1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/moduleEntry.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/gcId.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "gc/shared/workgroup.hpp"
  39 #include "interpreter/interpreter.hpp"
  40 #include "interpreter/linkResolver.hpp"
  41 #include "interpreter/oopMapCache.hpp"
  42 #include "jvmtifiles/jvmtiEnv.hpp"
  43 #include "logging/log.hpp"
  44 #include "logging/logConfiguration.hpp"
  45 #include "logging/logStream.hpp"
  46 #include "memory/allocation.inline.hpp"
  47 #include "memory/metaspaceShared.hpp"
  48 #include "memory/oopFactory.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "memory/universe.hpp"
  51 #include "oops/access.inline.hpp"
  52 #include "oops/instanceKlass.hpp"
  53 #include "oops/objArrayOop.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "oops/symbol.hpp"
  56 #include "oops/typeArrayOop.inline.hpp"
  57 #include "oops/verifyOopClosure.hpp"
  58 #include "prims/jvm_misc.hpp"
  59 #include "prims/jvmtiExport.hpp"
  60 #include "prims/jvmtiThreadState.hpp"
  61 #include "prims/privilegedStack.hpp"
  62 #include "runtime/arguments.hpp"
  63 #include "runtime/atomic.hpp"
  64 #include "runtime/biasedLocking.hpp"
  65 #include "runtime/commandLineFlagConstraintList.hpp"
  66 #include "runtime/commandLineFlagWriteableList.hpp"
  67 #include "runtime/commandLineFlagRangeList.hpp"
  68 #include "runtime/deoptimization.hpp"
  69 #include "runtime/frame.inline.hpp"
  70 #include "runtime/globals.hpp"
  71 #include "runtime/handshake.hpp"
  72 #include "runtime/init.hpp"
  73 #include "runtime/interfaceSupport.inline.hpp"
  74 #include "runtime/java.hpp"
  75 #include "runtime/javaCalls.hpp"
  76 #include "runtime/jniHandles.inline.hpp"
  77 #include "runtime/jniPeriodicChecker.hpp"
  78 #include "runtime/memprofiler.hpp"
  79 #include "runtime/mutexLocker.hpp"
  80 #include "runtime/objectMonitor.hpp"
  81 #include "runtime/orderAccess.inline.hpp"
  82 #include "runtime/osThread.hpp"
  83 #include "runtime/prefetch.inline.hpp"
  84 #include "runtime/safepoint.hpp"
  85 #include "runtime/safepointMechanism.inline.hpp"
  86 #include "runtime/sharedRuntime.hpp"
  87 #include "runtime/statSampler.hpp"
  88 #include "runtime/stubRoutines.hpp"
  89 #include "runtime/sweeper.hpp"
  90 #include "runtime/task.hpp"
  91 #include "runtime/thread.inline.hpp"
  92 #include "runtime/threadCritical.hpp"
  93 #include "runtime/threadSMR.inline.hpp"
  94 #include "runtime/timer.hpp"
  95 #include "runtime/timerTrace.hpp"
  96 #include "runtime/vframe.inline.hpp"
  97 #include "runtime/vframeArray.hpp"
  98 #include "runtime/vframe_hp.hpp"
  99 #include "runtime/vmThread.hpp"
 100 #include "runtime/vm_operations.hpp"
 101 #include "runtime/vm_version.hpp"
 102 #include "services/attachListener.hpp"
 103 #include "services/management.hpp"
 104 #include "services/memTracker.hpp"
 105 #include "services/threadService.hpp"
 106 #include "trace/traceMacros.hpp"
 107 #include "trace/tracing.hpp"
 108 #include "utilities/align.hpp"
 109 #include "utilities/defaultStream.hpp"
 110 #include "utilities/dtrace.hpp"
 111 #include "utilities/events.hpp"
 112 #include "utilities/macros.hpp"
 113 #include "utilities/preserveException.hpp"
 114 #include "utilities/vmError.hpp"
 115 #if INCLUDE_ALL_GCS
 116 #include "gc/cms/concurrentMarkSweepThread.hpp"
 117 #include "gc/g1/concurrentMarkThread.inline.hpp"
 118 #include "gc/parallel/pcTasks.hpp"
 119 #endif // INCLUDE_ALL_GCS
 120 #if INCLUDE_JVMCI
 121 #include "jvmci/jvmciCompiler.hpp"
 122 #include "jvmci/jvmciRuntime.hpp"
 123 #include "logging/logHandle.hpp"
 124 #endif
 125 #ifdef COMPILER1
 126 #include "c1/c1_Compiler.hpp"
 127 #endif
 128 #ifdef COMPILER2
 129 #include "opto/c2compiler.hpp"
 130 #include "opto/idealGraphPrinter.hpp"
 131 #endif
 132 #if INCLUDE_RTM_OPT
 133 #include "runtime/rtmLocking.hpp"
 134 #endif
 135 
 136 // Initialization after module runtime initialization
 137 void universe_post_module_init();  // must happen after call_initPhase2
 138 
 139 #ifdef DTRACE_ENABLED
 140 
 141 // Only bother with this argument setup if dtrace is available
 142 
 143   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 144   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 145 
 146   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 147     {                                                                      \
 148       ResourceMark rm(this);                                               \
 149       int len = 0;                                                         \
 150       const char* name = (javathread)->get_thread_name();                  \
 151       len = strlen(name);                                                  \
 152       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 153         (char *) name, len,                                                \
 154         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 155         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 156         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 157     }
 158 
 159 #else //  ndef DTRACE_ENABLED
 160 
 161   #define DTRACE_THREAD_PROBE(probe, javathread)
 162 
 163 #endif // ndef DTRACE_ENABLED
 164 
 165 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 166 // Current thread is maintained as a thread-local variable
 167 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 168 #endif
 169 // Class hierarchy
 170 // - Thread
 171 //   - VMThread
 172 //   - WatcherThread
 173 //   - ConcurrentMarkSweepThread
 174 //   - JavaThread
 175 //     - CompilerThread
 176 
 177 // ======= Thread ========
 178 // Support for forcing alignment of thread objects for biased locking
 179 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 180   if (UseBiasedLocking) {
 181     const int alignment = markOopDesc::biased_lock_alignment;
 182     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 183     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 184                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 185                                                          AllocFailStrategy::RETURN_NULL);
 186     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 187     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 188            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 189            "JavaThread alignment code overflowed allocated storage");
 190     if (aligned_addr != real_malloc_addr) {
 191       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 192                               p2i(real_malloc_addr),
 193                               p2i(aligned_addr));
 194     }
 195     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 196     return aligned_addr;
 197   } else {
 198     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 199                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 200   }
 201 }
 202 
 203 void Thread::operator delete(void* p) {
 204   if (UseBiasedLocking) {
 205     FreeHeap(((Thread*) p)->_real_malloc_address);
 206   } else {
 207     FreeHeap(p);
 208   }
 209 }
 210 
 211 void JavaThread::smr_delete() {
 212   if (_on_thread_list) {
 213     ThreadsSMRSupport::smr_delete(this);
 214   } else {
 215     delete this;
 216   }
 217 }
 218 
 219 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 220 // JavaThread
 221 
 222 
 223 Thread::Thread() {
 224   // stack and get_thread
 225   set_stack_base(NULL);
 226   set_stack_size(0);
 227   set_self_raw_id(0);
 228   set_lgrp_id(-1);
 229   DEBUG_ONLY(clear_suspendible_thread();)
 230 
 231   // allocated data structures
 232   set_osthread(NULL);
 233   set_resource_area(new (mtThread)ResourceArea());
 234   DEBUG_ONLY(_current_resource_mark = NULL;)
 235   set_handle_area(new (mtThread) HandleArea(NULL));
 236   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 237   set_active_handles(NULL);
 238   set_free_handle_block(NULL);
 239   set_last_handle_mark(NULL);
 240 
 241   // This initial value ==> never claimed.
 242   _oops_do_parity = 0;
 243   _threads_hazard_ptr = NULL;
 244   _nested_threads_hazard_ptr = NULL;
 245   _nested_threads_hazard_ptr_cnt = 0;
 246 
 247   // the handle mark links itself to last_handle_mark
 248   new HandleMark(this);
 249 
 250   // plain initialization
 251   debug_only(_owned_locks = NULL;)
 252   debug_only(_allow_allocation_count = 0;)
 253   NOT_PRODUCT(_allow_safepoint_count = 0;)
 254   NOT_PRODUCT(_skip_gcalot = false;)
 255   _jvmti_env_iteration_count = 0;
 256   set_allocated_bytes(0);
 257   _vm_operation_started_count = 0;
 258   _vm_operation_completed_count = 0;
 259   _current_pending_monitor = NULL;
 260   _current_pending_monitor_is_from_java = true;
 261   _current_waiting_monitor = NULL;
 262   _num_nested_signal = 0;
 263   omFreeList = NULL;
 264   omFreeCount = 0;
 265   omFreeProvision = 32;
 266   omInUseList = NULL;
 267   omInUseCount = 0;
 268 
 269 #ifdef ASSERT
 270   _visited_for_critical_count = false;
 271 #endif
 272 
 273   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 274                          Monitor::_safepoint_check_sometimes);
 275   _suspend_flags = 0;
 276 
 277   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 278   _hashStateX = os::random();
 279   _hashStateY = 842502087;
 280   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 281   _hashStateW = 273326509;
 282 
 283   _OnTrap   = 0;
 284   _schedctl = NULL;
 285   _Stalled  = 0;
 286   _TypeTag  = 0x2BAD;
 287 
 288   // Many of the following fields are effectively final - immutable
 289   // Note that nascent threads can't use the Native Monitor-Mutex
 290   // construct until the _MutexEvent is initialized ...
 291   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 292   // we might instead use a stack of ParkEvents that we could provision on-demand.
 293   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 294   // and ::Release()
 295   _ParkEvent   = ParkEvent::Allocate(this);
 296   _SleepEvent  = ParkEvent::Allocate(this);
 297   _MutexEvent  = ParkEvent::Allocate(this);
 298   _MuxEvent    = ParkEvent::Allocate(this);
 299 
 300 #ifdef CHECK_UNHANDLED_OOPS
 301   if (CheckUnhandledOops) {
 302     _unhandled_oops = new UnhandledOops(this);
 303   }
 304 #endif // CHECK_UNHANDLED_OOPS
 305 #ifdef ASSERT
 306   if (UseBiasedLocking) {
 307     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 308     assert(this == _real_malloc_address ||
 309            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 310            "bug in forced alignment of thread objects");
 311   }
 312 #endif // ASSERT
 313 }
 314 
 315 void Thread::initialize_thread_current() {
 316 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 317   assert(_thr_current == NULL, "Thread::current already initialized");
 318   _thr_current = this;
 319 #endif
 320   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 321   ThreadLocalStorage::set_thread(this);
 322   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 323 }
 324 
 325 void Thread::clear_thread_current() {
 326   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 327 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 328   _thr_current = NULL;
 329 #endif
 330   ThreadLocalStorage::set_thread(NULL);
 331 }
 332 
 333 void Thread::record_stack_base_and_size() {
 334   set_stack_base(os::current_stack_base());
 335   set_stack_size(os::current_stack_size());
 336   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 337   // in initialize_thread(). Without the adjustment, stack size is
 338   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 339   // So far, only Solaris has real implementation of initialize_thread().
 340   //
 341   // set up any platform-specific state.
 342   os::initialize_thread(this);
 343 
 344   // Set stack limits after thread is initialized.
 345   if (is_Java_thread()) {
 346     ((JavaThread*) this)->set_stack_overflow_limit();
 347     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 348   }
 349 #if INCLUDE_NMT
 350   // record thread's native stack, stack grows downward
 351   MemTracker::record_thread_stack(stack_end(), stack_size());
 352 #endif // INCLUDE_NMT
 353   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 354     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 355     os::current_thread_id(), p2i(stack_base() - stack_size()),
 356     p2i(stack_base()), stack_size()/1024);
 357 }
 358 
 359 
 360 Thread::~Thread() {
 361   EVENT_THREAD_DESTRUCT(this);
 362 
 363   // stack_base can be NULL if the thread is never started or exited before
 364   // record_stack_base_and_size called. Although, we would like to ensure
 365   // that all started threads do call record_stack_base_and_size(), there is
 366   // not proper way to enforce that.
 367 #if INCLUDE_NMT
 368   if (_stack_base != NULL) {
 369     MemTracker::release_thread_stack(stack_end(), stack_size());
 370 #ifdef ASSERT
 371     set_stack_base(NULL);
 372 #endif
 373   }
 374 #endif // INCLUDE_NMT
 375 
 376   // deallocate data structures
 377   delete resource_area();
 378   // since the handle marks are using the handle area, we have to deallocated the root
 379   // handle mark before deallocating the thread's handle area,
 380   assert(last_handle_mark() != NULL, "check we have an element");
 381   delete last_handle_mark();
 382   assert(last_handle_mark() == NULL, "check we have reached the end");
 383 
 384   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 385   // We NULL out the fields for good hygiene.
 386   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 387   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 388   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 389   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 390 
 391   delete handle_area();
 392   delete metadata_handles();
 393 
 394   // SR_handler uses this as a termination indicator -
 395   // needs to happen before os::free_thread()
 396   delete _SR_lock;
 397   _SR_lock = NULL;
 398 
 399   // osthread() can be NULL, if creation of thread failed.
 400   if (osthread() != NULL) os::free_thread(osthread());
 401 
 402   // clear Thread::current if thread is deleting itself.
 403   // Needed to ensure JNI correctly detects non-attached threads.
 404   if (this == Thread::current()) {
 405     clear_thread_current();
 406   }
 407 
 408   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 409 }
 410 
 411 // NOTE: dummy function for assertion purpose.
 412 void Thread::run() {
 413   ShouldNotReachHere();
 414 }
 415 
 416 #ifdef ASSERT
 417 // A JavaThread is considered "dangling" if it is not the current
 418 // thread, has been added the Threads list, the system is not at a
 419 // safepoint and the Thread is not "protected".
 420 //
 421 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 422   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 423          !((JavaThread *) thread)->on_thread_list() ||
 424          SafepointSynchronize::is_at_safepoint() ||
 425          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 426          "possibility of dangling Thread pointer");
 427 }
 428 #endif
 429 
 430 ThreadPriority Thread::get_priority(const Thread* const thread) {
 431   ThreadPriority priority;
 432   // Can return an error!
 433   (void)os::get_priority(thread, priority);
 434   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 435   return priority;
 436 }
 437 
 438 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 439   debug_only(check_for_dangling_thread_pointer(thread);)
 440   // Can return an error!
 441   (void)os::set_priority(thread, priority);
 442 }
 443 
 444 
 445 void Thread::start(Thread* thread) {
 446   // Start is different from resume in that its safety is guaranteed by context or
 447   // being called from a Java method synchronized on the Thread object.
 448   if (!DisableStartThread) {
 449     if (thread->is_Java_thread()) {
 450       // Initialize the thread state to RUNNABLE before starting this thread.
 451       // Can not set it after the thread started because we do not know the
 452       // exact thread state at that time. It could be in MONITOR_WAIT or
 453       // in SLEEPING or some other state.
 454       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 455                                           java_lang_Thread::RUNNABLE);
 456     }
 457     os::start_thread(thread);
 458   }
 459 }
 460 
 461 // Enqueue a VM_Operation to do the job for us - sometime later
 462 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 463   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 464   VMThread::execute(vm_stop);
 465 }
 466 
 467 
 468 // Check if an external suspend request has completed (or has been
 469 // cancelled). Returns true if the thread is externally suspended and
 470 // false otherwise.
 471 //
 472 // The bits parameter returns information about the code path through
 473 // the routine. Useful for debugging:
 474 //
 475 // set in is_ext_suspend_completed():
 476 // 0x00000001 - routine was entered
 477 // 0x00000010 - routine return false at end
 478 // 0x00000100 - thread exited (return false)
 479 // 0x00000200 - suspend request cancelled (return false)
 480 // 0x00000400 - thread suspended (return true)
 481 // 0x00001000 - thread is in a suspend equivalent state (return true)
 482 // 0x00002000 - thread is native and walkable (return true)
 483 // 0x00004000 - thread is native_trans and walkable (needed retry)
 484 //
 485 // set in wait_for_ext_suspend_completion():
 486 // 0x00010000 - routine was entered
 487 // 0x00020000 - suspend request cancelled before loop (return false)
 488 // 0x00040000 - thread suspended before loop (return true)
 489 // 0x00080000 - suspend request cancelled in loop (return false)
 490 // 0x00100000 - thread suspended in loop (return true)
 491 // 0x00200000 - suspend not completed during retry loop (return false)
 492 
 493 // Helper class for tracing suspend wait debug bits.
 494 //
 495 // 0x00000100 indicates that the target thread exited before it could
 496 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 497 // 0x00080000 each indicate a cancelled suspend request so they don't
 498 // count as wait failures either.
 499 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 500 
 501 class TraceSuspendDebugBits : public StackObj {
 502  private:
 503   JavaThread * jt;
 504   bool         is_wait;
 505   bool         called_by_wait;  // meaningful when !is_wait
 506   uint32_t *   bits;
 507 
 508  public:
 509   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 510                         uint32_t *_bits) {
 511     jt             = _jt;
 512     is_wait        = _is_wait;
 513     called_by_wait = _called_by_wait;
 514     bits           = _bits;
 515   }
 516 
 517   ~TraceSuspendDebugBits() {
 518     if (!is_wait) {
 519 #if 1
 520       // By default, don't trace bits for is_ext_suspend_completed() calls.
 521       // That trace is very chatty.
 522       return;
 523 #else
 524       if (!called_by_wait) {
 525         // If tracing for is_ext_suspend_completed() is enabled, then only
 526         // trace calls to it from wait_for_ext_suspend_completion()
 527         return;
 528       }
 529 #endif
 530     }
 531 
 532     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 533       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 534         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 535         ResourceMark rm;
 536 
 537         tty->print_cr(
 538                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 539                       jt->get_thread_name(), *bits);
 540 
 541         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 542       }
 543     }
 544   }
 545 };
 546 #undef DEBUG_FALSE_BITS
 547 
 548 
 549 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 550                                           uint32_t *bits) {
 551   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 552 
 553   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 554   bool do_trans_retry;           // flag to force the retry
 555 
 556   *bits |= 0x00000001;
 557 
 558   do {
 559     do_trans_retry = false;
 560 
 561     if (is_exiting()) {
 562       // Thread is in the process of exiting. This is always checked
 563       // first to reduce the risk of dereferencing a freed JavaThread.
 564       *bits |= 0x00000100;
 565       return false;
 566     }
 567 
 568     if (!is_external_suspend()) {
 569       // Suspend request is cancelled. This is always checked before
 570       // is_ext_suspended() to reduce the risk of a rogue resume
 571       // confusing the thread that made the suspend request.
 572       *bits |= 0x00000200;
 573       return false;
 574     }
 575 
 576     if (is_ext_suspended()) {
 577       // thread is suspended
 578       *bits |= 0x00000400;
 579       return true;
 580     }
 581 
 582     // Now that we no longer do hard suspends of threads running
 583     // native code, the target thread can be changing thread state
 584     // while we are in this routine:
 585     //
 586     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 587     //
 588     // We save a copy of the thread state as observed at this moment
 589     // and make our decision about suspend completeness based on the
 590     // copy. This closes the race where the thread state is seen as
 591     // _thread_in_native_trans in the if-thread_blocked check, but is
 592     // seen as _thread_blocked in if-thread_in_native_trans check.
 593     JavaThreadState save_state = thread_state();
 594 
 595     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 596       // If the thread's state is _thread_blocked and this blocking
 597       // condition is known to be equivalent to a suspend, then we can
 598       // consider the thread to be externally suspended. This means that
 599       // the code that sets _thread_blocked has been modified to do
 600       // self-suspension if the blocking condition releases. We also
 601       // used to check for CONDVAR_WAIT here, but that is now covered by
 602       // the _thread_blocked with self-suspension check.
 603       //
 604       // Return true since we wouldn't be here unless there was still an
 605       // external suspend request.
 606       *bits |= 0x00001000;
 607       return true;
 608     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 609       // Threads running native code will self-suspend on native==>VM/Java
 610       // transitions. If its stack is walkable (should always be the case
 611       // unless this function is called before the actual java_suspend()
 612       // call), then the wait is done.
 613       *bits |= 0x00002000;
 614       return true;
 615     } else if (!called_by_wait && !did_trans_retry &&
 616                save_state == _thread_in_native_trans &&
 617                frame_anchor()->walkable()) {
 618       // The thread is transitioning from thread_in_native to another
 619       // thread state. check_safepoint_and_suspend_for_native_trans()
 620       // will force the thread to self-suspend. If it hasn't gotten
 621       // there yet we may have caught the thread in-between the native
 622       // code check above and the self-suspend. Lucky us. If we were
 623       // called by wait_for_ext_suspend_completion(), then it
 624       // will be doing the retries so we don't have to.
 625       //
 626       // Since we use the saved thread state in the if-statement above,
 627       // there is a chance that the thread has already transitioned to
 628       // _thread_blocked by the time we get here. In that case, we will
 629       // make a single unnecessary pass through the logic below. This
 630       // doesn't hurt anything since we still do the trans retry.
 631 
 632       *bits |= 0x00004000;
 633 
 634       // Once the thread leaves thread_in_native_trans for another
 635       // thread state, we break out of this retry loop. We shouldn't
 636       // need this flag to prevent us from getting back here, but
 637       // sometimes paranoia is good.
 638       did_trans_retry = true;
 639 
 640       // We wait for the thread to transition to a more usable state.
 641       for (int i = 1; i <= SuspendRetryCount; i++) {
 642         // We used to do an "os::yield_all(i)" call here with the intention
 643         // that yielding would increase on each retry. However, the parameter
 644         // is ignored on Linux which means the yield didn't scale up. Waiting
 645         // on the SR_lock below provides a much more predictable scale up for
 646         // the delay. It also provides a simple/direct point to check for any
 647         // safepoint requests from the VMThread
 648 
 649         // temporarily drops SR_lock while doing wait with safepoint check
 650         // (if we're a JavaThread - the WatcherThread can also call this)
 651         // and increase delay with each retry
 652         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 653 
 654         // check the actual thread state instead of what we saved above
 655         if (thread_state() != _thread_in_native_trans) {
 656           // the thread has transitioned to another thread state so
 657           // try all the checks (except this one) one more time.
 658           do_trans_retry = true;
 659           break;
 660         }
 661       } // end retry loop
 662 
 663 
 664     }
 665   } while (do_trans_retry);
 666 
 667   *bits |= 0x00000010;
 668   return false;
 669 }
 670 
 671 // Wait for an external suspend request to complete (or be cancelled).
 672 // Returns true if the thread is externally suspended and false otherwise.
 673 //
 674 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 675                                                  uint32_t *bits) {
 676   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 677                              false /* !called_by_wait */, bits);
 678 
 679   // local flag copies to minimize SR_lock hold time
 680   bool is_suspended;
 681   bool pending;
 682   uint32_t reset_bits;
 683 
 684   // set a marker so is_ext_suspend_completed() knows we are the caller
 685   *bits |= 0x00010000;
 686 
 687   // We use reset_bits to reinitialize the bits value at the top of
 688   // each retry loop. This allows the caller to make use of any
 689   // unused bits for their own marking purposes.
 690   reset_bits = *bits;
 691 
 692   {
 693     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 694     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 695                                             delay, bits);
 696     pending = is_external_suspend();
 697   }
 698   // must release SR_lock to allow suspension to complete
 699 
 700   if (!pending) {
 701     // A cancelled suspend request is the only false return from
 702     // is_ext_suspend_completed() that keeps us from entering the
 703     // retry loop.
 704     *bits |= 0x00020000;
 705     return false;
 706   }
 707 
 708   if (is_suspended) {
 709     *bits |= 0x00040000;
 710     return true;
 711   }
 712 
 713   for (int i = 1; i <= retries; i++) {
 714     *bits = reset_bits;  // reinit to only track last retry
 715 
 716     // We used to do an "os::yield_all(i)" call here with the intention
 717     // that yielding would increase on each retry. However, the parameter
 718     // is ignored on Linux which means the yield didn't scale up. Waiting
 719     // on the SR_lock below provides a much more predictable scale up for
 720     // the delay. It also provides a simple/direct point to check for any
 721     // safepoint requests from the VMThread
 722 
 723     {
 724       MutexLocker ml(SR_lock());
 725       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 726       // can also call this)  and increase delay with each retry
 727       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 728 
 729       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 730                                               delay, bits);
 731 
 732       // It is possible for the external suspend request to be cancelled
 733       // (by a resume) before the actual suspend operation is completed.
 734       // Refresh our local copy to see if we still need to wait.
 735       pending = is_external_suspend();
 736     }
 737 
 738     if (!pending) {
 739       // A cancelled suspend request is the only false return from
 740       // is_ext_suspend_completed() that keeps us from staying in the
 741       // retry loop.
 742       *bits |= 0x00080000;
 743       return false;
 744     }
 745 
 746     if (is_suspended) {
 747       *bits |= 0x00100000;
 748       return true;
 749     }
 750   } // end retry loop
 751 
 752   // thread did not suspend after all our retries
 753   *bits |= 0x00200000;
 754   return false;
 755 }
 756 
 757 // Called from API entry points which perform stack walking. If the
 758 // associated JavaThread is the current thread, then wait_for_suspend
 759 // is not used. Otherwise, it determines if we should wait for the
 760 // "other" thread to complete external suspension. (NOTE: in future
 761 // releases the suspension mechanism should be reimplemented so this
 762 // is not necessary.)
 763 //
 764 bool
 765 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 766   if (this != JavaThread::current()) {
 767     // "other" threads require special handling.
 768     if (wait_for_suspend) {
 769       // We are allowed to wait for the external suspend to complete
 770       // so give the other thread a chance to get suspended.
 771       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 772                                            SuspendRetryDelay, bits)) {
 773         // Didn't make it so let the caller know.
 774         return false;
 775       }
 776     }
 777     // We aren't allowed to wait for the external suspend to complete
 778     // so if the other thread isn't externally suspended we need to
 779     // let the caller know.
 780     else if (!is_ext_suspend_completed_with_lock(bits)) {
 781       return false;
 782     }
 783   }
 784 
 785   return true;
 786 }
 787 
 788 #ifndef PRODUCT
 789 void JavaThread::record_jump(address target, address instr, const char* file,
 790                              int line) {
 791 
 792   // This should not need to be atomic as the only way for simultaneous
 793   // updates is via interrupts. Even then this should be rare or non-existent
 794   // and we don't care that much anyway.
 795 
 796   int index = _jmp_ring_index;
 797   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 798   _jmp_ring[index]._target = (intptr_t) target;
 799   _jmp_ring[index]._instruction = (intptr_t) instr;
 800   _jmp_ring[index]._file = file;
 801   _jmp_ring[index]._line = line;
 802 }
 803 #endif // PRODUCT
 804 
 805 void Thread::interrupt(Thread* thread) {
 806   debug_only(check_for_dangling_thread_pointer(thread);)
 807   os::interrupt(thread);
 808 }
 809 
 810 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 811   debug_only(check_for_dangling_thread_pointer(thread);)
 812   // Note:  If clear_interrupted==false, this simply fetches and
 813   // returns the value of the field osthread()->interrupted().
 814   return os::is_interrupted(thread, clear_interrupted);
 815 }
 816 
 817 
 818 // GC Support
 819 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 820   int thread_parity = _oops_do_parity;
 821   if (thread_parity != strong_roots_parity) {
 822     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 823     if (res == thread_parity) {
 824       return true;
 825     } else {
 826       guarantee(res == strong_roots_parity, "Or else what?");
 827       return false;
 828     }
 829   }
 830   return false;
 831 }
 832 
 833 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 834   active_handles()->oops_do(f);
 835   // Do oop for ThreadShadow
 836   f->do_oop((oop*)&_pending_exception);
 837   handle_area()->oops_do(f);
 838 
 839   if (MonitorInUseLists) {
 840     // When using thread local monitor lists, we scan them here,
 841     // and the remaining global monitors in ObjectSynchronizer::oops_do().
 842     ObjectSynchronizer::thread_local_used_oops_do(this, f);
 843   }
 844 }
 845 
 846 void Thread::metadata_handles_do(void f(Metadata*)) {
 847   // Only walk the Handles in Thread.
 848   if (metadata_handles() != NULL) {
 849     for (int i = 0; i< metadata_handles()->length(); i++) {
 850       f(metadata_handles()->at(i));
 851     }
 852   }
 853 }
 854 
 855 void Thread::print_on(outputStream* st) const {
 856   // get_priority assumes osthread initialized
 857   if (osthread() != NULL) {
 858     int os_prio;
 859     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 860       st->print("os_prio=%d ", os_prio);
 861     }
 862     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 863     osthread()->print_on(st);
 864   }
 865   if (_threads_hazard_ptr != NULL) {
 866     st->print("_threads_hazard_ptr=" INTPTR_FORMAT, p2i(_threads_hazard_ptr));
 867   }
 868   if (_nested_threads_hazard_ptr != NULL) {
 869     print_nested_threads_hazard_ptrs_on(st);
 870   }
 871   st->print(" ");
 872   debug_only(if (WizardMode) print_owned_locks_on(st);)
 873 }
 874 
 875 void Thread::print_nested_threads_hazard_ptrs_on(outputStream* st) const {
 876   assert(_nested_threads_hazard_ptr != NULL, "must be set to print");
 877 
 878   if (EnableThreadSMRStatistics) {
 879     st->print(", _nested_threads_hazard_ptr_cnt=%u", _nested_threads_hazard_ptr_cnt);
 880   }
 881   st->print(", _nested_threads_hazard_ptrs=");
 882   for (NestedThreadsList* node = _nested_threads_hazard_ptr; node != NULL;
 883        node = node->next()) {
 884     if (node != _nested_threads_hazard_ptr) {
 885       // First node does not need a comma-space separator.
 886       st->print(", ");
 887     }
 888     st->print(INTPTR_FORMAT, p2i(node->t_list()));
 889   }
 890 }
 891 
 892 // Thread::print_on_error() is called by fatal error handler. Don't use
 893 // any lock or allocate memory.
 894 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 895   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 896 
 897   if (is_VM_thread())                 { st->print("VMThread"); }
 898   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 899   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 900   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 901   else                                { st->print("Thread"); }
 902 
 903   if (is_Named_thread()) {
 904     st->print(" \"%s\"", name());
 905   }
 906 
 907   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 908             p2i(stack_end()), p2i(stack_base()));
 909 
 910   if (osthread()) {
 911     st->print(" [id=%d]", osthread()->thread_id());
 912   }
 913 
 914   if (_threads_hazard_ptr != NULL) {
 915     st->print(" _threads_hazard_ptr=" INTPTR_FORMAT, p2i(_threads_hazard_ptr));
 916   }
 917   if (_nested_threads_hazard_ptr != NULL) {
 918     print_nested_threads_hazard_ptrs_on(st);
 919   }
 920 }
 921 
 922 void Thread::print_value_on(outputStream* st) const {
 923   if (is_Named_thread()) {
 924     st->print(" \"%s\" ", name());
 925   }
 926   st->print(INTPTR_FORMAT, p2i(this));   // print address
 927 }
 928 
 929 #ifdef ASSERT
 930 void Thread::print_owned_locks_on(outputStream* st) const {
 931   Monitor *cur = _owned_locks;
 932   if (cur == NULL) {
 933     st->print(" (no locks) ");
 934   } else {
 935     st->print_cr(" Locks owned:");
 936     while (cur) {
 937       cur->print_on(st);
 938       cur = cur->next();
 939     }
 940   }
 941 }
 942 
 943 static int ref_use_count  = 0;
 944 
 945 bool Thread::owns_locks_but_compiled_lock() const {
 946   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 947     if (cur != Compile_lock) return true;
 948   }
 949   return false;
 950 }
 951 
 952 
 953 #endif
 954 
 955 #ifndef PRODUCT
 956 
 957 // The flag: potential_vm_operation notifies if this particular safepoint state could potentially
 958 // invoke the vm-thread (e.g., an oop allocation). In that case, we also have to make sure that
 959 // no threads which allow_vm_block's are held
 960 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 961   // Check if current thread is allowed to block at a safepoint
 962   if (!(_allow_safepoint_count == 0)) {
 963     fatal("Possible safepoint reached by thread that does not allow it");
 964   }
 965   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 966     fatal("LEAF method calling lock?");
 967   }
 968 
 969 #ifdef ASSERT
 970   if (potential_vm_operation && is_Java_thread()
 971       && !Universe::is_bootstrapping()) {
 972     // Make sure we do not hold any locks that the VM thread also uses.
 973     // This could potentially lead to deadlocks
 974     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 975       // Threads_lock is special, since the safepoint synchronization will not start before this is
 976       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 977       // since it is used to transfer control between JavaThreads and the VMThread
 978       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 979       if ((cur->allow_vm_block() &&
 980            cur != Threads_lock &&
 981            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 982            cur != VMOperationRequest_lock &&
 983            cur != VMOperationQueue_lock) ||
 984            cur->rank() == Mutex::special) {
 985         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 986       }
 987     }
 988   }
 989 
 990   if (GCALotAtAllSafepoints) {
 991     // We could enter a safepoint here and thus have a gc
 992     InterfaceSupport::check_gc_alot();
 993   }
 994 #endif
 995 }
 996 #endif
 997 
 998 bool Thread::is_in_stack(address adr) const {
 999   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1000   address end = os::current_stack_pointer();
1001   // Allow non Java threads to call this without stack_base
1002   if (_stack_base == NULL) return true;
1003   if (stack_base() >= adr && adr >= end) return true;
1004 
1005   return false;
1006 }
1007 
1008 bool Thread::is_in_usable_stack(address adr) const {
1009   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1010   size_t usable_stack_size = _stack_size - stack_guard_size;
1011 
1012   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1013 }
1014 
1015 
1016 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1017 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1018 // used for compilation in the future. If that change is made, the need for these methods
1019 // should be revisited, and they should be removed if possible.
1020 
1021 bool Thread::is_lock_owned(address adr) const {
1022   return on_local_stack(adr);
1023 }
1024 
1025 bool Thread::set_as_starting_thread() {
1026   // NOTE: this must be called inside the main thread.
1027   return os::create_main_thread((JavaThread*)this);
1028 }
1029 
1030 static void initialize_class(Symbol* class_name, TRAPS) {
1031   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1032   InstanceKlass::cast(klass)->initialize(CHECK);
1033 }
1034 
1035 
1036 // Creates the initial ThreadGroup
1037 static Handle create_initial_thread_group(TRAPS) {
1038   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
1039   InstanceKlass* ik = InstanceKlass::cast(k);
1040 
1041   Handle system_instance = ik->allocate_instance_handle(CHECK_NH);
1042   {
1043     JavaValue result(T_VOID);
1044     JavaCalls::call_special(&result,
1045                             system_instance,
1046                             ik,
1047                             vmSymbols::object_initializer_name(),
1048                             vmSymbols::void_method_signature(),
1049                             CHECK_NH);
1050   }
1051   Universe::set_system_thread_group(system_instance());
1052 
1053   Handle main_instance = ik->allocate_instance_handle(CHECK_NH);
1054   {
1055     JavaValue result(T_VOID);
1056     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1057     JavaCalls::call_special(&result,
1058                             main_instance,
1059                             ik,
1060                             vmSymbols::object_initializer_name(),
1061                             vmSymbols::threadgroup_string_void_signature(),
1062                             system_instance,
1063                             string,
1064                             CHECK_NH);
1065   }
1066   return main_instance;
1067 }
1068 
1069 // Creates the initial Thread
1070 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1071                                  TRAPS) {
1072   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1073   InstanceKlass* ik = InstanceKlass::cast(k);
1074   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1075 
1076   java_lang_Thread::set_thread(thread_oop(), thread);
1077   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1078   thread->set_threadObj(thread_oop());
1079 
1080   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1081 
1082   JavaValue result(T_VOID);
1083   JavaCalls::call_special(&result, thread_oop,
1084                           ik,
1085                           vmSymbols::object_initializer_name(),
1086                           vmSymbols::threadgroup_string_void_signature(),
1087                           thread_group,
1088                           string,
1089                           CHECK_NULL);
1090   return thread_oop();
1091 }
1092 
1093 char java_runtime_name[128] = "";
1094 char java_runtime_version[128] = "";
1095 
1096 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1097 static const char* get_java_runtime_name(TRAPS) {
1098   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1099                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1100   fieldDescriptor fd;
1101   bool found = k != NULL &&
1102                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1103                                                         vmSymbols::string_signature(), &fd);
1104   if (found) {
1105     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1106     if (name_oop == NULL) {
1107       return NULL;
1108     }
1109     const char* name = java_lang_String::as_utf8_string(name_oop,
1110                                                         java_runtime_name,
1111                                                         sizeof(java_runtime_name));
1112     return name;
1113   } else {
1114     return NULL;
1115   }
1116 }
1117 
1118 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1119 static const char* get_java_runtime_version(TRAPS) {
1120   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1121                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1122   fieldDescriptor fd;
1123   bool found = k != NULL &&
1124                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1125                                                         vmSymbols::string_signature(), &fd);
1126   if (found) {
1127     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1128     if (name_oop == NULL) {
1129       return NULL;
1130     }
1131     const char* name = java_lang_String::as_utf8_string(name_oop,
1132                                                         java_runtime_version,
1133                                                         sizeof(java_runtime_version));
1134     return name;
1135   } else {
1136     return NULL;
1137   }
1138 }
1139 
1140 // General purpose hook into Java code, run once when the VM is initialized.
1141 // The Java library method itself may be changed independently from the VM.
1142 static void call_postVMInitHook(TRAPS) {
1143   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1144   if (klass != NULL) {
1145     JavaValue result(T_VOID);
1146     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1147                            vmSymbols::void_method_signature(),
1148                            CHECK);
1149   }
1150 }
1151 
1152 static void reset_vm_info_property(TRAPS) {
1153   // the vm info string
1154   ResourceMark rm(THREAD);
1155   const char *vm_info = VM_Version::vm_info_string();
1156 
1157   // java.lang.System class
1158   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1159 
1160   // setProperty arguments
1161   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1162   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1163 
1164   // return value
1165   JavaValue r(T_OBJECT);
1166 
1167   // public static String setProperty(String key, String value);
1168   JavaCalls::call_static(&r,
1169                          klass,
1170                          vmSymbols::setProperty_name(),
1171                          vmSymbols::string_string_string_signature(),
1172                          key_str,
1173                          value_str,
1174                          CHECK);
1175 }
1176 
1177 
1178 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1179                                     bool daemon, TRAPS) {
1180   assert(thread_group.not_null(), "thread group should be specified");
1181   assert(threadObj() == NULL, "should only create Java thread object once");
1182 
1183   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1184   InstanceKlass* ik = InstanceKlass::cast(k);
1185   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1186 
1187   java_lang_Thread::set_thread(thread_oop(), this);
1188   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1189   set_threadObj(thread_oop());
1190 
1191   JavaValue result(T_VOID);
1192   if (thread_name != NULL) {
1193     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1194     // Thread gets assigned specified name and null target
1195     JavaCalls::call_special(&result,
1196                             thread_oop,
1197                             ik,
1198                             vmSymbols::object_initializer_name(),
1199                             vmSymbols::threadgroup_string_void_signature(),
1200                             thread_group, // Argument 1
1201                             name,         // Argument 2
1202                             THREAD);
1203   } else {
1204     // Thread gets assigned name "Thread-nnn" and null target
1205     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1206     JavaCalls::call_special(&result,
1207                             thread_oop,
1208                             ik,
1209                             vmSymbols::object_initializer_name(),
1210                             vmSymbols::threadgroup_runnable_void_signature(),
1211                             thread_group, // Argument 1
1212                             Handle(),     // Argument 2
1213                             THREAD);
1214   }
1215 
1216 
1217   if (daemon) {
1218     java_lang_Thread::set_daemon(thread_oop());
1219   }
1220 
1221   if (HAS_PENDING_EXCEPTION) {
1222     return;
1223   }
1224 
1225   Klass* group =  SystemDictionary::ThreadGroup_klass();
1226   Handle threadObj(THREAD, this->threadObj());
1227 
1228   JavaCalls::call_special(&result,
1229                           thread_group,
1230                           group,
1231                           vmSymbols::add_method_name(),
1232                           vmSymbols::thread_void_signature(),
1233                           threadObj,          // Arg 1
1234                           THREAD);
1235 }
1236 
1237 // NamedThread --  non-JavaThread subclasses with multiple
1238 // uniquely named instances should derive from this.
1239 NamedThread::NamedThread() : Thread() {
1240   _name = NULL;
1241   _processed_thread = NULL;
1242   _gc_id = GCId::undefined();
1243 }
1244 
1245 NamedThread::~NamedThread() {
1246   if (_name != NULL) {
1247     FREE_C_HEAP_ARRAY(char, _name);
1248     _name = NULL;
1249   }
1250 }
1251 
1252 void NamedThread::set_name(const char* format, ...) {
1253   guarantee(_name == NULL, "Only get to set name once.");
1254   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1255   guarantee(_name != NULL, "alloc failure");
1256   va_list ap;
1257   va_start(ap, format);
1258   jio_vsnprintf(_name, max_name_len, format, ap);
1259   va_end(ap);
1260 }
1261 
1262 void NamedThread::initialize_named_thread() {
1263   set_native_thread_name(name());
1264 }
1265 
1266 void NamedThread::print_on(outputStream* st) const {
1267   st->print("\"%s\" ", name());
1268   Thread::print_on(st);
1269   st->cr();
1270 }
1271 
1272 
1273 // ======= WatcherThread ========
1274 
1275 // The watcher thread exists to simulate timer interrupts.  It should
1276 // be replaced by an abstraction over whatever native support for
1277 // timer interrupts exists on the platform.
1278 
1279 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1280 bool WatcherThread::_startable = false;
1281 volatile bool  WatcherThread::_should_terminate = false;
1282 
1283 WatcherThread::WatcherThread() : Thread() {
1284   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1285   if (os::create_thread(this, os::watcher_thread)) {
1286     _watcher_thread = this;
1287 
1288     // Set the watcher thread to the highest OS priority which should not be
1289     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1290     // is created. The only normal thread using this priority is the reference
1291     // handler thread, which runs for very short intervals only.
1292     // If the VMThread's priority is not lower than the WatcherThread profiling
1293     // will be inaccurate.
1294     os::set_priority(this, MaxPriority);
1295     if (!DisableStartThread) {
1296       os::start_thread(this);
1297     }
1298   }
1299 }
1300 
1301 int WatcherThread::sleep() const {
1302   // The WatcherThread does not participate in the safepoint protocol
1303   // for the PeriodicTask_lock because it is not a JavaThread.
1304   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1305 
1306   if (_should_terminate) {
1307     // check for termination before we do any housekeeping or wait
1308     return 0;  // we did not sleep.
1309   }
1310 
1311   // remaining will be zero if there are no tasks,
1312   // causing the WatcherThread to sleep until a task is
1313   // enrolled
1314   int remaining = PeriodicTask::time_to_wait();
1315   int time_slept = 0;
1316 
1317   // we expect this to timeout - we only ever get unparked when
1318   // we should terminate or when a new task has been enrolled
1319   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1320 
1321   jlong time_before_loop = os::javaTimeNanos();
1322 
1323   while (true) {
1324     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1325                                             remaining);
1326     jlong now = os::javaTimeNanos();
1327 
1328     if (remaining == 0) {
1329       // if we didn't have any tasks we could have waited for a long time
1330       // consider the time_slept zero and reset time_before_loop
1331       time_slept = 0;
1332       time_before_loop = now;
1333     } else {
1334       // need to recalculate since we might have new tasks in _tasks
1335       time_slept = (int) ((now - time_before_loop) / 1000000);
1336     }
1337 
1338     // Change to task list or spurious wakeup of some kind
1339     if (timedout || _should_terminate) {
1340       break;
1341     }
1342 
1343     remaining = PeriodicTask::time_to_wait();
1344     if (remaining == 0) {
1345       // Last task was just disenrolled so loop around and wait until
1346       // another task gets enrolled
1347       continue;
1348     }
1349 
1350     remaining -= time_slept;
1351     if (remaining <= 0) {
1352       break;
1353     }
1354   }
1355 
1356   return time_slept;
1357 }
1358 
1359 void WatcherThread::run() {
1360   assert(this == watcher_thread(), "just checking");
1361 
1362   this->record_stack_base_and_size();
1363   this->set_native_thread_name(this->name());
1364   this->set_active_handles(JNIHandleBlock::allocate_block());
1365   while (true) {
1366     assert(watcher_thread() == Thread::current(), "thread consistency check");
1367     assert(watcher_thread() == this, "thread consistency check");
1368 
1369     // Calculate how long it'll be until the next PeriodicTask work
1370     // should be done, and sleep that amount of time.
1371     int time_waited = sleep();
1372 
1373     if (VMError::is_error_reported()) {
1374       // A fatal error has happened, the error handler(VMError::report_and_die)
1375       // should abort JVM after creating an error log file. However in some
1376       // rare cases, the error handler itself might deadlock. Here periodically
1377       // check for error reporting timeouts, and if it happens, just proceed to
1378       // abort the VM.
1379 
1380       // This code is in WatcherThread because WatcherThread wakes up
1381       // periodically so the fatal error handler doesn't need to do anything;
1382       // also because the WatcherThread is less likely to crash than other
1383       // threads.
1384 
1385       for (;;) {
1386         // Note: we use naked sleep in this loop because we want to avoid using
1387         // any kind of VM infrastructure which may be broken at this point.
1388         if (VMError::check_timeout()) {
1389           // We hit error reporting timeout. Error reporting was interrupted and
1390           // will be wrapping things up now (closing files etc). Give it some more
1391           // time, then quit the VM.
1392           os::naked_short_sleep(200);
1393           // Print a message to stderr.
1394           fdStream err(defaultStream::output_fd());
1395           err.print_raw_cr("# [ timer expired, abort... ]");
1396           // skip atexit/vm_exit/vm_abort hooks
1397           os::die();
1398         }
1399 
1400         // Wait a second, then recheck for timeout.
1401         os::naked_short_sleep(999);
1402       }
1403     }
1404 
1405     if (_should_terminate) {
1406       // check for termination before posting the next tick
1407       break;
1408     }
1409 
1410     PeriodicTask::real_time_tick(time_waited);
1411   }
1412 
1413   // Signal that it is terminated
1414   {
1415     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1416     _watcher_thread = NULL;
1417     Terminator_lock->notify();
1418   }
1419 }
1420 
1421 void WatcherThread::start() {
1422   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1423 
1424   if (watcher_thread() == NULL && _startable) {
1425     _should_terminate = false;
1426     // Create the single instance of WatcherThread
1427     new WatcherThread();
1428   }
1429 }
1430 
1431 void WatcherThread::make_startable() {
1432   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1433   _startable = true;
1434 }
1435 
1436 void WatcherThread::stop() {
1437   {
1438     // Follow normal safepoint aware lock enter protocol since the
1439     // WatcherThread is stopped by another JavaThread.
1440     MutexLocker ml(PeriodicTask_lock);
1441     _should_terminate = true;
1442 
1443     WatcherThread* watcher = watcher_thread();
1444     if (watcher != NULL) {
1445       // unpark the WatcherThread so it can see that it should terminate
1446       watcher->unpark();
1447     }
1448   }
1449 
1450   MutexLocker mu(Terminator_lock);
1451 
1452   while (watcher_thread() != NULL) {
1453     // This wait should make safepoint checks, wait without a timeout,
1454     // and wait as a suspend-equivalent condition.
1455     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1456                           Mutex::_as_suspend_equivalent_flag);
1457   }
1458 }
1459 
1460 void WatcherThread::unpark() {
1461   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1462   PeriodicTask_lock->notify();
1463 }
1464 
1465 void WatcherThread::print_on(outputStream* st) const {
1466   st->print("\"%s\" ", name());
1467   Thread::print_on(st);
1468   st->cr();
1469 }
1470 
1471 // ======= JavaThread ========
1472 
1473 #if INCLUDE_JVMCI
1474 
1475 jlong* JavaThread::_jvmci_old_thread_counters;
1476 
1477 bool jvmci_counters_include(JavaThread* thread) {
1478   oop threadObj = thread->threadObj();
1479   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1480 }
1481 
1482 void JavaThread::collect_counters(typeArrayOop array) {
1483   if (JVMCICounterSize > 0) {
1484     MutexLocker tl(Threads_lock);
1485     JavaThreadIteratorWithHandle jtiwh;
1486     for (int i = 0; i < array->length(); i++) {
1487       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1488     }
1489     for (; JavaThread *tp = jtiwh.next(); ) {
1490       if (jvmci_counters_include(tp)) {
1491         for (int i = 0; i < array->length(); i++) {
1492           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1493         }
1494       }
1495     }
1496   }
1497 }
1498 
1499 #endif // INCLUDE_JVMCI
1500 
1501 // A JavaThread is a normal Java thread
1502 
1503 void JavaThread::initialize() {
1504   // Initialize fields
1505 
1506   set_saved_exception_pc(NULL);
1507   set_threadObj(NULL);
1508   _anchor.clear();
1509   set_entry_point(NULL);
1510   set_jni_functions(jni_functions());
1511   set_callee_target(NULL);
1512   set_vm_result(NULL);
1513   set_vm_result_2(NULL);
1514   set_vframe_array_head(NULL);
1515   set_vframe_array_last(NULL);
1516   set_deferred_locals(NULL);
1517   set_deopt_mark(NULL);
1518   set_deopt_compiled_method(NULL);
1519   clear_must_deopt_id();
1520   set_monitor_chunks(NULL);
1521   set_next(NULL);
1522   _on_thread_list = false;
1523   set_thread_state(_thread_new);
1524   _terminated = _not_terminated;
1525   _privileged_stack_top = NULL;
1526   _array_for_gc = NULL;
1527   _suspend_equivalent = false;
1528   _in_deopt_handler = 0;
1529   _doing_unsafe_access = false;
1530   _stack_guard_state = stack_guard_unused;
1531 #if INCLUDE_JVMCI
1532   _pending_monitorenter = false;
1533   _pending_deoptimization = -1;
1534   _pending_failed_speculation = NULL;
1535   _pending_transfer_to_interpreter = false;
1536   _adjusting_comp_level = false;
1537   _jvmci._alternate_call_target = NULL;
1538   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1539   if (JVMCICounterSize > 0) {
1540     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1541     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1542   } else {
1543     _jvmci_counters = NULL;
1544   }
1545 #endif // INCLUDE_JVMCI
1546   _reserved_stack_activation = NULL;  // stack base not known yet
1547   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1548   _exception_pc  = 0;
1549   _exception_handler_pc = 0;
1550   _is_method_handle_return = 0;
1551   _jvmti_thread_state= NULL;
1552   _should_post_on_exceptions_flag = JNI_FALSE;
1553   _jvmti_get_loaded_classes_closure = NULL;
1554   _interp_only_mode    = 0;
1555   _special_runtime_exit_condition = _no_async_condition;
1556   _pending_async_exception = NULL;
1557   _thread_stat = NULL;
1558   _thread_stat = new ThreadStatistics();
1559   _blocked_on_compilation = false;
1560   _jni_active_critical = 0;
1561   _pending_jni_exception_check_fn = NULL;
1562   _do_not_unlock_if_synchronized = false;
1563   _cached_monitor_info = NULL;
1564   _parker = Parker::Allocate(this);
1565 
1566 #ifndef PRODUCT
1567   _jmp_ring_index = 0;
1568   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1569     record_jump(NULL, NULL, NULL, 0);
1570   }
1571 #endif // PRODUCT
1572 
1573   // Setup safepoint state info for this thread
1574   ThreadSafepointState::create(this);
1575 
1576   debug_only(_java_call_counter = 0);
1577 
1578   // JVMTI PopFrame support
1579   _popframe_condition = popframe_inactive;
1580   _popframe_preserved_args = NULL;
1581   _popframe_preserved_args_size = 0;
1582   _frames_to_pop_failed_realloc = 0;
1583 
1584   if (SafepointMechanism::uses_thread_local_poll()) {
1585     SafepointMechanism::initialize_header(this);
1586   }
1587 
1588   pd_initialize();
1589 }
1590 
1591 #if INCLUDE_ALL_GCS
1592 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1593 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1594 #endif // INCLUDE_ALL_GCS
1595 
1596 JavaThread::JavaThread(bool is_attaching_via_jni) :
1597                        Thread()
1598 #if INCLUDE_ALL_GCS
1599                        , _satb_mark_queue(&_satb_mark_queue_set),
1600                        _dirty_card_queue(&_dirty_card_queue_set)
1601 #endif // INCLUDE_ALL_GCS
1602 {
1603   initialize();
1604   if (is_attaching_via_jni) {
1605     _jni_attach_state = _attaching_via_jni;
1606   } else {
1607     _jni_attach_state = _not_attaching_via_jni;
1608   }
1609   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1610 }
1611 
1612 bool JavaThread::reguard_stack(address cur_sp) {
1613   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1614       && _stack_guard_state != stack_guard_reserved_disabled) {
1615     return true; // Stack already guarded or guard pages not needed.
1616   }
1617 
1618   if (register_stack_overflow()) {
1619     // For those architectures which have separate register and
1620     // memory stacks, we must check the register stack to see if
1621     // it has overflowed.
1622     return false;
1623   }
1624 
1625   // Java code never executes within the yellow zone: the latter is only
1626   // there to provoke an exception during stack banging.  If java code
1627   // is executing there, either StackShadowPages should be larger, or
1628   // some exception code in c1, c2 or the interpreter isn't unwinding
1629   // when it should.
1630   guarantee(cur_sp > stack_reserved_zone_base(),
1631             "not enough space to reguard - increase StackShadowPages");
1632   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1633     enable_stack_yellow_reserved_zone();
1634     if (reserved_stack_activation() != stack_base()) {
1635       set_reserved_stack_activation(stack_base());
1636     }
1637   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1638     set_reserved_stack_activation(stack_base());
1639     enable_stack_reserved_zone();
1640   }
1641   return true;
1642 }
1643 
1644 bool JavaThread::reguard_stack(void) {
1645   return reguard_stack(os::current_stack_pointer());
1646 }
1647 
1648 
1649 void JavaThread::block_if_vm_exited() {
1650   if (_terminated == _vm_exited) {
1651     // _vm_exited is set at safepoint, and Threads_lock is never released
1652     // we will block here forever
1653     Threads_lock->lock_without_safepoint_check();
1654     ShouldNotReachHere();
1655   }
1656 }
1657 
1658 
1659 // Remove this ifdef when C1 is ported to the compiler interface.
1660 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1661 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1662 
1663 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1664                        Thread()
1665 #if INCLUDE_ALL_GCS
1666                        , _satb_mark_queue(&_satb_mark_queue_set),
1667                        _dirty_card_queue(&_dirty_card_queue_set)
1668 #endif // INCLUDE_ALL_GCS
1669 {
1670   initialize();
1671   _jni_attach_state = _not_attaching_via_jni;
1672   set_entry_point(entry_point);
1673   // Create the native thread itself.
1674   // %note runtime_23
1675   os::ThreadType thr_type = os::java_thread;
1676   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1677                                                      os::java_thread;
1678   os::create_thread(this, thr_type, stack_sz);
1679   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1680   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1681   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1682   // the exception consists of creating the exception object & initializing it, initialization
1683   // will leave the VM via a JavaCall and then all locks must be unlocked).
1684   //
1685   // The thread is still suspended when we reach here. Thread must be explicit started
1686   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1687   // by calling Threads:add. The reason why this is not done here, is because the thread
1688   // object must be fully initialized (take a look at JVM_Start)
1689 }
1690 
1691 JavaThread::~JavaThread() {
1692 
1693   // JSR166 -- return the parker to the free list
1694   Parker::Release(_parker);
1695   _parker = NULL;
1696 
1697   // Free any remaining  previous UnrollBlock
1698   vframeArray* old_array = vframe_array_last();
1699 
1700   if (old_array != NULL) {
1701     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1702     old_array->set_unroll_block(NULL);
1703     delete old_info;
1704     delete old_array;
1705   }
1706 
1707   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1708   if (deferred != NULL) {
1709     // This can only happen if thread is destroyed before deoptimization occurs.
1710     assert(deferred->length() != 0, "empty array!");
1711     do {
1712       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1713       deferred->remove_at(0);
1714       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1715       delete dlv;
1716     } while (deferred->length() != 0);
1717     delete deferred;
1718   }
1719 
1720   // All Java related clean up happens in exit
1721   ThreadSafepointState::destroy(this);
1722   if (_thread_stat != NULL) delete _thread_stat;
1723 
1724 #if INCLUDE_JVMCI
1725   if (JVMCICounterSize > 0) {
1726     if (jvmci_counters_include(this)) {
1727       for (int i = 0; i < JVMCICounterSize; i++) {
1728         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1729       }
1730     }
1731     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1732   }
1733 #endif // INCLUDE_JVMCI
1734 }
1735 
1736 
1737 // The first routine called by a new Java thread
1738 void JavaThread::run() {
1739   // initialize thread-local alloc buffer related fields
1740   this->initialize_tlab();
1741 
1742   // used to test validity of stack trace backs
1743   this->record_base_of_stack_pointer();
1744 
1745   // Record real stack base and size.
1746   this->record_stack_base_and_size();
1747 
1748   this->create_stack_guard_pages();
1749 
1750   this->cache_global_variables();
1751 
1752   // Thread is now sufficient initialized to be handled by the safepoint code as being
1753   // in the VM. Change thread state from _thread_new to _thread_in_vm
1754   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1755 
1756   assert(JavaThread::current() == this, "sanity check");
1757   assert(!Thread::current()->owns_locks(), "sanity check");
1758 
1759   DTRACE_THREAD_PROBE(start, this);
1760 
1761   // This operation might block. We call that after all safepoint checks for a new thread has
1762   // been completed.
1763   this->set_active_handles(JNIHandleBlock::allocate_block());
1764 
1765   if (JvmtiExport::should_post_thread_life()) {
1766     JvmtiExport::post_thread_start(this);
1767   }
1768 
1769   EventThreadStart event;
1770   if (event.should_commit()) {
1771     event.set_thread(THREAD_TRACE_ID(this));
1772     event.commit();
1773   }
1774 
1775   // We call another function to do the rest so we are sure that the stack addresses used
1776   // from there will be lower than the stack base just computed
1777   thread_main_inner();
1778 
1779   // Note, thread is no longer valid at this point!
1780 }
1781 
1782 
1783 void JavaThread::thread_main_inner() {
1784   assert(JavaThread::current() == this, "sanity check");
1785   assert(this->threadObj() != NULL, "just checking");
1786 
1787   // Execute thread entry point unless this thread has a pending exception
1788   // or has been stopped before starting.
1789   // Note: Due to JVM_StopThread we can have pending exceptions already!
1790   if (!this->has_pending_exception() &&
1791       !java_lang_Thread::is_stillborn(this->threadObj())) {
1792     {
1793       ResourceMark rm(this);
1794       this->set_native_thread_name(this->get_thread_name());
1795     }
1796     HandleMark hm(this);
1797     this->entry_point()(this, this);
1798   }
1799 
1800   DTRACE_THREAD_PROBE(stop, this);
1801 
1802   this->exit(false);
1803   this->smr_delete();
1804 }
1805 
1806 
1807 static void ensure_join(JavaThread* thread) {
1808   // We do not need to grab the Threads_lock, since we are operating on ourself.
1809   Handle threadObj(thread, thread->threadObj());
1810   assert(threadObj.not_null(), "java thread object must exist");
1811   ObjectLocker lock(threadObj, thread);
1812   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1813   thread->clear_pending_exception();
1814   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1815   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1816   // Clear the native thread instance - this makes isAlive return false and allows the join()
1817   // to complete once we've done the notify_all below
1818   java_lang_Thread::set_thread(threadObj(), NULL);
1819   lock.notify_all(thread);
1820   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1821   thread->clear_pending_exception();
1822 }
1823 
1824 
1825 // For any new cleanup additions, please check to see if they need to be applied to
1826 // cleanup_failed_attach_current_thread as well.
1827 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1828   assert(this == JavaThread::current(), "thread consistency check");
1829 
1830   elapsedTimer _timer_exit_phase1;
1831   elapsedTimer _timer_exit_phase2;
1832   elapsedTimer _timer_exit_phase3;
1833   elapsedTimer _timer_exit_phase4;
1834 
1835   if (log_is_enabled(Debug, os, thread, timer)) {
1836     _timer_exit_phase1.start();
1837   }
1838 
1839   HandleMark hm(this);
1840   Handle uncaught_exception(this, this->pending_exception());
1841   this->clear_pending_exception();
1842   Handle threadObj(this, this->threadObj());
1843   assert(threadObj.not_null(), "Java thread object should be created");
1844 
1845   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1846   {
1847     EXCEPTION_MARK;
1848 
1849     CLEAR_PENDING_EXCEPTION;
1850   }
1851   if (!destroy_vm) {
1852     if (uncaught_exception.not_null()) {
1853       EXCEPTION_MARK;
1854       // Call method Thread.dispatchUncaughtException().
1855       Klass* thread_klass = SystemDictionary::Thread_klass();
1856       JavaValue result(T_VOID);
1857       JavaCalls::call_virtual(&result,
1858                               threadObj, thread_klass,
1859                               vmSymbols::dispatchUncaughtException_name(),
1860                               vmSymbols::throwable_void_signature(),
1861                               uncaught_exception,
1862                               THREAD);
1863       if (HAS_PENDING_EXCEPTION) {
1864         ResourceMark rm(this);
1865         jio_fprintf(defaultStream::error_stream(),
1866                     "\nException: %s thrown from the UncaughtExceptionHandler"
1867                     " in thread \"%s\"\n",
1868                     pending_exception()->klass()->external_name(),
1869                     get_thread_name());
1870         CLEAR_PENDING_EXCEPTION;
1871       }
1872     }
1873 
1874     // Called before the java thread exit since we want to read info
1875     // from java_lang_Thread object
1876     EventThreadEnd event;
1877     if (event.should_commit()) {
1878       event.set_thread(THREAD_TRACE_ID(this));
1879       event.commit();
1880     }
1881 
1882     // Call after last event on thread
1883     EVENT_THREAD_EXIT(this);
1884 
1885     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1886     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1887     // is deprecated anyhow.
1888     if (!is_Compiler_thread()) {
1889       int count = 3;
1890       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1891         EXCEPTION_MARK;
1892         JavaValue result(T_VOID);
1893         Klass* thread_klass = SystemDictionary::Thread_klass();
1894         JavaCalls::call_virtual(&result,
1895                                 threadObj, thread_klass,
1896                                 vmSymbols::exit_method_name(),
1897                                 vmSymbols::void_method_signature(),
1898                                 THREAD);
1899         CLEAR_PENDING_EXCEPTION;
1900       }
1901     }
1902     // notify JVMTI
1903     if (JvmtiExport::should_post_thread_life()) {
1904       JvmtiExport::post_thread_end(this);
1905     }
1906 
1907     // We have notified the agents that we are exiting, before we go on,
1908     // we must check for a pending external suspend request and honor it
1909     // in order to not surprise the thread that made the suspend request.
1910     while (true) {
1911       {
1912         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1913         if (!is_external_suspend()) {
1914           set_terminated(_thread_exiting);
1915           ThreadService::current_thread_exiting(this);
1916           break;
1917         }
1918         // Implied else:
1919         // Things get a little tricky here. We have a pending external
1920         // suspend request, but we are holding the SR_lock so we
1921         // can't just self-suspend. So we temporarily drop the lock
1922         // and then self-suspend.
1923       }
1924 
1925       ThreadBlockInVM tbivm(this);
1926       java_suspend_self();
1927 
1928       // We're done with this suspend request, but we have to loop around
1929       // and check again. Eventually we will get SR_lock without a pending
1930       // external suspend request and will be able to mark ourselves as
1931       // exiting.
1932     }
1933     // no more external suspends are allowed at this point
1934   } else {
1935     // before_exit() has already posted JVMTI THREAD_END events
1936   }
1937 
1938   if (log_is_enabled(Debug, os, thread, timer)) {
1939     _timer_exit_phase1.stop();
1940     _timer_exit_phase2.start();
1941   }
1942   // Notify waiters on thread object. This has to be done after exit() is called
1943   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1944   // group should have the destroyed bit set before waiters are notified).
1945   ensure_join(this);
1946   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1947 
1948   if (log_is_enabled(Debug, os, thread, timer)) {
1949     _timer_exit_phase2.stop();
1950     _timer_exit_phase3.start();
1951   }
1952   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1953   // held by this thread must be released. The spec does not distinguish
1954   // between JNI-acquired and regular Java monitors. We can only see
1955   // regular Java monitors here if monitor enter-exit matching is broken.
1956   //
1957   // Optionally release any monitors for regular JavaThread exits. This
1958   // is provided as a work around for any bugs in monitor enter-exit
1959   // matching. This can be expensive so it is not enabled by default.
1960   //
1961   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1962   // ObjectSynchronizer::release_monitors_owned_by_thread().
1963   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1964     // Sanity check even though JNI DetachCurrentThread() would have
1965     // returned JNI_ERR if there was a Java frame. JavaThread exit
1966     // should be done executing Java code by the time we get here.
1967     assert(!this->has_last_Java_frame(),
1968            "should not have a Java frame when detaching or exiting");
1969     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1970     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1971   }
1972 
1973   // These things needs to be done while we are still a Java Thread. Make sure that thread
1974   // is in a consistent state, in case GC happens
1975   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1976 
1977   if (active_handles() != NULL) {
1978     JNIHandleBlock* block = active_handles();
1979     set_active_handles(NULL);
1980     JNIHandleBlock::release_block(block);
1981   }
1982 
1983   if (free_handle_block() != NULL) {
1984     JNIHandleBlock* block = free_handle_block();
1985     set_free_handle_block(NULL);
1986     JNIHandleBlock::release_block(block);
1987   }
1988 
1989   // These have to be removed while this is still a valid thread.
1990   remove_stack_guard_pages();
1991 
1992   if (UseTLAB) {
1993     tlab().make_parsable(true);  // retire TLAB
1994   }
1995 
1996   if (JvmtiEnv::environments_might_exist()) {
1997     JvmtiExport::cleanup_thread(this);
1998   }
1999 
2000   // We must flush any deferred card marks and other various GC barrier
2001   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2002   // before removing a thread from the list of active threads.
2003   BarrierSet::barrier_set()->on_thread_detach(this);
2004 
2005   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2006     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2007     os::current_thread_id());
2008 
2009   if (log_is_enabled(Debug, os, thread, timer)) {
2010     _timer_exit_phase3.stop();
2011     _timer_exit_phase4.start();
2012   }
2013   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2014   Threads::remove(this);
2015 
2016   if (log_is_enabled(Debug, os, thread, timer)) {
2017     _timer_exit_phase4.stop();
2018     ResourceMark rm(this);
2019     log_debug(os, thread, timer)("name='%s'"
2020                                  ", exit-phase1=" JLONG_FORMAT
2021                                  ", exit-phase2=" JLONG_FORMAT
2022                                  ", exit-phase3=" JLONG_FORMAT
2023                                  ", exit-phase4=" JLONG_FORMAT,
2024                                  get_thread_name(),
2025                                  _timer_exit_phase1.milliseconds(),
2026                                  _timer_exit_phase2.milliseconds(),
2027                                  _timer_exit_phase3.milliseconds(),
2028                                  _timer_exit_phase4.milliseconds());
2029   }
2030 }
2031 
2032 void JavaThread::cleanup_failed_attach_current_thread() {
2033   if (active_handles() != NULL) {
2034     JNIHandleBlock* block = active_handles();
2035     set_active_handles(NULL);
2036     JNIHandleBlock::release_block(block);
2037   }
2038 
2039   if (free_handle_block() != NULL) {
2040     JNIHandleBlock* block = free_handle_block();
2041     set_free_handle_block(NULL);
2042     JNIHandleBlock::release_block(block);
2043   }
2044 
2045   // These have to be removed while this is still a valid thread.
2046   remove_stack_guard_pages();
2047 
2048   if (UseTLAB) {
2049     tlab().make_parsable(true);  // retire TLAB, if any
2050   }
2051 
2052   BarrierSet::barrier_set()->on_thread_detach(this);
2053 
2054   Threads::remove(this);
2055   this->smr_delete();
2056 }
2057 
2058 JavaThread* JavaThread::active() {
2059   Thread* thread = Thread::current();
2060   if (thread->is_Java_thread()) {
2061     return (JavaThread*) thread;
2062   } else {
2063     assert(thread->is_VM_thread(), "this must be a vm thread");
2064     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2065     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2066     assert(ret->is_Java_thread(), "must be a Java thread");
2067     return ret;
2068   }
2069 }
2070 
2071 bool JavaThread::is_lock_owned(address adr) const {
2072   if (Thread::is_lock_owned(adr)) return true;
2073 
2074   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2075     if (chunk->contains(adr)) return true;
2076   }
2077 
2078   return false;
2079 }
2080 
2081 
2082 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2083   chunk->set_next(monitor_chunks());
2084   set_monitor_chunks(chunk);
2085 }
2086 
2087 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2088   guarantee(monitor_chunks() != NULL, "must be non empty");
2089   if (monitor_chunks() == chunk) {
2090     set_monitor_chunks(chunk->next());
2091   } else {
2092     MonitorChunk* prev = monitor_chunks();
2093     while (prev->next() != chunk) prev = prev->next();
2094     prev->set_next(chunk->next());
2095   }
2096 }
2097 
2098 // JVM support.
2099 
2100 // Note: this function shouldn't block if it's called in
2101 // _thread_in_native_trans state (such as from
2102 // check_special_condition_for_native_trans()).
2103 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2104 
2105   if (has_last_Java_frame() && has_async_condition()) {
2106     // If we are at a polling page safepoint (not a poll return)
2107     // then we must defer async exception because live registers
2108     // will be clobbered by the exception path. Poll return is
2109     // ok because the call we a returning from already collides
2110     // with exception handling registers and so there is no issue.
2111     // (The exception handling path kills call result registers but
2112     //  this is ok since the exception kills the result anyway).
2113 
2114     if (is_at_poll_safepoint()) {
2115       // if the code we are returning to has deoptimized we must defer
2116       // the exception otherwise live registers get clobbered on the
2117       // exception path before deoptimization is able to retrieve them.
2118       //
2119       RegisterMap map(this, false);
2120       frame caller_fr = last_frame().sender(&map);
2121       assert(caller_fr.is_compiled_frame(), "what?");
2122       if (caller_fr.is_deoptimized_frame()) {
2123         log_info(exceptions)("deferred async exception at compiled safepoint");
2124         return;
2125       }
2126     }
2127   }
2128 
2129   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2130   if (condition == _no_async_condition) {
2131     // Conditions have changed since has_special_runtime_exit_condition()
2132     // was called:
2133     // - if we were here only because of an external suspend request,
2134     //   then that was taken care of above (or cancelled) so we are done
2135     // - if we were here because of another async request, then it has
2136     //   been cleared between the has_special_runtime_exit_condition()
2137     //   and now so again we are done
2138     return;
2139   }
2140 
2141   // Check for pending async. exception
2142   if (_pending_async_exception != NULL) {
2143     // Only overwrite an already pending exception, if it is not a threadDeath.
2144     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2145 
2146       // We cannot call Exceptions::_throw(...) here because we cannot block
2147       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2148 
2149       LogTarget(Info, exceptions) lt;
2150       if (lt.is_enabled()) {
2151         ResourceMark rm;
2152         LogStream ls(lt);
2153         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2154           if (has_last_Java_frame()) {
2155             frame f = last_frame();
2156            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2157           }
2158         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2159       }
2160       _pending_async_exception = NULL;
2161       clear_has_async_exception();
2162     }
2163   }
2164 
2165   if (check_unsafe_error &&
2166       condition == _async_unsafe_access_error && !has_pending_exception()) {
2167     condition = _no_async_condition;  // done
2168     switch (thread_state()) {
2169     case _thread_in_vm: {
2170       JavaThread* THREAD = this;
2171       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2172     }
2173     case _thread_in_native: {
2174       ThreadInVMfromNative tiv(this);
2175       JavaThread* THREAD = this;
2176       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2177     }
2178     case _thread_in_Java: {
2179       ThreadInVMfromJava tiv(this);
2180       JavaThread* THREAD = this;
2181       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2182     }
2183     default:
2184       ShouldNotReachHere();
2185     }
2186   }
2187 
2188   assert(condition == _no_async_condition || has_pending_exception() ||
2189          (!check_unsafe_error && condition == _async_unsafe_access_error),
2190          "must have handled the async condition, if no exception");
2191 }
2192 
2193 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2194   //
2195   // Check for pending external suspend. Internal suspend requests do
2196   // not use handle_special_runtime_exit_condition().
2197   // If JNIEnv proxies are allowed, don't self-suspend if the target
2198   // thread is not the current thread. In older versions of jdbx, jdbx
2199   // threads could call into the VM with another thread's JNIEnv so we
2200   // can be here operating on behalf of a suspended thread (4432884).
2201   bool do_self_suspend = is_external_suspend_with_lock();
2202   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2203     //
2204     // Because thread is external suspended the safepoint code will count
2205     // thread as at a safepoint. This can be odd because we can be here
2206     // as _thread_in_Java which would normally transition to _thread_blocked
2207     // at a safepoint. We would like to mark the thread as _thread_blocked
2208     // before calling java_suspend_self like all other callers of it but
2209     // we must then observe proper safepoint protocol. (We can't leave
2210     // _thread_blocked with a safepoint in progress). However we can be
2211     // here as _thread_in_native_trans so we can't use a normal transition
2212     // constructor/destructor pair because they assert on that type of
2213     // transition. We could do something like:
2214     //
2215     // JavaThreadState state = thread_state();
2216     // set_thread_state(_thread_in_vm);
2217     // {
2218     //   ThreadBlockInVM tbivm(this);
2219     //   java_suspend_self()
2220     // }
2221     // set_thread_state(_thread_in_vm_trans);
2222     // if (safepoint) block;
2223     // set_thread_state(state);
2224     //
2225     // but that is pretty messy. Instead we just go with the way the
2226     // code has worked before and note that this is the only path to
2227     // java_suspend_self that doesn't put the thread in _thread_blocked
2228     // mode.
2229 
2230     frame_anchor()->make_walkable(this);
2231     java_suspend_self();
2232 
2233     // We might be here for reasons in addition to the self-suspend request
2234     // so check for other async requests.
2235   }
2236 
2237   if (check_asyncs) {
2238     check_and_handle_async_exceptions();
2239   }
2240 #if INCLUDE_TRACE
2241   if (is_trace_suspend()) {
2242     TRACE_SUSPEND_THREAD(this);
2243   }
2244 #endif
2245 }
2246 
2247 void JavaThread::send_thread_stop(oop java_throwable)  {
2248   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2249   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2250   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2251 
2252   // Do not throw asynchronous exceptions against the compiler thread
2253   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2254   if (!can_call_java()) return;
2255 
2256   {
2257     // Actually throw the Throwable against the target Thread - however
2258     // only if there is no thread death exception installed already.
2259     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2260       // If the topmost frame is a runtime stub, then we are calling into
2261       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2262       // must deoptimize the caller before continuing, as the compiled  exception handler table
2263       // may not be valid
2264       if (has_last_Java_frame()) {
2265         frame f = last_frame();
2266         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2267           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2268           RegisterMap reg_map(this, UseBiasedLocking);
2269           frame compiled_frame = f.sender(&reg_map);
2270           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2271             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2272           }
2273         }
2274       }
2275 
2276       // Set async. pending exception in thread.
2277       set_pending_async_exception(java_throwable);
2278 
2279       if (log_is_enabled(Info, exceptions)) {
2280          ResourceMark rm;
2281         log_info(exceptions)("Pending Async. exception installed of type: %s",
2282                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2283       }
2284       // for AbortVMOnException flag
2285       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2286     }
2287   }
2288 
2289 
2290   // Interrupt thread so it will wake up from a potential wait()
2291   Thread::interrupt(this);
2292 }
2293 
2294 // External suspension mechanism.
2295 //
2296 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2297 // to any VM_locks and it is at a transition
2298 // Self-suspension will happen on the transition out of the vm.
2299 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2300 //
2301 // Guarantees on return:
2302 //   + Target thread will not execute any new bytecode (that's why we need to
2303 //     force a safepoint)
2304 //   + Target thread will not enter any new monitors
2305 //
2306 void JavaThread::java_suspend() {
2307   ThreadsListHandle tlh;
2308   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2309     return;
2310   }
2311 
2312   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2313     if (!is_external_suspend()) {
2314       // a racing resume has cancelled us; bail out now
2315       return;
2316     }
2317 
2318     // suspend is done
2319     uint32_t debug_bits = 0;
2320     // Warning: is_ext_suspend_completed() may temporarily drop the
2321     // SR_lock to allow the thread to reach a stable thread state if
2322     // it is currently in a transient thread state.
2323     if (is_ext_suspend_completed(false /* !called_by_wait */,
2324                                  SuspendRetryDelay, &debug_bits)) {
2325       return;
2326     }
2327   }
2328 
2329   VM_ThreadSuspend vm_suspend;
2330   VMThread::execute(&vm_suspend);
2331 }
2332 
2333 // Part II of external suspension.
2334 // A JavaThread self suspends when it detects a pending external suspend
2335 // request. This is usually on transitions. It is also done in places
2336 // where continuing to the next transition would surprise the caller,
2337 // e.g., monitor entry.
2338 //
2339 // Returns the number of times that the thread self-suspended.
2340 //
2341 // Note: DO NOT call java_suspend_self() when you just want to block current
2342 //       thread. java_suspend_self() is the second stage of cooperative
2343 //       suspension for external suspend requests and should only be used
2344 //       to complete an external suspend request.
2345 //
2346 int JavaThread::java_suspend_self() {
2347   int ret = 0;
2348 
2349   // we are in the process of exiting so don't suspend
2350   if (is_exiting()) {
2351     clear_external_suspend();
2352     return ret;
2353   }
2354 
2355   assert(_anchor.walkable() ||
2356          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2357          "must have walkable stack");
2358 
2359   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2360 
2361   assert(!this->is_ext_suspended(),
2362          "a thread trying to self-suspend should not already be suspended");
2363 
2364   if (this->is_suspend_equivalent()) {
2365     // If we are self-suspending as a result of the lifting of a
2366     // suspend equivalent condition, then the suspend_equivalent
2367     // flag is not cleared until we set the ext_suspended flag so
2368     // that wait_for_ext_suspend_completion() returns consistent
2369     // results.
2370     this->clear_suspend_equivalent();
2371   }
2372 
2373   // A racing resume may have cancelled us before we grabbed SR_lock
2374   // above. Or another external suspend request could be waiting for us
2375   // by the time we return from SR_lock()->wait(). The thread
2376   // that requested the suspension may already be trying to walk our
2377   // stack and if we return now, we can change the stack out from under
2378   // it. This would be a "bad thing (TM)" and cause the stack walker
2379   // to crash. We stay self-suspended until there are no more pending
2380   // external suspend requests.
2381   while (is_external_suspend()) {
2382     ret++;
2383     this->set_ext_suspended();
2384 
2385     // _ext_suspended flag is cleared by java_resume()
2386     while (is_ext_suspended()) {
2387       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2388     }
2389   }
2390 
2391   return ret;
2392 }
2393 
2394 #ifdef ASSERT
2395 // Verify the JavaThread has not yet been published in the Threads::list, and
2396 // hence doesn't need protection from concurrent access at this stage.
2397 void JavaThread::verify_not_published() {
2398   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2399   // since an unpublished JavaThread doesn't participate in the
2400   // Thread-SMR protocol for keeping a ThreadsList alive.
2401   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2402 }
2403 #endif
2404 
2405 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2406 // progress or when _suspend_flags is non-zero.
2407 // Current thread needs to self-suspend if there is a suspend request and/or
2408 // block if a safepoint is in progress.
2409 // Async exception ISN'T checked.
2410 // Note only the ThreadInVMfromNative transition can call this function
2411 // directly and when thread state is _thread_in_native_trans
2412 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2413   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2414 
2415   JavaThread *curJT = JavaThread::current();
2416   bool do_self_suspend = thread->is_external_suspend();
2417 
2418   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2419 
2420   // If JNIEnv proxies are allowed, don't self-suspend if the target
2421   // thread is not the current thread. In older versions of jdbx, jdbx
2422   // threads could call into the VM with another thread's JNIEnv so we
2423   // can be here operating on behalf of a suspended thread (4432884).
2424   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2425     JavaThreadState state = thread->thread_state();
2426 
2427     // We mark this thread_blocked state as a suspend-equivalent so
2428     // that a caller to is_ext_suspend_completed() won't be confused.
2429     // The suspend-equivalent state is cleared by java_suspend_self().
2430     thread->set_suspend_equivalent();
2431 
2432     // If the safepoint code sees the _thread_in_native_trans state, it will
2433     // wait until the thread changes to other thread state. There is no
2434     // guarantee on how soon we can obtain the SR_lock and complete the
2435     // self-suspend request. It would be a bad idea to let safepoint wait for
2436     // too long. Temporarily change the state to _thread_blocked to
2437     // let the VM thread know that this thread is ready for GC. The problem
2438     // of changing thread state is that safepoint could happen just after
2439     // java_suspend_self() returns after being resumed, and VM thread will
2440     // see the _thread_blocked state. We must check for safepoint
2441     // after restoring the state and make sure we won't leave while a safepoint
2442     // is in progress.
2443     thread->set_thread_state(_thread_blocked);
2444     thread->java_suspend_self();
2445     thread->set_thread_state(state);
2446 
2447     InterfaceSupport::serialize_thread_state_with_handler(thread);
2448   }
2449 
2450   SafepointMechanism::block_if_requested(curJT);
2451 
2452   if (thread->is_deopt_suspend()) {
2453     thread->clear_deopt_suspend();
2454     RegisterMap map(thread, false);
2455     frame f = thread->last_frame();
2456     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2457       f = f.sender(&map);
2458     }
2459     if (f.id() == thread->must_deopt_id()) {
2460       thread->clear_must_deopt_id();
2461       f.deoptimize(thread);
2462     } else {
2463       fatal("missed deoptimization!");
2464     }
2465   }
2466 #if INCLUDE_TRACE
2467   if (thread->is_trace_suspend()) {
2468     TRACE_SUSPEND_THREAD(thread);
2469   }
2470 #endif
2471 }
2472 
2473 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2474 // progress or when _suspend_flags is non-zero.
2475 // Current thread needs to self-suspend if there is a suspend request and/or
2476 // block if a safepoint is in progress.
2477 // Also check for pending async exception (not including unsafe access error).
2478 // Note only the native==>VM/Java barriers can call this function and when
2479 // thread state is _thread_in_native_trans.
2480 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2481   check_safepoint_and_suspend_for_native_trans(thread);
2482 
2483   if (thread->has_async_exception()) {
2484     // We are in _thread_in_native_trans state, don't handle unsafe
2485     // access error since that may block.
2486     thread->check_and_handle_async_exceptions(false);
2487   }
2488 }
2489 
2490 // This is a variant of the normal
2491 // check_special_condition_for_native_trans with slightly different
2492 // semantics for use by critical native wrappers.  It does all the
2493 // normal checks but also performs the transition back into
2494 // thread_in_Java state.  This is required so that critical natives
2495 // can potentially block and perform a GC if they are the last thread
2496 // exiting the GCLocker.
2497 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2498   check_special_condition_for_native_trans(thread);
2499 
2500   // Finish the transition
2501   thread->set_thread_state(_thread_in_Java);
2502 
2503   if (thread->do_critical_native_unlock()) {
2504     ThreadInVMfromJavaNoAsyncException tiv(thread);
2505     GCLocker::unlock_critical(thread);
2506     thread->clear_critical_native_unlock();
2507   }
2508 }
2509 
2510 // We need to guarantee the Threads_lock here, since resumes are not
2511 // allowed during safepoint synchronization
2512 // Can only resume from an external suspension
2513 void JavaThread::java_resume() {
2514   assert_locked_or_safepoint(Threads_lock);
2515 
2516   // Sanity check: thread is gone, has started exiting or the thread
2517   // was not externally suspended.
2518   ThreadsListHandle tlh;
2519   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2520     return;
2521   }
2522 
2523   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2524 
2525   clear_external_suspend();
2526 
2527   if (is_ext_suspended()) {
2528     clear_ext_suspended();
2529     SR_lock()->notify_all();
2530   }
2531 }
2532 
2533 size_t JavaThread::_stack_red_zone_size = 0;
2534 size_t JavaThread::_stack_yellow_zone_size = 0;
2535 size_t JavaThread::_stack_reserved_zone_size = 0;
2536 size_t JavaThread::_stack_shadow_zone_size = 0;
2537 
2538 void JavaThread::create_stack_guard_pages() {
2539   if (!os::uses_stack_guard_pages() ||
2540       _stack_guard_state != stack_guard_unused ||
2541       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2542       log_info(os, thread)("Stack guard page creation for thread "
2543                            UINTX_FORMAT " disabled", os::current_thread_id());
2544     return;
2545   }
2546   address low_addr = stack_end();
2547   size_t len = stack_guard_zone_size();
2548 
2549   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2550   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2551 
2552   int must_commit = os::must_commit_stack_guard_pages();
2553   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2554 
2555   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2556     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2557     return;
2558   }
2559 
2560   if (os::guard_memory((char *) low_addr, len)) {
2561     _stack_guard_state = stack_guard_enabled;
2562   } else {
2563     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2564       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2565     if (os::uncommit_memory((char *) low_addr, len)) {
2566       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2567     }
2568     return;
2569   }
2570 
2571   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2572     PTR_FORMAT "-" PTR_FORMAT ".",
2573     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2574 }
2575 
2576 void JavaThread::remove_stack_guard_pages() {
2577   assert(Thread::current() == this, "from different thread");
2578   if (_stack_guard_state == stack_guard_unused) return;
2579   address low_addr = stack_end();
2580   size_t len = stack_guard_zone_size();
2581 
2582   if (os::must_commit_stack_guard_pages()) {
2583     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2584       _stack_guard_state = stack_guard_unused;
2585     } else {
2586       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2587         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2588       return;
2589     }
2590   } else {
2591     if (_stack_guard_state == stack_guard_unused) return;
2592     if (os::unguard_memory((char *) low_addr, len)) {
2593       _stack_guard_state = stack_guard_unused;
2594     } else {
2595       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2596         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2597       return;
2598     }
2599   }
2600 
2601   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2602     PTR_FORMAT "-" PTR_FORMAT ".",
2603     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2604 }
2605 
2606 void JavaThread::enable_stack_reserved_zone() {
2607   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2608   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2609 
2610   // The base notation is from the stack's point of view, growing downward.
2611   // We need to adjust it to work correctly with guard_memory()
2612   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2613 
2614   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2615   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2616 
2617   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2618     _stack_guard_state = stack_guard_enabled;
2619   } else {
2620     warning("Attempt to guard stack reserved zone failed.");
2621   }
2622   enable_register_stack_guard();
2623 }
2624 
2625 void JavaThread::disable_stack_reserved_zone() {
2626   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2627   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2628 
2629   // Simply return if called for a thread that does not use guard pages.
2630   if (_stack_guard_state == stack_guard_unused) return;
2631 
2632   // The base notation is from the stack's point of view, growing downward.
2633   // We need to adjust it to work correctly with guard_memory()
2634   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2635 
2636   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2637     _stack_guard_state = stack_guard_reserved_disabled;
2638   } else {
2639     warning("Attempt to unguard stack reserved zone failed.");
2640   }
2641   disable_register_stack_guard();
2642 }
2643 
2644 void JavaThread::enable_stack_yellow_reserved_zone() {
2645   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2646   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2647 
2648   // The base notation is from the stacks point of view, growing downward.
2649   // We need to adjust it to work correctly with guard_memory()
2650   address base = stack_red_zone_base();
2651 
2652   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2653   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2654 
2655   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2656     _stack_guard_state = stack_guard_enabled;
2657   } else {
2658     warning("Attempt to guard stack yellow zone failed.");
2659   }
2660   enable_register_stack_guard();
2661 }
2662 
2663 void JavaThread::disable_stack_yellow_reserved_zone() {
2664   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2665   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2666 
2667   // Simply return if called for a thread that does not use guard pages.
2668   if (_stack_guard_state == stack_guard_unused) return;
2669 
2670   // The base notation is from the stacks point of view, growing downward.
2671   // We need to adjust it to work correctly with guard_memory()
2672   address base = stack_red_zone_base();
2673 
2674   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2675     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2676   } else {
2677     warning("Attempt to unguard stack yellow zone failed.");
2678   }
2679   disable_register_stack_guard();
2680 }
2681 
2682 void JavaThread::enable_stack_red_zone() {
2683   // The base notation is from the stacks point of view, growing downward.
2684   // We need to adjust it to work correctly with guard_memory()
2685   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2686   address base = stack_red_zone_base() - stack_red_zone_size();
2687 
2688   guarantee(base < stack_base(), "Error calculating stack red zone");
2689   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2690 
2691   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2692     warning("Attempt to guard stack red zone failed.");
2693   }
2694 }
2695 
2696 void JavaThread::disable_stack_red_zone() {
2697   // The base notation is from the stacks point of view, growing downward.
2698   // We need to adjust it to work correctly with guard_memory()
2699   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2700   address base = stack_red_zone_base() - stack_red_zone_size();
2701   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2702     warning("Attempt to unguard stack red zone failed.");
2703   }
2704 }
2705 
2706 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2707   // ignore is there is no stack
2708   if (!has_last_Java_frame()) return;
2709   // traverse the stack frames. Starts from top frame.
2710   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2711     frame* fr = fst.current();
2712     f(fr, fst.register_map());
2713   }
2714 }
2715 
2716 
2717 #ifndef PRODUCT
2718 // Deoptimization
2719 // Function for testing deoptimization
2720 void JavaThread::deoptimize() {
2721   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2722   StackFrameStream fst(this, UseBiasedLocking);
2723   bool deopt = false;           // Dump stack only if a deopt actually happens.
2724   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2725   // Iterate over all frames in the thread and deoptimize
2726   for (; !fst.is_done(); fst.next()) {
2727     if (fst.current()->can_be_deoptimized()) {
2728 
2729       if (only_at) {
2730         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2731         // consists of comma or carriage return separated numbers so
2732         // search for the current bci in that string.
2733         address pc = fst.current()->pc();
2734         nmethod* nm =  (nmethod*) fst.current()->cb();
2735         ScopeDesc* sd = nm->scope_desc_at(pc);
2736         char buffer[8];
2737         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2738         size_t len = strlen(buffer);
2739         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2740         while (found != NULL) {
2741           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2742               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2743             // Check that the bci found is bracketed by terminators.
2744             break;
2745           }
2746           found = strstr(found + 1, buffer);
2747         }
2748         if (!found) {
2749           continue;
2750         }
2751       }
2752 
2753       if (DebugDeoptimization && !deopt) {
2754         deopt = true; // One-time only print before deopt
2755         tty->print_cr("[BEFORE Deoptimization]");
2756         trace_frames();
2757         trace_stack();
2758       }
2759       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2760     }
2761   }
2762 
2763   if (DebugDeoptimization && deopt) {
2764     tty->print_cr("[AFTER Deoptimization]");
2765     trace_frames();
2766   }
2767 }
2768 
2769 
2770 // Make zombies
2771 void JavaThread::make_zombies() {
2772   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2773     if (fst.current()->can_be_deoptimized()) {
2774       // it is a Java nmethod
2775       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2776       nm->make_not_entrant();
2777     }
2778   }
2779 }
2780 #endif // PRODUCT
2781 
2782 
2783 void JavaThread::deoptimized_wrt_marked_nmethods() {
2784   if (!has_last_Java_frame()) return;
2785   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2786   StackFrameStream fst(this, UseBiasedLocking);
2787   for (; !fst.is_done(); fst.next()) {
2788     if (fst.current()->should_be_deoptimized()) {
2789       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2790     }
2791   }
2792 }
2793 
2794 
2795 // If the caller is a NamedThread, then remember, in the current scope,
2796 // the given JavaThread in its _processed_thread field.
2797 class RememberProcessedThread: public StackObj {
2798   NamedThread* _cur_thr;
2799  public:
2800   RememberProcessedThread(JavaThread* jthr) {
2801     Thread* thread = Thread::current();
2802     if (thread->is_Named_thread()) {
2803       _cur_thr = (NamedThread *)thread;
2804       _cur_thr->set_processed_thread(jthr);
2805     } else {
2806       _cur_thr = NULL;
2807     }
2808   }
2809 
2810   ~RememberProcessedThread() {
2811     if (_cur_thr) {
2812       _cur_thr->set_processed_thread(NULL);
2813     }
2814   }
2815 };
2816 
2817 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2818   // Verify that the deferred card marks have been flushed.
2819   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2820 
2821   // Traverse the GCHandles
2822   Thread::oops_do(f, cf);
2823 
2824   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2825 
2826   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2827          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2828 
2829   if (has_last_Java_frame()) {
2830     // Record JavaThread to GC thread
2831     RememberProcessedThread rpt(this);
2832 
2833     // Traverse the privileged stack
2834     if (_privileged_stack_top != NULL) {
2835       _privileged_stack_top->oops_do(f);
2836     }
2837 
2838     // traverse the registered growable array
2839     if (_array_for_gc != NULL) {
2840       for (int index = 0; index < _array_for_gc->length(); index++) {
2841         f->do_oop(_array_for_gc->adr_at(index));
2842       }
2843     }
2844 
2845     // Traverse the monitor chunks
2846     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2847       chunk->oops_do(f);
2848     }
2849 
2850     // Traverse the execution stack
2851     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2852       fst.current()->oops_do(f, cf, fst.register_map());
2853     }
2854   }
2855 
2856   // callee_target is never live across a gc point so NULL it here should
2857   // it still contain a methdOop.
2858 
2859   set_callee_target(NULL);
2860 
2861   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2862   // If we have deferred set_locals there might be oops waiting to be
2863   // written
2864   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2865   if (list != NULL) {
2866     for (int i = 0; i < list->length(); i++) {
2867       list->at(i)->oops_do(f);
2868     }
2869   }
2870 
2871   // Traverse instance variables at the end since the GC may be moving things
2872   // around using this function
2873   f->do_oop((oop*) &_threadObj);
2874   f->do_oop((oop*) &_vm_result);
2875   f->do_oop((oop*) &_exception_oop);
2876   f->do_oop((oop*) &_pending_async_exception);
2877 
2878   if (jvmti_thread_state() != NULL) {
2879     jvmti_thread_state()->oops_do(f);
2880   }
2881 }
2882 
2883 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2884   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2885          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2886 
2887   if (has_last_Java_frame()) {
2888     // Traverse the execution stack
2889     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2890       fst.current()->nmethods_do(cf);
2891     }
2892   }
2893 }
2894 
2895 void JavaThread::metadata_do(void f(Metadata*)) {
2896   if (has_last_Java_frame()) {
2897     // Traverse the execution stack to call f() on the methods in the stack
2898     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2899       fst.current()->metadata_do(f);
2900     }
2901   } else if (is_Compiler_thread()) {
2902     // need to walk ciMetadata in current compile tasks to keep alive.
2903     CompilerThread* ct = (CompilerThread*)this;
2904     if (ct->env() != NULL) {
2905       ct->env()->metadata_do(f);
2906     }
2907     CompileTask* task = ct->task();
2908     if (task != NULL) {
2909       task->metadata_do(f);
2910     }
2911   }
2912 }
2913 
2914 // Printing
2915 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2916   switch (_thread_state) {
2917   case _thread_uninitialized:     return "_thread_uninitialized";
2918   case _thread_new:               return "_thread_new";
2919   case _thread_new_trans:         return "_thread_new_trans";
2920   case _thread_in_native:         return "_thread_in_native";
2921   case _thread_in_native_trans:   return "_thread_in_native_trans";
2922   case _thread_in_vm:             return "_thread_in_vm";
2923   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2924   case _thread_in_Java:           return "_thread_in_Java";
2925   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2926   case _thread_blocked:           return "_thread_blocked";
2927   case _thread_blocked_trans:     return "_thread_blocked_trans";
2928   default:                        return "unknown thread state";
2929   }
2930 }
2931 
2932 #ifndef PRODUCT
2933 void JavaThread::print_thread_state_on(outputStream *st) const {
2934   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2935 };
2936 void JavaThread::print_thread_state() const {
2937   print_thread_state_on(tty);
2938 }
2939 #endif // PRODUCT
2940 
2941 // Called by Threads::print() for VM_PrintThreads operation
2942 void JavaThread::print_on(outputStream *st) const {
2943   st->print_raw("\"");
2944   st->print_raw(get_thread_name());
2945   st->print_raw("\" ");
2946   oop thread_oop = threadObj();
2947   if (thread_oop != NULL) {
2948     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
2949     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2950     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2951   }
2952   Thread::print_on(st);
2953   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2954   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2955   if (thread_oop != NULL) {
2956     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2957   }
2958 #ifndef PRODUCT
2959   print_thread_state_on(st);
2960   _safepoint_state->print_on(st);
2961 #endif // PRODUCT
2962   if (is_Compiler_thread()) {
2963     CompileTask *task = ((CompilerThread*)this)->task();
2964     if (task != NULL) {
2965       st->print("   Compiling: ");
2966       task->print(st, NULL, true, false);
2967     } else {
2968       st->print("   No compile task");
2969     }
2970     st->cr();
2971   }
2972 }
2973 
2974 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2975   st->print("%s", get_thread_name_string(buf, buflen));
2976 }
2977 
2978 // Called by fatal error handler. The difference between this and
2979 // JavaThread::print() is that we can't grab lock or allocate memory.
2980 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2981   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2982   oop thread_obj = threadObj();
2983   if (thread_obj != NULL) {
2984     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2985   }
2986   st->print(" [");
2987   st->print("%s", _get_thread_state_name(_thread_state));
2988   if (osthread()) {
2989     st->print(", id=%d", osthread()->thread_id());
2990   }
2991   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2992             p2i(stack_end()), p2i(stack_base()));
2993   st->print("]");
2994 
2995   if (_threads_hazard_ptr != NULL) {
2996     st->print(" _threads_hazard_ptr=" INTPTR_FORMAT, p2i(_threads_hazard_ptr));
2997   }
2998   if (_nested_threads_hazard_ptr != NULL) {
2999     print_nested_threads_hazard_ptrs_on(st);
3000   }
3001   return;
3002 }
3003 
3004 // Verification
3005 
3006 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3007 
3008 void JavaThread::verify() {
3009   // Verify oops in the thread.
3010   oops_do(&VerifyOopClosure::verify_oop, NULL);
3011 
3012   // Verify the stack frames.
3013   frames_do(frame_verify);
3014 }
3015 
3016 // CR 6300358 (sub-CR 2137150)
3017 // Most callers of this method assume that it can't return NULL but a
3018 // thread may not have a name whilst it is in the process of attaching to
3019 // the VM - see CR 6412693, and there are places where a JavaThread can be
3020 // seen prior to having it's threadObj set (eg JNI attaching threads and
3021 // if vm exit occurs during initialization). These cases can all be accounted
3022 // for such that this method never returns NULL.
3023 const char* JavaThread::get_thread_name() const {
3024 #ifdef ASSERT
3025   // early safepoints can hit while current thread does not yet have TLS
3026   if (!SafepointSynchronize::is_at_safepoint()) {
3027     Thread *cur = Thread::current();
3028     if (!(cur->is_Java_thread() && cur == this)) {
3029       // Current JavaThreads are allowed to get their own name without
3030       // the Threads_lock.
3031       assert_locked_or_safepoint(Threads_lock);
3032     }
3033   }
3034 #endif // ASSERT
3035   return get_thread_name_string();
3036 }
3037 
3038 // Returns a non-NULL representation of this thread's name, or a suitable
3039 // descriptive string if there is no set name
3040 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3041   const char* name_str;
3042   oop thread_obj = threadObj();
3043   if (thread_obj != NULL) {
3044     oop name = java_lang_Thread::name(thread_obj);
3045     if (name != NULL) {
3046       if (buf == NULL) {
3047         name_str = java_lang_String::as_utf8_string(name);
3048       } else {
3049         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3050       }
3051     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3052       name_str = "<no-name - thread is attaching>";
3053     } else {
3054       name_str = Thread::name();
3055     }
3056   } else {
3057     name_str = Thread::name();
3058   }
3059   assert(name_str != NULL, "unexpected NULL thread name");
3060   return name_str;
3061 }
3062 
3063 
3064 const char* JavaThread::get_threadgroup_name() const {
3065   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3066   oop thread_obj = threadObj();
3067   if (thread_obj != NULL) {
3068     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3069     if (thread_group != NULL) {
3070       // ThreadGroup.name can be null
3071       return java_lang_ThreadGroup::name(thread_group);
3072     }
3073   }
3074   return NULL;
3075 }
3076 
3077 const char* JavaThread::get_parent_name() const {
3078   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3079   oop thread_obj = threadObj();
3080   if (thread_obj != NULL) {
3081     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3082     if (thread_group != NULL) {
3083       oop parent = java_lang_ThreadGroup::parent(thread_group);
3084       if (parent != NULL) {
3085         // ThreadGroup.name can be null
3086         return java_lang_ThreadGroup::name(parent);
3087       }
3088     }
3089   }
3090   return NULL;
3091 }
3092 
3093 ThreadPriority JavaThread::java_priority() const {
3094   oop thr_oop = threadObj();
3095   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3096   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3097   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3098   return priority;
3099 }
3100 
3101 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3102 
3103   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3104   // Link Java Thread object <-> C++ Thread
3105 
3106   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3107   // and put it into a new Handle.  The Handle "thread_oop" can then
3108   // be used to pass the C++ thread object to other methods.
3109 
3110   // Set the Java level thread object (jthread) field of the
3111   // new thread (a JavaThread *) to C++ thread object using the
3112   // "thread_oop" handle.
3113 
3114   // Set the thread field (a JavaThread *) of the
3115   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3116 
3117   Handle thread_oop(Thread::current(),
3118                     JNIHandles::resolve_non_null(jni_thread));
3119   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3120          "must be initialized");
3121   set_threadObj(thread_oop());
3122   java_lang_Thread::set_thread(thread_oop(), this);
3123 
3124   if (prio == NoPriority) {
3125     prio = java_lang_Thread::priority(thread_oop());
3126     assert(prio != NoPriority, "A valid priority should be present");
3127   }
3128 
3129   // Push the Java priority down to the native thread; needs Threads_lock
3130   Thread::set_priority(this, prio);
3131 
3132   // Add the new thread to the Threads list and set it in motion.
3133   // We must have threads lock in order to call Threads::add.
3134   // It is crucial that we do not block before the thread is
3135   // added to the Threads list for if a GC happens, then the java_thread oop
3136   // will not be visited by GC.
3137   Threads::add(this);
3138 }
3139 
3140 oop JavaThread::current_park_blocker() {
3141   // Support for JSR-166 locks
3142   oop thread_oop = threadObj();
3143   if (thread_oop != NULL &&
3144       JDK_Version::current().supports_thread_park_blocker()) {
3145     return java_lang_Thread::park_blocker(thread_oop);
3146   }
3147   return NULL;
3148 }
3149 
3150 
3151 void JavaThread::print_stack_on(outputStream* st) {
3152   if (!has_last_Java_frame()) return;
3153   ResourceMark rm;
3154   HandleMark   hm;
3155 
3156   RegisterMap reg_map(this);
3157   vframe* start_vf = last_java_vframe(&reg_map);
3158   int count = 0;
3159   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3160     if (f->is_java_frame()) {
3161       javaVFrame* jvf = javaVFrame::cast(f);
3162       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3163 
3164       // Print out lock information
3165       if (JavaMonitorsInStackTrace) {
3166         jvf->print_lock_info_on(st, count);
3167       }
3168     } else {
3169       // Ignore non-Java frames
3170     }
3171 
3172     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3173     count++;
3174     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3175   }
3176 }
3177 
3178 
3179 // JVMTI PopFrame support
3180 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3181   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3182   if (in_bytes(size_in_bytes) != 0) {
3183     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3184     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3185     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3186   }
3187 }
3188 
3189 void* JavaThread::popframe_preserved_args() {
3190   return _popframe_preserved_args;
3191 }
3192 
3193 ByteSize JavaThread::popframe_preserved_args_size() {
3194   return in_ByteSize(_popframe_preserved_args_size);
3195 }
3196 
3197 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3198   int sz = in_bytes(popframe_preserved_args_size());
3199   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3200   return in_WordSize(sz / wordSize);
3201 }
3202 
3203 void JavaThread::popframe_free_preserved_args() {
3204   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3205   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3206   _popframe_preserved_args = NULL;
3207   _popframe_preserved_args_size = 0;
3208 }
3209 
3210 #ifndef PRODUCT
3211 
3212 void JavaThread::trace_frames() {
3213   tty->print_cr("[Describe stack]");
3214   int frame_no = 1;
3215   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3216     tty->print("  %d. ", frame_no++);
3217     fst.current()->print_value_on(tty, this);
3218     tty->cr();
3219   }
3220 }
3221 
3222 class PrintAndVerifyOopClosure: public OopClosure {
3223  protected:
3224   template <class T> inline void do_oop_work(T* p) {
3225     oop obj = RawAccess<>::oop_load(p);
3226     if (obj == NULL) return;
3227     tty->print(INTPTR_FORMAT ": ", p2i(p));
3228     if (oopDesc::is_oop_or_null(obj)) {
3229       if (obj->is_objArray()) {
3230         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3231       } else {
3232         obj->print();
3233       }
3234     } else {
3235       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3236     }
3237     tty->cr();
3238   }
3239  public:
3240   virtual void do_oop(oop* p) { do_oop_work(p); }
3241   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3242 };
3243 
3244 
3245 static void oops_print(frame* f, const RegisterMap *map) {
3246   PrintAndVerifyOopClosure print;
3247   f->print_value();
3248   f->oops_do(&print, NULL, (RegisterMap*)map);
3249 }
3250 
3251 // Print our all the locations that contain oops and whether they are
3252 // valid or not.  This useful when trying to find the oldest frame
3253 // where an oop has gone bad since the frame walk is from youngest to
3254 // oldest.
3255 void JavaThread::trace_oops() {
3256   tty->print_cr("[Trace oops]");
3257   frames_do(oops_print);
3258 }
3259 
3260 
3261 #ifdef ASSERT
3262 // Print or validate the layout of stack frames
3263 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3264   ResourceMark rm;
3265   PRESERVE_EXCEPTION_MARK;
3266   FrameValues values;
3267   int frame_no = 0;
3268   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3269     fst.current()->describe(values, ++frame_no);
3270     if (depth == frame_no) break;
3271   }
3272   if (validate_only) {
3273     values.validate();
3274   } else {
3275     tty->print_cr("[Describe stack layout]");
3276     values.print(this);
3277   }
3278 }
3279 #endif
3280 
3281 void JavaThread::trace_stack_from(vframe* start_vf) {
3282   ResourceMark rm;
3283   int vframe_no = 1;
3284   for (vframe* f = start_vf; f; f = f->sender()) {
3285     if (f->is_java_frame()) {
3286       javaVFrame::cast(f)->print_activation(vframe_no++);
3287     } else {
3288       f->print();
3289     }
3290     if (vframe_no > StackPrintLimit) {
3291       tty->print_cr("...<more frames>...");
3292       return;
3293     }
3294   }
3295 }
3296 
3297 
3298 void JavaThread::trace_stack() {
3299   if (!has_last_Java_frame()) return;
3300   ResourceMark rm;
3301   HandleMark   hm;
3302   RegisterMap reg_map(this);
3303   trace_stack_from(last_java_vframe(&reg_map));
3304 }
3305 
3306 
3307 #endif // PRODUCT
3308 
3309 
3310 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3311   assert(reg_map != NULL, "a map must be given");
3312   frame f = last_frame();
3313   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3314     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3315   }
3316   return NULL;
3317 }
3318 
3319 
3320 Klass* JavaThread::security_get_caller_class(int depth) {
3321   vframeStream vfst(this);
3322   vfst.security_get_caller_frame(depth);
3323   if (!vfst.at_end()) {
3324     return vfst.method()->method_holder();
3325   }
3326   return NULL;
3327 }
3328 
3329 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3330   assert(thread->is_Compiler_thread(), "must be compiler thread");
3331   CompileBroker::compiler_thread_loop();
3332 }
3333 
3334 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3335   NMethodSweeper::sweeper_loop();
3336 }
3337 
3338 // Create a CompilerThread
3339 CompilerThread::CompilerThread(CompileQueue* queue,
3340                                CompilerCounters* counters)
3341                                : JavaThread(&compiler_thread_entry) {
3342   _env   = NULL;
3343   _log   = NULL;
3344   _task  = NULL;
3345   _queue = queue;
3346   _counters = counters;
3347   _buffer_blob = NULL;
3348   _compiler = NULL;
3349 
3350   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3351   resource_area()->bias_to(mtCompiler);
3352 
3353 #ifndef PRODUCT
3354   _ideal_graph_printer = NULL;
3355 #endif
3356 }
3357 
3358 bool CompilerThread::can_call_java() const {
3359   return _compiler != NULL && _compiler->is_jvmci();
3360 }
3361 
3362 // Create sweeper thread
3363 CodeCacheSweeperThread::CodeCacheSweeperThread()
3364 : JavaThread(&sweeper_thread_entry) {
3365   _scanned_compiled_method = NULL;
3366 }
3367 
3368 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3369   JavaThread::oops_do(f, cf);
3370   if (_scanned_compiled_method != NULL && cf != NULL) {
3371     // Safepoints can occur when the sweeper is scanning an nmethod so
3372     // process it here to make sure it isn't unloaded in the middle of
3373     // a scan.
3374     cf->do_code_blob(_scanned_compiled_method);
3375   }
3376 }
3377 
3378 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3379   JavaThread::nmethods_do(cf);
3380   if (_scanned_compiled_method != NULL && cf != NULL) {
3381     // Safepoints can occur when the sweeper is scanning an nmethod so
3382     // process it here to make sure it isn't unloaded in the middle of
3383     // a scan.
3384     cf->do_code_blob(_scanned_compiled_method);
3385   }
3386 }
3387 
3388 
3389 // ======= Threads ========
3390 
3391 // The Threads class links together all active threads, and provides
3392 // operations over all threads. It is protected by the Threads_lock,
3393 // which is also used in other global contexts like safepointing.
3394 // ThreadsListHandles are used to safely perform operations on one
3395 // or more threads without the risk of the thread exiting during the
3396 // operation.
3397 //
3398 // Note: The Threads_lock is currently more widely used than we
3399 // would like. We are actively migrating Threads_lock uses to other
3400 // mechanisms in order to reduce Threads_lock contention.
3401 
3402 JavaThread* Threads::_thread_list = NULL;
3403 int         Threads::_number_of_threads = 0;
3404 int         Threads::_number_of_non_daemon_threads = 0;
3405 int         Threads::_return_code = 0;
3406 int         Threads::_thread_claim_parity = 0;
3407 size_t      JavaThread::_stack_size_at_create = 0;
3408 
3409 #ifdef ASSERT
3410 bool        Threads::_vm_complete = false;
3411 #endif
3412 
3413 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3414   Prefetch::read((void*)addr, prefetch_interval);
3415   return *addr;
3416 }
3417 
3418 // Possibly the ugliest for loop the world has seen. C++ does not allow
3419 // multiple types in the declaration section of the for loop. In this case
3420 // we are only dealing with pointers and hence can cast them. It looks ugly
3421 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3422 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3423     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3424              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3425              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3426              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3427              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3428          MACRO_current_p != MACRO_end;                                                                                    \
3429          MACRO_current_p++,                                                                                               \
3430              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3431 
3432 // All JavaThreads
3433 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3434 
3435 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3436 void Threads::threads_do(ThreadClosure* tc) {
3437   assert_locked_or_safepoint(Threads_lock);
3438   // ALL_JAVA_THREADS iterates through all JavaThreads
3439   ALL_JAVA_THREADS(p) {
3440     tc->do_thread(p);
3441   }
3442   // Someday we could have a table or list of all non-JavaThreads.
3443   // For now, just manually iterate through them.
3444   tc->do_thread(VMThread::vm_thread());
3445   Universe::heap()->gc_threads_do(tc);
3446   WatcherThread *wt = WatcherThread::watcher_thread();
3447   // Strictly speaking, the following NULL check isn't sufficient to make sure
3448   // the data for WatcherThread is still valid upon being examined. However,
3449   // considering that WatchThread terminates when the VM is on the way to
3450   // exit at safepoint, the chance of the above is extremely small. The right
3451   // way to prevent termination of WatcherThread would be to acquire
3452   // Terminator_lock, but we can't do that without violating the lock rank
3453   // checking in some cases.
3454   if (wt != NULL) {
3455     tc->do_thread(wt);
3456   }
3457 
3458   // If CompilerThreads ever become non-JavaThreads, add them here
3459 }
3460 
3461 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3462   int cp = Threads::thread_claim_parity();
3463   ALL_JAVA_THREADS(p) {
3464     if (p->claim_oops_do(is_par, cp)) {
3465       tc->do_thread(p);
3466     }
3467   }
3468   VMThread* vmt = VMThread::vm_thread();
3469   if (vmt->claim_oops_do(is_par, cp)) {
3470     tc->do_thread(vmt);
3471   }
3472 }
3473 
3474 // The system initialization in the library has three phases.
3475 //
3476 // Phase 1: java.lang.System class initialization
3477 //     java.lang.System is a primordial class loaded and initialized
3478 //     by the VM early during startup.  java.lang.System.<clinit>
3479 //     only does registerNatives and keeps the rest of the class
3480 //     initialization work later until thread initialization completes.
3481 //
3482 //     System.initPhase1 initializes the system properties, the static
3483 //     fields in, out, and err. Set up java signal handlers, OS-specific
3484 //     system settings, and thread group of the main thread.
3485 static void call_initPhase1(TRAPS) {
3486   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3487   JavaValue result(T_VOID);
3488   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3489                                          vmSymbols::void_method_signature(), CHECK);
3490 }
3491 
3492 // Phase 2. Module system initialization
3493 //     This will initialize the module system.  Only java.base classes
3494 //     can be loaded until phase 2 completes.
3495 //
3496 //     Call System.initPhase2 after the compiler initialization and jsr292
3497 //     classes get initialized because module initialization runs a lot of java
3498 //     code, that for performance reasons, should be compiled.  Also, this will
3499 //     enable the startup code to use lambda and other language features in this
3500 //     phase and onward.
3501 //
3502 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3503 static void call_initPhase2(TRAPS) {
3504   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3505 
3506   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3507 
3508   JavaValue result(T_INT);
3509   JavaCallArguments args;
3510   args.push_int(DisplayVMOutputToStderr);
3511   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3512   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3513                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3514   if (result.get_jint() != JNI_OK) {
3515     vm_exit_during_initialization(); // no message or exception
3516   }
3517 
3518   universe_post_module_init();
3519 }
3520 
3521 // Phase 3. final setup - set security manager, system class loader and TCCL
3522 //
3523 //     This will instantiate and set the security manager, set the system class
3524 //     loader as well as the thread context class loader.  The security manager
3525 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3526 //     other modules or the application's classpath.
3527 static void call_initPhase3(TRAPS) {
3528   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3529   JavaValue result(T_VOID);
3530   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3531                                          vmSymbols::void_method_signature(), CHECK);
3532 }
3533 
3534 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3535   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3536 
3537   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3538     create_vm_init_libraries();
3539   }
3540 
3541   initialize_class(vmSymbols::java_lang_String(), CHECK);
3542 
3543   // Inject CompactStrings value after the static initializers for String ran.
3544   java_lang_String::set_compact_strings(CompactStrings);
3545 
3546   // Initialize java_lang.System (needed before creating the thread)
3547   initialize_class(vmSymbols::java_lang_System(), CHECK);
3548   // The VM creates & returns objects of this class. Make sure it's initialized.
3549   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3550   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3551   Handle thread_group = create_initial_thread_group(CHECK);
3552   Universe::set_main_thread_group(thread_group());
3553   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3554   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3555   main_thread->set_threadObj(thread_object);
3556   // Set thread status to running since main thread has
3557   // been started and running.
3558   java_lang_Thread::set_thread_status(thread_object,
3559                                       java_lang_Thread::RUNNABLE);
3560 
3561   // The VM creates objects of this class.
3562   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3563 
3564   // The VM preresolves methods to these classes. Make sure that they get initialized
3565   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3566   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3567 
3568   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3569   call_initPhase1(CHECK);
3570 
3571   // get the Java runtime name after java.lang.System is initialized
3572   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3573   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3574 
3575   // an instance of OutOfMemory exception has been allocated earlier
3576   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3577   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3578   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3579   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3580   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3581   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3582   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3583   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3584 }
3585 
3586 void Threads::initialize_jsr292_core_classes(TRAPS) {
3587   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3588 
3589   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3590   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3591   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3592   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3593 }
3594 
3595 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3596   extern void JDK_Version_init();
3597 
3598   // Preinitialize version info.
3599   VM_Version::early_initialize();
3600 
3601   // Check version
3602   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3603 
3604   // Initialize library-based TLS
3605   ThreadLocalStorage::init();
3606 
3607   // Initialize the output stream module
3608   ostream_init();
3609 
3610   // Process java launcher properties.
3611   Arguments::process_sun_java_launcher_properties(args);
3612 
3613   // Initialize the os module
3614   os::init();
3615 
3616   // Record VM creation timing statistics
3617   TraceVmCreationTime create_vm_timer;
3618   create_vm_timer.start();
3619 
3620   // Initialize system properties.
3621   Arguments::init_system_properties();
3622 
3623   // So that JDK version can be used as a discriminator when parsing arguments
3624   JDK_Version_init();
3625 
3626   // Update/Initialize System properties after JDK version number is known
3627   Arguments::init_version_specific_system_properties();
3628 
3629   // Make sure to initialize log configuration *before* parsing arguments
3630   LogConfiguration::initialize(create_vm_timer.begin_time());
3631 
3632   // Parse arguments
3633   // Note: this internally calls os::init_container_support()
3634   jint parse_result = Arguments::parse(args);
3635   if (parse_result != JNI_OK) return parse_result;
3636 
3637   os::init_before_ergo();
3638 
3639   jint ergo_result = Arguments::apply_ergo();
3640   if (ergo_result != JNI_OK) return ergo_result;
3641 
3642   // Final check of all ranges after ergonomics which may change values.
3643   if (!CommandLineFlagRangeList::check_ranges()) {
3644     return JNI_EINVAL;
3645   }
3646 
3647   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3648   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3649   if (!constraint_result) {
3650     return JNI_EINVAL;
3651   }
3652 
3653   CommandLineFlagWriteableList::mark_startup();
3654 
3655   if (PauseAtStartup) {
3656     os::pause();
3657   }
3658 
3659   HOTSPOT_VM_INIT_BEGIN();
3660 
3661   // Timing (must come after argument parsing)
3662   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3663 
3664   // Initialize the os module after parsing the args
3665   jint os_init_2_result = os::init_2();
3666   if (os_init_2_result != JNI_OK) return os_init_2_result;
3667 
3668   SafepointMechanism::initialize();
3669 
3670   jint adjust_after_os_result = Arguments::adjust_after_os();
3671   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3672 
3673   // Initialize output stream logging
3674   ostream_init_log();
3675 
3676   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3677   // Must be before create_vm_init_agents()
3678   if (Arguments::init_libraries_at_startup()) {
3679     convert_vm_init_libraries_to_agents();
3680   }
3681 
3682   // Launch -agentlib/-agentpath and converted -Xrun agents
3683   if (Arguments::init_agents_at_startup()) {
3684     create_vm_init_agents();
3685   }
3686 
3687   // Initialize Threads state
3688   _thread_list = NULL;
3689   _number_of_threads = 0;
3690   _number_of_non_daemon_threads = 0;
3691 
3692   // Initialize global data structures and create system classes in heap
3693   vm_init_globals();
3694 
3695 #if INCLUDE_JVMCI
3696   if (JVMCICounterSize > 0) {
3697     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3698     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3699   } else {
3700     JavaThread::_jvmci_old_thread_counters = NULL;
3701   }
3702 #endif // INCLUDE_JVMCI
3703 
3704   // Attach the main thread to this os thread
3705   JavaThread* main_thread = new JavaThread();
3706   main_thread->set_thread_state(_thread_in_vm);
3707   main_thread->initialize_thread_current();
3708   // must do this before set_active_handles
3709   main_thread->record_stack_base_and_size();
3710   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3711 
3712   if (!main_thread->set_as_starting_thread()) {
3713     vm_shutdown_during_initialization(
3714                                       "Failed necessary internal allocation. Out of swap space");
3715     main_thread->smr_delete();
3716     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3717     return JNI_ENOMEM;
3718   }
3719 
3720   // Enable guard page *after* os::create_main_thread(), otherwise it would
3721   // crash Linux VM, see notes in os_linux.cpp.
3722   main_thread->create_stack_guard_pages();
3723 
3724   // Initialize Java-Level synchronization subsystem
3725   ObjectMonitor::Initialize();
3726 
3727   // Initialize global modules
3728   jint status = init_globals();
3729   if (status != JNI_OK) {
3730     main_thread->smr_delete();
3731     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3732     return status;
3733   }
3734 
3735   if (TRACE_INITIALIZE() != JNI_OK) {
3736     vm_exit_during_initialization("Failed to initialize tracing backend");
3737   }
3738 
3739   // Should be done after the heap is fully created
3740   main_thread->cache_global_variables();
3741 
3742   HandleMark hm;
3743 
3744   { MutexLocker mu(Threads_lock);
3745     Threads::add(main_thread);
3746   }
3747 
3748   // Any JVMTI raw monitors entered in onload will transition into
3749   // real raw monitor. VM is setup enough here for raw monitor enter.
3750   JvmtiExport::transition_pending_onload_raw_monitors();
3751 
3752   // Create the VMThread
3753   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3754 
3755   VMThread::create();
3756     Thread* vmthread = VMThread::vm_thread();
3757 
3758     if (!os::create_thread(vmthread, os::vm_thread)) {
3759       vm_exit_during_initialization("Cannot create VM thread. "
3760                                     "Out of system resources.");
3761     }
3762 
3763     // Wait for the VM thread to become ready, and VMThread::run to initialize
3764     // Monitors can have spurious returns, must always check another state flag
3765     {
3766       MutexLocker ml(Notify_lock);
3767       os::start_thread(vmthread);
3768       while (vmthread->active_handles() == NULL) {
3769         Notify_lock->wait();
3770       }
3771     }
3772   }
3773 
3774   assert(Universe::is_fully_initialized(), "not initialized");
3775   if (VerifyDuringStartup) {
3776     // Make sure we're starting with a clean slate.
3777     VM_Verify verify_op;
3778     VMThread::execute(&verify_op);
3779   }
3780 
3781   Thread* THREAD = Thread::current();
3782 
3783   // Always call even when there are not JVMTI environments yet, since environments
3784   // may be attached late and JVMTI must track phases of VM execution
3785   JvmtiExport::enter_early_start_phase();
3786 
3787   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3788   JvmtiExport::post_early_vm_start();
3789 
3790   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3791 
3792   // We need this for ClassDataSharing - the initial vm.info property is set
3793   // with the default value of CDS "sharing" which may be reset through
3794   // command line options.
3795   reset_vm_info_property(CHECK_JNI_ERR);
3796 
3797   quicken_jni_functions();
3798 
3799   // No more stub generation allowed after that point.
3800   StubCodeDesc::freeze();
3801 
3802   // Set flag that basic initialization has completed. Used by exceptions and various
3803   // debug stuff, that does not work until all basic classes have been initialized.
3804   set_init_completed();
3805 
3806   LogConfiguration::post_initialize();
3807   Metaspace::post_initialize();
3808 
3809   HOTSPOT_VM_INIT_END();
3810 
3811   // record VM initialization completion time
3812 #if INCLUDE_MANAGEMENT
3813   Management::record_vm_init_completed();
3814 #endif // INCLUDE_MANAGEMENT
3815 
3816   // Signal Dispatcher needs to be started before VMInit event is posted
3817   os::signal_init(CHECK_JNI_ERR);
3818 
3819   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3820   if (!DisableAttachMechanism) {
3821     AttachListener::vm_start();
3822     if (StartAttachListener || AttachListener::init_at_startup()) {
3823       AttachListener::init();
3824     }
3825   }
3826 
3827   // Launch -Xrun agents
3828   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3829   // back-end can launch with -Xdebug -Xrunjdwp.
3830   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3831     create_vm_init_libraries();
3832   }
3833 
3834   if (CleanChunkPoolAsync) {
3835     Chunk::start_chunk_pool_cleaner_task();
3836   }
3837 
3838   // initialize compiler(s)
3839 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3840   CompileBroker::compilation_init(CHECK_JNI_ERR);
3841 #endif
3842 
3843   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3844   // It is done after compilers are initialized, because otherwise compilations of
3845   // signature polymorphic MH intrinsics can be missed
3846   // (see SystemDictionary::find_method_handle_intrinsic).
3847   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3848 
3849   // This will initialize the module system.  Only java.base classes can be
3850   // loaded until phase 2 completes
3851   call_initPhase2(CHECK_JNI_ERR);
3852 
3853   // Always call even when there are not JVMTI environments yet, since environments
3854   // may be attached late and JVMTI must track phases of VM execution
3855   JvmtiExport::enter_start_phase();
3856 
3857   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3858   JvmtiExport::post_vm_start();
3859 
3860   // Final system initialization including security manager and system class loader
3861   call_initPhase3(CHECK_JNI_ERR);
3862 
3863   // cache the system and platform class loaders
3864   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3865 
3866 #if INCLUDE_JVMCI
3867   if (EnableJVMCI) {
3868     // Initialize JVMCI eagerly when it is explicitly requested.
3869     // Or when JVMCIPrintProperties is enabled.
3870     // The JVMCI Java initialization code will read this flag and
3871     // do the printing if it's set.
3872     bool init = EagerJVMCI || JVMCIPrintProperties;
3873 
3874     if (!init) {
3875       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3876       // compilations via JVMCI will not actually block until JVMCI is initialized.
3877       init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3878     }
3879 
3880     if (init) {
3881       JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3882     }
3883   }
3884 #endif
3885 
3886   // Always call even when there are not JVMTI environments yet, since environments
3887   // may be attached late and JVMTI must track phases of VM execution
3888   JvmtiExport::enter_live_phase();
3889 
3890   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3891   JvmtiExport::post_vm_initialized();
3892 
3893   if (TRACE_START() != JNI_OK) {
3894     vm_exit_during_initialization("Failed to start tracing backend.");
3895   }
3896 
3897 #if INCLUDE_MANAGEMENT
3898   Management::initialize(THREAD);
3899 
3900   if (HAS_PENDING_EXCEPTION) {
3901     // management agent fails to start possibly due to
3902     // configuration problem and is responsible for printing
3903     // stack trace if appropriate. Simply exit VM.
3904     vm_exit(1);
3905   }
3906 #endif // INCLUDE_MANAGEMENT
3907 
3908   if (MemProfiling)                   MemProfiler::engage();
3909   StatSampler::engage();
3910   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3911 
3912   BiasedLocking::init();
3913 
3914 #if INCLUDE_RTM_OPT
3915   RTMLockingCounters::init();
3916 #endif
3917 
3918   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3919     call_postVMInitHook(THREAD);
3920     // The Java side of PostVMInitHook.run must deal with all
3921     // exceptions and provide means of diagnosis.
3922     if (HAS_PENDING_EXCEPTION) {
3923       CLEAR_PENDING_EXCEPTION;
3924     }
3925   }
3926 
3927   {
3928     MutexLocker ml(PeriodicTask_lock);
3929     // Make sure the WatcherThread can be started by WatcherThread::start()
3930     // or by dynamic enrollment.
3931     WatcherThread::make_startable();
3932     // Start up the WatcherThread if there are any periodic tasks
3933     // NOTE:  All PeriodicTasks should be registered by now. If they
3934     //   aren't, late joiners might appear to start slowly (we might
3935     //   take a while to process their first tick).
3936     if (PeriodicTask::num_tasks() > 0) {
3937       WatcherThread::start();
3938     }
3939   }
3940 
3941   create_vm_timer.end();
3942 #ifdef ASSERT
3943   _vm_complete = true;
3944 #endif
3945 
3946   if (DumpSharedSpaces) {
3947     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3948     ShouldNotReachHere();
3949   }
3950 
3951   return JNI_OK;
3952 }
3953 
3954 // type for the Agent_OnLoad and JVM_OnLoad entry points
3955 extern "C" {
3956   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3957 }
3958 // Find a command line agent library and return its entry point for
3959 //         -agentlib:  -agentpath:   -Xrun
3960 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3961 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3962                                     const char *on_load_symbols[],
3963                                     size_t num_symbol_entries) {
3964   OnLoadEntry_t on_load_entry = NULL;
3965   void *library = NULL;
3966 
3967   if (!agent->valid()) {
3968     char buffer[JVM_MAXPATHLEN];
3969     char ebuf[1024] = "";
3970     const char *name = agent->name();
3971     const char *msg = "Could not find agent library ";
3972 
3973     // First check to see if agent is statically linked into executable
3974     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3975       library = agent->os_lib();
3976     } else if (agent->is_absolute_path()) {
3977       library = os::dll_load(name, ebuf, sizeof ebuf);
3978       if (library == NULL) {
3979         const char *sub_msg = " in absolute path, with error: ";
3980         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3981         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3982         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3983         // If we can't find the agent, exit.
3984         vm_exit_during_initialization(buf, NULL);
3985         FREE_C_HEAP_ARRAY(char, buf);
3986       }
3987     } else {
3988       // Try to load the agent from the standard dll directory
3989       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3990                              name)) {
3991         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3992       }
3993       if (library == NULL) { // Try the library path directory.
3994         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
3995           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3996         }
3997         if (library == NULL) {
3998           const char *sub_msg = " on the library path, with error: ";
3999           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4000 
4001           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4002                        strlen(ebuf) + strlen(sub_msg2) + 1;
4003           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4004           if (!agent->is_instrument_lib()) {
4005             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4006           } else {
4007             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4008           }
4009           // If we can't find the agent, exit.
4010           vm_exit_during_initialization(buf, NULL);
4011           FREE_C_HEAP_ARRAY(char, buf);
4012         }
4013       }
4014     }
4015     agent->set_os_lib(library);
4016     agent->set_valid();
4017   }
4018 
4019   // Find the OnLoad function.
4020   on_load_entry =
4021     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4022                                                           false,
4023                                                           on_load_symbols,
4024                                                           num_symbol_entries));
4025   return on_load_entry;
4026 }
4027 
4028 // Find the JVM_OnLoad entry point
4029 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4030   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4031   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4032 }
4033 
4034 // Find the Agent_OnLoad entry point
4035 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4036   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4037   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4038 }
4039 
4040 // For backwards compatibility with -Xrun
4041 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4042 // treated like -agentpath:
4043 // Must be called before agent libraries are created
4044 void Threads::convert_vm_init_libraries_to_agents() {
4045   AgentLibrary* agent;
4046   AgentLibrary* next;
4047 
4048   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4049     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4050     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4051 
4052     // If there is an JVM_OnLoad function it will get called later,
4053     // otherwise see if there is an Agent_OnLoad
4054     if (on_load_entry == NULL) {
4055       on_load_entry = lookup_agent_on_load(agent);
4056       if (on_load_entry != NULL) {
4057         // switch it to the agent list -- so that Agent_OnLoad will be called,
4058         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4059         Arguments::convert_library_to_agent(agent);
4060       } else {
4061         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4062       }
4063     }
4064   }
4065 }
4066 
4067 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4068 // Invokes Agent_OnLoad
4069 // Called very early -- before JavaThreads exist
4070 void Threads::create_vm_init_agents() {
4071   extern struct JavaVM_ main_vm;
4072   AgentLibrary* agent;
4073 
4074   JvmtiExport::enter_onload_phase();
4075 
4076   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4077     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4078 
4079     if (on_load_entry != NULL) {
4080       // Invoke the Agent_OnLoad function
4081       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4082       if (err != JNI_OK) {
4083         vm_exit_during_initialization("agent library failed to init", agent->name());
4084       }
4085     } else {
4086       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4087     }
4088   }
4089   JvmtiExport::enter_primordial_phase();
4090 }
4091 
4092 extern "C" {
4093   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4094 }
4095 
4096 void Threads::shutdown_vm_agents() {
4097   // Send any Agent_OnUnload notifications
4098   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4099   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4100   extern struct JavaVM_ main_vm;
4101   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4102 
4103     // Find the Agent_OnUnload function.
4104     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4105                                                    os::find_agent_function(agent,
4106                                                    false,
4107                                                    on_unload_symbols,
4108                                                    num_symbol_entries));
4109 
4110     // Invoke the Agent_OnUnload function
4111     if (unload_entry != NULL) {
4112       JavaThread* thread = JavaThread::current();
4113       ThreadToNativeFromVM ttn(thread);
4114       HandleMark hm(thread);
4115       (*unload_entry)(&main_vm);
4116     }
4117   }
4118 }
4119 
4120 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4121 // Invokes JVM_OnLoad
4122 void Threads::create_vm_init_libraries() {
4123   extern struct JavaVM_ main_vm;
4124   AgentLibrary* agent;
4125 
4126   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4127     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4128 
4129     if (on_load_entry != NULL) {
4130       // Invoke the JVM_OnLoad function
4131       JavaThread* thread = JavaThread::current();
4132       ThreadToNativeFromVM ttn(thread);
4133       HandleMark hm(thread);
4134       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4135       if (err != JNI_OK) {
4136         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4137       }
4138     } else {
4139       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4140     }
4141   }
4142 }
4143 
4144 
4145 // Last thread running calls java.lang.Shutdown.shutdown()
4146 void JavaThread::invoke_shutdown_hooks() {
4147   HandleMark hm(this);
4148 
4149   // We could get here with a pending exception, if so clear it now.
4150   if (this->has_pending_exception()) {
4151     this->clear_pending_exception();
4152   }
4153 
4154   EXCEPTION_MARK;
4155   Klass* shutdown_klass =
4156     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4157                                       THREAD);
4158   if (shutdown_klass != NULL) {
4159     // SystemDictionary::resolve_or_null will return null if there was
4160     // an exception.  If we cannot load the Shutdown class, just don't
4161     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4162     // won't be run.  Note that if a shutdown hook was registered,
4163     // the Shutdown class would have already been loaded
4164     // (Runtime.addShutdownHook will load it).
4165     JavaValue result(T_VOID);
4166     JavaCalls::call_static(&result,
4167                            shutdown_klass,
4168                            vmSymbols::shutdown_method_name(),
4169                            vmSymbols::void_method_signature(),
4170                            THREAD);
4171   }
4172   CLEAR_PENDING_EXCEPTION;
4173 }
4174 
4175 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4176 // the program falls off the end of main(). Another VM exit path is through
4177 // vm_exit() when the program calls System.exit() to return a value or when
4178 // there is a serious error in VM. The two shutdown paths are not exactly
4179 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4180 // and VM_Exit op at VM level.
4181 //
4182 // Shutdown sequence:
4183 //   + Shutdown native memory tracking if it is on
4184 //   + Wait until we are the last non-daemon thread to execute
4185 //     <-- every thing is still working at this moment -->
4186 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4187 //        shutdown hooks
4188 //   + Call before_exit(), prepare for VM exit
4189 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4190 //        currently the only user of this mechanism is File.deleteOnExit())
4191 //      > stop StatSampler, watcher thread, CMS threads,
4192 //        post thread end and vm death events to JVMTI,
4193 //        stop signal thread
4194 //   + Call JavaThread::exit(), it will:
4195 //      > release JNI handle blocks, remove stack guard pages
4196 //      > remove this thread from Threads list
4197 //     <-- no more Java code from this thread after this point -->
4198 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4199 //     the compiler threads at safepoint
4200 //     <-- do not use anything that could get blocked by Safepoint -->
4201 //   + Disable tracing at JNI/JVM barriers
4202 //   + Set _vm_exited flag for threads that are still running native code
4203 //   + Delete this thread
4204 //   + Call exit_globals()
4205 //      > deletes tty
4206 //      > deletes PerfMemory resources
4207 //   + Return to caller
4208 
4209 bool Threads::destroy_vm() {
4210   JavaThread* thread = JavaThread::current();
4211 
4212 #ifdef ASSERT
4213   _vm_complete = false;
4214 #endif
4215   // Wait until we are the last non-daemon thread to execute
4216   { MutexLocker nu(Threads_lock);
4217     while (Threads::number_of_non_daemon_threads() > 1)
4218       // This wait should make safepoint checks, wait without a timeout,
4219       // and wait as a suspend-equivalent condition.
4220       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4221                          Mutex::_as_suspend_equivalent_flag);
4222   }
4223 
4224   EventShutdown e;
4225   if (e.should_commit()) {
4226     e.set_reason("No remaining non-daemon Java threads");
4227     e.commit();
4228   }
4229 
4230   // Hang forever on exit if we are reporting an error.
4231   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4232     os::infinite_sleep();
4233   }
4234   os::wait_for_keypress_at_exit();
4235 
4236   // run Java level shutdown hooks
4237   thread->invoke_shutdown_hooks();
4238 
4239   before_exit(thread);
4240 
4241   thread->exit(true);
4242 
4243   // Stop VM thread.
4244   {
4245     // 4945125 The vm thread comes to a safepoint during exit.
4246     // GC vm_operations can get caught at the safepoint, and the
4247     // heap is unparseable if they are caught. Grab the Heap_lock
4248     // to prevent this. The GC vm_operations will not be able to
4249     // queue until after the vm thread is dead. After this point,
4250     // we'll never emerge out of the safepoint before the VM exits.
4251 
4252     MutexLocker ml(Heap_lock);
4253 
4254     VMThread::wait_for_vm_thread_exit();
4255     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4256     VMThread::destroy();
4257   }
4258 
4259   // Now, all Java threads are gone except daemon threads. Daemon threads
4260   // running Java code or in VM are stopped by the Safepoint. However,
4261   // daemon threads executing native code are still running.  But they
4262   // will be stopped at native=>Java/VM barriers. Note that we can't
4263   // simply kill or suspend them, as it is inherently deadlock-prone.
4264 
4265   VM_Exit::set_vm_exited();
4266 
4267   // Clean up ideal graph printers after the VMThread has started
4268   // the final safepoint which will block all the Compiler threads.
4269   // Note that this Thread has already logically exited so the
4270   // clean_up() function's use of a JavaThreadIteratorWithHandle
4271   // would be a problem except set_vm_exited() has remembered the
4272   // shutdown thread which is granted a policy exception.
4273 #if defined(COMPILER2) && !defined(PRODUCT)
4274   IdealGraphPrinter::clean_up();
4275 #endif
4276 
4277   notify_vm_shutdown();
4278 
4279   // We are after VM_Exit::set_vm_exited() so we can't call
4280   // thread->smr_delete() or we will block on the Threads_lock.
4281   // Deleting the shutdown thread here is safe because another
4282   // JavaThread cannot have an active ThreadsListHandle for
4283   // this JavaThread.
4284   delete thread;
4285 
4286 #if INCLUDE_JVMCI
4287   if (JVMCICounterSize > 0) {
4288     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4289   }
4290 #endif
4291 
4292   // exit_globals() will delete tty
4293   exit_globals();
4294 
4295   LogConfiguration::finalize();
4296 
4297   return true;
4298 }
4299 
4300 
4301 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4302   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4303   return is_supported_jni_version(version);
4304 }
4305 
4306 
4307 jboolean Threads::is_supported_jni_version(jint version) {
4308   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4309   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4310   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4311   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4312   if (version == JNI_VERSION_9) return JNI_TRUE;
4313   if (version == JNI_VERSION_10) return JNI_TRUE;
4314   return JNI_FALSE;
4315 }
4316 
4317 
4318 void Threads::add(JavaThread* p, bool force_daemon) {
4319   // The threads lock must be owned at this point
4320   assert_locked_or_safepoint(Threads_lock);
4321 
4322   BarrierSet::barrier_set()->on_thread_attach(p);
4323 
4324   p->set_next(_thread_list);
4325   _thread_list = p;
4326 
4327   // Once a JavaThread is added to the Threads list, smr_delete() has
4328   // to be used to delete it. Otherwise we can just delete it directly.
4329   p->set_on_thread_list();
4330 
4331   _number_of_threads++;
4332   oop threadObj = p->threadObj();
4333   bool daemon = true;
4334   // Bootstrapping problem: threadObj can be null for initial
4335   // JavaThread (or for threads attached via JNI)
4336   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4337     _number_of_non_daemon_threads++;
4338     daemon = false;
4339   }
4340 
4341   ThreadService::add_thread(p, daemon);
4342 
4343   // Maintain fast thread list
4344   ThreadsSMRSupport::add_thread(p);
4345 
4346   // Possible GC point.
4347   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4348 }
4349 
4350 void Threads::remove(JavaThread* p) {
4351 
4352   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
4353   ObjectSynchronizer::omFlush(p);
4354 
4355   // Extra scope needed for Thread_lock, so we can check
4356   // that we do not remove thread without safepoint code notice
4357   { MutexLocker ml(Threads_lock);
4358 
4359     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4360 
4361     // Maintain fast thread list
4362     ThreadsSMRSupport::remove_thread(p);
4363 
4364     JavaThread* current = _thread_list;
4365     JavaThread* prev    = NULL;
4366 
4367     while (current != p) {
4368       prev    = current;
4369       current = current->next();
4370     }
4371 
4372     if (prev) {
4373       prev->set_next(current->next());
4374     } else {
4375       _thread_list = p->next();
4376     }
4377 
4378     _number_of_threads--;
4379     oop threadObj = p->threadObj();
4380     bool daemon = true;
4381     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4382       _number_of_non_daemon_threads--;
4383       daemon = false;
4384 
4385       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4386       // on destroy_vm will wake up.
4387       if (number_of_non_daemon_threads() == 1) {
4388         Threads_lock->notify_all();
4389       }
4390     }
4391     ThreadService::remove_thread(p, daemon);
4392 
4393     // Make sure that safepoint code disregard this thread. This is needed since
4394     // the thread might mess around with locks after this point. This can cause it
4395     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4396     // of this thread since it is removed from the queue.
4397     p->set_terminated_value();
4398   } // unlock Threads_lock
4399 
4400   // Since Events::log uses a lock, we grab it outside the Threads_lock
4401   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4402 }
4403 
4404 // Operations on the Threads list for GC.  These are not explicitly locked,
4405 // but the garbage collector must provide a safe context for them to run.
4406 // In particular, these things should never be called when the Threads_lock
4407 // is held by some other thread. (Note: the Safepoint abstraction also
4408 // uses the Threads_lock to guarantee this property. It also makes sure that
4409 // all threads gets blocked when exiting or starting).
4410 
4411 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4412   ALL_JAVA_THREADS(p) {
4413     p->oops_do(f, cf);
4414   }
4415   VMThread::vm_thread()->oops_do(f, cf);
4416 }
4417 
4418 void Threads::change_thread_claim_parity() {
4419   // Set the new claim parity.
4420   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4421          "Not in range.");
4422   _thread_claim_parity++;
4423   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4424   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4425          "Not in range.");
4426 }
4427 
4428 #ifdef ASSERT
4429 void Threads::assert_all_threads_claimed() {
4430   ALL_JAVA_THREADS(p) {
4431     const int thread_parity = p->oops_do_parity();
4432     assert((thread_parity == _thread_claim_parity),
4433            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4434   }
4435   VMThread* vmt = VMThread::vm_thread();
4436   const int thread_parity = vmt->oops_do_parity();
4437   assert((thread_parity == _thread_claim_parity),
4438          "VMThread " PTR_FORMAT " has incorrect parity %d != %d", p2i(vmt), thread_parity, _thread_claim_parity);
4439 }
4440 #endif // ASSERT
4441 
4442 class ParallelOopsDoThreadClosure : public ThreadClosure {
4443 private:
4444   OopClosure* _f;
4445   CodeBlobClosure* _cf;
4446 public:
4447   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4448   void do_thread(Thread* t) {
4449     t->oops_do(_f, _cf);
4450   }
4451 };
4452 
4453 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4454   ParallelOopsDoThreadClosure tc(f, cf);
4455   possibly_parallel_threads_do(is_par, &tc);
4456 }
4457 
4458 #if INCLUDE_ALL_GCS
4459 // Used by ParallelScavenge
4460 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4461   ALL_JAVA_THREADS(p) {
4462     q->enqueue(new ThreadRootsTask(p));
4463   }
4464   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4465 }
4466 
4467 // Used by Parallel Old
4468 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4469   ALL_JAVA_THREADS(p) {
4470     q->enqueue(new ThreadRootsMarkingTask(p));
4471   }
4472   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4473 }
4474 #endif // INCLUDE_ALL_GCS
4475 
4476 void Threads::nmethods_do(CodeBlobClosure* cf) {
4477   ALL_JAVA_THREADS(p) {
4478     // This is used by the code cache sweeper to mark nmethods that are active
4479     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4480     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4481     if(!p->is_Code_cache_sweeper_thread()) {
4482       p->nmethods_do(cf);
4483     }
4484   }
4485 }
4486 
4487 void Threads::metadata_do(void f(Metadata*)) {
4488   ALL_JAVA_THREADS(p) {
4489     p->metadata_do(f);
4490   }
4491 }
4492 
4493 class ThreadHandlesClosure : public ThreadClosure {
4494   void (*_f)(Metadata*);
4495  public:
4496   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4497   virtual void do_thread(Thread* thread) {
4498     thread->metadata_handles_do(_f);
4499   }
4500 };
4501 
4502 void Threads::metadata_handles_do(void f(Metadata*)) {
4503   // Only walk the Handles in Thread.
4504   ThreadHandlesClosure handles_closure(f);
4505   threads_do(&handles_closure);
4506 }
4507 
4508 void Threads::deoptimized_wrt_marked_nmethods() {
4509   ALL_JAVA_THREADS(p) {
4510     p->deoptimized_wrt_marked_nmethods();
4511   }
4512 }
4513 
4514 
4515 // Get count Java threads that are waiting to enter the specified monitor.
4516 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4517                                                          int count,
4518                                                          address monitor) {
4519   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4520 
4521   int i = 0;
4522   DO_JAVA_THREADS(t_list, p) {
4523     if (!p->can_call_java()) continue;
4524 
4525     address pending = (address)p->current_pending_monitor();
4526     if (pending == monitor) {             // found a match
4527       if (i < count) result->append(p);   // save the first count matches
4528       i++;
4529     }
4530   }
4531 
4532   return result;
4533 }
4534 
4535 
4536 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4537                                                       address owner) {
4538   // NULL owner means not locked so we can skip the search
4539   if (owner == NULL) return NULL;
4540 
4541   DO_JAVA_THREADS(t_list, p) {
4542     // first, see if owner is the address of a Java thread
4543     if (owner == (address)p) return p;
4544   }
4545 
4546   // Cannot assert on lack of success here since this function may be
4547   // used by code that is trying to report useful problem information
4548   // like deadlock detection.
4549   if (UseHeavyMonitors) return NULL;
4550 
4551   // If we didn't find a matching Java thread and we didn't force use of
4552   // heavyweight monitors, then the owner is the stack address of the
4553   // Lock Word in the owning Java thread's stack.
4554   //
4555   JavaThread* the_owner = NULL;
4556   DO_JAVA_THREADS(t_list, q) {
4557     if (q->is_lock_owned(owner)) {
4558       the_owner = q;
4559       break;
4560     }
4561   }
4562 
4563   // cannot assert on lack of success here; see above comment
4564   return the_owner;
4565 }
4566 
4567 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4568 void Threads::print_on(outputStream* st, bool print_stacks,
4569                        bool internal_format, bool print_concurrent_locks) {
4570   char buf[32];
4571   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4572 
4573   st->print_cr("Full thread dump %s (%s %s):",
4574                Abstract_VM_Version::vm_name(),
4575                Abstract_VM_Version::vm_release(),
4576                Abstract_VM_Version::vm_info_string());
4577   st->cr();
4578 
4579 #if INCLUDE_SERVICES
4580   // Dump concurrent locks
4581   ConcurrentLocksDump concurrent_locks;
4582   if (print_concurrent_locks) {
4583     concurrent_locks.dump_at_safepoint();
4584   }
4585 #endif // INCLUDE_SERVICES
4586 
4587   ThreadsSMRSupport::print_info_on(st);
4588   st->cr();
4589 
4590   ALL_JAVA_THREADS(p) {
4591     ResourceMark rm;
4592     p->print_on(st);
4593     if (print_stacks) {
4594       if (internal_format) {
4595         p->trace_stack();
4596       } else {
4597         p->print_stack_on(st);
4598       }
4599     }
4600     st->cr();
4601 #if INCLUDE_SERVICES
4602     if (print_concurrent_locks) {
4603       concurrent_locks.print_locks_on(p, st);
4604     }
4605 #endif // INCLUDE_SERVICES
4606   }
4607 
4608   VMThread::vm_thread()->print_on(st);
4609   st->cr();
4610   Universe::heap()->print_gc_threads_on(st);
4611   WatcherThread* wt = WatcherThread::watcher_thread();
4612   if (wt != NULL) {
4613     wt->print_on(st);
4614     st->cr();
4615   }
4616 
4617   st->flush();
4618 }
4619 
4620 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4621                              int buflen, bool* found_current) {
4622   if (this_thread != NULL) {
4623     bool is_current = (current == this_thread);
4624     *found_current = *found_current || is_current;
4625     st->print("%s", is_current ? "=>" : "  ");
4626 
4627     st->print(PTR_FORMAT, p2i(this_thread));
4628     st->print(" ");
4629     this_thread->print_on_error(st, buf, buflen);
4630     st->cr();
4631   }
4632 }
4633 
4634 class PrintOnErrorClosure : public ThreadClosure {
4635   outputStream* _st;
4636   Thread* _current;
4637   char* _buf;
4638   int _buflen;
4639   bool* _found_current;
4640  public:
4641   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4642                       int buflen, bool* found_current) :
4643    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4644 
4645   virtual void do_thread(Thread* thread) {
4646     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4647   }
4648 };
4649 
4650 // Threads::print_on_error() is called by fatal error handler. It's possible
4651 // that VM is not at safepoint and/or current thread is inside signal handler.
4652 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4653 // memory (even in resource area), it might deadlock the error handler.
4654 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4655                              int buflen) {
4656   ThreadsSMRSupport::print_info_on(st);
4657   st->cr();
4658 
4659   bool found_current = false;
4660   st->print_cr("Java Threads: ( => current thread )");
4661   ALL_JAVA_THREADS(thread) {
4662     print_on_error(thread, st, current, buf, buflen, &found_current);
4663   }
4664   st->cr();
4665 
4666   st->print_cr("Other Threads:");
4667   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4668   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4669 
4670   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4671   Universe::heap()->gc_threads_do(&print_closure);
4672 
4673   if (!found_current) {
4674     st->cr();
4675     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4676     current->print_on_error(st, buf, buflen);
4677     st->cr();
4678   }
4679   st->cr();
4680 
4681   st->print_cr("Threads with active compile tasks:");
4682   print_threads_compiling(st, buf, buflen);
4683 }
4684 
4685 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4686   ALL_JAVA_THREADS(thread) {
4687     if (thread->is_Compiler_thread()) {
4688       CompilerThread* ct = (CompilerThread*) thread;
4689 
4690       // Keep task in local variable for NULL check.
4691       // ct->_task might be set to NULL by concurring compiler thread
4692       // because it completed the compilation. The task is never freed,
4693       // though, just returned to a free list.
4694       CompileTask* task = ct->task();
4695       if (task != NULL) {
4696         thread->print_name_on_error(st, buf, buflen);
4697         task->print(st, NULL, true, true);
4698       }
4699     }
4700   }
4701 }
4702 
4703 
4704 // Internal SpinLock and Mutex
4705 // Based on ParkEvent
4706 
4707 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4708 //
4709 // We employ SpinLocks _only for low-contention, fixed-length
4710 // short-duration critical sections where we're concerned
4711 // about native mutex_t or HotSpot Mutex:: latency.
4712 // The mux construct provides a spin-then-block mutual exclusion
4713 // mechanism.
4714 //
4715 // Testing has shown that contention on the ListLock guarding gFreeList
4716 // is common.  If we implement ListLock as a simple SpinLock it's common
4717 // for the JVM to devolve to yielding with little progress.  This is true
4718 // despite the fact that the critical sections protected by ListLock are
4719 // extremely short.
4720 //
4721 // TODO-FIXME: ListLock should be of type SpinLock.
4722 // We should make this a 1st-class type, integrated into the lock
4723 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4724 // should have sufficient padding to avoid false-sharing and excessive
4725 // cache-coherency traffic.
4726 
4727 
4728 typedef volatile int SpinLockT;
4729 
4730 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4731   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4732     return;   // normal fast-path return
4733   }
4734 
4735   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4736   TEVENT(SpinAcquire - ctx);
4737   int ctr = 0;
4738   int Yields = 0;
4739   for (;;) {
4740     while (*adr != 0) {
4741       ++ctr;
4742       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4743         if (Yields > 5) {
4744           os::naked_short_sleep(1);
4745         } else {
4746           os::naked_yield();
4747           ++Yields;
4748         }
4749       } else {
4750         SpinPause();
4751       }
4752     }
4753     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4754   }
4755 }
4756 
4757 void Thread::SpinRelease(volatile int * adr) {
4758   assert(*adr != 0, "invariant");
4759   OrderAccess::fence();      // guarantee at least release consistency.
4760   // Roach-motel semantics.
4761   // It's safe if subsequent LDs and STs float "up" into the critical section,
4762   // but prior LDs and STs within the critical section can't be allowed
4763   // to reorder or float past the ST that releases the lock.
4764   // Loads and stores in the critical section - which appear in program
4765   // order before the store that releases the lock - must also appear
4766   // before the store that releases the lock in memory visibility order.
4767   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4768   // the ST of 0 into the lock-word which releases the lock, so fence
4769   // more than covers this on all platforms.
4770   *adr = 0;
4771 }
4772 
4773 // muxAcquire and muxRelease:
4774 //
4775 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4776 //    The LSB of the word is set IFF the lock is held.
4777 //    The remainder of the word points to the head of a singly-linked list
4778 //    of threads blocked on the lock.
4779 //
4780 // *  The current implementation of muxAcquire-muxRelease uses its own
4781 //    dedicated Thread._MuxEvent instance.  If we're interested in
4782 //    minimizing the peak number of extant ParkEvent instances then
4783 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4784 //    as certain invariants were satisfied.  Specifically, care would need
4785 //    to be taken with regards to consuming unpark() "permits".
4786 //    A safe rule of thumb is that a thread would never call muxAcquire()
4787 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4788 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4789 //    consume an unpark() permit intended for monitorenter, for instance.
4790 //    One way around this would be to widen the restricted-range semaphore
4791 //    implemented in park().  Another alternative would be to provide
4792 //    multiple instances of the PlatformEvent() for each thread.  One
4793 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4794 //
4795 // *  Usage:
4796 //    -- Only as leaf locks
4797 //    -- for short-term locking only as muxAcquire does not perform
4798 //       thread state transitions.
4799 //
4800 // Alternatives:
4801 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4802 //    but with parking or spin-then-park instead of pure spinning.
4803 // *  Use Taura-Oyama-Yonenzawa locks.
4804 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4805 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4806 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4807 //    acquiring threads use timers (ParkTimed) to detect and recover from
4808 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4809 //    boundaries by using placement-new.
4810 // *  Augment MCS with advisory back-link fields maintained with CAS().
4811 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4812 //    The validity of the backlinks must be ratified before we trust the value.
4813 //    If the backlinks are invalid the exiting thread must back-track through the
4814 //    the forward links, which are always trustworthy.
4815 // *  Add a successor indication.  The LockWord is currently encoded as
4816 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4817 //    to provide the usual futile-wakeup optimization.
4818 //    See RTStt for details.
4819 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4820 //
4821 
4822 
4823 const intptr_t LOCKBIT = 1;
4824 
4825 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4826   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4827   if (w == 0) return;
4828   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4829     return;
4830   }
4831 
4832   TEVENT(muxAcquire - Contention);
4833   ParkEvent * const Self = Thread::current()->_MuxEvent;
4834   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4835   for (;;) {
4836     int its = (os::is_MP() ? 100 : 0) + 1;
4837 
4838     // Optional spin phase: spin-then-park strategy
4839     while (--its >= 0) {
4840       w = *Lock;
4841       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4842         return;
4843       }
4844     }
4845 
4846     Self->reset();
4847     Self->OnList = intptr_t(Lock);
4848     // The following fence() isn't _strictly necessary as the subsequent
4849     // CAS() both serializes execution and ratifies the fetched *Lock value.
4850     OrderAccess::fence();
4851     for (;;) {
4852       w = *Lock;
4853       if ((w & LOCKBIT) == 0) {
4854         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4855           Self->OnList = 0;   // hygiene - allows stronger asserts
4856           return;
4857         }
4858         continue;      // Interference -- *Lock changed -- Just retry
4859       }
4860       assert(w & LOCKBIT, "invariant");
4861       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4862       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4863     }
4864 
4865     while (Self->OnList != 0) {
4866       Self->park();
4867     }
4868   }
4869 }
4870 
4871 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4872   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4873   if (w == 0) return;
4874   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4875     return;
4876   }
4877 
4878   TEVENT(muxAcquire - Contention);
4879   ParkEvent * ReleaseAfter = NULL;
4880   if (ev == NULL) {
4881     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4882   }
4883   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4884   for (;;) {
4885     guarantee(ev->OnList == 0, "invariant");
4886     int its = (os::is_MP() ? 100 : 0) + 1;
4887 
4888     // Optional spin phase: spin-then-park strategy
4889     while (--its >= 0) {
4890       w = *Lock;
4891       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4892         if (ReleaseAfter != NULL) {
4893           ParkEvent::Release(ReleaseAfter);
4894         }
4895         return;
4896       }
4897     }
4898 
4899     ev->reset();
4900     ev->OnList = intptr_t(Lock);
4901     // The following fence() isn't _strictly necessary as the subsequent
4902     // CAS() both serializes execution and ratifies the fetched *Lock value.
4903     OrderAccess::fence();
4904     for (;;) {
4905       w = *Lock;
4906       if ((w & LOCKBIT) == 0) {
4907         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4908           ev->OnList = 0;
4909           // We call ::Release while holding the outer lock, thus
4910           // artificially lengthening the critical section.
4911           // Consider deferring the ::Release() until the subsequent unlock(),
4912           // after we've dropped the outer lock.
4913           if (ReleaseAfter != NULL) {
4914             ParkEvent::Release(ReleaseAfter);
4915           }
4916           return;
4917         }
4918         continue;      // Interference -- *Lock changed -- Just retry
4919       }
4920       assert(w & LOCKBIT, "invariant");
4921       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4922       if (Atomic::cmpxchg(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4923     }
4924 
4925     while (ev->OnList != 0) {
4926       ev->park();
4927     }
4928   }
4929 }
4930 
4931 // Release() must extract a successor from the list and then wake that thread.
4932 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4933 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4934 // Release() would :
4935 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4936 // (B) Extract a successor from the private list "in-hand"
4937 // (C) attempt to CAS() the residual back into *Lock over null.
4938 //     If there were any newly arrived threads and the CAS() would fail.
4939 //     In that case Release() would detach the RATs, re-merge the list in-hand
4940 //     with the RATs and repeat as needed.  Alternately, Release() might
4941 //     detach and extract a successor, but then pass the residual list to the wakee.
4942 //     The wakee would be responsible for reattaching and remerging before it
4943 //     competed for the lock.
4944 //
4945 // Both "pop" and DMR are immune from ABA corruption -- there can be
4946 // multiple concurrent pushers, but only one popper or detacher.
4947 // This implementation pops from the head of the list.  This is unfair,
4948 // but tends to provide excellent throughput as hot threads remain hot.
4949 // (We wake recently run threads first).
4950 //
4951 // All paths through muxRelease() will execute a CAS.
4952 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4953 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4954 // executed within the critical section are complete and globally visible before the
4955 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4956 void Thread::muxRelease(volatile intptr_t * Lock)  {
4957   for (;;) {
4958     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
4959     assert(w & LOCKBIT, "invariant");
4960     if (w == LOCKBIT) return;
4961     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4962     assert(List != NULL, "invariant");
4963     assert(List->OnList == intptr_t(Lock), "invariant");
4964     ParkEvent * const nxt = List->ListNext;
4965     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4966 
4967     // The following CAS() releases the lock and pops the head element.
4968     // The CAS() also ratifies the previously fetched lock-word value.
4969     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
4970       continue;
4971     }
4972     List->OnList = 0;
4973     OrderAccess::fence();
4974     List->unpark();
4975     return;
4976   }
4977 }
4978 
4979 
4980 void Threads::verify() {
4981   ALL_JAVA_THREADS(p) {
4982     p->verify();
4983   }
4984   VMThread* thread = VMThread::vm_thread();
4985   if (thread != NULL) thread->verify();
4986 }