1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "interpreter/interpreterRuntime.hpp"
  28 #include "interpreter/interp_masm.hpp"
  29 #include "interpreter/templateInterpreter.hpp"
  30 #include "interpreter/templateInterpreterGenerator.hpp"
  31 #include "interpreter/templateTable.hpp"
  32 #include "logging/log.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "runtime/timerTrace.hpp"
  35 
  36 #ifndef CC_INTERP
  37 
  38 # define __ _masm->
  39 
  40 void TemplateInterpreter::initialize() {
  41   if (_code != NULL) return;
  42   // assertions
  43   assert((int)Bytecodes::number_of_codes <= (int)DispatchTable::length,
  44          "dispatch table too small");
  45 
  46   AbstractInterpreter::initialize();
  47 
  48   TemplateTable::initialize();
  49 
  50   // generate interpreter
  51   { ResourceMark rm;
  52     TraceTime timer("Interpreter generation", TRACETIME_LOG(Info, startuptime));
  53     int code_size = InterpreterCodeSize;
  54     NOT_PRODUCT(code_size *= 4;)  // debug uses extra interpreter code space
  55     _code = new StubQueue(new InterpreterCodeletInterface, code_size, NULL,
  56                           "Interpreter");
  57     TemplateInterpreterGenerator g(_code);
  58     // Free the unused memory not occupied by the interpreter and the stubs
  59     _code->deallocate_unused_tail();
  60   }
  61 
  62   if (PrintInterpreter) {
  63     ResourceMark rm;
  64     print();
  65   }
  66 
  67   // initialize dispatch table
  68   _active_table = _normal_table;
  69 }
  70 
  71 //------------------------------------------------------------------------------------------------------------------------
  72 // Implementation of EntryPoint
  73 
  74 EntryPoint::EntryPoint() {
  75   assert(number_of_states == 10, "check the code below");
  76   _entry[btos] = NULL;
  77   _entry[ztos] = NULL;
  78   _entry[ctos] = NULL;
  79   _entry[stos] = NULL;
  80   _entry[atos] = NULL;
  81   _entry[itos] = NULL;
  82   _entry[ltos] = NULL;
  83   _entry[ftos] = NULL;
  84   _entry[dtos] = NULL;
  85   _entry[vtos] = NULL;
  86 }
  87 
  88 
  89 EntryPoint::EntryPoint(address bentry, address zentry, address centry, address sentry, address aentry, address ientry, address lentry, address fentry, address dentry, address ventry) {
  90   assert(number_of_states == 10, "check the code below");
  91   _entry[btos] = bentry;
  92   _entry[ztos] = zentry;
  93   _entry[ctos] = centry;
  94   _entry[stos] = sentry;
  95   _entry[atos] = aentry;
  96   _entry[itos] = ientry;
  97   _entry[ltos] = lentry;
  98   _entry[ftos] = fentry;
  99   _entry[dtos] = dentry;
 100   _entry[vtos] = ventry;
 101 }
 102 
 103 
 104 void EntryPoint::set_entry(TosState state, address entry) {
 105   assert(0 <= state && state < number_of_states, "state out of bounds");
 106   _entry[state] = entry;
 107 }
 108 
 109 
 110 address EntryPoint::entry(TosState state) const {
 111   assert(0 <= state && state < number_of_states, "state out of bounds");
 112   return _entry[state];
 113 }
 114 
 115 
 116 void EntryPoint::print() {
 117   tty->print("[");
 118   for (int i = 0; i < number_of_states; i++) {
 119     if (i > 0) tty->print(", ");
 120     tty->print(INTPTR_FORMAT, p2i(_entry[i]));
 121   }
 122   tty->print("]");
 123 }
 124 
 125 
 126 bool EntryPoint::operator == (const EntryPoint& y) {
 127   int i = number_of_states;
 128   while (i-- > 0) {
 129     if (_entry[i] != y._entry[i]) return false;
 130   }
 131   return true;
 132 }
 133 
 134 
 135 //------------------------------------------------------------------------------------------------------------------------
 136 // Implementation of DispatchTable
 137 
 138 EntryPoint DispatchTable::entry(int i) const {
 139   assert(0 <= i && i < length, "index out of bounds");
 140   return
 141     EntryPoint(
 142       _table[btos][i],
 143       _table[ztos][i],
 144       _table[ctos][i],
 145       _table[stos][i],
 146       _table[atos][i],
 147       _table[itos][i],
 148       _table[ltos][i],
 149       _table[ftos][i],
 150       _table[dtos][i],
 151       _table[vtos][i]
 152     );
 153 }
 154 
 155 
 156 void DispatchTable::set_entry(int i, EntryPoint& entry) {
 157   assert(0 <= i && i < length, "index out of bounds");
 158   assert(number_of_states == 10, "check the code below");
 159   _table[btos][i] = entry.entry(btos);
 160   _table[ztos][i] = entry.entry(ztos);
 161   _table[ctos][i] = entry.entry(ctos);
 162   _table[stos][i] = entry.entry(stos);
 163   _table[atos][i] = entry.entry(atos);
 164   _table[itos][i] = entry.entry(itos);
 165   _table[ltos][i] = entry.entry(ltos);
 166   _table[ftos][i] = entry.entry(ftos);
 167   _table[dtos][i] = entry.entry(dtos);
 168   _table[vtos][i] = entry.entry(vtos);
 169 }
 170 
 171 
 172 bool DispatchTable::operator == (DispatchTable& y) {
 173   int i = length;
 174   while (i-- > 0) {
 175     EntryPoint t = y.entry(i); // for compiler compatibility (BugId 4150096)
 176     if (!(entry(i) == t)) return false;
 177   }
 178   return true;
 179 }
 180 
 181 address    TemplateInterpreter::_remove_activation_entry                    = NULL;
 182 address    TemplateInterpreter::_remove_activation_preserving_args_entry    = NULL;
 183 
 184 
 185 address    TemplateInterpreter::_throw_ArrayIndexOutOfBoundsException_entry = NULL;
 186 address    TemplateInterpreter::_throw_ArrayStoreException_entry            = NULL;
 187 address    TemplateInterpreter::_throw_ArithmeticException_entry            = NULL;
 188 address    TemplateInterpreter::_throw_ClassCastException_entry             = NULL;
 189 address    TemplateInterpreter::_throw_NullPointerException_entry           = NULL;
 190 address    TemplateInterpreter::_throw_StackOverflowError_entry             = NULL;
 191 address    TemplateInterpreter::_throw_exception_entry                      = NULL;
 192 
 193 #ifndef PRODUCT
 194 EntryPoint TemplateInterpreter::_trace_code;
 195 #endif // !PRODUCT
 196 EntryPoint TemplateInterpreter::_return_entry[TemplateInterpreter::number_of_return_entries];
 197 EntryPoint TemplateInterpreter::_earlyret_entry;
 198 EntryPoint TemplateInterpreter::_deopt_entry [TemplateInterpreter::number_of_deopt_entries ];
 199 address    TemplateInterpreter::_deopt_reexecute_return_entry;
 200 EntryPoint TemplateInterpreter::_safept_entry;
 201 
 202 address TemplateInterpreter::_invoke_return_entry[TemplateInterpreter::number_of_return_addrs];
 203 address TemplateInterpreter::_invokeinterface_return_entry[TemplateInterpreter::number_of_return_addrs];
 204 address TemplateInterpreter::_invokedynamic_return_entry[TemplateInterpreter::number_of_return_addrs];
 205 
 206 DispatchTable TemplateInterpreter::_active_table;
 207 DispatchTable TemplateInterpreter::_normal_table;
 208 DispatchTable TemplateInterpreter::_safept_table;
 209 address    TemplateInterpreter::_wentry_point[DispatchTable::length];
 210 
 211 
 212 //------------------------------------------------------------------------------------------------------------------------
 213 // Entry points
 214 
 215 /**
 216  * Returns the return entry table for the given invoke bytecode.
 217  */
 218 address* TemplateInterpreter::invoke_return_entry_table_for(Bytecodes::Code code) {
 219   switch (code) {
 220   case Bytecodes::_invokestatic:
 221   case Bytecodes::_invokespecial:
 222   case Bytecodes::_invokevirtual:
 223   case Bytecodes::_invokehandle:
 224     return Interpreter::invoke_return_entry_table();
 225   case Bytecodes::_invokeinterface:
 226     return Interpreter::invokeinterface_return_entry_table();
 227   case Bytecodes::_invokedynamic:
 228     return Interpreter::invokedynamic_return_entry_table();
 229   default:
 230     fatal("invalid bytecode: %s", Bytecodes::name(code));
 231     return NULL;
 232   }
 233 }
 234 
 235 /**
 236  * Returns the return entry address for the given top-of-stack state and bytecode.
 237  */
 238 address TemplateInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) {
 239   guarantee(0 <= length && length < Interpreter::number_of_return_entries, "illegal length");
 240   const int index = TosState_as_index(state);
 241   switch (code) {
 242   case Bytecodes::_invokestatic:
 243   case Bytecodes::_invokespecial:
 244   case Bytecodes::_invokevirtual:
 245   case Bytecodes::_invokehandle:
 246     return _invoke_return_entry[index];
 247   case Bytecodes::_invokeinterface:
 248     return _invokeinterface_return_entry[index];
 249   case Bytecodes::_invokedynamic:
 250     return _invokedynamic_return_entry[index];
 251   default:
 252     assert(!Bytecodes::is_invoke(code), "invoke instructions should be handled separately: %s", Bytecodes::name(code));
 253     address entry = _return_entry[length].entry(state);
 254     vmassert(entry != NULL, "unsupported return entry requested, length=%d state=%d", length, index);
 255     return entry;
 256   }
 257 }
 258 
 259 
 260 address TemplateInterpreter::deopt_entry(TosState state, int length) {
 261   guarantee(0 <= length && length < Interpreter::number_of_deopt_entries, "illegal length");
 262   address entry = _deopt_entry[length].entry(state);
 263   vmassert(entry != NULL, "unsupported deopt entry requested, length=%d state=%d", length, TosState_as_index(state));
 264   return entry;
 265 }
 266 
 267 //------------------------------------------------------------------------------------------------------------------------
 268 // Suport for invokes
 269 
 270 int TemplateInterpreter::TosState_as_index(TosState state) {
 271   assert( state < number_of_states , "Invalid state in TosState_as_index");
 272   assert(0 <= (int)state && (int)state < TemplateInterpreter::number_of_return_addrs, "index out of bounds");
 273   return (int)state;
 274 }
 275 
 276 
 277 //------------------------------------------------------------------------------------------------------------------------
 278 // Safepoint suppport
 279 
 280 static inline void copy_table(address* from, address* to, int size) {
 281   // Copy non-overlapping tables. The copy has to occur word wise for MT safety.
 282   while (size-- > 0) *to++ = *from++;
 283 }
 284 
 285 void TemplateInterpreter::notice_safepoints() {
 286   if (!_notice_safepoints) {
 287     log_debug(interpreter, safepoint)("switching active_table to safept_table.");
 288     // switch to safepoint dispatch table
 289     _notice_safepoints = true;
 290     copy_table((address*)&_safept_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
 291   } else {
 292     log_debug(interpreter, safepoint)("active_table is already safept_table; "
 293                                       "notice_safepoints() call is no-op.");
 294   }
 295 }
 296 
 297 // switch from the dispatch table which notices safepoints back to the
 298 // normal dispatch table.  So that we can notice single stepping points,
 299 // keep the safepoint dispatch table if we are single stepping in JVMTI.
 300 // Note that the should_post_single_step test is exactly as fast as the
 301 // JvmtiExport::_enabled test and covers both cases.
 302 void TemplateInterpreter::ignore_safepoints() {
 303   if (_notice_safepoints) {
 304     if (!JvmtiExport::should_post_single_step()) {
 305       log_debug(interpreter, safepoint)("switching active_table to normal_table.");
 306       // switch to normal dispatch table
 307       _notice_safepoints = false;
 308       copy_table((address*)&_normal_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
 309     } else {
 310       log_debug(interpreter, safepoint)("single stepping is still active; "
 311                                         "ignoring ignore_safepoints() call.");
 312     }
 313   } else {
 314     log_debug(interpreter, safepoint)("active_table is already normal_table; "
 315                                       "ignore_safepoints() call is no-op.");
 316   }
 317 }
 318 
 319 //------------------------------------------------------------------------------------------------------------------------
 320 // Deoptimization support
 321 
 322 // If deoptimization happens, this function returns the point of next bytecode to continue execution
 323 address TemplateInterpreter::deopt_continue_after_entry(Method* method, address bcp, int callee_parameters, bool is_top_frame) {
 324   return AbstractInterpreter::deopt_continue_after_entry(method, bcp, callee_parameters, is_top_frame);
 325 }
 326 
 327 // If deoptimization happens, this function returns the point where the interpreter reexecutes
 328 // the bytecode.
 329 // Note: Bytecodes::_athrow (C1 only) and Bytecodes::_return are the special cases
 330 //       that do not return "Interpreter::deopt_entry(vtos, 0)"
 331 address TemplateInterpreter::deopt_reexecute_entry(Method* method, address bcp) {
 332   assert(method->contains(bcp), "just checkin'");
 333   Bytecodes::Code code   = Bytecodes::code_at(method, bcp);
 334   if (code == Bytecodes::_return_register_finalizer) {
 335     // This is used for deopt during registration of finalizers
 336     // during Object.<init>.  We simply need to resume execution at
 337     // the standard return vtos bytecode to pop the frame normally.
 338     // reexecuting the real bytecode would cause double registration
 339     // of the finalizable object.
 340     return Interpreter::deopt_reexecute_return_entry();
 341   } else {
 342     return AbstractInterpreter::deopt_reexecute_entry(method, bcp);
 343   }
 344 }
 345 
 346 // If deoptimization happens, the interpreter should reexecute this bytecode.
 347 // This function mainly helps the compilers to set up the reexecute bit.
 348 bool TemplateInterpreter::bytecode_should_reexecute(Bytecodes::Code code) {
 349   if (code == Bytecodes::_return) {
 350     //Yes, we consider Bytecodes::_return as a special case of reexecution
 351     return true;
 352   } else {
 353     return AbstractInterpreter::bytecode_should_reexecute(code);
 354   }
 355 }
 356 
 357 InterpreterCodelet* TemplateInterpreter::codelet_containing(address pc) {
 358   return (InterpreterCodelet*)_code->stub_containing(pc);
 359 }
 360 
 361 #endif // !CC_INTERP