1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "logging/logStream.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/metaspaceShared.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/handles.inline.hpp"
  40 #include "runtime/interfaceSupport.inline.hpp"
  41 #include "runtime/mutexLocker.hpp"
  42 #include "runtime/objectMonitor.hpp"
  43 #include "runtime/objectMonitor.inline.hpp"
  44 #include "runtime/osThread.hpp"
  45 #include "runtime/safepointVerifiers.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/synchronizer.hpp"
  49 #include "runtime/thread.inline.hpp"
  50 #include "runtime/timer.hpp"
  51 #include "runtime/vframe.hpp"
  52 #include "runtime/vmThread.hpp"
  53 #include "utilities/align.hpp"
  54 #include "utilities/dtrace.hpp"
  55 #include "utilities/events.hpp"
  56 #include "utilities/preserveException.hpp"
  57 
  58 // The "core" versions of monitor enter and exit reside in this file.
  59 // The interpreter and compilers contain specialized transliterated
  60 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  61 // for instance.  If you make changes here, make sure to modify the
  62 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  63 //
  64 // -----------------------------------------------------------------------------
  65 
  66 #ifdef DTRACE_ENABLED
  67 
  68 // Only bother with this argument setup if dtrace is available
  69 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  70 
  71 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  72   char* bytes = NULL;                                                      \
  73   int len = 0;                                                             \
  74   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  75   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  76   if (klassname != NULL) {                                                 \
  77     bytes = (char*)klassname->bytes();                                     \
  78     len = klassname->utf8_length();                                        \
  79   }
  80 
  81 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  82   {                                                                        \
  83     if (DTraceMonitorProbes) {                                             \
  84       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  85       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  86                            (uintptr_t)(monitor), bytes, len, (millis));    \
  87     }                                                                      \
  88   }
  89 
  90 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  91 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  92 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  93 
  94 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  95   {                                                                        \
  96     if (DTraceMonitorProbes) {                                             \
  97       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  98       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
  99                                     (uintptr_t)(monitor), bytes, len);     \
 100     }                                                                      \
 101   }
 102 
 103 #else //  ndef DTRACE_ENABLED
 104 
 105 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 106 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 107 
 108 #endif // ndef DTRACE_ENABLED
 109 
 110 // This exists only as a workaround of dtrace bug 6254741
 111 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 112   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 113   return 0;
 114 }
 115 
 116 #define NINFLATIONLOCKS 256
 117 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 118 
 119 // global list of blocks of monitors
 120 PaddedObjectMonitor* volatile ObjectSynchronizer::g_block_list = NULL;
 121 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false;
 122 bool volatile ObjectSynchronizer::_is_special_deflation_requested = false;
 123 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0;
 124 
 125 // Global ObjectMonitor free list. Newly allocated and deflated
 126 // ObjectMonitors are prepended here.
 127 static ObjectMonitor* volatile g_free_list = NULL;
 128 // Global ObjectMonitor in-use list. When a JavaThread is exiting,
 129 // ObjectMonitors on its per-thread in-use list are prepended here.
 130 static ObjectMonitor* volatile g_om_in_use_list = NULL;
 131 
 132 static volatile int g_om_free_count = 0;    // # on g_free_list
 133 static volatile int g_om_in_use_count = 0;  // # on g_om_in_use_list
 134 static volatile int g_om_population = 0;    // # Extant -- in circulation
 135 
 136 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 137 
 138 
 139 // =====================> List Management functions
 140 
 141 // Return true if the ObjectMonitor's next field is marked.
 142 // Otherwise returns false.
 143 static bool is_next_marked(ObjectMonitor* om) {
 144   return ((intptr_t)OrderAccess::load_acquire(&om->_next_om) & 0x1) != 0;
 145 }
 146 
 147 // Mark an ObjectMonitor* and return it. Note: the om parameter
 148 // may or may not have been marked originally.
 149 static ObjectMonitor* mark_om_ptr(ObjectMonitor* om) {
 150   return (ObjectMonitor*)((intptr_t)om | 0x1);
 151 }
 152 
 153 // Mark the next field in an ObjectMonitor. If marking was successful,
 154 // then the unmarked next field is returned via parameter and true is
 155 // returned. Otherwise false is returned.
 156 static bool mark_next(ObjectMonitor* om, ObjectMonitor** next_p) {
 157   // Get current next field without any marking value.
 158   ObjectMonitor* next = (ObjectMonitor*)
 159       ((intptr_t)OrderAccess::load_acquire(&om->_next_om) & ~0x1);
 160   if (Atomic::cmpxchg(mark_om_ptr(next), &om->_next_om, next) != next) {
 161     return false;  // Could not mark the next field or it was already marked.
 162   }
 163   *next_p = next;
 164   return true;
 165 }
 166 
 167 // Loop until we mark the next field in an ObjectMonitor. The unmarked
 168 // next field is returned.
 169 static ObjectMonitor* mark_next_loop(ObjectMonitor* om) {
 170   ObjectMonitor* next;
 171   while (true) {
 172     if (mark_next(om, &next)) {
 173       // Marked om's next field so return the unmarked value.
 174       return next;
 175     }
 176   }
 177 }
 178 
 179 // Set the next field in an ObjectMonitor to the specified value.
 180 // The caller of set_next() must be the same thread that marked the
 181 // ObjectMonitor.
 182 static void set_next(ObjectMonitor* om, ObjectMonitor* value) {
 183   OrderAccess::release_store(&om->_next_om, value);
 184 }
 185 
 186 // Mark the next field in the list head ObjectMonitor. If marking was
 187 // successful, then the mid and the unmarked next field are returned
 188 // via parameter and true is returned. Otherwise false is returned.
 189 static bool mark_list_head(ObjectMonitor* volatile * list_p,
 190                            ObjectMonitor** mid_p, ObjectMonitor** next_p) {
 191   while (true) {
 192     ObjectMonitor* mid = OrderAccess::load_acquire(list_p);
 193     if (mid == NULL) {
 194       return false;  // The list is empty so nothing to mark.
 195     }
 196     if (mark_next(mid, next_p)) {
 197       if (OrderAccess::load_acquire(list_p) != mid) {
 198         // The list head changed so we have to retry.
 199         set_next(mid, *next_p);  // unmark mid
 200         continue;
 201       }
 202       // We marked next field to guard against races.
 203       *mid_p = mid;
 204       return true;
 205     }
 206   }
 207 }
 208 
 209 // Return the unmarked next field in an ObjectMonitor. Note: the next
 210 // field may or may not have been marked originally.
 211 static ObjectMonitor* unmarked_next(ObjectMonitor* om) {
 212   return (ObjectMonitor*)((intptr_t)OrderAccess::load_acquire(&om->_next_om) & ~0x1);
 213 }
 214 
 215 #if 0
 216 // XXX - this is unused
 217 // Unmark the next field in an ObjectMonitor. Requires that the next
 218 // field be marked.
 219 static void unmark_next(ObjectMonitor* om) {
 220   ADIM_guarantee(is_next_marked(om), "next field must be marked: next=" INTPTR_FORMAT, p2i(om->_next_om));
 221 
 222   ObjectMonitor* next = unmarked_next(om);
 223   set_next(om, next);
 224 }
 225 #endif
 226 
 227 volatile int visit_counter = 42;
 228 static void chk_for_list_loop(ObjectMonitor* list, int count) {
 229   if (!CheckMonitorLists) {
 230     return;
 231   }
 232   int l_visit_counter = Atomic::add(1, &visit_counter);
 233   int l_count = 0;
 234   ObjectMonitor* prev = NULL;
 235   for (ObjectMonitor* mid = list; mid != NULL; mid = unmarked_next(mid)) {
 236     if (mid->visit_marker == l_visit_counter) {
 237       log_error(monitorinflation)("ERROR: prev=" INTPTR_FORMAT ", l_count=%d"
 238                                   " refers to an ObjectMonitor that has"
 239                                   " already been visited: mid=" INTPTR_FORMAT,
 240                                   p2i(prev), l_count, p2i(mid));
 241       fatal("list=" INTPTR_FORMAT " of %d items has a loop.", p2i(list), count);
 242     }
 243     mid->visit_marker = l_visit_counter;
 244     prev = mid;
 245     if (++l_count > count + 1024 * 1024) {
 246       fatal("list=" INTPTR_FORMAT " of %d items may have a loop; l_count=%d",
 247             p2i(list), count, l_count);
 248     }
 249   }
 250 }
 251 
 252 static void chk_om_not_on_list(ObjectMonitor* om, ObjectMonitor* list, int count) {
 253   if (!CheckMonitorLists) {
 254     return;
 255   }
 256   guarantee(list != om, "ERROR: om=" INTPTR_FORMAT " must not be head of the "
 257             "list=" INTPTR_FORMAT ", count=%d", p2i(om), p2i(list), count);
 258   int l_count = 0;
 259   for (ObjectMonitor* mid = list; mid != NULL; mid = unmarked_next(mid)) {
 260     if (unmarked_next(mid) == om) {
 261       log_error(monitorinflation)("ERROR: mid=" INTPTR_FORMAT ", l_count=%d"
 262                                   " next_om refers to om=" INTPTR_FORMAT,
 263                                   p2i(mid), l_count, p2i(om));
 264        fatal("list=" INTPTR_FORMAT " of %d items has bad next_om value.",
 265              p2i(list), count);
 266     }
 267     if (++l_count > count + 1024 * 1024) {
 268       fatal("list=" INTPTR_FORMAT " of %d items may have a loop; l_count=%d",
 269             p2i(list), count, l_count);
 270     }
 271   }
 272 }
 273 
 274 static void chk_om_elems_not_on_list(ObjectMonitor* elems, int elems_count,
 275                                      ObjectMonitor* list, int list_count) {
 276   if (!CheckMonitorLists) {
 277     return;
 278   }
 279   chk_for_list_loop(elems, elems_count);
 280   for (ObjectMonitor* mid = elems; mid != NULL; mid = unmarked_next(mid)) {
 281     chk_om_not_on_list(mid, list, list_count);
 282   }
 283 }
 284 
 285 // Prepend a list of ObjectMonitors to the specified *list_p. 'tail' is
 286 // the last ObjectMonitor in the list and there are 'count' on the list.
 287 // Also updates the specified *count_p.
 288 static void prepend_list_to_common(ObjectMonitor* list, ObjectMonitor* tail,
 289                                    int count, ObjectMonitor* volatile* list_p,
 290                                    volatile int* count_p) {
 291   chk_for_list_loop(OrderAccess::load_acquire(list_p),
 292                     OrderAccess::load_acquire(count_p));
 293   chk_om_elems_not_on_list(list, count, OrderAccess::load_acquire(list_p),
 294                            OrderAccess::load_acquire(count_p));
 295   while (true) {
 296     ObjectMonitor* cur = OrderAccess::load_acquire(list_p);
 297     // Prepend list to *list_p.
 298     ObjectMonitor* next = NULL;
 299     if (!mark_next(tail, &next)) {
 300       continue;  // failed to mark next field so try it all again
 301     }
 302     set_next(tail, cur);  // tail now points to cur (and unmarks tail)
 303     if (cur == NULL) {
 304       // No potential race with takers or other prependers since
 305       // *list_p is empty.
 306       if (Atomic::cmpxchg(list, list_p, cur) == cur) {
 307         // Successfully switched *list_p to the list value.
 308         Atomic::add(count, count_p);
 309         break;
 310       }
 311       // Implied else: try it all again
 312     } else {
 313       // Try to mark next field to guard against races:
 314       if (!mark_next(cur, &next)) {
 315         continue;  // failed to mark next field so try it all again
 316       }
 317       // We marked the next field so try to switch *list_p to the list value.
 318       if (Atomic::cmpxchg(list, list_p, cur) != cur) {
 319         // The list head has changed so unmark the next field and try again:
 320         set_next(cur, next);
 321         continue;
 322       }
 323       Atomic::add(count, count_p);
 324       set_next(cur, next);  // unmark next field
 325       break;
 326     }
 327   }
 328 }
 329 
 330 // Prepend a newly allocated block of ObjectMonitors to g_block_list and
 331 // g_free_list. Also updates g_om_population and g_om_free_count.
 332 void ObjectSynchronizer::prepend_block_to_lists(PaddedObjectMonitor* new_blk) {
 333   // First we handle g_block_list:
 334   while (true) {
 335     PaddedObjectMonitor* cur = OrderAccess::load_acquire(&g_block_list);
 336     // Prepend new_blk to g_block_list. The first ObjectMonitor in
 337     // a block is reserved for use as linkage to the next block.
 338     OrderAccess::release_store(&new_blk[0]._next_om, cur);
 339     if (Atomic::cmpxchg(new_blk, &g_block_list, cur) == cur) {
 340       // Successfully switched g_block_list to the new_blk value.
 341       Atomic::add(_BLOCKSIZE - 1, &g_om_population);
 342       break;
 343     }
 344     // Implied else: try it all again
 345   }
 346 
 347   // Second we handle g_free_list:
 348   prepend_list_to_common(new_blk + 1, &new_blk[_BLOCKSIZE - 1], _BLOCKSIZE - 1,
 349                          &g_free_list, &g_om_free_count);
 350 }
 351 
 352 // Prepend a list of ObjectMonitors to g_free_list. 'tail' is the last
 353 // ObjectMonitor in the list and there are 'count' on the list. Also
 354 // updates g_om_free_count.
 355 static void prepend_list_to_g_free_list(ObjectMonitor* list,
 356                                         ObjectMonitor* tail, int count) {
 357   prepend_list_to_common(list, tail, count, &g_free_list, &g_om_free_count);
 358 }
 359 
 360 // Prepend a list of ObjectMonitors to g_om_in_use_list. 'tail' is the last
 361 // ObjectMonitor in the list and there are 'count' on the list. Also
 362 // updates g_om_in_use_list.
 363 static void prepend_list_to_g_om_in_use_list(ObjectMonitor* list,
 364                                              ObjectMonitor* tail, int count) {
 365   prepend_list_to_common(list, tail, count, &g_om_in_use_list, &g_om_in_use_count);
 366 }
 367 
 368 // Prepend an ObjectMonitor to the specified list. Also updates
 369 // the specified counter.
 370 static void prepend_to_common(ObjectMonitor* m, ObjectMonitor* volatile * list_p,
 371                               int volatile * count_p) {
 372   chk_for_list_loop(OrderAccess::load_acquire(list_p),
 373                     OrderAccess::load_acquire(count_p));
 374   chk_om_not_on_list(m, OrderAccess::load_acquire(list_p),
 375                      OrderAccess::load_acquire(count_p));
 376 
 377   while (true) {
 378     ObjectMonitor* cur = OrderAccess::load_acquire(list_p);
 379     // Prepend ObjectMonitor to *list_p.
 380     ObjectMonitor* next = NULL;
 381     if (!mark_next(m, &next)) {
 382       continue;  // failed to mark next field so try it all again
 383     }
 384     set_next(m, cur);  // m now points to cur (and unmarks m)
 385     if (cur == NULL) {
 386       // No potential race with other prependers since *list_p is empty.
 387       if (Atomic::cmpxchg(m, list_p, cur) == cur) {
 388         // Successfully switched *list_p to 'm'.
 389         Atomic::inc(count_p);
 390         break;
 391       }
 392       // Implied else: try it all again
 393     } else {
 394       // Try to mark next field to guard against races:
 395       if (!mark_next(cur, &next)) {
 396         continue;  // failed to mark next field so try it all again
 397       }
 398       // We marked the next field so try to switch *list_p to 'm'.
 399       if (Atomic::cmpxchg(m, list_p, cur) != cur) {
 400         // The list head has changed so unmark the next field and try again:
 401         set_next(cur, next);
 402         continue;
 403       }
 404       Atomic::inc(count_p);
 405       set_next(cur, next);  // unmark next field
 406       break;
 407     }
 408   }
 409 }
 410 
 411 // Prepend an ObjectMonitor to a per-thread om_free_list.
 412 // Also updates the per-thread om_free_count.
 413 static void prepend_to_om_free_list(Thread* self, ObjectMonitor* m) {
 414   prepend_to_common(m, &self->om_free_list, &self->om_free_count);
 415 }
 416 
 417 // Prepend an ObjectMonitor to a per-thread om_in_use_list.
 418 // Also updates the per-thread om_in_use_count.
 419 static void prepend_to_om_in_use_list(Thread* self, ObjectMonitor* m) {
 420   prepend_to_common(m, &self->om_in_use_list, &self->om_in_use_count);
 421 }
 422 
 423 // Take an ObjectMonitor from the start of the specified list. Also
 424 // decrements the specified counter. Returns NULL if none are available.
 425 static ObjectMonitor* take_from_start_of_common(ObjectMonitor* volatile * list_p,
 426                                                 int volatile * count_p) {
 427   chk_for_list_loop(OrderAccess::load_acquire(list_p),
 428                     OrderAccess::load_acquire(count_p));
 429 
 430   ObjectMonitor* next = NULL;
 431   ObjectMonitor* take = NULL;
 432   // Mark the list head to guard against A-B-A race:
 433   if (!mark_list_head(list_p, &take, &next)) {
 434     return NULL;  // None are available.
 435   }
 436   // Switch marked list head to next (which unmarks the list head, but
 437   // leaves take marked):
 438   OrderAccess::release_store(list_p, next);
 439   Atomic::dec(count_p);
 440   // Unmark take, but leave the next value for any lagging list
 441   // walkers. It will get cleaned up when take is prepended to
 442   // the in-use list:
 443   set_next(take, next);
 444   return take;
 445 }
 446 
 447 // Take an ObjectMonitor from the start of the global free-list. Also
 448 // updates g_om_free_count. Returns NULL if none are available.
 449 static ObjectMonitor* take_from_start_of_g_free_list() {
 450   return take_from_start_of_common(&g_free_list, &g_om_free_count);
 451 }
 452 
 453 // Take an ObjectMonitor from the start of a per-thread free-list.
 454 // Also updates om_free_count. Returns NULL if none are available.
 455 static ObjectMonitor* take_from_start_of_om_free_list(Thread* self) {
 456   return take_from_start_of_common(&self->om_free_list, &self->om_free_count);
 457 }
 458 
 459 
 460 // =====================> Quick functions
 461 
 462 // The quick_* forms are special fast-path variants used to improve
 463 // performance.  In the simplest case, a "quick_*" implementation could
 464 // simply return false, in which case the caller will perform the necessary
 465 // state transitions and call the slow-path form.
 466 // The fast-path is designed to handle frequently arising cases in an efficient
 467 // manner and is just a degenerate "optimistic" variant of the slow-path.
 468 // returns true  -- to indicate the call was satisfied.
 469 // returns false -- to indicate the call needs the services of the slow-path.
 470 // A no-loitering ordinance is in effect for code in the quick_* family
 471 // operators: safepoints or indefinite blocking (blocking that might span a
 472 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 473 // entry.
 474 //
 475 // Consider: An interesting optimization is to have the JIT recognize the
 476 // following common idiom:
 477 //   synchronized (someobj) { .... ; notify(); }
 478 // That is, we find a notify() or notifyAll() call that immediately precedes
 479 // the monitorexit operation.  In that case the JIT could fuse the operations
 480 // into a single notifyAndExit() runtime primitive.
 481 
 482 bool ObjectSynchronizer::quick_notify(oopDesc* obj, Thread* self, bool all) {
 483   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 484   assert(self->is_Java_thread(), "invariant");
 485   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 486   NoSafepointVerifier nsv;
 487   if (obj == NULL) return false;  // slow-path for invalid obj
 488   const markWord mark = obj->mark();
 489 
 490   if (mark.has_locker() && self->is_lock_owned((address)mark.locker())) {
 491     // Degenerate notify
 492     // stack-locked by caller so by definition the implied waitset is empty.
 493     return true;
 494   }
 495 
 496   if (mark.has_monitor()) {
 497     ObjectMonitor* const mon = mark.monitor();
 498     assert(oopDesc::equals((oop) mon->object(), obj), "invariant");
 499     if (mon->owner() != self) return false;  // slow-path for IMS exception
 500 
 501     if (mon->first_waiter() != NULL) {
 502       // We have one or more waiters. Since this is an inflated monitor
 503       // that we own, we can transfer one or more threads from the waitset
 504       // to the entrylist here and now, avoiding the slow-path.
 505       if (all) {
 506         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
 507       } else {
 508         DTRACE_MONITOR_PROBE(notify, mon, obj, self);
 509       }
 510       int free_count = 0;
 511       do {
 512         mon->INotify(self);
 513         ++free_count;
 514       } while (mon->first_waiter() != NULL && all);
 515       OM_PERFDATA_OP(Notifications, inc(free_count));
 516     }
 517     return true;
 518   }
 519 
 520   // biased locking and any other IMS exception states take the slow-path
 521   return false;
 522 }
 523 
 524 
 525 // The LockNode emitted directly at the synchronization site would have
 526 // been too big if it were to have included support for the cases of inflated
 527 // recursive enter and exit, so they go here instead.
 528 // Note that we can't safely call AsyncPrintJavaStack() from within
 529 // quick_enter() as our thread state remains _in_Java.
 530 
 531 bool ObjectSynchronizer::quick_enter(oop obj, Thread* self,
 532                                      BasicLock * lock) {
 533   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 534   assert(self->is_Java_thread(), "invariant");
 535   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 536   NoSafepointVerifier nsv;
 537   if (obj == NULL) return false;       // Need to throw NPE
 538 
 539   while (true) {
 540     const markWord mark = obj->mark();
 541 
 542     if (mark.has_monitor()) {
 543       ObjectMonitorHandle omh;
 544       if (!omh.save_om_ptr(obj, mark)) {
 545         // Lost a race with async deflation so try again.
 546         assert(AsyncDeflateIdleMonitors, "sanity check");
 547         continue;
 548       }
 549       ObjectMonitor* const m = omh.om_ptr();
 550       assert(oopDesc::equals((oop) m->object(), obj), "invariant");
 551       Thread* const owner = (Thread *) m->_owner;
 552 
 553       // Lock contention and Transactional Lock Elision (TLE) diagnostics
 554       // and observability
 555       // Case: light contention possibly amenable to TLE
 556       // Case: TLE inimical operations such as nested/recursive synchronization
 557 
 558       if (owner == self) {
 559         m->_recursions++;
 560         return true;
 561       }
 562 
 563       // This Java Monitor is inflated so obj's header will never be
 564       // displaced to this thread's BasicLock. Make the displaced header
 565       // non-NULL so this BasicLock is not seen as recursive nor as
 566       // being locked. We do this unconditionally so that this thread's
 567       // BasicLock cannot be mis-interpreted by any stack walkers. For
 568       // performance reasons, stack walkers generally first check for
 569       // Biased Locking in the object's header, the second check is for
 570       // stack-locking in the object's header, the third check is for
 571       // recursive stack-locking in the displaced header in the BasicLock,
 572       // and last are the inflated Java Monitor (ObjectMonitor) checks.
 573       lock->set_displaced_header(markWord::unused_mark());
 574 
 575       if (owner == NULL && Atomic::replace_if_null(self, &(m->_owner))) {
 576         assert(m->_recursions == 0, "invariant");
 577         return true;
 578       }
 579 
 580       if (AsyncDeflateIdleMonitors &&
 581           Atomic::cmpxchg(self, &m->_owner, DEFLATER_MARKER) == DEFLATER_MARKER) {
 582         // The deflation protocol finished the first part (setting owner),
 583         // but it failed the second part (making ref_count negative) and
 584         // bailed. Or the ObjectMonitor was async deflated and reused.
 585         // Acquired the monitor.
 586         assert(m->_recursions == 0, "invariant");
 587         return true;
 588       }
 589     }
 590     break;
 591   }
 592 
 593   // Note that we could inflate in quick_enter.
 594   // This is likely a useful optimization
 595   // Critically, in quick_enter() we must not:
 596   // -- perform bias revocation, or
 597   // -- block indefinitely, or
 598   // -- reach a safepoint
 599 
 600   return false;        // revert to slow-path
 601 }
 602 
 603 // -----------------------------------------------------------------------------
 604 //  Fast Monitor Enter/Exit
 605 // This the fast monitor enter. The interpreter and compiler use
 606 // some assembly copies of this code. Make sure update those code
 607 // if the following function is changed. The implementation is
 608 // extremely sensitive to race condition. Be careful.
 609 
 610 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock,
 611                                     bool attempt_rebias, TRAPS) {
 612   if (UseBiasedLocking) {
 613     if (!SafepointSynchronize::is_at_safepoint()) {
 614       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
 615       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
 616         return;
 617       }
 618     } else {
 619       assert(!attempt_rebias, "can not rebias toward VM thread");
 620       BiasedLocking::revoke_at_safepoint(obj);
 621     }
 622     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 623   }
 624 
 625   slow_enter(obj, lock, THREAD);
 626 }
 627 
 628 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
 629   markWord mark = object->mark();
 630   // We cannot check for Biased Locking if we are racing an inflation.
 631   assert(mark == markWord::INFLATING() ||
 632          !mark.has_bias_pattern(), "should not see bias pattern here");
 633 
 634   markWord dhw = lock->displaced_header();
 635   if (dhw.value() == 0) {
 636     // If the displaced header is NULL, then this exit matches up with
 637     // a recursive enter. No real work to do here except for diagnostics.
 638 #ifndef PRODUCT
 639     if (mark != markWord::INFLATING()) {
 640       // Only do diagnostics if we are not racing an inflation. Simply
 641       // exiting a recursive enter of a Java Monitor that is being
 642       // inflated is safe; see the has_monitor() comment below.
 643       assert(!mark.is_neutral(), "invariant");
 644       assert(!mark.has_locker() ||
 645              THREAD->is_lock_owned((address)mark.locker()), "invariant");
 646       if (mark.has_monitor()) {
 647         // The BasicLock's displaced_header is marked as a recursive
 648         // enter and we have an inflated Java Monitor (ObjectMonitor).
 649         // This is a special case where the Java Monitor was inflated
 650         // after this thread entered the stack-lock recursively. When a
 651         // Java Monitor is inflated, we cannot safely walk the Java
 652         // Monitor owner's stack and update the BasicLocks because a
 653         // Java Monitor can be asynchronously inflated by a thread that
 654         // does not own the Java Monitor.
 655         ObjectMonitor* m = mark.monitor();
 656         assert(((oop)(m->object()))->mark() == mark, "invariant");
 657         assert(m->is_entered(THREAD), "invariant");
 658       }
 659     }
 660 #endif
 661     return;
 662   }
 663 
 664   if (mark == markWord::from_pointer(lock)) {
 665     // If the object is stack-locked by the current thread, try to
 666     // swing the displaced header from the BasicLock back to the mark.
 667     assert(dhw.is_neutral(), "invariant");
 668     if (object->cas_set_mark(dhw, mark) == mark) {
 669       return;
 670     }
 671   }
 672 
 673   // We have to take the slow-path of possible inflation and then exit.
 674   ObjectMonitorHandle omh;
 675   inflate(&omh, THREAD, object, inflate_cause_vm_internal);
 676   omh.om_ptr()->exit(true, THREAD);
 677 }
 678 
 679 // -----------------------------------------------------------------------------
 680 // Interpreter/Compiler Slow Case
 681 // This routine is used to handle interpreter/compiler slow case
 682 // We don't need to use fast path here, because it must have been
 683 // failed in the interpreter/compiler code.
 684 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 685   markWord mark = obj->mark();
 686   assert(!mark.has_bias_pattern(), "should not see bias pattern here");
 687 
 688   if (mark.is_neutral()) {
 689     // Anticipate successful CAS -- the ST of the displaced mark must
 690     // be visible <= the ST performed by the CAS.
 691     lock->set_displaced_header(mark);
 692     if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) {
 693       return;
 694     }
 695     // Fall through to inflate() ...
 696   } else if (mark.has_locker() &&
 697              THREAD->is_lock_owned((address)mark.locker())) {
 698     assert(lock != mark.locker(), "must not re-lock the same lock");
 699     assert(lock != (BasicLock*)obj->mark().value(), "don't relock with same BasicLock");
 700     lock->set_displaced_header(markWord::from_pointer(NULL));
 701     return;
 702   }
 703 
 704   // The object header will never be displaced to this lock,
 705   // so it does not matter what the value is, except that it
 706   // must be non-zero to avoid looking like a re-entrant lock,
 707   // and must not look locked either.
 708   lock->set_displaced_header(markWord::unused_mark());
 709   ObjectMonitorHandle omh;
 710   inflate(&omh, THREAD, obj(), inflate_cause_monitor_enter);
 711   omh.om_ptr()->enter(THREAD);
 712 }
 713 
 714 // This routine is used to handle interpreter/compiler slow case
 715 // We don't need to use fast path here, because it must have
 716 // failed in the interpreter/compiler code. Simply use the heavy
 717 // weight monitor should be ok, unless someone find otherwise.
 718 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 719   fast_exit(object, lock, THREAD);
 720 }
 721 
 722 // -----------------------------------------------------------------------------
 723 // Class Loader  support to workaround deadlocks on the class loader lock objects
 724 // Also used by GC
 725 // complete_exit()/reenter() are used to wait on a nested lock
 726 // i.e. to give up an outer lock completely and then re-enter
 727 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 728 //  1) complete_exit lock1 - saving recursion count
 729 //  2) wait on lock2
 730 //  3) when notified on lock2, unlock lock2
 731 //  4) reenter lock1 with original recursion count
 732 //  5) lock lock2
 733 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 734 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 735   if (UseBiasedLocking) {
 736     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 737     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 738   }
 739 
 740   ObjectMonitorHandle omh;
 741   inflate(&omh, THREAD, obj(), inflate_cause_vm_internal);
 742   intptr_t ret_code = omh.om_ptr()->complete_exit(THREAD);
 743   return ret_code;
 744 }
 745 
 746 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 747 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 748   if (UseBiasedLocking) {
 749     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 750     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 751   }
 752 
 753   ObjectMonitorHandle omh;
 754   inflate(&omh, THREAD, obj(), inflate_cause_vm_internal);
 755   omh.om_ptr()->reenter(recursion, THREAD);
 756 }
 757 // -----------------------------------------------------------------------------
 758 // JNI locks on java objects
 759 // NOTE: must use heavy weight monitor to handle jni monitor enter
 760 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 761   // the current locking is from JNI instead of Java code
 762   if (UseBiasedLocking) {
 763     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 764     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 765   }
 766   THREAD->set_current_pending_monitor_is_from_java(false);
 767   ObjectMonitorHandle omh;
 768   inflate(&omh, THREAD, obj(), inflate_cause_jni_enter);
 769   omh.om_ptr()->enter(THREAD);
 770   THREAD->set_current_pending_monitor_is_from_java(true);
 771 }
 772 
 773 // NOTE: must use heavy weight monitor to handle jni monitor exit
 774 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 775   if (UseBiasedLocking) {
 776     Handle h_obj(THREAD, obj);
 777     BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
 778     obj = h_obj();
 779   }
 780   assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 781 
 782   ObjectMonitorHandle omh;
 783   inflate(&omh, THREAD, obj, inflate_cause_jni_exit);
 784   ObjectMonitor* monitor = omh.om_ptr();
 785   // If this thread has locked the object, exit the monitor. We
 786   // intentionally do not use CHECK here because we must exit the
 787   // monitor even if an exception is pending.
 788   if (monitor->check_owner(THREAD)) {
 789     monitor->exit(true, THREAD);
 790   }
 791 }
 792 
 793 // -----------------------------------------------------------------------------
 794 // Internal VM locks on java objects
 795 // standard constructor, allows locking failures
 796 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool do_lock) {
 797   _dolock = do_lock;
 798   _thread = thread;
 799   _thread->check_for_valid_safepoint_state(false);
 800   _obj = obj;
 801 
 802   if (_dolock) {
 803     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 804   }
 805 }
 806 
 807 ObjectLocker::~ObjectLocker() {
 808   if (_dolock) {
 809     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 810   }
 811 }
 812 
 813 
 814 // -----------------------------------------------------------------------------
 815 //  Wait/Notify/NotifyAll
 816 // NOTE: must use heavy weight monitor to handle wait()
 817 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 818   if (UseBiasedLocking) {
 819     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 820     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 821   }
 822   if (millis < 0) {
 823     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 824   }
 825   ObjectMonitorHandle omh;
 826   inflate(&omh, THREAD, obj(), inflate_cause_wait);
 827   ObjectMonitor* monitor = omh.om_ptr();
 828 
 829   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 830   monitor->wait(millis, true, THREAD);
 831 
 832   // This dummy call is in place to get around dtrace bug 6254741.  Once
 833   // that's fixed we can uncomment the following line, remove the call
 834   // and change this function back into a "void" func.
 835   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 836   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 837   return ret_code;
 838 }
 839 
 840 void ObjectSynchronizer::wait_uninterruptibly(Handle obj, jlong millis, TRAPS) {
 841   if (UseBiasedLocking) {
 842     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 843     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 844   }
 845   if (millis < 0) {
 846     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 847   }
 848   ObjectMonitorHandle omh;
 849   inflate(&omh, THREAD, obj(), inflate_cause_wait);
 850   omh.om_ptr()->wait(millis, false, THREAD);
 851 }
 852 
 853 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 854   if (UseBiasedLocking) {
 855     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 856     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 857   }
 858 
 859   markWord mark = obj->mark();
 860   if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) {
 861     return;
 862   }
 863   ObjectMonitorHandle omh;
 864   inflate(&omh, THREAD, obj(), inflate_cause_notify);
 865   omh.om_ptr()->notify(THREAD);
 866 }
 867 
 868 // NOTE: see comment of notify()
 869 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 870   if (UseBiasedLocking) {
 871     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 872     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 873   }
 874 
 875   markWord mark = obj->mark();
 876   if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) {
 877     return;
 878   }
 879   ObjectMonitorHandle omh;
 880   inflate(&omh, THREAD, obj(), inflate_cause_notify);
 881   omh.om_ptr()->notifyAll(THREAD);
 882 }
 883 
 884 // -----------------------------------------------------------------------------
 885 // Hash Code handling
 886 //
 887 // Performance concern:
 888 // OrderAccess::storestore() calls release() which at one time stored 0
 889 // into the global volatile OrderAccess::dummy variable. This store was
 890 // unnecessary for correctness. Many threads storing into a common location
 891 // causes considerable cache migration or "sloshing" on large SMP systems.
 892 // As such, I avoided using OrderAccess::storestore(). In some cases
 893 // OrderAccess::fence() -- which incurs local latency on the executing
 894 // processor -- is a better choice as it scales on SMP systems.
 895 //
 896 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 897 // a discussion of coherency costs. Note that all our current reference
 898 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 899 // x64, and SPARC.
 900 //
 901 // As a general policy we use "volatile" to control compiler-based reordering
 902 // and explicit fences (barriers) to control for architectural reordering
 903 // performed by the CPU(s) or platform.
 904 
 905 struct SharedGlobals {
 906   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 907   // These are highly shared mostly-read variables.
 908   // To avoid false-sharing they need to be the sole occupants of a cache line.
 909   volatile int stw_random;
 910   volatile int stw_cycle;
 911   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 912   // Hot RW variable -- Sequester to avoid false-sharing
 913   volatile int hc_sequence;
 914   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 915 };
 916 
 917 static SharedGlobals GVars;
 918 static int MonitorScavengeThreshold = 1000000;
 919 static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending
 920 
 921 static markWord read_stable_mark(oop obj) {
 922   markWord mark = obj->mark();
 923   if (!mark.is_being_inflated()) {
 924     return mark;       // normal fast-path return
 925   }
 926 
 927   int its = 0;
 928   for (;;) {
 929     markWord mark = obj->mark();
 930     if (!mark.is_being_inflated()) {
 931       return mark;    // normal fast-path return
 932     }
 933 
 934     // The object is being inflated by some other thread.
 935     // The caller of read_stable_mark() must wait for inflation to complete.
 936     // Avoid live-lock
 937     // TODO: consider calling SafepointSynchronize::do_call_back() while
 938     // spinning to see if there's a safepoint pending.  If so, immediately
 939     // yielding or blocking would be appropriate.  Avoid spinning while
 940     // there is a safepoint pending.
 941     // TODO: add inflation contention performance counters.
 942     // TODO: restrict the aggregate number of spinners.
 943 
 944     ++its;
 945     if (its > 10000 || !os::is_MP()) {
 946       if (its & 1) {
 947         os::naked_yield();
 948       } else {
 949         // Note that the following code attenuates the livelock problem but is not
 950         // a complete remedy.  A more complete solution would require that the inflating
 951         // thread hold the associated inflation lock.  The following code simply restricts
 952         // the number of spinners to at most one.  We'll have N-2 threads blocked
 953         // on the inflationlock, 1 thread holding the inflation lock and using
 954         // a yield/park strategy, and 1 thread in the midst of inflation.
 955         // A more refined approach would be to change the encoding of INFLATING
 956         // to allow encapsulation of a native thread pointer.  Threads waiting for
 957         // inflation to complete would use CAS to push themselves onto a singly linked
 958         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 959         // and calling park().  When inflation was complete the thread that accomplished inflation
 960         // would detach the list and set the markword to inflated with a single CAS and
 961         // then for each thread on the list, set the flag and unpark() the thread.
 962         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 963         // wakes at most one thread whereas we need to wake the entire list.
 964         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 965         int YieldThenBlock = 0;
 966         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 967         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 968         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 969         while (obj->mark() == markWord::INFLATING()) {
 970           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 971           // so we periodically call self->_ParkEvent->park(1).
 972           // We use a mixed spin/yield/block mechanism.
 973           if ((YieldThenBlock++) >= 16) {
 974             Thread::current()->_ParkEvent->park(1);
 975           } else {
 976             os::naked_yield();
 977           }
 978         }
 979         Thread::muxRelease(gInflationLocks + ix);
 980       }
 981     } else {
 982       SpinPause();       // SMP-polite spinning
 983     }
 984   }
 985 }
 986 
 987 // hashCode() generation :
 988 //
 989 // Possibilities:
 990 // * MD5Digest of {obj,stw_random}
 991 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function.
 992 // * A DES- or AES-style SBox[] mechanism
 993 // * One of the Phi-based schemes, such as:
 994 //   2654435761 = 2^32 * Phi (golden ratio)
 995 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ;
 996 // * A variation of Marsaglia's shift-xor RNG scheme.
 997 // * (obj ^ stw_random) is appealing, but can result
 998 //   in undesirable regularity in the hashCode values of adjacent objects
 999 //   (objects allocated back-to-back, in particular).  This could potentially
1000 //   result in hashtable collisions and reduced hashtable efficiency.
1001 //   There are simple ways to "diffuse" the middle address bits over the
1002 //   generated hashCode values:
1003 
1004 static inline intptr_t get_next_hash(Thread* self, oop obj) {
1005   intptr_t value = 0;
1006   if (hashCode == 0) {
1007     // This form uses global Park-Miller RNG.
1008     // On MP system we'll have lots of RW access to a global, so the
1009     // mechanism induces lots of coherency traffic.
1010     value = os::random();
1011   } else if (hashCode == 1) {
1012     // This variation has the property of being stable (idempotent)
1013     // between STW operations.  This can be useful in some of the 1-0
1014     // synchronization schemes.
1015     intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3;
1016     value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random;
1017   } else if (hashCode == 2) {
1018     value = 1;            // for sensitivity testing
1019   } else if (hashCode == 3) {
1020     value = ++GVars.hc_sequence;
1021   } else if (hashCode == 4) {
1022     value = cast_from_oop<intptr_t>(obj);
1023   } else {
1024     // Marsaglia's xor-shift scheme with thread-specific state
1025     // This is probably the best overall implementation -- we'll
1026     // likely make this the default in future releases.
1027     unsigned t = self->_hashStateX;
1028     t ^= (t << 11);
1029     self->_hashStateX = self->_hashStateY;
1030     self->_hashStateY = self->_hashStateZ;
1031     self->_hashStateZ = self->_hashStateW;
1032     unsigned v = self->_hashStateW;
1033     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
1034     self->_hashStateW = v;
1035     value = v;
1036   }
1037 
1038   value &= markWord::hash_mask;
1039   if (value == 0) value = 0xBAD;
1040   assert(value != markWord::no_hash, "invariant");
1041   return value;
1042 }
1043 
1044 intptr_t ObjectSynchronizer::FastHashCode(Thread* self, oop obj) {
1045   if (UseBiasedLocking) {
1046     // NOTE: many places throughout the JVM do not expect a safepoint
1047     // to be taken here, in particular most operations on perm gen
1048     // objects. However, we only ever bias Java instances and all of
1049     // the call sites of identity_hash that might revoke biases have
1050     // been checked to make sure they can handle a safepoint. The
1051     // added check of the bias pattern is to avoid useless calls to
1052     // thread-local storage.
1053     if (obj->mark().has_bias_pattern()) {
1054       // Handle for oop obj in case of STW safepoint
1055       Handle hobj(self, obj);
1056       // Relaxing assertion for bug 6320749.
1057       assert(Universe::verify_in_progress() ||
1058              !SafepointSynchronize::is_at_safepoint(),
1059              "biases should not be seen by VM thread here");
1060       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
1061       obj = hobj();
1062       assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
1063     }
1064   }
1065 
1066   // hashCode() is a heap mutator ...
1067   // Relaxing assertion for bug 6320749.
1068   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
1069          !SafepointSynchronize::is_at_safepoint(), "invariant");
1070   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
1071          self->is_Java_thread() , "invariant");
1072   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
1073          ((JavaThread *)self)->thread_state() != _thread_blocked, "invariant");
1074 
1075   while (true) {
1076     ObjectMonitor* monitor = NULL;
1077     markWord temp, test;
1078     intptr_t hash;
1079     markWord mark = read_stable_mark(obj);
1080 
1081     // object should remain ineligible for biased locking
1082     assert(!mark.has_bias_pattern(), "invariant");
1083 
1084     if (mark.is_neutral()) {
1085       hash = mark.hash();              // this is a normal header
1086       if (hash != 0) {                  // if it has hash, just return it
1087         return hash;
1088       }
1089       hash = get_next_hash(self, obj);  // allocate a new hash code
1090       temp = mark.copy_set_hash(hash); // merge the hash code into header
1091       // use (machine word version) atomic operation to install the hash
1092       test = obj->cas_set_mark(temp, mark);
1093       if (test == mark) {
1094         return hash;
1095       }
1096       // If atomic operation failed, we must inflate the header
1097       // into heavy weight monitor. We could add more code here
1098       // for fast path, but it does not worth the complexity.
1099     } else if (mark.has_monitor()) {
1100       ObjectMonitorHandle omh;
1101       if (!omh.save_om_ptr(obj, mark)) {
1102         // Lost a race with async deflation so try again.
1103         assert(AsyncDeflateIdleMonitors, "sanity check");
1104         continue;
1105       }
1106       monitor = omh.om_ptr();
1107       temp = monitor->header();
1108       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1109       hash = temp.hash();
1110       if (hash != 0) {
1111         return hash;
1112       }
1113       // Skip to the following code to reduce code size
1114     } else if (self->is_lock_owned((address)mark.locker())) {
1115       temp = mark.displaced_mark_helper(); // this is a lightweight monitor owned
1116       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1117       hash = temp.hash();              // by current thread, check if the displaced
1118       if (hash != 0) {                  // header contains hash code
1119         return hash;
1120       }
1121       // WARNING:
1122       // The displaced header in the BasicLock on a thread's stack
1123       // is strictly immutable. It CANNOT be changed in ANY cases.
1124       // So we have to inflate the stack lock into an ObjectMonitor
1125       // even if the current thread owns the lock. The BasicLock on
1126       // a thread's stack can be asynchronously read by other threads
1127       // during an inflate() call so any change to that stack memory
1128       // may not propagate to other threads correctly.
1129     }
1130 
1131     // Inflate the monitor to set hash code
1132     ObjectMonitorHandle omh;
1133     inflate(&omh, self, obj, inflate_cause_hash_code);
1134     monitor = omh.om_ptr();
1135     // Load displaced header and check it has hash code
1136     mark = monitor->header();
1137     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1138     hash = mark.hash();
1139     if (hash == 0) {
1140       hash = get_next_hash(self, obj);
1141       temp = mark.copy_set_hash(hash); // merge hash code into header
1142       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1143       uintptr_t v = Atomic::cmpxchg(temp.value(), (volatile uintptr_t*)monitor->header_addr(), mark.value());
1144       test = markWord(v);
1145       if (test != mark) {
1146         // The only non-deflation update to the ObjectMonitor's
1147         // header/dmw field is to merge in the hash code. If someone
1148         // adds a new usage of the header/dmw field, please update
1149         // this code.
1150         // ObjectMonitor::install_displaced_markword_in_object()
1151         // does mark the header/dmw field as part of async deflation,
1152         // but that protocol cannot happen now due to the
1153         // ObjectMonitorHandle above.
1154         hash = test.hash();
1155         assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
1156         assert(hash != 0, "Trivial unexpected object/monitor header usage.");
1157       }
1158     }
1159     // We finally get the hash
1160     return hash;
1161   }
1162 }
1163 
1164 // Deprecated -- use FastHashCode() instead.
1165 
1166 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
1167   return FastHashCode(Thread::current(), obj());
1168 }
1169 
1170 
1171 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
1172                                                    Handle h_obj) {
1173   if (UseBiasedLocking) {
1174     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
1175     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
1176   }
1177 
1178   assert(thread == JavaThread::current(), "Can only be called on current thread");
1179   oop obj = h_obj();
1180 
1181   while (true) {
1182     markWord mark = read_stable_mark(obj);
1183 
1184     // Uncontended case, header points to stack
1185     if (mark.has_locker()) {
1186       return thread->is_lock_owned((address)mark.locker());
1187     }
1188     // Contended case, header points to ObjectMonitor (tagged pointer)
1189     if (mark.has_monitor()) {
1190       ObjectMonitorHandle omh;
1191       if (!omh.save_om_ptr(obj, mark)) {
1192         // Lost a race with async deflation so try again.
1193         assert(AsyncDeflateIdleMonitors, "sanity check");
1194         continue;
1195       }
1196       bool ret_code = omh.om_ptr()->is_entered(thread) != 0;
1197       return ret_code;
1198     }
1199     // Unlocked case, header in place
1200     assert(mark.is_neutral(), "sanity check");
1201     return false;
1202   }
1203 }
1204 
1205 // Be aware of this method could revoke bias of the lock object.
1206 // This method queries the ownership of the lock handle specified by 'h_obj'.
1207 // If the current thread owns the lock, it returns owner_self. If no
1208 // thread owns the lock, it returns owner_none. Otherwise, it will return
1209 // owner_other.
1210 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
1211 (JavaThread *self, Handle h_obj) {
1212   // The caller must beware this method can revoke bias, and
1213   // revocation can result in a safepoint.
1214   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
1215   assert(self->thread_state() != _thread_blocked, "invariant");
1216 
1217   // Possible mark states: neutral, biased, stack-locked, inflated
1218 
1219   if (UseBiasedLocking && h_obj()->mark().has_bias_pattern()) {
1220     // CASE: biased
1221     BiasedLocking::revoke_and_rebias(h_obj, false, self);
1222     assert(!h_obj->mark().has_bias_pattern(),
1223            "biases should be revoked by now");
1224   }
1225 
1226   assert(self == JavaThread::current(), "Can only be called on current thread");
1227   oop obj = h_obj();
1228 
1229   while (true) {
1230     markWord mark = read_stable_mark(obj);
1231 
1232     // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
1233     if (mark.has_locker()) {
1234       return self->is_lock_owned((address)mark.locker()) ?
1235         owner_self : owner_other;
1236     }
1237 
1238     // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor.
1239     // The Object:ObjectMonitor relationship is stable as long as we're
1240     // not at a safepoint and AsyncDeflateIdleMonitors is false.
1241     if (mark.has_monitor()) {
1242       ObjectMonitorHandle omh;
1243       if (!omh.save_om_ptr(obj, mark)) {
1244         // Lost a race with async deflation so try again.
1245         assert(AsyncDeflateIdleMonitors, "sanity check");
1246         continue;
1247       }
1248       ObjectMonitor* monitor = omh.om_ptr();
1249       void* owner = monitor->_owner;
1250       if (owner == NULL) return owner_none;
1251       return (owner == self ||
1252               self->is_lock_owned((address)owner)) ? owner_self : owner_other;
1253     }
1254 
1255     // CASE: neutral
1256     assert(mark.is_neutral(), "sanity check");
1257     return owner_none;           // it's unlocked
1258   }
1259 }
1260 
1261 // FIXME: jvmti should call this
1262 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
1263   if (UseBiasedLocking) {
1264     if (SafepointSynchronize::is_at_safepoint()) {
1265       BiasedLocking::revoke_at_safepoint(h_obj);
1266     } else {
1267       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
1268     }
1269     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
1270   }
1271 
1272   oop obj = h_obj();
1273 
1274   while (true) {
1275     address owner = NULL;
1276     markWord mark = read_stable_mark(obj);
1277 
1278     // Uncontended case, header points to stack
1279     if (mark.has_locker()) {
1280       owner = (address) mark.locker();
1281     }
1282 
1283     // Contended case, header points to ObjectMonitor (tagged pointer)
1284     else if (mark.has_monitor()) {
1285       ObjectMonitorHandle omh;
1286       if (!omh.save_om_ptr(obj, mark)) {
1287         // Lost a race with async deflation so try again.
1288         assert(AsyncDeflateIdleMonitors, "sanity check");
1289         continue;
1290       }
1291       ObjectMonitor* monitor = omh.om_ptr();
1292       assert(monitor != NULL, "monitor should be non-null");
1293       owner = (address) monitor->owner();
1294     }
1295 
1296     if (owner != NULL) {
1297       // owning_thread_from_monitor_owner() may also return NULL here
1298       return Threads::owning_thread_from_monitor_owner(t_list, owner);
1299     }
1300 
1301     // Unlocked case, header in place
1302     // Cannot have assertion since this object may have been
1303     // locked by another thread when reaching here.
1304     // assert(mark.is_neutral(), "sanity check");
1305 
1306     return NULL;
1307   }
1308 }
1309 
1310 // Visitors ...
1311 
1312 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
1313   PaddedObjectMonitor* block = OrderAccess::load_acquire(&g_block_list);
1314   while (block != NULL) {
1315     assert(block->object() == CHAINMARKER, "must be a block header");
1316     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
1317       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
1318       if (mid->is_active()) {
1319         ObjectMonitorHandle omh(mid);
1320 
1321         if (mid->object() == NULL ||
1322             (AsyncDeflateIdleMonitors && mid->ref_count() < 0)) {
1323           // Only process with closure if the object is set.
1324           // For async deflation, race here if monitor is not owned!
1325           // The above ref_count bump (in ObjectMonitorHandle ctr)
1326           // will cause subsequent async deflation to skip it.
1327           // However, previous or concurrent async deflation is a race
1328           // so skip this ObjectMonitor if it is being async deflated.
1329           continue;
1330         }
1331         closure->do_monitor(mid);
1332       }
1333     }
1334     // unmarked_next() is not needed with g_block_list (no next field marking).
1335     block = (PaddedObjectMonitor*)OrderAccess::load_acquire(&block->_next_om);
1336   }
1337 }
1338 
1339 static bool monitors_used_above_threshold() {
1340   if (OrderAccess::load_acquire(&g_om_population) == 0) {
1341     return false;
1342   }
1343   if (MonitorUsedDeflationThreshold > 0) {
1344     int monitors_used = OrderAccess::load_acquire(&g_om_population) -
1345                         OrderAccess::load_acquire(&g_om_free_count);
1346     int monitor_usage = (monitors_used * 100LL) /
1347                         OrderAccess::load_acquire(&g_om_population);
1348     return monitor_usage > MonitorUsedDeflationThreshold;
1349   }
1350   return false;
1351 }
1352 
1353 // Returns true if MonitorBound is set (> 0) and if the specified
1354 // cnt is > MonitorBound. Otherwise returns false.
1355 static bool is_MonitorBound_exceeded(const int cnt) {
1356   const int mx = MonitorBound;
1357   return mx > 0 && cnt > mx;
1358 }
1359 
1360 bool ObjectSynchronizer::is_async_deflation_needed() {
1361   if (!AsyncDeflateIdleMonitors) {
1362     return false;
1363   }
1364   if (is_async_deflation_requested()) {
1365     // Async deflation request.
1366     return true;
1367   }
1368   if (AsyncDeflationInterval > 0 &&
1369       time_since_last_async_deflation_ms() > AsyncDeflationInterval &&
1370       monitors_used_above_threshold()) {
1371     // It's been longer than our specified deflate interval and there
1372     // are too many monitors in use. We don't deflate more frequently
1373     // than AsyncDeflationInterval (unless is_async_deflation_requested)
1374     // in order to not swamp the ServiceThread.
1375     _last_async_deflation_time_ns = os::javaTimeNanos();
1376     return true;
1377   }
1378   if (is_MonitorBound_exceeded(OrderAccess::load_acquire(&g_om_population) -
1379                                OrderAccess::load_acquire(&g_om_free_count))) {
1380     // Not enough ObjectMonitors on the global free list.
1381     return true;
1382   }
1383   return false;
1384 }
1385 
1386 bool ObjectSynchronizer::is_safepoint_deflation_needed() {
1387   if (!AsyncDeflateIdleMonitors) {
1388     if (monitors_used_above_threshold()) {
1389       // Too many monitors in use.
1390       return true;
1391     }
1392     return false;
1393   }
1394   if (is_special_deflation_requested()) {
1395     // For AsyncDeflateIdleMonitors only do a safepoint deflation
1396     // if there is a special deflation request.
1397     return true;
1398   }
1399   return false;
1400 }
1401 
1402 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1403   return (os::javaTimeNanos() - _last_async_deflation_time_ns) / (NANOUNITS / MILLIUNITS);
1404 }
1405 
1406 void ObjectSynchronizer::oops_do(OopClosure* f) {
1407   // We only scan the global used list here (for moribund threads), and
1408   // the thread-local monitors in Thread::oops_do().
1409   global_used_oops_do(f);
1410 }
1411 
1412 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
1413   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1414   list_oops_do(OrderAccess::load_acquire(&g_om_in_use_list), OrderAccess::load_acquire(&g_om_in_use_count), f);
1415 }
1416 
1417 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
1418   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1419   list_oops_do(OrderAccess::load_acquire(&thread->om_in_use_list), OrderAccess::load_acquire(&thread->om_in_use_count), f);
1420 }
1421 
1422 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, int count, OopClosure* f) {
1423   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1424   chk_for_list_loop(list, count);
1425   // The oops_do() phase does not overlap with monitor deflation
1426   // so no need to update the ObjectMonitor's ref_count for this
1427   // ObjectMonitor* use.
1428   for (ObjectMonitor* mid = list; mid != NULL; mid = unmarked_next(mid)) {
1429     if (mid->object() != NULL) {
1430       f->do_oop((oop*)mid->object_addr());
1431     }
1432   }
1433 }
1434 
1435 
1436 // -----------------------------------------------------------------------------
1437 // ObjectMonitor Lifecycle
1438 // -----------------------
1439 // Inflation unlinks monitors from the global g_free_list and
1440 // associates them with objects.  Deflation -- which occurs at
1441 // STW-time -- disassociates idle monitors from objects.  Such
1442 // scavenged monitors are returned to the g_free_list.
1443 //
1444 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
1445 //
1446 // Lifecycle:
1447 // --   unassigned and on the global free list
1448 // --   unassigned and on a thread's private om_free_list
1449 // --   assigned to an object.  The object is inflated and the mark refers
1450 //      to the objectmonitor.
1451 
1452 
1453 // Constraining monitor pool growth via MonitorBound ...
1454 //
1455 // If MonitorBound is not set (<= 0), MonitorBound checks are disabled.
1456 //
1457 // When safepoint deflation is being used (!AsyncDeflateIdleMonitors):
1458 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
1459 // the rate of scavenging is driven primarily by GC.  As such,  we can find
1460 // an inordinate number of monitors in circulation.
1461 // To avoid that scenario we can artificially induce a STW safepoint
1462 // if the pool appears to be growing past some reasonable bound.
1463 // Generally we favor time in space-time tradeoffs, but as there's no
1464 // natural back-pressure on the # of extant monitors we need to impose some
1465 // type of limit.  Beware that if MonitorBound is set to too low a value
1466 // we could just loop. In addition, if MonitorBound is set to a low value
1467 // we'll incur more safepoints, which are harmful to performance.
1468 // See also: GuaranteedSafepointInterval
1469 //
1470 // The current implementation uses asynchronous VM operations.
1471 //
1472 // When safepoint deflation is being used and MonitorBound is set, the
1473 // boundry applies to
1474 //     (g_om_population - g_om_free_count)
1475 // i.e., if there are not enough ObjectMonitors on the global free list,
1476 // then a safepoint deflation is induced. Picking a good MonitorBound value
1477 // is non-trivial.
1478 //
1479 // When async deflation is being used:
1480 // The monitor pool is still grow-only. Async deflation is requested
1481 // by a safepoint's cleanup phase or by the ServiceThread at periodic
1482 // intervals when is_async_deflation_needed() returns true. In
1483 // addition to other policies that are checked, if there are not
1484 // enough ObjectMonitors on the global free list, then
1485 // is_async_deflation_needed() will return true. The ServiceThread
1486 // calls deflate_global_idle_monitors_using_JT() and also calls
1487 // deflate_per_thread_idle_monitors_using_JT() as needed.
1488 
1489 static void InduceScavenge(Thread* self, const char * Whence) {
1490   assert(!AsyncDeflateIdleMonitors, "is not used by async deflation");
1491 
1492   // Induce STW safepoint to trim monitors
1493   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1494   // More precisely, trigger an asynchronous STW safepoint as the number
1495   // of active monitors passes the specified threshold.
1496   // TODO: assert thread state is reasonable
1497 
1498   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
1499     // Induce a 'null' safepoint to scavenge monitors
1500     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
1501     // to the VMthread and have a lifespan longer than that of this activation record.
1502     // The VMThread will delete the op when completed.
1503     VMThread::execute(new VM_ScavengeMonitors());
1504   }
1505 }
1506 
1507 ObjectMonitor* ObjectSynchronizer::om_alloc(Thread* self,
1508                                            const InflateCause cause) {
1509   // A large MAXPRIVATE value reduces both list lock contention
1510   // and list coherency traffic, but also tends to increase the
1511   // number of ObjectMonitors in circulation as well as the STW
1512   // scavenge costs.  As usual, we lean toward time in space-time
1513   // tradeoffs.
1514   const int MAXPRIVATE = 1024;
1515 
1516   stringStream ss;
1517   for (;;) {
1518     ObjectMonitor* m;
1519 
1520     // 1: try to allocate from the thread's local om_free_list.
1521     // Threads will attempt to allocate first from their local list, then
1522     // from the global list, and only after those attempts fail will the
1523     // thread attempt to instantiate new monitors. Thread-local free lists
1524     // improve allocation latency, as well as reducing coherency traffic
1525     // on the shared global list.
1526     m = take_from_start_of_om_free_list(self);
1527     if (m != NULL) {
1528       guarantee(m->object() == NULL, "invariant");
1529       m->set_allocation_state(ObjectMonitor::New);
1530       prepend_to_om_in_use_list(self, m);
1531       return m;
1532     }
1533 
1534     // 2: try to allocate from the global g_free_list
1535     // CONSIDER: use muxTry() instead of muxAcquire().
1536     // If the muxTry() fails then drop immediately into case 3.
1537     // If we're using thread-local free lists then try
1538     // to reprovision the caller's free list.
1539     if (OrderAccess::load_acquire(&g_free_list) != NULL) {
1540       // Reprovision the thread's om_free_list.
1541       // Use bulk transfers to reduce the allocation rate and heat
1542       // on various locks.
1543       for (int i = self->om_free_provision; --i >= 0;) {
1544         ObjectMonitor* take = take_from_start_of_g_free_list();
1545         if (take == NULL) {
1546           break;  // No more are available.
1547         }
1548         guarantee(take->object() == NULL, "invariant");
1549         if (AsyncDeflateIdleMonitors) {
1550           // We allowed 3 field values to linger during async deflation.
1551           // We clear header and restore ref_count here, but we leave
1552           // owner == DEFLATER_MARKER so the simple C2 ObjectMonitor
1553           // enter optimization can no longer race with async deflation
1554           // and reuse.
1555           take->set_header(markWord::zero());
1556           if (take->ref_count() < 0) {
1557             // Add back max_jint to restore the ref_count field to its
1558             // proper value.
1559             Atomic::add(max_jint, &take->_ref_count);
1560 
1561             assert(take->ref_count() >= 0, "must not be negative: ref_count=%d",
1562                    take->ref_count());
1563           }
1564         }
1565         take->Recycle();
1566         assert(take->is_free(), "invariant");
1567         om_release(self, take, false);
1568       }
1569       self->om_free_provision += 1 + (self->om_free_provision/2);
1570       if (self->om_free_provision > MAXPRIVATE) self->om_free_provision = MAXPRIVATE;
1571 
1572       if (!AsyncDeflateIdleMonitors &&
1573           is_MonitorBound_exceeded(OrderAccess::load_acquire(&g_om_population) -
1574                                    OrderAccess::load_acquire(&g_om_free_count))) {
1575         // Not enough ObjectMonitors on the global free list.
1576         // We can't safely induce a STW safepoint from om_alloc() as our thread
1577         // state may not be appropriate for such activities and callers may hold
1578         // naked oops, so instead we defer the action.
1579         InduceScavenge(self, "om_alloc");
1580       }
1581       continue;
1582     }
1583 
1584     // 3: allocate a block of new ObjectMonitors
1585     // Both the local and global free lists are empty -- resort to malloc().
1586     // In the current implementation ObjectMonitors are TSM - immortal.
1587     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1588     // each ObjectMonitor to start at the beginning of a cache line,
1589     // so we use align_up().
1590     // A better solution would be to use C++ placement-new.
1591     // BEWARE: As it stands currently, we don't run the ctors!
1592     assert(_BLOCKSIZE > 1, "invariant");
1593     size_t neededsize = sizeof(PaddedObjectMonitor) * _BLOCKSIZE;
1594     PaddedObjectMonitor* temp;
1595     size_t aligned_size = neededsize + (OM_CACHE_LINE_SIZE - 1);
1596     void* real_malloc_addr = (void*)NEW_C_HEAP_ARRAY(char, aligned_size,
1597                                                      mtInternal);
1598     temp = (PaddedObjectMonitor*)align_up(real_malloc_addr, OM_CACHE_LINE_SIZE);
1599 
1600     // NOTE: (almost) no way to recover if allocation failed.
1601     // We might be able to induce a STW safepoint and scavenge enough
1602     // ObjectMonitors to permit progress.
1603     if (temp == NULL) {
1604       vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR,
1605                             "Allocate ObjectMonitors");
1606     }
1607     (void)memset((void *) temp, 0, neededsize);
1608 
1609     // Format the block.
1610     // initialize the linked list, each monitor points to its next
1611     // forming the single linked free list, the very first monitor
1612     // will points to next block, which forms the block list.
1613     // The trick of using the 1st element in the block as g_block_list
1614     // linkage should be reconsidered.  A better implementation would
1615     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1616 
1617     for (int i = 1; i < _BLOCKSIZE; i++) {
1618       OrderAccess::release_store(&temp[i]._next_om, (ObjectMonitor*)&temp[i+1]);
1619       assert(temp[i].is_free(), "invariant");
1620     }
1621 
1622     // terminate the last monitor as the end of list
1623     OrderAccess::release_store(&temp[_BLOCKSIZE - 1]._next_om, (ObjectMonitor*)NULL);
1624 
1625     // Element [0] is reserved for global list linkage
1626     temp[0].set_object(CHAINMARKER);
1627 
1628     // Consider carving out this thread's current request from the
1629     // block in hand.  This avoids some lock traffic and redundant
1630     // list activity.
1631 
1632     prepend_block_to_lists(temp);
1633   }
1634 }
1635 
1636 // Place "m" on the caller's private per-thread om_free_list.
1637 // In practice there's no need to clamp or limit the number of
1638 // monitors on a thread's om_free_list as the only non-allocation time
1639 // we'll call om_release() is to return a monitor to the free list after
1640 // a CAS attempt failed. This doesn't allow unbounded #s of monitors to
1641 // accumulate on a thread's free list.
1642 //
1643 // Key constraint: all ObjectMonitors on a thread's free list and the global
1644 // free list must have their object field set to null. This prevents the
1645 // scavenger -- deflate_monitor_list() or deflate_monitor_list_using_JT()
1646 // -- from reclaiming them while we are trying to release them.
1647 
1648 void ObjectSynchronizer::om_release(Thread* self, ObjectMonitor* m,
1649                                     bool from_per_thread_alloc) {
1650   guarantee(m->header().value() == 0, "invariant");
1651   guarantee(m->object() == NULL, "invariant");
1652   stringStream ss;
1653   guarantee((m->is_busy() | m->_recursions) == 0, "freeing in-use monitor: "
1654             "%s, recursions=" INTPTR_FORMAT, m->is_busy_to_string(&ss),
1655             m->_recursions);
1656   m->set_allocation_state(ObjectMonitor::Free);
1657   // _next_om is used for both per-thread in-use and free lists so
1658   // we have to remove 'm' from the in-use list first (as needed).
1659   if (from_per_thread_alloc) {
1660     // Need to remove 'm' from om_in_use_list.
1661     // We use the more complicated mark-cur_mid_in_use-and-mid-as-we-go
1662     // protocol because async deflation can do list deletions in parallel.
1663     ObjectMonitor* cur_mid_in_use = NULL;
1664     ObjectMonitor* mid = NULL;
1665     ObjectMonitor* next = NULL;
1666     bool extracted = false;
1667 
1668     if (!mark_list_head(&self->om_in_use_list, &mid, &next)) {
1669       fatal("thread=" INTPTR_FORMAT " in-use list must not be empty.", p2i(self));
1670     }
1671     while (true) {
1672       if (m == mid) {
1673         // We found 'm' on the per-thread in-use list so try to extract it.
1674         // First try the list head:
1675         if (Atomic::cmpxchg(next, &self->om_in_use_list, mid) != mid) {
1676           // We could not switch the list head to next.
1677           ObjectMonitor* marked_mid = mark_om_ptr(mid);
1678           // Switch cur_mid_in_use's next field to next (which also
1679           // unmarks cur_mid_in_use):
1680           ADIM_guarantee(cur_mid_in_use != NULL, "must not be NULL");
1681           if (Atomic::cmpxchg(next, &cur_mid_in_use->_next_om, marked_mid)
1682               != marked_mid) {
1683             // We could not switch cur_mid_in_use's next field. This
1684             // should not be possible since it was marked so we:
1685             fatal("mid=" INTPTR_FORMAT " must be referred to by the list "
1686                   "head: &om_in_use_list=" INTPTR_FORMAT " or by "
1687                   "cur_mid_in_use's next field: cur_mid_in_use=" INTPTR_FORMAT
1688                   ", next_om=" INTPTR_FORMAT, p2i(mid),
1689                   p2i((ObjectMonitor**)&self->om_in_use_list),
1690                   p2i(cur_mid_in_use), p2i(cur_mid_in_use->_next_om));
1691           }
1692         }
1693         extracted = true;
1694         Atomic::dec(&self->om_in_use_count);
1695         // Unmark mid, but leave the next value for any lagging list
1696         // walkers. It will get cleaned up when mid is prepended to
1697         // the thread's free list:
1698         set_next(mid, next);
1699         break;
1700       }
1701       if (cur_mid_in_use != NULL) {
1702         set_next(cur_mid_in_use, mid);  // umark cur_mid_in_use
1703       }
1704       // The next cur_mid_in_use keeps mid's marked next field so
1705       // that it is stable for a possible next field change. It
1706       // cannot be deflated while it is marked.
1707       cur_mid_in_use = mid;
1708       mid = next;
1709       if (mid == NULL) {
1710         // Reached end of the list and didn't find m so:
1711         fatal("must find m=" INTPTR_FORMAT "on om_in_use_list=" INTPTR_FORMAT,
1712               p2i(m), p2i(self->om_in_use_list));
1713       }
1714       // Mark mid's next field so we can possibly extract it:
1715       next = mark_next_loop(mid);
1716     }
1717   }
1718 
1719   prepend_to_om_free_list(self, m);
1720   guarantee(m->is_free(), "invariant");
1721 }
1722 
1723 // Return ObjectMonitors on a moribund thread's free and in-use
1724 // lists to the appropriate global lists. The ObjectMonitors on the
1725 // per-thread in-use list may still be in use by other threads.
1726 //
1727 // We currently call om_flush() from Threads::remove() before the
1728 // thread has been excised from the thread list and is no longer a
1729 // mutator. This means that om_flush() cannot run concurrently with
1730 // a safepoint and interleave with deflate_idle_monitors(). In
1731 // particular, this ensures that the thread's in-use monitors are
1732 // scanned by a GC safepoint, either via Thread::oops_do() (before
1733 // om_flush() is called) or via ObjectSynchronizer::oops_do() (after
1734 // om_flush() is called).
1735 //
1736 // With AsyncDeflateIdleMonitors, deflate_global_idle_monitors_using_JT()
1737 // and deflate_per_thread_idle_monitors_using_JT() (in another thread) can
1738 // run at the same time as om_flush() so we have to follow a careful
1739 // protocol to prevent list corruption.
1740 
1741 void ObjectSynchronizer::om_flush(Thread* self) {
1742   // This function can race with an async deflater thread. Since
1743   // deflation has to process the per-thread in-use list before
1744   // prepending the deflated ObjectMonitors to the global free list,
1745   // we process the per-thread lists in the same order to prevent
1746   // ordering races.
1747   int in_use_count = 0;
1748   ObjectMonitor* in_use_list = NULL;
1749   ObjectMonitor* in_use_tail = NULL;
1750   ObjectMonitor* next = NULL;
1751 
1752   // An async deflation thread checks to see if the target thread
1753   // is exiting, but if it has made it past that check before we
1754   // started exiting, then it is racing to get to the in-use list.
1755   if (mark_list_head(&self->om_in_use_list, &in_use_list, &next)) {
1756     chk_for_list_loop(in_use_list, OrderAccess::load_acquire(&self->om_in_use_count));
1757     // At this point, we have marked the in-use list head so an
1758     // async deflation thread cannot come in after us. If an async
1759     // deflation thread is ahead of us, then we'll detect that and
1760     // wait for it to finish its work.
1761     //
1762     // The thread is going away, however the ObjectMonitors on the
1763     // om_in_use_list may still be in-use by other threads. Link
1764     // them to in_use_tail, which will be linked into the global
1765     // in-use list g_om_in_use_list below.
1766     //
1767     // Account for the in-use list head before the loop since it is
1768     // already marked (by this thread):
1769     in_use_tail = in_use_list;
1770     in_use_count++;
1771     for (ObjectMonitor* cur_om = unmarked_next(in_use_list); cur_om != NULL;) {
1772       if (is_next_marked(cur_om)) {
1773         // This next field is marked so there must be an async deflater
1774         // thread ahead of us so we'll give it a chance to finish.
1775         while (is_next_marked(cur_om)) {
1776           os::naked_short_sleep(1);
1777         }
1778         // Refetch the possibly changed next field and try again.
1779         cur_om = unmarked_next(in_use_tail);
1780         continue;
1781       }
1782       if (!cur_om->is_active()) {
1783         // cur_om was deflated and the allocation state was changed
1784         // to Free while it was marked. We happened to see it just
1785         // after it was unmarked (and added to the free list).
1786         // Refetch the possibly changed next field and try again.
1787         cur_om = unmarked_next(in_use_tail);
1788         continue;
1789       }
1790       in_use_tail = cur_om;
1791       in_use_count++;
1792       cur_om = unmarked_next(cur_om);
1793     }
1794     guarantee(in_use_tail != NULL, "invariant");
1795     int l_om_in_use_count = OrderAccess::load_acquire(&self->om_in_use_count);
1796     ADIM_guarantee(l_om_in_use_count == in_use_count, "in-use counts don't "
1797                    "match: l_om_in_use_count=%d, in_use_count=%d",
1798                    l_om_in_use_count, in_use_count);
1799     // Clear the in-use count before unmarking the in-use list head
1800     // to avoid races:
1801     OrderAccess::release_store(&self->om_in_use_count, 0);
1802     // Clear the in-use list head (which also unmarks it):
1803     OrderAccess::release_store(&self->om_in_use_list, (ObjectMonitor*)NULL);
1804     // Unmark the disconnected list head:
1805     set_next(in_use_list, next);
1806   }
1807 
1808   int free_count = 0;
1809   ObjectMonitor* free_list = OrderAccess::load_acquire(&self->om_free_list);
1810   ObjectMonitor* free_tail = NULL;
1811   if (free_list != NULL) {
1812     chk_for_list_loop(free_list, OrderAccess::load_acquire(&self->om_free_count));
1813     // The thread is going away. Set 'free_tail' to the last per-thread free
1814     // monitor which will be linked to g_free_list below.
1815     stringStream ss;
1816     for (ObjectMonitor* s = free_list; s != NULL; s = unmarked_next(s)) {
1817       free_count++;
1818       free_tail = s;
1819       guarantee(s->object() == NULL, "invariant");
1820       guarantee(!s->is_busy(), "must be !is_busy: %s", s->is_busy_to_string(&ss));
1821     }
1822     guarantee(free_tail != NULL, "invariant");
1823     int l_om_free_count = OrderAccess::load_acquire(&self->om_free_count);
1824     ADIM_guarantee(l_om_free_count == free_count, "free counts don't match: "
1825                    "l_om_free_count=%d, free_count=%d", l_om_free_count,
1826                    free_count);
1827     OrderAccess::release_store(&self->om_free_list, (ObjectMonitor*)NULL);
1828     OrderAccess::release_store(&self->om_free_count, 0);
1829   }
1830 
1831   if (free_tail != NULL) {
1832     prepend_list_to_g_free_list(free_list, free_tail, free_count);
1833   }
1834 
1835   if (in_use_tail != NULL) {
1836     prepend_list_to_g_om_in_use_list(in_use_list, in_use_tail, in_use_count);
1837   }
1838 
1839   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1840   LogStreamHandle(Info, monitorinflation) lsh_info;
1841   LogStream* ls = NULL;
1842   if (log_is_enabled(Debug, monitorinflation)) {
1843     ls = &lsh_debug;
1844   } else if ((free_count != 0 || in_use_count != 0) &&
1845              log_is_enabled(Info, monitorinflation)) {
1846     ls = &lsh_info;
1847   }
1848   if (ls != NULL) {
1849     ls->print_cr("om_flush: jt=" INTPTR_FORMAT ", free_count=%d"
1850                  ", in_use_count=%d" ", om_free_provision=%d",
1851                  p2i(self), free_count, in_use_count, self->om_free_provision);
1852   }
1853 }
1854 
1855 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1856                                        const oop obj,
1857                                        ObjectSynchronizer::InflateCause cause) {
1858   assert(event != NULL, "invariant");
1859   assert(event->should_commit(), "invariant");
1860   event->set_monitorClass(obj->klass());
1861   event->set_address((uintptr_t)(void*)obj);
1862   event->set_cause((u1)cause);
1863   event->commit();
1864 }
1865 
1866 // Fast path code shared by multiple functions
1867 void ObjectSynchronizer::inflate_helper(ObjectMonitorHandle* omh_p, oop obj) {
1868   while (true) {
1869     markWord mark = obj->mark();
1870     if (mark.has_monitor()) {
1871       if (!omh_p->save_om_ptr(obj, mark)) {
1872         // Lost a race with async deflation so try again.
1873         assert(AsyncDeflateIdleMonitors, "sanity check");
1874         continue;
1875       }
1876       ObjectMonitor* monitor = omh_p->om_ptr();
1877       assert(ObjectSynchronizer::verify_objmon_isinpool(monitor), "monitor is invalid");
1878       markWord dmw = monitor->header();
1879       assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value());
1880       return;
1881     }
1882     inflate(omh_p, Thread::current(), obj, inflate_cause_vm_internal);
1883     return;
1884   }
1885 }
1886 
1887 void ObjectSynchronizer::inflate(ObjectMonitorHandle* omh_p, Thread* self,
1888                                  oop object, const InflateCause cause) {
1889   // Inflate mutates the heap ...
1890   // Relaxing assertion for bug 6320749.
1891   assert(Universe::verify_in_progress() ||
1892          !SafepointSynchronize::is_at_safepoint(), "invariant");
1893 
1894   EventJavaMonitorInflate event;
1895 
1896   for (;;) {
1897     const markWord mark = object->mark();
1898     assert(!mark.has_bias_pattern(), "invariant");
1899 
1900     // The mark can be in one of the following states:
1901     // *  Inflated     - just return
1902     // *  Stack-locked - coerce it to inflated
1903     // *  INFLATING    - busy wait for conversion to complete
1904     // *  Neutral      - aggressively inflate the object.
1905     // *  BIASED       - Illegal.  We should never see this
1906 
1907     // CASE: inflated
1908     if (mark.has_monitor()) {
1909       if (!omh_p->save_om_ptr(object, mark)) {
1910         // Lost a race with async deflation so try again.
1911         assert(AsyncDeflateIdleMonitors, "sanity check");
1912         continue;
1913       }
1914       ObjectMonitor* inf = omh_p->om_ptr();
1915       markWord dmw = inf->header();
1916       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1917       assert(oopDesc::equals((oop) inf->object(), object), "invariant");
1918       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1919       return;
1920     }
1921 
1922     // CASE: inflation in progress - inflating over a stack-lock.
1923     // Some other thread is converting from stack-locked to inflated.
1924     // Only that thread can complete inflation -- other threads must wait.
1925     // The INFLATING value is transient.
1926     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1927     // We could always eliminate polling by parking the thread on some auxiliary list.
1928     if (mark == markWord::INFLATING()) {
1929       read_stable_mark(object);
1930       continue;
1931     }
1932 
1933     // CASE: stack-locked
1934     // Could be stack-locked either by this thread or by some other thread.
1935     //
1936     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1937     // to install INFLATING into the mark word.  We originally installed INFLATING,
1938     // allocated the objectmonitor, and then finally STed the address of the
1939     // objectmonitor into the mark.  This was correct, but artificially lengthened
1940     // the interval in which INFLATED appeared in the mark, thus increasing
1941     // the odds of inflation contention.
1942     //
1943     // We now use per-thread private objectmonitor free lists.
1944     // These list are reprovisioned from the global free list outside the
1945     // critical INFLATING...ST interval.  A thread can transfer
1946     // multiple objectmonitors en-mass from the global free list to its local free list.
1947     // This reduces coherency traffic and lock contention on the global free list.
1948     // Using such local free lists, it doesn't matter if the om_alloc() call appears
1949     // before or after the CAS(INFLATING) operation.
1950     // See the comments in om_alloc().
1951 
1952     LogStreamHandle(Trace, monitorinflation) lsh;
1953 
1954     if (mark.has_locker()) {
1955       ObjectMonitor* m = om_alloc(self, cause);
1956       // Optimistically prepare the objectmonitor - anticipate successful CAS
1957       // We do this before the CAS in order to minimize the length of time
1958       // in which INFLATING appears in the mark.
1959       m->Recycle();
1960       m->_Responsible  = NULL;
1961       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1962 
1963       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1964       if (cmp != mark) {
1965         om_release(self, m, true);
1966         continue;       // Interference -- just retry
1967       }
1968 
1969       // We've successfully installed INFLATING (0) into the mark-word.
1970       // This is the only case where 0 will appear in a mark-word.
1971       // Only the singular thread that successfully swings the mark-word
1972       // to 0 can perform (or more precisely, complete) inflation.
1973       //
1974       // Why do we CAS a 0 into the mark-word instead of just CASing the
1975       // mark-word from the stack-locked value directly to the new inflated state?
1976       // Consider what happens when a thread unlocks a stack-locked object.
1977       // It attempts to use CAS to swing the displaced header value from the
1978       // on-stack BasicLock back into the object header.  Recall also that the
1979       // header value (hash code, etc) can reside in (a) the object header, or
1980       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1981       // header in an ObjectMonitor.  The inflate() routine must copy the header
1982       // value from the BasicLock on the owner's stack to the ObjectMonitor, all
1983       // the while preserving the hashCode stability invariants.  If the owner
1984       // decides to release the lock while the value is 0, the unlock will fail
1985       // and control will eventually pass from slow_exit() to inflate.  The owner
1986       // will then spin, waiting for the 0 value to disappear.   Put another way,
1987       // the 0 causes the owner to stall if the owner happens to try to
1988       // drop the lock (restoring the header from the BasicLock to the object)
1989       // while inflation is in-progress.  This protocol avoids races that might
1990       // would otherwise permit hashCode values to change or "flicker" for an object.
1991       // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable.
1992       // 0 serves as a "BUSY" inflate-in-progress indicator.
1993 
1994 
1995       // fetch the displaced mark from the owner's stack.
1996       // The owner can't die or unwind past the lock while our INFLATING
1997       // object is in the mark.  Furthermore the owner can't complete
1998       // an unlock on the object, either.
1999       markWord dmw = mark.displaced_mark_helper();
2000       // Catch if the object's header is not neutral (not locked and
2001       // not marked is what we care about here).
2002       ADIM_guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
2003 
2004       // Setup monitor fields to proper values -- prepare the monitor
2005       m->set_header(dmw);
2006 
2007       // Optimization: if the mark.locker stack address is associated
2008       // with this thread we could simply set m->_owner = self.
2009       // Note that a thread can inflate an object
2010       // that it has stack-locked -- as might happen in wait() -- directly
2011       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
2012       m->set_owner(mark.locker());
2013       m->set_object(object);
2014       // TODO-FIXME: assert BasicLock->dhw != 0.
2015 
2016       omh_p->set_om_ptr(m);
2017       assert(m->is_new(), "freshly allocated monitor must be new");
2018       m->set_allocation_state(ObjectMonitor::Old);
2019 
2020       // Must preserve store ordering. The monitor state must
2021       // be stable at the time of publishing the monitor address.
2022       guarantee(object->mark() == markWord::INFLATING(), "invariant");
2023       object->release_set_mark(markWord::encode(m));
2024 
2025       // Hopefully the performance counters are allocated on distinct cache lines
2026       // to avoid false sharing on MP systems ...
2027       OM_PERFDATA_OP(Inflations, inc());
2028       if (log_is_enabled(Trace, monitorinflation)) {
2029         ResourceMark rm(self);
2030         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
2031                      INTPTR_FORMAT ", type='%s'", p2i(object),
2032                      object->mark().value(), object->klass()->external_name());
2033       }
2034       if (event.should_commit()) {
2035         post_monitor_inflate_event(&event, object, cause);
2036       }
2037       ADIM_guarantee(!m->is_free(), "inflated monitor to be returned cannot be free");
2038       return;
2039     }
2040 
2041     // CASE: neutral
2042     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
2043     // If we know we're inflating for entry it's better to inflate by swinging a
2044     // pre-locked ObjectMonitor pointer into the object header.   A successful
2045     // CAS inflates the object *and* confers ownership to the inflating thread.
2046     // In the current implementation we use a 2-step mechanism where we CAS()
2047     // to inflate and then CAS() again to try to swing _owner from NULL to self.
2048     // An inflateTry() method that we could call from fast_enter() and slow_enter()
2049     // would be useful.
2050 
2051     // Catch if the object's header is not neutral (not locked and
2052     // not marked is what we care about here).
2053     ADIM_guarantee(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT,mark.value());
2054     ObjectMonitor* m = om_alloc(self, cause);
2055     // prepare m for installation - set monitor to initial state
2056     m->Recycle();
2057     m->set_header(mark);
2058     // If we leave _owner == DEFLATER_MARKER here, then the simple C2
2059     // ObjectMonitor enter optimization can no longer race with async
2060     // deflation and reuse.
2061     m->set_object(object);
2062     m->_Responsible  = NULL;
2063     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
2064 
2065     omh_p->set_om_ptr(m);
2066     assert(m->is_new(), "freshly allocated monitor must be new");
2067     m->set_allocation_state(ObjectMonitor::Old);
2068 
2069     if (object->cas_set_mark(markWord::encode(m), mark) != mark) {
2070       guarantee(!m->owner_is_DEFLATER_MARKER() || m->ref_count() >= 0,
2071                 "race between deflation and om_release() with m=" INTPTR_FORMAT
2072                 ", _owner=" INTPTR_FORMAT ", ref_count=%d", p2i(m),
2073                 p2i(m->_owner), m->ref_count());
2074       m->set_header(markWord::zero());
2075       m->set_object(NULL);
2076       m->Recycle();
2077       omh_p->set_om_ptr(NULL);
2078       // om_release() will reset the allocation state
2079       om_release(self, m, true);
2080       m = NULL;
2081       continue;
2082       // interference - the markword changed - just retry.
2083       // The state-transitions are one-way, so there's no chance of
2084       // live-lock -- "Inflated" is an absorbing state.
2085     }
2086 
2087     // Hopefully the performance counters are allocated on distinct
2088     // cache lines to avoid false sharing on MP systems ...
2089     OM_PERFDATA_OP(Inflations, inc());
2090     if (log_is_enabled(Trace, monitorinflation)) {
2091       ResourceMark rm(self);
2092       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
2093                    INTPTR_FORMAT ", type='%s'", p2i(object),
2094                    object->mark().value(), object->klass()->external_name());
2095     }
2096     if (event.should_commit()) {
2097       post_monitor_inflate_event(&event, object, cause);
2098     }
2099     ADIM_guarantee(!m->is_free(), "inflated monitor to be returned cannot be free");
2100     return;
2101   }
2102 }
2103 
2104 
2105 // We maintain a list of in-use monitors for each thread.
2106 //
2107 // For safepoint based deflation:
2108 // deflate_thread_local_monitors() scans a single thread's in-use list, while
2109 // deflate_idle_monitors() scans only a global list of in-use monitors which
2110 // is populated only as a thread dies (see om_flush()).
2111 //
2112 // These operations are called at all safepoints, immediately after mutators
2113 // are stopped, but before any objects have moved. Collectively they traverse
2114 // the population of in-use monitors, deflating where possible. The scavenged
2115 // monitors are returned to the global monitor free list.
2116 //
2117 // Beware that we scavenge at *every* stop-the-world point. Having a large
2118 // number of monitors in-use could negatively impact performance. We also want
2119 // to minimize the total # of monitors in circulation, as they incur a small
2120 // footprint penalty.
2121 //
2122 // Perversely, the heap size -- and thus the STW safepoint rate --
2123 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
2124 // which in turn can mean large(r) numbers of ObjectMonitors in circulation.
2125 // This is an unfortunate aspect of this design.
2126 //
2127 // For async deflation:
2128 // If a special deflation request is made, then the safepoint based
2129 // deflation mechanism is used. Otherwise, an async deflation request
2130 // is registered with the ServiceThread and it is notified.
2131 
2132 void ObjectSynchronizer::do_safepoint_work(DeflateMonitorCounters* counters) {
2133   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2134 
2135   // The per-thread in-use lists are handled in
2136   // ParallelSPCleanupThreadClosure::do_thread().
2137 
2138   if (!AsyncDeflateIdleMonitors || is_special_deflation_requested()) {
2139     // Use the older mechanism for the global in-use list or if a
2140     // special deflation has been requested before the safepoint.
2141     ObjectSynchronizer::deflate_idle_monitors(counters);
2142     return;
2143   }
2144 
2145   log_debug(monitorinflation)("requesting async deflation of idle monitors.");
2146   // Request deflation of idle monitors by the ServiceThread:
2147   set_is_async_deflation_requested(true);
2148   MonitorLocker ml(Service_lock, Mutex::_no_safepoint_check_flag);
2149   ml.notify_all();
2150 }
2151 
2152 // Deflate a single monitor if not in-use
2153 // Return true if deflated, false if in-use
2154 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
2155                                          ObjectMonitor** free_head_p,
2156                                          ObjectMonitor** free_tail_p) {
2157   bool deflated;
2158   // Normal case ... The monitor is associated with obj.
2159   const markWord mark = obj->mark();
2160   guarantee(mark == markWord::encode(mid), "should match: mark="
2161             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, mark.value(),
2162             markWord::encode(mid).value());
2163   // Make sure that mark.monitor() and markWord::encode() agree:
2164   guarantee(mark.monitor() == mid, "should match: monitor()=" INTPTR_FORMAT
2165             ", mid=" INTPTR_FORMAT, p2i(mark.monitor()), p2i(mid));
2166   const markWord dmw = mid->header();
2167   guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
2168 
2169   if (mid->is_busy() || mid->ref_count() != 0) {
2170     // Easy checks are first - the ObjectMonitor is busy or ObjectMonitor*
2171     // is in use so no deflation.
2172     deflated = false;
2173   } else {
2174     // Deflate the monitor if it is no longer being used
2175     // It's idle - scavenge and return to the global free list
2176     // plain old deflation ...
2177     if (log_is_enabled(Trace, monitorinflation)) {
2178       ResourceMark rm;
2179       log_trace(monitorinflation)("deflate_monitor: "
2180                                   "object=" INTPTR_FORMAT ", mark="
2181                                   INTPTR_FORMAT ", type='%s'", p2i(obj),
2182                                   mark.value(), obj->klass()->external_name());
2183     }
2184 
2185     // Restore the header back to obj
2186     obj->release_set_mark(dmw);
2187     if (AsyncDeflateIdleMonitors) {
2188       // clear() expects the owner field to be NULL and we won't race
2189       // with the simple C2 ObjectMonitor enter optimization since
2190       // we're at a safepoint.
2191       mid->set_owner(NULL);
2192     }
2193     mid->clear();
2194 
2195     assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT,
2196            p2i(mid->object()));
2197     assert(mid->is_free(), "invariant");
2198 
2199     // Move the deflated ObjectMonitor to the working free list
2200     // defined by free_head_p and free_tail_p. No races on this list
2201     // so no need for load_acquire() or store_release().
2202     if (*free_head_p == NULL) *free_head_p = mid;
2203     if (*free_tail_p != NULL) {
2204       // We append to the list so the caller can use mid->_next_om
2205       // to fix the linkages in its context.
2206       ObjectMonitor* prevtail = *free_tail_p;
2207       // Should have been cleaned up by the caller:
2208       // Note: Should not have to mark prevtail here since we're at a
2209       // safepoint and ObjectMonitors on the local free list should
2210       // not be accessed in parallel.
2211       assert(prevtail->_next_om == NULL, "must be NULL: _next_om="
2212              INTPTR_FORMAT, p2i(prevtail->_next_om));
2213       set_next(prevtail, mid);
2214     }
2215     *free_tail_p = mid;
2216     // At this point, mid->_next_om still refers to its current
2217     // value and another ObjectMonitor's _next_om field still
2218     // refers to this ObjectMonitor. Those linkages have to be
2219     // cleaned up by the caller who has the complete context.
2220     deflated = true;
2221   }
2222   return deflated;
2223 }
2224 
2225 // Deflate the specified ObjectMonitor if not in-use using a JavaThread.
2226 // Returns true if it was deflated and false otherwise.
2227 //
2228 // The async deflation protocol sets owner to DEFLATER_MARKER and
2229 // makes ref_count negative as signals to contending threads that
2230 // an async deflation is in progress. There are a number of checks
2231 // as part of the protocol to make sure that the calling thread has
2232 // not lost the race to a contending thread or to a thread that just
2233 // wants to use the ObjectMonitor*.
2234 //
2235 // The ObjectMonitor has been successfully async deflated when:
2236 // (owner == DEFLATER_MARKER && ref_count < 0)
2237 // Contending threads or ObjectMonitor* using threads that see those
2238 // values know to retry their operation.
2239 //
2240 bool ObjectSynchronizer::deflate_monitor_using_JT(ObjectMonitor* mid,
2241                                                   ObjectMonitor** free_head_p,
2242                                                   ObjectMonitor** free_tail_p) {
2243   assert(AsyncDeflateIdleMonitors, "sanity check");
2244   assert(Thread::current()->is_Java_thread(), "precondition");
2245   // A newly allocated ObjectMonitor should not be seen here so we
2246   // avoid an endless inflate/deflate cycle.
2247   assert(mid->is_old(), "must be old: allocation_state=%d",
2248          (int) mid->allocation_state());
2249 
2250   if (mid->is_busy() || mid->ref_count() != 0) {
2251     // Easy checks are first - the ObjectMonitor is busy or ObjectMonitor*
2252     // is in use so no deflation.
2253     return false;
2254   }
2255 
2256   if (Atomic::replace_if_null(DEFLATER_MARKER, &(mid->_owner))) {
2257     // ObjectMonitor is not owned by another thread. Our setting
2258     // owner to DEFLATER_MARKER forces any contending thread through
2259     // the slow path. This is just the first part of the async
2260     // deflation dance.
2261 
2262     if (mid->_contentions != 0 || mid->_waiters != 0) {
2263       // Another thread has raced to enter the ObjectMonitor after
2264       // mid->is_busy() above or has already entered and waited on
2265       // it which makes it busy so no deflation. Restore owner to
2266       // NULL if it is still DEFLATER_MARKER.
2267       Atomic::cmpxchg((void*)NULL, &mid->_owner, DEFLATER_MARKER);
2268       return false;
2269     }
2270 
2271     if (Atomic::cmpxchg(-max_jint, &mid->_ref_count, (jint)0) == 0) {
2272       // Make ref_count negative to force any contending threads or
2273       // ObjectMonitor* using threads to retry. This is the second
2274       // part of the async deflation dance.
2275 
2276       if (mid->owner_is_DEFLATER_MARKER()) {
2277         // If owner is still DEFLATER_MARKER, then we have successfully
2278         // signaled any contending threads to retry. If it is not, then we
2279         // have lost the race to an entering thread and the ObjectMonitor
2280         // is now busy. This is the third and final part of the async
2281         // deflation dance.
2282         // Note: This owner check solves the ABA problem with ref_count
2283         // where another thread acquired the ObjectMonitor, finished
2284         // using it and restored the ref_count to zero.
2285 
2286         // Sanity checks for the races:
2287         guarantee(mid->_contentions == 0, "must be 0: contentions=%d",
2288                   mid->_contentions);
2289         guarantee(mid->_waiters == 0, "must be 0: waiters=%d", mid->_waiters);
2290         guarantee(mid->_cxq == NULL, "must be no contending threads: cxq="
2291                   INTPTR_FORMAT, p2i(mid->_cxq));
2292         guarantee(mid->_EntryList == NULL,
2293                   "must be no entering threads: EntryList=" INTPTR_FORMAT,
2294                   p2i(mid->_EntryList));
2295 
2296         const oop obj = (oop) mid->object();
2297         if (log_is_enabled(Trace, monitorinflation)) {
2298           ResourceMark rm;
2299           log_trace(monitorinflation)("deflate_monitor_using_JT: "
2300                                       "object=" INTPTR_FORMAT ", mark="
2301                                       INTPTR_FORMAT ", type='%s'",
2302                                       p2i(obj), obj->mark().value(),
2303                                       obj->klass()->external_name());
2304         }
2305 
2306         // Install the old mark word if nobody else has already done it.
2307         mid->install_displaced_markword_in_object(obj);
2308         mid->clear_using_JT();
2309 
2310         assert(mid->object() == NULL, "must be NULL: object=" INTPTR_FORMAT,
2311                p2i(mid->object()));
2312         assert(mid->is_free(), "must be free: allocation_state=%d",
2313                (int) mid->allocation_state());
2314 
2315         // Move the deflated ObjectMonitor to the working free list
2316         // defined by free_head_p and free_tail_p. No races on this list
2317         // so no need for load_acquire() or store_release().
2318         if (*free_head_p == NULL) {
2319           // First one on the list.
2320           *free_head_p = mid;
2321         }
2322         if (*free_tail_p != NULL) {
2323           // We append to the list so the caller can use mid->_next_om
2324           // to fix the linkages in its context.
2325           ObjectMonitor* prevtail = *free_tail_p;
2326           // Should have been cleaned up by the caller:
2327           ObjectMonitor* next = mark_next_loop(prevtail);
2328           assert(unmarked_next(prevtail) == NULL, "must be NULL: _next_om="
2329                  INTPTR_FORMAT, p2i(unmarked_next(prevtail)));
2330           set_next(prevtail, mid);  // prevtail now points to mid (and is unmarked)
2331         }
2332         *free_tail_p = mid;
2333 
2334         // At this point, mid->_next_om still refers to its current
2335         // value and another ObjectMonitor's _next_om field still
2336         // refers to this ObjectMonitor. Those linkages have to be
2337         // cleaned up by the caller who has the complete context.
2338 
2339         // We leave owner == DEFLATER_MARKER and ref_count < 0
2340         // to force any racing threads to retry.
2341         return true;  // Success, ObjectMonitor has been deflated.
2342       }
2343 
2344       // The owner was changed from DEFLATER_MARKER so we lost the
2345       // race since the ObjectMonitor is now busy.
2346 
2347       // Add back max_jint to restore the ref_count field to its
2348       // proper value (which may not be what we saw above):
2349       Atomic::add(max_jint, &mid->_ref_count);
2350 
2351       assert(mid->ref_count() >= 0, "must not be negative: ref_count=%d",
2352              mid->ref_count());
2353       return false;
2354     }
2355 
2356     // The ref_count was no longer 0 so we lost the race since the
2357     // ObjectMonitor is now busy or the ObjectMonitor* is now is use.
2358     // Restore owner to NULL if it is still DEFLATER_MARKER:
2359     Atomic::cmpxchg((void*)NULL, &mid->_owner, DEFLATER_MARKER);
2360   }
2361 
2362   // The owner field is no longer NULL so we lost the race since the
2363   // ObjectMonitor is now busy.
2364   return false;
2365 }
2366 
2367 // Walk a given monitor list, and deflate idle monitors.
2368 // The given list could be a per-thread list or a global list.
2369 //
2370 // In the case of parallel processing of thread local monitor lists,
2371 // work is done by Threads::parallel_threads_do() which ensures that
2372 // each Java thread is processed by exactly one worker thread, and
2373 // thus avoid conflicts that would arise when worker threads would
2374 // process the same monitor lists concurrently.
2375 //
2376 // See also ParallelSPCleanupTask and
2377 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
2378 // Threads::parallel_java_threads_do() in thread.cpp.
2379 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor* volatile * list_p,
2380                                              int volatile * count_p,
2381                                              ObjectMonitor** free_head_p,
2382                                              ObjectMonitor** free_tail_p) {
2383   ObjectMonitor* cur_mid_in_use = NULL;
2384   ObjectMonitor* mid = NULL;
2385   ObjectMonitor* next = NULL;
2386   int deflated_count = 0;
2387 
2388   // We use the simpler mark-mid-as-we-go protocol since there are no
2389   // parallel list deletions since we are at a safepoint.
2390   if (!mark_list_head(list_p, &mid, &next)) {
2391     return 0;  // The list is empty so nothing to deflate.
2392   }
2393 
2394   while (true) {
2395     oop obj = (oop) mid->object();
2396     if (obj != NULL && deflate_monitor(mid, obj, free_head_p, free_tail_p)) {
2397       // Deflation succeeded and already updated free_head_p and
2398       // free_tail_p as needed. Finish the move to the local free list
2399       // by unlinking mid from the global or per-thread in-use list.
2400       if (Atomic::cmpxchg(next, list_p, mid) != mid) {
2401         // We could not switch the list head to next.
2402         ADIM_guarantee(cur_mid_in_use != NULL, "must not be NULL");
2403         if (Atomic::cmpxchg(next, &cur_mid_in_use->_next_om, mid) != mid) {
2404           // deflate_monitor_list() is called at a safepoint so the
2405           // global or per-thread in-use list should not be modified
2406           // in parallel so we:
2407           fatal("mid=" INTPTR_FORMAT " must be referred to by the list head: "
2408                 "list_p=" INTPTR_FORMAT " or by cur_mid_in_use's next field: "
2409                 "cur_mid_in_use=" INTPTR_FORMAT ", next_om=" INTPTR_FORMAT,
2410                 p2i(mid), p2i((ObjectMonitor**)list_p), p2i(cur_mid_in_use),
2411                 p2i(cur_mid_in_use->_next_om));
2412         }
2413       }
2414       // At this point mid is disconnected from the in-use list so
2415       // its marked next field no longer has any effects.
2416       deflated_count++;
2417       Atomic::dec(count_p);
2418       chk_for_list_loop(OrderAccess::load_acquire(list_p),
2419                         OrderAccess::load_acquire(count_p));
2420       chk_om_not_on_list(mid, OrderAccess::load_acquire(list_p),
2421                          OrderAccess::load_acquire(count_p));
2422       // mid is current tail in the free_head_p list so NULL terminate it
2423       // (which also unmarks it):
2424       set_next(mid, NULL);
2425 
2426       // All the list management is done so move on to the next one:
2427       mid = next;
2428     } else {
2429       set_next(mid, next);  // unmark next field
2430 
2431       // All the list management is done so move on to the next one:
2432       cur_mid_in_use = mid;
2433       mid = next;
2434     }
2435     if (mid == NULL) {
2436       break;  // Reached end of the list so nothing more to deflate.
2437     }
2438     // Mark mid's next field so we can possibly deflate it:
2439     next = mark_next_loop(mid);
2440   }
2441   return deflated_count;
2442 }
2443 
2444 // Walk a given ObjectMonitor list and deflate idle ObjectMonitors using
2445 // a JavaThread. Returns the number of deflated ObjectMonitors. The given
2446 // list could be a per-thread in-use list or the global in-use list.
2447 // If a safepoint has started, then we save state via saved_mid_in_use_p
2448 // and return to the caller to honor the safepoint.
2449 //
2450 int ObjectSynchronizer::deflate_monitor_list_using_JT(ObjectMonitor* volatile * list_p,
2451                                                       int volatile * count_p,
2452                                                       ObjectMonitor** free_head_p,
2453                                                       ObjectMonitor** free_tail_p,
2454                                                       ObjectMonitor** saved_mid_in_use_p) {
2455   assert(AsyncDeflateIdleMonitors, "sanity check");
2456   assert(Thread::current()->is_Java_thread(), "precondition");
2457 
2458   ObjectMonitor* cur_mid_in_use = NULL;
2459   ObjectMonitor* mid = NULL;
2460   ObjectMonitor* next = NULL;
2461   ObjectMonitor* next_next = NULL;
2462   int deflated_count = 0;
2463 
2464   // We use the more complicated mark-cur_mid_in_use-and-mid-as-we-go
2465   // protocol because om_release() can do list deletions in parallel.
2466   // We also mark-next-next-as-we-go to prevent an om_flush() that is
2467   // behind this thread from passing us.
2468   if (*saved_mid_in_use_p == NULL) {
2469     // No saved state so start at the beginning.
2470     // Mark the list head's next field so we can possibly deflate it:
2471     if (!mark_list_head(list_p, &mid, &next)) {
2472       return 0;  // The list is empty so nothing to deflate.
2473     }
2474   } else {
2475     // We're restarting after a safepoint so restore the necessary state
2476     // before we resume.
2477     cur_mid_in_use = *saved_mid_in_use_p;
2478     // Mark cur_mid_in_use's next field so we can possibly update its
2479     // next field to extract a deflated ObjectMonitor.
2480     mid = mark_next_loop(cur_mid_in_use);
2481     if (mid == NULL) {
2482       set_next(cur_mid_in_use, NULL);  // unmark next field
2483       *saved_mid_in_use_p = NULL;
2484       return 0;  // The remainder is empty so nothing more to deflate.
2485     }
2486     // Mark mid's next field so we can possibly deflate it:
2487     next = mark_next_loop(mid);
2488   }
2489 
2490   while (true) {
2491     // The current mid's next field is marked at this point. If we have
2492     // a cur_mid_in_use, then its next field is also marked at this point.
2493 
2494     if (next != NULL) {
2495       // We mark the next -> next field so that an om_flush()
2496       // thread that is behind us cannot pass us when we
2497       // unmark the current mid's next field.
2498       next_next = mark_next_loop(next);
2499     }
2500 
2501     // Only try to deflate if there is an associated Java object and if
2502     // mid is old (is not newly allocated and is not newly freed).
2503     if (mid->object() != NULL && mid->is_old() &&
2504         deflate_monitor_using_JT(mid, free_head_p, free_tail_p)) {
2505       // Deflation succeeded and already updated free_head_p and
2506       // free_tail_p as needed. Finish the move to the local free list
2507       // by unlinking mid from the global or per-thread in-use list.
2508       if (Atomic::cmpxchg(next, list_p, mid) != mid) {
2509         // We could not switch the list head to next.
2510         ObjectMonitor* marked_mid = mark_om_ptr(mid);
2511         ObjectMonitor* marked_next = mark_om_ptr(next);
2512         // Switch cur_mid_in_use's next field to marked next:
2513         ADIM_guarantee(cur_mid_in_use != NULL, "must not be NULL");
2514         if (Atomic::cmpxchg(marked_next, &cur_mid_in_use->_next_om,
2515                             marked_mid) != marked_mid) {
2516           // We could not switch cur_mid_in_use's next field. This
2517           // should not be possible since it was marked so we:
2518           fatal("mid=" INTPTR_FORMAT " must be referred to by the list head: "
2519                 "&list_p=" INTPTR_FORMAT " or by cur_mid_in_use's next field: "
2520                 "cur_mid_in_use=" INTPTR_FORMAT ", next_om=" INTPTR_FORMAT,
2521                 p2i(mid), p2i((ObjectMonitor**)list_p), p2i(cur_mid_in_use),
2522                 p2i(cur_mid_in_use->_next_om));
2523         }
2524       }
2525       // At this point mid is disconnected from the in-use list so
2526       // its marked next field no longer has any effects.
2527       deflated_count++;
2528       Atomic::dec(count_p);
2529       chk_for_list_loop(OrderAccess::load_acquire(list_p),
2530                         OrderAccess::load_acquire(count_p));
2531       chk_om_not_on_list(mid, OrderAccess::load_acquire(list_p),
2532                          OrderAccess::load_acquire(count_p));
2533       // mid is current tail in the free_head_p list so NULL terminate it
2534       // (which also unmarks it):
2535       set_next(mid, NULL);
2536 
2537       // All the list management is done so move on to the next one:
2538       mid = next;  // mid keeps non-NULL next's marked next field
2539       next = next_next;
2540     } else {
2541       // mid is considered in-use if it does not have an associated
2542       // Java object or mid is not old or deflation did not succeed.
2543       // A mid->is_new() node can be seen here when it is freshly
2544       // returned by om_alloc() (and skips the deflation code path).
2545       // A mid->is_old() node can be seen here when deflation failed.
2546       // A mid->is_free() node can be seen here when a fresh node from
2547       // om_alloc() is released by om_release() due to losing the race
2548       // in inflate().
2549 
2550       // All the list management is done so move on to the next one:
2551       if (cur_mid_in_use != NULL) {
2552         set_next(cur_mid_in_use, mid);  // umark cur_mid_in_use
2553       }
2554       // The next cur_mid_in_use keeps mid's marked next field so
2555       // that it is stable for a possible next field change. It
2556       // cannot be modified by om_release() while it is marked.
2557       cur_mid_in_use = mid;
2558       mid = next;  // mid keeps non-NULL next's marked next field
2559       next = next_next;
2560 
2561       if (SafepointSynchronize::is_synchronizing() &&
2562           cur_mid_in_use != OrderAccess::load_acquire(list_p) &&
2563           cur_mid_in_use->is_old()) {
2564         // If a safepoint has started and cur_mid_in_use is not the list
2565         // head and is old, then it is safe to use as saved state. Return
2566         // to the caller before blocking.
2567         *saved_mid_in_use_p = cur_mid_in_use;
2568         set_next(cur_mid_in_use, mid);  // umark cur_mid_in_use
2569         if (mid != NULL) {
2570           set_next(mid, next);  // umark mid
2571         }
2572         return deflated_count;
2573       }
2574     }
2575     if (mid == NULL) {
2576       if (cur_mid_in_use != NULL) {
2577         set_next(cur_mid_in_use, mid);  // umark cur_mid_in_use
2578       }
2579       break;  // Reached end of the list so nothing more to deflate.
2580     }
2581 
2582     // The current mid's next field is marked at this point. If we have
2583     // a cur_mid_in_use, then its next field is also marked at this point.
2584   }
2585   // We finished the list without a safepoint starting so there's
2586   // no need to save state.
2587   *saved_mid_in_use_p = NULL;
2588   return deflated_count;
2589 }
2590 
2591 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2592   OrderAccess::release_store(&counters->n_in_use, 0);              // currently associated with objects
2593   OrderAccess::release_store(&counters->n_in_circulation, 0);      // extant
2594   OrderAccess::release_store(&counters->n_scavenged, 0);           // reclaimed (global and per-thread)
2595   OrderAccess::release_store(&counters->per_thread_scavenged, 0);  // per-thread scavenge total
2596   counters->per_thread_times = 0.0;                                // per-thread scavenge times
2597 }
2598 
2599 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
2600   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2601 
2602   if (AsyncDeflateIdleMonitors) {
2603     // Nothing to do when global idle ObjectMonitors are deflated using
2604     // a JavaThread unless a special deflation has been requested.
2605     if (!is_special_deflation_requested()) {
2606       return;
2607     }
2608   }
2609 
2610   bool deflated = false;
2611 
2612   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
2613   ObjectMonitor* free_tail_p = NULL;
2614   elapsedTimer timer;
2615 
2616   if (log_is_enabled(Info, monitorinflation)) {
2617     timer.start();
2618   }
2619 
2620   // Note: the thread-local monitors lists get deflated in
2621   // a separate pass. See deflate_thread_local_monitors().
2622 
2623   // For moribund threads, scan g_om_in_use_list
2624   int deflated_count = 0;
2625   if (OrderAccess::load_acquire(&g_om_in_use_list) != NULL) {
2626     // Update n_in_circulation before g_om_in_use_count is updated by deflation.
2627     Atomic::add(OrderAccess::load_acquire(&g_om_in_use_count), &counters->n_in_circulation);
2628 
2629     deflated_count = deflate_monitor_list(&g_om_in_use_list, &g_om_in_use_count, &free_head_p, &free_tail_p);
2630     Atomic::add(OrderAccess::load_acquire(&g_om_in_use_count), &counters->n_in_use);
2631   }
2632 
2633   if (free_head_p != NULL) {
2634     // Move the deflated ObjectMonitors back to the global free list.
2635     // No races on the working free list so no need for load_acquire().
2636     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
2637     assert(free_tail_p->_next_om == NULL, "must be NULL: _next_om="
2638            INTPTR_FORMAT, p2i(free_tail_p->_next_om));
2639     prepend_list_to_g_free_list(free_head_p, free_tail_p, deflated_count);
2640     Atomic::add(deflated_count, &counters->n_scavenged);
2641   }
2642   timer.stop();
2643 
2644   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2645   LogStreamHandle(Info, monitorinflation) lsh_info;
2646   LogStream* ls = NULL;
2647   if (log_is_enabled(Debug, monitorinflation)) {
2648     ls = &lsh_debug;
2649   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2650     ls = &lsh_info;
2651   }
2652   if (ls != NULL) {
2653     ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2654   }
2655 }
2656 
2657 // Deflate global idle ObjectMonitors using a JavaThread.
2658 //
2659 void ObjectSynchronizer::deflate_global_idle_monitors_using_JT() {
2660   assert(AsyncDeflateIdleMonitors, "sanity check");
2661   assert(Thread::current()->is_Java_thread(), "precondition");
2662   JavaThread* self = JavaThread::current();
2663 
2664   deflate_common_idle_monitors_using_JT(true /* is_global */, self);
2665 }
2666 
2667 // Deflate the specified JavaThread's idle ObjectMonitors using a JavaThread.
2668 //
2669 void ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT(JavaThread* target) {
2670   assert(AsyncDeflateIdleMonitors, "sanity check");
2671   assert(Thread::current()->is_Java_thread(), "precondition");
2672 
2673   deflate_common_idle_monitors_using_JT(false /* !is_global */, target);
2674 }
2675 
2676 // Deflate global or per-thread idle ObjectMonitors using a JavaThread.
2677 //
2678 void ObjectSynchronizer::deflate_common_idle_monitors_using_JT(bool is_global, JavaThread* target) {
2679   JavaThread* self = JavaThread::current();
2680 
2681   int deflated_count = 0;
2682   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged ObjectMonitors
2683   ObjectMonitor* free_tail_p = NULL;
2684   ObjectMonitor* saved_mid_in_use_p = NULL;
2685   elapsedTimer timer;
2686 
2687   if (log_is_enabled(Info, monitorinflation)) {
2688     timer.start();
2689   }
2690 
2691   if (is_global) {
2692     OM_PERFDATA_OP(MonExtant, set_value(OrderAccess::load_acquire(&g_om_in_use_count)));
2693   } else {
2694     OM_PERFDATA_OP(MonExtant, inc(OrderAccess::load_acquire(&target->om_in_use_count)));
2695   }
2696 
2697   do {
2698     int local_deflated_count;
2699     if (is_global) {
2700       local_deflated_count = deflate_monitor_list_using_JT(&g_om_in_use_list, &g_om_in_use_count, &free_head_p, &free_tail_p, &saved_mid_in_use_p);
2701     } else {
2702       local_deflated_count = deflate_monitor_list_using_JT(&target->om_in_use_list, &target->om_in_use_count, &free_head_p, &free_tail_p, &saved_mid_in_use_p);
2703     }
2704     deflated_count += local_deflated_count;
2705 
2706     if (free_head_p != NULL) {
2707       // Move the deflated ObjectMonitors to the global free list.
2708       // No races on the working list so no need for load_acquire().
2709       guarantee(free_tail_p != NULL && local_deflated_count > 0, "free_tail_p=" INTPTR_FORMAT ", local_deflated_count=%d", p2i(free_tail_p), local_deflated_count);
2710       // Note: The target thread can be doing an om_alloc() that
2711       // is trying to prepend an ObjectMonitor on its in-use list
2712       // at the same time that we have deflated the current in-use
2713       // list head and put it on the local free list. prepend_to_common()
2714       // will detect the race and retry which avoids list corruption,
2715       // but the next field in free_tail_p can flicker to marked
2716       // and then unmarked while prepend_to_common() is sorting it
2717       // all out.
2718       assert(unmarked_next(free_tail_p) == NULL, "must be NULL: _next_om="
2719              INTPTR_FORMAT, p2i(unmarked_next(free_tail_p)));
2720 
2721       prepend_list_to_g_free_list(free_head_p, free_tail_p, local_deflated_count);
2722 
2723       OM_PERFDATA_OP(Deflations, inc(local_deflated_count));
2724     }
2725 
2726     if (saved_mid_in_use_p != NULL) {
2727       // deflate_monitor_list_using_JT() detected a safepoint starting.
2728       timer.stop();
2729       {
2730         if (is_global) {
2731           log_debug(monitorinflation)("pausing deflation of global idle monitors for a safepoint.");
2732         } else {
2733           log_debug(monitorinflation)("jt=" INTPTR_FORMAT ": pausing deflation of per-thread idle monitors for a safepoint.", p2i(target));
2734         }
2735         assert(SafepointSynchronize::is_synchronizing(), "sanity check");
2736         ThreadBlockInVM blocker(self);
2737       }
2738       // Prepare for another loop after the safepoint.
2739       free_head_p = NULL;
2740       free_tail_p = NULL;
2741       if (log_is_enabled(Info, monitorinflation)) {
2742         timer.start();
2743       }
2744     }
2745   } while (saved_mid_in_use_p != NULL);
2746   timer.stop();
2747 
2748   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2749   LogStreamHandle(Info, monitorinflation) lsh_info;
2750   LogStream* ls = NULL;
2751   if (log_is_enabled(Debug, monitorinflation)) {
2752     ls = &lsh_debug;
2753   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2754     ls = &lsh_info;
2755   }
2756   if (ls != NULL) {
2757     if (is_global) {
2758       ls->print_cr("async-deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2759     } else {
2760       ls->print_cr("jt=" INTPTR_FORMAT ": async-deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(target), timer.seconds(), deflated_count);
2761     }
2762   }
2763 }
2764 
2765 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2766   // Report the cumulative time for deflating each thread's idle
2767   // monitors. Note: if the work is split among more than one
2768   // worker thread, then the reported time will likely be more
2769   // than a beginning to end measurement of the phase.
2770   // Note: AsyncDeflateIdleMonitors only deflates per-thread idle
2771   // monitors at a safepoint when a special deflation has been requested.
2772   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d",
2773                                counters->per_thread_times,
2774                                OrderAccess::load_acquire(&counters->per_thread_scavenged));
2775 
2776   bool needs_special_deflation = is_special_deflation_requested();
2777   if (!AsyncDeflateIdleMonitors || needs_special_deflation) {
2778     // AsyncDeflateIdleMonitors does not use these counters unless
2779     // there is a special deflation request.
2780 
2781     OM_PERFDATA_OP(Deflations, inc(counters->n_scavenged));
2782     OM_PERFDATA_OP(MonExtant, set_value(counters->n_in_circulation));
2783   }
2784 
2785   if (log_is_enabled(Debug, monitorinflation)) {
2786     // exit_globals()'s call to audit_and_print_stats() is done
2787     // at the Info level.
2788     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2789   } else if (log_is_enabled(Info, monitorinflation)) {
2790     log_info(monitorinflation)("g_om_population=%d, g_om_in_use_count=%d, "
2791                                "g_om_free_count=%d",
2792                                OrderAccess::load_acquire(&g_om_population),
2793                                OrderAccess::load_acquire(&g_om_in_use_count),
2794                                OrderAccess::load_acquire(&g_om_free_count));
2795   }
2796 
2797   ForceMonitorScavenge = 0;    // Reset
2798   GVars.stw_random = os::random();
2799   GVars.stw_cycle++;
2800   if (needs_special_deflation) {
2801     set_is_special_deflation_requested(false);  // special deflation is done
2802   }
2803 }
2804 
2805 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
2806   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2807 
2808   if (AsyncDeflateIdleMonitors && !is_special_deflation_requested()) {
2809     // Nothing to do if a special deflation has NOT been requested.
2810     return;
2811   }
2812 
2813   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
2814   ObjectMonitor* free_tail_p = NULL;
2815   elapsedTimer timer;
2816 
2817   if (log_is_enabled(Info, safepoint, cleanup) ||
2818       log_is_enabled(Info, monitorinflation)) {
2819     timer.start();
2820   }
2821 
2822   // Update n_in_circulation before om_in_use_count is updated by deflation.
2823   Atomic::add(OrderAccess::load_acquire(&thread->om_in_use_count), &counters->n_in_circulation);
2824 
2825   int deflated_count = deflate_monitor_list(&thread->om_in_use_list, &thread->om_in_use_count, &free_head_p, &free_tail_p);
2826   Atomic::add(OrderAccess::load_acquire(&thread->om_in_use_count), &counters->n_in_use);
2827 
2828   if (free_head_p != NULL) {
2829     // Move the deflated ObjectMonitors back to the global free list.
2830     // No races on the working list so no need for load_acquire().
2831     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
2832     assert(free_tail_p->_next_om == NULL, "must be NULL: _next_om="
2833            INTPTR_FORMAT, p2i(free_tail_p->_next_om));
2834     prepend_list_to_g_free_list(free_head_p, free_tail_p, deflated_count);
2835     Atomic::add(deflated_count, &counters->n_scavenged);
2836     Atomic::add(deflated_count, &counters->per_thread_scavenged);
2837   }
2838 
2839   timer.stop();
2840   // Safepoint logging cares about cumulative per_thread_times and
2841   // we'll capture most of the cost, but not the muxRelease() which
2842   // should be cheap.
2843   counters->per_thread_times += timer.seconds();
2844 
2845   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2846   LogStreamHandle(Info, monitorinflation) lsh_info;
2847   LogStream* ls = NULL;
2848   if (log_is_enabled(Debug, monitorinflation)) {
2849     ls = &lsh_debug;
2850   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2851     ls = &lsh_info;
2852   }
2853   if (ls != NULL) {
2854     ls->print_cr("jt=" INTPTR_FORMAT ": deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(thread), timer.seconds(), deflated_count);
2855   }
2856 }
2857 
2858 // Monitor cleanup on JavaThread::exit
2859 
2860 // Iterate through monitor cache and attempt to release thread's monitors
2861 // Gives up on a particular monitor if an exception occurs, but continues
2862 // the overall iteration, swallowing the exception.
2863 class ReleaseJavaMonitorsClosure: public MonitorClosure {
2864  private:
2865   TRAPS;
2866 
2867  public:
2868   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
2869   void do_monitor(ObjectMonitor* mid) {
2870     if (mid->owner() == THREAD) {
2871       (void)mid->complete_exit(CHECK);
2872     }
2873   }
2874 };
2875 
2876 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
2877 // ignored.  This is meant to be called during JNI thread detach which assumes
2878 // all remaining monitors are heavyweight.  All exceptions are swallowed.
2879 // Scanning the extant monitor list can be time consuming.
2880 // A simple optimization is to add a per-thread flag that indicates a thread
2881 // called jni_monitorenter() during its lifetime.
2882 //
2883 // Instead of No_Savepoint_Verifier it might be cheaper to
2884 // use an idiom of the form:
2885 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
2886 //   <code that must not run at safepoint>
2887 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
2888 // Since the tests are extremely cheap we could leave them enabled
2889 // for normal product builds.
2890 
2891 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
2892   assert(THREAD == JavaThread::current(), "must be current Java thread");
2893   NoSafepointVerifier nsv;
2894   ReleaseJavaMonitorsClosure rjmc(THREAD);
2895   ObjectSynchronizer::monitors_iterate(&rjmc);
2896   THREAD->clear_pending_exception();
2897 }
2898 
2899 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
2900   switch (cause) {
2901     case inflate_cause_vm_internal:    return "VM Internal";
2902     case inflate_cause_monitor_enter:  return "Monitor Enter";
2903     case inflate_cause_wait:           return "Monitor Wait";
2904     case inflate_cause_notify:         return "Monitor Notify";
2905     case inflate_cause_hash_code:      return "Monitor Hash Code";
2906     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
2907     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
2908     default:
2909       ShouldNotReachHere();
2910   }
2911   return "Unknown";
2912 }
2913 
2914 //------------------------------------------------------------------------------
2915 // Debugging code
2916 
2917 u_char* ObjectSynchronizer::get_gvars_addr() {
2918   return (u_char*)&GVars;
2919 }
2920 
2921 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() {
2922   return (u_char*)&GVars.hc_sequence;
2923 }
2924 
2925 size_t ObjectSynchronizer::get_gvars_size() {
2926   return sizeof(SharedGlobals);
2927 }
2928 
2929 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() {
2930   return (u_char*)&GVars.stw_random;
2931 }
2932 
2933 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) {
2934   assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant");
2935 
2936   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2937   LogStreamHandle(Info, monitorinflation) lsh_info;
2938   LogStreamHandle(Trace, monitorinflation) lsh_trace;
2939   LogStream* ls = NULL;
2940   if (log_is_enabled(Trace, monitorinflation)) {
2941     ls = &lsh_trace;
2942   } else if (log_is_enabled(Debug, monitorinflation)) {
2943     ls = &lsh_debug;
2944   } else if (log_is_enabled(Info, monitorinflation)) {
2945     ls = &lsh_info;
2946   }
2947   assert(ls != NULL, "sanity check");
2948 
2949   // Log counts for the global and per-thread monitor lists:
2950   int chk_om_population = log_monitor_list_counts(ls);
2951   int error_cnt = 0;
2952 
2953   ls->print_cr("Checking global lists:");
2954 
2955   // Check g_om_population:
2956   if (OrderAccess::load_acquire(&g_om_population) == chk_om_population) {
2957     ls->print_cr("g_om_population=%d equals chk_om_population=%d",
2958                  OrderAccess::load_acquire(&g_om_population),
2959                  chk_om_population);
2960   } else {
2961     ls->print_cr("ERROR: g_om_population=%d is not equal to "
2962                  "chk_om_population=%d",
2963                  OrderAccess::load_acquire(&g_om_population),
2964                  chk_om_population);
2965     error_cnt++;
2966   }
2967 
2968   // Check g_om_in_use_list and g_om_in_use_count:
2969   chk_global_in_use_list_and_count(ls, &error_cnt);
2970 
2971   // Check g_free_list and g_om_free_count:
2972   chk_global_free_list_and_count(ls, &error_cnt);
2973 
2974   ls->print_cr("Checking per-thread lists:");
2975 
2976   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2977     // Check om_in_use_list and om_in_use_count:
2978     chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt);
2979 
2980     // Check om_free_list and om_free_count:
2981     chk_per_thread_free_list_and_count(jt, ls, &error_cnt);
2982   }
2983 
2984   if (error_cnt == 0) {
2985     ls->print_cr("No errors found in monitor list checks.");
2986   } else {
2987     log_error(monitorinflation)("found monitor list errors: error_cnt=%d", error_cnt);
2988   }
2989 
2990   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
2991       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
2992     // When exiting this log output is at the Info level. When called
2993     // at a safepoint, this log output is at the Trace level since
2994     // there can be a lot of it.
2995     log_in_use_monitor_details(ls);
2996   }
2997 
2998   ls->flush();
2999 
3000   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
3001 }
3002 
3003 // Check a free monitor entry; log any errors.
3004 void ObjectSynchronizer::chk_free_entry(JavaThread* jt, ObjectMonitor* n,
3005                                         outputStream * out, int *error_cnt_p) {
3006   stringStream ss;
3007   if (n->is_busy()) {
3008     if (jt != NULL) {
3009       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3010                     ": free per-thread monitor must not be busy: %s", p2i(jt),
3011                     p2i(n), n->is_busy_to_string(&ss));
3012     } else {
3013       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
3014                     "must not be busy: %s", p2i(n), n->is_busy_to_string(&ss));
3015     }
3016     *error_cnt_p = *error_cnt_p + 1;
3017   }
3018   if (n->header().value() != 0) {
3019     if (jt != NULL) {
3020       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3021                     ": free per-thread monitor must have NULL _header "
3022                     "field: _header=" INTPTR_FORMAT, p2i(jt), p2i(n),
3023                     n->header().value());
3024       *error_cnt_p = *error_cnt_p + 1;
3025     } else if (!AsyncDeflateIdleMonitors) {
3026       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
3027                     "must have NULL _header field: _header=" INTPTR_FORMAT,
3028                     p2i(n), n->header().value());
3029       *error_cnt_p = *error_cnt_p + 1;
3030     }
3031   }
3032   if (n->object() != NULL) {
3033     if (jt != NULL) {
3034       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3035                     ": free per-thread monitor must have NULL _object "
3036                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
3037                     p2i(n->object()));
3038     } else {
3039       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
3040                     "must have NULL _object field: _object=" INTPTR_FORMAT,
3041                     p2i(n), p2i(n->object()));
3042     }
3043     *error_cnt_p = *error_cnt_p + 1;
3044   }
3045 }
3046 
3047 // Check the global free list and count; log the results of the checks.
3048 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
3049                                                         int *error_cnt_p) {
3050   int chk_om_free_count = 0;
3051   for (ObjectMonitor* n = OrderAccess::load_acquire(&g_free_list); n != NULL; n = unmarked_next(n)) {
3052     chk_free_entry(NULL /* jt */, n, out, error_cnt_p);
3053     chk_om_free_count++;
3054   }
3055   if (OrderAccess::load_acquire(&g_om_free_count) == chk_om_free_count) {
3056     out->print_cr("g_om_free_count=%d equals chk_om_free_count=%d",
3057                   OrderAccess::load_acquire(&g_om_free_count),
3058                   chk_om_free_count);
3059   } else {
3060     // With lock free access to g_free_list, it is possible for an
3061     // ObjectMonitor to be prepended to g_free_list after we started
3062     // calculating chk_om_free_count so g_om_free_count may not
3063     // match anymore.
3064     out->print_cr("WARNING: g_om_free_count=%d is not equal to "
3065                   "chk_om_free_count=%d",
3066                   OrderAccess::load_acquire(&g_om_free_count),
3067                   chk_om_free_count);
3068   }
3069 }
3070 
3071 // Check the global in-use list and count; log the results of the checks.
3072 void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out,
3073                                                           int *error_cnt_p) {
3074   int chk_om_in_use_count = 0;
3075   for (ObjectMonitor* n = OrderAccess::load_acquire(&g_om_in_use_list); n != NULL; n = unmarked_next(n)) {
3076     chk_in_use_entry(NULL /* jt */, n, out, error_cnt_p);
3077     chk_om_in_use_count++;
3078   }
3079   if (OrderAccess::load_acquire(&g_om_in_use_count) == chk_om_in_use_count) {
3080     out->print_cr("g_om_in_use_count=%d equals chk_om_in_use_count=%d",
3081                   OrderAccess::load_acquire(&g_om_in_use_count),
3082                   chk_om_in_use_count);
3083   } else {
3084     out->print_cr("ERROR: g_om_in_use_count=%d is not equal to chk_om_in_use_count=%d",
3085                   OrderAccess::load_acquire(&g_om_in_use_count),
3086                   chk_om_in_use_count);
3087     *error_cnt_p = *error_cnt_p + 1;
3088   }
3089 }
3090 
3091 // Check an in-use monitor entry; log any errors.
3092 void ObjectSynchronizer::chk_in_use_entry(JavaThread* jt, ObjectMonitor* n,
3093                                           outputStream * out, int *error_cnt_p) {
3094   if (n->header().value() == 0) {
3095     if (jt != NULL) {
3096       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3097                     ": in-use per-thread monitor must have non-NULL _header "
3098                     "field.", p2i(jt), p2i(n));
3099     } else {
3100       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
3101                     "must have non-NULL _header field.", p2i(n));
3102     }
3103     *error_cnt_p = *error_cnt_p + 1;
3104   }
3105   if (n->object() == NULL) {
3106     if (jt != NULL) {
3107       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3108                     ": in-use per-thread monitor must have non-NULL _object "
3109                     "field.", p2i(jt), p2i(n));
3110     } else {
3111       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
3112                     "must have non-NULL _object field.", p2i(n));
3113     }
3114     *error_cnt_p = *error_cnt_p + 1;
3115   }
3116   const oop obj = (oop)n->object();
3117   const markWord mark = obj->mark();
3118   if (!mark.has_monitor()) {
3119     if (jt != NULL) {
3120       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3121                     ": in-use per-thread monitor's object does not think "
3122                     "it has a monitor: obj=" INTPTR_FORMAT ", mark="
3123                     INTPTR_FORMAT,  p2i(jt), p2i(n), p2i(obj), mark.value());
3124     } else {
3125       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
3126                     "monitor's object does not think it has a monitor: obj="
3127                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
3128                     p2i(obj), mark.value());
3129     }
3130     *error_cnt_p = *error_cnt_p + 1;
3131   }
3132   ObjectMonitor* const obj_mon = mark.monitor();
3133   if (n != obj_mon) {
3134     if (jt != NULL) {
3135       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3136                     ": in-use per-thread monitor's object does not refer "
3137                     "to the same monitor: obj=" INTPTR_FORMAT ", mark="
3138                     INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt),
3139                     p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
3140     } else {
3141       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
3142                     "monitor's object does not refer to the same monitor: obj="
3143                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
3144                     INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
3145     }
3146     *error_cnt_p = *error_cnt_p + 1;
3147   }
3148 }
3149 
3150 // Check the thread's free list and count; log the results of the checks.
3151 void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt,
3152                                                             outputStream * out,
3153                                                             int *error_cnt_p) {
3154   int chk_om_free_count = 0;
3155   for (ObjectMonitor* n = OrderAccess::load_acquire(&jt->om_free_list); n != NULL; n = unmarked_next(n)) {
3156     chk_free_entry(jt, n, out, error_cnt_p);
3157     chk_om_free_count++;
3158   }
3159   if (OrderAccess::load_acquire(&jt->om_free_count) == chk_om_free_count) {
3160     out->print_cr("jt=" INTPTR_FORMAT ": om_free_count=%d equals "
3161                   "chk_om_free_count=%d", p2i(jt),
3162                   OrderAccess::load_acquire(&jt->om_free_count),
3163                   chk_om_free_count);
3164   } else {
3165     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_free_count=%d is not "
3166                   "equal to chk_om_free_count=%d", p2i(jt),
3167                   OrderAccess::load_acquire(&jt->om_free_count),
3168                   chk_om_free_count);
3169     *error_cnt_p = *error_cnt_p + 1;
3170   }
3171 }
3172 
3173 // Check the thread's in-use list and count; log the results of the checks.
3174 void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt,
3175                                                               outputStream * out,
3176                                                               int *error_cnt_p) {
3177   int chk_om_in_use_count = 0;
3178   for (ObjectMonitor* n = OrderAccess::load_acquire(&jt->om_in_use_list); n != NULL; n = unmarked_next(n)) {
3179     chk_in_use_entry(jt, n, out, error_cnt_p);
3180     chk_om_in_use_count++;
3181   }
3182   if (OrderAccess::load_acquire(&jt->om_in_use_count) == chk_om_in_use_count) {
3183     out->print_cr("jt=" INTPTR_FORMAT ": om_in_use_count=%d equals "
3184                   "chk_om_in_use_count=%d", p2i(jt),
3185                   OrderAccess::load_acquire(&jt->om_in_use_count),
3186                   chk_om_in_use_count);
3187   } else {
3188     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_in_use_count=%d is not "
3189                   "equal to chk_om_in_use_count=%d", p2i(jt),
3190                   OrderAccess::load_acquire(&jt->om_in_use_count),
3191                   chk_om_in_use_count);
3192     *error_cnt_p = *error_cnt_p + 1;
3193   }
3194 }
3195 
3196 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
3197 // flags indicate why the entry is in-use, 'object' and 'object type'
3198 // indicate the associated object and its type.
3199 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out) {
3200   stringStream ss;
3201   if (OrderAccess::load_acquire(&g_om_in_use_count) > 0) {
3202     out->print_cr("In-use global monitor info:");
3203     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
3204     out->print_cr("%18s  %s  %7s  %18s  %18s",
3205                   "monitor", "BHL", "ref_cnt", "object", "object type");
3206     out->print_cr("==================  ===  =======  ==================  ==================");
3207     for (ObjectMonitor* n = OrderAccess::load_acquire(&g_om_in_use_list); n != NULL; n = unmarked_next(n)) {
3208       const oop obj = (oop) n->object();
3209       const markWord mark = n->header();
3210       ResourceMark rm;
3211       out->print(INTPTR_FORMAT "  %d%d%d  %7d  " INTPTR_FORMAT "  %s",
3212                  p2i(n), n->is_busy() != 0, mark.hash() != 0,
3213                  n->owner() != NULL, (int)n->ref_count(), p2i(obj),
3214                  obj->klass()->external_name());
3215       if (n->is_busy() != 0) {
3216         out->print(" (%s)", n->is_busy_to_string(&ss));
3217         ss.reset();
3218       }
3219       out->cr();
3220     }
3221   }
3222 
3223   out->print_cr("In-use per-thread monitor info:");
3224   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
3225   out->print_cr("%18s  %18s  %s  %7s  %18s  %18s",
3226                 "jt", "monitor", "BHL", "ref_cnt", "object", "object type");
3227   out->print_cr("==================  ==================  ===  =======  ==================  ==================");
3228   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
3229     for (ObjectMonitor* n = OrderAccess::load_acquire(&jt->om_in_use_list); n != NULL; n = unmarked_next(n)) {
3230       const oop obj = (oop) n->object();
3231       const markWord mark = n->header();
3232       ResourceMark rm;
3233       out->print(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  %7d  "
3234                  INTPTR_FORMAT "  %s", p2i(jt), p2i(n), n->is_busy() != 0,
3235                  mark.hash() != 0, n->owner() != NULL, (int)n->ref_count(),
3236                  p2i(obj), obj->klass()->external_name());
3237       if (n->is_busy() != 0) {
3238         out->print(" (%s)", n->is_busy_to_string(&ss));
3239         ss.reset();
3240       }
3241       out->cr();
3242     }
3243   }
3244 
3245   out->flush();
3246 }
3247 
3248 // Log counts for the global and per-thread monitor lists and return
3249 // the population count.
3250 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
3251   int pop_count = 0;
3252   out->print_cr("%18s  %10s  %10s  %10s",
3253                 "Global Lists:", "InUse", "Free", "Total");
3254   out->print_cr("==================  ==========  ==========  ==========");
3255   out->print_cr("%18s  %10d  %10d  %10d", "",
3256                 OrderAccess::load_acquire(&g_om_in_use_count),
3257                 OrderAccess::load_acquire(&g_om_free_count),
3258                 OrderAccess::load_acquire(&g_om_population));
3259   pop_count += OrderAccess::load_acquire(&g_om_in_use_count) +
3260                OrderAccess::load_acquire(&g_om_free_count);
3261 
3262   out->print_cr("%18s  %10s  %10s  %10s",
3263                 "Per-Thread Lists:", "InUse", "Free", "Provision");
3264   out->print_cr("==================  ==========  ==========  ==========");
3265 
3266   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
3267     out->print_cr(INTPTR_FORMAT "  %10d  %10d  %10d", p2i(jt),
3268                   OrderAccess::load_acquire(&jt->om_in_use_count),
3269                   OrderAccess::load_acquire(&jt->om_free_count),
3270                   jt->om_free_provision);
3271     pop_count += OrderAccess::load_acquire(&jt->om_in_use_count) +
3272                  OrderAccess::load_acquire(&jt->om_free_count);
3273   }
3274   return pop_count;
3275 }
3276 
3277 #ifndef PRODUCT
3278 
3279 // Check if monitor belongs to the monitor cache
3280 // The list is grow-only so it's *relatively* safe to traverse
3281 // the list of extant blocks without taking a lock.
3282 
3283 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
3284   PaddedObjectMonitor* block = OrderAccess::load_acquire(&g_block_list);
3285   while (block != NULL) {
3286     assert(block->object() == CHAINMARKER, "must be a block header");
3287     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
3288       address mon = (address)monitor;
3289       address blk = (address)block;
3290       size_t diff = mon - blk;
3291       assert((diff % sizeof(PaddedObjectMonitor)) == 0, "must be aligned");
3292       return 1;
3293     }
3294     // unmarked_next() is not needed with g_block_list (no next field marking).
3295     block = (PaddedObjectMonitor*)OrderAccess::load_acquire(&block->_next_om);
3296   }
3297   return 0;
3298 }
3299 
3300 #endif