1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1Allocator.inline.hpp"
  34 #include "gc/g1/g1CollectedHeap.inline.hpp"
  35 #include "gc/g1/g1CollectionSet.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullGCScope.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1OopClosures.inline.hpp"
  48 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc/g1/g1Policy.hpp"
  50 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  51 #include "gc/g1/g1RemSet.inline.hpp"
  52 #include "gc/g1/g1RootClosures.hpp"
  53 #include "gc/g1/g1RootProcessor.hpp"
  54 #include "gc/g1/g1SerialFullCollector.hpp"
  55 #include "gc/g1/g1StringDedup.hpp"
  56 #include "gc/g1/g1YCTypes.hpp"
  57 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  58 #include "gc/g1/heapRegion.inline.hpp"
  59 #include "gc/g1/heapRegionRemSet.hpp"
  60 #include "gc/g1/heapRegionSet.inline.hpp"
  61 #include "gc/g1/vm_operations_g1.hpp"
  62 #include "gc/shared/gcHeapSummary.hpp"
  63 #include "gc/shared/gcId.hpp"
  64 #include "gc/shared/gcLocker.inline.hpp"
  65 #include "gc/shared/gcTimer.hpp"
  66 #include "gc/shared/gcTrace.hpp"
  67 #include "gc/shared/gcTraceTime.inline.hpp"
  68 #include "gc/shared/generationSpec.hpp"
  69 #include "gc/shared/isGCActiveMark.hpp"
  70 #include "gc/shared/preservedMarks.inline.hpp"
  71 #include "gc/shared/suspendibleThreadSet.hpp"
  72 #include "gc/shared/referenceProcessor.inline.hpp"
  73 #include "gc/shared/taskqueue.inline.hpp"
  74 #include "gc/shared/weakProcessor.hpp"
  75 #include "logging/log.hpp"
  76 #include "memory/allocation.hpp"
  77 #include "memory/iterator.hpp"
  78 #include "memory/resourceArea.hpp"
  79 #include "oops/oop.inline.hpp"
  80 #include "prims/resolvedMethodTable.hpp"
  81 #include "runtime/atomic.hpp"
  82 #include "runtime/init.hpp"
  83 #include "runtime/orderAccess.inline.hpp"
  84 #include "runtime/vmThread.hpp"
  85 #include "utilities/align.hpp"
  86 #include "utilities/globalDefinitions.hpp"
  87 #include "utilities/stack.inline.hpp"
  88 
  89 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  90 
  91 // INVARIANTS/NOTES
  92 //
  93 // All allocation activity covered by the G1CollectedHeap interface is
  94 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  95 // and allocate_new_tlab, which are the "entry" points to the
  96 // allocation code from the rest of the JVM.  (Note that this does not
  97 // apply to TLAB allocation, which is not part of this interface: it
  98 // is done by clients of this interface.)
  99 
 100 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 101  private:
 102   size_t _num_dirtied;
 103   G1CollectedHeap* _g1h;
 104   G1SATBCardTableLoggingModRefBS* _g1_bs;
 105 
 106   HeapRegion* region_for_card(jbyte* card_ptr) const {
 107     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 108   }
 109 
 110   bool will_become_free(HeapRegion* hr) const {
 111     // A region will be freed by free_collection_set if the region is in the
 112     // collection set and has not had an evacuation failure.
 113     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 114   }
 115 
 116  public:
 117   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 118     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 119 
 120   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 121     HeapRegion* hr = region_for_card(card_ptr);
 122 
 123     // Should only dirty cards in regions that won't be freed.
 124     if (!will_become_free(hr)) {
 125       *card_ptr = CardTableModRefBS::dirty_card_val();
 126       _num_dirtied++;
 127     }
 128 
 129     return true;
 130   }
 131 
 132   size_t num_dirtied()   const { return _num_dirtied; }
 133 };
 134 
 135 
 136 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 137   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 138 }
 139 
 140 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 141   // The from card cache is not the memory that is actually committed. So we cannot
 142   // take advantage of the zero_filled parameter.
 143   reset_from_card_cache(start_idx, num_regions);
 144 }
 145 
 146 // Private methods.
 147 
 148 HeapRegion*
 149 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 150   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 151   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 152     if (!_secondary_free_list.is_empty()) {
 153       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 154                                       "secondary_free_list has %u entries",
 155                                       _secondary_free_list.length());
 156       // It looks as if there are free regions available on the
 157       // secondary_free_list. Let's move them to the free_list and try
 158       // again to allocate from it.
 159       append_secondary_free_list();
 160 
 161       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 162              "empty we should have moved at least one entry to the free_list");
 163       HeapRegion* res = _hrm.allocate_free_region(is_old);
 164       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 165                                       "allocated " HR_FORMAT " from secondary_free_list",
 166                                       HR_FORMAT_PARAMS(res));
 167       return res;
 168     }
 169 
 170     // Wait here until we get notified either when (a) there are no
 171     // more free regions coming or (b) some regions have been moved on
 172     // the secondary_free_list.
 173     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 174   }
 175 
 176   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 177                                   "could not allocate from secondary_free_list");
 178   return NULL;
 179 }
 180 
 181 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 182   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 183          "the only time we use this to allocate a humongous region is "
 184          "when we are allocating a single humongous region");
 185 
 186   HeapRegion* res;
 187   if (G1StressConcRegionFreeing) {
 188     if (!_secondary_free_list.is_empty()) {
 189       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 190                                       "forced to look at the secondary_free_list");
 191       res = new_region_try_secondary_free_list(is_old);
 192       if (res != NULL) {
 193         return res;
 194       }
 195     }
 196   }
 197 
 198   res = _hrm.allocate_free_region(is_old);
 199 
 200   if (res == NULL) {
 201     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 202                                     "res == NULL, trying the secondary_free_list");
 203     res = new_region_try_secondary_free_list(is_old);
 204   }
 205   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 206     // Currently, only attempts to allocate GC alloc regions set
 207     // do_expand to true. So, we should only reach here during a
 208     // safepoint. If this assumption changes we might have to
 209     // reconsider the use of _expand_heap_after_alloc_failure.
 210     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 211 
 212     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 213                               word_size * HeapWordSize);
 214 
 215     if (expand(word_size * HeapWordSize)) {
 216       // Given that expand() succeeded in expanding the heap, and we
 217       // always expand the heap by an amount aligned to the heap
 218       // region size, the free list should in theory not be empty.
 219       // In either case allocate_free_region() will check for NULL.
 220       res = _hrm.allocate_free_region(is_old);
 221     } else {
 222       _expand_heap_after_alloc_failure = false;
 223     }
 224   }
 225   return res;
 226 }
 227 
 228 HeapWord*
 229 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 230                                                            uint num_regions,
 231                                                            size_t word_size,
 232                                                            AllocationContext_t context) {
 233   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 234   assert(is_humongous(word_size), "word_size should be humongous");
 235   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 236 
 237   // Index of last region in the series.
 238   uint last = first + num_regions - 1;
 239 
 240   // We need to initialize the region(s) we just discovered. This is
 241   // a bit tricky given that it can happen concurrently with
 242   // refinement threads refining cards on these regions and
 243   // potentially wanting to refine the BOT as they are scanning
 244   // those cards (this can happen shortly after a cleanup; see CR
 245   // 6991377). So we have to set up the region(s) carefully and in
 246   // a specific order.
 247 
 248   // The word size sum of all the regions we will allocate.
 249   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 250   assert(word_size <= word_size_sum, "sanity");
 251 
 252   // This will be the "starts humongous" region.
 253   HeapRegion* first_hr = region_at(first);
 254   // The header of the new object will be placed at the bottom of
 255   // the first region.
 256   HeapWord* new_obj = first_hr->bottom();
 257   // This will be the new top of the new object.
 258   HeapWord* obj_top = new_obj + word_size;
 259 
 260   // First, we need to zero the header of the space that we will be
 261   // allocating. When we update top further down, some refinement
 262   // threads might try to scan the region. By zeroing the header we
 263   // ensure that any thread that will try to scan the region will
 264   // come across the zero klass word and bail out.
 265   //
 266   // NOTE: It would not have been correct to have used
 267   // CollectedHeap::fill_with_object() and make the space look like
 268   // an int array. The thread that is doing the allocation will
 269   // later update the object header to a potentially different array
 270   // type and, for a very short period of time, the klass and length
 271   // fields will be inconsistent. This could cause a refinement
 272   // thread to calculate the object size incorrectly.
 273   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 274 
 275   // Next, pad out the unused tail of the last region with filler
 276   // objects, for improved usage accounting.
 277   // How many words we use for filler objects.
 278   size_t word_fill_size = word_size_sum - word_size;
 279 
 280   // How many words memory we "waste" which cannot hold a filler object.
 281   size_t words_not_fillable = 0;
 282 
 283   if (word_fill_size >= min_fill_size()) {
 284     fill_with_objects(obj_top, word_fill_size);
 285   } else if (word_fill_size > 0) {
 286     // We have space to fill, but we cannot fit an object there.
 287     words_not_fillable = word_fill_size;
 288     word_fill_size = 0;
 289   }
 290 
 291   // We will set up the first region as "starts humongous". This
 292   // will also update the BOT covering all the regions to reflect
 293   // that there is a single object that starts at the bottom of the
 294   // first region.
 295   first_hr->set_starts_humongous(obj_top, word_fill_size);
 296   first_hr->set_allocation_context(context);
 297   // Then, if there are any, we will set up the "continues
 298   // humongous" regions.
 299   HeapRegion* hr = NULL;
 300   for (uint i = first + 1; i <= last; ++i) {
 301     hr = region_at(i);
 302     hr->set_continues_humongous(first_hr);
 303     hr->set_allocation_context(context);
 304   }
 305 
 306   // Up to this point no concurrent thread would have been able to
 307   // do any scanning on any region in this series. All the top
 308   // fields still point to bottom, so the intersection between
 309   // [bottom,top] and [card_start,card_end] will be empty. Before we
 310   // update the top fields, we'll do a storestore to make sure that
 311   // no thread sees the update to top before the zeroing of the
 312   // object header and the BOT initialization.
 313   OrderAccess::storestore();
 314 
 315   // Now, we will update the top fields of the "continues humongous"
 316   // regions except the last one.
 317   for (uint i = first; i < last; ++i) {
 318     hr = region_at(i);
 319     hr->set_top(hr->end());
 320   }
 321 
 322   hr = region_at(last);
 323   // If we cannot fit a filler object, we must set top to the end
 324   // of the humongous object, otherwise we cannot iterate the heap
 325   // and the BOT will not be complete.
 326   hr->set_top(hr->end() - words_not_fillable);
 327 
 328   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 329          "obj_top should be in last region");
 330 
 331   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 332 
 333   assert(words_not_fillable == 0 ||
 334          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 335          "Miscalculation in humongous allocation");
 336 
 337   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 338 
 339   for (uint i = first; i <= last; ++i) {
 340     hr = region_at(i);
 341     _humongous_set.add(hr);
 342     _hr_printer.alloc(hr);
 343   }
 344 
 345   return new_obj;
 346 }
 347 
 348 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 349   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 350   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 351 }
 352 
 353 // If could fit into free regions w/o expansion, try.
 354 // Otherwise, if can expand, do so.
 355 // Otherwise, if using ex regions might help, try with ex given back.
 356 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 357   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 358 
 359   _verifier->verify_region_sets_optional();
 360 
 361   uint first = G1_NO_HRM_INDEX;
 362   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 363 
 364   if (obj_regions == 1) {
 365     // Only one region to allocate, try to use a fast path by directly allocating
 366     // from the free lists. Do not try to expand here, we will potentially do that
 367     // later.
 368     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 369     if (hr != NULL) {
 370       first = hr->hrm_index();
 371     }
 372   } else {
 373     // We can't allocate humongous regions spanning more than one region while
 374     // cleanupComplete() is running, since some of the regions we find to be
 375     // empty might not yet be added to the free list. It is not straightforward
 376     // to know in which list they are on so that we can remove them. We only
 377     // need to do this if we need to allocate more than one region to satisfy the
 378     // current humongous allocation request. If we are only allocating one region
 379     // we use the one-region region allocation code (see above), that already
 380     // potentially waits for regions from the secondary free list.
 381     wait_while_free_regions_coming();
 382     append_secondary_free_list_if_not_empty_with_lock();
 383 
 384     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 385     // are lucky enough to find some.
 386     first = _hrm.find_contiguous_only_empty(obj_regions);
 387     if (first != G1_NO_HRM_INDEX) {
 388       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 389     }
 390   }
 391 
 392   if (first == G1_NO_HRM_INDEX) {
 393     // Policy: We could not find enough regions for the humongous object in the
 394     // free list. Look through the heap to find a mix of free and uncommitted regions.
 395     // If so, try expansion.
 396     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 397     if (first != G1_NO_HRM_INDEX) {
 398       // We found something. Make sure these regions are committed, i.e. expand
 399       // the heap. Alternatively we could do a defragmentation GC.
 400       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 401                                     word_size * HeapWordSize);
 402 
 403       _hrm.expand_at(first, obj_regions, workers());
 404       g1_policy()->record_new_heap_size(num_regions());
 405 
 406 #ifdef ASSERT
 407       for (uint i = first; i < first + obj_regions; ++i) {
 408         HeapRegion* hr = region_at(i);
 409         assert(hr->is_free(), "sanity");
 410         assert(hr->is_empty(), "sanity");
 411         assert(is_on_master_free_list(hr), "sanity");
 412       }
 413 #endif
 414       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 415     } else {
 416       // Policy: Potentially trigger a defragmentation GC.
 417     }
 418   }
 419 
 420   HeapWord* result = NULL;
 421   if (first != G1_NO_HRM_INDEX) {
 422     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 423                                                        word_size, context);
 424     assert(result != NULL, "it should always return a valid result");
 425 
 426     // A successful humongous object allocation changes the used space
 427     // information of the old generation so we need to recalculate the
 428     // sizes and update the jstat counters here.
 429     g1mm()->update_sizes();
 430   }
 431 
 432   _verifier->verify_region_sets_optional();
 433 
 434   return result;
 435 }
 436 
 437 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 438   assert_heap_not_locked_and_not_at_safepoint();
 439   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 440 
 441   uint dummy_gc_count_before;
 442   uint dummy_gclocker_retry_count = 0;
 443   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 444 }
 445 
 446 HeapWord*
 447 G1CollectedHeap::mem_allocate(size_t word_size,
 448                               bool*  gc_overhead_limit_was_exceeded) {
 449   assert_heap_not_locked_and_not_at_safepoint();
 450 
 451   // Loop until the allocation is satisfied, or unsatisfied after GC.
 452   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 453     uint gc_count_before;
 454 
 455     HeapWord* result = NULL;
 456     if (!is_humongous(word_size)) {
 457       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 458     } else {
 459       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 460     }
 461     if (result != NULL) {
 462       return result;
 463     }
 464 
 465     // Create the garbage collection operation...
 466     VM_G1CollectForAllocation op(gc_count_before, word_size);
 467     op.set_allocation_context(AllocationContext::current());
 468 
 469     // ...and get the VM thread to execute it.
 470     VMThread::execute(&op);
 471 
 472     if (op.prologue_succeeded() && op.pause_succeeded()) {
 473       // If the operation was successful we'll return the result even
 474       // if it is NULL. If the allocation attempt failed immediately
 475       // after a Full GC, it's unlikely we'll be able to allocate now.
 476       HeapWord* result = op.result();
 477       if (result != NULL && !is_humongous(word_size)) {
 478         // Allocations that take place on VM operations do not do any
 479         // card dirtying and we have to do it here. We only have to do
 480         // this for non-humongous allocations, though.
 481         dirty_young_block(result, word_size);
 482       }
 483       return result;
 484     } else {
 485       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 486         return NULL;
 487       }
 488       assert(op.result() == NULL,
 489              "the result should be NULL if the VM op did not succeed");
 490     }
 491 
 492     // Give a warning if we seem to be looping forever.
 493     if ((QueuedAllocationWarningCount > 0) &&
 494         (try_count % QueuedAllocationWarningCount == 0)) {
 495       log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
 496     }
 497   }
 498 
 499   ShouldNotReachHere();
 500   return NULL;
 501 }
 502 
 503 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 504                                                    AllocationContext_t context,
 505                                                    uint* gc_count_before_ret,
 506                                                    uint* gclocker_retry_count_ret) {
 507   // Make sure you read the note in attempt_allocation_humongous().
 508 
 509   assert_heap_not_locked_and_not_at_safepoint();
 510   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 511          "be called for humongous allocation requests");
 512 
 513   // We should only get here after the first-level allocation attempt
 514   // (attempt_allocation()) failed to allocate.
 515 
 516   // We will loop until a) we manage to successfully perform the
 517   // allocation or b) we successfully schedule a collection which
 518   // fails to perform the allocation. b) is the only case when we'll
 519   // return NULL.
 520   HeapWord* result = NULL;
 521   for (int try_count = 1; /* we'll return */; try_count += 1) {
 522     bool should_try_gc;
 523     uint gc_count_before;
 524 
 525     {
 526       MutexLockerEx x(Heap_lock);
 527       result = _allocator->attempt_allocation_locked(word_size, context);
 528       if (result != NULL) {
 529         return result;
 530       }
 531 
 532       if (GCLocker::is_active_and_needs_gc()) {
 533         if (g1_policy()->can_expand_young_list()) {
 534           // No need for an ergo verbose message here,
 535           // can_expand_young_list() does this when it returns true.
 536           result = _allocator->attempt_allocation_force(word_size, context);
 537           if (result != NULL) {
 538             return result;
 539           }
 540         }
 541         should_try_gc = false;
 542       } else {
 543         // The GCLocker may not be active but the GCLocker initiated
 544         // GC may not yet have been performed (GCLocker::needs_gc()
 545         // returns true). In this case we do not try this GC and
 546         // wait until the GCLocker initiated GC is performed, and
 547         // then retry the allocation.
 548         if (GCLocker::needs_gc()) {
 549           should_try_gc = false;
 550         } else {
 551           // Read the GC count while still holding the Heap_lock.
 552           gc_count_before = total_collections();
 553           should_try_gc = true;
 554         }
 555       }
 556     }
 557 
 558     if (should_try_gc) {
 559       bool succeeded;
 560       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 561                                    GCCause::_g1_inc_collection_pause);
 562       if (result != NULL) {
 563         assert(succeeded, "only way to get back a non-NULL result");
 564         return result;
 565       }
 566 
 567       if (succeeded) {
 568         // If we get here we successfully scheduled a collection which
 569         // failed to allocate. No point in trying to allocate
 570         // further. We'll just return NULL.
 571         MutexLockerEx x(Heap_lock);
 572         *gc_count_before_ret = total_collections();
 573         return NULL;
 574       }
 575     } else {
 576       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 577         MutexLockerEx x(Heap_lock);
 578         *gc_count_before_ret = total_collections();
 579         return NULL;
 580       }
 581       // The GCLocker is either active or the GCLocker initiated
 582       // GC has not yet been performed. Stall until it is and
 583       // then retry the allocation.
 584       GCLocker::stall_until_clear();
 585       (*gclocker_retry_count_ret) += 1;
 586     }
 587 
 588     // We can reach here if we were unsuccessful in scheduling a
 589     // collection (because another thread beat us to it) or if we were
 590     // stalled due to the GC locker. In either can we should retry the
 591     // allocation attempt in case another thread successfully
 592     // performed a collection and reclaimed enough space. We do the
 593     // first attempt (without holding the Heap_lock) here and the
 594     // follow-on attempt will be at the start of the next loop
 595     // iteration (after taking the Heap_lock).
 596     result = _allocator->attempt_allocation(word_size, context);
 597     if (result != NULL) {
 598       return result;
 599     }
 600 
 601     // Give a warning if we seem to be looping forever.
 602     if ((QueuedAllocationWarningCount > 0) &&
 603         (try_count % QueuedAllocationWarningCount == 0)) {
 604       log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
 605                       "retries %d times", try_count);
 606     }
 607   }
 608 
 609   ShouldNotReachHere();
 610   return NULL;
 611 }
 612 
 613 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 614   assert_at_safepoint(true /* should_be_vm_thread */);
 615   if (_archive_allocator == NULL) {
 616     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 617   }
 618 }
 619 
 620 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 621   // Allocations in archive regions cannot be of a size that would be considered
 622   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 623   // may be different at archive-restore time.
 624   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 625 }
 626 
 627 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 628   assert_at_safepoint(true /* should_be_vm_thread */);
 629   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 630   if (is_archive_alloc_too_large(word_size)) {
 631     return NULL;
 632   }
 633   return _archive_allocator->archive_mem_allocate(word_size);
 634 }
 635 
 636 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 637                                               size_t end_alignment_in_bytes) {
 638   assert_at_safepoint(true /* should_be_vm_thread */);
 639   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 640 
 641   // Call complete_archive to do the real work, filling in the MemRegion
 642   // array with the archive regions.
 643   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 644   delete _archive_allocator;
 645   _archive_allocator = NULL;
 646 }
 647 
 648 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 649   assert(ranges != NULL, "MemRegion array NULL");
 650   assert(count != 0, "No MemRegions provided");
 651   MemRegion reserved = _hrm.reserved();
 652   for (size_t i = 0; i < count; i++) {
 653     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 654       return false;
 655     }
 656   }
 657   return true;
 658 }
 659 
 660 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 661                                             size_t count,
 662                                             bool open) {
 663   assert(!is_init_completed(), "Expect to be called at JVM init time");
 664   assert(ranges != NULL, "MemRegion array NULL");
 665   assert(count != 0, "No MemRegions provided");
 666   MutexLockerEx x(Heap_lock);
 667 
 668   MemRegion reserved = _hrm.reserved();
 669   HeapWord* prev_last_addr = NULL;
 670   HeapRegion* prev_last_region = NULL;
 671 
 672   // Temporarily disable pretouching of heap pages. This interface is used
 673   // when mmap'ing archived heap data in, so pre-touching is wasted.
 674   FlagSetting fs(AlwaysPreTouch, false);
 675 
 676   // Enable archive object checking used by G1MarkSweep. We have to let it know
 677   // about each archive range, so that objects in those ranges aren't marked.
 678   G1ArchiveAllocator::enable_archive_object_check();
 679 
 680   // For each specified MemRegion range, allocate the corresponding G1
 681   // regions and mark them as archive regions. We expect the ranges
 682   // in ascending starting address order, without overlap.
 683   for (size_t i = 0; i < count; i++) {
 684     MemRegion curr_range = ranges[i];
 685     HeapWord* start_address = curr_range.start();
 686     size_t word_size = curr_range.word_size();
 687     HeapWord* last_address = curr_range.last();
 688     size_t commits = 0;
 689 
 690     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 691               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 692               p2i(start_address), p2i(last_address));
 693     guarantee(start_address > prev_last_addr,
 694               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 695               p2i(start_address), p2i(prev_last_addr));
 696     prev_last_addr = last_address;
 697 
 698     // Check for ranges that start in the same G1 region in which the previous
 699     // range ended, and adjust the start address so we don't try to allocate
 700     // the same region again. If the current range is entirely within that
 701     // region, skip it, just adjusting the recorded top.
 702     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 703     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 704       start_address = start_region->end();
 705       if (start_address > last_address) {
 706         increase_used(word_size * HeapWordSize);
 707         start_region->set_top(last_address + 1);
 708         continue;
 709       }
 710       start_region->set_top(start_address);
 711       curr_range = MemRegion(start_address, last_address + 1);
 712       start_region = _hrm.addr_to_region(start_address);
 713     }
 714 
 715     // Perform the actual region allocation, exiting if it fails.
 716     // Then note how much new space we have allocated.
 717     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 718       return false;
 719     }
 720     increase_used(word_size * HeapWordSize);
 721     if (commits != 0) {
 722       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 723                                 HeapRegion::GrainWords * HeapWordSize * commits);
 724 
 725     }
 726 
 727     // Mark each G1 region touched by the range as archive, add it to
 728     // the old set, and set the allocation context and top.
 729     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 730     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 731     prev_last_region = last_region;
 732 
 733     while (curr_region != NULL) {
 734       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 735              "Region already in use (index %u)", curr_region->hrm_index());
 736       curr_region->set_allocation_context(AllocationContext::system());
 737       if (open) {
 738         curr_region->set_open_archive();
 739       } else {
 740         curr_region->set_closed_archive();
 741       }
 742       _hr_printer.alloc(curr_region);
 743       _old_set.add(curr_region);
 744       HeapWord* top;
 745       HeapRegion* next_region;
 746       if (curr_region != last_region) {
 747         top = curr_region->end();
 748         next_region = _hrm.next_region_in_heap(curr_region);
 749       } else {
 750         top = last_address + 1;
 751         next_region = NULL;
 752       }
 753       curr_region->set_top(top);
 754       curr_region->set_first_dead(top);
 755       curr_region->set_end_of_live(top);
 756       curr_region = next_region;
 757     }
 758 
 759     // Notify mark-sweep of the archive
 760     G1ArchiveAllocator::set_range_archive(curr_range, open);
 761   }
 762   return true;
 763 }
 764 
 765 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 766   assert(!is_init_completed(), "Expect to be called at JVM init time");
 767   assert(ranges != NULL, "MemRegion array NULL");
 768   assert(count != 0, "No MemRegions provided");
 769   MemRegion reserved = _hrm.reserved();
 770   HeapWord *prev_last_addr = NULL;
 771   HeapRegion* prev_last_region = NULL;
 772 
 773   // For each MemRegion, create filler objects, if needed, in the G1 regions
 774   // that contain the address range. The address range actually within the
 775   // MemRegion will not be modified. That is assumed to have been initialized
 776   // elsewhere, probably via an mmap of archived heap data.
 777   MutexLockerEx x(Heap_lock);
 778   for (size_t i = 0; i < count; i++) {
 779     HeapWord* start_address = ranges[i].start();
 780     HeapWord* last_address = ranges[i].last();
 781 
 782     assert(reserved.contains(start_address) && reserved.contains(last_address),
 783            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 784            p2i(start_address), p2i(last_address));
 785     assert(start_address > prev_last_addr,
 786            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 787            p2i(start_address), p2i(prev_last_addr));
 788 
 789     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 790     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 791     HeapWord* bottom_address = start_region->bottom();
 792 
 793     // Check for a range beginning in the same region in which the
 794     // previous one ended.
 795     if (start_region == prev_last_region) {
 796       bottom_address = prev_last_addr + 1;
 797     }
 798 
 799     // Verify that the regions were all marked as archive regions by
 800     // alloc_archive_regions.
 801     HeapRegion* curr_region = start_region;
 802     while (curr_region != NULL) {
 803       guarantee(curr_region->is_archive(),
 804                 "Expected archive region at index %u", curr_region->hrm_index());
 805       if (curr_region != last_region) {
 806         curr_region = _hrm.next_region_in_heap(curr_region);
 807       } else {
 808         curr_region = NULL;
 809       }
 810     }
 811 
 812     prev_last_addr = last_address;
 813     prev_last_region = last_region;
 814 
 815     // Fill the memory below the allocated range with dummy object(s),
 816     // if the region bottom does not match the range start, or if the previous
 817     // range ended within the same G1 region, and there is a gap.
 818     if (start_address != bottom_address) {
 819       size_t fill_size = pointer_delta(start_address, bottom_address);
 820       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 821       increase_used(fill_size * HeapWordSize);
 822     }
 823   }
 824 }
 825 
 826 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 827                                                      uint* gc_count_before_ret,
 828                                                      uint* gclocker_retry_count_ret) {
 829   assert_heap_not_locked_and_not_at_safepoint();
 830   assert(!is_humongous(word_size), "attempt_allocation() should not "
 831          "be called for humongous allocation requests");
 832 
 833   AllocationContext_t context = AllocationContext::current();
 834   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 835 
 836   if (result == NULL) {
 837     result = attempt_allocation_slow(word_size,
 838                                      context,
 839                                      gc_count_before_ret,
 840                                      gclocker_retry_count_ret);
 841   }
 842   assert_heap_not_locked();
 843   if (result != NULL) {
 844     dirty_young_block(result, word_size);
 845   }
 846   return result;
 847 }
 848 
 849 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 850   assert(!is_init_completed(), "Expect to be called at JVM init time");
 851   assert(ranges != NULL, "MemRegion array NULL");
 852   assert(count != 0, "No MemRegions provided");
 853   MemRegion reserved = _hrm.reserved();
 854   HeapWord* prev_last_addr = NULL;
 855   HeapRegion* prev_last_region = NULL;
 856   size_t size_used = 0;
 857   size_t uncommitted_regions = 0;
 858 
 859   // For each Memregion, free the G1 regions that constitute it, and
 860   // notify mark-sweep that the range is no longer to be considered 'archive.'
 861   MutexLockerEx x(Heap_lock);
 862   for (size_t i = 0; i < count; i++) {
 863     HeapWord* start_address = ranges[i].start();
 864     HeapWord* last_address = ranges[i].last();
 865 
 866     assert(reserved.contains(start_address) && reserved.contains(last_address),
 867            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 868            p2i(start_address), p2i(last_address));
 869     assert(start_address > prev_last_addr,
 870            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 871            p2i(start_address), p2i(prev_last_addr));
 872     size_used += ranges[i].byte_size();
 873     prev_last_addr = last_address;
 874 
 875     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 876     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 877 
 878     // Check for ranges that start in the same G1 region in which the previous
 879     // range ended, and adjust the start address so we don't try to free
 880     // the same region again. If the current range is entirely within that
 881     // region, skip it.
 882     if (start_region == prev_last_region) {
 883       start_address = start_region->end();
 884       if (start_address > last_address) {
 885         continue;
 886       }
 887       start_region = _hrm.addr_to_region(start_address);
 888     }
 889     prev_last_region = last_region;
 890 
 891     // After verifying that each region was marked as an archive region by
 892     // alloc_archive_regions, set it free and empty and uncommit it.
 893     HeapRegion* curr_region = start_region;
 894     while (curr_region != NULL) {
 895       guarantee(curr_region->is_archive(),
 896                 "Expected archive region at index %u", curr_region->hrm_index());
 897       uint curr_index = curr_region->hrm_index();
 898       _old_set.remove(curr_region);
 899       curr_region->set_free();
 900       curr_region->set_top(curr_region->bottom());
 901       if (curr_region != last_region) {
 902         curr_region = _hrm.next_region_in_heap(curr_region);
 903       } else {
 904         curr_region = NULL;
 905       }
 906       _hrm.shrink_at(curr_index, 1);
 907       uncommitted_regions++;
 908     }
 909 
 910     // Notify mark-sweep that this is no longer an archive range.
 911     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 912   }
 913 
 914   if (uncommitted_regions != 0) {
 915     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 916                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 917   }
 918   decrease_used(size_used);
 919 }
 920 
 921 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 922                                                         uint* gc_count_before_ret,
 923                                                         uint* gclocker_retry_count_ret) {
 924   // The structure of this method has a lot of similarities to
 925   // attempt_allocation_slow(). The reason these two were not merged
 926   // into a single one is that such a method would require several "if
 927   // allocation is not humongous do this, otherwise do that"
 928   // conditional paths which would obscure its flow. In fact, an early
 929   // version of this code did use a unified method which was harder to
 930   // follow and, as a result, it had subtle bugs that were hard to
 931   // track down. So keeping these two methods separate allows each to
 932   // be more readable. It will be good to keep these two in sync as
 933   // much as possible.
 934 
 935   assert_heap_not_locked_and_not_at_safepoint();
 936   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 937          "should only be called for humongous allocations");
 938 
 939   // Humongous objects can exhaust the heap quickly, so we should check if we
 940   // need to start a marking cycle at each humongous object allocation. We do
 941   // the check before we do the actual allocation. The reason for doing it
 942   // before the allocation is that we avoid having to keep track of the newly
 943   // allocated memory while we do a GC.
 944   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 945                                            word_size)) {
 946     collect(GCCause::_g1_humongous_allocation);
 947   }
 948 
 949   // We will loop until a) we manage to successfully perform the
 950   // allocation or b) we successfully schedule a collection which
 951   // fails to perform the allocation. b) is the only case when we'll
 952   // return NULL.
 953   HeapWord* result = NULL;
 954   for (int try_count = 1; /* we'll return */; try_count += 1) {
 955     bool should_try_gc;
 956     uint gc_count_before;
 957 
 958     {
 959       MutexLockerEx x(Heap_lock);
 960 
 961       // Given that humongous objects are not allocated in young
 962       // regions, we'll first try to do the allocation without doing a
 963       // collection hoping that there's enough space in the heap.
 964       result = humongous_obj_allocate(word_size, AllocationContext::current());
 965       if (result != NULL) {
 966         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 967         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 968         return result;
 969       }
 970 
 971       if (GCLocker::is_active_and_needs_gc()) {
 972         should_try_gc = false;
 973       } else {
 974          // The GCLocker may not be active but the GCLocker initiated
 975         // GC may not yet have been performed (GCLocker::needs_gc()
 976         // returns true). In this case we do not try this GC and
 977         // wait until the GCLocker initiated GC is performed, and
 978         // then retry the allocation.
 979         if (GCLocker::needs_gc()) {
 980           should_try_gc = false;
 981         } else {
 982           // Read the GC count while still holding the Heap_lock.
 983           gc_count_before = total_collections();
 984           should_try_gc = true;
 985         }
 986       }
 987     }
 988 
 989     if (should_try_gc) {
 990       // If we failed to allocate the humongous object, we should try to
 991       // do a collection pause (if we're allowed) in case it reclaims
 992       // enough space for the allocation to succeed after the pause.
 993 
 994       bool succeeded;
 995       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 996                                    GCCause::_g1_humongous_allocation);
 997       if (result != NULL) {
 998         assert(succeeded, "only way to get back a non-NULL result");
 999         return result;
1000       }
1001 
1002       if (succeeded) {
1003         // If we get here we successfully scheduled a collection which
1004         // failed to allocate. No point in trying to allocate
1005         // further. We'll just return NULL.
1006         MutexLockerEx x(Heap_lock);
1007         *gc_count_before_ret = total_collections();
1008         return NULL;
1009       }
1010     } else {
1011       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1012         MutexLockerEx x(Heap_lock);
1013         *gc_count_before_ret = total_collections();
1014         return NULL;
1015       }
1016       // The GCLocker is either active or the GCLocker initiated
1017       // GC has not yet been performed. Stall until it is and
1018       // then retry the allocation.
1019       GCLocker::stall_until_clear();
1020       (*gclocker_retry_count_ret) += 1;
1021     }
1022 
1023     // We can reach here if we were unsuccessful in scheduling a
1024     // collection (because another thread beat us to it) or if we were
1025     // stalled due to the GC locker. In either can we should retry the
1026     // allocation attempt in case another thread successfully
1027     // performed a collection and reclaimed enough space.  Give a
1028     // warning if we seem to be looping forever.
1029 
1030     if ((QueuedAllocationWarningCount > 0) &&
1031         (try_count % QueuedAllocationWarningCount == 0)) {
1032       log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1033                       "retries %d times", try_count);
1034     }
1035   }
1036 
1037   ShouldNotReachHere();
1038   return NULL;
1039 }
1040 
1041 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1042                                                            AllocationContext_t context,
1043                                                            bool expect_null_mutator_alloc_region) {
1044   assert_at_safepoint(true /* should_be_vm_thread */);
1045   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1046          "the current alloc region was unexpectedly found to be non-NULL");
1047 
1048   if (!is_humongous(word_size)) {
1049     return _allocator->attempt_allocation_locked(word_size, context);
1050   } else {
1051     HeapWord* result = humongous_obj_allocate(word_size, context);
1052     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1053       collector_state()->set_initiate_conc_mark_if_possible(true);
1054     }
1055     return result;
1056   }
1057 
1058   ShouldNotReachHere();
1059 }
1060 
1061 class PostCompactionPrinterClosure: public HeapRegionClosure {
1062 private:
1063   G1HRPrinter* _hr_printer;
1064 public:
1065   bool doHeapRegion(HeapRegion* hr) {
1066     assert(!hr->is_young(), "not expecting to find young regions");
1067     _hr_printer->post_compaction(hr);
1068     return false;
1069   }
1070 
1071   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1072     : _hr_printer(hr_printer) { }
1073 };
1074 
1075 void G1CollectedHeap::print_hrm_post_compaction() {
1076   if (_hr_printer.is_active()) {
1077     PostCompactionPrinterClosure cl(hr_printer());
1078     heap_region_iterate(&cl);
1079   }
1080 
1081 }
1082 
1083 void G1CollectedHeap::abort_concurrent_cycle() {
1084   // Note: When we have a more flexible GC logging framework that
1085   // allows us to add optional attributes to a GC log record we
1086   // could consider timing and reporting how long we wait in the
1087   // following two methods.
1088   wait_while_free_regions_coming();
1089   // If we start the compaction before the CM threads finish
1090   // scanning the root regions we might trip them over as we'll
1091   // be moving objects / updating references. So let's wait until
1092   // they are done. By telling them to abort, they should complete
1093   // early.
1094   _cm->root_regions()->abort();
1095   _cm->root_regions()->wait_until_scan_finished();
1096   append_secondary_free_list_if_not_empty_with_lock();
1097 
1098   // Disable discovery and empty the discovered lists
1099   // for the CM ref processor.
1100   ref_processor_cm()->disable_discovery();
1101   ref_processor_cm()->abandon_partial_discovery();
1102   ref_processor_cm()->verify_no_references_recorded();
1103 
1104   // Abandon current iterations of concurrent marking and concurrent
1105   // refinement, if any are in progress.
1106   concurrent_mark()->abort();
1107 }
1108 
1109 void G1CollectedHeap::prepare_heap_for_full_collection() {
1110   // Make sure we'll choose a new allocation region afterwards.
1111   _allocator->release_mutator_alloc_region();
1112   _allocator->abandon_gc_alloc_regions();
1113   g1_rem_set()->cleanupHRRS();
1114 
1115   // We may have added regions to the current incremental collection
1116   // set between the last GC or pause and now. We need to clear the
1117   // incremental collection set and then start rebuilding it afresh
1118   // after this full GC.
1119   abandon_collection_set(collection_set());
1120 
1121   tear_down_region_sets(false /* free_list_only */);
1122   collector_state()->set_gcs_are_young(true);
1123 }
1124 
1125 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1126   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1127   assert(used() == recalculate_used(), "Should be equal");
1128   _verifier->verify_region_sets_optional();
1129   _verifier->verify_before_gc();
1130   _verifier->check_bitmaps("Full GC Start");
1131 }
1132 
1133 void G1CollectedHeap::prepare_heap_for_mutators() {
1134   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1135   ClassLoaderDataGraph::purge();
1136   MetaspaceAux::verify_metrics();
1137 
1138   // Prepare heap for normal collections.
1139   assert(num_free_regions() == 0, "we should not have added any free regions");
1140   rebuild_region_sets(false /* free_list_only */);
1141   abort_refinement();
1142   resize_if_necessary_after_full_collection();
1143 
1144   // Rebuild the strong code root lists for each region
1145   rebuild_strong_code_roots();
1146 
1147   // Start a new incremental collection set for the next pause
1148   start_new_collection_set();
1149 
1150   _allocator->init_mutator_alloc_region();
1151 
1152   // Post collection state updates.
1153   MetaspaceGC::compute_new_size();
1154 }
1155 
1156 void G1CollectedHeap::abort_refinement() {
1157   if (_hot_card_cache->use_cache()) {
1158     _hot_card_cache->reset_card_counts();
1159     _hot_card_cache->reset_hot_cache();
1160   }
1161 
1162   // Discard all remembered set updates.
1163   JavaThread::dirty_card_queue_set().abandon_logs();
1164   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1165 }
1166 
1167 void G1CollectedHeap::verify_after_full_collection() {
1168   check_gc_time_stamps();
1169   _hrm.verify_optional();
1170   _verifier->verify_region_sets_optional();
1171   _verifier->verify_after_gc();
1172   // Clear the previous marking bitmap, if needed for bitmap verification.
1173   // Note we cannot do this when we clear the next marking bitmap in
1174   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1175   // objects marked during a full GC against the previous bitmap.
1176   // But we need to clear it before calling check_bitmaps below since
1177   // the full GC has compacted objects and updated TAMS but not updated
1178   // the prev bitmap.
1179   if (G1VerifyBitmaps) {
1180     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1181     _cm->clear_prev_bitmap(workers());
1182   }
1183   _verifier->check_bitmaps("Full GC End");
1184 
1185   // At this point there should be no regions in the
1186   // entire heap tagged as young.
1187   assert(check_young_list_empty(), "young list should be empty at this point");
1188 
1189   // Note: since we've just done a full GC, concurrent
1190   // marking is no longer active. Therefore we need not
1191   // re-enable reference discovery for the CM ref processor.
1192   // That will be done at the start of the next marking cycle.
1193   // We also know that the STW processor should no longer
1194   // discover any new references.
1195   assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1196   assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1197   ref_processor_stw()->verify_no_references_recorded();
1198   ref_processor_cm()->verify_no_references_recorded();
1199 }
1200 
1201 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1202   print_hrm_post_compaction();
1203   heap_transition->print();
1204   print_heap_after_gc();
1205   print_heap_regions();
1206 #ifdef TRACESPINNING
1207   ParallelTaskTerminator::print_termination_counts();
1208 #endif
1209 }
1210 
1211 void G1CollectedHeap::do_full_collection_inner(G1FullGCScope* scope) {
1212   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1213   g1_policy()->record_full_collection_start();
1214 
1215   print_heap_before_gc();
1216   print_heap_regions();
1217 
1218   abort_concurrent_cycle();
1219   verify_before_full_collection(scope->is_explicit_gc());
1220 
1221   gc_prologue(true);
1222   prepare_heap_for_full_collection();
1223 
1224   G1SerialFullCollector serial(scope, ref_processor_stw());
1225   serial.prepare_collection();
1226   serial.collect();
1227   serial.complete_collection();
1228 
1229   prepare_heap_for_mutators();
1230 
1231   g1_policy()->record_full_collection_end();
1232   gc_epilogue(true);
1233 
1234   // Post collection verification.
1235   verify_after_full_collection();
1236 
1237   // Post collection logging.
1238   // We should do this after we potentially resize the heap so
1239   // that all the COMMIT / UNCOMMIT events are generated before
1240   // the compaction events.
1241   print_heap_after_full_collection(scope->heap_transition());
1242 }
1243 
1244 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1245                                          bool clear_all_soft_refs) {
1246   assert_at_safepoint(true /* should_be_vm_thread */);
1247 
1248   if (GCLocker::check_active_before_gc()) {
1249     // Full GC was not completed.
1250     return false;
1251   }
1252 
1253   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1254       collector_policy()->should_clear_all_soft_refs();
1255 
1256   G1FullGCScope scope(explicit_gc, do_clear_all_soft_refs);
1257   do_full_collection_inner(&scope);
1258 
1259   // Full collection was successfully completed.
1260   return true;
1261 }
1262 
1263 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1264   // Currently, there is no facility in the do_full_collection(bool) API to notify
1265   // the caller that the collection did not succeed (e.g., because it was locked
1266   // out by the GC locker). So, right now, we'll ignore the return value.
1267   bool dummy = do_full_collection(true,                /* explicit_gc */
1268                                   clear_all_soft_refs);
1269 }
1270 
1271 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1272   // Include bytes that will be pre-allocated to support collections, as "used".
1273   const size_t used_after_gc = used();
1274   const size_t capacity_after_gc = capacity();
1275   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1276 
1277   // This is enforced in arguments.cpp.
1278   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1279          "otherwise the code below doesn't make sense");
1280 
1281   // We don't have floating point command-line arguments
1282   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1283   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1284   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1285   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1286 
1287   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1288   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1289 
1290   // We have to be careful here as these two calculations can overflow
1291   // 32-bit size_t's.
1292   double used_after_gc_d = (double) used_after_gc;
1293   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1294   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1295 
1296   // Let's make sure that they are both under the max heap size, which
1297   // by default will make them fit into a size_t.
1298   double desired_capacity_upper_bound = (double) max_heap_size;
1299   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1300                                     desired_capacity_upper_bound);
1301   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1302                                     desired_capacity_upper_bound);
1303 
1304   // We can now safely turn them into size_t's.
1305   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1306   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1307 
1308   // This assert only makes sense here, before we adjust them
1309   // with respect to the min and max heap size.
1310   assert(minimum_desired_capacity <= maximum_desired_capacity,
1311          "minimum_desired_capacity = " SIZE_FORMAT ", "
1312          "maximum_desired_capacity = " SIZE_FORMAT,
1313          minimum_desired_capacity, maximum_desired_capacity);
1314 
1315   // Should not be greater than the heap max size. No need to adjust
1316   // it with respect to the heap min size as it's a lower bound (i.e.,
1317   // we'll try to make the capacity larger than it, not smaller).
1318   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1319   // Should not be less than the heap min size. No need to adjust it
1320   // with respect to the heap max size as it's an upper bound (i.e.,
1321   // we'll try to make the capacity smaller than it, not greater).
1322   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1323 
1324   if (capacity_after_gc < minimum_desired_capacity) {
1325     // Don't expand unless it's significant
1326     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1327 
1328     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1329                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1330                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1331 
1332     expand(expand_bytes, _workers);
1333 
1334     // No expansion, now see if we want to shrink
1335   } else if (capacity_after_gc > maximum_desired_capacity) {
1336     // Capacity too large, compute shrinking size
1337     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1338 
1339     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1340                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1341                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1342 
1343     shrink(shrink_bytes);
1344   }
1345 }
1346 
1347 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1348                                                             AllocationContext_t context,
1349                                                             bool do_gc,
1350                                                             bool clear_all_soft_refs,
1351                                                             bool expect_null_mutator_alloc_region,
1352                                                             bool* gc_succeeded) {
1353   *gc_succeeded = true;
1354   // Let's attempt the allocation first.
1355   HeapWord* result =
1356     attempt_allocation_at_safepoint(word_size,
1357                                     context,
1358                                     expect_null_mutator_alloc_region);
1359   if (result != NULL) {
1360     assert(*gc_succeeded, "sanity");
1361     return result;
1362   }
1363 
1364   // In a G1 heap, we're supposed to keep allocation from failing by
1365   // incremental pauses.  Therefore, at least for now, we'll favor
1366   // expansion over collection.  (This might change in the future if we can
1367   // do something smarter than full collection to satisfy a failed alloc.)
1368   result = expand_and_allocate(word_size, context);
1369   if (result != NULL) {
1370     assert(*gc_succeeded, "sanity");
1371     return result;
1372   }
1373 
1374   if (do_gc) {
1375     // Expansion didn't work, we'll try to do a Full GC.
1376     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1377                                        clear_all_soft_refs);
1378   }
1379 
1380   return NULL;
1381 }
1382 
1383 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1384                                                      AllocationContext_t context,
1385                                                      bool* succeeded) {
1386   assert_at_safepoint(true /* should_be_vm_thread */);
1387 
1388   // Attempts to allocate followed by Full GC.
1389   HeapWord* result =
1390     satisfy_failed_allocation_helper(word_size,
1391                                      context,
1392                                      true,  /* do_gc */
1393                                      false, /* clear_all_soft_refs */
1394                                      false, /* expect_null_mutator_alloc_region */
1395                                      succeeded);
1396 
1397   if (result != NULL || !*succeeded) {
1398     return result;
1399   }
1400 
1401   // Attempts to allocate followed by Full GC that will collect all soft references.
1402   result = satisfy_failed_allocation_helper(word_size,
1403                                             context,
1404                                             true, /* do_gc */
1405                                             true, /* clear_all_soft_refs */
1406                                             true, /* expect_null_mutator_alloc_region */
1407                                             succeeded);
1408 
1409   if (result != NULL || !*succeeded) {
1410     return result;
1411   }
1412 
1413   // Attempts to allocate, no GC
1414   result = satisfy_failed_allocation_helper(word_size,
1415                                             context,
1416                                             false, /* do_gc */
1417                                             false, /* clear_all_soft_refs */
1418                                             true,  /* expect_null_mutator_alloc_region */
1419                                             succeeded);
1420 
1421   if (result != NULL) {
1422     assert(*succeeded, "sanity");
1423     return result;
1424   }
1425 
1426   assert(!collector_policy()->should_clear_all_soft_refs(),
1427          "Flag should have been handled and cleared prior to this point");
1428 
1429   // What else?  We might try synchronous finalization later.  If the total
1430   // space available is large enough for the allocation, then a more
1431   // complete compaction phase than we've tried so far might be
1432   // appropriate.
1433   assert(*succeeded, "sanity");
1434   return NULL;
1435 }
1436 
1437 // Attempting to expand the heap sufficiently
1438 // to support an allocation of the given "word_size".  If
1439 // successful, perform the allocation and return the address of the
1440 // allocated block, or else "NULL".
1441 
1442 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1443   assert_at_safepoint(true /* should_be_vm_thread */);
1444 
1445   _verifier->verify_region_sets_optional();
1446 
1447   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1448   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1449                             word_size * HeapWordSize);
1450 
1451 
1452   if (expand(expand_bytes, _workers)) {
1453     _hrm.verify_optional();
1454     _verifier->verify_region_sets_optional();
1455     return attempt_allocation_at_safepoint(word_size,
1456                                            context,
1457                                            false /* expect_null_mutator_alloc_region */);
1458   }
1459   return NULL;
1460 }
1461 
1462 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1463   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1464   aligned_expand_bytes = align_up(aligned_expand_bytes,
1465                                        HeapRegion::GrainBytes);
1466 
1467   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1468                             expand_bytes, aligned_expand_bytes);
1469 
1470   if (is_maximal_no_gc()) {
1471     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1472     return false;
1473   }
1474 
1475   double expand_heap_start_time_sec = os::elapsedTime();
1476   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1477   assert(regions_to_expand > 0, "Must expand by at least one region");
1478 
1479   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1480   if (expand_time_ms != NULL) {
1481     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1482   }
1483 
1484   if (expanded_by > 0) {
1485     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1486     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1487     g1_policy()->record_new_heap_size(num_regions());
1488   } else {
1489     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1490 
1491     // The expansion of the virtual storage space was unsuccessful.
1492     // Let's see if it was because we ran out of swap.
1493     if (G1ExitOnExpansionFailure &&
1494         _hrm.available() >= regions_to_expand) {
1495       // We had head room...
1496       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1497     }
1498   }
1499   return regions_to_expand > 0;
1500 }
1501 
1502 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1503   size_t aligned_shrink_bytes =
1504     ReservedSpace::page_align_size_down(shrink_bytes);
1505   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1506                                          HeapRegion::GrainBytes);
1507   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1508 
1509   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1510   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1511 
1512 
1513   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1514                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1515   if (num_regions_removed > 0) {
1516     g1_policy()->record_new_heap_size(num_regions());
1517   } else {
1518     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1519   }
1520 }
1521 
1522 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1523   _verifier->verify_region_sets_optional();
1524 
1525   // We should only reach here at the end of a Full GC which means we
1526   // should not not be holding to any GC alloc regions. The method
1527   // below will make sure of that and do any remaining clean up.
1528   _allocator->abandon_gc_alloc_regions();
1529 
1530   // Instead of tearing down / rebuilding the free lists here, we
1531   // could instead use the remove_all_pending() method on free_list to
1532   // remove only the ones that we need to remove.
1533   tear_down_region_sets(true /* free_list_only */);
1534   shrink_helper(shrink_bytes);
1535   rebuild_region_sets(true /* free_list_only */);
1536 
1537   _hrm.verify_optional();
1538   _verifier->verify_region_sets_optional();
1539 }
1540 
1541 // Public methods.
1542 
1543 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1544   CollectedHeap(),
1545   _young_gen_sampling_thread(NULL),
1546   _collector_policy(collector_policy),
1547   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1548   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1549   _g1_policy(create_g1_policy(_gc_timer_stw)),
1550   _collection_set(this, _g1_policy),
1551   _dirty_card_queue_set(false),
1552   _is_alive_closure_cm(this),
1553   _is_alive_closure_stw(this),
1554   _ref_processor_cm(NULL),
1555   _ref_processor_stw(NULL),
1556   _bot(NULL),
1557   _hot_card_cache(NULL),
1558   _g1_rem_set(NULL),
1559   _cr(NULL),
1560   _g1mm(NULL),
1561   _preserved_marks_set(true /* in_c_heap */),
1562   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1563   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1564   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1565   _humongous_reclaim_candidates(),
1566   _has_humongous_reclaim_candidates(false),
1567   _archive_allocator(NULL),
1568   _free_regions_coming(false),
1569   _gc_time_stamp(0),
1570   _summary_bytes_used(0),
1571   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1572   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1573   _expand_heap_after_alloc_failure(true),
1574   _old_marking_cycles_started(0),
1575   _old_marking_cycles_completed(0),
1576   _in_cset_fast_test() {
1577 
1578   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1579                           /* are_GC_task_threads */true,
1580                           /* are_ConcurrentGC_threads */false);
1581   _workers->initialize_workers();
1582   _verifier = new G1HeapVerifier(this);
1583 
1584   _allocator = G1Allocator::create_allocator(this);
1585 
1586   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1587 
1588   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1589 
1590   // Override the default _filler_array_max_size so that no humongous filler
1591   // objects are created.
1592   _filler_array_max_size = _humongous_object_threshold_in_words;
1593 
1594   uint n_queues = ParallelGCThreads;
1595   _task_queues = new RefToScanQueueSet(n_queues);
1596 
1597   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1598 
1599   for (uint i = 0; i < n_queues; i++) {
1600     RefToScanQueue* q = new RefToScanQueue();
1601     q->initialize();
1602     _task_queues->register_queue(i, q);
1603     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1604   }
1605 
1606   // Initialize the G1EvacuationFailureALot counters and flags.
1607   NOT_PRODUCT(reset_evacuation_should_fail();)
1608 
1609   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1610 }
1611 
1612 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1613                                                                  size_t size,
1614                                                                  size_t translation_factor) {
1615   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1616   // Allocate a new reserved space, preferring to use large pages.
1617   ReservedSpace rs(size, preferred_page_size);
1618   G1RegionToSpaceMapper* result  =
1619     G1RegionToSpaceMapper::create_mapper(rs,
1620                                          size,
1621                                          rs.alignment(),
1622                                          HeapRegion::GrainBytes,
1623                                          translation_factor,
1624                                          mtGC);
1625 
1626   os::trace_page_sizes_for_requested_size(description,
1627                                           size,
1628                                           preferred_page_size,
1629                                           rs.alignment(),
1630                                           rs.base(),
1631                                           rs.size());
1632 
1633   return result;
1634 }
1635 
1636 jint G1CollectedHeap::initialize_concurrent_refinement() {
1637   jint ecode = JNI_OK;
1638   _cr = G1ConcurrentRefine::create(&ecode);
1639   return ecode;
1640 }
1641 
1642 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1643   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1644   if (_young_gen_sampling_thread->osthread() == NULL) {
1645     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1646     return JNI_ENOMEM;
1647   }
1648   return JNI_OK;
1649 }
1650 
1651 jint G1CollectedHeap::initialize() {
1652   CollectedHeap::pre_initialize();
1653   os::enable_vtime();
1654 
1655   // Necessary to satisfy locking discipline assertions.
1656 
1657   MutexLocker x(Heap_lock);
1658 
1659   // While there are no constraints in the GC code that HeapWordSize
1660   // be any particular value, there are multiple other areas in the
1661   // system which believe this to be true (e.g. oop->object_size in some
1662   // cases incorrectly returns the size in wordSize units rather than
1663   // HeapWordSize).
1664   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1665 
1666   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1667   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1668   size_t heap_alignment = collector_policy()->heap_alignment();
1669 
1670   // Ensure that the sizes are properly aligned.
1671   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1672   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1673   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1674 
1675   // Reserve the maximum.
1676 
1677   // When compressed oops are enabled, the preferred heap base
1678   // is calculated by subtracting the requested size from the
1679   // 32Gb boundary and using the result as the base address for
1680   // heap reservation. If the requested size is not aligned to
1681   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1682   // into the ReservedHeapSpace constructor) then the actual
1683   // base of the reserved heap may end up differing from the
1684   // address that was requested (i.e. the preferred heap base).
1685   // If this happens then we could end up using a non-optimal
1686   // compressed oops mode.
1687 
1688   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1689                                                  heap_alignment);
1690 
1691   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1692 
1693   // Create the barrier set for the entire reserved region.
1694   G1SATBCardTableLoggingModRefBS* bs
1695     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1696   bs->initialize();
1697   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1698   set_barrier_set(bs);
1699 
1700   // Create the hot card cache.
1701   _hot_card_cache = new G1HotCardCache(this);
1702 
1703   // Carve out the G1 part of the heap.
1704   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1705   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1706   G1RegionToSpaceMapper* heap_storage =
1707     G1RegionToSpaceMapper::create_mapper(g1_rs,
1708                                          g1_rs.size(),
1709                                          page_size,
1710                                          HeapRegion::GrainBytes,
1711                                          1,
1712                                          mtJavaHeap);
1713   os::trace_page_sizes("Heap",
1714                        collector_policy()->min_heap_byte_size(),
1715                        max_byte_size,
1716                        page_size,
1717                        heap_rs.base(),
1718                        heap_rs.size());
1719   heap_storage->set_mapping_changed_listener(&_listener);
1720 
1721   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1722   G1RegionToSpaceMapper* bot_storage =
1723     create_aux_memory_mapper("Block Offset Table",
1724                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1725                              G1BlockOffsetTable::heap_map_factor());
1726 
1727   G1RegionToSpaceMapper* cardtable_storage =
1728     create_aux_memory_mapper("Card Table",
1729                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1730                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1731 
1732   G1RegionToSpaceMapper* card_counts_storage =
1733     create_aux_memory_mapper("Card Counts Table",
1734                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1735                              G1CardCounts::heap_map_factor());
1736 
1737   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1738   G1RegionToSpaceMapper* prev_bitmap_storage =
1739     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1740   G1RegionToSpaceMapper* next_bitmap_storage =
1741     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1742 
1743   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1744   g1_barrier_set()->initialize(cardtable_storage);
1745   // Do later initialization work for concurrent refinement.
1746   _hot_card_cache->initialize(card_counts_storage);
1747 
1748   // 6843694 - ensure that the maximum region index can fit
1749   // in the remembered set structures.
1750   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1751   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1752 
1753   // Also create a G1 rem set.
1754   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1755   _g1_rem_set->initialize(max_capacity(), max_regions());
1756 
1757   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1758   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1759   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1760             "too many cards per region");
1761 
1762   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1763 
1764   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1765 
1766   {
1767     HeapWord* start = _hrm.reserved().start();
1768     HeapWord* end = _hrm.reserved().end();
1769     size_t granularity = HeapRegion::GrainBytes;
1770 
1771     _in_cset_fast_test.initialize(start, end, granularity);
1772     _humongous_reclaim_candidates.initialize(start, end, granularity);
1773   }
1774 
1775   // Create the G1ConcurrentMark data structure and thread.
1776   // (Must do this late, so that "max_regions" is defined.)
1777   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1778   if (_cm == NULL || !_cm->completed_initialization()) {
1779     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1780     return JNI_ENOMEM;
1781   }
1782   _cmThread = _cm->cm_thread();
1783 
1784   // Now expand into the initial heap size.
1785   if (!expand(init_byte_size, _workers)) {
1786     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1787     return JNI_ENOMEM;
1788   }
1789 
1790   // Perform any initialization actions delegated to the policy.
1791   g1_policy()->init(this, &_collection_set);
1792 
1793   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1794                                                SATB_Q_FL_lock,
1795                                                G1SATBProcessCompletedThreshold,
1796                                                Shared_SATB_Q_lock);
1797 
1798   jint ecode = initialize_concurrent_refinement();
1799   if (ecode != JNI_OK) {
1800     return ecode;
1801   }
1802 
1803   ecode = initialize_young_gen_sampling_thread();
1804   if (ecode != JNI_OK) {
1805     return ecode;
1806   }
1807 
1808   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1809                                                 DirtyCardQ_FL_lock,
1810                                                 (int)concurrent_refine()->yellow_zone(),
1811                                                 (int)concurrent_refine()->red_zone(),
1812                                                 Shared_DirtyCardQ_lock,
1813                                                 NULL,  // fl_owner
1814                                                 true); // init_free_ids
1815 
1816   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1817                                     DirtyCardQ_FL_lock,
1818                                     -1, // never trigger processing
1819                                     -1, // no limit on length
1820                                     Shared_DirtyCardQ_lock,
1821                                     &JavaThread::dirty_card_queue_set());
1822 
1823   // Here we allocate the dummy HeapRegion that is required by the
1824   // G1AllocRegion class.
1825   HeapRegion* dummy_region = _hrm.get_dummy_region();
1826 
1827   // We'll re-use the same region whether the alloc region will
1828   // require BOT updates or not and, if it doesn't, then a non-young
1829   // region will complain that it cannot support allocations without
1830   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1831   dummy_region->set_eden();
1832   // Make sure it's full.
1833   dummy_region->set_top(dummy_region->end());
1834   G1AllocRegion::setup(this, dummy_region);
1835 
1836   _allocator->init_mutator_alloc_region();
1837 
1838   // Do create of the monitoring and management support so that
1839   // values in the heap have been properly initialized.
1840   _g1mm = new G1MonitoringSupport(this);
1841 
1842   G1StringDedup::initialize();
1843 
1844   _preserved_marks_set.init(ParallelGCThreads);
1845 
1846   _collection_set.initialize(max_regions());
1847 
1848   return JNI_OK;
1849 }
1850 
1851 void G1CollectedHeap::stop() {
1852   // Stop all concurrent threads. We do this to make sure these threads
1853   // do not continue to execute and access resources (e.g. logging)
1854   // that are destroyed during shutdown.
1855   _cr->stop();
1856   _young_gen_sampling_thread->stop();
1857   _cmThread->stop();
1858   if (G1StringDedup::is_enabled()) {
1859     G1StringDedup::stop();
1860   }
1861 }
1862 
1863 void G1CollectedHeap::safepoint_synchronize_begin() {
1864   SuspendibleThreadSet::synchronize();
1865 }
1866 
1867 void G1CollectedHeap::safepoint_synchronize_end() {
1868   SuspendibleThreadSet::desynchronize();
1869 }
1870 
1871 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1872   return HeapRegion::max_region_size();
1873 }
1874 
1875 void G1CollectedHeap::post_initialize() {
1876   ref_processing_init();
1877 }
1878 
1879 void G1CollectedHeap::ref_processing_init() {
1880   // Reference processing in G1 currently works as follows:
1881   //
1882   // * There are two reference processor instances. One is
1883   //   used to record and process discovered references
1884   //   during concurrent marking; the other is used to
1885   //   record and process references during STW pauses
1886   //   (both full and incremental).
1887   // * Both ref processors need to 'span' the entire heap as
1888   //   the regions in the collection set may be dotted around.
1889   //
1890   // * For the concurrent marking ref processor:
1891   //   * Reference discovery is enabled at initial marking.
1892   //   * Reference discovery is disabled and the discovered
1893   //     references processed etc during remarking.
1894   //   * Reference discovery is MT (see below).
1895   //   * Reference discovery requires a barrier (see below).
1896   //   * Reference processing may or may not be MT
1897   //     (depending on the value of ParallelRefProcEnabled
1898   //     and ParallelGCThreads).
1899   //   * A full GC disables reference discovery by the CM
1900   //     ref processor and abandons any entries on it's
1901   //     discovered lists.
1902   //
1903   // * For the STW processor:
1904   //   * Non MT discovery is enabled at the start of a full GC.
1905   //   * Processing and enqueueing during a full GC is non-MT.
1906   //   * During a full GC, references are processed after marking.
1907   //
1908   //   * Discovery (may or may not be MT) is enabled at the start
1909   //     of an incremental evacuation pause.
1910   //   * References are processed near the end of a STW evacuation pause.
1911   //   * For both types of GC:
1912   //     * Discovery is atomic - i.e. not concurrent.
1913   //     * Reference discovery will not need a barrier.
1914 
1915   MemRegion mr = reserved_region();
1916 
1917   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1918 
1919   // Concurrent Mark ref processor
1920   _ref_processor_cm =
1921     new ReferenceProcessor(mr,    // span
1922                            mt_processing,
1923                                 // mt processing
1924                            ParallelGCThreads,
1925                                 // degree of mt processing
1926                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
1927                                 // mt discovery
1928                            MAX2(ParallelGCThreads, ConcGCThreads),
1929                                 // degree of mt discovery
1930                            false,
1931                                 // Reference discovery is not atomic
1932                            &_is_alive_closure_cm);
1933                                 // is alive closure
1934                                 // (for efficiency/performance)
1935 
1936   // STW ref processor
1937   _ref_processor_stw =
1938     new ReferenceProcessor(mr,    // span
1939                            mt_processing,
1940                                 // mt processing
1941                            ParallelGCThreads,
1942                                 // degree of mt processing
1943                            (ParallelGCThreads > 1),
1944                                 // mt discovery
1945                            ParallelGCThreads,
1946                                 // degree of mt discovery
1947                            true,
1948                                 // Reference discovery is atomic
1949                            &_is_alive_closure_stw);
1950                                 // is alive closure
1951                                 // (for efficiency/performance)
1952 }
1953 
1954 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1955   return _collector_policy;
1956 }
1957 
1958 size_t G1CollectedHeap::capacity() const {
1959   return _hrm.length() * HeapRegion::GrainBytes;
1960 }
1961 
1962 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
1963   hr->reset_gc_time_stamp();
1964 }
1965 
1966 #ifndef PRODUCT
1967 
1968 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
1969 private:
1970   unsigned _gc_time_stamp;
1971   bool _failures;
1972 
1973 public:
1974   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
1975     _gc_time_stamp(gc_time_stamp), _failures(false) { }
1976 
1977   virtual bool doHeapRegion(HeapRegion* hr) {
1978     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
1979     if (_gc_time_stamp != region_gc_time_stamp) {
1980       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
1981                             region_gc_time_stamp, _gc_time_stamp);
1982       _failures = true;
1983     }
1984     return false;
1985   }
1986 
1987   bool failures() { return _failures; }
1988 };
1989 
1990 void G1CollectedHeap::check_gc_time_stamps() {
1991   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
1992   heap_region_iterate(&cl);
1993   guarantee(!cl.failures(), "all GC time stamps should have been reset");
1994 }
1995 #endif // PRODUCT
1996 
1997 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1998   _hot_card_cache->drain(cl, worker_i);
1999 }
2000 
2001 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2002   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2003   size_t n_completed_buffers = 0;
2004   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
2005     n_completed_buffers++;
2006   }
2007   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2008   dcqs.clear_n_completed_buffers();
2009   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2010 }
2011 
2012 // Computes the sum of the storage used by the various regions.
2013 size_t G1CollectedHeap::used() const {
2014   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2015   if (_archive_allocator != NULL) {
2016     result += _archive_allocator->used();
2017   }
2018   return result;
2019 }
2020 
2021 size_t G1CollectedHeap::used_unlocked() const {
2022   return _summary_bytes_used;
2023 }
2024 
2025 class SumUsedClosure: public HeapRegionClosure {
2026   size_t _used;
2027 public:
2028   SumUsedClosure() : _used(0) {}
2029   bool doHeapRegion(HeapRegion* r) {
2030     _used += r->used();
2031     return false;
2032   }
2033   size_t result() { return _used; }
2034 };
2035 
2036 size_t G1CollectedHeap::recalculate_used() const {
2037   double recalculate_used_start = os::elapsedTime();
2038 
2039   SumUsedClosure blk;
2040   heap_region_iterate(&blk);
2041 
2042   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2043   return blk.result();
2044 }
2045 
2046 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2047   switch (cause) {
2048     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2049     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2050     case GCCause::_update_allocation_context_stats_inc: return true;
2051     case GCCause::_wb_conc_mark:                        return true;
2052     default :                                           return false;
2053   }
2054 }
2055 
2056 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2057   switch (cause) {
2058     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2059     case GCCause::_g1_humongous_allocation: return true;
2060     default:                                return is_user_requested_concurrent_full_gc(cause);
2061   }
2062 }
2063 
2064 #ifndef PRODUCT
2065 void G1CollectedHeap::allocate_dummy_regions() {
2066   // Let's fill up most of the region
2067   size_t word_size = HeapRegion::GrainWords - 1024;
2068   // And as a result the region we'll allocate will be humongous.
2069   guarantee(is_humongous(word_size), "sanity");
2070 
2071   // _filler_array_max_size is set to humongous object threshold
2072   // but temporarily change it to use CollectedHeap::fill_with_object().
2073   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2074 
2075   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2076     // Let's use the existing mechanism for the allocation
2077     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2078                                                  AllocationContext::system());
2079     if (dummy_obj != NULL) {
2080       MemRegion mr(dummy_obj, word_size);
2081       CollectedHeap::fill_with_object(mr);
2082     } else {
2083       // If we can't allocate once, we probably cannot allocate
2084       // again. Let's get out of the loop.
2085       break;
2086     }
2087   }
2088 }
2089 #endif // !PRODUCT
2090 
2091 void G1CollectedHeap::increment_old_marking_cycles_started() {
2092   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2093          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2094          "Wrong marking cycle count (started: %d, completed: %d)",
2095          _old_marking_cycles_started, _old_marking_cycles_completed);
2096 
2097   _old_marking_cycles_started++;
2098 }
2099 
2100 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2101   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2102 
2103   // We assume that if concurrent == true, then the caller is a
2104   // concurrent thread that was joined the Suspendible Thread
2105   // Set. If there's ever a cheap way to check this, we should add an
2106   // assert here.
2107 
2108   // Given that this method is called at the end of a Full GC or of a
2109   // concurrent cycle, and those can be nested (i.e., a Full GC can
2110   // interrupt a concurrent cycle), the number of full collections
2111   // completed should be either one (in the case where there was no
2112   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2113   // behind the number of full collections started.
2114 
2115   // This is the case for the inner caller, i.e. a Full GC.
2116   assert(concurrent ||
2117          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2118          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2119          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2120          "is inconsistent with _old_marking_cycles_completed = %u",
2121          _old_marking_cycles_started, _old_marking_cycles_completed);
2122 
2123   // This is the case for the outer caller, i.e. the concurrent cycle.
2124   assert(!concurrent ||
2125          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2126          "for outer caller (concurrent cycle): "
2127          "_old_marking_cycles_started = %u "
2128          "is inconsistent with _old_marking_cycles_completed = %u",
2129          _old_marking_cycles_started, _old_marking_cycles_completed);
2130 
2131   _old_marking_cycles_completed += 1;
2132 
2133   // We need to clear the "in_progress" flag in the CM thread before
2134   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2135   // is set) so that if a waiter requests another System.gc() it doesn't
2136   // incorrectly see that a marking cycle is still in progress.
2137   if (concurrent) {
2138     _cmThread->set_idle();
2139   }
2140 
2141   // This notify_all() will ensure that a thread that called
2142   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2143   // and it's waiting for a full GC to finish will be woken up. It is
2144   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2145   FullGCCount_lock->notify_all();
2146 }
2147 
2148 void G1CollectedHeap::collect(GCCause::Cause cause) {
2149   assert_heap_not_locked();
2150 
2151   uint gc_count_before;
2152   uint old_marking_count_before;
2153   uint full_gc_count_before;
2154   bool retry_gc;
2155 
2156   do {
2157     retry_gc = false;
2158 
2159     {
2160       MutexLocker ml(Heap_lock);
2161 
2162       // Read the GC count while holding the Heap_lock
2163       gc_count_before = total_collections();
2164       full_gc_count_before = total_full_collections();
2165       old_marking_count_before = _old_marking_cycles_started;
2166     }
2167 
2168     if (should_do_concurrent_full_gc(cause)) {
2169       // Schedule an initial-mark evacuation pause that will start a
2170       // concurrent cycle. We're setting word_size to 0 which means that
2171       // we are not requesting a post-GC allocation.
2172       VM_G1IncCollectionPause op(gc_count_before,
2173                                  0,     /* word_size */
2174                                  true,  /* should_initiate_conc_mark */
2175                                  g1_policy()->max_pause_time_ms(),
2176                                  cause);
2177       op.set_allocation_context(AllocationContext::current());
2178 
2179       VMThread::execute(&op);
2180       if (!op.pause_succeeded()) {
2181         if (old_marking_count_before == _old_marking_cycles_started) {
2182           retry_gc = op.should_retry_gc();
2183         } else {
2184           // A Full GC happened while we were trying to schedule the
2185           // initial-mark GC. No point in starting a new cycle given
2186           // that the whole heap was collected anyway.
2187         }
2188 
2189         if (retry_gc) {
2190           if (GCLocker::is_active_and_needs_gc()) {
2191             GCLocker::stall_until_clear();
2192           }
2193         }
2194       }
2195     } else {
2196       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2197           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2198 
2199         // Schedule a standard evacuation pause. We're setting word_size
2200         // to 0 which means that we are not requesting a post-GC allocation.
2201         VM_G1IncCollectionPause op(gc_count_before,
2202                                    0,     /* word_size */
2203                                    false, /* should_initiate_conc_mark */
2204                                    g1_policy()->max_pause_time_ms(),
2205                                    cause);
2206         VMThread::execute(&op);
2207       } else {
2208         // Schedule a Full GC.
2209         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2210         VMThread::execute(&op);
2211       }
2212     }
2213   } while (retry_gc);
2214 }
2215 
2216 bool G1CollectedHeap::is_in(const void* p) const {
2217   if (_hrm.reserved().contains(p)) {
2218     // Given that we know that p is in the reserved space,
2219     // heap_region_containing() should successfully
2220     // return the containing region.
2221     HeapRegion* hr = heap_region_containing(p);
2222     return hr->is_in(p);
2223   } else {
2224     return false;
2225   }
2226 }
2227 
2228 #ifdef ASSERT
2229 bool G1CollectedHeap::is_in_exact(const void* p) const {
2230   bool contains = reserved_region().contains(p);
2231   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2232   if (contains && available) {
2233     return true;
2234   } else {
2235     return false;
2236   }
2237 }
2238 #endif
2239 
2240 // Iteration functions.
2241 
2242 // Iterates an ObjectClosure over all objects within a HeapRegion.
2243 
2244 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2245   ObjectClosure* _cl;
2246 public:
2247   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2248   bool doHeapRegion(HeapRegion* r) {
2249     if (!r->is_continues_humongous()) {
2250       r->object_iterate(_cl);
2251     }
2252     return false;
2253   }
2254 };
2255 
2256 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2257   IterateObjectClosureRegionClosure blk(cl);
2258   heap_region_iterate(&blk);
2259 }
2260 
2261 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2262   _hrm.iterate(cl);
2263 }
2264 
2265 void G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2266                                               uint worker_id,
2267                                               HeapRegionClaimer *hrclaimer) const {
2268   _hrm.par_iterate(cl, worker_id, hrclaimer);
2269 }
2270 
2271 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2272   _collection_set.iterate(cl);
2273 }
2274 
2275 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2276   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2277 }
2278 
2279 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2280   HeapRegion* result = _hrm.next_region_in_heap(from);
2281   while (result != NULL && result->is_pinned()) {
2282     result = _hrm.next_region_in_heap(result);
2283   }
2284   return result;
2285 }
2286 
2287 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2288   HeapRegion* hr = heap_region_containing(addr);
2289   return hr->block_start(addr);
2290 }
2291 
2292 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2293   HeapRegion* hr = heap_region_containing(addr);
2294   return hr->block_size(addr);
2295 }
2296 
2297 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2298   HeapRegion* hr = heap_region_containing(addr);
2299   return hr->block_is_obj(addr);
2300 }
2301 
2302 bool G1CollectedHeap::supports_tlab_allocation() const {
2303   return true;
2304 }
2305 
2306 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2307   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2308 }
2309 
2310 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2311   return _eden.length() * HeapRegion::GrainBytes;
2312 }
2313 
2314 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2315 // must be equal to the humongous object limit.
2316 size_t G1CollectedHeap::max_tlab_size() const {
2317   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2318 }
2319 
2320 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2321   AllocationContext_t context = AllocationContext::current();
2322   return _allocator->unsafe_max_tlab_alloc(context);
2323 }
2324 
2325 size_t G1CollectedHeap::max_capacity() const {
2326   return _hrm.reserved().byte_size();
2327 }
2328 
2329 jlong G1CollectedHeap::millis_since_last_gc() {
2330   // See the notes in GenCollectedHeap::millis_since_last_gc()
2331   // for more information about the implementation.
2332   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2333     _g1_policy->collection_pause_end_millis();
2334   if (ret_val < 0) {
2335     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2336       ". returning zero instead.", ret_val);
2337     return 0;
2338   }
2339   return ret_val;
2340 }
2341 
2342 void G1CollectedHeap::prepare_for_verify() {
2343   _verifier->prepare_for_verify();
2344 }
2345 
2346 void G1CollectedHeap::verify(VerifyOption vo) {
2347   _verifier->verify(vo);
2348 }
2349 
2350 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2351   return true;
2352 }
2353 
2354 const char* const* G1CollectedHeap::concurrent_phases() const {
2355   return _cmThread->concurrent_phases();
2356 }
2357 
2358 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2359   return _cmThread->request_concurrent_phase(phase);
2360 }
2361 
2362 class PrintRegionClosure: public HeapRegionClosure {
2363   outputStream* _st;
2364 public:
2365   PrintRegionClosure(outputStream* st) : _st(st) {}
2366   bool doHeapRegion(HeapRegion* r) {
2367     r->print_on(_st);
2368     return false;
2369   }
2370 };
2371 
2372 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2373                                        const HeapRegion* hr,
2374                                        const VerifyOption vo) const {
2375   switch (vo) {
2376   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2377   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2378   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2379   default:                            ShouldNotReachHere();
2380   }
2381   return false; // keep some compilers happy
2382 }
2383 
2384 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2385                                        const VerifyOption vo) const {
2386   switch (vo) {
2387   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2388   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2389   case VerifyOption_G1UseMarkWord: {
2390     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2391     return !obj->is_gc_marked() && !hr->is_archive();
2392   }
2393   default:                            ShouldNotReachHere();
2394   }
2395   return false; // keep some compilers happy
2396 }
2397 
2398 void G1CollectedHeap::print_heap_regions() const {
2399   LogTarget(Trace, gc, heap, region) lt;
2400   if (lt.is_enabled()) {
2401     LogStream ls(lt);
2402     print_regions_on(&ls);
2403   }
2404 }
2405 
2406 void G1CollectedHeap::print_on(outputStream* st) const {
2407   st->print(" %-20s", "garbage-first heap");
2408   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2409             capacity()/K, used_unlocked()/K);
2410   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2411             p2i(_hrm.reserved().start()),
2412             p2i(_hrm.reserved().end()));
2413   st->cr();
2414   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2415   uint young_regions = young_regions_count();
2416   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2417             (size_t) young_regions * HeapRegion::GrainBytes / K);
2418   uint survivor_regions = survivor_regions_count();
2419   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2420             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2421   st->cr();
2422   MetaspaceAux::print_on(st);
2423 }
2424 
2425 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2426   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2427                "HS=humongous(starts), HC=humongous(continues), "
2428                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2429                "AC=allocation context, "
2430                "TAMS=top-at-mark-start (previous, next)");
2431   PrintRegionClosure blk(st);
2432   heap_region_iterate(&blk);
2433 }
2434 
2435 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2436   print_on(st);
2437 
2438   // Print the per-region information.
2439   print_regions_on(st);
2440 }
2441 
2442 void G1CollectedHeap::print_on_error(outputStream* st) const {
2443   this->CollectedHeap::print_on_error(st);
2444 
2445   if (_cm != NULL) {
2446     st->cr();
2447     _cm->print_on_error(st);
2448   }
2449 }
2450 
2451 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2452   workers()->print_worker_threads_on(st);
2453   _cmThread->print_on(st);
2454   st->cr();
2455   _cm->print_worker_threads_on(st);
2456   _cr->print_threads_on(st);
2457   _young_gen_sampling_thread->print_on(st);
2458   if (G1StringDedup::is_enabled()) {
2459     G1StringDedup::print_worker_threads_on(st);
2460   }
2461 }
2462 
2463 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2464   workers()->threads_do(tc);
2465   tc->do_thread(_cmThread);
2466   _cm->threads_do(tc);
2467   _cr->threads_do(tc);
2468   tc->do_thread(_young_gen_sampling_thread);
2469   if (G1StringDedup::is_enabled()) {
2470     G1StringDedup::threads_do(tc);
2471   }
2472 }
2473 
2474 void G1CollectedHeap::print_tracing_info() const {
2475   g1_rem_set()->print_summary_info();
2476   concurrent_mark()->print_summary_info();
2477 }
2478 
2479 #ifndef PRODUCT
2480 // Helpful for debugging RSet issues.
2481 
2482 class PrintRSetsClosure : public HeapRegionClosure {
2483 private:
2484   const char* _msg;
2485   size_t _occupied_sum;
2486 
2487 public:
2488   bool doHeapRegion(HeapRegion* r) {
2489     HeapRegionRemSet* hrrs = r->rem_set();
2490     size_t occupied = hrrs->occupied();
2491     _occupied_sum += occupied;
2492 
2493     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2494     if (occupied == 0) {
2495       tty->print_cr("  RSet is empty");
2496     } else {
2497       hrrs->print();
2498     }
2499     tty->print_cr("----------");
2500     return false;
2501   }
2502 
2503   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2504     tty->cr();
2505     tty->print_cr("========================================");
2506     tty->print_cr("%s", msg);
2507     tty->cr();
2508   }
2509 
2510   ~PrintRSetsClosure() {
2511     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2512     tty->print_cr("========================================");
2513     tty->cr();
2514   }
2515 };
2516 
2517 void G1CollectedHeap::print_cset_rsets() {
2518   PrintRSetsClosure cl("Printing CSet RSets");
2519   collection_set_iterate(&cl);
2520 }
2521 
2522 void G1CollectedHeap::print_all_rsets() {
2523   PrintRSetsClosure cl("Printing All RSets");;
2524   heap_region_iterate(&cl);
2525 }
2526 #endif // PRODUCT
2527 
2528 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2529 
2530   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2531   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2532   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2533 
2534   size_t eden_capacity_bytes =
2535     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2536 
2537   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2538   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2539                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2540 }
2541 
2542 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2543   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2544                        stats->unused(), stats->used(), stats->region_end_waste(),
2545                        stats->regions_filled(), stats->direct_allocated(),
2546                        stats->failure_used(), stats->failure_waste());
2547 }
2548 
2549 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2550   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2551   gc_tracer->report_gc_heap_summary(when, heap_summary);
2552 
2553   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2554   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2555 }
2556 
2557 G1CollectedHeap* G1CollectedHeap::heap() {
2558   CollectedHeap* heap = Universe::heap();
2559   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2560   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2561   return (G1CollectedHeap*)heap;
2562 }
2563 
2564 void G1CollectedHeap::gc_prologue(bool full) {
2565   // always_do_update_barrier = false;
2566   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2567 
2568   // This summary needs to be printed before incrementing total collections.
2569   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2570 
2571   // Update common counters.
2572   increment_total_collections(full /* full gc */);
2573   if (full) {
2574     increment_old_marking_cycles_started();
2575     reset_gc_time_stamp();
2576   } else {
2577     increment_gc_time_stamp();
2578   }
2579 
2580   // Fill TLAB's and such
2581   double start = os::elapsedTime();
2582   accumulate_statistics_all_tlabs();
2583   ensure_parsability(true);
2584   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2585 }
2586 
2587 void G1CollectedHeap::gc_epilogue(bool full) {
2588   // Update common counters.
2589   if (full) {
2590     // Update the number of full collections that have been completed.
2591     increment_old_marking_cycles_completed(false /* concurrent */);
2592   }
2593 
2594   // We are at the end of the GC. Total collections has already been increased.
2595   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2596 
2597   // FIXME: what is this about?
2598   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2599   // is set.
2600 #if COMPILER2_OR_JVMCI
2601   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2602 #endif
2603   // always_do_update_barrier = true;
2604 
2605   double start = os::elapsedTime();
2606   resize_all_tlabs();
2607   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2608 
2609   allocation_context_stats().update(full);
2610 
2611   MemoryService::track_memory_usage();
2612   // We have just completed a GC. Update the soft reference
2613   // policy with the new heap occupancy
2614   Universe::update_heap_info_at_gc();
2615 }
2616 
2617 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2618                                                uint gc_count_before,
2619                                                bool* succeeded,
2620                                                GCCause::Cause gc_cause) {
2621   assert_heap_not_locked_and_not_at_safepoint();
2622   VM_G1IncCollectionPause op(gc_count_before,
2623                              word_size,
2624                              false, /* should_initiate_conc_mark */
2625                              g1_policy()->max_pause_time_ms(),
2626                              gc_cause);
2627 
2628   op.set_allocation_context(AllocationContext::current());
2629   VMThread::execute(&op);
2630 
2631   HeapWord* result = op.result();
2632   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2633   assert(result == NULL || ret_succeeded,
2634          "the result should be NULL if the VM did not succeed");
2635   *succeeded = ret_succeeded;
2636 
2637   assert_heap_not_locked();
2638   return result;
2639 }
2640 
2641 void
2642 G1CollectedHeap::doConcurrentMark() {
2643   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2644   if (!_cmThread->in_progress()) {
2645     _cmThread->set_started();
2646     CGC_lock->notify();
2647   }
2648 }
2649 
2650 size_t G1CollectedHeap::pending_card_num() {
2651   size_t extra_cards = 0;
2652   JavaThread *curr = Threads::first();
2653   while (curr != NULL) {
2654     DirtyCardQueue& dcq = curr->dirty_card_queue();
2655     extra_cards += dcq.size();
2656     curr = curr->next();
2657   }
2658   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2659   size_t buffer_size = dcqs.buffer_size();
2660   size_t buffer_num = dcqs.completed_buffers_num();
2661 
2662   return buffer_size * buffer_num + extra_cards;
2663 }
2664 
2665 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2666  private:
2667   size_t _total_humongous;
2668   size_t _candidate_humongous;
2669 
2670   DirtyCardQueue _dcq;
2671 
2672   // We don't nominate objects with many remembered set entries, on
2673   // the assumption that such objects are likely still live.
2674   bool is_remset_small(HeapRegion* region) const {
2675     HeapRegionRemSet* const rset = region->rem_set();
2676     return G1EagerReclaimHumongousObjectsWithStaleRefs
2677       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2678       : rset->is_empty();
2679   }
2680 
2681   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2682     assert(region->is_starts_humongous(), "Must start a humongous object");
2683 
2684     oop obj = oop(region->bottom());
2685 
2686     // Dead objects cannot be eager reclaim candidates. Due to class
2687     // unloading it is unsafe to query their classes so we return early.
2688     if (heap->is_obj_dead(obj, region)) {
2689       return false;
2690     }
2691 
2692     // Candidate selection must satisfy the following constraints
2693     // while concurrent marking is in progress:
2694     //
2695     // * In order to maintain SATB invariants, an object must not be
2696     // reclaimed if it was allocated before the start of marking and
2697     // has not had its references scanned.  Such an object must have
2698     // its references (including type metadata) scanned to ensure no
2699     // live objects are missed by the marking process.  Objects
2700     // allocated after the start of concurrent marking don't need to
2701     // be scanned.
2702     //
2703     // * An object must not be reclaimed if it is on the concurrent
2704     // mark stack.  Objects allocated after the start of concurrent
2705     // marking are never pushed on the mark stack.
2706     //
2707     // Nominating only objects allocated after the start of concurrent
2708     // marking is sufficient to meet both constraints.  This may miss
2709     // some objects that satisfy the constraints, but the marking data
2710     // structures don't support efficiently performing the needed
2711     // additional tests or scrubbing of the mark stack.
2712     //
2713     // However, we presently only nominate is_typeArray() objects.
2714     // A humongous object containing references induces remembered
2715     // set entries on other regions.  In order to reclaim such an
2716     // object, those remembered sets would need to be cleaned up.
2717     //
2718     // We also treat is_typeArray() objects specially, allowing them
2719     // to be reclaimed even if allocated before the start of
2720     // concurrent mark.  For this we rely on mark stack insertion to
2721     // exclude is_typeArray() objects, preventing reclaiming an object
2722     // that is in the mark stack.  We also rely on the metadata for
2723     // such objects to be built-in and so ensured to be kept live.
2724     // Frequent allocation and drop of large binary blobs is an
2725     // important use case for eager reclaim, and this special handling
2726     // may reduce needed headroom.
2727 
2728     return obj->is_typeArray() && is_remset_small(region);
2729   }
2730 
2731  public:
2732   RegisterHumongousWithInCSetFastTestClosure()
2733   : _total_humongous(0),
2734     _candidate_humongous(0),
2735     _dcq(&JavaThread::dirty_card_queue_set()) {
2736   }
2737 
2738   virtual bool doHeapRegion(HeapRegion* r) {
2739     if (!r->is_starts_humongous()) {
2740       return false;
2741     }
2742     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2743 
2744     bool is_candidate = humongous_region_is_candidate(g1h, r);
2745     uint rindex = r->hrm_index();
2746     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2747     if (is_candidate) {
2748       _candidate_humongous++;
2749       g1h->register_humongous_region_with_cset(rindex);
2750       // Is_candidate already filters out humongous object with large remembered sets.
2751       // If we have a humongous object with a few remembered sets, we simply flush these
2752       // remembered set entries into the DCQS. That will result in automatic
2753       // re-evaluation of their remembered set entries during the following evacuation
2754       // phase.
2755       if (!r->rem_set()->is_empty()) {
2756         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2757                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2758         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2759         HeapRegionRemSetIterator hrrs(r->rem_set());
2760         size_t card_index;
2761         while (hrrs.has_next(card_index)) {
2762           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2763           // The remembered set might contain references to already freed
2764           // regions. Filter out such entries to avoid failing card table
2765           // verification.
2766           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2767             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2768               *card_ptr = CardTableModRefBS::dirty_card_val();
2769               _dcq.enqueue(card_ptr);
2770             }
2771           }
2772         }
2773         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2774                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2775                hrrs.n_yielded(), r->rem_set()->occupied());
2776         r->rem_set()->clear_locked();
2777       }
2778       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2779     }
2780     _total_humongous++;
2781 
2782     return false;
2783   }
2784 
2785   size_t total_humongous() const { return _total_humongous; }
2786   size_t candidate_humongous() const { return _candidate_humongous; }
2787 
2788   void flush_rem_set_entries() { _dcq.flush(); }
2789 };
2790 
2791 void G1CollectedHeap::register_humongous_regions_with_cset() {
2792   if (!G1EagerReclaimHumongousObjects) {
2793     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2794     return;
2795   }
2796   double time = os::elapsed_counter();
2797 
2798   // Collect reclaim candidate information and register candidates with cset.
2799   RegisterHumongousWithInCSetFastTestClosure cl;
2800   heap_region_iterate(&cl);
2801 
2802   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2803   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2804                                                                   cl.total_humongous(),
2805                                                                   cl.candidate_humongous());
2806   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2807 
2808   // Finally flush all remembered set entries to re-check into the global DCQS.
2809   cl.flush_rem_set_entries();
2810 }
2811 
2812 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2813   public:
2814     bool doHeapRegion(HeapRegion* hr) {
2815       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2816         hr->verify_rem_set();
2817       }
2818       return false;
2819     }
2820 };
2821 
2822 uint G1CollectedHeap::num_task_queues() const {
2823   return _task_queues->size();
2824 }
2825 
2826 #if TASKQUEUE_STATS
2827 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2828   st->print_raw_cr("GC Task Stats");
2829   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2830   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2831 }
2832 
2833 void G1CollectedHeap::print_taskqueue_stats() const {
2834   if (!log_is_enabled(Trace, gc, task, stats)) {
2835     return;
2836   }
2837   Log(gc, task, stats) log;
2838   ResourceMark rm;
2839   LogStream ls(log.trace());
2840   outputStream* st = &ls;
2841 
2842   print_taskqueue_stats_hdr(st);
2843 
2844   TaskQueueStats totals;
2845   const uint n = num_task_queues();
2846   for (uint i = 0; i < n; ++i) {
2847     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2848     totals += task_queue(i)->stats;
2849   }
2850   st->print_raw("tot "); totals.print(st); st->cr();
2851 
2852   DEBUG_ONLY(totals.verify());
2853 }
2854 
2855 void G1CollectedHeap::reset_taskqueue_stats() {
2856   const uint n = num_task_queues();
2857   for (uint i = 0; i < n; ++i) {
2858     task_queue(i)->stats.reset();
2859   }
2860 }
2861 #endif // TASKQUEUE_STATS
2862 
2863 void G1CollectedHeap::wait_for_root_region_scanning() {
2864   double scan_wait_start = os::elapsedTime();
2865   // We have to wait until the CM threads finish scanning the
2866   // root regions as it's the only way to ensure that all the
2867   // objects on them have been correctly scanned before we start
2868   // moving them during the GC.
2869   bool waited = _cm->root_regions()->wait_until_scan_finished();
2870   double wait_time_ms = 0.0;
2871   if (waited) {
2872     double scan_wait_end = os::elapsedTime();
2873     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2874   }
2875   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2876 }
2877 
2878 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2879 private:
2880   G1HRPrinter* _hr_printer;
2881 public:
2882   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2883 
2884   virtual bool doHeapRegion(HeapRegion* r) {
2885     _hr_printer->cset(r);
2886     return false;
2887   }
2888 };
2889 
2890 void G1CollectedHeap::start_new_collection_set() {
2891   collection_set()->start_incremental_building();
2892 
2893   clear_cset_fast_test();
2894 
2895   guarantee(_eden.length() == 0, "eden should have been cleared");
2896   g1_policy()->transfer_survivors_to_cset(survivor());
2897 }
2898 
2899 bool
2900 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2901   assert_at_safepoint(true /* should_be_vm_thread */);
2902   guarantee(!is_gc_active(), "collection is not reentrant");
2903 
2904   if (GCLocker::check_active_before_gc()) {
2905     return false;
2906   }
2907 
2908   _gc_timer_stw->register_gc_start();
2909 
2910   GCIdMark gc_id_mark;
2911   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2912 
2913   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2914   ResourceMark rm;
2915 
2916   g1_policy()->note_gc_start();
2917 
2918   wait_for_root_region_scanning();
2919 
2920   print_heap_before_gc();
2921   print_heap_regions();
2922   trace_heap_before_gc(_gc_tracer_stw);
2923 
2924   _verifier->verify_region_sets_optional();
2925   _verifier->verify_dirty_young_regions();
2926 
2927   // We should not be doing initial mark unless the conc mark thread is running
2928   if (!_cmThread->should_terminate()) {
2929     // This call will decide whether this pause is an initial-mark
2930     // pause. If it is, during_initial_mark_pause() will return true
2931     // for the duration of this pause.
2932     g1_policy()->decide_on_conc_mark_initiation();
2933   }
2934 
2935   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2936   assert(!collector_state()->during_initial_mark_pause() ||
2937           collector_state()->gcs_are_young(), "sanity");
2938 
2939   // We also do not allow mixed GCs during marking.
2940   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
2941 
2942   // Record whether this pause is an initial mark. When the current
2943   // thread has completed its logging output and it's safe to signal
2944   // the CM thread, the flag's value in the policy has been reset.
2945   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
2946 
2947   // Inner scope for scope based logging, timers, and stats collection
2948   {
2949     EvacuationInfo evacuation_info;
2950 
2951     if (collector_state()->during_initial_mark_pause()) {
2952       // We are about to start a marking cycle, so we increment the
2953       // full collection counter.
2954       increment_old_marking_cycles_started();
2955       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2956     }
2957 
2958     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2959 
2960     GCTraceCPUTime tcpu;
2961 
2962     FormatBuffer<> gc_string("Pause ");
2963     if (collector_state()->during_initial_mark_pause()) {
2964       gc_string.append("Initial Mark");
2965     } else if (collector_state()->gcs_are_young()) {
2966       gc_string.append("Young");
2967     } else {
2968       gc_string.append("Mixed");
2969     }
2970     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2971 
2972     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2973                                                                   workers()->active_workers(),
2974                                                                   Threads::number_of_non_daemon_threads());
2975     workers()->update_active_workers(active_workers);
2976     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2977 
2978     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2979     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
2980 
2981     // If the secondary_free_list is not empty, append it to the
2982     // free_list. No need to wait for the cleanup operation to finish;
2983     // the region allocation code will check the secondary_free_list
2984     // and wait if necessary. If the G1StressConcRegionFreeing flag is
2985     // set, skip this step so that the region allocation code has to
2986     // get entries from the secondary_free_list.
2987     if (!G1StressConcRegionFreeing) {
2988       append_secondary_free_list_if_not_empty_with_lock();
2989     }
2990 
2991     G1HeapTransition heap_transition(this);
2992     size_t heap_used_bytes_before_gc = used();
2993 
2994     // Don't dynamically change the number of GC threads this early.  A value of
2995     // 0 is used to indicate serial work.  When parallel work is done,
2996     // it will be set.
2997 
2998     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2999       IsGCActiveMark x;
3000 
3001       gc_prologue(false);
3002 
3003       if (VerifyRememberedSets) {
3004         log_info(gc, verify)("[Verifying RemSets before GC]");
3005         VerifyRegionRemSetClosure v_cl;
3006         heap_region_iterate(&v_cl);
3007       }
3008 
3009       _verifier->verify_before_gc();
3010 
3011       _verifier->check_bitmaps("GC Start");
3012 
3013 #if COMPILER2_OR_JVMCI
3014       DerivedPointerTable::clear();
3015 #endif
3016 
3017       // Please see comment in g1CollectedHeap.hpp and
3018       // G1CollectedHeap::ref_processing_init() to see how
3019       // reference processing currently works in G1.
3020 
3021       // Enable discovery in the STW reference processor
3022       if (g1_policy()->should_process_references()) {
3023         ref_processor_stw()->enable_discovery();
3024       } else {
3025         ref_processor_stw()->disable_discovery();
3026       }
3027 
3028       {
3029         // We want to temporarily turn off discovery by the
3030         // CM ref processor, if necessary, and turn it back on
3031         // on again later if we do. Using a scoped
3032         // NoRefDiscovery object will do this.
3033         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3034 
3035         // Forget the current alloc region (we might even choose it to be part
3036         // of the collection set!).
3037         _allocator->release_mutator_alloc_region();
3038 
3039         // This timing is only used by the ergonomics to handle our pause target.
3040         // It is unclear why this should not include the full pause. We will
3041         // investigate this in CR 7178365.
3042         //
3043         // Preserving the old comment here if that helps the investigation:
3044         //
3045         // The elapsed time induced by the start time below deliberately elides
3046         // the possible verification above.
3047         double sample_start_time_sec = os::elapsedTime();
3048 
3049         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3050 
3051         if (collector_state()->during_initial_mark_pause()) {
3052           concurrent_mark()->checkpoint_roots_initial_pre();
3053         }
3054 
3055         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3056 
3057         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3058 
3059         // Make sure the remembered sets are up to date. This needs to be
3060         // done before register_humongous_regions_with_cset(), because the
3061         // remembered sets are used there to choose eager reclaim candidates.
3062         // If the remembered sets are not up to date we might miss some
3063         // entries that need to be handled.
3064         g1_rem_set()->cleanupHRRS();
3065 
3066         register_humongous_regions_with_cset();
3067 
3068         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3069 
3070         // We call this after finalize_cset() to
3071         // ensure that the CSet has been finalized.
3072         _cm->verify_no_cset_oops();
3073 
3074         if (_hr_printer.is_active()) {
3075           G1PrintCollectionSetClosure cl(&_hr_printer);
3076           _collection_set.iterate(&cl);
3077         }
3078 
3079         // Initialize the GC alloc regions.
3080         _allocator->init_gc_alloc_regions(evacuation_info);
3081 
3082         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3083         pre_evacuate_collection_set();
3084 
3085         // Actually do the work...
3086         evacuate_collection_set(evacuation_info, &per_thread_states);
3087 
3088         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3089 
3090         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3091         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3092 
3093         eagerly_reclaim_humongous_regions();
3094 
3095         record_obj_copy_mem_stats();
3096         _survivor_evac_stats.adjust_desired_plab_sz();
3097         _old_evac_stats.adjust_desired_plab_sz();
3098 
3099         double start = os::elapsedTime();
3100         start_new_collection_set();
3101         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3102 
3103         if (evacuation_failed()) {
3104           set_used(recalculate_used());
3105           if (_archive_allocator != NULL) {
3106             _archive_allocator->clear_used();
3107           }
3108           for (uint i = 0; i < ParallelGCThreads; i++) {
3109             if (_evacuation_failed_info_array[i].has_failed()) {
3110               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3111             }
3112           }
3113         } else {
3114           // The "used" of the the collection set have already been subtracted
3115           // when they were freed.  Add in the bytes evacuated.
3116           increase_used(g1_policy()->bytes_copied_during_gc());
3117         }
3118 
3119         if (collector_state()->during_initial_mark_pause()) {
3120           // We have to do this before we notify the CM threads that
3121           // they can start working to make sure that all the
3122           // appropriate initialization is done on the CM object.
3123           concurrent_mark()->checkpoint_roots_initial_post();
3124           collector_state()->set_mark_in_progress(true);
3125           // Note that we don't actually trigger the CM thread at
3126           // this point. We do that later when we're sure that
3127           // the current thread has completed its logging output.
3128         }
3129 
3130         allocate_dummy_regions();
3131 
3132         _allocator->init_mutator_alloc_region();
3133 
3134         {
3135           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3136           if (expand_bytes > 0) {
3137             size_t bytes_before = capacity();
3138             // No need for an ergo logging here,
3139             // expansion_amount() does this when it returns a value > 0.
3140             double expand_ms;
3141             if (!expand(expand_bytes, _workers, &expand_ms)) {
3142               // We failed to expand the heap. Cannot do anything about it.
3143             }
3144             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3145           }
3146         }
3147 
3148         // We redo the verification but now wrt to the new CSet which
3149         // has just got initialized after the previous CSet was freed.
3150         _cm->verify_no_cset_oops();
3151 
3152         // This timing is only used by the ergonomics to handle our pause target.
3153         // It is unclear why this should not include the full pause. We will
3154         // investigate this in CR 7178365.
3155         double sample_end_time_sec = os::elapsedTime();
3156         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3157         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3158         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3159 
3160         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3161         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3162 
3163         if (VerifyRememberedSets) {
3164           log_info(gc, verify)("[Verifying RemSets after GC]");
3165           VerifyRegionRemSetClosure v_cl;
3166           heap_region_iterate(&v_cl);
3167         }
3168 
3169         _verifier->verify_after_gc();
3170         _verifier->check_bitmaps("GC End");
3171 
3172         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3173         ref_processor_stw()->verify_no_references_recorded();
3174 
3175         // CM reference discovery will be re-enabled if necessary.
3176       }
3177 
3178 #ifdef TRACESPINNING
3179       ParallelTaskTerminator::print_termination_counts();
3180 #endif
3181 
3182       gc_epilogue(false);
3183     }
3184 
3185     // Print the remainder of the GC log output.
3186     if (evacuation_failed()) {
3187       log_info(gc)("To-space exhausted");
3188     }
3189 
3190     g1_policy()->print_phases();
3191     heap_transition.print();
3192 
3193     // It is not yet to safe to tell the concurrent mark to
3194     // start as we have some optional output below. We don't want the
3195     // output from the concurrent mark thread interfering with this
3196     // logging output either.
3197 
3198     _hrm.verify_optional();
3199     _verifier->verify_region_sets_optional();
3200 
3201     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3202     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3203 
3204     print_heap_after_gc();
3205     print_heap_regions();
3206     trace_heap_after_gc(_gc_tracer_stw);
3207 
3208     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3209     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3210     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3211     // before any GC notifications are raised.
3212     g1mm()->update_sizes();
3213 
3214     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3215     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3216     _gc_timer_stw->register_gc_end();
3217     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3218   }
3219   // It should now be safe to tell the concurrent mark thread to start
3220   // without its logging output interfering with the logging output
3221   // that came from the pause.
3222 
3223   if (should_start_conc_mark) {
3224     // CAUTION: after the doConcurrentMark() call below,
3225     // the concurrent marking thread(s) could be running
3226     // concurrently with us. Make sure that anything after
3227     // this point does not assume that we are the only GC thread
3228     // running. Note: of course, the actual marking work will
3229     // not start until the safepoint itself is released in
3230     // SuspendibleThreadSet::desynchronize().
3231     doConcurrentMark();
3232   }
3233 
3234   return true;
3235 }
3236 
3237 void G1CollectedHeap::remove_self_forwarding_pointers() {
3238   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3239   workers()->run_task(&rsfp_task);
3240 }
3241 
3242 void G1CollectedHeap::restore_after_evac_failure() {
3243   double remove_self_forwards_start = os::elapsedTime();
3244 
3245   remove_self_forwarding_pointers();
3246   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3247   _preserved_marks_set.restore(&task_executor);
3248 
3249   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3250 }
3251 
3252 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3253   if (!_evacuation_failed) {
3254     _evacuation_failed = true;
3255   }
3256 
3257   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3258   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3259 }
3260 
3261 bool G1ParEvacuateFollowersClosure::offer_termination() {
3262   G1ParScanThreadState* const pss = par_scan_state();
3263   start_term_time();
3264   const bool res = terminator()->offer_termination();
3265   end_term_time();
3266   return res;
3267 }
3268 
3269 void G1ParEvacuateFollowersClosure::do_void() {
3270   G1ParScanThreadState* const pss = par_scan_state();
3271   pss->trim_queue();
3272   do {
3273     pss->steal_and_trim_queue(queues());
3274   } while (!offer_termination());
3275 }
3276 
3277 class G1ParTask : public AbstractGangTask {
3278 protected:
3279   G1CollectedHeap*         _g1h;
3280   G1ParScanThreadStateSet* _pss;
3281   RefToScanQueueSet*       _queues;
3282   G1RootProcessor*         _root_processor;
3283   ParallelTaskTerminator   _terminator;
3284   uint                     _n_workers;
3285 
3286 public:
3287   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3288     : AbstractGangTask("G1 collection"),
3289       _g1h(g1h),
3290       _pss(per_thread_states),
3291       _queues(task_queues),
3292       _root_processor(root_processor),
3293       _terminator(n_workers, _queues),
3294       _n_workers(n_workers)
3295   {}
3296 
3297   void work(uint worker_id) {
3298     if (worker_id >= _n_workers) return;  // no work needed this round
3299 
3300     double start_sec = os::elapsedTime();
3301     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3302 
3303     {
3304       ResourceMark rm;
3305       HandleMark   hm;
3306 
3307       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3308 
3309       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3310       pss->set_ref_processor(rp);
3311 
3312       double start_strong_roots_sec = os::elapsedTime();
3313 
3314       _root_processor->evacuate_roots(pss->closures(), worker_id);
3315 
3316       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3317       // treating the nmethods visited to act as roots for concurrent marking.
3318       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3319       // objects copied by the current evacuation.
3320       _g1h->g1_rem_set()->oops_into_collection_set_do(pss,
3321                                                       pss->closures()->weak_codeblobs(),
3322                                                       worker_id);
3323 
3324       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3325 
3326       double term_sec = 0.0;
3327       size_t evac_term_attempts = 0;
3328       {
3329         double start = os::elapsedTime();
3330         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3331         evac.do_void();
3332 
3333         evac_term_attempts = evac.term_attempts();
3334         term_sec = evac.term_time();
3335         double elapsed_sec = os::elapsedTime() - start;
3336         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3337         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3338         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3339       }
3340 
3341       assert(pss->queue_is_empty(), "should be empty");
3342 
3343       if (log_is_enabled(Debug, gc, task, stats)) {
3344         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3345         size_t lab_waste;
3346         size_t lab_undo_waste;
3347         pss->waste(lab_waste, lab_undo_waste);
3348         _g1h->print_termination_stats(worker_id,
3349                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3350                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3351                                       term_sec * 1000.0,                          /* evac term time */
3352                                       evac_term_attempts,                         /* evac term attempts */
3353                                       lab_waste,                                  /* alloc buffer waste */
3354                                       lab_undo_waste                              /* undo waste */
3355                                       );
3356       }
3357 
3358       // Close the inner scope so that the ResourceMark and HandleMark
3359       // destructors are executed here and are included as part of the
3360       // "GC Worker Time".
3361     }
3362     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3363   }
3364 };
3365 
3366 void G1CollectedHeap::print_termination_stats_hdr() {
3367   log_debug(gc, task, stats)("GC Termination Stats");
3368   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3369   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3370   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3371 }
3372 
3373 void G1CollectedHeap::print_termination_stats(uint worker_id,
3374                                               double elapsed_ms,
3375                                               double strong_roots_ms,
3376                                               double term_ms,
3377                                               size_t term_attempts,
3378                                               size_t alloc_buffer_waste,
3379                                               size_t undo_waste) const {
3380   log_debug(gc, task, stats)
3381               ("%3d %9.2f %9.2f %6.2f "
3382                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3383                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3384                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3385                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3386                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3387                alloc_buffer_waste * HeapWordSize / K,
3388                undo_waste * HeapWordSize / K);
3389 }
3390 
3391 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3392 private:
3393   BoolObjectClosure* _is_alive;
3394   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3395 
3396   int _initial_string_table_size;
3397   int _initial_symbol_table_size;
3398 
3399   bool  _process_strings;
3400   int _strings_processed;
3401   int _strings_removed;
3402 
3403   bool  _process_symbols;
3404   int _symbols_processed;
3405   int _symbols_removed;
3406 
3407   bool _process_string_dedup;
3408 
3409 public:
3410   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3411     AbstractGangTask("String/Symbol Unlinking"),
3412     _is_alive(is_alive),
3413     _dedup_closure(is_alive, NULL, false),
3414     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3415     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3416     _process_string_dedup(process_string_dedup) {
3417 
3418     _initial_string_table_size = StringTable::the_table()->table_size();
3419     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3420     if (process_strings) {
3421       StringTable::clear_parallel_claimed_index();
3422     }
3423     if (process_symbols) {
3424       SymbolTable::clear_parallel_claimed_index();
3425     }
3426   }
3427 
3428   ~G1StringAndSymbolCleaningTask() {
3429     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3430               "claim value %d after unlink less than initial string table size %d",
3431               StringTable::parallel_claimed_index(), _initial_string_table_size);
3432     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3433               "claim value %d after unlink less than initial symbol table size %d",
3434               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3435 
3436     log_info(gc, stringtable)(
3437         "Cleaned string and symbol table, "
3438         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3439         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3440         strings_processed(), strings_removed(),
3441         symbols_processed(), symbols_removed());
3442   }
3443 
3444   void work(uint worker_id) {
3445     int strings_processed = 0;
3446     int strings_removed = 0;
3447     int symbols_processed = 0;
3448     int symbols_removed = 0;
3449     if (_process_strings) {
3450       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3451       Atomic::add(strings_processed, &_strings_processed);
3452       Atomic::add(strings_removed, &_strings_removed);
3453     }
3454     if (_process_symbols) {
3455       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3456       Atomic::add(symbols_processed, &_symbols_processed);
3457       Atomic::add(symbols_removed, &_symbols_removed);
3458     }
3459     if (_process_string_dedup) {
3460       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3461     }
3462   }
3463 
3464   size_t strings_processed() const { return (size_t)_strings_processed; }
3465   size_t strings_removed()   const { return (size_t)_strings_removed; }
3466 
3467   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3468   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3469 };
3470 
3471 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3472 private:
3473   static Monitor* _lock;
3474 
3475   BoolObjectClosure* const _is_alive;
3476   const bool               _unloading_occurred;
3477   const uint               _num_workers;
3478 
3479   // Variables used to claim nmethods.
3480   CompiledMethod* _first_nmethod;
3481   CompiledMethod* volatile _claimed_nmethod;
3482 
3483   // The list of nmethods that need to be processed by the second pass.
3484   CompiledMethod* volatile _postponed_list;
3485   volatile uint            _num_entered_barrier;
3486 
3487  public:
3488   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3489       _is_alive(is_alive),
3490       _unloading_occurred(unloading_occurred),
3491       _num_workers(num_workers),
3492       _first_nmethod(NULL),
3493       _claimed_nmethod(NULL),
3494       _postponed_list(NULL),
3495       _num_entered_barrier(0)
3496   {
3497     CompiledMethod::increase_unloading_clock();
3498     // Get first alive nmethod
3499     CompiledMethodIterator iter = CompiledMethodIterator();
3500     if(iter.next_alive()) {
3501       _first_nmethod = iter.method();
3502     }
3503     _claimed_nmethod = _first_nmethod;
3504   }
3505 
3506   ~G1CodeCacheUnloadingTask() {
3507     CodeCache::verify_clean_inline_caches();
3508 
3509     CodeCache::set_needs_cache_clean(false);
3510     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3511 
3512     CodeCache::verify_icholder_relocations();
3513   }
3514 
3515  private:
3516   void add_to_postponed_list(CompiledMethod* nm) {
3517       CompiledMethod* old;
3518       do {
3519         old = _postponed_list;
3520         nm->set_unloading_next(old);
3521       } while (Atomic::cmpxchg(nm, &_postponed_list, old) != old);
3522   }
3523 
3524   void clean_nmethod(CompiledMethod* nm) {
3525     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3526 
3527     if (postponed) {
3528       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3529       add_to_postponed_list(nm);
3530     }
3531 
3532     // Mark that this thread has been cleaned/unloaded.
3533     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3534     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3535   }
3536 
3537   void clean_nmethod_postponed(CompiledMethod* nm) {
3538     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3539   }
3540 
3541   static const int MaxClaimNmethods = 16;
3542 
3543   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3544     CompiledMethod* first;
3545     CompiledMethodIterator last;
3546 
3547     do {
3548       *num_claimed_nmethods = 0;
3549 
3550       first = _claimed_nmethod;
3551       last = CompiledMethodIterator(first);
3552 
3553       if (first != NULL) {
3554 
3555         for (int i = 0; i < MaxClaimNmethods; i++) {
3556           if (!last.next_alive()) {
3557             break;
3558           }
3559           claimed_nmethods[i] = last.method();
3560           (*num_claimed_nmethods)++;
3561         }
3562       }
3563 
3564     } while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first);
3565   }
3566 
3567   CompiledMethod* claim_postponed_nmethod() {
3568     CompiledMethod* claim;
3569     CompiledMethod* next;
3570 
3571     do {
3572       claim = _postponed_list;
3573       if (claim == NULL) {
3574         return NULL;
3575       }
3576 
3577       next = claim->unloading_next();
3578 
3579     } while (Atomic::cmpxchg(next, &_postponed_list, claim) != claim);
3580 
3581     return claim;
3582   }
3583 
3584  public:
3585   // Mark that we're done with the first pass of nmethod cleaning.
3586   void barrier_mark(uint worker_id) {
3587     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3588     _num_entered_barrier++;
3589     if (_num_entered_barrier == _num_workers) {
3590       ml.notify_all();
3591     }
3592   }
3593 
3594   // See if we have to wait for the other workers to
3595   // finish their first-pass nmethod cleaning work.
3596   void barrier_wait(uint worker_id) {
3597     if (_num_entered_barrier < _num_workers) {
3598       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3599       while (_num_entered_barrier < _num_workers) {
3600           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3601       }
3602     }
3603   }
3604 
3605   // Cleaning and unloading of nmethods. Some work has to be postponed
3606   // to the second pass, when we know which nmethods survive.
3607   void work_first_pass(uint worker_id) {
3608     // The first nmethods is claimed by the first worker.
3609     if (worker_id == 0 && _first_nmethod != NULL) {
3610       clean_nmethod(_first_nmethod);
3611       _first_nmethod = NULL;
3612     }
3613 
3614     int num_claimed_nmethods;
3615     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3616 
3617     while (true) {
3618       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3619 
3620       if (num_claimed_nmethods == 0) {
3621         break;
3622       }
3623 
3624       for (int i = 0; i < num_claimed_nmethods; i++) {
3625         clean_nmethod(claimed_nmethods[i]);
3626       }
3627     }
3628   }
3629 
3630   void work_second_pass(uint worker_id) {
3631     CompiledMethod* nm;
3632     // Take care of postponed nmethods.
3633     while ((nm = claim_postponed_nmethod()) != NULL) {
3634       clean_nmethod_postponed(nm);
3635     }
3636   }
3637 };
3638 
3639 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3640 
3641 class G1KlassCleaningTask : public StackObj {
3642   BoolObjectClosure*                      _is_alive;
3643   volatile int                            _clean_klass_tree_claimed;
3644   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3645 
3646  public:
3647   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3648       _is_alive(is_alive),
3649       _clean_klass_tree_claimed(0),
3650       _klass_iterator() {
3651   }
3652 
3653  private:
3654   bool claim_clean_klass_tree_task() {
3655     if (_clean_klass_tree_claimed) {
3656       return false;
3657     }
3658 
3659     return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0;
3660   }
3661 
3662   InstanceKlass* claim_next_klass() {
3663     Klass* klass;
3664     do {
3665       klass =_klass_iterator.next_klass();
3666     } while (klass != NULL && !klass->is_instance_klass());
3667 
3668     // this can be null so don't call InstanceKlass::cast
3669     return static_cast<InstanceKlass*>(klass);
3670   }
3671 
3672 public:
3673 
3674   void clean_klass(InstanceKlass* ik) {
3675     ik->clean_weak_instanceklass_links(_is_alive);
3676   }
3677 
3678   void work() {
3679     ResourceMark rm;
3680 
3681     // One worker will clean the subklass/sibling klass tree.
3682     if (claim_clean_klass_tree_task()) {
3683       Klass::clean_subklass_tree(_is_alive);
3684     }
3685 
3686     // All workers will help cleaning the classes,
3687     InstanceKlass* klass;
3688     while ((klass = claim_next_klass()) != NULL) {
3689       clean_klass(klass);
3690     }
3691   }
3692 };
3693 
3694 class G1ResolvedMethodCleaningTask : public StackObj {
3695   BoolObjectClosure* _is_alive;
3696   volatile int       _resolved_method_task_claimed;
3697 public:
3698   G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3699       _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3700 
3701   bool claim_resolved_method_task() {
3702     if (_resolved_method_task_claimed) {
3703       return false;
3704     }
3705     return Atomic::cmpxchg(1, &_resolved_method_task_claimed, 0) == 0;
3706   }
3707 
3708   // These aren't big, one thread can do it all.
3709   void work() {
3710     if (claim_resolved_method_task()) {
3711       ResolvedMethodTable::unlink(_is_alive);
3712     }
3713   }
3714 };
3715 
3716 
3717 // To minimize the remark pause times, the tasks below are done in parallel.
3718 class G1ParallelCleaningTask : public AbstractGangTask {
3719 private:
3720   G1StringAndSymbolCleaningTask _string_symbol_task;
3721   G1CodeCacheUnloadingTask      _code_cache_task;
3722   G1KlassCleaningTask           _klass_cleaning_task;
3723   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3724 
3725 public:
3726   // The constructor is run in the VMThread.
3727   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3728       AbstractGangTask("Parallel Cleaning"),
3729       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3730       _code_cache_task(num_workers, is_alive, unloading_occurred),
3731       _klass_cleaning_task(is_alive),
3732       _resolved_method_cleaning_task(is_alive) {
3733   }
3734 
3735   // The parallel work done by all worker threads.
3736   void work(uint worker_id) {
3737     // Do first pass of code cache cleaning.
3738     _code_cache_task.work_first_pass(worker_id);
3739 
3740     // Let the threads mark that the first pass is done.
3741     _code_cache_task.barrier_mark(worker_id);
3742 
3743     // Clean the Strings and Symbols.
3744     _string_symbol_task.work(worker_id);
3745 
3746     // Clean unreferenced things in the ResolvedMethodTable
3747     _resolved_method_cleaning_task.work();
3748 
3749     // Wait for all workers to finish the first code cache cleaning pass.
3750     _code_cache_task.barrier_wait(worker_id);
3751 
3752     // Do the second code cache cleaning work, which realize on
3753     // the liveness information gathered during the first pass.
3754     _code_cache_task.work_second_pass(worker_id);
3755 
3756     // Clean all klasses that were not unloaded.
3757     _klass_cleaning_task.work();
3758   }
3759 };
3760 
3761 
3762 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3763                                         bool class_unloading_occurred) {
3764   uint n_workers = workers()->active_workers();
3765 
3766   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3767   workers()->run_task(&g1_unlink_task);
3768 }
3769 
3770 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3771                                        bool process_strings,
3772                                        bool process_symbols,
3773                                        bool process_string_dedup) {
3774   if (!process_strings && !process_symbols && !process_string_dedup) {
3775     // Nothing to clean.
3776     return;
3777   }
3778 
3779   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3780   workers()->run_task(&g1_unlink_task);
3781 
3782 }
3783 
3784 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3785  private:
3786   DirtyCardQueueSet* _queue;
3787   G1CollectedHeap* _g1h;
3788  public:
3789   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3790     _queue(queue), _g1h(g1h) { }
3791 
3792   virtual void work(uint worker_id) {
3793     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3794     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3795 
3796     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3797     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3798 
3799     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3800   }
3801 };
3802 
3803 void G1CollectedHeap::redirty_logged_cards() {
3804   double redirty_logged_cards_start = os::elapsedTime();
3805 
3806   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3807   dirty_card_queue_set().reset_for_par_iteration();
3808   workers()->run_task(&redirty_task);
3809 
3810   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3811   dcq.merge_bufferlists(&dirty_card_queue_set());
3812   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3813 
3814   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3815 }
3816 
3817 // Weak Reference Processing support
3818 
3819 // An always "is_alive" closure that is used to preserve referents.
3820 // If the object is non-null then it's alive.  Used in the preservation
3821 // of referent objects that are pointed to by reference objects
3822 // discovered by the CM ref processor.
3823 class G1AlwaysAliveClosure: public BoolObjectClosure {
3824   G1CollectedHeap* _g1;
3825 public:
3826   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3827   bool do_object_b(oop p) {
3828     if (p != NULL) {
3829       return true;
3830     }
3831     return false;
3832   }
3833 };
3834 
3835 bool G1STWIsAliveClosure::do_object_b(oop p) {
3836   // An object is reachable if it is outside the collection set,
3837   // or is inside and copied.
3838   return !_g1->is_in_cset(p) || p->is_forwarded();
3839 }
3840 
3841 // Non Copying Keep Alive closure
3842 class G1KeepAliveClosure: public OopClosure {
3843   G1CollectedHeap* _g1;
3844 public:
3845   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3846   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3847   void do_oop(oop* p) {
3848     oop obj = *p;
3849     assert(obj != NULL, "the caller should have filtered out NULL values");
3850 
3851     const InCSetState cset_state = _g1->in_cset_state(obj);
3852     if (!cset_state.is_in_cset_or_humongous()) {
3853       return;
3854     }
3855     if (cset_state.is_in_cset()) {
3856       assert( obj->is_forwarded(), "invariant" );
3857       *p = obj->forwardee();
3858     } else {
3859       assert(!obj->is_forwarded(), "invariant" );
3860       assert(cset_state.is_humongous(),
3861              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3862       _g1->set_humongous_is_live(obj);
3863     }
3864   }
3865 };
3866 
3867 // Copying Keep Alive closure - can be called from both
3868 // serial and parallel code as long as different worker
3869 // threads utilize different G1ParScanThreadState instances
3870 // and different queues.
3871 
3872 class G1CopyingKeepAliveClosure: public OopClosure {
3873   G1CollectedHeap*         _g1h;
3874   OopClosure*              _copy_non_heap_obj_cl;
3875   G1ParScanThreadState*    _par_scan_state;
3876 
3877 public:
3878   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3879                             OopClosure* non_heap_obj_cl,
3880                             G1ParScanThreadState* pss):
3881     _g1h(g1h),
3882     _copy_non_heap_obj_cl(non_heap_obj_cl),
3883     _par_scan_state(pss)
3884   {}
3885 
3886   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3887   virtual void do_oop(      oop* p) { do_oop_work(p); }
3888 
3889   template <class T> void do_oop_work(T* p) {
3890     oop obj = oopDesc::load_decode_heap_oop(p);
3891 
3892     if (_g1h->is_in_cset_or_humongous(obj)) {
3893       // If the referent object has been forwarded (either copied
3894       // to a new location or to itself in the event of an
3895       // evacuation failure) then we need to update the reference
3896       // field and, if both reference and referent are in the G1
3897       // heap, update the RSet for the referent.
3898       //
3899       // If the referent has not been forwarded then we have to keep
3900       // it alive by policy. Therefore we have copy the referent.
3901       //
3902       // If the reference field is in the G1 heap then we can push
3903       // on the PSS queue. When the queue is drained (after each
3904       // phase of reference processing) the object and it's followers
3905       // will be copied, the reference field set to point to the
3906       // new location, and the RSet updated. Otherwise we need to
3907       // use the the non-heap or metadata closures directly to copy
3908       // the referent object and update the pointer, while avoiding
3909       // updating the RSet.
3910 
3911       if (_g1h->is_in_g1_reserved(p)) {
3912         _par_scan_state->push_on_queue(p);
3913       } else {
3914         assert(!Metaspace::contains((const void*)p),
3915                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3916         _copy_non_heap_obj_cl->do_oop(p);
3917       }
3918     }
3919   }
3920 };
3921 
3922 // Serial drain queue closure. Called as the 'complete_gc'
3923 // closure for each discovered list in some of the
3924 // reference processing phases.
3925 
3926 class G1STWDrainQueueClosure: public VoidClosure {
3927 protected:
3928   G1CollectedHeap* _g1h;
3929   G1ParScanThreadState* _par_scan_state;
3930 
3931   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3932 
3933 public:
3934   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3935     _g1h(g1h),
3936     _par_scan_state(pss)
3937   { }
3938 
3939   void do_void() {
3940     G1ParScanThreadState* const pss = par_scan_state();
3941     pss->trim_queue();
3942   }
3943 };
3944 
3945 // Parallel Reference Processing closures
3946 
3947 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3948 // processing during G1 evacuation pauses.
3949 
3950 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3951 private:
3952   G1CollectedHeap*          _g1h;
3953   G1ParScanThreadStateSet*  _pss;
3954   RefToScanQueueSet*        _queues;
3955   WorkGang*                 _workers;
3956   uint                      _active_workers;
3957 
3958 public:
3959   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3960                            G1ParScanThreadStateSet* per_thread_states,
3961                            WorkGang* workers,
3962                            RefToScanQueueSet *task_queues,
3963                            uint n_workers) :
3964     _g1h(g1h),
3965     _pss(per_thread_states),
3966     _queues(task_queues),
3967     _workers(workers),
3968     _active_workers(n_workers)
3969   {
3970     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
3971   }
3972 
3973   // Executes the given task using concurrent marking worker threads.
3974   virtual void execute(ProcessTask& task);
3975   virtual void execute(EnqueueTask& task);
3976 };
3977 
3978 // Gang task for possibly parallel reference processing
3979 
3980 class G1STWRefProcTaskProxy: public AbstractGangTask {
3981   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3982   ProcessTask&     _proc_task;
3983   G1CollectedHeap* _g1h;
3984   G1ParScanThreadStateSet* _pss;
3985   RefToScanQueueSet* _task_queues;
3986   ParallelTaskTerminator* _terminator;
3987 
3988 public:
3989   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3990                         G1CollectedHeap* g1h,
3991                         G1ParScanThreadStateSet* per_thread_states,
3992                         RefToScanQueueSet *task_queues,
3993                         ParallelTaskTerminator* terminator) :
3994     AbstractGangTask("Process reference objects in parallel"),
3995     _proc_task(proc_task),
3996     _g1h(g1h),
3997     _pss(per_thread_states),
3998     _task_queues(task_queues),
3999     _terminator(terminator)
4000   {}
4001 
4002   virtual void work(uint worker_id) {
4003     // The reference processing task executed by a single worker.
4004     ResourceMark rm;
4005     HandleMark   hm;
4006 
4007     G1STWIsAliveClosure is_alive(_g1h);
4008 
4009     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4010     pss->set_ref_processor(NULL);
4011 
4012     // Keep alive closure.
4013     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4014 
4015     // Complete GC closure
4016     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4017 
4018     // Call the reference processing task's work routine.
4019     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4020 
4021     // Note we cannot assert that the refs array is empty here as not all
4022     // of the processing tasks (specifically phase2 - pp2_work) execute
4023     // the complete_gc closure (which ordinarily would drain the queue) so
4024     // the queue may not be empty.
4025   }
4026 };
4027 
4028 // Driver routine for parallel reference processing.
4029 // Creates an instance of the ref processing gang
4030 // task and has the worker threads execute it.
4031 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4032   assert(_workers != NULL, "Need parallel worker threads.");
4033 
4034   ParallelTaskTerminator terminator(_active_workers, _queues);
4035   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4036 
4037   _workers->run_task(&proc_task_proxy);
4038 }
4039 
4040 // Gang task for parallel reference enqueueing.
4041 
4042 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4043   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4044   EnqueueTask& _enq_task;
4045 
4046 public:
4047   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4048     AbstractGangTask("Enqueue reference objects in parallel"),
4049     _enq_task(enq_task)
4050   { }
4051 
4052   virtual void work(uint worker_id) {
4053     _enq_task.work(worker_id);
4054   }
4055 };
4056 
4057 // Driver routine for parallel reference enqueueing.
4058 // Creates an instance of the ref enqueueing gang
4059 // task and has the worker threads execute it.
4060 
4061 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4062   assert(_workers != NULL, "Need parallel worker threads.");
4063 
4064   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4065 
4066   _workers->run_task(&enq_task_proxy);
4067 }
4068 
4069 // End of weak reference support closures
4070 
4071 // Abstract task used to preserve (i.e. copy) any referent objects
4072 // that are in the collection set and are pointed to by reference
4073 // objects discovered by the CM ref processor.
4074 
4075 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4076 protected:
4077   G1CollectedHeap*         _g1h;
4078   G1ParScanThreadStateSet* _pss;
4079   RefToScanQueueSet*       _queues;
4080   ParallelTaskTerminator   _terminator;
4081   uint                     _n_workers;
4082 
4083 public:
4084   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4085     AbstractGangTask("ParPreserveCMReferents"),
4086     _g1h(g1h),
4087     _pss(per_thread_states),
4088     _queues(task_queues),
4089     _terminator(workers, _queues),
4090     _n_workers(workers)
4091   {
4092     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4093   }
4094 
4095   void work(uint worker_id) {
4096     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4097 
4098     ResourceMark rm;
4099     HandleMark   hm;
4100 
4101     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4102     pss->set_ref_processor(NULL);
4103     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4104 
4105     // Is alive closure
4106     G1AlwaysAliveClosure always_alive(_g1h);
4107 
4108     // Copying keep alive closure. Applied to referent objects that need
4109     // to be copied.
4110     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4111 
4112     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4113 
4114     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4115     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4116 
4117     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4118     // So this must be true - but assert just in case someone decides to
4119     // change the worker ids.
4120     assert(worker_id < limit, "sanity");
4121     assert(!rp->discovery_is_atomic(), "check this code");
4122 
4123     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4124     for (uint idx = worker_id; idx < limit; idx += stride) {
4125       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4126 
4127       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4128       while (iter.has_next()) {
4129         // Since discovery is not atomic for the CM ref processor, we
4130         // can see some null referent objects.
4131         iter.load_ptrs(DEBUG_ONLY(true));
4132         oop ref = iter.obj();
4133 
4134         // This will filter nulls.
4135         if (iter.is_referent_alive()) {
4136           iter.make_referent_alive();
4137         }
4138         iter.move_to_next();
4139       }
4140     }
4141 
4142     // Drain the queue - which may cause stealing
4143     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4144     drain_queue.do_void();
4145     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4146     assert(pss->queue_is_empty(), "should be");
4147   }
4148 };
4149 
4150 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4151   // Any reference objects, in the collection set, that were 'discovered'
4152   // by the CM ref processor should have already been copied (either by
4153   // applying the external root copy closure to the discovered lists, or
4154   // by following an RSet entry).
4155   //
4156   // But some of the referents, that are in the collection set, that these
4157   // reference objects point to may not have been copied: the STW ref
4158   // processor would have seen that the reference object had already
4159   // been 'discovered' and would have skipped discovering the reference,
4160   // but would not have treated the reference object as a regular oop.
4161   // As a result the copy closure would not have been applied to the
4162   // referent object.
4163   //
4164   // We need to explicitly copy these referent objects - the references
4165   // will be processed at the end of remarking.
4166   //
4167   // We also need to do this copying before we process the reference
4168   // objects discovered by the STW ref processor in case one of these
4169   // referents points to another object which is also referenced by an
4170   // object discovered by the STW ref processor.
4171   double preserve_cm_referents_time = 0.0;
4172 
4173   // To avoid spawning task when there is no work to do, check that
4174   // a concurrent cycle is active and that some references have been
4175   // discovered.
4176   if (concurrent_mark()->cm_thread()->during_cycle() &&
4177       ref_processor_cm()->has_discovered_references()) {
4178     double preserve_cm_referents_start = os::elapsedTime();
4179     uint no_of_gc_workers = workers()->active_workers();
4180     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4181                                                    per_thread_states,
4182                                                    no_of_gc_workers,
4183                                                    _task_queues);
4184     workers()->run_task(&keep_cm_referents);
4185     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4186   }
4187 
4188   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4189 }
4190 
4191 // Weak Reference processing during an evacuation pause (part 1).
4192 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4193   double ref_proc_start = os::elapsedTime();
4194 
4195   ReferenceProcessor* rp = _ref_processor_stw;
4196   assert(rp->discovery_enabled(), "should have been enabled");
4197 
4198   // Closure to test whether a referent is alive.
4199   G1STWIsAliveClosure is_alive(this);
4200 
4201   // Even when parallel reference processing is enabled, the processing
4202   // of JNI refs is serial and performed serially by the current thread
4203   // rather than by a worker. The following PSS will be used for processing
4204   // JNI refs.
4205 
4206   // Use only a single queue for this PSS.
4207   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4208   pss->set_ref_processor(NULL);
4209   assert(pss->queue_is_empty(), "pre-condition");
4210 
4211   // Keep alive closure.
4212   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4213 
4214   // Serial Complete GC closure
4215   G1STWDrainQueueClosure drain_queue(this, pss);
4216 
4217   // Setup the soft refs policy...
4218   rp->setup_policy(false);
4219 
4220   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4221 
4222   ReferenceProcessorStats stats;
4223   if (!rp->processing_is_mt()) {
4224     // Serial reference processing...
4225     stats = rp->process_discovered_references(&is_alive,
4226                                               &keep_alive,
4227                                               &drain_queue,
4228                                               NULL,
4229                                               pt);
4230   } else {
4231     uint no_of_gc_workers = workers()->active_workers();
4232 
4233     // Parallel reference processing
4234     assert(no_of_gc_workers <= rp->max_num_q(),
4235            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4236            no_of_gc_workers,  rp->max_num_q());
4237 
4238     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4239     stats = rp->process_discovered_references(&is_alive,
4240                                               &keep_alive,
4241                                               &drain_queue,
4242                                               &par_task_executor,
4243                                               pt);
4244   }
4245 
4246   _gc_tracer_stw->report_gc_reference_stats(stats);
4247 
4248   // We have completed copying any necessary live referent objects.
4249   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4250 
4251   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4252   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4253 }
4254 
4255 // Weak Reference processing during an evacuation pause (part 2).
4256 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4257   double ref_enq_start = os::elapsedTime();
4258 
4259   ReferenceProcessor* rp = _ref_processor_stw;
4260   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4261 
4262   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4263 
4264   // Now enqueue any remaining on the discovered lists on to
4265   // the pending list.
4266   if (!rp->processing_is_mt()) {
4267     // Serial reference processing...
4268     rp->enqueue_discovered_references(NULL, pt);
4269   } else {
4270     // Parallel reference enqueueing
4271 
4272     uint n_workers = workers()->active_workers();
4273 
4274     assert(n_workers <= rp->max_num_q(),
4275            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4276            n_workers,  rp->max_num_q());
4277 
4278     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4279     rp->enqueue_discovered_references(&par_task_executor, pt);
4280   }
4281 
4282   rp->verify_no_references_recorded();
4283   assert(!rp->discovery_enabled(), "should have been disabled");
4284 
4285   // If during an initial mark pause we install a pending list head which is not otherwise reachable
4286   // ensure that it is marked in the bitmap for concurrent marking to discover.
4287   if (collector_state()->during_initial_mark_pause()) {
4288     oop pll_head = Universe::reference_pending_list();
4289     if (pll_head != NULL) {
4290       _cm->mark_in_next_bitmap(pll_head);
4291     }
4292   }
4293 
4294   // FIXME
4295   // CM's reference processing also cleans up the string and symbol tables.
4296   // Should we do that here also? We could, but it is a serial operation
4297   // and could significantly increase the pause time.
4298 
4299   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4300   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4301 }
4302 
4303 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4304   double merge_pss_time_start = os::elapsedTime();
4305   per_thread_states->flush();
4306   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4307 }
4308 
4309 void G1CollectedHeap::pre_evacuate_collection_set() {
4310   _expand_heap_after_alloc_failure = true;
4311   _evacuation_failed = false;
4312 
4313   // Disable the hot card cache.
4314   _hot_card_cache->reset_hot_cache_claimed_index();
4315   _hot_card_cache->set_use_cache(false);
4316 
4317   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4318   _preserved_marks_set.assert_empty();
4319 
4320   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4321 
4322   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4323   if (collector_state()->during_initial_mark_pause()) {
4324     double start_clear_claimed_marks = os::elapsedTime();
4325 
4326     ClassLoaderDataGraph::clear_claimed_marks();
4327 
4328     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4329     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4330   }
4331 }
4332 
4333 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4334   // Should G1EvacuationFailureALot be in effect for this GC?
4335   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4336 
4337   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4338 
4339   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4340 
4341   double start_par_time_sec = os::elapsedTime();
4342   double end_par_time_sec;
4343 
4344   {
4345     const uint n_workers = workers()->active_workers();
4346     G1RootProcessor root_processor(this, n_workers);
4347     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4348 
4349     print_termination_stats_hdr();
4350 
4351     workers()->run_task(&g1_par_task);
4352     end_par_time_sec = os::elapsedTime();
4353 
4354     // Closing the inner scope will execute the destructor
4355     // for the G1RootProcessor object. We record the current
4356     // elapsed time before closing the scope so that time
4357     // taken for the destructor is NOT included in the
4358     // reported parallel time.
4359   }
4360 
4361   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4362   phase_times->record_par_time(par_time_ms);
4363 
4364   double code_root_fixup_time_ms =
4365         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4366   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4367 }
4368 
4369 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4370   // Process any discovered reference objects - we have
4371   // to do this _before_ we retire the GC alloc regions
4372   // as we may have to copy some 'reachable' referent
4373   // objects (and their reachable sub-graphs) that were
4374   // not copied during the pause.
4375   if (g1_policy()->should_process_references()) {
4376     preserve_cm_referents(per_thread_states);
4377     process_discovered_references(per_thread_states);
4378   } else {
4379     ref_processor_stw()->verify_no_references_recorded();
4380   }
4381 
4382   G1STWIsAliveClosure is_alive(this);
4383   G1KeepAliveClosure keep_alive(this);
4384 
4385   {
4386     double start = os::elapsedTime();
4387 
4388     WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
4389 
4390     double time_ms = (os::elapsedTime() - start) * 1000.0;
4391     g1_policy()->phase_times()->record_ref_proc_time(time_ms);
4392   }
4393 
4394   if (G1StringDedup::is_enabled()) {
4395     double fixup_start = os::elapsedTime();
4396 
4397     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4398 
4399     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4400     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4401   }
4402 
4403   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4404 
4405   if (evacuation_failed()) {
4406     restore_after_evac_failure();
4407 
4408     // Reset the G1EvacuationFailureALot counters and flags
4409     // Note: the values are reset only when an actual
4410     // evacuation failure occurs.
4411     NOT_PRODUCT(reset_evacuation_should_fail();)
4412   }
4413 
4414   _preserved_marks_set.assert_empty();
4415 
4416   // Enqueue any remaining references remaining on the STW
4417   // reference processor's discovered lists. We need to do
4418   // this after the card table is cleaned (and verified) as
4419   // the act of enqueueing entries on to the pending list
4420   // will log these updates (and dirty their associated
4421   // cards). We need these updates logged to update any
4422   // RSets.
4423   if (g1_policy()->should_process_references()) {
4424     enqueue_discovered_references(per_thread_states);
4425   } else {
4426     g1_policy()->phase_times()->record_ref_enq_time(0);
4427   }
4428 
4429   _allocator->release_gc_alloc_regions(evacuation_info);
4430 
4431   merge_per_thread_state_info(per_thread_states);
4432 
4433   // Reset and re-enable the hot card cache.
4434   // Note the counts for the cards in the regions in the
4435   // collection set are reset when the collection set is freed.
4436   _hot_card_cache->reset_hot_cache();
4437   _hot_card_cache->set_use_cache(true);
4438 
4439   purge_code_root_memory();
4440 
4441   redirty_logged_cards();
4442 #if COMPILER2_OR_JVMCI
4443   double start = os::elapsedTime();
4444   DerivedPointerTable::update_pointers();
4445   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4446 #endif
4447   g1_policy()->print_age_table();
4448 }
4449 
4450 void G1CollectedHeap::record_obj_copy_mem_stats() {
4451   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4452 
4453   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4454                                                create_g1_evac_summary(&_old_evac_stats));
4455 }
4456 
4457 void G1CollectedHeap::free_region(HeapRegion* hr,
4458                                   FreeRegionList* free_list,
4459                                   bool skip_remset,
4460                                   bool skip_hot_card_cache,
4461                                   bool locked) {
4462   assert(!hr->is_free(), "the region should not be free");
4463   assert(!hr->is_empty(), "the region should not be empty");
4464   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4465   assert(free_list != NULL, "pre-condition");
4466 
4467   if (G1VerifyBitmaps) {
4468     MemRegion mr(hr->bottom(), hr->end());
4469     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4470   }
4471 
4472   // Clear the card counts for this region.
4473   // Note: we only need to do this if the region is not young
4474   // (since we don't refine cards in young regions).
4475   if (!skip_hot_card_cache && !hr->is_young()) {
4476     _hot_card_cache->reset_card_counts(hr);
4477   }
4478   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4479   free_list->add_ordered(hr);
4480 }
4481 
4482 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4483                                             FreeRegionList* free_list,
4484                                             bool skip_remset) {
4485   assert(hr->is_humongous(), "this is only for humongous regions");
4486   assert(free_list != NULL, "pre-condition");
4487   hr->clear_humongous();
4488   free_region(hr, free_list, skip_remset);
4489 }
4490 
4491 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4492                                            const uint humongous_regions_removed) {
4493   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4494     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4495     _old_set.bulk_remove(old_regions_removed);
4496     _humongous_set.bulk_remove(humongous_regions_removed);
4497   }
4498 
4499 }
4500 
4501 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4502   assert(list != NULL, "list can't be null");
4503   if (!list->is_empty()) {
4504     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4505     _hrm.insert_list_into_free_list(list);
4506   }
4507 }
4508 
4509 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4510   decrease_used(bytes);
4511 }
4512 
4513 class G1ParScrubRemSetTask: public AbstractGangTask {
4514 protected:
4515   G1RemSet* _g1rs;
4516   HeapRegionClaimer _hrclaimer;
4517 
4518 public:
4519   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4520     AbstractGangTask("G1 ScrubRS"),
4521     _g1rs(g1_rs),
4522     _hrclaimer(num_workers) {
4523   }
4524 
4525   void work(uint worker_id) {
4526     _g1rs->scrub(worker_id, &_hrclaimer);
4527   }
4528 };
4529 
4530 void G1CollectedHeap::scrub_rem_set() {
4531   uint num_workers = workers()->active_workers();
4532   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4533   workers()->run_task(&g1_par_scrub_rs_task);
4534 }
4535 
4536 class G1FreeCollectionSetTask : public AbstractGangTask {
4537 private:
4538 
4539   // Closure applied to all regions in the collection set to do work that needs to
4540   // be done serially in a single thread.
4541   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4542   private:
4543     EvacuationInfo* _evacuation_info;
4544     const size_t* _surviving_young_words;
4545 
4546     // Bytes used in successfully evacuated regions before the evacuation.
4547     size_t _before_used_bytes;
4548     // Bytes used in unsucessfully evacuated regions before the evacuation
4549     size_t _after_used_bytes;
4550 
4551     size_t _bytes_allocated_in_old_since_last_gc;
4552 
4553     size_t _failure_used_words;
4554     size_t _failure_waste_words;
4555 
4556     FreeRegionList _local_free_list;
4557   public:
4558     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4559       HeapRegionClosure(),
4560       _evacuation_info(evacuation_info),
4561       _surviving_young_words(surviving_young_words),
4562       _before_used_bytes(0),
4563       _after_used_bytes(0),
4564       _bytes_allocated_in_old_since_last_gc(0),
4565       _failure_used_words(0),
4566       _failure_waste_words(0),
4567       _local_free_list("Local Region List for CSet Freeing") {
4568     }
4569 
4570     virtual bool doHeapRegion(HeapRegion* r) {
4571       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4572 
4573       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4574       g1h->clear_in_cset(r);
4575 
4576       if (r->is_young()) {
4577         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4578                "Young index %d is wrong for region %u of type %s with %u young regions",
4579                r->young_index_in_cset(),
4580                r->hrm_index(),
4581                r->get_type_str(),
4582                g1h->collection_set()->young_region_length());
4583         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4584         r->record_surv_words_in_group(words_survived);
4585       }
4586 
4587       if (!r->evacuation_failed()) {
4588         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4589         _before_used_bytes += r->used();
4590         g1h->free_region(r,
4591                          &_local_free_list,
4592                          true, /* skip_remset */
4593                          true, /* skip_hot_card_cache */
4594                          true  /* locked */);
4595       } else {
4596         r->uninstall_surv_rate_group();
4597         r->set_young_index_in_cset(-1);
4598         r->set_evacuation_failed(false);
4599         // When moving a young gen region to old gen, we "allocate" that whole region
4600         // there. This is in addition to any already evacuated objects. Notify the
4601         // policy about that.
4602         // Old gen regions do not cause an additional allocation: both the objects
4603         // still in the region and the ones already moved are accounted for elsewhere.
4604         if (r->is_young()) {
4605           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4606         }
4607         // The region is now considered to be old.
4608         r->set_old();
4609         // Do some allocation statistics accounting. Regions that failed evacuation
4610         // are always made old, so there is no need to update anything in the young
4611         // gen statistics, but we need to update old gen statistics.
4612         size_t used_words = r->marked_bytes() / HeapWordSize;
4613 
4614         _failure_used_words += used_words;
4615         _failure_waste_words += HeapRegion::GrainWords - used_words;
4616 
4617         g1h->old_set_add(r);
4618         _after_used_bytes += r->used();
4619       }
4620       return false;
4621     }
4622 
4623     void complete_work() {
4624       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4625 
4626       _evacuation_info->set_regions_freed(_local_free_list.length());
4627       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4628 
4629       g1h->prepend_to_freelist(&_local_free_list);
4630       g1h->decrement_summary_bytes(_before_used_bytes);
4631 
4632       G1Policy* policy = g1h->g1_policy();
4633       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4634 
4635       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4636     }
4637   };
4638 
4639   G1CollectionSet* _collection_set;
4640   G1SerialFreeCollectionSetClosure _cl;
4641   const size_t* _surviving_young_words;
4642 
4643   size_t _rs_lengths;
4644 
4645   volatile jint _serial_work_claim;
4646 
4647   struct WorkItem {
4648     uint region_idx;
4649     bool is_young;
4650     bool evacuation_failed;
4651 
4652     WorkItem(HeapRegion* r) {
4653       region_idx = r->hrm_index();
4654       is_young = r->is_young();
4655       evacuation_failed = r->evacuation_failed();
4656     }
4657   };
4658 
4659   volatile size_t _parallel_work_claim;
4660   size_t _num_work_items;
4661   WorkItem* _work_items;
4662 
4663   void do_serial_work() {
4664     // Need to grab the lock to be allowed to modify the old region list.
4665     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4666     _collection_set->iterate(&_cl);
4667   }
4668 
4669   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4670     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4671 
4672     HeapRegion* r = g1h->region_at(region_idx);
4673     assert(!g1h->is_on_master_free_list(r), "sanity");
4674 
4675     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4676 
4677     if (!is_young) {
4678       g1h->_hot_card_cache->reset_card_counts(r);
4679     }
4680 
4681     if (!evacuation_failed) {
4682       r->rem_set()->clear_locked();
4683     }
4684   }
4685 
4686   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4687   private:
4688     size_t _cur_idx;
4689     WorkItem* _work_items;
4690   public:
4691     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4692 
4693     virtual bool doHeapRegion(HeapRegion* r) {
4694       _work_items[_cur_idx++] = WorkItem(r);
4695       return false;
4696     }
4697   };
4698 
4699   void prepare_work() {
4700     G1PrepareFreeCollectionSetClosure cl(_work_items);
4701     _collection_set->iterate(&cl);
4702   }
4703 
4704   void complete_work() {
4705     _cl.complete_work();
4706 
4707     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4708     policy->record_max_rs_lengths(_rs_lengths);
4709     policy->cset_regions_freed();
4710   }
4711 public:
4712   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4713     AbstractGangTask("G1 Free Collection Set"),
4714     _cl(evacuation_info, surviving_young_words),
4715     _collection_set(collection_set),
4716     _surviving_young_words(surviving_young_words),
4717     _serial_work_claim(0),
4718     _rs_lengths(0),
4719     _parallel_work_claim(0),
4720     _num_work_items(collection_set->region_length()),
4721     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4722     prepare_work();
4723   }
4724 
4725   ~G1FreeCollectionSetTask() {
4726     complete_work();
4727     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4728   }
4729 
4730   // Chunk size for work distribution. The chosen value has been determined experimentally
4731   // to be a good tradeoff between overhead and achievable parallelism.
4732   static uint chunk_size() { return 32; }
4733 
4734   virtual void work(uint worker_id) {
4735     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4736 
4737     // Claim serial work.
4738     if (_serial_work_claim == 0) {
4739       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4740       if (value == 0) {
4741         double serial_time = os::elapsedTime();
4742         do_serial_work();
4743         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4744       }
4745     }
4746 
4747     // Start parallel work.
4748     double young_time = 0.0;
4749     bool has_young_time = false;
4750     double non_young_time = 0.0;
4751     bool has_non_young_time = false;
4752 
4753     while (true) {
4754       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4755       size_t cur = end - chunk_size();
4756 
4757       if (cur >= _num_work_items) {
4758         break;
4759       }
4760 
4761       double start_time = os::elapsedTime();
4762 
4763       end = MIN2(end, _num_work_items);
4764 
4765       for (; cur < end; cur++) {
4766         bool is_young = _work_items[cur].is_young;
4767 
4768         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4769 
4770         double end_time = os::elapsedTime();
4771         double time_taken = end_time - start_time;
4772         if (is_young) {
4773           young_time += time_taken;
4774           has_young_time = true;
4775         } else {
4776           non_young_time += time_taken;
4777           has_non_young_time = true;
4778         }
4779         start_time = end_time;
4780       }
4781     }
4782 
4783     if (has_young_time) {
4784       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4785     }
4786     if (has_non_young_time) {
4787       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4788     }
4789   }
4790 };
4791 
4792 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4793   _eden.clear();
4794 
4795   double free_cset_start_time = os::elapsedTime();
4796 
4797   {
4798     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4799     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4800 
4801     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4802 
4803     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4804                         cl.name(),
4805                         num_workers,
4806                         _collection_set.region_length());
4807     workers()->run_task(&cl, num_workers);
4808   }
4809   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4810 
4811   collection_set->clear();
4812 }
4813 
4814 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4815  private:
4816   FreeRegionList* _free_region_list;
4817   HeapRegionSet* _proxy_set;
4818   uint _humongous_objects_reclaimed;
4819   uint _humongous_regions_reclaimed;
4820   size_t _freed_bytes;
4821  public:
4822 
4823   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4824     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4825   }
4826 
4827   virtual bool doHeapRegion(HeapRegion* r) {
4828     if (!r->is_starts_humongous()) {
4829       return false;
4830     }
4831 
4832     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4833 
4834     oop obj = (oop)r->bottom();
4835     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4836 
4837     // The following checks whether the humongous object is live are sufficient.
4838     // The main additional check (in addition to having a reference from the roots
4839     // or the young gen) is whether the humongous object has a remembered set entry.
4840     //
4841     // A humongous object cannot be live if there is no remembered set for it
4842     // because:
4843     // - there can be no references from within humongous starts regions referencing
4844     // the object because we never allocate other objects into them.
4845     // (I.e. there are no intra-region references that may be missed by the
4846     // remembered set)
4847     // - as soon there is a remembered set entry to the humongous starts region
4848     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4849     // until the end of a concurrent mark.
4850     //
4851     // It is not required to check whether the object has been found dead by marking
4852     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4853     // all objects allocated during that time are considered live.
4854     // SATB marking is even more conservative than the remembered set.
4855     // So if at this point in the collection there is no remembered set entry,
4856     // nobody has a reference to it.
4857     // At the start of collection we flush all refinement logs, and remembered sets
4858     // are completely up-to-date wrt to references to the humongous object.
4859     //
4860     // Other implementation considerations:
4861     // - never consider object arrays at this time because they would pose
4862     // considerable effort for cleaning up the the remembered sets. This is
4863     // required because stale remembered sets might reference locations that
4864     // are currently allocated into.
4865     uint region_idx = r->hrm_index();
4866     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4867         !r->rem_set()->is_empty()) {
4868       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4869                                region_idx,
4870                                (size_t)obj->size() * HeapWordSize,
4871                                p2i(r->bottom()),
4872                                r->rem_set()->occupied(),
4873                                r->rem_set()->strong_code_roots_list_length(),
4874                                next_bitmap->is_marked(r->bottom()),
4875                                g1h->is_humongous_reclaim_candidate(region_idx),
4876                                obj->is_typeArray()
4877                               );
4878       return false;
4879     }
4880 
4881     guarantee(obj->is_typeArray(),
4882               "Only eagerly reclaiming type arrays is supported, but the object "
4883               PTR_FORMAT " is not.", p2i(r->bottom()));
4884 
4885     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4886                              region_idx,
4887                              (size_t)obj->size() * HeapWordSize,
4888                              p2i(r->bottom()),
4889                              r->rem_set()->occupied(),
4890                              r->rem_set()->strong_code_roots_list_length(),
4891                              next_bitmap->is_marked(r->bottom()),
4892                              g1h->is_humongous_reclaim_candidate(region_idx),
4893                              obj->is_typeArray()
4894                             );
4895 
4896     // Need to clear mark bit of the humongous object if already set.
4897     if (next_bitmap->is_marked(r->bottom())) {
4898       next_bitmap->clear(r->bottom());
4899     }
4900     _humongous_objects_reclaimed++;
4901     do {
4902       HeapRegion* next = g1h->next_region_in_humongous(r);
4903       _freed_bytes += r->used();
4904       r->set_containing_set(NULL);
4905       _humongous_regions_reclaimed++;
4906       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
4907       r = next;
4908     } while (r != NULL);
4909 
4910     return false;
4911   }
4912 
4913   uint humongous_objects_reclaimed() {
4914     return _humongous_objects_reclaimed;
4915   }
4916 
4917   uint humongous_regions_reclaimed() {
4918     return _humongous_regions_reclaimed;
4919   }
4920 
4921   size_t bytes_freed() const {
4922     return _freed_bytes;
4923   }
4924 };
4925 
4926 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4927   assert_at_safepoint(true);
4928 
4929   if (!G1EagerReclaimHumongousObjects ||
4930       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4931     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4932     return;
4933   }
4934 
4935   double start_time = os::elapsedTime();
4936 
4937   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4938 
4939   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4940   heap_region_iterate(&cl);
4941 
4942   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4943 
4944   G1HRPrinter* hrp = hr_printer();
4945   if (hrp->is_active()) {
4946     FreeRegionListIterator iter(&local_cleanup_list);
4947     while (iter.more_available()) {
4948       HeapRegion* hr = iter.get_next();
4949       hrp->cleanup(hr);
4950     }
4951   }
4952 
4953   prepend_to_freelist(&local_cleanup_list);
4954   decrement_summary_bytes(cl.bytes_freed());
4955 
4956   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4957                                                                     cl.humongous_objects_reclaimed());
4958 }
4959 
4960 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4961 public:
4962   virtual bool doHeapRegion(HeapRegion* r) {
4963     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4964     G1CollectedHeap::heap()->clear_in_cset(r);
4965     r->set_young_index_in_cset(-1);
4966     return false;
4967   }
4968 };
4969 
4970 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4971   G1AbandonCollectionSetClosure cl;
4972   collection_set->iterate(&cl);
4973 
4974   collection_set->clear();
4975   collection_set->stop_incremental_building();
4976 }
4977 
4978 void G1CollectedHeap::set_free_regions_coming() {
4979   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
4980 
4981   assert(!free_regions_coming(), "pre-condition");
4982   _free_regions_coming = true;
4983 }
4984 
4985 void G1CollectedHeap::reset_free_regions_coming() {
4986   assert(free_regions_coming(), "pre-condition");
4987 
4988   {
4989     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4990     _free_regions_coming = false;
4991     SecondaryFreeList_lock->notify_all();
4992   }
4993 
4994   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
4995 }
4996 
4997 void G1CollectedHeap::wait_while_free_regions_coming() {
4998   // Most of the time we won't have to wait, so let's do a quick test
4999   // first before we take the lock.
5000   if (!free_regions_coming()) {
5001     return;
5002   }
5003 
5004   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5005 
5006   {
5007     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5008     while (free_regions_coming()) {
5009       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5010     }
5011   }
5012 
5013   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5014 }
5015 
5016 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5017   return _allocator->is_retained_old_region(hr);
5018 }
5019 
5020 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5021   _eden.add(hr);
5022   _g1_policy->set_region_eden(hr);
5023 }
5024 
5025 #ifdef ASSERT
5026 
5027 class NoYoungRegionsClosure: public HeapRegionClosure {
5028 private:
5029   bool _success;
5030 public:
5031   NoYoungRegionsClosure() : _success(true) { }
5032   bool doHeapRegion(HeapRegion* r) {
5033     if (r->is_young()) {
5034       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5035                             p2i(r->bottom()), p2i(r->end()));
5036       _success = false;
5037     }
5038     return false;
5039   }
5040   bool success() { return _success; }
5041 };
5042 
5043 bool G1CollectedHeap::check_young_list_empty() {
5044   bool ret = (young_regions_count() == 0);
5045 
5046   NoYoungRegionsClosure closure;
5047   heap_region_iterate(&closure);
5048   ret = ret && closure.success();
5049 
5050   return ret;
5051 }
5052 
5053 #endif // ASSERT
5054 
5055 class TearDownRegionSetsClosure : public HeapRegionClosure {
5056 private:
5057   HeapRegionSet *_old_set;
5058 
5059 public:
5060   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5061 
5062   bool doHeapRegion(HeapRegion* r) {
5063     if (r->is_old()) {
5064       _old_set->remove(r);
5065     } else if(r->is_young()) {
5066       r->uninstall_surv_rate_group();
5067     } else {
5068       // We ignore free regions, we'll empty the free list afterwards.
5069       // We ignore humongous regions, we're not tearing down the
5070       // humongous regions set.
5071       assert(r->is_free() || r->is_humongous(),
5072              "it cannot be another type");
5073     }
5074     return false;
5075   }
5076 
5077   ~TearDownRegionSetsClosure() {
5078     assert(_old_set->is_empty(), "post-condition");
5079   }
5080 };
5081 
5082 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5083   assert_at_safepoint(true /* should_be_vm_thread */);
5084 
5085   if (!free_list_only) {
5086     TearDownRegionSetsClosure cl(&_old_set);
5087     heap_region_iterate(&cl);
5088 
5089     // Note that emptying the _young_list is postponed and instead done as
5090     // the first step when rebuilding the regions sets again. The reason for
5091     // this is that during a full GC string deduplication needs to know if
5092     // a collected region was young or old when the full GC was initiated.
5093   }
5094   _hrm.remove_all_free_regions();
5095 }
5096 
5097 void G1CollectedHeap::increase_used(size_t bytes) {
5098   _summary_bytes_used += bytes;
5099 }
5100 
5101 void G1CollectedHeap::decrease_used(size_t bytes) {
5102   assert(_summary_bytes_used >= bytes,
5103          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5104          _summary_bytes_used, bytes);
5105   _summary_bytes_used -= bytes;
5106 }
5107 
5108 void G1CollectedHeap::set_used(size_t bytes) {
5109   _summary_bytes_used = bytes;
5110 }
5111 
5112 class RebuildRegionSetsClosure : public HeapRegionClosure {
5113 private:
5114   bool            _free_list_only;
5115   HeapRegionSet*   _old_set;
5116   HeapRegionManager*   _hrm;
5117   size_t          _total_used;
5118 
5119 public:
5120   RebuildRegionSetsClosure(bool free_list_only,
5121                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5122     _free_list_only(free_list_only),
5123     _old_set(old_set), _hrm(hrm), _total_used(0) {
5124     assert(_hrm->num_free_regions() == 0, "pre-condition");
5125     if (!free_list_only) {
5126       assert(_old_set->is_empty(), "pre-condition");
5127     }
5128   }
5129 
5130   bool doHeapRegion(HeapRegion* r) {
5131     if (r->is_empty()) {
5132       // Add free regions to the free list
5133       r->set_free();
5134       r->set_allocation_context(AllocationContext::system());
5135       _hrm->insert_into_free_list(r);
5136     } else if (!_free_list_only) {
5137 
5138       if (r->is_humongous()) {
5139         // We ignore humongous regions. We left the humongous set unchanged.
5140       } else {
5141         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5142         // We now move all (non-humongous, non-old) regions to old gen, and register them as such.
5143         r->move_to_old();
5144         _old_set->add(r);
5145       }
5146       _total_used += r->used();
5147     }
5148 
5149     return false;
5150   }
5151 
5152   size_t total_used() {
5153     return _total_used;
5154   }
5155 };
5156 
5157 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5158   assert_at_safepoint(true /* should_be_vm_thread */);
5159 
5160   if (!free_list_only) {
5161     _eden.clear();
5162     _survivor.clear();
5163   }
5164 
5165   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5166   heap_region_iterate(&cl);
5167 
5168   if (!free_list_only) {
5169     set_used(cl.total_used());
5170     if (_archive_allocator != NULL) {
5171       _archive_allocator->clear_used();
5172     }
5173   }
5174   assert(used_unlocked() == recalculate_used(),
5175          "inconsistent used_unlocked(), "
5176          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5177          used_unlocked(), recalculate_used());
5178 }
5179 
5180 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5181   HeapRegion* hr = heap_region_containing(p);
5182   return hr->is_in(p);
5183 }
5184 
5185 // Methods for the mutator alloc region
5186 
5187 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5188                                                       bool force) {
5189   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5190   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5191   if (force || should_allocate) {
5192     HeapRegion* new_alloc_region = new_region(word_size,
5193                                               false /* is_old */,
5194                                               false /* do_expand */);
5195     if (new_alloc_region != NULL) {
5196       set_region_short_lived_locked(new_alloc_region);
5197       _hr_printer.alloc(new_alloc_region, !should_allocate);
5198       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5199       return new_alloc_region;
5200     }
5201   }
5202   return NULL;
5203 }
5204 
5205 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5206                                                   size_t allocated_bytes) {
5207   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5208   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5209 
5210   collection_set()->add_eden_region(alloc_region);
5211   increase_used(allocated_bytes);
5212   _hr_printer.retire(alloc_region);
5213   // We update the eden sizes here, when the region is retired,
5214   // instead of when it's allocated, since this is the point that its
5215   // used space has been recored in _summary_bytes_used.
5216   g1mm()->update_eden_size();
5217 }
5218 
5219 // Methods for the GC alloc regions
5220 
5221 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5222   if (dest.is_old()) {
5223     return true;
5224   } else {
5225     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5226   }
5227 }
5228 
5229 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5230   assert(FreeList_lock->owned_by_self(), "pre-condition");
5231 
5232   if (!has_more_regions(dest)) {
5233     return NULL;
5234   }
5235 
5236   const bool is_survivor = dest.is_young();
5237 
5238   HeapRegion* new_alloc_region = new_region(word_size,
5239                                             !is_survivor,
5240                                             true /* do_expand */);
5241   if (new_alloc_region != NULL) {
5242     // We really only need to do this for old regions given that we
5243     // should never scan survivors. But it doesn't hurt to do it
5244     // for survivors too.
5245     new_alloc_region->record_timestamp();
5246     if (is_survivor) {
5247       new_alloc_region->set_survivor();
5248       _survivor.add(new_alloc_region);
5249       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5250     } else {
5251       new_alloc_region->set_old();
5252       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5253     }
5254     _hr_printer.alloc(new_alloc_region);
5255     bool during_im = collector_state()->during_initial_mark_pause();
5256     new_alloc_region->note_start_of_copying(during_im);
5257     return new_alloc_region;
5258   }
5259   return NULL;
5260 }
5261 
5262 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5263                                              size_t allocated_bytes,
5264                                              InCSetState dest) {
5265   bool during_im = collector_state()->during_initial_mark_pause();
5266   alloc_region->note_end_of_copying(during_im);
5267   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5268   if (dest.is_old()) {
5269     _old_set.add(alloc_region);
5270   }
5271   _hr_printer.retire(alloc_region);
5272 }
5273 
5274 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5275   bool expanded = false;
5276   uint index = _hrm.find_highest_free(&expanded);
5277 
5278   if (index != G1_NO_HRM_INDEX) {
5279     if (expanded) {
5280       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5281                                 HeapRegion::GrainWords * HeapWordSize);
5282     }
5283     _hrm.allocate_free_regions_starting_at(index, 1);
5284     return region_at(index);
5285   }
5286   return NULL;
5287 }
5288 
5289 // Optimized nmethod scanning
5290 
5291 class RegisterNMethodOopClosure: public OopClosure {
5292   G1CollectedHeap* _g1h;
5293   nmethod* _nm;
5294 
5295   template <class T> void do_oop_work(T* p) {
5296     T heap_oop = oopDesc::load_heap_oop(p);
5297     if (!oopDesc::is_null(heap_oop)) {
5298       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5299       HeapRegion* hr = _g1h->heap_region_containing(obj);
5300       assert(!hr->is_continues_humongous(),
5301              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5302              " starting at " HR_FORMAT,
5303              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5304 
5305       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5306       hr->add_strong_code_root_locked(_nm);
5307     }
5308   }
5309 
5310 public:
5311   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5312     _g1h(g1h), _nm(nm) {}
5313 
5314   void do_oop(oop* p)       { do_oop_work(p); }
5315   void do_oop(narrowOop* p) { do_oop_work(p); }
5316 };
5317 
5318 class UnregisterNMethodOopClosure: public OopClosure {
5319   G1CollectedHeap* _g1h;
5320   nmethod* _nm;
5321 
5322   template <class T> void do_oop_work(T* p) {
5323     T heap_oop = oopDesc::load_heap_oop(p);
5324     if (!oopDesc::is_null(heap_oop)) {
5325       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5326       HeapRegion* hr = _g1h->heap_region_containing(obj);
5327       assert(!hr->is_continues_humongous(),
5328              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5329              " starting at " HR_FORMAT,
5330              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5331 
5332       hr->remove_strong_code_root(_nm);
5333     }
5334   }
5335 
5336 public:
5337   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5338     _g1h(g1h), _nm(nm) {}
5339 
5340   void do_oop(oop* p)       { do_oop_work(p); }
5341   void do_oop(narrowOop* p) { do_oop_work(p); }
5342 };
5343 
5344 // Returns true if the reference points to an object that
5345 // can move in an incremental collection.
5346 bool G1CollectedHeap::is_scavengable(oop obj) {
5347   HeapRegion* hr = heap_region_containing(obj);
5348   return !hr->is_pinned();
5349 }
5350 
5351 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5352   guarantee(nm != NULL, "sanity");
5353   RegisterNMethodOopClosure reg_cl(this, nm);
5354   nm->oops_do(&reg_cl);
5355 }
5356 
5357 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5358   guarantee(nm != NULL, "sanity");
5359   UnregisterNMethodOopClosure reg_cl(this, nm);
5360   nm->oops_do(&reg_cl, true);
5361 }
5362 
5363 void G1CollectedHeap::purge_code_root_memory() {
5364   double purge_start = os::elapsedTime();
5365   G1CodeRootSet::purge();
5366   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5367   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5368 }
5369 
5370 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5371   G1CollectedHeap* _g1h;
5372 
5373 public:
5374   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5375     _g1h(g1h) {}
5376 
5377   void do_code_blob(CodeBlob* cb) {
5378     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5379     if (nm == NULL) {
5380       return;
5381     }
5382 
5383     if (ScavengeRootsInCode) {
5384       _g1h->register_nmethod(nm);
5385     }
5386   }
5387 };
5388 
5389 void G1CollectedHeap::rebuild_strong_code_roots() {
5390   RebuildStrongCodeRootClosure blob_cl(this);
5391   CodeCache::blobs_do(&blob_cl);
5392 }