1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "gc/shared/collectedHeap.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "gc/shared/strongRootsScope.hpp"
  38 #include "gc/shared/workgroup.hpp"
  39 #include "interpreter/interpreter.hpp"
  40 #include "logging/log.hpp"
  41 #include "logging/logStream.hpp"
  42 #include "memory/resourceArea.hpp"
  43 #include "memory/universe.inline.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "oops/symbol.hpp"
  46 #include "runtime/atomic.hpp"
  47 #include "runtime/compilationPolicy.hpp"
  48 #include "runtime/deoptimization.hpp"
  49 #include "runtime/frame.inline.hpp"
  50 #include "runtime/interfaceSupport.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/orderAccess.inline.hpp"
  53 #include "runtime/osThread.hpp"
  54 #include "runtime/safepoint.hpp"
  55 #include "runtime/safepointMechanism.inline.hpp"
  56 #include "runtime/signature.hpp"
  57 #include "runtime/stubCodeGenerator.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/sweeper.hpp"
  60 #include "runtime/synchronizer.hpp"
  61 #include "runtime/thread.inline.hpp"
  62 #include "runtime/threadSMR.hpp"
  63 #include "runtime/timerTrace.hpp"
  64 #include "services/runtimeService.hpp"
  65 #include "trace/tracing.hpp"
  66 #include "trace/traceMacros.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/macros.hpp"
  69 #ifdef COMPILER1
  70 #include "c1/c1_globals.hpp"
  71 #endif
  72 
  73 // --------------------------------------------------------------------------------------------------
  74 // Implementation of Safepoint begin/end
  75 
  76 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
  77 volatile int  SafepointSynchronize::_waiting_to_block = 0;
  78 volatile int SafepointSynchronize::_safepoint_counter = 0;
  79 int SafepointSynchronize::_current_jni_active_count = 0;
  80 long  SafepointSynchronize::_end_of_last_safepoint = 0;
  81 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
  82 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
  83 static bool timeout_error_printed = false;
  84 
  85 // Roll all threads forward to a safepoint and suspend them all
  86 void SafepointSynchronize::begin() {
  87   EventSafepointBegin begin_event;
  88   Thread* myThread = Thread::current();
  89   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
  90 
  91   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
  92     _safepoint_begin_time = os::javaTimeNanos();
  93     _ts_of_current_safepoint = tty->time_stamp().seconds();
  94   }
  95 
  96   Universe::heap()->safepoint_synchronize_begin();
  97 
  98   // By getting the Threads_lock, we assure that no threads are about to start or
  99   // exit. It is released again in SafepointSynchronize::end().
 100   Threads_lock->lock();
 101 
 102   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
 103 
 104   int nof_threads = Threads::number_of_threads();
 105 
 106   log_debug(safepoint)("Safepoint synchronization initiated. (%d)", nof_threads);
 107 
 108   RuntimeService::record_safepoint_begin();
 109 
 110   MutexLocker mu(Safepoint_lock);
 111 
 112   // Reset the count of active JNI critical threads
 113   _current_jni_active_count = 0;
 114 
 115   // Set number of threads to wait for, before we initiate the callbacks
 116   _waiting_to_block = nof_threads;
 117   TryingToBlock     = 0 ;
 118   int still_running = nof_threads;
 119 
 120   // Save the starting time, so that it can be compared to see if this has taken
 121   // too long to complete.
 122   jlong safepoint_limit_time = 0;
 123   timeout_error_printed = false;
 124 
 125   // PrintSafepointStatisticsTimeout can be specified separately. When
 126   // specified, PrintSafepointStatistics will be set to true in
 127   // deferred_initialize_stat method. The initialization has to be done
 128   // early enough to avoid any races. See bug 6880029 for details.
 129   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 130     deferred_initialize_stat();
 131   }
 132 
 133   // Begin the process of bringing the system to a safepoint.
 134   // Java threads can be in several different states and are
 135   // stopped by different mechanisms:
 136   //
 137   //  1. Running interpreted
 138   //     The interpreter dispatch table is changed to force it to
 139   //     check for a safepoint condition between bytecodes.
 140   //  2. Running in native code
 141   //     When returning from the native code, a Java thread must check
 142   //     the safepoint _state to see if we must block.  If the
 143   //     VM thread sees a Java thread in native, it does
 144   //     not wait for this thread to block.  The order of the memory
 145   //     writes and reads of both the safepoint state and the Java
 146   //     threads state is critical.  In order to guarantee that the
 147   //     memory writes are serialized with respect to each other,
 148   //     the VM thread issues a memory barrier instruction
 149   //     (on MP systems).  In order to avoid the overhead of issuing
 150   //     a memory barrier for each Java thread making native calls, each Java
 151   //     thread performs a write to a single memory page after changing
 152   //     the thread state.  The VM thread performs a sequence of
 153   //     mprotect OS calls which forces all previous writes from all
 154   //     Java threads to be serialized.  This is done in the
 155   //     os::serialize_thread_states() call.  This has proven to be
 156   //     much more efficient than executing a membar instruction
 157   //     on every call to native code.
 158   //  3. Running compiled Code
 159   //     Compiled code reads a global (Safepoint Polling) page that
 160   //     is set to fault if we are trying to get to a safepoint.
 161   //  4. Blocked
 162   //     A thread which is blocked will not be allowed to return from the
 163   //     block condition until the safepoint operation is complete.
 164   //  5. In VM or Transitioning between states
 165   //     If a Java thread is currently running in the VM or transitioning
 166   //     between states, the safepointing code will wait for the thread to
 167   //     block itself when it attempts transitions to a new state.
 168   //
 169   {
 170     EventSafepointStateSynchronization sync_event;
 171     int initial_running = 0;
 172 
 173     _state            = _synchronizing;
 174 
 175     if (SafepointMechanism::uses_thread_local_poll()) {
 176       // Arming the per thread poll while having _state != _not_synchronized means safepointing
 177       log_trace(safepoint)("Setting thread local yield flag for threads");
 178       for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 179         // Make sure the threads start polling, it is time to yield.
 180         SafepointMechanism::arm_local_poll(cur); // release store, global state -> local state
 181       }
 182     }
 183     OrderAccess::fence(); // storestore|storeload, global state -> local state
 184 
 185     // Flush all thread states to memory
 186     if (!UseMembar) {
 187       os::serialize_thread_states();
 188     }
 189 
 190     if (SafepointMechanism::uses_global_page_poll()) {
 191       // Make interpreter safepoint aware
 192       Interpreter::notice_safepoints();
 193 
 194       if (DeferPollingPageLoopCount < 0) {
 195         // Make polling safepoint aware
 196         guarantee (PageArmed == 0, "invariant") ;
 197         PageArmed = 1 ;
 198         os::make_polling_page_unreadable();
 199       }
 200     }
 201 
 202     // Consider using active_processor_count() ... but that call is expensive.
 203     int ncpus = os::processor_count() ;
 204 
 205 #ifdef ASSERT
 206     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 207       assert(cur->safepoint_state()->is_running(), "Illegal initial state");
 208       // Clear the visited flag to ensure that the critical counts are collected properly.
 209       cur->set_visited_for_critical_count(false);
 210     }
 211 #endif // ASSERT
 212 
 213     if (SafepointTimeout)
 214       safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
 215 
 216     // Iterate through all threads until it have been determined how to stop them all at a safepoint
 217     unsigned int iterations = 0;
 218     int steps = 0 ;
 219     while(still_running > 0) {
 220       for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 221         assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
 222         ThreadSafepointState *cur_state = cur->safepoint_state();
 223         if (cur_state->is_running()) {
 224           cur_state->examine_state_of_thread();
 225           if (!cur_state->is_running()) {
 226             still_running--;
 227             // consider adjusting steps downward:
 228             //   steps = 0
 229             //   steps -= NNN
 230             //   steps >>= 1
 231             //   steps = MIN(steps, 2000-100)
 232             //   if (iterations != 0) steps -= NNN
 233           }
 234           LogTarget(Trace, safepoint) lt;
 235           if (lt.is_enabled()) {
 236             ResourceMark rm;
 237             LogStream ls(lt);
 238             cur_state->print_on(&ls);
 239           }
 240         }
 241       }
 242 
 243       if (iterations == 0) {
 244         initial_running = still_running;
 245         if (PrintSafepointStatistics) {
 246           begin_statistics(nof_threads, still_running);
 247         }
 248       }
 249 
 250       if (still_running > 0) {
 251         // Check for if it takes to long
 252         if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
 253           print_safepoint_timeout(_spinning_timeout);
 254         }
 255 
 256         // Spin to avoid context switching.
 257         // There's a tension between allowing the mutators to run (and rendezvous)
 258         // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
 259         // a mutator might otherwise use profitably to reach a safepoint.  Excessive
 260         // spinning by the VM thread on a saturated system can increase rendezvous latency.
 261         // Blocking or yielding incur their own penalties in the form of context switching
 262         // and the resultant loss of $ residency.
 263         //
 264         // Further complicating matters is that yield() does not work as naively expected
 265         // on many platforms -- yield() does not guarantee that any other ready threads
 266         // will run.   As such we revert to naked_short_sleep() after some number of iterations.
 267         // nakes_short_sleep() is implemented as a short unconditional sleep.
 268         // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
 269         // can actually increase the time it takes the VM thread to detect that a system-wide
 270         // stop-the-world safepoint has been reached.  In a pathological scenario such as that
 271         // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
 272         // In that case the mutators will be stalled waiting for the safepoint to complete and the
 273         // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
 274         // will eventually wake up and detect that all mutators are safe, at which point
 275         // we'll again make progress.
 276         //
 277         // Beware too that that the VMThread typically runs at elevated priority.
 278         // Its default priority is higher than the default mutator priority.
 279         // Obviously, this complicates spinning.
 280         //
 281         // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
 282         // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
 283         //
 284         // See the comments in synchronizer.cpp for additional remarks on spinning.
 285         //
 286         // In the future we might:
 287         // 1. Modify the safepoint scheme to avoid potentially unbounded spinning.
 288         //    This is tricky as the path used by a thread exiting the JVM (say on
 289         //    on JNI call-out) simply stores into its state field.  The burden
 290         //    is placed on the VM thread, which must poll (spin).
 291         // 2. Find something useful to do while spinning.  If the safepoint is GC-related
 292         //    we might aggressively scan the stacks of threads that are already safe.
 293         // 3. Use Solaris schedctl to examine the state of the still-running mutators.
 294         //    If all the mutators are ONPROC there's no reason to sleep or yield.
 295         // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
 296         // 5. Check system saturation.  If the system is not fully saturated then
 297         //    simply spin and avoid sleep/yield.
 298         // 6. As still-running mutators rendezvous they could unpark the sleeping
 299         //    VMthread.  This works well for still-running mutators that become
 300         //    safe.  The VMthread must still poll for mutators that call-out.
 301         // 7. Drive the policy on time-since-begin instead of iterations.
 302         // 8. Consider making the spin duration a function of the # of CPUs:
 303         //    Spin = (((ncpus-1) * M) + K) + F(still_running)
 304         //    Alternately, instead of counting iterations of the outer loop
 305         //    we could count the # of threads visited in the inner loop, above.
 306         // 9. On windows consider using the return value from SwitchThreadTo()
 307         //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
 308 
 309         if (SafepointMechanism::uses_global_page_poll() && int(iterations) == DeferPollingPageLoopCount) {
 310           guarantee (PageArmed == 0, "invariant") ;
 311           PageArmed = 1 ;
 312           os::make_polling_page_unreadable();
 313         }
 314 
 315         // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
 316         // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
 317         ++steps ;
 318         if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
 319           SpinPause() ;     // MP-Polite spin
 320         } else
 321           if (steps < DeferThrSuspendLoopCount) {
 322             os::naked_yield() ;
 323           } else {
 324             os::naked_short_sleep(1);
 325           }
 326 
 327         iterations ++ ;
 328       }
 329       assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
 330     }
 331     assert(still_running == 0, "sanity check");
 332 
 333     if (PrintSafepointStatistics) {
 334       update_statistics_on_spin_end();
 335     }
 336 
 337     if (sync_event.should_commit()) {
 338       // Group this event together with the ones committed after the counter is increased
 339       sync_event.set_safepointId(safepoint_counter() + 1);
 340       sync_event.set_initialThreadCount(initial_running);
 341       sync_event.set_runningThreadCount(_waiting_to_block);
 342       sync_event.set_iterations(iterations);
 343       sync_event.commit();
 344     }
 345   } // EventSafepointStateSynchronization destroyed here.
 346 
 347   // wait until all threads are stopped
 348   {
 349     EventSafepointWaitBlocked wait_blocked_event;
 350     int initial_waiting_to_block = _waiting_to_block;
 351 
 352     while (_waiting_to_block > 0) {
 353       log_debug(safepoint)("Waiting for %d thread(s) to block", _waiting_to_block);
 354       if (!SafepointTimeout || timeout_error_printed) {
 355         Safepoint_lock->wait(true);  // true, means with no safepoint checks
 356       } else {
 357         // Compute remaining time
 358         jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
 359 
 360         // If there is no remaining time, then there is an error
 361         if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
 362           print_safepoint_timeout(_blocking_timeout);
 363         }
 364       }
 365     }
 366     assert(_waiting_to_block == 0, "sanity check");
 367 
 368 #ifndef PRODUCT
 369     if (SafepointTimeout) {
 370       jlong current_time = os::javaTimeNanos();
 371       if (safepoint_limit_time < current_time) {
 372         tty->print_cr("# SafepointSynchronize: Finished after "
 373                       INT64_FORMAT_W(6) " ms",
 374                       (int64_t)((current_time - safepoint_limit_time) / MICROUNITS +
 375                                 (jlong)SafepointTimeoutDelay));
 376       }
 377     }
 378 #endif
 379 
 380     assert((_safepoint_counter & 0x1) == 0, "must be even");
 381     assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 382     _safepoint_counter ++;
 383 
 384     // Record state
 385     _state = _synchronized;
 386 
 387     OrderAccess::fence();
 388 
 389     if (wait_blocked_event.should_commit()) {
 390       wait_blocked_event.set_safepointId(safepoint_counter());
 391       wait_blocked_event.set_runningThreadCount(initial_waiting_to_block);
 392       wait_blocked_event.commit();
 393     }
 394   } // EventSafepointWaitBlocked
 395 
 396 #ifdef ASSERT
 397   // Make sure all the threads were visited.
 398   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *cur = jtiwh.next(); ) {
 399     assert(cur->was_visited_for_critical_count(), "missed a thread");
 400   }
 401 #endif // ASSERT
 402 
 403   // Update the count of active JNI critical regions
 404   GCLocker::set_jni_lock_count(_current_jni_active_count);
 405 
 406   if (log_is_enabled(Debug, safepoint)) {
 407     log_debug(safepoint)("Entering safepoint region: %s", VMThread::vm_safepoint_description());
 408   }
 409 
 410   RuntimeService::record_safepoint_synchronized();
 411   if (PrintSafepointStatistics) {
 412     update_statistics_on_sync_end(os::javaTimeNanos());
 413   }
 414 
 415   // Call stuff that needs to be run when a safepoint is just about to be completed
 416   {
 417     EventSafepointCleanup cleanup_event;
 418     do_cleanup_tasks();
 419     if (cleanup_event.should_commit()) {
 420       cleanup_event.set_safepointId(safepoint_counter());
 421       cleanup_event.commit();
 422     }
 423   }
 424 
 425   if (PrintSafepointStatistics) {
 426     // Record how much time spend on the above cleanup tasks
 427     update_statistics_on_cleanup_end(os::javaTimeNanos());
 428   }
 429   if (begin_event.should_commit()) {
 430     begin_event.set_safepointId(safepoint_counter());
 431     begin_event.set_totalThreadCount(nof_threads);
 432     begin_event.set_jniCriticalThreadCount(_current_jni_active_count);
 433     begin_event.commit();
 434   }
 435 }
 436 
 437 // Wake up all threads, so they are ready to resume execution after the safepoint
 438 // operation has been carried out
 439 void SafepointSynchronize::end() {
 440   EventSafepointEnd event;
 441   int safepoint_id = safepoint_counter(); // Keep the odd counter as "id"
 442 
 443   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 444   assert((_safepoint_counter & 0x1) == 1, "must be odd");
 445   _safepoint_counter ++;
 446   // memory fence isn't required here since an odd _safepoint_counter
 447   // value can do no harm and a fence is issued below anyway.
 448 
 449   DEBUG_ONLY(Thread* myThread = Thread::current();)
 450   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
 451 
 452   if (PrintSafepointStatistics) {
 453     end_statistics(os::javaTimeNanos());
 454   }
 455 
 456 #ifdef ASSERT
 457   // A pending_exception cannot be installed during a safepoint.  The threads
 458   // may install an async exception after they come back from a safepoint into
 459   // pending_exception after they unblock.  But that should happen later.
 460   for (JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
 461     assert (!(cur->has_pending_exception() &&
 462               cur->safepoint_state()->is_at_poll_safepoint()),
 463             "safepoint installed a pending exception");
 464   }
 465 #endif // ASSERT
 466 
 467   if (PageArmed) {
 468     assert(SafepointMechanism::uses_global_page_poll(), "sanity");
 469     // Make polling safepoint aware
 470     os::make_polling_page_readable();
 471     PageArmed = 0 ;
 472   }
 473 
 474   if (SafepointMechanism::uses_global_page_poll()) {
 475     // Remove safepoint check from interpreter
 476     Interpreter::ignore_safepoints();
 477   }
 478 
 479   {
 480     MutexLocker mu(Safepoint_lock);
 481 
 482     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
 483 
 484     if (SafepointMechanism::uses_thread_local_poll()) {
 485       _state = _not_synchronized;
 486       OrderAccess::storestore(); // global state -> local state
 487       for (JavaThread *current = Threads::first(); current; current = current->next()) {
 488         ThreadSafepointState* cur_state = current->safepoint_state();
 489         cur_state->restart(); // TSS _running
 490         SafepointMechanism::disarm_local_poll(current); // release store, local state -> polling page
 491       }
 492       log_debug(safepoint)("Leaving safepoint region");
 493     } else {
 494       // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
 495       // when they get restarted.
 496       _state = _not_synchronized;
 497       OrderAccess::fence();
 498 
 499       log_debug(safepoint)("Leaving safepoint region");
 500 
 501       // Start suspended threads
 502       for (JavaThread *current = Threads::first(); current; current = current->next()) {
 503         // A problem occurring on Solaris is when attempting to restart threads
 504         // the first #cpus - 1 go well, but then the VMThread is preempted when we get
 505         // to the next one (since it has been running the longest).  We then have
 506         // to wait for a cpu to become available before we can continue restarting
 507         // threads.
 508         // FIXME: This causes the performance of the VM to degrade when active and with
 509         // large numbers of threads.  Apparently this is due to the synchronous nature
 510         // of suspending threads.
 511         //
 512         // TODO-FIXME: the comments above are vestigial and no longer apply.
 513         // Furthermore, using solaris' schedctl in this particular context confers no benefit
 514         if (VMThreadHintNoPreempt) {
 515           os::hint_no_preempt();
 516         }
 517         ThreadSafepointState* cur_state = current->safepoint_state();
 518         assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
 519         cur_state->restart();
 520         assert(cur_state->is_running(), "safepoint state has not been reset");
 521       }
 522     }
 523 
 524     RuntimeService::record_safepoint_end();
 525 
 526     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
 527     // blocked in signal_thread_blocked
 528     Threads_lock->unlock();
 529 
 530   }
 531   Universe::heap()->safepoint_synchronize_end();
 532   // record this time so VMThread can keep track how much time has elapsed
 533   // since last safepoint.
 534   _end_of_last_safepoint = os::javaTimeMillis();
 535 
 536   if (event.should_commit()) {
 537     event.set_safepointId(safepoint_id);
 538     event.commit();
 539   }
 540 }
 541 
 542 bool SafepointSynchronize::is_cleanup_needed() {
 543   // Need a safepoint if there are many monitors to deflate.
 544   if (ObjectSynchronizer::is_cleanup_needed()) return true;
 545   // Need a safepoint if some inline cache buffers is non-empty
 546   if (!InlineCacheBuffer::is_empty()) return true;
 547   return false;
 548 }
 549 
 550 static void event_safepoint_cleanup_task_commit(EventSafepointCleanupTask& event, const char* name) {
 551   if (event.should_commit()) {
 552     event.set_safepointId(SafepointSynchronize::safepoint_counter());
 553     event.set_name(name);
 554     event.commit();
 555   }
 556 }
 557 
 558 class ParallelSPCleanupThreadClosure : public ThreadClosure {
 559 private:
 560   CodeBlobClosure* _nmethod_cl;
 561   DeflateMonitorCounters* _counters;
 562 
 563 public:
 564   ParallelSPCleanupThreadClosure(DeflateMonitorCounters* counters) :
 565     _counters(counters),
 566     _nmethod_cl(NMethodSweeper::prepare_mark_active_nmethods()) {}
 567 
 568   void do_thread(Thread* thread) {
 569     ObjectSynchronizer::deflate_thread_local_monitors(thread, _counters);
 570     if (_nmethod_cl != NULL && thread->is_Java_thread() &&
 571         ! thread->is_Code_cache_sweeper_thread()) {
 572       JavaThread* jt = (JavaThread*) thread;
 573       jt->nmethods_do(_nmethod_cl);
 574     }
 575   }
 576 };
 577 
 578 class ParallelSPCleanupTask : public AbstractGangTask {
 579 private:
 580   SubTasksDone _subtasks;
 581   ParallelSPCleanupThreadClosure _cleanup_threads_cl;
 582   uint _num_workers;
 583   DeflateMonitorCounters* _counters;
 584 public:
 585   ParallelSPCleanupTask(uint num_workers, DeflateMonitorCounters* counters) :
 586     AbstractGangTask("Parallel Safepoint Cleanup"),
 587     _cleanup_threads_cl(ParallelSPCleanupThreadClosure(counters)),
 588     _num_workers(num_workers),
 589     _subtasks(SubTasksDone(SafepointSynchronize::SAFEPOINT_CLEANUP_NUM_TASKS)),
 590     _counters(counters) {}
 591 
 592   void work(uint worker_id) {
 593     // All threads deflate monitors and mark nmethods (if necessary).
 594     Threads::possibly_parallel_threads_do(true, &_cleanup_threads_cl);
 595 
 596     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_DEFLATE_MONITORS)) {
 597       const char* name = "deflating idle monitors";
 598       EventSafepointCleanupTask event;
 599       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 600       ObjectSynchronizer::deflate_idle_monitors(_counters);
 601       event_safepoint_cleanup_task_commit(event, name);
 602     }
 603 
 604     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_UPDATE_INLINE_CACHES)) {
 605       const char* name = "updating inline caches";
 606       EventSafepointCleanupTask event;
 607       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 608       InlineCacheBuffer::update_inline_caches();
 609       event_safepoint_cleanup_task_commit(event, name);
 610     }
 611 
 612     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_COMPILATION_POLICY)) {
 613       const char* name = "compilation policy safepoint handler";
 614       EventSafepointCleanupTask event;
 615       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 616       CompilationPolicy::policy()->do_safepoint_work();
 617       event_safepoint_cleanup_task_commit(event, name);
 618     }
 619 
 620     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_SYMBOL_TABLE_REHASH)) {
 621       if (SymbolTable::needs_rehashing()) {
 622         const char* name = "rehashing symbol table";
 623         EventSafepointCleanupTask event;
 624         TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 625         SymbolTable::rehash_table();
 626         event_safepoint_cleanup_task_commit(event, name);
 627       }
 628     }
 629 
 630     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_STRING_TABLE_REHASH)) {
 631       if (StringTable::needs_rehashing()) {
 632         const char* name = "rehashing string table";
 633         EventSafepointCleanupTask event;
 634         TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 635         StringTable::rehash_table();
 636         event_safepoint_cleanup_task_commit(event, name);
 637       }
 638     }
 639 
 640     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_CLD_PURGE)) {
 641       // CMS delays purging the CLDG until the beginning of the next safepoint and to
 642       // make sure concurrent sweep is done
 643       const char* name = "purging class loader data graph";
 644       EventSafepointCleanupTask event;
 645       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 646       ClassLoaderDataGraph::purge_if_needed();
 647       event_safepoint_cleanup_task_commit(event, name);
 648     }
 649 
 650     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_SYSTEM_DICTIONARY_RESIZE)) {
 651       const char* name = "resizing system dictionaries";
 652       EventSafepointCleanupTask event;
 653       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 654       ClassLoaderDataGraph::resize_if_needed();
 655       event_safepoint_cleanup_task_commit(event, name);
 656     }
 657     _subtasks.all_tasks_completed(_num_workers);
 658   }
 659 };
 660 
 661 // Various cleaning tasks that should be done periodically at safepoints.
 662 void SafepointSynchronize::do_cleanup_tasks() {
 663 
 664   TraceTime timer("safepoint cleanup tasks", TRACETIME_LOG(Info, safepoint, cleanup));
 665 
 666   // Prepare for monitor deflation.
 667   DeflateMonitorCounters deflate_counters;
 668   ObjectSynchronizer::prepare_deflate_idle_monitors(&deflate_counters);
 669 
 670   CollectedHeap* heap = Universe::heap();
 671   assert(heap != NULL, "heap not initialized yet?");
 672   WorkGang* cleanup_workers = heap->get_safepoint_workers();
 673   if (cleanup_workers != NULL) {
 674     // Parallel cleanup using GC provided thread pool.
 675     uint num_cleanup_workers = cleanup_workers->active_workers();
 676     ParallelSPCleanupTask cleanup(num_cleanup_workers, &deflate_counters);
 677     StrongRootsScope srs(num_cleanup_workers);
 678     cleanup_workers->run_task(&cleanup);
 679   } else {
 680     // Serial cleanup using VMThread.
 681     ParallelSPCleanupTask cleanup(1, &deflate_counters);
 682     StrongRootsScope srs(1);
 683     cleanup.work(0);
 684   }
 685 
 686   // Finish monitor deflation.
 687   ObjectSynchronizer::finish_deflate_idle_monitors(&deflate_counters);
 688 }
 689 
 690 
 691 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
 692   switch(state) {
 693   case _thread_in_native:
 694     // native threads are safe if they have no java stack or have walkable stack
 695     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
 696 
 697    // blocked threads should have already have walkable stack
 698   case _thread_blocked:
 699     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
 700     return true;
 701 
 702   default:
 703     return false;
 704   }
 705 }
 706 
 707 
 708 // See if the thread is running inside a lazy critical native and
 709 // update the thread critical count if so.  Also set a suspend flag to
 710 // cause the native wrapper to return into the JVM to do the unlock
 711 // once the native finishes.
 712 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
 713   if (state == _thread_in_native &&
 714       thread->has_last_Java_frame() &&
 715       thread->frame_anchor()->walkable()) {
 716     // This thread might be in a critical native nmethod so look at
 717     // the top of the stack and increment the critical count if it
 718     // is.
 719     frame wrapper_frame = thread->last_frame();
 720     CodeBlob* stub_cb = wrapper_frame.cb();
 721     if (stub_cb != NULL &&
 722         stub_cb->is_nmethod() &&
 723         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
 724       // A thread could potentially be in a critical native across
 725       // more than one safepoint, so only update the critical state on
 726       // the first one.  When it returns it will perform the unlock.
 727       if (!thread->do_critical_native_unlock()) {
 728 #ifdef ASSERT
 729         if (!thread->in_critical()) {
 730           GCLocker::increment_debug_jni_lock_count();
 731         }
 732 #endif
 733         thread->enter_critical();
 734         // Make sure the native wrapper calls back on return to
 735         // perform the needed critical unlock.
 736         thread->set_critical_native_unlock();
 737       }
 738     }
 739   }
 740 }
 741 
 742 
 743 
 744 // -------------------------------------------------------------------------------------------------------
 745 // Implementation of Safepoint callback point
 746 
 747 void SafepointSynchronize::block(JavaThread *thread) {
 748   assert(thread != NULL, "thread must be set");
 749   assert(thread->is_Java_thread(), "not a Java thread");
 750 
 751   // Threads shouldn't block if they are in the middle of printing, but...
 752   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
 753 
 754   // Only bail from the block() call if the thread is gone from the
 755   // thread list; starting to exit should still block.
 756   if (thread->is_terminated()) {
 757      // block current thread if we come here from native code when VM is gone
 758      thread->block_if_vm_exited();
 759 
 760      // otherwise do nothing
 761      return;
 762   }
 763 
 764   JavaThreadState state = thread->thread_state();
 765   thread->frame_anchor()->make_walkable(thread);
 766 
 767   // Check that we have a valid thread_state at this point
 768   switch(state) {
 769     case _thread_in_vm_trans:
 770     case _thread_in_Java:        // From compiled code
 771 
 772       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
 773       // we pretend we are still in the VM.
 774       thread->set_thread_state(_thread_in_vm);
 775 
 776       if (is_synchronizing()) {
 777          Atomic::inc (&TryingToBlock) ;
 778       }
 779 
 780       // We will always be holding the Safepoint_lock when we are examine the state
 781       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
 782       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
 783       Safepoint_lock->lock_without_safepoint_check();
 784       if (is_synchronizing()) {
 785         // Decrement the number of threads to wait for and signal vm thread
 786         assert(_waiting_to_block > 0, "sanity check");
 787         _waiting_to_block--;
 788         thread->safepoint_state()->set_has_called_back(true);
 789 
 790         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
 791         if (thread->in_critical()) {
 792           // Notice that this thread is in a critical section
 793           increment_jni_active_count();
 794         }
 795 
 796         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
 797         if (_waiting_to_block == 0) {
 798           Safepoint_lock->notify_all();
 799         }
 800       }
 801 
 802       // We transition the thread to state _thread_blocked here, but
 803       // we can't do our usual check for external suspension and then
 804       // self-suspend after the lock_without_safepoint_check() call
 805       // below because we are often called during transitions while
 806       // we hold different locks. That would leave us suspended while
 807       // holding a resource which results in deadlocks.
 808       thread->set_thread_state(_thread_blocked);
 809       Safepoint_lock->unlock();
 810 
 811       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
 812       // the entire safepoint, the threads will all line up here during the safepoint.
 813       Threads_lock->lock_without_safepoint_check();
 814       // restore original state. This is important if the thread comes from compiled code, so it
 815       // will continue to execute with the _thread_in_Java state.
 816       thread->set_thread_state(state);
 817       Threads_lock->unlock();
 818       break;
 819 
 820     case _thread_in_native_trans:
 821     case _thread_blocked_trans:
 822     case _thread_new_trans:
 823       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
 824         thread->print_thread_state();
 825         fatal("Deadlock in safepoint code.  "
 826               "Should have called back to the VM before blocking.");
 827       }
 828 
 829       // We transition the thread to state _thread_blocked here, but
 830       // we can't do our usual check for external suspension and then
 831       // self-suspend after the lock_without_safepoint_check() call
 832       // below because we are often called during transitions while
 833       // we hold different locks. That would leave us suspended while
 834       // holding a resource which results in deadlocks.
 835       thread->set_thread_state(_thread_blocked);
 836 
 837       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
 838       // the safepoint code might still be waiting for it to block. We need to change the state here,
 839       // so it can see that it is at a safepoint.
 840 
 841       // Block until the safepoint operation is completed.
 842       Threads_lock->lock_without_safepoint_check();
 843 
 844       // Restore state
 845       thread->set_thread_state(state);
 846 
 847       Threads_lock->unlock();
 848       break;
 849 
 850     default:
 851      fatal("Illegal threadstate encountered: %d", state);
 852   }
 853 
 854   // Check for pending. async. exceptions or suspends - except if the
 855   // thread was blocked inside the VM. has_special_runtime_exit_condition()
 856   // is called last since it grabs a lock and we only want to do that when
 857   // we must.
 858   //
 859   // Note: we never deliver an async exception at a polling point as the
 860   // compiler may not have an exception handler for it. The polling
 861   // code will notice the async and deoptimize and the exception will
 862   // be delivered. (Polling at a return point is ok though). Sure is
 863   // a lot of bother for a deprecated feature...
 864   //
 865   // We don't deliver an async exception if the thread state is
 866   // _thread_in_native_trans so JNI functions won't be called with
 867   // a surprising pending exception. If the thread state is going back to java,
 868   // async exception is checked in check_special_condition_for_native_trans().
 869 
 870   if (state != _thread_blocked_trans &&
 871       state != _thread_in_vm_trans &&
 872       thread->has_special_runtime_exit_condition()) {
 873     thread->handle_special_runtime_exit_condition(
 874       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
 875   }
 876 }
 877 
 878 // ------------------------------------------------------------------------------------------------------
 879 // Exception handlers
 880 
 881 
 882 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
 883   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
 884   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
 885   if (!ThreadLocalHandshakes) {
 886     assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
 887   }
 888 
 889   if (ShowSafepointMsgs) {
 890     tty->print("handle_polling_page_exception: ");
 891   }
 892 
 893   if (PrintSafepointStatistics) {
 894     inc_page_trap_count();
 895   }
 896 
 897   ThreadSafepointState* state = thread->safepoint_state();
 898 
 899   state->handle_polling_page_exception();
 900 }
 901 
 902 
 903 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
 904   if (!timeout_error_printed) {
 905     timeout_error_printed = true;
 906     // Print out the thread info which didn't reach the safepoint for debugging
 907     // purposes (useful when there are lots of threads in the debugger).
 908     tty->cr();
 909     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
 910     if (reason ==  _spinning_timeout) {
 911       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
 912     } else if (reason == _blocking_timeout) {
 913       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
 914     }
 915 
 916     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
 917     ThreadSafepointState *cur_state;
 918     ResourceMark rm;
 919     for (JavaThread *cur_thread = Threads::first(); cur_thread;
 920         cur_thread = cur_thread->next()) {
 921       cur_state = cur_thread->safepoint_state();
 922 
 923       if (cur_thread->thread_state() != _thread_blocked &&
 924           ((reason == _spinning_timeout && cur_state->is_running()) ||
 925            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
 926         tty->print("# ");
 927         cur_thread->print();
 928         tty->cr();
 929       }
 930     }
 931     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
 932   }
 933 
 934   // To debug the long safepoint, specify both DieOnSafepointTimeout &
 935   // ShowMessageBoxOnError.
 936   if (DieOnSafepointTimeout) {
 937     fatal("Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
 938           SafepointTimeoutDelay, VMThread::vm_safepoint_description());
 939   }
 940 }
 941 
 942 
 943 // -------------------------------------------------------------------------------------------------------
 944 // Implementation of ThreadSafepointState
 945 
 946 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
 947   _thread = thread;
 948   _type   = _running;
 949   _has_called_back = false;
 950   _at_poll_safepoint = false;
 951 }
 952 
 953 void ThreadSafepointState::create(JavaThread *thread) {
 954   ThreadSafepointState *state = new ThreadSafepointState(thread);
 955   thread->set_safepoint_state(state);
 956 }
 957 
 958 void ThreadSafepointState::destroy(JavaThread *thread) {
 959   if (thread->safepoint_state()) {
 960     delete(thread->safepoint_state());
 961     thread->set_safepoint_state(NULL);
 962   }
 963 }
 964 
 965 void ThreadSafepointState::examine_state_of_thread() {
 966   assert(is_running(), "better be running or just have hit safepoint poll");
 967 
 968   JavaThreadState state = _thread->thread_state();
 969 
 970   // Save the state at the start of safepoint processing.
 971   _orig_thread_state = state;
 972 
 973   // Check for a thread that is suspended. Note that thread resume tries
 974   // to grab the Threads_lock which we own here, so a thread cannot be
 975   // resumed during safepoint synchronization.
 976 
 977   // We check to see if this thread is suspended without locking to
 978   // avoid deadlocking with a third thread that is waiting for this
 979   // thread to be suspended. The third thread can notice the safepoint
 980   // that we're trying to start at the beginning of its SR_lock->wait()
 981   // call. If that happens, then the third thread will block on the
 982   // safepoint while still holding the underlying SR_lock. We won't be
 983   // able to get the SR_lock and we'll deadlock.
 984   //
 985   // We don't need to grab the SR_lock here for two reasons:
 986   // 1) The suspend flags are both volatile and are set with an
 987   //    Atomic::cmpxchg() call so we should see the suspended
 988   //    state right away.
 989   // 2) We're being called from the safepoint polling loop; if
 990   //    we don't see the suspended state on this iteration, then
 991   //    we'll come around again.
 992   //
 993   bool is_suspended = _thread->is_ext_suspended();
 994   if (is_suspended) {
 995     roll_forward(_at_safepoint);
 996     return;
 997   }
 998 
 999   // Some JavaThread states have an initial safepoint state of
1000   // running, but are actually at a safepoint. We will happily
1001   // agree and update the safepoint state here.
1002   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
1003     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
1004     roll_forward(_at_safepoint);
1005     return;
1006   }
1007 
1008   if (state == _thread_in_vm) {
1009     roll_forward(_call_back);
1010     return;
1011   }
1012 
1013   // All other thread states will continue to run until they
1014   // transition and self-block in state _blocked
1015   // Safepoint polling in compiled code causes the Java threads to do the same.
1016   // Note: new threads may require a malloc so they must be allowed to finish
1017 
1018   assert(is_running(), "examine_state_of_thread on non-running thread");
1019   return;
1020 }
1021 
1022 // Returns true is thread could not be rolled forward at present position.
1023 void ThreadSafepointState::roll_forward(suspend_type type) {
1024   _type = type;
1025 
1026   switch(_type) {
1027     case _at_safepoint:
1028       SafepointSynchronize::signal_thread_at_safepoint();
1029       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
1030       if (_thread->in_critical()) {
1031         // Notice that this thread is in a critical section
1032         SafepointSynchronize::increment_jni_active_count();
1033       }
1034       break;
1035 
1036     case _call_back:
1037       set_has_called_back(false);
1038       break;
1039 
1040     case _running:
1041     default:
1042       ShouldNotReachHere();
1043   }
1044 }
1045 
1046 void ThreadSafepointState::restart() {
1047   switch(type()) {
1048     case _at_safepoint:
1049     case _call_back:
1050       break;
1051 
1052     case _running:
1053     default:
1054        tty->print_cr("restart thread " INTPTR_FORMAT " with state %d",
1055                      p2i(_thread), _type);
1056        _thread->print();
1057       ShouldNotReachHere();
1058   }
1059   _type = _running;
1060   set_has_called_back(false);
1061 }
1062 
1063 
1064 void ThreadSafepointState::print_on(outputStream *st) const {
1065   const char *s = NULL;
1066 
1067   switch(_type) {
1068     case _running                : s = "_running";              break;
1069     case _at_safepoint           : s = "_at_safepoint";         break;
1070     case _call_back              : s = "_call_back";            break;
1071     default:
1072       ShouldNotReachHere();
1073   }
1074 
1075   st->print_cr("Thread: " INTPTR_FORMAT
1076               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
1077                p2i(_thread), _thread->osthread()->thread_id(), s, _has_called_back,
1078                _at_poll_safepoint);
1079 
1080   _thread->print_thread_state_on(st);
1081 }
1082 
1083 // ---------------------------------------------------------------------------------------------------------------------
1084 
1085 // Block the thread at poll or poll return for safepoint/handshake.
1086 void ThreadSafepointState::handle_polling_page_exception() {
1087 
1088   // Check state.  block() will set thread state to thread_in_vm which will
1089   // cause the safepoint state _type to become _call_back.
1090   suspend_type t = type();
1091   assert(!SafepointMechanism::uses_global_page_poll() || t == ThreadSafepointState::_running,
1092          "polling page exception on thread not running state: %u", uint(t));
1093 
1094   // Step 1: Find the nmethod from the return address
1095   if (ShowSafepointMsgs && Verbose) {
1096     tty->print_cr("Polling page exception at " INTPTR_FORMAT, p2i(thread()->saved_exception_pc()));
1097   }
1098   address real_return_addr = thread()->saved_exception_pc();
1099 
1100   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
1101   assert(cb != NULL && cb->is_compiled(), "return address should be in nmethod");
1102   CompiledMethod* nm = (CompiledMethod*)cb;
1103 
1104   // Find frame of caller
1105   frame stub_fr = thread()->last_frame();
1106   CodeBlob* stub_cb = stub_fr.cb();
1107   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
1108   RegisterMap map(thread(), true);
1109   frame caller_fr = stub_fr.sender(&map);
1110 
1111   // Should only be poll_return or poll
1112   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
1113 
1114   // This is a poll immediately before a return. The exception handling code
1115   // has already had the effect of causing the return to occur, so the execution
1116   // will continue immediately after the call. In addition, the oopmap at the
1117   // return point does not mark the return value as an oop (if it is), so
1118   // it needs a handle here to be updated.
1119   if( nm->is_at_poll_return(real_return_addr) ) {
1120     // See if return type is an oop.
1121     bool return_oop = nm->method()->is_returning_oop();
1122     Handle return_value;
1123     if (return_oop) {
1124       // The oop result has been saved on the stack together with all
1125       // the other registers. In order to preserve it over GCs we need
1126       // to keep it in a handle.
1127       oop result = caller_fr.saved_oop_result(&map);
1128       assert(oopDesc::is_oop_or_null(result), "must be oop");
1129       return_value = Handle(thread(), result);
1130       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
1131     }
1132 
1133     // Block the thread
1134     SafepointMechanism::block_if_requested(thread());
1135 
1136     // restore oop result, if any
1137     if (return_oop) {
1138       caller_fr.set_saved_oop_result(&map, return_value());
1139     }
1140   }
1141 
1142   // This is a safepoint poll. Verify the return address and block.
1143   else {
1144     set_at_poll_safepoint(true);
1145 
1146     // verify the blob built the "return address" correctly
1147     assert(real_return_addr == caller_fr.pc(), "must match");
1148 
1149     // Block the thread
1150     SafepointMechanism::block_if_requested(thread());
1151     set_at_poll_safepoint(false);
1152 
1153     // If we have a pending async exception deoptimize the frame
1154     // as otherwise we may never deliver it.
1155     if (thread()->has_async_condition()) {
1156       ThreadInVMfromJavaNoAsyncException __tiv(thread());
1157       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1158     }
1159 
1160     // If an exception has been installed we must check for a pending deoptimization
1161     // Deoptimize frame if exception has been thrown.
1162 
1163     if (thread()->has_pending_exception() ) {
1164       RegisterMap map(thread(), true);
1165       frame caller_fr = stub_fr.sender(&map);
1166       if (caller_fr.is_deoptimized_frame()) {
1167         // The exception patch will destroy registers that are still
1168         // live and will be needed during deoptimization. Defer the
1169         // Async exception should have deferred the exception until the
1170         // next safepoint which will be detected when we get into
1171         // the interpreter so if we have an exception now things
1172         // are messed up.
1173 
1174         fatal("Exception installed and deoptimization is pending");
1175       }
1176     }
1177   }
1178 }
1179 
1180 
1181 //
1182 //                     Statistics & Instrumentations
1183 //
1184 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1185 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1186 int    SafepointSynchronize::_cur_stat_index = 0;
1187 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1188 julong SafepointSynchronize::_coalesced_vmop_count = 0;
1189 jlong  SafepointSynchronize::_max_sync_time = 0;
1190 jlong  SafepointSynchronize::_max_vmop_time = 0;
1191 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1192 
1193 static jlong  cleanup_end_time = 0;
1194 static bool   need_to_track_page_armed_status = false;
1195 static bool   init_done = false;
1196 
1197 // Helper method to print the header.
1198 static void print_header() {
1199   // The number of spaces is significant here, and should match the format
1200   // specifiers in print_statistics().
1201 
1202   tty->print("          vmop                            "
1203              "[ threads:    total initially_running wait_to_block ]"
1204              "[ time:    spin   block    sync cleanup    vmop ] ");
1205 
1206   // no page armed status printed out if it is always armed.
1207   if (need_to_track_page_armed_status) {
1208     tty->print("page_armed ");
1209   }
1210 
1211   tty->print_cr("page_trap_count");
1212 }
1213 
1214 void SafepointSynchronize::deferred_initialize_stat() {
1215   if (init_done) return;
1216 
1217   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1218   // be printed right away, in which case, _safepoint_stats will regress to
1219   // a single element array. Otherwise, it is a circular ring buffer with default
1220   // size of PrintSafepointStatisticsCount.
1221   int stats_array_size;
1222   if (PrintSafepointStatisticsTimeout > 0) {
1223     stats_array_size = 1;
1224     PrintSafepointStatistics = true;
1225   } else {
1226     stats_array_size = PrintSafepointStatisticsCount;
1227   }
1228   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1229                                                  * sizeof(SafepointStats), mtInternal);
1230   guarantee(_safepoint_stats != NULL,
1231             "not enough memory for safepoint instrumentation data");
1232 
1233   if (DeferPollingPageLoopCount >= 0) {
1234     need_to_track_page_armed_status = true;
1235   }
1236   init_done = true;
1237 }
1238 
1239 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1240   assert(init_done, "safepoint statistics array hasn't been initialized");
1241   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1242 
1243   spstat->_time_stamp = _ts_of_current_safepoint;
1244 
1245   VM_Operation *op = VMThread::vm_operation();
1246   spstat->_vmop_type = (op != NULL ? op->type() : -1);
1247   if (op != NULL) {
1248     _safepoint_reasons[spstat->_vmop_type]++;
1249   }
1250 
1251   spstat->_nof_total_threads = nof_threads;
1252   spstat->_nof_initial_running_threads = nof_running;
1253   spstat->_nof_threads_hit_page_trap = 0;
1254 
1255   // Records the start time of spinning. The real time spent on spinning
1256   // will be adjusted when spin is done. Same trick is applied for time
1257   // spent on waiting for threads to block.
1258   if (nof_running != 0) {
1259     spstat->_time_to_spin = os::javaTimeNanos();
1260   }  else {
1261     spstat->_time_to_spin = 0;
1262   }
1263 }
1264 
1265 void SafepointSynchronize::update_statistics_on_spin_end() {
1266   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1267 
1268   jlong cur_time = os::javaTimeNanos();
1269 
1270   spstat->_nof_threads_wait_to_block = _waiting_to_block;
1271   if (spstat->_nof_initial_running_threads != 0) {
1272     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1273   }
1274 
1275   if (need_to_track_page_armed_status) {
1276     spstat->_page_armed = (PageArmed == 1);
1277   }
1278 
1279   // Records the start time of waiting for to block. Updated when block is done.
1280   if (_waiting_to_block != 0) {
1281     spstat->_time_to_wait_to_block = cur_time;
1282   } else {
1283     spstat->_time_to_wait_to_block = 0;
1284   }
1285 }
1286 
1287 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1288   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1289 
1290   if (spstat->_nof_threads_wait_to_block != 0) {
1291     spstat->_time_to_wait_to_block = end_time -
1292       spstat->_time_to_wait_to_block;
1293   }
1294 
1295   // Records the end time of sync which will be used to calculate the total
1296   // vm operation time. Again, the real time spending in syncing will be deducted
1297   // from the start of the sync time later when end_statistics is called.
1298   spstat->_time_to_sync = end_time - _safepoint_begin_time;
1299   if (spstat->_time_to_sync > _max_sync_time) {
1300     _max_sync_time = spstat->_time_to_sync;
1301   }
1302 
1303   spstat->_time_to_do_cleanups = end_time;
1304 }
1305 
1306 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1307   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1308 
1309   // Record how long spent in cleanup tasks.
1310   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1311 
1312   cleanup_end_time = end_time;
1313 }
1314 
1315 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1316   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1317 
1318   // Update the vm operation time.
1319   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1320   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1321     _max_vmop_time = spstat->_time_to_exec_vmop;
1322   }
1323   // Only the sync time longer than the specified
1324   // PrintSafepointStatisticsTimeout will be printed out right away.
1325   // By default, it is -1 meaning all samples will be put into the list.
1326   if ( PrintSafepointStatisticsTimeout > 0) {
1327     if (spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1328       print_statistics();
1329     }
1330   } else {
1331     // The safepoint statistics will be printed out when the _safepoin_stats
1332     // array fills up.
1333     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1334       print_statistics();
1335       _cur_stat_index = 0;
1336     } else {
1337       _cur_stat_index++;
1338     }
1339   }
1340 }
1341 
1342 void SafepointSynchronize::print_statistics() {
1343   for (int index = 0; index <= _cur_stat_index; index++) {
1344     if (index % 30 == 0) {
1345       print_header();
1346     }
1347     SafepointStats* sstats = &_safepoint_stats[index];
1348     tty->print("%8.3f: ", sstats->_time_stamp);
1349     tty->print("%-30s  [          "
1350                INT32_FORMAT_W(8) " " INT32_FORMAT_W(17) " " INT32_FORMAT_W(13) " "
1351                "]",
1352                (sstats->_vmop_type == -1 ? "no vm operation" : VM_Operation::name(sstats->_vmop_type)),
1353                sstats->_nof_total_threads,
1354                sstats->_nof_initial_running_threads,
1355                sstats->_nof_threads_wait_to_block);
1356     // "/ MICROUNITS " is to convert the unit from nanos to millis.
1357     tty->print("[       "
1358                INT64_FORMAT_W(7) " " INT64_FORMAT_W(7) " "
1359                INT64_FORMAT_W(7) " " INT64_FORMAT_W(7) " "
1360                INT64_FORMAT_W(7) " ] ",
1361                (int64_t)(sstats->_time_to_spin / MICROUNITS),
1362                (int64_t)(sstats->_time_to_wait_to_block / MICROUNITS),
1363                (int64_t)(sstats->_time_to_sync / MICROUNITS),
1364                (int64_t)(sstats->_time_to_do_cleanups / MICROUNITS),
1365                (int64_t)(sstats->_time_to_exec_vmop / MICROUNITS));
1366 
1367     if (need_to_track_page_armed_status) {
1368       tty->print(INT32_FORMAT_W(10) " ", sstats->_page_armed);
1369     }
1370     tty->print_cr(INT32_FORMAT_W(15) " ", sstats->_nof_threads_hit_page_trap);
1371   }
1372 }
1373 
1374 // This method will be called when VM exits. It will first call
1375 // print_statistics to print out the rest of the sampling.  Then
1376 // it tries to summarize the sampling.
1377 void SafepointSynchronize::print_stat_on_exit() {
1378   if (_safepoint_stats == NULL) return;
1379 
1380   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1381 
1382   // During VM exit, end_statistics may not get called and in that
1383   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1384   // don't print it out.
1385   // Approximate the vm op time.
1386   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1387     os::javaTimeNanos() - cleanup_end_time;
1388 
1389   if ( PrintSafepointStatisticsTimeout < 0 ||
1390        spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1391     print_statistics();
1392   }
1393   tty->cr();
1394 
1395   // Print out polling page sampling status.
1396   if (!need_to_track_page_armed_status) {
1397     tty->print_cr("Polling page always armed");
1398   } else {
1399     tty->print_cr("Defer polling page loop count = " INTX_FORMAT "\n",
1400                   DeferPollingPageLoopCount);
1401   }
1402 
1403   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1404     if (_safepoint_reasons[index] != 0) {
1405       tty->print_cr("%-26s" UINT64_FORMAT_W(10), VM_Operation::name(index),
1406                     _safepoint_reasons[index]);
1407     }
1408   }
1409 
1410   tty->print_cr(UINT64_FORMAT_W(5) " VM operations coalesced during safepoint",
1411                 _coalesced_vmop_count);
1412   tty->print_cr("Maximum sync time  " INT64_FORMAT_W(5) " ms",
1413                 (int64_t)(_max_sync_time / MICROUNITS));
1414   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1415                 INT64_FORMAT_W(5) " ms",
1416                 (int64_t)(_max_vmop_time / MICROUNITS));
1417 }
1418 
1419 // ------------------------------------------------------------------------------------------------
1420 // Non-product code
1421 
1422 #ifndef PRODUCT
1423 
1424 void SafepointSynchronize::print_state() {
1425   if (_state == _not_synchronized) {
1426     tty->print_cr("not synchronized");
1427   } else if (_state == _synchronizing || _state == _synchronized) {
1428     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1429                   "synchronized");
1430 
1431     for (JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1432        cur->safepoint_state()->print();
1433     }
1434   }
1435 }
1436 
1437 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1438   if (ShowSafepointMsgs) {
1439     va_list ap;
1440     va_start(ap, format);
1441     tty->vprint_cr(format, ap);
1442     va_end(ap);
1443   }
1444 }
1445 
1446 #endif // !PRODUCT