1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "gc/shared/collectedHeap.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "gc/shared/strongRootsScope.hpp"
  38 #include "gc/shared/workgroup.hpp"
  39 #include "interpreter/interpreter.hpp"
  40 #include "logging/log.hpp"
  41 #include "logging/logStream.hpp"
  42 #include "memory/resourceArea.hpp"
  43 #include "memory/universe.inline.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "oops/symbol.hpp"
  46 #include "runtime/atomic.hpp"
  47 #include "runtime/compilationPolicy.hpp"
  48 #include "runtime/deoptimization.hpp"
  49 #include "runtime/frame.inline.hpp"
  50 #include "runtime/interfaceSupport.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/orderAccess.inline.hpp"
  53 #include "runtime/osThread.hpp"
  54 #include "runtime/safepoint.hpp"
  55 #include "runtime/safepointMechanism.inline.hpp"
  56 #include "runtime/signature.hpp"
  57 #include "runtime/stubCodeGenerator.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/sweeper.hpp"
  60 #include "runtime/synchronizer.hpp"
  61 #include "runtime/thread.inline.hpp"
  62 #include "runtime/timerTrace.hpp"
  63 #include "services/runtimeService.hpp"
  64 #include "trace/tracing.hpp"
  65 #include "trace/traceMacros.hpp"
  66 #include "utilities/events.hpp"
  67 #include "utilities/macros.hpp"
  68 #ifdef COMPILER1
  69 #include "c1/c1_globals.hpp"
  70 #endif
  71 
  72 // --------------------------------------------------------------------------------------------------
  73 // Implementation of Safepoint begin/end
  74 
  75 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
  76 volatile int  SafepointSynchronize::_waiting_to_block = 0;
  77 volatile int SafepointSynchronize::_safepoint_counter = 0;
  78 int SafepointSynchronize::_current_jni_active_count = 0;
  79 long  SafepointSynchronize::_end_of_last_safepoint = 0;
  80 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
  81 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
  82 static bool timeout_error_printed = false;
  83 
  84 // Roll all threads forward to a safepoint and suspend them all
  85 void SafepointSynchronize::begin() {
  86   EventSafepointBegin begin_event;
  87   Thread* myThread = Thread::current();
  88   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
  89 
  90   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
  91     _safepoint_begin_time = os::javaTimeNanos();
  92     _ts_of_current_safepoint = tty->time_stamp().seconds();
  93   }
  94 
  95   Universe::heap()->safepoint_synchronize_begin();
  96 
  97   // By getting the Threads_lock, we assure that no threads are about to start or
  98   // exit. It is released again in SafepointSynchronize::end().
  99   Threads_lock->lock();
 100 
 101   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
 102 
 103   int nof_threads = Threads::number_of_threads();
 104 
 105   log_debug(safepoint)("Safepoint synchronization initiated. (%d)", nof_threads);
 106 
 107   RuntimeService::record_safepoint_begin();
 108 
 109   MutexLocker mu(Safepoint_lock);
 110 
 111   // Reset the count of active JNI critical threads
 112   _current_jni_active_count = 0;
 113 
 114   // Set number of threads to wait for, before we initiate the callbacks
 115   _waiting_to_block = nof_threads;
 116   TryingToBlock     = 0 ;
 117   int still_running = nof_threads;
 118 
 119   // Save the starting time, so that it can be compared to see if this has taken
 120   // too long to complete.
 121   jlong safepoint_limit_time = 0;
 122   timeout_error_printed = false;
 123 
 124   // PrintSafepointStatisticsTimeout can be specified separately. When
 125   // specified, PrintSafepointStatistics will be set to true in
 126   // deferred_initialize_stat method. The initialization has to be done
 127   // early enough to avoid any races. See bug 6880029 for details.
 128   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 129     deferred_initialize_stat();
 130   }
 131 
 132   // Begin the process of bringing the system to a safepoint.
 133   // Java threads can be in several different states and are
 134   // stopped by different mechanisms:
 135   //
 136   //  1. Running interpreted
 137   //     The interpreter dispatch table is changed to force it to
 138   //     check for a safepoint condition between bytecodes.
 139   //  2. Running in native code
 140   //     When returning from the native code, a Java thread must check
 141   //     the safepoint _state to see if we must block.  If the
 142   //     VM thread sees a Java thread in native, it does
 143   //     not wait for this thread to block.  The order of the memory
 144   //     writes and reads of both the safepoint state and the Java
 145   //     threads state is critical.  In order to guarantee that the
 146   //     memory writes are serialized with respect to each other,
 147   //     the VM thread issues a memory barrier instruction
 148   //     (on MP systems).  In order to avoid the overhead of issuing
 149   //     a memory barrier for each Java thread making native calls, each Java
 150   //     thread performs a write to a single memory page after changing
 151   //     the thread state.  The VM thread performs a sequence of
 152   //     mprotect OS calls which forces all previous writes from all
 153   //     Java threads to be serialized.  This is done in the
 154   //     os::serialize_thread_states() call.  This has proven to be
 155   //     much more efficient than executing a membar instruction
 156   //     on every call to native code.
 157   //  3. Running compiled Code
 158   //     Compiled code reads a global (Safepoint Polling) page that
 159   //     is set to fault if we are trying to get to a safepoint.
 160   //  4. Blocked
 161   //     A thread which is blocked will not be allowed to return from the
 162   //     block condition until the safepoint operation is complete.
 163   //  5. In VM or Transitioning between states
 164   //     If a Java thread is currently running in the VM or transitioning
 165   //     between states, the safepointing code will wait for the thread to
 166   //     block itself when it attempts transitions to a new state.
 167   //
 168   {
 169     EventSafepointStateSynchronization sync_event;
 170     int initial_running = 0;
 171 
 172     _state            = _synchronizing;
 173 
 174     if (SafepointMechanism::uses_thread_local_poll()) {
 175       // Arming the per thread poll while having _state != _not_synchronized means safepointing
 176       log_trace(safepoint)("Setting thread local yield flag for threads");
 177       for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 178         // Make sure the threads start polling, it is time to yield.
 179         SafepointMechanism::arm_local_poll(cur); // release store, global state -> local state
 180       }
 181     }
 182     OrderAccess::fence(); // storestore|storeload, global state -> local state
 183 
 184     // Flush all thread states to memory
 185     if (!UseMembar) {
 186       os::serialize_thread_states();
 187     }
 188 
 189     if (SafepointMechanism::uses_global_page_poll()) {
 190       // Make interpreter safepoint aware
 191       Interpreter::notice_safepoints();
 192 
 193       if (DeferPollingPageLoopCount < 0) {
 194         // Make polling safepoint aware
 195         guarantee (PageArmed == 0, "invariant") ;
 196         PageArmed = 1 ;
 197         os::make_polling_page_unreadable();
 198       }
 199     }
 200 
 201     // Consider using active_processor_count() ... but that call is expensive.
 202     int ncpus = os::processor_count() ;
 203 
 204 #ifdef ASSERT
 205     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 206       assert(cur->safepoint_state()->is_running(), "Illegal initial state");
 207       // Clear the visited flag to ensure that the critical counts are collected properly.
 208       cur->set_visited_for_critical_count(false);
 209     }
 210 #endif // ASSERT
 211 
 212     if (SafepointTimeout)
 213       safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
 214 
 215     // Iterate through all threads until it have been determined how to stop them all at a safepoint
 216     unsigned int iterations = 0;
 217     int steps = 0 ;
 218     while(still_running > 0) {
 219       for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 220         assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
 221         ThreadSafepointState *cur_state = cur->safepoint_state();
 222         if (cur_state->is_running()) {
 223           cur_state->examine_state_of_thread();
 224           if (!cur_state->is_running()) {
 225             still_running--;
 226             // consider adjusting steps downward:
 227             //   steps = 0
 228             //   steps -= NNN
 229             //   steps >>= 1
 230             //   steps = MIN(steps, 2000-100)
 231             //   if (iterations != 0) steps -= NNN
 232           }
 233           LogTarget(Trace, safepoint) lt;
 234           if (lt.is_enabled()) {
 235             ResourceMark rm;
 236             LogStream ls(lt);
 237             cur_state->print_on(&ls);
 238           }
 239         }
 240       }
 241 
 242       if (iterations == 0) {
 243         initial_running = still_running;
 244         if (PrintSafepointStatistics) {
 245           begin_statistics(nof_threads, still_running);
 246         }
 247       }
 248 
 249       if (still_running > 0) {
 250         // Check for if it takes to long
 251         if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
 252           print_safepoint_timeout(_spinning_timeout);
 253         }
 254 
 255         // Spin to avoid context switching.
 256         // There's a tension between allowing the mutators to run (and rendezvous)
 257         // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
 258         // a mutator might otherwise use profitably to reach a safepoint.  Excessive
 259         // spinning by the VM thread on a saturated system can increase rendezvous latency.
 260         // Blocking or yielding incur their own penalties in the form of context switching
 261         // and the resultant loss of $ residency.
 262         //
 263         // Further complicating matters is that yield() does not work as naively expected
 264         // on many platforms -- yield() does not guarantee that any other ready threads
 265         // will run.   As such we revert to naked_short_sleep() after some number of iterations.
 266         // nakes_short_sleep() is implemented as a short unconditional sleep.
 267         // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
 268         // can actually increase the time it takes the VM thread to detect that a system-wide
 269         // stop-the-world safepoint has been reached.  In a pathological scenario such as that
 270         // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
 271         // In that case the mutators will be stalled waiting for the safepoint to complete and the
 272         // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
 273         // will eventually wake up and detect that all mutators are safe, at which point
 274         // we'll again make progress.
 275         //
 276         // Beware too that that the VMThread typically runs at elevated priority.
 277         // Its default priority is higher than the default mutator priority.
 278         // Obviously, this complicates spinning.
 279         //
 280         // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
 281         // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
 282         //
 283         // See the comments in synchronizer.cpp for additional remarks on spinning.
 284         //
 285         // In the future we might:
 286         // 1. Modify the safepoint scheme to avoid potentially unbounded spinning.
 287         //    This is tricky as the path used by a thread exiting the JVM (say on
 288         //    on JNI call-out) simply stores into its state field.  The burden
 289         //    is placed on the VM thread, which must poll (spin).
 290         // 2. Find something useful to do while spinning.  If the safepoint is GC-related
 291         //    we might aggressively scan the stacks of threads that are already safe.
 292         // 3. Use Solaris schedctl to examine the state of the still-running mutators.
 293         //    If all the mutators are ONPROC there's no reason to sleep or yield.
 294         // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
 295         // 5. Check system saturation.  If the system is not fully saturated then
 296         //    simply spin and avoid sleep/yield.
 297         // 6. As still-running mutators rendezvous they could unpark the sleeping
 298         //    VMthread.  This works well for still-running mutators that become
 299         //    safe.  The VMthread must still poll for mutators that call-out.
 300         // 7. Drive the policy on time-since-begin instead of iterations.
 301         // 8. Consider making the spin duration a function of the # of CPUs:
 302         //    Spin = (((ncpus-1) * M) + K) + F(still_running)
 303         //    Alternately, instead of counting iterations of the outer loop
 304         //    we could count the # of threads visited in the inner loop, above.
 305         // 9. On windows consider using the return value from SwitchThreadTo()
 306         //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
 307 
 308         if (SafepointMechanism::uses_global_page_poll() && int(iterations) == DeferPollingPageLoopCount) {
 309           guarantee (PageArmed == 0, "invariant") ;
 310           PageArmed = 1 ;
 311           os::make_polling_page_unreadable();
 312         }
 313 
 314         // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
 315         // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
 316         ++steps ;
 317         if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
 318           SpinPause() ;     // MP-Polite spin
 319         } else
 320           if (steps < DeferThrSuspendLoopCount) {
 321             os::naked_yield() ;
 322           } else {
 323             os::naked_short_sleep(1);
 324           }
 325 
 326         iterations ++ ;
 327       }
 328       assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
 329     }
 330     assert(still_running == 0, "sanity check");
 331 
 332     if (PrintSafepointStatistics) {
 333       update_statistics_on_spin_end();
 334     }
 335 
 336     if (sync_event.should_commit()) {
 337       // Group this event together with the ones committed after the counter is increased
 338       sync_event.set_safepointId(safepoint_counter() + 1);
 339       sync_event.set_initialThreadCount(initial_running);
 340       sync_event.set_runningThreadCount(_waiting_to_block);
 341       sync_event.set_iterations(iterations);
 342       sync_event.commit();
 343     }
 344   } //EventSafepointStateSync
 345 
 346   // wait until all threads are stopped
 347   {
 348     EventSafepointWaitBlocked wait_blocked_event;
 349     int initial_waiting_to_block = _waiting_to_block;
 350 
 351     while (_waiting_to_block > 0) {
 352       log_debug(safepoint)("Waiting for %d thread(s) to block", _waiting_to_block);
 353       if (!SafepointTimeout || timeout_error_printed) {
 354         Safepoint_lock->wait(true);  // true, means with no safepoint checks
 355       } else {
 356         // Compute remaining time
 357         jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
 358 
 359         // If there is no remaining time, then there is an error
 360         if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
 361           print_safepoint_timeout(_blocking_timeout);
 362         }
 363       }
 364     }
 365     assert(_waiting_to_block == 0, "sanity check");
 366 
 367 #ifndef PRODUCT
 368     if (SafepointTimeout) {
 369       jlong current_time = os::javaTimeNanos();
 370       if (safepoint_limit_time < current_time) {
 371         tty->print_cr("# SafepointSynchronize: Finished after "
 372                       INT64_FORMAT_W(6) " ms",
 373                       (int64_t)((current_time - safepoint_limit_time) / MICROUNITS +
 374                                 (jlong)SafepointTimeoutDelay));
 375       }
 376     }
 377 #endif
 378 
 379     assert((_safepoint_counter & 0x1) == 0, "must be even");
 380     assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 381     _safepoint_counter ++;
 382 
 383     // Record state
 384     _state = _synchronized;
 385 
 386     OrderAccess::fence();
 387 
 388     if (wait_blocked_event.should_commit()) {
 389       wait_blocked_event.set_safepointId(safepoint_counter());
 390       wait_blocked_event.set_runningThreadCount(initial_waiting_to_block);
 391       wait_blocked_event.commit();
 392     }
 393   } // EventSafepointWaitBlocked
 394 
 395 #ifdef ASSERT
 396   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 397     // make sure all the threads were visited
 398     assert(cur->was_visited_for_critical_count(), "missed a thread");
 399   }
 400 #endif // ASSERT
 401 
 402   // Update the count of active JNI critical regions
 403   GCLocker::set_jni_lock_count(_current_jni_active_count);
 404 
 405   if (log_is_enabled(Debug, safepoint)) {
 406     log_debug(safepoint)("Entering safepoint region: %s", VMThread::vm_safepoint_description());
 407   }
 408 
 409   RuntimeService::record_safepoint_synchronized();
 410   if (PrintSafepointStatistics) {
 411     update_statistics_on_sync_end(os::javaTimeNanos());
 412   }
 413 
 414   // Call stuff that needs to be run when a safepoint is just about to be completed
 415   {
 416     EventSafepointCleanup cleanup_event;
 417     do_cleanup_tasks();
 418     if (cleanup_event.should_commit()) {
 419       cleanup_event.set_safepointId(safepoint_counter());
 420       cleanup_event.commit();
 421     }
 422   }
 423 
 424   if (PrintSafepointStatistics) {
 425     // Record how much time spend on the above cleanup tasks
 426     update_statistics_on_cleanup_end(os::javaTimeNanos());
 427   }
 428   if (begin_event.should_commit()) {
 429     begin_event.set_safepointId(safepoint_counter());
 430     begin_event.set_totalThreadCount(nof_threads);
 431     begin_event.set_jniCriticalThreadCount(_current_jni_active_count);
 432     begin_event.commit();
 433   }
 434 }
 435 
 436 // Wake up all threads, so they are ready to resume execution after the safepoint
 437 // operation has been carried out
 438 void SafepointSynchronize::end() {
 439   EventSafepointEnd event;
 440   int safepoint_id = safepoint_counter(); // Keep the odd counter as "id"
 441 
 442   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 443   assert((_safepoint_counter & 0x1) == 1, "must be odd");
 444   _safepoint_counter ++;
 445   // memory fence isn't required here since an odd _safepoint_counter
 446   // value can do no harm and a fence is issued below anyway.
 447 
 448   DEBUG_ONLY(Thread* myThread = Thread::current();)
 449   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
 450 
 451   if (PrintSafepointStatistics) {
 452     end_statistics(os::javaTimeNanos());
 453   }
 454 
 455 #ifdef ASSERT
 456   // A pending_exception cannot be installed during a safepoint.  The threads
 457   // may install an async exception after they come back from a safepoint into
 458   // pending_exception after they unblock.  But that should happen later.
 459   for (JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
 460     assert (!(cur->has_pending_exception() &&
 461               cur->safepoint_state()->is_at_poll_safepoint()),
 462             "safepoint installed a pending exception");
 463   }
 464 #endif // ASSERT
 465 
 466   if (PageArmed) {
 467     assert(SafepointMechanism::uses_global_page_poll(), "sanity");
 468     // Make polling safepoint aware
 469     os::make_polling_page_readable();
 470     PageArmed = 0 ;
 471   }
 472 
 473   if (SafepointMechanism::uses_global_page_poll()) {
 474     // Remove safepoint check from interpreter
 475     Interpreter::ignore_safepoints();
 476   }
 477 
 478   {
 479     MutexLocker mu(Safepoint_lock);
 480 
 481     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
 482 
 483     if (SafepointMechanism::uses_thread_local_poll()) {
 484       _state = _not_synchronized;
 485       OrderAccess::storestore(); // global state -> local state
 486       for (JavaThread *current = Threads::first(); current; current = current->next()) {
 487         ThreadSafepointState* cur_state = current->safepoint_state();
 488         cur_state->restart(); // TSS _running
 489         SafepointMechanism::disarm_local_poll(current); // release store, local state -> polling page
 490       }
 491       log_debug(safepoint)("Leaving safepoint region");
 492     } else {
 493       // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
 494       // when they get restarted.
 495       _state = _not_synchronized;
 496       OrderAccess::fence();
 497 
 498       log_debug(safepoint)("Leaving safepoint region");
 499 
 500       // Start suspended threads
 501       for (JavaThread *current = Threads::first(); current; current = current->next()) {
 502         // A problem occurring on Solaris is when attempting to restart threads
 503         // the first #cpus - 1 go well, but then the VMThread is preempted when we get
 504         // to the next one (since it has been running the longest).  We then have
 505         // to wait for a cpu to become available before we can continue restarting
 506         // threads.
 507         // FIXME: This causes the performance of the VM to degrade when active and with
 508         // large numbers of threads.  Apparently this is due to the synchronous nature
 509         // of suspending threads.
 510         //
 511         // TODO-FIXME: the comments above are vestigial and no longer apply.
 512         // Furthermore, using solaris' schedctl in this particular context confers no benefit
 513         if (VMThreadHintNoPreempt) {
 514           os::hint_no_preempt();
 515         }
 516         ThreadSafepointState* cur_state = current->safepoint_state();
 517         assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
 518         cur_state->restart();
 519         assert(cur_state->is_running(), "safepoint state has not been reset");
 520       }
 521     }
 522 
 523     RuntimeService::record_safepoint_end();
 524 
 525     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
 526     // blocked in signal_thread_blocked
 527     Threads_lock->unlock();
 528 
 529   }
 530   Universe::heap()->safepoint_synchronize_end();
 531   // record this time so VMThread can keep track how much time has elapsed
 532   // since last safepoint.
 533   _end_of_last_safepoint = os::javaTimeMillis();
 534 
 535   if (event.should_commit()) {
 536     event.set_safepointId(safepoint_id);
 537     event.commit();
 538   }
 539 }
 540 
 541 bool SafepointSynchronize::is_cleanup_needed() {
 542   // Need a safepoint if there are many monitors to deflate.
 543   if (ObjectSynchronizer::is_cleanup_needed()) return true;
 544   // Need a safepoint if some inline cache buffers is non-empty
 545   if (!InlineCacheBuffer::is_empty()) return true;
 546   return false;
 547 }
 548 
 549 static void event_safepoint_cleanup_task_commit(EventSafepointCleanupTask& event, const char* name) {
 550   if (event.should_commit()) {
 551     event.set_safepointId(SafepointSynchronize::safepoint_counter());
 552     event.set_name(name);
 553     event.commit();
 554   }
 555 }
 556 
 557 class ParallelSPCleanupThreadClosure : public ThreadClosure {
 558 private:
 559   CodeBlobClosure* _nmethod_cl;
 560   DeflateMonitorCounters* _counters;
 561 
 562 public:
 563   ParallelSPCleanupThreadClosure(DeflateMonitorCounters* counters) :
 564     _counters(counters),
 565     _nmethod_cl(NMethodSweeper::prepare_mark_active_nmethods()) {}
 566 
 567   void do_thread(Thread* thread) {
 568     ObjectSynchronizer::deflate_thread_local_monitors(thread, _counters);
 569     if (_nmethod_cl != NULL && thread->is_Java_thread() &&
 570         ! thread->is_Code_cache_sweeper_thread()) {
 571       JavaThread* jt = (JavaThread*) thread;
 572       jt->nmethods_do(_nmethod_cl);
 573     }
 574   }
 575 };
 576 
 577 class ParallelSPCleanupTask : public AbstractGangTask {
 578 private:
 579   SubTasksDone _subtasks;
 580   ParallelSPCleanupThreadClosure _cleanup_threads_cl;
 581   uint _num_workers;
 582   DeflateMonitorCounters* _counters;
 583 public:
 584   ParallelSPCleanupTask(uint num_workers, DeflateMonitorCounters* counters) :
 585     AbstractGangTask("Parallel Safepoint Cleanup"),
 586     _cleanup_threads_cl(ParallelSPCleanupThreadClosure(counters)),
 587     _num_workers(num_workers),
 588     _subtasks(SubTasksDone(SafepointSynchronize::SAFEPOINT_CLEANUP_NUM_TASKS)),
 589     _counters(counters) {}
 590 
 591   void work(uint worker_id) {
 592     // All threads deflate monitors and mark nmethods (if necessary).
 593     Threads::possibly_parallel_threads_do(true, &_cleanup_threads_cl);
 594 
 595     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_DEFLATE_MONITORS)) {
 596       const char* name = "deflating idle monitors";
 597       EventSafepointCleanupTask event;
 598       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 599       ObjectSynchronizer::deflate_idle_monitors(_counters);
 600       event_safepoint_cleanup_task_commit(event, name);
 601     }
 602 
 603     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_UPDATE_INLINE_CACHES)) {
 604       const char* name = "updating inline caches";
 605       EventSafepointCleanupTask event;
 606       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 607       InlineCacheBuffer::update_inline_caches();
 608       event_safepoint_cleanup_task_commit(event, name);
 609     }
 610 
 611     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_COMPILATION_POLICY)) {
 612       const char* name = "compilation policy safepoint handler";
 613       EventSafepointCleanupTask event;
 614       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 615       CompilationPolicy::policy()->do_safepoint_work();
 616       event_safepoint_cleanup_task_commit(event, name);
 617     }
 618 
 619     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_SYMBOL_TABLE_REHASH)) {
 620       if (SymbolTable::needs_rehashing()) {
 621         const char* name = "rehashing symbol table";
 622         EventSafepointCleanupTask event;
 623         TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 624         SymbolTable::rehash_table();
 625         event_safepoint_cleanup_task_commit(event, name);
 626       }
 627     }
 628 
 629     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_STRING_TABLE_REHASH)) {
 630       if (StringTable::needs_rehashing()) {
 631         const char* name = "rehashing string table";
 632         EventSafepointCleanupTask event;
 633         TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 634         StringTable::rehash_table();
 635         event_safepoint_cleanup_task_commit(event, name);
 636       }
 637     }
 638 
 639     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_CLD_PURGE)) {
 640       // CMS delays purging the CLDG until the beginning of the next safepoint and to
 641       // make sure concurrent sweep is done
 642       const char* name = "purging class loader data graph";
 643       EventSafepointCleanupTask event;
 644       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 645       ClassLoaderDataGraph::purge_if_needed();
 646       event_safepoint_cleanup_task_commit(event, name);
 647     }
 648 
 649     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_SYSTEM_DICTIONARY_RESIZE)) {
 650       const char* name = "resizing system dictionaries";
 651       EventSafepointCleanupTask event;
 652       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 653       ClassLoaderDataGraph::resize_if_needed();
 654       event_safepoint_cleanup_task_commit(event, name);
 655     }
 656     _subtasks.all_tasks_completed(_num_workers);
 657   }
 658 };
 659 
 660 // Various cleaning tasks that should be done periodically at safepoints.
 661 void SafepointSynchronize::do_cleanup_tasks() {
 662 
 663   TraceTime timer("safepoint cleanup tasks", TRACETIME_LOG(Info, safepoint, cleanup));
 664 
 665   // Prepare for monitor deflation.
 666   DeflateMonitorCounters deflate_counters;
 667   ObjectSynchronizer::prepare_deflate_idle_monitors(&deflate_counters);
 668 
 669   CollectedHeap* heap = Universe::heap();
 670   assert(heap != NULL, "heap not initialized yet?");
 671   WorkGang* cleanup_workers = heap->get_safepoint_workers();
 672   if (cleanup_workers != NULL) {
 673     // Parallel cleanup using GC provided thread pool.
 674     uint num_cleanup_workers = cleanup_workers->active_workers();
 675     ParallelSPCleanupTask cleanup(num_cleanup_workers, &deflate_counters);
 676     StrongRootsScope srs(num_cleanup_workers);
 677     cleanup_workers->run_task(&cleanup);
 678   } else {
 679     // Serial cleanup using VMThread.
 680     ParallelSPCleanupTask cleanup(1, &deflate_counters);
 681     StrongRootsScope srs(1);
 682     cleanup.work(0);
 683   }
 684 
 685   // Finish monitor deflation.
 686   ObjectSynchronizer::finish_deflate_idle_monitors(&deflate_counters);
 687 }
 688 
 689 
 690 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
 691   switch(state) {
 692   case _thread_in_native:
 693     // native threads are safe if they have no java stack or have walkable stack
 694     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
 695 
 696    // blocked threads should have already have walkable stack
 697   case _thread_blocked:
 698     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
 699     return true;
 700 
 701   default:
 702     return false;
 703   }
 704 }
 705 
 706 
 707 // See if the thread is running inside a lazy critical native and
 708 // update the thread critical count if so.  Also set a suspend flag to
 709 // cause the native wrapper to return into the JVM to do the unlock
 710 // once the native finishes.
 711 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
 712   if (state == _thread_in_native &&
 713       thread->has_last_Java_frame() &&
 714       thread->frame_anchor()->walkable()) {
 715     // This thread might be in a critical native nmethod so look at
 716     // the top of the stack and increment the critical count if it
 717     // is.
 718     frame wrapper_frame = thread->last_frame();
 719     CodeBlob* stub_cb = wrapper_frame.cb();
 720     if (stub_cb != NULL &&
 721         stub_cb->is_nmethod() &&
 722         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
 723       // A thread could potentially be in a critical native across
 724       // more than one safepoint, so only update the critical state on
 725       // the first one.  When it returns it will perform the unlock.
 726       if (!thread->do_critical_native_unlock()) {
 727 #ifdef ASSERT
 728         if (!thread->in_critical()) {
 729           GCLocker::increment_debug_jni_lock_count();
 730         }
 731 #endif
 732         thread->enter_critical();
 733         // Make sure the native wrapper calls back on return to
 734         // perform the needed critical unlock.
 735         thread->set_critical_native_unlock();
 736       }
 737     }
 738   }
 739 }
 740 
 741 
 742 
 743 // -------------------------------------------------------------------------------------------------------
 744 // Implementation of Safepoint callback point
 745 
 746 void SafepointSynchronize::block(JavaThread *thread) {
 747   assert(thread != NULL, "thread must be set");
 748   assert(thread->is_Java_thread(), "not a Java thread");
 749 
 750   // Threads shouldn't block if they are in the middle of printing, but...
 751   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
 752 
 753   // Only bail from the block() call if the thread is gone from the
 754   // thread list; starting to exit should still block.
 755   if (thread->is_terminated()) {
 756      // block current thread if we come here from native code when VM is gone
 757      thread->block_if_vm_exited();
 758 
 759      // otherwise do nothing
 760      return;
 761   }
 762 
 763   JavaThreadState state = thread->thread_state();
 764   thread->frame_anchor()->make_walkable(thread);
 765 
 766   // Check that we have a valid thread_state at this point
 767   switch(state) {
 768     case _thread_in_vm_trans:
 769     case _thread_in_Java:        // From compiled code
 770 
 771       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
 772       // we pretend we are still in the VM.
 773       thread->set_thread_state(_thread_in_vm);
 774 
 775       if (is_synchronizing()) {
 776          Atomic::inc (&TryingToBlock) ;
 777       }
 778 
 779       // We will always be holding the Safepoint_lock when we are examine the state
 780       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
 781       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
 782       Safepoint_lock->lock_without_safepoint_check();
 783       if (is_synchronizing()) {
 784         // Decrement the number of threads to wait for and signal vm thread
 785         assert(_waiting_to_block > 0, "sanity check");
 786         _waiting_to_block--;
 787         thread->safepoint_state()->set_has_called_back(true);
 788 
 789         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
 790         if (thread->in_critical()) {
 791           // Notice that this thread is in a critical section
 792           increment_jni_active_count();
 793         }
 794 
 795         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
 796         if (_waiting_to_block == 0) {
 797           Safepoint_lock->notify_all();
 798         }
 799       }
 800 
 801       // We transition the thread to state _thread_blocked here, but
 802       // we can't do our usual check for external suspension and then
 803       // self-suspend after the lock_without_safepoint_check() call
 804       // below because we are often called during transitions while
 805       // we hold different locks. That would leave us suspended while
 806       // holding a resource which results in deadlocks.
 807       thread->set_thread_state(_thread_blocked);
 808       Safepoint_lock->unlock();
 809 
 810       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
 811       // the entire safepoint, the threads will all line up here during the safepoint.
 812       Threads_lock->lock_without_safepoint_check();
 813       // restore original state. This is important if the thread comes from compiled code, so it
 814       // will continue to execute with the _thread_in_Java state.
 815       thread->set_thread_state(state);
 816       Threads_lock->unlock();
 817       break;
 818 
 819     case _thread_in_native_trans:
 820     case _thread_blocked_trans:
 821     case _thread_new_trans:
 822       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
 823         thread->print_thread_state();
 824         fatal("Deadlock in safepoint code.  "
 825               "Should have called back to the VM before blocking.");
 826       }
 827 
 828       // We transition the thread to state _thread_blocked here, but
 829       // we can't do our usual check for external suspension and then
 830       // self-suspend after the lock_without_safepoint_check() call
 831       // below because we are often called during transitions while
 832       // we hold different locks. That would leave us suspended while
 833       // holding a resource which results in deadlocks.
 834       thread->set_thread_state(_thread_blocked);
 835 
 836       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
 837       // the safepoint code might still be waiting for it to block. We need to change the state here,
 838       // so it can see that it is at a safepoint.
 839 
 840       // Block until the safepoint operation is completed.
 841       Threads_lock->lock_without_safepoint_check();
 842 
 843       // Restore state
 844       thread->set_thread_state(state);
 845 
 846       Threads_lock->unlock();
 847       break;
 848 
 849     default:
 850      fatal("Illegal threadstate encountered: %d", state);
 851   }
 852 
 853   // Check for pending. async. exceptions or suspends - except if the
 854   // thread was blocked inside the VM. has_special_runtime_exit_condition()
 855   // is called last since it grabs a lock and we only want to do that when
 856   // we must.
 857   //
 858   // Note: we never deliver an async exception at a polling point as the
 859   // compiler may not have an exception handler for it. The polling
 860   // code will notice the async and deoptimize and the exception will
 861   // be delivered. (Polling at a return point is ok though). Sure is
 862   // a lot of bother for a deprecated feature...
 863   //
 864   // We don't deliver an async exception if the thread state is
 865   // _thread_in_native_trans so JNI functions won't be called with
 866   // a surprising pending exception. If the thread state is going back to java,
 867   // async exception is checked in check_special_condition_for_native_trans().
 868 
 869   if (state != _thread_blocked_trans &&
 870       state != _thread_in_vm_trans &&
 871       thread->has_special_runtime_exit_condition()) {
 872     thread->handle_special_runtime_exit_condition(
 873       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
 874   }
 875 }
 876 
 877 // ------------------------------------------------------------------------------------------------------
 878 // Exception handlers
 879 
 880 
 881 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
 882   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
 883   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
 884   if (!ThreadLocalHandshakes) {
 885     assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
 886   }
 887 
 888   if (ShowSafepointMsgs) {
 889     tty->print("handle_polling_page_exception: ");
 890   }
 891 
 892   if (PrintSafepointStatistics) {
 893     inc_page_trap_count();
 894   }
 895 
 896   ThreadSafepointState* state = thread->safepoint_state();
 897 
 898   state->handle_polling_page_exception();
 899 }
 900 
 901 
 902 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
 903   if (!timeout_error_printed) {
 904     timeout_error_printed = true;
 905     // Print out the thread info which didn't reach the safepoint for debugging
 906     // purposes (useful when there are lots of threads in the debugger).
 907     tty->cr();
 908     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
 909     if (reason ==  _spinning_timeout) {
 910       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
 911     } else if (reason == _blocking_timeout) {
 912       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
 913     }
 914 
 915     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
 916     ThreadSafepointState *cur_state;
 917     ResourceMark rm;
 918     for (JavaThread *cur_thread = Threads::first(); cur_thread;
 919         cur_thread = cur_thread->next()) {
 920       cur_state = cur_thread->safepoint_state();
 921 
 922       if (cur_thread->thread_state() != _thread_blocked &&
 923           ((reason == _spinning_timeout && cur_state->is_running()) ||
 924            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
 925         tty->print("# ");
 926         cur_thread->print();
 927         tty->cr();
 928       }
 929     }
 930     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
 931   }
 932 
 933   // To debug the long safepoint, specify both DieOnSafepointTimeout &
 934   // ShowMessageBoxOnError.
 935   if (DieOnSafepointTimeout) {
 936     fatal("Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
 937           SafepointTimeoutDelay, VMThread::vm_safepoint_description());
 938   }
 939 }
 940 
 941 
 942 // -------------------------------------------------------------------------------------------------------
 943 // Implementation of ThreadSafepointState
 944 
 945 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
 946   _thread = thread;
 947   _type   = _running;
 948   _has_called_back = false;
 949   _at_poll_safepoint = false;
 950 }
 951 
 952 void ThreadSafepointState::create(JavaThread *thread) {
 953   ThreadSafepointState *state = new ThreadSafepointState(thread);
 954   thread->set_safepoint_state(state);
 955 }
 956 
 957 void ThreadSafepointState::destroy(JavaThread *thread) {
 958   if (thread->safepoint_state()) {
 959     delete(thread->safepoint_state());
 960     thread->set_safepoint_state(NULL);
 961   }
 962 }
 963 
 964 void ThreadSafepointState::examine_state_of_thread() {
 965   assert(is_running(), "better be running or just have hit safepoint poll");
 966 
 967   JavaThreadState state = _thread->thread_state();
 968 
 969   // Save the state at the start of safepoint processing.
 970   _orig_thread_state = state;
 971 
 972   // Check for a thread that is suspended. Note that thread resume tries
 973   // to grab the Threads_lock which we own here, so a thread cannot be
 974   // resumed during safepoint synchronization.
 975 
 976   // We check to see if this thread is suspended without locking to
 977   // avoid deadlocking with a third thread that is waiting for this
 978   // thread to be suspended. The third thread can notice the safepoint
 979   // that we're trying to start at the beginning of its SR_lock->wait()
 980   // call. If that happens, then the third thread will block on the
 981   // safepoint while still holding the underlying SR_lock. We won't be
 982   // able to get the SR_lock and we'll deadlock.
 983   //
 984   // We don't need to grab the SR_lock here for two reasons:
 985   // 1) The suspend flags are both volatile and are set with an
 986   //    Atomic::cmpxchg() call so we should see the suspended
 987   //    state right away.
 988   // 2) We're being called from the safepoint polling loop; if
 989   //    we don't see the suspended state on this iteration, then
 990   //    we'll come around again.
 991   //
 992   bool is_suspended = _thread->is_ext_suspended();
 993   if (is_suspended) {
 994     roll_forward(_at_safepoint);
 995     return;
 996   }
 997 
 998   // Some JavaThread states have an initial safepoint state of
 999   // running, but are actually at a safepoint. We will happily
1000   // agree and update the safepoint state here.
1001   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
1002     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
1003     roll_forward(_at_safepoint);
1004     return;
1005   }
1006 
1007   if (state == _thread_in_vm) {
1008     roll_forward(_call_back);
1009     return;
1010   }
1011 
1012   // All other thread states will continue to run until they
1013   // transition and self-block in state _blocked
1014   // Safepoint polling in compiled code causes the Java threads to do the same.
1015   // Note: new threads may require a malloc so they must be allowed to finish
1016 
1017   assert(is_running(), "examine_state_of_thread on non-running thread");
1018   return;
1019 }
1020 
1021 // Returns true is thread could not be rolled forward at present position.
1022 void ThreadSafepointState::roll_forward(suspend_type type) {
1023   _type = type;
1024 
1025   switch(_type) {
1026     case _at_safepoint:
1027       SafepointSynchronize::signal_thread_at_safepoint();
1028       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
1029       if (_thread->in_critical()) {
1030         // Notice that this thread is in a critical section
1031         SafepointSynchronize::increment_jni_active_count();
1032       }
1033       break;
1034 
1035     case _call_back:
1036       set_has_called_back(false);
1037       break;
1038 
1039     case _running:
1040     default:
1041       ShouldNotReachHere();
1042   }
1043 }
1044 
1045 void ThreadSafepointState::restart() {
1046   switch(type()) {
1047     case _at_safepoint:
1048     case _call_back:
1049       break;
1050 
1051     case _running:
1052     default:
1053        tty->print_cr("restart thread " INTPTR_FORMAT " with state %d",
1054                      p2i(_thread), _type);
1055        _thread->print();
1056       ShouldNotReachHere();
1057   }
1058   _type = _running;
1059   set_has_called_back(false);
1060 }
1061 
1062 
1063 void ThreadSafepointState::print_on(outputStream *st) const {
1064   const char *s = NULL;
1065 
1066   switch(_type) {
1067     case _running                : s = "_running";              break;
1068     case _at_safepoint           : s = "_at_safepoint";         break;
1069     case _call_back              : s = "_call_back";            break;
1070     default:
1071       ShouldNotReachHere();
1072   }
1073 
1074   st->print_cr("Thread: " INTPTR_FORMAT
1075               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
1076                p2i(_thread), _thread->osthread()->thread_id(), s, _has_called_back,
1077                _at_poll_safepoint);
1078 
1079   _thread->print_thread_state_on(st);
1080 }
1081 
1082 // ---------------------------------------------------------------------------------------------------------------------
1083 
1084 // Block the thread at poll or poll return for safepoint/handshake.
1085 void ThreadSafepointState::handle_polling_page_exception() {
1086 
1087   // Check state.  block() will set thread state to thread_in_vm which will
1088   // cause the safepoint state _type to become _call_back.
1089   suspend_type t = type();
1090   assert(!SafepointMechanism::uses_global_page_poll() || t == ThreadSafepointState::_running,
1091          "polling page exception on thread not running state: %u", uint(t));
1092 
1093   // Step 1: Find the nmethod from the return address
1094   if (ShowSafepointMsgs && Verbose) {
1095     tty->print_cr("Polling page exception at " INTPTR_FORMAT, p2i(thread()->saved_exception_pc()));
1096   }
1097   address real_return_addr = thread()->saved_exception_pc();
1098 
1099   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
1100   assert(cb != NULL && cb->is_compiled(), "return address should be in nmethod");
1101   CompiledMethod* nm = (CompiledMethod*)cb;
1102 
1103   // Find frame of caller
1104   frame stub_fr = thread()->last_frame();
1105   CodeBlob* stub_cb = stub_fr.cb();
1106   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
1107   RegisterMap map(thread(), true);
1108   frame caller_fr = stub_fr.sender(&map);
1109 
1110   // Should only be poll_return or poll
1111   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
1112 
1113   // This is a poll immediately before a return. The exception handling code
1114   // has already had the effect of causing the return to occur, so the execution
1115   // will continue immediately after the call. In addition, the oopmap at the
1116   // return point does not mark the return value as an oop (if it is), so
1117   // it needs a handle here to be updated.
1118   if( nm->is_at_poll_return(real_return_addr) ) {
1119     // See if return type is an oop.
1120     bool return_oop = nm->method()->is_returning_oop();
1121     Handle return_value;
1122     if (return_oop) {
1123       // The oop result has been saved on the stack together with all
1124       // the other registers. In order to preserve it over GCs we need
1125       // to keep it in a handle.
1126       oop result = caller_fr.saved_oop_result(&map);
1127       assert(oopDesc::is_oop_or_null(result), "must be oop");
1128       return_value = Handle(thread(), result);
1129       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
1130     }
1131 
1132     // Block the thread
1133     SafepointMechanism::block_if_requested(thread());
1134 
1135     // restore oop result, if any
1136     if (return_oop) {
1137       caller_fr.set_saved_oop_result(&map, return_value());
1138     }
1139   }
1140 
1141   // This is a safepoint poll. Verify the return address and block.
1142   else {
1143     set_at_poll_safepoint(true);
1144 
1145     // verify the blob built the "return address" correctly
1146     assert(real_return_addr == caller_fr.pc(), "must match");
1147 
1148     // Block the thread
1149     SafepointMechanism::block_if_requested(thread());
1150     set_at_poll_safepoint(false);
1151 
1152     // If we have a pending async exception deoptimize the frame
1153     // as otherwise we may never deliver it.
1154     if (thread()->has_async_condition()) {
1155       ThreadInVMfromJavaNoAsyncException __tiv(thread());
1156       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1157     }
1158 
1159     // If an exception has been installed we must check for a pending deoptimization
1160     // Deoptimize frame if exception has been thrown.
1161 
1162     if (thread()->has_pending_exception() ) {
1163       RegisterMap map(thread(), true);
1164       frame caller_fr = stub_fr.sender(&map);
1165       if (caller_fr.is_deoptimized_frame()) {
1166         // The exception patch will destroy registers that are still
1167         // live and will be needed during deoptimization. Defer the
1168         // Async exception should have deferred the exception until the
1169         // next safepoint which will be detected when we get into
1170         // the interpreter so if we have an exception now things
1171         // are messed up.
1172 
1173         fatal("Exception installed and deoptimization is pending");
1174       }
1175     }
1176   }
1177 }
1178 
1179 
1180 //
1181 //                     Statistics & Instrumentations
1182 //
1183 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1184 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1185 int    SafepointSynchronize::_cur_stat_index = 0;
1186 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1187 julong SafepointSynchronize::_coalesced_vmop_count = 0;
1188 jlong  SafepointSynchronize::_max_sync_time = 0;
1189 jlong  SafepointSynchronize::_max_vmop_time = 0;
1190 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1191 
1192 static jlong  cleanup_end_time = 0;
1193 static bool   need_to_track_page_armed_status = false;
1194 static bool   init_done = false;
1195 
1196 // Helper method to print the header.
1197 static void print_header() {
1198   // The number of spaces is significant here, and should match the format
1199   // specifiers in print_statistics().
1200 
1201   tty->print("          vmop                            "
1202              "[ threads:    total initially_running wait_to_block ]"
1203              "[ time:    spin   block    sync cleanup    vmop ] ");
1204 
1205   // no page armed status printed out if it is always armed.
1206   if (need_to_track_page_armed_status) {
1207     tty->print("page_armed ");
1208   }
1209 
1210   tty->print_cr("page_trap_count");
1211 }
1212 
1213 void SafepointSynchronize::deferred_initialize_stat() {
1214   if (init_done) return;
1215 
1216   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1217   // be printed right away, in which case, _safepoint_stats will regress to
1218   // a single element array. Otherwise, it is a circular ring buffer with default
1219   // size of PrintSafepointStatisticsCount.
1220   int stats_array_size;
1221   if (PrintSafepointStatisticsTimeout > 0) {
1222     stats_array_size = 1;
1223     PrintSafepointStatistics = true;
1224   } else {
1225     stats_array_size = PrintSafepointStatisticsCount;
1226   }
1227   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1228                                                  * sizeof(SafepointStats), mtInternal);
1229   guarantee(_safepoint_stats != NULL,
1230             "not enough memory for safepoint instrumentation data");
1231 
1232   if (DeferPollingPageLoopCount >= 0) {
1233     need_to_track_page_armed_status = true;
1234   }
1235   init_done = true;
1236 }
1237 
1238 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1239   assert(init_done, "safepoint statistics array hasn't been initialized");
1240   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1241 
1242   spstat->_time_stamp = _ts_of_current_safepoint;
1243 
1244   VM_Operation *op = VMThread::vm_operation();
1245   spstat->_vmop_type = (op != NULL ? op->type() : -1);
1246   if (op != NULL) {
1247     _safepoint_reasons[spstat->_vmop_type]++;
1248   }
1249 
1250   spstat->_nof_total_threads = nof_threads;
1251   spstat->_nof_initial_running_threads = nof_running;
1252   spstat->_nof_threads_hit_page_trap = 0;
1253 
1254   // Records the start time of spinning. The real time spent on spinning
1255   // will be adjusted when spin is done. Same trick is applied for time
1256   // spent on waiting for threads to block.
1257   if (nof_running != 0) {
1258     spstat->_time_to_spin = os::javaTimeNanos();
1259   }  else {
1260     spstat->_time_to_spin = 0;
1261   }
1262 }
1263 
1264 void SafepointSynchronize::update_statistics_on_spin_end() {
1265   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1266 
1267   jlong cur_time = os::javaTimeNanos();
1268 
1269   spstat->_nof_threads_wait_to_block = _waiting_to_block;
1270   if (spstat->_nof_initial_running_threads != 0) {
1271     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1272   }
1273 
1274   if (need_to_track_page_armed_status) {
1275     spstat->_page_armed = (PageArmed == 1);
1276   }
1277 
1278   // Records the start time of waiting for to block. Updated when block is done.
1279   if (_waiting_to_block != 0) {
1280     spstat->_time_to_wait_to_block = cur_time;
1281   } else {
1282     spstat->_time_to_wait_to_block = 0;
1283   }
1284 }
1285 
1286 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1287   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1288 
1289   if (spstat->_nof_threads_wait_to_block != 0) {
1290     spstat->_time_to_wait_to_block = end_time -
1291       spstat->_time_to_wait_to_block;
1292   }
1293 
1294   // Records the end time of sync which will be used to calculate the total
1295   // vm operation time. Again, the real time spending in syncing will be deducted
1296   // from the start of the sync time later when end_statistics is called.
1297   spstat->_time_to_sync = end_time - _safepoint_begin_time;
1298   if (spstat->_time_to_sync > _max_sync_time) {
1299     _max_sync_time = spstat->_time_to_sync;
1300   }
1301 
1302   spstat->_time_to_do_cleanups = end_time;
1303 }
1304 
1305 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1306   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1307 
1308   // Record how long spent in cleanup tasks.
1309   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1310 
1311   cleanup_end_time = end_time;
1312 }
1313 
1314 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1315   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1316 
1317   // Update the vm operation time.
1318   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1319   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1320     _max_vmop_time = spstat->_time_to_exec_vmop;
1321   }
1322   // Only the sync time longer than the specified
1323   // PrintSafepointStatisticsTimeout will be printed out right away.
1324   // By default, it is -1 meaning all samples will be put into the list.
1325   if ( PrintSafepointStatisticsTimeout > 0) {
1326     if (spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1327       print_statistics();
1328     }
1329   } else {
1330     // The safepoint statistics will be printed out when the _safepoin_stats
1331     // array fills up.
1332     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1333       print_statistics();
1334       _cur_stat_index = 0;
1335     } else {
1336       _cur_stat_index++;
1337     }
1338   }
1339 }
1340 
1341 void SafepointSynchronize::print_statistics() {
1342   for (int index = 0; index <= _cur_stat_index; index++) {
1343     if (index % 30 == 0) {
1344       print_header();
1345     }
1346     SafepointStats* sstats = &_safepoint_stats[index];
1347     tty->print("%8.3f: ", sstats->_time_stamp);
1348     tty->print("%-30s  [          "
1349                INT32_FORMAT_W(8) " " INT32_FORMAT_W(17) " " INT32_FORMAT_W(13) " "
1350                "]",
1351                (sstats->_vmop_type == -1 ? "no vm operation" : VM_Operation::name(sstats->_vmop_type)),
1352                sstats->_nof_total_threads,
1353                sstats->_nof_initial_running_threads,
1354                sstats->_nof_threads_wait_to_block);
1355     // "/ MICROUNITS " is to convert the unit from nanos to millis.
1356     tty->print("[       "
1357                INT64_FORMAT_W(7) " " INT64_FORMAT_W(7) " "
1358                INT64_FORMAT_W(7) " " INT64_FORMAT_W(7) " "
1359                INT64_FORMAT_W(7) " ] ",
1360                (int64_t)(sstats->_time_to_spin / MICROUNITS),
1361                (int64_t)(sstats->_time_to_wait_to_block / MICROUNITS),
1362                (int64_t)(sstats->_time_to_sync / MICROUNITS),
1363                (int64_t)(sstats->_time_to_do_cleanups / MICROUNITS),
1364                (int64_t)(sstats->_time_to_exec_vmop / MICROUNITS));
1365 
1366     if (need_to_track_page_armed_status) {
1367       tty->print(INT32_FORMAT_W(10) " ", sstats->_page_armed);
1368     }
1369     tty->print_cr(INT32_FORMAT_W(15) " ", sstats->_nof_threads_hit_page_trap);
1370   }
1371 }
1372 
1373 // This method will be called when VM exits. It will first call
1374 // print_statistics to print out the rest of the sampling.  Then
1375 // it tries to summarize the sampling.
1376 void SafepointSynchronize::print_stat_on_exit() {
1377   if (_safepoint_stats == NULL) return;
1378 
1379   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1380 
1381   // During VM exit, end_statistics may not get called and in that
1382   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1383   // don't print it out.
1384   // Approximate the vm op time.
1385   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1386     os::javaTimeNanos() - cleanup_end_time;
1387 
1388   if ( PrintSafepointStatisticsTimeout < 0 ||
1389        spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1390     print_statistics();
1391   }
1392   tty->cr();
1393 
1394   // Print out polling page sampling status.
1395   if (!need_to_track_page_armed_status) {
1396     tty->print_cr("Polling page always armed");
1397   } else {
1398     tty->print_cr("Defer polling page loop count = " INTX_FORMAT "\n",
1399                   DeferPollingPageLoopCount);
1400   }
1401 
1402   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1403     if (_safepoint_reasons[index] != 0) {
1404       tty->print_cr("%-26s" UINT64_FORMAT_W(10), VM_Operation::name(index),
1405                     _safepoint_reasons[index]);
1406     }
1407   }
1408 
1409   tty->print_cr(UINT64_FORMAT_W(5) " VM operations coalesced during safepoint",
1410                 _coalesced_vmop_count);
1411   tty->print_cr("Maximum sync time  " INT64_FORMAT_W(5) " ms",
1412                 (int64_t)(_max_sync_time / MICROUNITS));
1413   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1414                 INT64_FORMAT_W(5) " ms",
1415                 (int64_t)(_max_vmop_time / MICROUNITS));
1416 }
1417 
1418 // ------------------------------------------------------------------------------------------------
1419 // Non-product code
1420 
1421 #ifndef PRODUCT
1422 
1423 void SafepointSynchronize::print_state() {
1424   if (_state == _not_synchronized) {
1425     tty->print_cr("not synchronized");
1426   } else if (_state == _synchronizing || _state == _synchronized) {
1427     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1428                   "synchronized");
1429 
1430     for (JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1431        cur->safepoint_state()->print();
1432     }
1433   }
1434 }
1435 
1436 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1437   if (ShowSafepointMsgs) {
1438     va_list ap;
1439     va_start(ap, format);
1440     tty->vprint_cr(format, ap);
1441     va_end(ap);
1442   }
1443 }
1444 
1445 #endif // !PRODUCT