AsyncDeflateIdleMonitors, "sanity check");
1545         continue;
1546       }
1547       ObjectMonitor* inf = omh_p->om_ptr();
1548       markWord dmw = inf->header();
1549       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1550       assert(oopDesc::equals((oop) inf->object(), object), "invariant");
1551       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1552       return;
1553     }
1554 
1555     // CASE: inflation in progress - inflating over a stack-lock.
1556     // Some other thread is converting from stack-locked to inflated.
1557     // Only that thread can complete inflation -- other threads must wait.
1558     // The INFLATING value is transient.
1559     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1560     // We could always eliminate polling by parking the thread on some auxiliary list.
1561     if (mark == markWord::INFLATING()) {
1562       read_stable_mark(object);
1563       continue;
1564     }
1565 
1566     // CASE: stack-locked
1567     // Could be stack-locked either by this thread or by some other thread.
1568     //
1569     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1570     // to install INFLATING into the mark word.  We originally installed INFLATING,
1571     // allocated the objectmonitor, and then finally STed the address of the
1572     // objectmonitor into the mark.  This was correct, but artificially lengthened
1573     // the interval in which INFLATED appeared in the mark, thus increasing
1574     // the odds of inflation contention.
1575     //
1576     // We now use per-thread private objectmonitor free lists.
1577     // These list are reprovisioned from the global free list outside the
1578     // critical INFLATING...ST interval.  A thread can transfer
1579     // multiple objectmonitors en-mass from the global free list to its local free list.
1580     // This reduces coherency traffic and lock contention on the global free list.
1581     // Using such local free lists, it doesn't matter if the om_alloc() call appears
1582     // before or after the CAS(INFLATING) operation.
1583     // See the comments in om_alloc().
1584 
1585     LogStreamHandle(Trace, monitorinflation) lsh;
1586 
1587     if (mark.has_locker()) {
1588       ObjectMonitor* m;
1589       if (!AsyncDeflateIdleMonitors || cause == inflate_cause_vm_internal) {
1590         // If !AsyncDeflateIdleMonitors or if an internal inflation, then
1591         // we won't stop for a potential safepoint in om_alloc.
1592         m = om_alloc(self, cause);
1593       } else {
1594         // If AsyncDeflateIdleMonitors and not an internal inflation, then
1595         // we may stop for a safepoint in om_alloc() so protect object.
1596         Handle h_obj(self, object);
1597         m = om_alloc(self, cause);
1598         object = h_obj();  // Refresh object.
1599       }
1600       // Optimistically prepare the objectmonitor - anticipate successful CAS
1601       // We do this before the CAS in order to minimize the length of time
1602       // in which INFLATING appears in the mark.
1603       m->Recycle();
1604       m->_Responsible  = NULL;
1605       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1606 
1607       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1608       if (cmp != mark) {
1609         om_release(self, m, true);
1610         continue;       // Interference -- just retry
1611       }
1612 
1613       // We've successfully installed INFLATING (0) into the mark-word.
1614       // This is the only case where 0 will appear in a mark-word.
1615       // Only the singular thread that successfully swings the mark-word
1616       // to 0 can perform (or more precisely, complete) inflation.
1617       //
1618       // Why do we CAS a 0 into the mark-word instead of just CASing the
1619       // mark-word from the stack-locked value directly to the new inflated state?
1620       // Consider what happens when a thread unlocks a stack-locked object.
1621       // It attempts to use CAS to swing the displaced header value from the
1622       // on-stack BasicLock back into the object header.  Recall also that the
1623       // header value (hash code, etc) can reside in (a) the object header, or
1624       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1625       // header in an ObjectMonitor.  The inflate() routine must copy the header
1626       // value from the BasicLock on the owner's stack to the ObjectMonitor, all
1627       // the while preserving the hashCode stability invariants.  If the owner
1628       // decides to release the lock while the value is 0, the unlock will fail
1629       // and control will eventually pass from slow_exit() to inflate.  The owner
1630       // will then spin, waiting for the 0 value to disappear.   Put another way,
1631       // the 0 causes the owner to stall if the owner happens to try to
1632       // drop the lock (restoring the header from the BasicLock to the object)
1633       // while inflation is in-progress.  This protocol avoids races that might
1634       // would otherwise permit hashCode values to change or "flicker" for an object.
1635       // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable.
1636       // 0 serves as a "BUSY" inflate-in-progress indicator.
1637 
1638 
1639       // fetch the displaced mark from the owner's stack.
1640       // The owner can't die or unwind past the lock while our INFLATING
1641       // object is in the mark.  Furthermore the owner can't complete
1642       // an unlock on the object, either.
1643       markWord dmw = mark.displaced_mark_helper();
1644       // Catch if the object's header is not neutral (not locked and
1645       // not marked is what we care about here).
1646       ADIM_guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1647 
1648       // Setup monitor fields to proper values -- prepare the monitor
1649       m->set_header(dmw);
1650 
1651       // Optimization: if the mark.locker stack address is associated
1652       // with this thread we could simply set m->_owner = self.
1653       // Note that a thread can inflate an object
1654       // that it has stack-locked -- as might happen in wait() -- directly
1655       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1656       m->set_owner(mark.locker());
1657       m->set_object(object);
1658       // TODO-FIXME: assert BasicLock->dhw != 0.
1659 
1660       omh_p->set_om_ptr(m);
1661       assert(m->is_new(), "freshly allocated monitor must be new");
1662       m->set_allocation_state(ObjectMonitor::Old);
1663 
1664       // Must preserve store ordering. The monitor state must
1665       // be stable at the time of publishing the monitor address.
1666       guarantee(object->mark() == markWord::INFLATING(), "invariant");
1667       object->release_set_mark(markWord::encode(m));
1668 
1669       // Hopefully the performance counters are allocated on distinct cache lines
1670       // to avoid false sharing on MP systems ...
1671       OM_PERFDATA_OP(Inflations, inc());
1672       if (log_is_enabled(Trace, monitorinflation)) {
1673         ResourceMark rm(self);
1674         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1675                      INTPTR_FORMAT ", type='%s'", p2i(object),
1676                      object->mark().value(), object->klass()->external_name());
1677       }
1678       if (event.should_commit()) {
1679         post_monitor_inflate_event(&event, object, cause);
1680       }
1681       ADIM_guarantee(!m->is_free(), "inflated monitor to be returned cannot be free");
1682       return;
1683     }
1684 
1685     // CASE: neutral
1686     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1687     // If we know we're inflating for entry it's better to inflate by swinging a
1688     // pre-locked ObjectMonitor pointer into the object header.   A successful
1689     // CAS inflates the object *and* confers ownership to the inflating thread.
1690     // In the current implementation we use a 2-step mechanism where we CAS()
1691     // to inflate and then CAS() again to try to swing _owner from NULL to self.
1692     // An inflateTry() method that we could call from fast_enter() and slow_enter()
1693     // would be useful.
1694 
1695     // Catch if the object's header is not neutral (not locked and
1696     // not marked is what we care about here).
1697     ADIM_guarantee(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1698     ObjectMonitor* m;
1699     if (!AsyncDeflateIdleMonitors || cause == inflate_cause_vm_internal) {
1700       // If !AsyncDeflateIdleMonitors or if an internal inflation, then
1701       // we won't stop for a potential safepoint in om_alloc.
1702       m = om_alloc(self, cause);
1703     } else {
1704       // If AsyncDeflateIdleMonitors and not an internal inflation, then
1705       // we may stop for a safepoint in om_alloc() so protect object.
1706       Handle h_obj(self, object);
1707       m = om_alloc(self, cause);
1708       object = h_obj();  // Refresh object.
1709     }
1710     // prepare m for installation - set monitor to initial state
1711     m->Recycle();
1712     m->set_header(mark);
1713     // If we leave _owner == DEFLATER_MARKER here, then the simple C2
1714     // ObjectMonitor enter optimization can no longer race with async
1715     // deflation and reuse.
1716     m->set_object(object);
1717     m->_Responsible  = NULL;
1718     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1719 
1720     omh_p->set_om_ptr(m);
1721     assert(m->is_new(), "freshly allocated monitor must be new");
1722     m->set_allocation_state(ObjectMonitor::Old);
1723 
1724     if (object->cas_set_mark(markWord::encode(m), mark) != mark) {
1725       m->set_header(markWord::zero());
1726       m->set_object(NULL);
1727       m->Recycle();
1728       omh_p->set_om_ptr(NULL);
1729       // om_release() will reset the allocation state
1730       om_release(self, m, true);
1731       m = NULL;
1732       continue;
1733       // interference - the markword changed - just retry.
1734       // The state-transitions are one-way, so there's no chance of
1735       // live-lock -- "Inflated" is an absorbing state.
1736     }
1737 
1738     // Hopefully the performance counters are allocated on distinct
1739     // cache lines to avoid false sharing on MP systems ...
1740     OM_PERFDATA_OP(Inflations, inc());
1741     if (log_is_enabled(Trace, monitorinflation)) {
1742       ResourceMark rm(self);
1743       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
1744                    INTPTR_FORMAT ", type='%s'", p2i(object),
1745                    object->mark().value(), object->klass()->external_name());
1746     }
1747     if (event.should_commit()) {
1748       post_monitor_inflate_event(&event, object, cause);
1749     }
1750     ADIM_guarantee(!m->is_free(), "inflated monitor to be returned cannot be free");
1751     return;
1752   }
1753 }
1754 
1755 
1756 // We maintain a list of in-use monitors for each thread.
1757 //
1758 // For safepoint based deflation:
1759 // deflate_thread_local_monitors() scans a single thread's in-use list, while
1760 // deflate_idle_monitors() scans only a global list of in-use monitors which
1761 // is populated only as a thread dies (see om_flush()).
1762 //
1763 // These operations are called at all safepoints, immediately after mutators
1764 // are stopped, but before any objects have moved. Collectively they traverse
1765 // the population of in-use monitors, deflating where possible. The scavenged
1766 // monitors are returned to the global monitor free list.
1767 //
1768 // Beware that we scavenge at *every* stop-the-world point. Having a large
1769 // number of monitors in-use could negatively impact performance. We also want
1770 // to minimize the total # of monitors in circulation, as they incur a small
1771 // footprint penalty.
1772 //
1773 // Perversely, the heap size -- and thus the STW safepoint rate --
1774 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1775 // which in turn can mean large(r) numbers of ObjectMonitors in circulation.
1776 // This is an unfortunate aspect of this design.
1777 //
1778 // For async deflation:
1779 // If a special deflation request is made, then the safepoint based
1780 // deflation mechanism is used. Otherwise, an async deflation request
1781 // is registered with the ServiceThread and it is notified.
1782 
1783 void ObjectSynchronizer::do_safepoint_work(DeflateMonitorCounters* _counters) {
1784   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1785 
1786   // The per-thread in-use lists are handled in
1787   // ParallelSPCleanupThreadClosure::do_thread().
1788 
1789   if (!AsyncDeflateIdleMonitors || is_special_deflation_requested()) {
1790     // Use the older mechanism for the global in-use list or if a
1791     // special deflation has been requested before the safepoint.
1792     ObjectSynchronizer::deflate_idle_monitors(_counters);
1793     return;
1794   }
1795 
1796   log_debug(monitorinflation)("requesting async deflation of idle monitors.");
1797   // Request deflation of idle monitors by the ServiceThread:
1798   set_is_async_deflation_requested(true);
1799   MonitorLocker ml(Service_lock, Mutex::_no_safepoint_check_flag);
1800   ml.notify_all();
1801 }
1802 
1803 // Deflate a single monitor if not in-use
1804 // Return true if deflated, false if in-use
1805 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1806                                          ObjectMonitor** free_head_p,
1807                                          ObjectMonitor** free_tail_p) {
1808   bool deflated;
1809   // Normal case ... The monitor is associated with obj.
1810   const markWord mark = obj->mark();
1811   guarantee(mark == markWord::encode(mid), "should match: mark="
1812             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, mark.value(),
1813             markWord::encode(mid).value());
1814   // Make sure that mark.monitor() and markWord::encode() agree:
1815   guarantee(mark.monitor() == mid, "should match: monitor()=" INTPTR_FORMAT
1816             ", mid=" INTPTR_FORMAT, p2i(mark.monitor()), p2i(mid));
1817   const markWord dmw = mid->header();
1818   guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1819 
1820   if (mid->is_busy() || mid->ref_count() != 0) {
1821     // Easy checks are first - the ObjectMonitor is busy or ObjectMonitor*
1822     // is in use so no deflation.
1823     deflated = false;
1824   } else {
1825     // Deflate the monitor if it is no longer being used
1826     // It's idle - scavenge and return to the global free list
1827     // plain old deflation ...
1828     if (log_is_enabled(Trace, monitorinflation)) {
1829       ResourceMark rm;
1830       log_trace(monitorinflation)("deflate_monitor: "
1831                                   "object=" INTPTR_FORMAT ", mark="
1832                                   INTPTR_FORMAT ", type='%s'", p2i(obj),
1833                                   mark.value(), obj->klass()->external_name());
1834     }
1835 
1836     // Restore the header back to obj
1837     obj->release_set_mark(dmw);
1838     if (AsyncDeflateIdleMonitors) {
1839       // clear() expects the owner field to be NULL and we won't race
1840       // with the simple C2 ObjectMonitor enter optimization since
1841       // we're at a safepoint.
1842       mid->set_owner(NULL);
1843     }
1844     mid->clear();
1845 
1846     assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT,
1847            p2i(mid->object()));
1848     assert(mid->is_free(), "invariant");
1849 
1850     // Move the deflated ObjectMonitor to the working free list
1851     // defined by free_head_p and free_tail_p.
1852     if (*free_head_p == NULL) *free_head_p = mid;
1853     if (*free_tail_p != NULL) {
1854       // We append to the list so the caller can use mid->_next_om
1855       // to fix the linkages in its context.
1856       ObjectMonitor* prevtail = *free_tail_p;
1857       // Should have been cleaned up by the caller:
1858       assert(prevtail->_next_om == NULL, "cleaned up deflated?");
1859       prevtail->_next_om = mid;
1860     }
1861     *free_tail_p = mid;
1862     // At this point, mid->_next_om still refers to its current
1863     // value and another ObjectMonitor's _next_om field still
1864     // refers to this ObjectMonitor. Those linkages have to be
1865     // cleaned up by the caller who has the complete context.
1866     deflated = true;
1867   }
1868   return deflated;
1869 }
1870 
1871 // Deflate the specified ObjectMonitor if not in-use using a JavaThread.
1872 // Returns true if it was deflated and false otherwise.
1873 //
1874 // The async deflation protocol sets owner to DEFLATER_MARKER and
1875 // makes ref_count negative as signals to contending threads that
1876 // an async deflation is in progress. There are a number of checks
1877 // as part of the protocol to make sure that the calling thread has
1878 // not lost the race to a contending thread or to a thread that just
1879 // wants to use the ObjectMonitor*.
1880 //
1881 // The ObjectMonitor has been successfully async deflated when:
1882 // (owner == DEFLATER_MARKER && ref_count < 0)
1883 // Contending threads or ObjectMonitor* using threads that see those
1884 // values know to retry their operation.
1885 //
1886 bool ObjectSynchronizer::deflate_monitor_using_JT(ObjectMonitor* mid,
1887                                                   ObjectMonitor** free_head_p,
1888                                                   ObjectMonitor** free_tail_p) {
1889   assert(AsyncDeflateIdleMonitors, "sanity check");
1890   assert(Thread::current()->is_Java_thread(), "precondition");
1891   // A newly allocated ObjectMonitor should not be seen here so we
1892   // avoid an endless inflate/deflate cycle.
1893   assert(mid->is_old(), "must be old: allocation_state=%d",
1894          (int) mid->allocation_state());
1895 
1896   if (mid->is_busy() || mid->ref_count() != 0) {
1897     // Easy checks are first - the ObjectMonitor is busy or ObjectMonitor*
1898     // is in use so no deflation.
1899     return false;
1900   }
1901 
1902   if (Atomic::replace_if_null(DEFLATER_MARKER, &(mid->_owner))) {
1903     // ObjectMonitor is not owned by another thread. Our setting
1904     // owner to DEFLATER_MARKER forces any contending thread through
1905     // the slow path. This is just the first part of the async
1906     // deflation dance.
1907 
1908     if (mid->_contentions != 0 || mid->_waiters != 0) {
1909       // Another thread has raced to enter the ObjectMonitor after
1910       // mid->is_busy() above or has already entered and waited on
1911       // it which makes it busy so no deflation. Restore owner to
1912       // NULL if it is still DEFLATER_MARKER.
1913       Atomic::cmpxchg((void*)NULL, &mid->_owner, DEFLATER_MARKER);
1914       return false;
1915     }
1916 
1917     if (Atomic::cmpxchg(-max_jint, &mid->_ref_count, (jint)0) == 0) {
1918       // Make ref_count negative to force any contending threads or
1919       // ObjectMonitor* using threads to retry. This is the second
1920       // part of the async deflation dance.
1921 
1922       if (mid->owner_is_DEFLATER_MARKER()) {
1923         // If owner is still DEFLATER_MARKER, then we have successfully
1924         // signaled any contending threads to retry. If it is not, then we
1925         // have lost the race to an entering thread and the ObjectMonitor
1926         // is now busy. This is the third and final part of the async
1927         // deflation dance.
1928         // Note: This owner check solves the ABA problem with ref_count
1929         // where another thread acquired the ObjectMonitor, finished
1930         // using it and restored the ref_count to zero.
1931 
1932         // Sanity checks for the races:
1933         guarantee(mid->_contentions == 0, "must be 0: contentions=%d",
1934                   mid->_contentions);
1935         guarantee(mid->_waiters == 0, "must be 0: waiters=%d", mid->_waiters);
1936         guarantee(mid->_cxq == NULL, "must be no contending threads: cxq="
1937                   INTPTR_FORMAT, p2i(mid->_cxq));
1938         guarantee(mid->_EntryList == NULL,
1939                   "must be no entering threads: EntryList=" INTPTR_FORMAT,
1940                   p2i(mid->_EntryList));
1941 
1942         const oop obj = (oop) mid->object();
1943         if (log_is_enabled(Trace, monitorinflation)) {
1944           ResourceMark rm;
1945           log_trace(monitorinflation)("deflate_monitor_using_JT: "
1946                                       "object=" INTPTR_FORMAT ", mark="
1947                                       INTPTR_FORMAT ", type='%s'",
1948                                       p2i(obj), obj->mark().value(),
1949                                       obj->klass()->external_name());
1950         }
1951 
1952         // Install the old mark word if nobody else has already done it.
1953         mid->install_displaced_markword_in_object(obj);
1954         mid->clear_using_JT();
1955 
1956         assert(mid->object() == NULL, "must be NULL: object=" INTPTR_FORMAT,
1957                p2i(mid->object()));
1958         assert(mid->is_free(), "must be free: allocation_state=%d",
1959                (int) mid->allocation_state());
1960 
1961         // Move the deflated ObjectMonitor to the working free list
1962         // defined by free_head_p and free_tail_p.
1963         if (*free_head_p == NULL) {
1964           // First one on the list.
1965           *free_head_p = mid;
1966         }
1967         if (*free_tail_p != NULL) {
1968           // We append to the list so the caller can use mid->_next_om
1969           // to fix the linkages in its context.
1970           ObjectMonitor* prevtail = *free_tail_p;
1971           // Should have been cleaned up by the caller:
1972           assert(prevtail->_next_om == NULL, "must be NULL: _next_om="
1973                  INTPTR_FORMAT, p2i(prevtail->_next_om));
1974           prevtail->_next_om = mid;
1975         }
1976         *free_tail_p = mid;
1977 
1978         // At this point, mid->_next_om still refers to its current
1979         // value and another ObjectMonitor's _next_om field still
1980         // refers to this ObjectMonitor. Those linkages have to be
1981         // cleaned up by the caller who has the complete context.
1982 
1983         // We leave owner == DEFLATER_MARKER and ref_count < 0
1984         // to force any racing threads to retry.
1985         return true;  // Success, ObjectMonitor has been deflated.
1986       }
1987 
1988       // The owner was changed from DEFLATER_MARKER so we lost the
1989       // race since the ObjectMonitor is now busy.
1990 
1991       // Add back max_jint to restore the ref_count field to its
1992       // proper value (which may not be what we saw above):
1993       Atomic::add(max_jint, &mid->_ref_count);
1994 
1995       assert(mid->ref_count() >= 0, "must not be negative: ref_count=%d",
1996              mid->ref_count());
1997       return false;
1998     }
1999 
2000     // The ref_count was no longer 0 so we lost the race since the
2001     // ObjectMonitor is now busy or the ObjectMonitor* is now is use.
2002     // Restore owner to NULL if it is still DEFLATER_MARKER:
2003     Atomic::cmpxchg((void*)NULL, &mid->_owner, DEFLATER_MARKER);
2004   }
2005 
2006   // The owner field is no longer NULL so we lost the race since the
2007   // ObjectMonitor is now busy.
2008   return false;
2009 }
2010 
2011 // Walk a given monitor list, and deflate idle monitors
2012 // The given list could be a per-thread list or a global list
2013 // Caller acquires gListLock as needed.
2014 //
2015 // In the case of parallel processing of thread local monitor lists,
2016 // work is done by Threads::parallel_threads_do() which ensures that
2017 // each Java thread is processed by exactly one worker thread, and
2018 // thus avoid conflicts that would arise when worker threads would
2019 // process the same monitor lists concurrently.
2020 //
2021 // See also ParallelSPCleanupTask and
2022 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
2023 // Threads::parallel_java_threads_do() in thread.cpp.
2024 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** list_p,
2025                                              ObjectMonitor** free_head_p,
2026                                              ObjectMonitor** free_tail_p) {
2027   ObjectMonitor* mid;
2028   ObjectMonitor* next;
2029   ObjectMonitor* cur_mid_in_use = NULL;
2030   int deflated_count = 0;
2031 
2032   for (mid = *list_p; mid != NULL;) {
2033     oop obj = (oop) mid->object();
2034     if (obj != NULL && deflate_monitor(mid, obj, free_head_p, free_tail_p)) {
2035       // Deflation succeeded and already updated free_head_p and
2036       // free_tail_p as needed. Finish the move to the local free list
2037       // by unlinking mid from the global or per-thread in-use list.
2038       if (mid == *list_p) {
2039         *list_p = mid->_next_om;
2040       } else if (cur_mid_in_use != NULL) {
2041         cur_mid_in_use->_next_om = mid->_next_om; // maintain the current thread in-use list
2042       }
2043       next = mid->_next_om;
2044       mid->_next_om = NULL;  // This mid is current tail in the free_head_p list
2045       mid = next;
2046       deflated_count++;
2047     } else {
2048       cur_mid_in_use = mid;
2049       mid = mid->_next_om;
2050     }
2051   }
2052   return deflated_count;
2053 }
2054 
2055 // Walk a given ObjectMonitor list and deflate idle ObjectMonitors using
2056 // a JavaThread. Returns the number of deflated ObjectMonitors. The given
2057 // list could be a per-thread in-use list or the global in-use list.
2058 // Caller acquires gListLock as appropriate. If a safepoint has started,
2059 // then we save state via saved_mid_in_use_p and return to the caller to
2060 // honor the safepoint.
2061 //
2062 int ObjectSynchronizer::deflate_monitor_list_using_JT(ObjectMonitor** list_p,
2063                                                       ObjectMonitor** free_head_p,
2064                                                       ObjectMonitor** free_tail_p,
2065                                                       ObjectMonitor** saved_mid_in_use_p) {
2066   assert(AsyncDeflateIdleMonitors, "sanity check");
2067   assert(Thread::current()->is_Java_thread(), "precondition");
2068 
2069   ObjectMonitor* mid;
2070   ObjectMonitor* next;
2071   ObjectMonitor* cur_mid_in_use = NULL;
2072   int deflated_count = 0;
2073 
2074   if (*saved_mid_in_use_p == NULL) {
2075     // No saved state so start at the beginning.
2076     mid = *list_p;
2077   } else {
2078     // We're restarting after a safepoint so restore the necessary state
2079     // before we resume.
2080     cur_mid_in_use = *saved_mid_in_use_p;
2081     mid = cur_mid_in_use->_next_om;
2082   }
2083   while (mid != NULL) {
2084     // Only try to deflate if there is an associated Java object and if
2085     // mid is old (is not newly allocated and is not newly freed).
2086     if (mid->object() != NULL && mid->is_old() &&
2087         deflate_monitor_using_JT(mid, free_head_p, free_tail_p)) {
2088       // Deflation succeeded and already updated free_head_p and
2089       // free_tail_p as needed. Finish the move to the local free list
2090       // by unlinking mid from the global or per-thread in-use list.
2091       if (mid == *list_p) {
2092         *list_p = mid->_next_om;
2093       } else if (cur_mid_in_use != NULL) {
2094         // Maintain the current in-use list.
2095         cur_mid_in_use->_next_om = mid->_next_om;
2096       }
2097       next = mid->_next_om;
2098       mid->_next_om = NULL;
2099       // At this point mid is disconnected from the in-use list
2100       // and is the current tail in the free_head_p list.
2101       mid = next;
2102       deflated_count++;
2103     } else {
2104       // mid is considered in-use if it does not have an associated
2105       // Java object or mid is not old or deflation did not succeed.
2106       // A mid->is_new() node can be seen here when it is freshly
2107       // returned by om_alloc() (and skips the deflation code path).
2108       // A mid->is_old() node can be seen here when deflation failed.
2109       // A mid->is_free() node can be seen here when a fresh node from
2110       // om_alloc() is released by om_release() due to losing the race
2111       // in inflate().
2112 
2113       cur_mid_in_use = mid;
2114       mid = mid->_next_om;
2115 
2116       if (SafepointSynchronize::is_synchronizing() &&
2117           cur_mid_in_use != *list_p && cur_mid_in_use->is_old()) {
2118         // If a safepoint has started and cur_mid_in_use is not the list
2119         // head and is old, then it is safe to use as saved state. Return
2120         // to the caller so gListLock can be dropped as appropriate
2121         // before blocking.
2122         *saved_mid_in_use_p = cur_mid_in_use;
2123         return deflated_count;
2124       }
2125     }
2126   }
2127   // We finished the list without a safepoint starting so there's
2128   // no need to save state.
2129   *saved_mid_in_use_p = NULL;
2130   return deflated_count;
2131 }
2132 
2133 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2134   counters->n_in_use = 0;              // currently associated with objects
2135   counters->n_in_circulation = 0;      // extant
2136   counters->n_scavenged = 0;           // reclaimed (global and per-thread)
2137   counters->per_thread_scavenged = 0;  // per-thread scavenge total
2138   counters->per_thread_times = 0.0;    // per-thread scavenge times
2139 }
2140 
2141 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
2142   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2143 
2144   if (AsyncDeflateIdleMonitors) {
2145     // Nothing to do when global idle ObjectMonitors are deflated using
2146     // a JavaThread unless a special deflation has been requested.
2147     if (!is_special_deflation_requested()) {
2148       return;
2149     }
2150   }
2151 
2152   bool deflated = false;
2153 
2154   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
2155   ObjectMonitor* free_tail_p = NULL;
2156   elapsedTimer timer;
2157 
2158   if (log_is_enabled(Info, monitorinflation)) {
2159     timer.start();
2160   }
2161 
2162   // Prevent om_flush from changing mids in Thread dtor's during deflation
2163   // And in case the vm thread is acquiring a lock during a safepoint
2164   // See e.g. 6320749
2165   Thread::muxAcquire(&gListLock, "deflate_idle_monitors");
2166 
2167   // Note: the thread-local monitors lists get deflated in
2168   // a separate pass. See deflate_thread_local_monitors().
2169 
2170   // For moribund threads, scan g_om_in_use_list
2171   int deflated_count = 0;
2172   if (g_om_in_use_list) {
2173     counters->n_in_circulation += g_om_in_use_count;
2174     deflated_count = deflate_monitor_list((ObjectMonitor **)&g_om_in_use_list, &free_head_p, &free_tail_p);
2175     g_om_in_use_count -= deflated_count;
2176     counters->n_scavenged += deflated_count;
2177     counters->n_in_use += g_om_in_use_count;
2178   }
2179 
2180   if (free_head_p != NULL) {
2181     // Move the deflated ObjectMonitors back to the global free list.
2182     guarantee(free_tail_p != NULL && counters->n_scavenged > 0, "invariant");
2183     assert(free_tail_p->_next_om == NULL, "invariant");
2184     // constant-time list splice - prepend scavenged segment to g_free_list
2185     free_tail_p->_next_om = g_free_list;
2186     g_free_list = free_head_p;
2187   }
2188   Thread::muxRelease(&gListLock);
2189   timer.stop();
2190 
2191   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2192   LogStreamHandle(Info, monitorinflation) lsh_info;
2193   LogStream* ls = NULL;
2194   if (log_is_enabled(Debug, monitorinflation)) {
2195     ls = &lsh_debug;
2196   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2197     ls = &lsh_info;
2198   }
2199   if (ls != NULL) {
2200     ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2201   }
2202 }
2203 
2204 // Deflate global idle ObjectMonitors using a JavaThread.
2205 //
2206 void ObjectSynchronizer::deflate_global_idle_monitors_using_JT() {
2207   assert(AsyncDeflateIdleMonitors, "sanity check");
2208   assert(Thread::current()->is_Java_thread(), "precondition");
2209   JavaThread* self = JavaThread::current();
2210 
2211   deflate_common_idle_monitors_using_JT(true /* is_global */, self);
2212 }
2213 
2214 // Deflate per-thread idle ObjectMonitors using a JavaThread.
2215 //
2216 void ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT() {
2217   assert(AsyncDeflateIdleMonitors, "sanity check");
2218   assert(Thread::current()->is_Java_thread(), "precondition");
2219   JavaThread* self = JavaThread::current();
2220 
2221   self->om_request_deflation = false;
2222 
2223   deflate_common_idle_monitors_using_JT(false /* !is_global */, self);
2224 }
2225 
2226 // Deflate global or per-thread idle ObjectMonitors using a JavaThread.
2227 //
2228 void ObjectSynchronizer::deflate_common_idle_monitors_using_JT(bool is_global, JavaThread* self) {
2229   int deflated_count = 0;
2230   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged ObjectMonitors
2231   ObjectMonitor* free_tail_p = NULL;
2232   ObjectMonitor* saved_mid_in_use_p = NULL;
2233   elapsedTimer timer;
2234 
2235   if (log_is_enabled(Info, monitorinflation)) {
2236     timer.start();
2237   }
2238 
2239   if (is_global) {
2240     Thread::muxAcquire(&gListLock, "deflate_global_idle_monitors_using_JT(1)");
2241     OM_PERFDATA_OP(MonExtant, set_value(g_om_in_use_count));
2242   } else {
2243     OM_PERFDATA_OP(MonExtant, inc(self->om_in_use_count));
2244   }
2245 
2246   do {
2247     int local_deflated_count;
2248     if (is_global) {
2249       local_deflated_count = deflate_monitor_list_using_JT((ObjectMonitor **)&g_om_in_use_list, &free_head_p, &free_tail_p, &saved_mid_in_use_p);
2250       g_om_in_use_count -= local_deflated_count;
2251     } else {
2252       local_deflated_count = deflate_monitor_list_using_JT(self->om_in_use_list_addr(), &free_head_p, &free_tail_p, &saved_mid_in_use_p);
2253       self->om_in_use_count -= local_deflated_count;
2254     }
2255     deflated_count += local_deflated_count;
2256 
2257     if (free_head_p != NULL) {
2258       // Move the deflated ObjectMonitors to the global free list.
2259       guarantee(free_tail_p != NULL && local_deflated_count > 0, "free_tail_p=" INTPTR_FORMAT ", local_deflated_count=%d", p2i(free_tail_p), local_deflated_count);
2260       assert(free_tail_p->_next_om == NULL, "invariant");
2261 
2262       if (!is_global) {
2263         Thread::muxAcquire(&gListLock, "deflate_per_thread_idle_monitors_using_JT(2)");
2264       }
2265       // Constant-time list splice - prepend scavenged segment to g_free_list.
2266       free_tail_p->_next_om = g_free_list;
2267       g_free_list = free_head_p;
2268 
2269       g_om_free_count += local_deflated_count;
2270       OM_PERFDATA_OP(Deflations, inc(local_deflated_count));
2271       if (!is_global) {
2272         Thread::muxRelease(&gListLock);
2273       }
2274     }
2275 
2276     if (saved_mid_in_use_p != NULL) {
2277       // deflate_monitor_list_using_JT() detected a safepoint starting.
2278       if (is_global) {
2279         Thread::muxRelease(&gListLock);
2280       }
2281       timer.stop();
2282       {
2283         if (is_global) {
2284           log_debug(monitorinflation)("pausing deflation of global idle monitors for a safepoint.");
2285         } else {
2286           log_debug(monitorinflation)("jt=" INTPTR_FORMAT ": pausing deflation of per-thread idle monitors for a safepoint.", p2i(self));
2287         }
2288         assert(SafepointSynchronize::is_synchronizing(), "sanity check");
2289         ThreadBlockInVM blocker(self);
2290       }
2291       // Prepare for another loop after the safepoint.
2292       free_head_p = NULL;
2293       free_tail_p = NULL;
2294       if (log_is_enabled(Info, monitorinflation)) {
2295         timer.start();
2296       }
2297       if (is_global) {
2298         Thread::muxAcquire(&gListLock, "deflate_global_idle_monitors_using_JT(3)");
2299       }
2300     }
2301   } while (saved_mid_in_use_p != NULL);
2302   if (is_global) {
2303     Thread::muxRelease(&gListLock);
2304   }
2305   timer.stop();
2306 
2307   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2308   LogStreamHandle(Info, monitorinflation) lsh_info;
2309   LogStream* ls = NULL;
2310   if (log_is_enabled(Debug, monitorinflation)) {
2311     ls = &lsh_debug;
2312   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2313     ls = &lsh_info;
2314   }
2315   if (ls != NULL) {
2316     if (is_global) {
2317       ls->print_cr("async-deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2318     } else {
2319       ls->print_cr("jt=" INTPTR_FORMAT ": async-deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(self), timer.seconds(), deflated_count);
2320     }
2321   }
2322 }
2323 
2324 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2325   // Report the cumulative time for deflating each thread's idle
2326   // monitors. Note: if the work is split among more than one
2327   // worker thread, then the reported time will likely be more
2328   // than a beginning to end measurement of the phase.
2329   // Note: AsyncDeflateIdleMonitors only deflates per-thread idle
2330   // monitors at a safepoint when a special deflation has been requested.
2331   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d", counters->per_thread_times, counters->per_thread_scavenged);
2332 
2333   bool needs_special_deflation = is_special_deflation_requested();
2334   if (!AsyncDeflateIdleMonitors || needs_special_deflation) {
2335     // AsyncDeflateIdleMonitors does not use these counters unless
2336     // there is a special deflation request.
2337 
2338     g_om_free_count += counters->n_scavenged;
2339 
2340     OM_PERFDATA_OP(Deflations, inc(counters->n_scavenged));
2341     OM_PERFDATA_OP(MonExtant, set_value(counters->n_in_circulation));
2342   }
2343 
2344   if (log_is_enabled(Debug, monitorinflation)) {
2345     // exit_globals()'s call to audit_and_print_stats() is done
2346     // at the Info level.
2347     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2348   } else if (log_is_enabled(Info, monitorinflation)) {
2349     Thread::muxAcquire(&gListLock, "finish_deflate_idle_monitors");
2350     log_info(monitorinflation)("g_om_population=%d, g_om_in_use_count=%d, "
2351                                "g_om_free_count=%d", g_om_population,
2352                                g_om_in_use_count, g_om_free_count);
2353     Thread::muxRelease(&gListLock);
2354   }
2355 
2356   ForceMonitorScavenge = 0;    // Reset
2357   GVars.stw_random = os::random();
2358   GVars.stw_cycle++;
2359   if (needs_special_deflation) {
2360     set_is_special_deflation_requested(false);  // special deflation is done
2361   }
2362 }
2363 
2364 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
2365   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2366 
2367   if (AsyncDeflateIdleMonitors) {
2368     if (!is_special_deflation_requested()) {
2369       // Mark the JavaThread for idle monitor deflation if a special
2370       // deflation has NOT been requested.
2371       if (thread->om_in_use_count > 0) {
2372         // This JavaThread is using monitors so mark it.
2373         thread->om_request_deflation = true;
2374       }
2375       return;
2376     }
2377   }
2378 
2379   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
2380   ObjectMonitor* free_tail_p = NULL;
2381   elapsedTimer timer;
2382 
2383   if (log_is_enabled(Info, safepoint, cleanup) ||
2384       log_is_enabled(Info, monitorinflation)) {
2385     timer.start();
2386   }
2387 
2388   int deflated_count = deflate_monitor_list(thread->om_in_use_list_addr(), &free_head_p, &free_tail_p);
2389 
2390   Thread::muxAcquire(&gListLock, "deflate_thread_local_monitors");
2391 
2392   // Adjust counters
2393   counters->n_in_circulation += thread->om_in_use_count;
2394   thread->om_in_use_count -= deflated_count;
2395   counters->n_scavenged += deflated_count;
2396   counters->n_in_use += thread->om_in_use_count;
2397   counters->per_thread_scavenged += deflated_count;
2398 
2399   if (free_head_p != NULL) {
2400     // Move the deflated ObjectMonitors back to the global free list.
2401     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
2402     assert(free_tail_p->_next_om == NULL, "invariant");
2403 
2404     // constant-time list splice - prepend scavenged segment to g_free_list
2405     free_tail_p->_next_om = g_free_list;
2406     g_free_list = free_head_p;
2407   }
2408 
2409   timer.stop();
2410   // Safepoint logging cares about cumulative per_thread_times and
2411   // we'll capture most of the cost, but not the muxRelease() which
2412   // should be cheap.
2413   counters->per_thread_times += timer.seconds();
2414 
2415   Thread::muxRelease(&gListLock);
2416 
2417   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2418   LogStreamHandle(Info, monitorinflation) lsh_info;
2419   LogStream* ls = NULL;
2420   if (log_is_enabled(Debug, monitorinflation)) {
2421     ls = &lsh_debug;
2422   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2423     ls = &lsh_info;
2424   }
2425   if (ls != NULL) {
2426     ls->print_cr("jt=" INTPTR_FORMAT ": deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(thread), timer.seconds(), deflated_count);
2427   }
2428 }
2429 
2430 // Monitor cleanup on JavaThread::exit
2431 
2432 // Iterate through monitor cache and attempt to release thread's monitors
2433 // Gives up on a particular monitor if an exception occurs, but continues
2434 // the overall iteration, swallowing the exception.
2435 class ReleaseJavaMonitorsClosure: public MonitorClosure {
2436  private:
2437   TRAPS;
2438 
2439  public:
2440   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
2441   void do_monitor(ObjectMonitor* mid) {
2442     if (mid->owner() == THREAD) {
2443       (void)mid->complete_exit(CHECK);
2444     }
2445   }
2446 };
2447 
2448 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
2449 // ignored.  This is meant to be called during JNI thread detach which assumes
2450 // all remaining monitors are heavyweight.  All exceptions are swallowed.
2451 // Scanning the extant monitor list can be time consuming.
2452 // A simple optimization is to add a per-thread flag that indicates a thread
2453 // called jni_monitorenter() during its lifetime.
2454 //
2455 // Instead of No_Savepoint_Verifier it might be cheaper to
2456 // use an idiom of the form:
2457 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
2458 //   <code that must not run at safepoint>
2459 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
2460 // Since the tests are extremely cheap we could leave them enabled
2461 // for normal product builds.
2462 
2463 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
2464   assert(THREAD == JavaThread::current(), "must be current Java thread");
2465   NoSafepointVerifier nsv;
2466   ReleaseJavaMonitorsClosure rjmc(THREAD);
2467   Thread::muxAcquire(&gListLock, "release_monitors_owned_by_thread");
2468   ObjectSynchronizer::monitors_iterate(&rjmc);
2469   Thread::muxRelease(&gListLock);
2470   THREAD->clear_pending_exception();
2471 }
2472 
2473 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
2474   switch (cause) {
2475     case inflate_cause_vm_internal:    return "VM Internal";
2476     case inflate_cause_monitor_enter:  return "Monitor Enter";
2477     case inflate_cause_wait:           return "Monitor Wait";
2478     case inflate_cause_notify:         return "Monitor Notify";
2479     case inflate_cause_hash_code:      return "Monitor Hash Code";
2480     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
2481     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
2482     default:
2483       ShouldNotReachHere();
2484   }
2485   return "Unknown";
2486 }
2487 
2488 //------------------------------------------------------------------------------
2489 // Debugging code
2490 
2491 u_char* ObjectSynchronizer::get_gvars_addr() {
2492   return (u_char*)&GVars;
2493 }
2494 
2495 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() {
2496   return (u_char*)&GVars.hc_sequence;
2497 }
2498 
2499 size_t ObjectSynchronizer::get_gvars_size() {
2500   return sizeof(SharedGlobals);
2501 }
2502 
2503 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() {
2504   return (u_char*)&GVars.stw_random;
2505 }
2506 
2507 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) {
2508   assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant");
2509 
2510   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2511   LogStreamHandle(Info, monitorinflation) lsh_info;
2512   LogStreamHandle(Trace, monitorinflation) lsh_trace;
2513   LogStream* ls = NULL;
2514   if (log_is_enabled(Trace, monitorinflation)) {
2515     ls = &lsh_trace;
2516   } else if (log_is_enabled(Debug, monitorinflation)) {
2517     ls = &lsh_debug;
2518   } else if (log_is_enabled(Info, monitorinflation)) {
2519     ls = &lsh_info;
2520   }
2521   assert(ls != NULL, "sanity check");
2522 
2523   if (!on_exit) {
2524     // Not at VM exit so grab the global list lock.
2525     Thread::muxAcquire(&gListLock, "audit_and_print_stats");
2526   }
2527 
2528   // Log counts for the global and per-thread monitor lists:
2529   int chk_om_population = log_monitor_list_counts(ls);
2530   int error_cnt = 0;
2531 
2532   ls->print_cr("Checking global lists:");
2533 
2534   // Check g_om_population:
2535   if (g_om_population == chk_om_population) {
2536     ls->print_cr("g_om_population=%d equals chk_om_population=%d",
2537                  g_om_population, chk_om_population);
2538   } else {
2539     ls->print_cr("ERROR: g_om_population=%d is not equal to "
2540                  "chk_om_population=%d", g_om_population,
2541                  chk_om_population);
2542     error_cnt++;
2543   }
2544 
2545   // Check g_om_in_use_list and g_om_in_use_count:
2546   chk_global_in_use_list_and_count(ls, &error_cnt);
2547 
2548   // Check g_free_list and g_om_free_count:
2549   chk_global_free_list_and_count(ls, &error_cnt);
2550 
2551   if (!on_exit) {
2552     Thread::muxRelease(&gListLock);
2553   }
2554 
2555   ls->print_cr("Checking per-thread lists:");
2556 
2557   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2558     // Check om_in_use_list and om_in_use_count:
2559     chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt);
2560 
2561     // Check om_free_list and om_free_count:
2562     chk_per_thread_free_list_and_count(jt, ls, &error_cnt);
2563   }
2564 
2565   if (error_cnt == 0) {
2566     ls->print_cr("No errors found in monitor list checks.");
2567   } else {
2568     log_error(monitorinflation)("found monitor list errors: error_cnt=%d", error_cnt);
2569   }
2570 
2571   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
2572       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
2573     // When exiting this log output is at the Info level. When called
2574     // at a safepoint, this log output is at the Trace level since
2575     // there can be a lot of it.
2576     log_in_use_monitor_details(ls, on_exit);
2577   }
2578 
2579   ls->flush();
2580 
2581   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
2582 }
2583 
2584 // Check a free monitor entry; log any errors.
2585 void ObjectSynchronizer::chk_free_entry(JavaThread* jt, ObjectMonitor* n,
2586                                         outputStream * out, int *error_cnt_p) {
2587   stringStream ss;
2588   if (n->is_busy()) {
2589     if (jt != NULL) {
2590       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2591                     ": free per-thread monitor must not be busy: %s", p2i(jt),
2592                     p2i(n), n->is_busy_to_string(&ss));
2593     } else {
2594       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2595                     "must not be busy: %s", p2i(n), n->is_busy_to_string(&ss));
2596     }
2597     *error_cnt_p = *error_cnt_p + 1;
2598   }
2599   if (n->header().value() != 0) {
2600     if (jt != NULL) {
2601       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2602                     ": free per-thread monitor must have NULL _header "
2603                     "field: _header=" INTPTR_FORMAT, p2i(jt), p2i(n),
2604                     n->header().value());
2605       *error_cnt_p = *error_cnt_p + 1;
2606     } else if (!AsyncDeflateIdleMonitors) {
2607       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2608                     "must have NULL _header field: _header=" INTPTR_FORMAT,
2609                     p2i(n), n->header().value());
2610       *error_cnt_p = *error_cnt_p + 1;
2611     }
2612   }
2613   if (n->object() != NULL) {
2614     if (jt != NULL) {
2615       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2616                     ": free per-thread monitor must have NULL _object "
2617                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
2618                     p2i(n->object()));
2619     } else {
2620       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
2621                     "must have NULL _object field: _object=" INTPTR_FORMAT,
2622                     p2i(n), p2i(n->object()));
2623     }
2624     *error_cnt_p = *error_cnt_p + 1;
2625   }
2626 }
2627 
2628 // Check the global free list and count; log the results of the checks.
2629 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
2630                                                         int *error_cnt_p) {
2631   int chk_om_free_count = 0;
2632   for (ObjectMonitor* n = g_free_list; n != NULL; n = n->_next_om) {
2633     chk_free_entry(NULL /* jt */, n, out, error_cnt_p);
2634     chk_om_free_count++;
2635   }
2636   if (g_om_free_count == chk_om_free_count) {
2637     out->print_cr("g_om_free_count=%d equals chk_om_free_count=%d",
2638                   g_om_free_count, chk_om_free_count);
2639   } else {
2640     out->print_cr("ERROR: g_om_free_count=%d is not equal to "
2641                   "chk_om_free_count=%d", g_om_free_count,
2642                   chk_om_free_count);
2643     *error_cnt_p = *error_cnt_p + 1;
2644   }
2645 }
2646 
2647 // Check the global in-use list and count; log the results of the checks.
2648 void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out,
2649                                                           int *error_cnt_p) {
2650   int chk_om_in_use_count = 0;
2651   for (ObjectMonitor* n = g_om_in_use_list; n != NULL; n = n->_next_om) {
2652     chk_in_use_entry(NULL /* jt */, n, out, error_cnt_p);
2653     chk_om_in_use_count++;
2654   }
2655   if (g_om_in_use_count == chk_om_in_use_count) {
2656     out->print_cr("g_om_in_use_count=%d equals chk_om_in_use_count=%d", g_om_in_use_count,
2657                   chk_om_in_use_count);
2658   } else {
2659     out->print_cr("ERROR: g_om_in_use_count=%d is not equal to chk_om_in_use_count=%d",
2660                   g_om_in_use_count, chk_om_in_use_count);
2661     *error_cnt_p = *error_cnt_p + 1;
2662   }
2663 }
2664 
2665 // Check an in-use monitor entry; log any errors.
2666 void ObjectSynchronizer::chk_in_use_entry(JavaThread* jt, ObjectMonitor* n,
2667                                           outputStream * out, int *error_cnt_p) {
2668   if (n->header().value() == 0) {
2669     if (jt != NULL) {
2670       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2671                     ": in-use per-thread monitor must have non-NULL _header "
2672                     "field.", p2i(jt), p2i(n));
2673     } else {
2674       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
2675                     "must have non-NULL _header field.", p2i(n));
2676     }
2677     *error_cnt_p = *error_cnt_p + 1;
2678   }
2679   if (n->object() == NULL) {
2680     if (jt != NULL) {
2681       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2682                     ": in-use per-thread monitor must have non-NULL _object "
2683                     "field.", p2i(jt), p2i(n));
2684     } else {
2685       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
2686                     "must have non-NULL _object field.", p2i(n));
2687     }
2688     *error_cnt_p = *error_cnt_p + 1;
2689   }
2690   const oop obj = (oop)n->object();
2691   const markWord mark = obj->mark();
2692   if (!mark.has_monitor()) {
2693     if (jt != NULL) {
2694       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2695                     ": in-use per-thread monitor's object does not think "
2696                     "it has a monitor: obj=" INTPTR_FORMAT ", mark="
2697                     INTPTR_FORMAT,  p2i(jt), p2i(n), p2i(obj), mark.value());
2698     } else {
2699       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2700                     "monitor's object does not think it has a monitor: obj="
2701                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
2702                     p2i(obj), mark.value());
2703     }
2704     *error_cnt_p = *error_cnt_p + 1;
2705   }
2706   ObjectMonitor* const obj_mon = mark.monitor();
2707   if (n != obj_mon) {
2708     if (jt != NULL) {
2709       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2710                     ": in-use per-thread monitor's object does not refer "
2711                     "to the same monitor: obj=" INTPTR_FORMAT ", mark="
2712                     INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt),
2713                     p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
2714     } else {
2715       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2716                     "monitor's object does not refer to the same monitor: obj="
2717                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
2718                     INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
2719     }
2720     *error_cnt_p = *error_cnt_p + 1;
2721   }
2722 }
2723 
2724 // Check the thread's free list and count; log the results of the checks.
2725 void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt,
2726                                                             outputStream * out,
2727                                                             int *error_cnt_p) {
2728   int chk_om_free_count = 0;
2729   for (ObjectMonitor* n = jt->om_free_list; n != NULL; n = n->_next_om) {
2730     chk_free_entry(jt, n, out, error_cnt_p);
2731     chk_om_free_count++;
2732   }
2733   if (jt->om_free_count == chk_om_free_count) {
2734     out->print_cr("jt=" INTPTR_FORMAT ": om_free_count=%d equals "
2735                   "chk_om_free_count=%d", p2i(jt), jt->om_free_count, chk_om_free_count);
2736   } else {
2737     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_free_count=%d is not "
2738                   "equal to chk_om_free_count=%d", p2i(jt), jt->om_free_count,
2739                   chk_om_free_count);
2740     *error_cnt_p = *error_cnt_p + 1;
2741   }
2742 }
2743 
2744 // Check the thread's in-use list and count; log the results of the checks.
2745 void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt,
2746                                                               outputStream * out,
2747                                                               int *error_cnt_p) {
2748   int chk_om_in_use_count = 0;
2749   for (ObjectMonitor* n = jt->om_in_use_list; n != NULL; n = n->_next_om) {
2750     chk_in_use_entry(jt, n, out, error_cnt_p);
2751     chk_om_in_use_count++;
2752   }
2753   if (jt->om_in_use_count == chk_om_in_use_count) {
2754     out->print_cr("jt=" INTPTR_FORMAT ": om_in_use_count=%d equals "
2755                   "chk_om_in_use_count=%d", p2i(jt), jt->om_in_use_count,
2756                   chk_om_in_use_count);
2757   } else {
2758     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_in_use_count=%d is not "
2759                   "equal to chk_om_in_use_count=%d", p2i(jt), jt->om_in_use_count,
2760                   chk_om_in_use_count);
2761     *error_cnt_p = *error_cnt_p + 1;
2762   }
2763 }
2764 
2765 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
2766 // flags indicate why the entry is in-use, 'object' and 'object type'
2767 // indicate the associated object and its type.
2768 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out,
2769                                                     bool on_exit) {
2770   if (!on_exit) {
2771     // Not at VM exit so grab the global list lock.
2772     Thread::muxAcquire(&gListLock, "log_in_use_monitor_details");
2773   }
2774 
2775   stringStream ss;
2776   if (g_om_in_use_count > 0) {
2777     out->print_cr("In-use global monitor info:");
2778     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2779     out->print_cr("%18s  %s  %7s  %18s  %18s",
2780                   "monitor", "BHL", "ref_cnt", "object", "object type");
2781     out->print_cr("==================  ===  =======  ==================  ==================");
2782     for (ObjectMonitor* n = g_om_in_use_list; n != NULL; n = n->_next_om) {
2783       const oop obj = (oop) n->object();
2784       const markWord mark = n->header();
2785       ResourceMark rm;
2786       out->print(INTPTR_FORMAT "  %d%d%d  %7d  " INTPTR_FORMAT "  %s",
2787                  p2i(n), n->is_busy() != 0, mark.hash() != 0,
2788                  n->owner() != NULL, (int)n->ref_count(), p2i(obj),
2789                  obj->klass()->external_name());
2790       if (n->is_busy() != 0) {
2791         out->print(" (%s)", n->is_busy_to_string(&ss));
2792         ss.reset();
2793       }
2794       out->cr();
2795     }
2796   }
2797 
2798   if (!on_exit) {
2799     Thread::muxRelease(&gListLock);
2800   }
2801 
2802   out->print_cr("In-use per-thread monitor info:");
2803   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2804   out->print_cr("%18s  %18s  %s  %7s  %18s  %18s",
2805                 "jt", "monitor", "BHL", "ref_cnt", "object", "object type");
2806   out->print_cr("==================  ==================  ===  =======  ==================  ==================");
2807   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2808     for (ObjectMonitor* n = jt->om_in_use_list; n != NULL; n = n->_next_om) {
2809       const oop obj = (oop) n->object();
2810       const markWord mark = n->header();
2811       ResourceMark rm;
2812       out->print(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  %7d  "
2813                  INTPTR_FORMAT "  %s", p2i(jt), p2i(n), n->is_busy() != 0,
2814                  mark.hash() != 0, n->owner() != NULL, (int)n->ref_count(),
2815                  p2i(obj), obj->klass()->external_name());
2816       if (n->is_busy() != 0) {
2817         out->print(" (%s)", n->is_busy_to_string(&ss));
2818         ss.reset();
2819       }
2820       out->cr();
2821     }
2822   }
2823 
2824   out->flush();
2825 }
2826 
2827 // Log counts for the global and per-thread monitor lists and return
2828 // the population count.
2829 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
2830   int pop_count = 0;
2831   out->print_cr("%18s  %10s  %10s  %10s",
2832                 "Global Lists:", "InUse", "Free", "Total");
2833   out->print_cr("==================  ==========  ==========  ==========");
2834   out->print_cr("%18s  %10d  %10d  %10d", "",
2835                 g_om_in_use_count, g_om_free_count, g_om_population);
2836   pop_count += g_om_in_use_count + g_om_free_count;
2837 
2838   out->print_cr("%18s  %10s  %10s  %10s",
2839                 "Per-Thread Lists:", "InUse", "Free", "Provision");
2840   out->print_cr("==================  ==========  ==========  ==========");
2841 
2842   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2843     out->print_cr(INTPTR_FORMAT "  %10d  %10d  %10d", p2i(jt),
2844                   jt->om_in_use_count, jt->om_free_count, jt->om_free_provision);
2845     pop_count += jt->om_in_use_count + jt->om_free_count;
2846   }
2847   return pop_count;
2848 }
2849 
2850 #ifndef PRODUCT
2851 
2852 // Check if monitor belongs to the monitor cache
2853 // The list is grow-only so it's *relatively* safe to traverse
2854 // the list of extant blocks without taking a lock.
2855 
2856 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
2857   PaddedObjectMonitor* block = OrderAccess::load_acquire(&g_block_list);
2858   while (block != NULL) {
2859     assert(block->object() == CHAINMARKER, "must be a block header");
2860     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
2861       address mon = (address)monitor;
2862       address blk = (address)block;
2863       size_t diff = mon - blk;
2864       assert((diff % sizeof(PaddedObjectMonitor)) == 0, "must be aligned");
2865       return 1;
2866     }
2867     block = (PaddedObjectMonitor*)block->_next_om;
2868   }
2869   return 0;
2870 }
2871 
2872 #endif