1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "logging/logStream.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/metaspaceShared.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/markOop.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/handles.inline.hpp"
  40 #include "runtime/interfaceSupport.inline.hpp"
  41 #include "runtime/mutexLocker.hpp"
  42 #include "runtime/objectMonitor.hpp"
  43 #include "runtime/objectMonitor.inline.hpp"
  44 #include "runtime/osThread.hpp"
  45 #include "runtime/safepointVerifiers.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/synchronizer.hpp"
  49 #include "runtime/thread.inline.hpp"
  50 #include "runtime/timer.hpp"
  51 #include "runtime/vframe.hpp"
  52 #include "runtime/vmThread.hpp"
  53 #include "utilities/align.hpp"
  54 #include "utilities/dtrace.hpp"
  55 #include "utilities/events.hpp"
  56 #include "utilities/preserveException.hpp"
  57 
  58 // The "core" versions of monitor enter and exit reside in this file.
  59 // The interpreter and compilers contain specialized transliterated
  60 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  61 // for instance.  If you make changes here, make sure to modify the
  62 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  63 //
  64 // -----------------------------------------------------------------------------
  65 
  66 #ifdef DTRACE_ENABLED
  67 
  68 // Only bother with this argument setup if dtrace is available
  69 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  70 
  71 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  72   char* bytes = NULL;                                                      \
  73   int len = 0;                                                             \
  74   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  75   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  76   if (klassname != NULL) {                                                 \
  77     bytes = (char*)klassname->bytes();                                     \
  78     len = klassname->utf8_length();                                        \
  79   }
  80 
  81 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  82   {                                                                        \
  83     if (DTraceMonitorProbes) {                                             \
  84       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  85       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  86                            (uintptr_t)(monitor), bytes, len, (millis));    \
  87     }                                                                      \
  88   }
  89 
  90 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  91 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  92 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  93 
  94 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  95   {                                                                        \
  96     if (DTraceMonitorProbes) {                                             \
  97       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  98       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
  99                                     (uintptr_t)(monitor), bytes, len);     \
 100     }                                                                      \
 101   }
 102 
 103 #else //  ndef DTRACE_ENABLED
 104 
 105 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 106 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 107 
 108 #endif // ndef DTRACE_ENABLED
 109 
 110 // This exists only as a workaround of dtrace bug 6254741
 111 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 112   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 113   return 0;
 114 }
 115 
 116 #define NINFLATIONLOCKS 256
 117 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 118 
 119 // global list of blocks of monitors
 120 PaddedEnd<ObjectMonitor> * volatile ObjectSynchronizer::gBlockList = NULL;
 121 // global monitor free list
 122 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL;
 123 // global monitor in-use list, for moribund threads,
 124 // monitors they inflated need to be scanned for deflation
 125 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL;
 126 // count of entries in gOmInUseList
 127 int ObjectSynchronizer::gOmInUseCount = 0;
 128 
 129 static volatile intptr_t gListLock = 0;      // protects global monitor lists
 130 static volatile int gMonitorFreeCount  = 0;  // # on gFreeList
 131 static volatile int gMonitorPopulation = 0;  // # Extant -- in circulation
 132 
 133 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 134 
 135 
 136 // =====================> Quick functions
 137 
 138 // The quick_* forms are special fast-path variants used to improve
 139 // performance.  In the simplest case, a "quick_*" implementation could
 140 // simply return false, in which case the caller will perform the necessary
 141 // state transitions and call the slow-path form.
 142 // The fast-path is designed to handle frequently arising cases in an efficient
 143 // manner and is just a degenerate "optimistic" variant of the slow-path.
 144 // returns true  -- to indicate the call was satisfied.
 145 // returns false -- to indicate the call needs the services of the slow-path.
 146 // A no-loitering ordinance is in effect for code in the quick_* family
 147 // operators: safepoints or indefinite blocking (blocking that might span a
 148 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 149 // entry.
 150 //
 151 // Consider: An interesting optimization is to have the JIT recognize the
 152 // following common idiom:
 153 //   synchronized (someobj) { .... ; notify(); }
 154 // That is, we find a notify() or notifyAll() call that immediately precedes
 155 // the monitorexit operation.  In that case the JIT could fuse the operations
 156 // into a single notifyAndExit() runtime primitive.
 157 
 158 bool ObjectSynchronizer::quick_notify(oopDesc * obj, Thread * self, bool all) {
 159   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 160   assert(self->is_Java_thread(), "invariant");
 161   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 162   NoSafepointVerifier nsv;
 163   if (obj == NULL) return false;  // slow-path for invalid obj
 164   const markOop mark = obj->mark();
 165 
 166   if (mark->has_locker() && self->is_lock_owned((address)mark->locker())) {
 167     // Degenerate notify
 168     // stack-locked by caller so by definition the implied waitset is empty.
 169     return true;
 170   }
 171 
 172   if (mark->has_monitor()) {
 173     ObjectMonitor * const mon = mark->monitor();
 174     assert(oopDesc::equals((oop) mon->object(), obj), "invariant");
 175     if (mon->owner() != self) return false;  // slow-path for IMS exception
 176 
 177     if (mon->first_waiter() != NULL) {
 178       // We have one or more waiters. Since this is an inflated monitor
 179       // that we own, we can transfer one or more threads from the waitset
 180       // to the entrylist here and now, avoiding the slow-path.
 181       if (all) {
 182         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
 183       } else {
 184         DTRACE_MONITOR_PROBE(notify, mon, obj, self);
 185       }
 186       int tally = 0;
 187       do {
 188         mon->INotify(self);
 189         ++tally;
 190       } while (mon->first_waiter() != NULL && all);
 191       OM_PERFDATA_OP(Notifications, inc(tally));
 192     }
 193     return true;
 194   }
 195 
 196   // biased locking and any other IMS exception states take the slow-path
 197   return false;
 198 }
 199 
 200 
 201 // The LockNode emitted directly at the synchronization site would have
 202 // been too big if it were to have included support for the cases of inflated
 203 // recursive enter and exit, so they go here instead.
 204 // Note that we can't safely call AsyncPrintJavaStack() from within
 205 // quick_enter() as our thread state remains _in_Java.
 206 
 207 bool ObjectSynchronizer::quick_enter(oop obj, Thread * Self,
 208                                      BasicLock * lock) {
 209   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 210   assert(Self->is_Java_thread(), "invariant");
 211   assert(((JavaThread *) Self)->thread_state() == _thread_in_Java, "invariant");
 212   NoSafepointVerifier nsv;
 213   if (obj == NULL) return false;       // Need to throw NPE
 214   const markOop mark = obj->mark();
 215 
 216   if (mark->has_monitor()) {
 217     ObjectMonitor * const m = mark->monitor();
 218     assert(oopDesc::equals((oop) m->object(), obj), "invariant");
 219     Thread * const owner = (Thread *) m->_owner;
 220 
 221     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 222     // and observability
 223     // Case: light contention possibly amenable to TLE
 224     // Case: TLE inimical operations such as nested/recursive synchronization
 225 
 226     if (owner == Self) {
 227       m->_recursions++;
 228       return true;
 229     }
 230 
 231     // This Java Monitor is inflated so obj's header will never be
 232     // displaced to this thread's BasicLock. Make the displaced header
 233     // non-NULL so this BasicLock is not seen as recursive nor as
 234     // being locked. We do this unconditionally so that this thread's
 235     // BasicLock cannot be mis-interpreted by any stack walkers. For
 236     // performance reasons, stack walkers generally first check for
 237     // Biased Locking in the object's header, the second check is for
 238     // stack-locking in the object's header, the third check is for
 239     // recursive stack-locking in the displaced header in the BasicLock,
 240     // and last are the inflated Java Monitor (ObjectMonitor) checks.
 241     lock->set_displaced_header(markOopDesc::unused_mark());
 242 
 243     if (owner == NULL && Atomic::replace_if_null(Self, &(m->_owner))) {
 244       assert(m->_recursions == 0, "invariant");
 245       return true;
 246     }
 247   }
 248 
 249   // Note that we could inflate in quick_enter.
 250   // This is likely a useful optimization
 251   // Critically, in quick_enter() we must not:
 252   // -- perform bias revocation, or
 253   // -- block indefinitely, or
 254   // -- reach a safepoint
 255 
 256   return false;        // revert to slow-path
 257 }
 258 
 259 // -----------------------------------------------------------------------------
 260 //  Fast Monitor Enter/Exit
 261 // This the fast monitor enter. The interpreter and compiler use
 262 // some assembly copies of this code. Make sure update those code
 263 // if the following function is changed. The implementation is
 264 // extremely sensitive to race condition. Be careful.
 265 
 266 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock,
 267                                     bool attempt_rebias, TRAPS) {
 268   if (UseBiasedLocking) {
 269     if (!SafepointSynchronize::is_at_safepoint()) {
 270       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
 271       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
 272         return;
 273       }
 274     } else {
 275       assert(!attempt_rebias, "can not rebias toward VM thread");
 276       BiasedLocking::revoke_at_safepoint(obj);
 277     }
 278     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 279   }
 280 
 281   slow_enter(obj, lock, THREAD);
 282 }
 283 
 284 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
 285   markOop mark = object->mark();
 286   // We cannot check for Biased Locking if we are racing an inflation.
 287   assert(mark == markOopDesc::INFLATING() ||
 288          !mark->has_bias_pattern(), "should not see bias pattern here");
 289 
 290   markOop dhw = lock->displaced_header();
 291   if (dhw == NULL) {
 292     // If the displaced header is NULL, then this exit matches up with
 293     // a recursive enter. No real work to do here except for diagnostics.
 294 #ifndef PRODUCT
 295     if (mark != markOopDesc::INFLATING()) {
 296       // Only do diagnostics if we are not racing an inflation. Simply
 297       // exiting a recursive enter of a Java Monitor that is being
 298       // inflated is safe; see the has_monitor() comment below.
 299       assert(!mark->is_neutral(), "invariant");
 300       assert(!mark->has_locker() ||
 301              THREAD->is_lock_owned((address)mark->locker()), "invariant");
 302       if (mark->has_monitor()) {
 303         // The BasicLock's displaced_header is marked as a recursive
 304         // enter and we have an inflated Java Monitor (ObjectMonitor).
 305         // This is a special case where the Java Monitor was inflated
 306         // after this thread entered the stack-lock recursively. When a
 307         // Java Monitor is inflated, we cannot safely walk the Java
 308         // Monitor owner's stack and update the BasicLocks because a
 309         // Java Monitor can be asynchronously inflated by a thread that
 310         // does not own the Java Monitor.
 311         ObjectMonitor * m = mark->monitor();
 312         assert(((oop)(m->object()))->mark() == mark, "invariant");
 313         assert(m->is_entered(THREAD), "invariant");
 314       }
 315     }
 316 #endif
 317     return;
 318   }
 319 
 320   if (mark == (markOop) lock) {
 321     // If the object is stack-locked by the current thread, try to
 322     // swing the displaced header from the BasicLock back to the mark.
 323     assert(dhw->is_neutral(), "invariant");
 324     if (object->cas_set_mark(dhw, mark) == mark) {
 325       return;
 326     }
 327   }
 328 
 329   // We have to take the slow-path of possible inflation and then exit.
 330   inflate(THREAD, object, inflate_cause_vm_internal)->exit(true, THREAD);
 331 }
 332 
 333 // -----------------------------------------------------------------------------
 334 // Interpreter/Compiler Slow Case
 335 // This routine is used to handle interpreter/compiler slow case
 336 // We don't need to use fast path here, because it must have been
 337 // failed in the interpreter/compiler code.
 338 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 339   markOop mark = obj->mark();
 340   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
 341 
 342   if (mark->is_neutral()) {
 343     // Anticipate successful CAS -- the ST of the displaced mark must
 344     // be visible <= the ST performed by the CAS.
 345     lock->set_displaced_header(mark);
 346     if (mark == obj()->cas_set_mark((markOop) lock, mark)) {
 347       return;
 348     }
 349     // Fall through to inflate() ...
 350   } else if (mark->has_locker() &&
 351              THREAD->is_lock_owned((address)mark->locker())) {
 352     assert(lock != mark->locker(), "must not re-lock the same lock");
 353     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
 354     lock->set_displaced_header(NULL);
 355     return;
 356   }
 357 
 358   // The object header will never be displaced to this lock,
 359   // so it does not matter what the value is, except that it
 360   // must be non-zero to avoid looking like a re-entrant lock,
 361   // and must not look locked either.
 362   lock->set_displaced_header(markOopDesc::unused_mark());
 363   inflate(THREAD, obj(), inflate_cause_monitor_enter)->enter(THREAD);
 364 }
 365 
 366 // This routine is used to handle interpreter/compiler slow case
 367 // We don't need to use fast path here, because it must have
 368 // failed in the interpreter/compiler code. Simply use the heavy
 369 // weight monitor should be ok, unless someone find otherwise.
 370 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 371   fast_exit(object, lock, THREAD);
 372 }
 373 
 374 // -----------------------------------------------------------------------------
 375 // Class Loader  support to workaround deadlocks on the class loader lock objects
 376 // Also used by GC
 377 // complete_exit()/reenter() are used to wait on a nested lock
 378 // i.e. to give up an outer lock completely and then re-enter
 379 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 380 //  1) complete_exit lock1 - saving recursion count
 381 //  2) wait on lock2
 382 //  3) when notified on lock2, unlock lock2
 383 //  4) reenter lock1 with original recursion count
 384 //  5) lock lock2
 385 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 386 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 387   if (UseBiasedLocking) {
 388     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 389     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 390   }
 391 
 392   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal);
 393 
 394   return monitor->complete_exit(THREAD);
 395 }
 396 
 397 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 398 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 399   if (UseBiasedLocking) {
 400     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 401     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 402   }
 403 
 404   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal);
 405 
 406   monitor->reenter(recursion, THREAD);
 407 }
 408 // -----------------------------------------------------------------------------
 409 // JNI locks on java objects
 410 // NOTE: must use heavy weight monitor to handle jni monitor enter
 411 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 412   // the current locking is from JNI instead of Java code
 413   if (UseBiasedLocking) {
 414     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 415     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 416   }
 417   THREAD->set_current_pending_monitor_is_from_java(false);
 418   inflate(THREAD, obj(), inflate_cause_jni_enter)->enter(THREAD);
 419   THREAD->set_current_pending_monitor_is_from_java(true);
 420 }
 421 
 422 // NOTE: must use heavy weight monitor to handle jni monitor exit
 423 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 424   if (UseBiasedLocking) {
 425     Handle h_obj(THREAD, obj);
 426     BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
 427     obj = h_obj();
 428   }
 429   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 430 
 431   ObjectMonitor* monitor = inflate(THREAD, obj, inflate_cause_jni_exit);
 432   // If this thread has locked the object, exit the monitor. We
 433   // intentionally do not use CHECK here because we must exit the
 434   // monitor even if an exception is pending.
 435   if (monitor->check_owner(THREAD)) {
 436     monitor->exit(true, THREAD);
 437   }
 438 }
 439 
 440 // -----------------------------------------------------------------------------
 441 // Internal VM locks on java objects
 442 // standard constructor, allows locking failures
 443 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
 444   _dolock = doLock;
 445   _thread = thread;
 446   _thread->check_for_valid_safepoint_state(false);
 447   _obj = obj;
 448 
 449   if (_dolock) {
 450     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 451   }
 452 }
 453 
 454 ObjectLocker::~ObjectLocker() {
 455   if (_dolock) {
 456     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 457   }
 458 }
 459 
 460 
 461 // -----------------------------------------------------------------------------
 462 //  Wait/Notify/NotifyAll
 463 // NOTE: must use heavy weight monitor to handle wait()
 464 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 465   if (UseBiasedLocking) {
 466     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 467     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 468   }
 469   if (millis < 0) {
 470     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 471   }
 472   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_wait);
 473 
 474   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 475   monitor->wait(millis, true, THREAD);
 476 
 477   // This dummy call is in place to get around dtrace bug 6254741.  Once
 478   // that's fixed we can uncomment the following line, remove the call
 479   // and change this function back into a "void" func.
 480   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 481   return dtrace_waited_probe(monitor, obj, THREAD);
 482 }
 483 
 484 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) {
 485   if (UseBiasedLocking) {
 486     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 487     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 488   }
 489   if (millis < 0) {
 490     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 491   }
 492   inflate(THREAD, obj(), inflate_cause_wait)->wait(millis, false, THREAD);
 493 }
 494 
 495 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 496   if (UseBiasedLocking) {
 497     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 498     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 499   }
 500 
 501   markOop mark = obj->mark();
 502   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 503     return;
 504   }
 505   inflate(THREAD, obj(), inflate_cause_notify)->notify(THREAD);
 506 }
 507 
 508 // NOTE: see comment of notify()
 509 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 510   if (UseBiasedLocking) {
 511     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 512     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 513   }
 514 
 515   markOop mark = obj->mark();
 516   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 517     return;
 518   }
 519   inflate(THREAD, obj(), inflate_cause_notify)->notifyAll(THREAD);
 520 }
 521 
 522 // -----------------------------------------------------------------------------
 523 // Hash Code handling
 524 //
 525 // Performance concern:
 526 // OrderAccess::storestore() calls release() which at one time stored 0
 527 // into the global volatile OrderAccess::dummy variable. This store was
 528 // unnecessary for correctness. Many threads storing into a common location
 529 // causes considerable cache migration or "sloshing" on large SMP systems.
 530 // As such, I avoided using OrderAccess::storestore(). In some cases
 531 // OrderAccess::fence() -- which incurs local latency on the executing
 532 // processor -- is a better choice as it scales on SMP systems.
 533 //
 534 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 535 // a discussion of coherency costs. Note that all our current reference
 536 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 537 // x64, and SPARC.
 538 //
 539 // As a general policy we use "volatile" to control compiler-based reordering
 540 // and explicit fences (barriers) to control for architectural reordering
 541 // performed by the CPU(s) or platform.
 542 
 543 struct SharedGlobals {
 544   char         _pad_prefix[DEFAULT_CACHE_LINE_SIZE];
 545   // These are highly shared mostly-read variables.
 546   // To avoid false-sharing they need to be the sole occupants of a cache line.
 547   volatile int stwRandom;
 548   volatile int stwCycle;
 549   DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 550   // Hot RW variable -- Sequester to avoid false-sharing
 551   volatile int hcSequence;
 552   DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int));
 553 };
 554 
 555 static SharedGlobals GVars;
 556 static int MonitorScavengeThreshold = 1000000;
 557 static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending
 558 
 559 static markOop ReadStableMark(oop obj) {
 560   markOop mark = obj->mark();
 561   if (!mark->is_being_inflated()) {
 562     return mark;       // normal fast-path return
 563   }
 564 
 565   int its = 0;
 566   for (;;) {
 567     markOop mark = obj->mark();
 568     if (!mark->is_being_inflated()) {
 569       return mark;    // normal fast-path return
 570     }
 571 
 572     // The object is being inflated by some other thread.
 573     // The caller of ReadStableMark() must wait for inflation to complete.
 574     // Avoid live-lock
 575     // TODO: consider calling SafepointSynchronize::do_call_back() while
 576     // spinning to see if there's a safepoint pending.  If so, immediately
 577     // yielding or blocking would be appropriate.  Avoid spinning while
 578     // there is a safepoint pending.
 579     // TODO: add inflation contention performance counters.
 580     // TODO: restrict the aggregate number of spinners.
 581 
 582     ++its;
 583     if (its > 10000 || !os::is_MP()) {
 584       if (its & 1) {
 585         os::naked_yield();
 586       } else {
 587         // Note that the following code attenuates the livelock problem but is not
 588         // a complete remedy.  A more complete solution would require that the inflating
 589         // thread hold the associated inflation lock.  The following code simply restricts
 590         // the number of spinners to at most one.  We'll have N-2 threads blocked
 591         // on the inflationlock, 1 thread holding the inflation lock and using
 592         // a yield/park strategy, and 1 thread in the midst of inflation.
 593         // A more refined approach would be to change the encoding of INFLATING
 594         // to allow encapsulation of a native thread pointer.  Threads waiting for
 595         // inflation to complete would use CAS to push themselves onto a singly linked
 596         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 597         // and calling park().  When inflation was complete the thread that accomplished inflation
 598         // would detach the list and set the markword to inflated with a single CAS and
 599         // then for each thread on the list, set the flag and unpark() the thread.
 600         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 601         // wakes at most one thread whereas we need to wake the entire list.
 602         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 603         int YieldThenBlock = 0;
 604         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 605         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 606         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 607         while (obj->mark() == markOopDesc::INFLATING()) {
 608           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 609           // so we periodically call Self->_ParkEvent->park(1).
 610           // We use a mixed spin/yield/block mechanism.
 611           if ((YieldThenBlock++) >= 16) {
 612             Thread::current()->_ParkEvent->park(1);
 613           } else {
 614             os::naked_yield();
 615           }
 616         }
 617         Thread::muxRelease(gInflationLocks + ix);
 618       }
 619     } else {
 620       SpinPause();       // SMP-polite spinning
 621     }
 622   }
 623 }
 624 
 625 // hashCode() generation :
 626 //
 627 // Possibilities:
 628 // * MD5Digest of {obj,stwRandom}
 629 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
 630 // * A DES- or AES-style SBox[] mechanism
 631 // * One of the Phi-based schemes, such as:
 632 //   2654435761 = 2^32 * Phi (golden ratio)
 633 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
 634 // * A variation of Marsaglia's shift-xor RNG scheme.
 635 // * (obj ^ stwRandom) is appealing, but can result
 636 //   in undesirable regularity in the hashCode values of adjacent objects
 637 //   (objects allocated back-to-back, in particular).  This could potentially
 638 //   result in hashtable collisions and reduced hashtable efficiency.
 639 //   There are simple ways to "diffuse" the middle address bits over the
 640 //   generated hashCode values:
 641 
 642 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
 643   intptr_t value = 0;
 644   if (hashCode == 0) {
 645     // This form uses global Park-Miller RNG.
 646     // On MP system we'll have lots of RW access to a global, so the
 647     // mechanism induces lots of coherency traffic.
 648     value = os::random();
 649   } else if (hashCode == 1) {
 650     // This variation has the property of being stable (idempotent)
 651     // between STW operations.  This can be useful in some of the 1-0
 652     // synchronization schemes.
 653     intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3;
 654     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom;
 655   } else if (hashCode == 2) {
 656     value = 1;            // for sensitivity testing
 657   } else if (hashCode == 3) {
 658     value = ++GVars.hcSequence;
 659   } else if (hashCode == 4) {
 660     value = cast_from_oop<intptr_t>(obj);
 661   } else {
 662     // Marsaglia's xor-shift scheme with thread-specific state
 663     // This is probably the best overall implementation -- we'll
 664     // likely make this the default in future releases.
 665     unsigned t = Self->_hashStateX;
 666     t ^= (t << 11);
 667     Self->_hashStateX = Self->_hashStateY;
 668     Self->_hashStateY = Self->_hashStateZ;
 669     Self->_hashStateZ = Self->_hashStateW;
 670     unsigned v = Self->_hashStateW;
 671     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 672     Self->_hashStateW = v;
 673     value = v;
 674   }
 675 
 676   value &= markOopDesc::hash_mask;
 677   if (value == 0) value = 0xBAD;
 678   assert(value != markOopDesc::no_hash, "invariant");
 679   return value;
 680 }
 681 
 682 intptr_t ObjectSynchronizer::FastHashCode(Thread * Self, oop obj) {
 683   if (UseBiasedLocking) {
 684     // NOTE: many places throughout the JVM do not expect a safepoint
 685     // to be taken here, in particular most operations on perm gen
 686     // objects. However, we only ever bias Java instances and all of
 687     // the call sites of identity_hash that might revoke biases have
 688     // been checked to make sure they can handle a safepoint. The
 689     // added check of the bias pattern is to avoid useless calls to
 690     // thread-local storage.
 691     if (obj->mark()->has_bias_pattern()) {
 692       // Handle for oop obj in case of STW safepoint
 693       Handle hobj(Self, obj);
 694       // Relaxing assertion for bug 6320749.
 695       assert(Universe::verify_in_progress() ||
 696              !SafepointSynchronize::is_at_safepoint(),
 697              "biases should not be seen by VM thread here");
 698       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
 699       obj = hobj();
 700       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 701     }
 702   }
 703 
 704   // hashCode() is a heap mutator ...
 705   // Relaxing assertion for bug 6320749.
 706   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 707          !SafepointSynchronize::is_at_safepoint(), "invariant");
 708   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 709          Self->is_Java_thread() , "invariant");
 710   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 711          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 712 
 713   ObjectMonitor* monitor = NULL;
 714   markOop temp, test;
 715   intptr_t hash;
 716   markOop mark = ReadStableMark(obj);
 717 
 718   // object should remain ineligible for biased locking
 719   assert(!mark->has_bias_pattern(), "invariant");
 720 
 721   if (mark->is_neutral()) {
 722     hash = mark->hash();              // this is a normal header
 723     if (hash != 0) {                  // if it has hash, just return it
 724       return hash;
 725     }
 726     hash = get_next_hash(Self, obj);  // allocate a new hash code
 727     temp = mark->copy_set_hash(hash); // merge the hash code into header
 728     // use (machine word version) atomic operation to install the hash
 729     test = obj->cas_set_mark(temp, mark);
 730     if (test == mark) {
 731       return hash;
 732     }
 733     // If atomic operation failed, we must inflate the header
 734     // into heavy weight monitor. We could add more code here
 735     // for fast path, but it does not worth the complexity.
 736   } else if (mark->has_monitor()) {
 737     monitor = mark->monitor();
 738     temp = monitor->header();
 739     assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 740     hash = temp->hash();
 741     if (hash != 0) {
 742       return hash;
 743     }
 744     // Skip to the following code to reduce code size
 745   } else if (Self->is_lock_owned((address)mark->locker())) {
 746     temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
 747     assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 748     hash = temp->hash();              // by current thread, check if the displaced
 749     if (hash != 0) {                  // header contains hash code
 750       return hash;
 751     }
 752     // WARNING:
 753     // The displaced header in the BasicLock on a thread's stack
 754     // is strictly immutable. It CANNOT be changed in ANY cases.
 755     // So we have to inflate the stack lock into an ObjectMonitor
 756     // even if the current thread owns the lock. The BasicLock on
 757     // a thread's stack can be asynchronously read by other threads
 758     // during an inflate() call so any change to that stack memory
 759     // may not propagate to other threads correctly.
 760   }
 761 
 762   // Inflate the monitor to set hash code
 763   monitor = inflate(Self, obj, inflate_cause_hash_code);
 764   // Load displaced header and check it has hash code
 765   mark = monitor->header();
 766   assert(mark->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(mark));
 767   hash = mark->hash();
 768   if (hash == 0) {
 769     hash = get_next_hash(Self, obj);
 770     temp = mark->copy_set_hash(hash); // merge hash code into header
 771     assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 772     test = Atomic::cmpxchg(temp, monitor->header_addr(), mark);
 773     if (test != mark) {
 774       // The only update to the ObjectMonitor's header/dmw field
 775       // is to merge in the hash code. If someone adds a new usage
 776       // of the header/dmw field, please update this code.
 777       hash = test->hash();
 778       assert(test->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(test));
 779       assert(hash != 0, "Trivial unexpected object/monitor header usage.");
 780     }
 781   }
 782   // We finally get the hash
 783   return hash;
 784 }
 785 
 786 // Deprecated -- use FastHashCode() instead.
 787 
 788 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 789   return FastHashCode(Thread::current(), obj());
 790 }
 791 
 792 
 793 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 794                                                    Handle h_obj) {
 795   if (UseBiasedLocking) {
 796     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
 797     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 798   }
 799 
 800   assert(thread == JavaThread::current(), "Can only be called on current thread");
 801   oop obj = h_obj();
 802 
 803   markOop mark = ReadStableMark(obj);
 804 
 805   // Uncontended case, header points to stack
 806   if (mark->has_locker()) {
 807     return thread->is_lock_owned((address)mark->locker());
 808   }
 809   // Contended case, header points to ObjectMonitor (tagged pointer)
 810   if (mark->has_monitor()) {
 811     ObjectMonitor* monitor = mark->monitor();
 812     return monitor->is_entered(thread) != 0;
 813   }
 814   // Unlocked case, header in place
 815   assert(mark->is_neutral(), "sanity check");
 816   return false;
 817 }
 818 
 819 // Be aware of this method could revoke bias of the lock object.
 820 // This method queries the ownership of the lock handle specified by 'h_obj'.
 821 // If the current thread owns the lock, it returns owner_self. If no
 822 // thread owns the lock, it returns owner_none. Otherwise, it will return
 823 // owner_other.
 824 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 825 (JavaThread *self, Handle h_obj) {
 826   // The caller must beware this method can revoke bias, and
 827   // revocation can result in a safepoint.
 828   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 829   assert(self->thread_state() != _thread_blocked, "invariant");
 830 
 831   // Possible mark states: neutral, biased, stack-locked, inflated
 832 
 833   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
 834     // CASE: biased
 835     BiasedLocking::revoke_and_rebias(h_obj, false, self);
 836     assert(!h_obj->mark()->has_bias_pattern(),
 837            "biases should be revoked by now");
 838   }
 839 
 840   assert(self == JavaThread::current(), "Can only be called on current thread");
 841   oop obj = h_obj();
 842   markOop mark = ReadStableMark(obj);
 843 
 844   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 845   if (mark->has_locker()) {
 846     return self->is_lock_owned((address)mark->locker()) ?
 847       owner_self : owner_other;
 848   }
 849 
 850   // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor.
 851   // The Object:ObjectMonitor relationship is stable as long as we're
 852   // not at a safepoint.
 853   if (mark->has_monitor()) {
 854     void * owner = mark->monitor()->_owner;
 855     if (owner == NULL) return owner_none;
 856     return (owner == self ||
 857             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 858   }
 859 
 860   // CASE: neutral
 861   assert(mark->is_neutral(), "sanity check");
 862   return owner_none;           // it's unlocked
 863 }
 864 
 865 // FIXME: jvmti should call this
 866 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
 867   if (UseBiasedLocking) {
 868     if (SafepointSynchronize::is_at_safepoint()) {
 869       BiasedLocking::revoke_at_safepoint(h_obj);
 870     } else {
 871       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
 872     }
 873     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 874   }
 875 
 876   oop obj = h_obj();
 877   address owner = NULL;
 878 
 879   markOop mark = ReadStableMark(obj);
 880 
 881   // Uncontended case, header points to stack
 882   if (mark->has_locker()) {
 883     owner = (address) mark->locker();
 884   }
 885 
 886   // Contended case, header points to ObjectMonitor (tagged pointer)
 887   else if (mark->has_monitor()) {
 888     ObjectMonitor* monitor = mark->monitor();
 889     assert(monitor != NULL, "monitor should be non-null");
 890     owner = (address) monitor->owner();
 891   }
 892 
 893   if (owner != NULL) {
 894     // owning_thread_from_monitor_owner() may also return NULL here
 895     return Threads::owning_thread_from_monitor_owner(t_list, owner);
 896   }
 897 
 898   // Unlocked case, header in place
 899   // Cannot have assertion since this object may have been
 900   // locked by another thread when reaching here.
 901   // assert(mark->is_neutral(), "sanity check");
 902 
 903   return NULL;
 904 }
 905 
 906 // Visitors ...
 907 
 908 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 909   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
 910   while (block != NULL) {
 911     assert(block->object() == CHAINMARKER, "must be a block header");
 912     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 913       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
 914       oop object = (oop)mid->object();
 915       if (object != NULL) {
 916         closure->do_monitor(mid);
 917       }
 918     }
 919     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
 920   }
 921 }
 922 
 923 // Get the next block in the block list.
 924 static inline PaddedEnd<ObjectMonitor>* next(PaddedEnd<ObjectMonitor>* block) {
 925   assert(block->object() == CHAINMARKER, "must be a block header");
 926   block = (PaddedEnd<ObjectMonitor>*) block->FreeNext;
 927   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
 928   return block;
 929 }
 930 
 931 static bool monitors_used_above_threshold() {
 932   if (gMonitorPopulation == 0) {
 933     return false;
 934   }
 935   int monitors_used = gMonitorPopulation - gMonitorFreeCount;
 936   int monitor_usage = (monitors_used * 100LL) / gMonitorPopulation;
 937   return monitor_usage > MonitorUsedDeflationThreshold;
 938 }
 939 
 940 bool ObjectSynchronizer::is_cleanup_needed() {
 941   if (MonitorUsedDeflationThreshold > 0) {
 942     return monitors_used_above_threshold();
 943   }
 944   return false;
 945 }
 946 
 947 void ObjectSynchronizer::oops_do(OopClosure* f) {
 948   // We only scan the global used list here (for moribund threads), and
 949   // the thread-local monitors in Thread::oops_do().
 950   global_used_oops_do(f);
 951 }
 952 
 953 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
 954   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 955   list_oops_do(gOmInUseList, f);
 956 }
 957 
 958 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
 959   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 960   list_oops_do(thread->omInUseList, f);
 961 }
 962 
 963 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) {
 964   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 965   ObjectMonitor* mid;
 966   for (mid = list; mid != NULL; mid = mid->FreeNext) {
 967     if (mid->object() != NULL) {
 968       f->do_oop((oop*)mid->object_addr());
 969     }
 970   }
 971 }
 972 
 973 
 974 // -----------------------------------------------------------------------------
 975 // ObjectMonitor Lifecycle
 976 // -----------------------
 977 // Inflation unlinks monitors from the global gFreeList and
 978 // associates them with objects.  Deflation -- which occurs at
 979 // STW-time -- disassociates idle monitors from objects.  Such
 980 // scavenged monitors are returned to the gFreeList.
 981 //
 982 // The global list is protected by gListLock.  All the critical sections
 983 // are short and operate in constant-time.
 984 //
 985 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
 986 //
 987 // Lifecycle:
 988 // --   unassigned and on the global free list
 989 // --   unassigned and on a thread's private omFreeList
 990 // --   assigned to an object.  The object is inflated and the mark refers
 991 //      to the objectmonitor.
 992 
 993 
 994 // Constraining monitor pool growth via MonitorBound ...
 995 //
 996 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
 997 // the rate of scavenging is driven primarily by GC.  As such,  we can find
 998 // an inordinate number of monitors in circulation.
 999 // To avoid that scenario we can artificially induce a STW safepoint
1000 // if the pool appears to be growing past some reasonable bound.
1001 // Generally we favor time in space-time tradeoffs, but as there's no
1002 // natural back-pressure on the # of extant monitors we need to impose some
1003 // type of limit.  Beware that if MonitorBound is set to too low a value
1004 // we could just loop. In addition, if MonitorBound is set to a low value
1005 // we'll incur more safepoints, which are harmful to performance.
1006 // See also: GuaranteedSafepointInterval
1007 //
1008 // The current implementation uses asynchronous VM operations.
1009 
1010 static void InduceScavenge(Thread * Self, const char * Whence) {
1011   // Induce STW safepoint to trim monitors
1012   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1013   // More precisely, trigger an asynchronous STW safepoint as the number
1014   // of active monitors passes the specified threshold.
1015   // TODO: assert thread state is reasonable
1016 
1017   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
1018     // Induce a 'null' safepoint to scavenge monitors
1019     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
1020     // to the VMthread and have a lifespan longer than that of this activation record.
1021     // The VMThread will delete the op when completed.
1022     VMThread::execute(new VM_ScavengeMonitors());
1023   }
1024 }
1025 
1026 ObjectMonitor* ObjectSynchronizer::omAlloc(Thread * Self) {
1027   // A large MAXPRIVATE value reduces both list lock contention
1028   // and list coherency traffic, but also tends to increase the
1029   // number of objectMonitors in circulation as well as the STW
1030   // scavenge costs.  As usual, we lean toward time in space-time
1031   // tradeoffs.
1032   const int MAXPRIVATE = 1024;
1033   stringStream ss;
1034   for (;;) {
1035     ObjectMonitor * m;
1036 
1037     // 1: try to allocate from the thread's local omFreeList.
1038     // Threads will attempt to allocate first from their local list, then
1039     // from the global list, and only after those attempts fail will the thread
1040     // attempt to instantiate new monitors.   Thread-local free lists take
1041     // heat off the gListLock and improve allocation latency, as well as reducing
1042     // coherency traffic on the shared global list.
1043     m = Self->omFreeList;
1044     if (m != NULL) {
1045       Self->omFreeList = m->FreeNext;
1046       Self->omFreeCount--;
1047       guarantee(m->object() == NULL, "invariant");
1048       m->FreeNext = Self->omInUseList;
1049       Self->omInUseList = m;
1050       Self->omInUseCount++;
1051       return m;
1052     }
1053 
1054     // 2: try to allocate from the global gFreeList
1055     // CONSIDER: use muxTry() instead of muxAcquire().
1056     // If the muxTry() fails then drop immediately into case 3.
1057     // If we're using thread-local free lists then try
1058     // to reprovision the caller's free list.
1059     if (gFreeList != NULL) {
1060       // Reprovision the thread's omFreeList.
1061       // Use bulk transfers to reduce the allocation rate and heat
1062       // on various locks.
1063       Thread::muxAcquire(&gListLock, "omAlloc(1)");
1064       for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL;) {
1065         gMonitorFreeCount--;
1066         ObjectMonitor * take = gFreeList;
1067         gFreeList = take->FreeNext;
1068         guarantee(take->object() == NULL, "invariant");
1069         take->Recycle();
1070         omRelease(Self, take, false);
1071       }
1072       Thread::muxRelease(&gListLock);
1073       Self->omFreeProvision += 1 + (Self->omFreeProvision/2);
1074       if (Self->omFreeProvision > MAXPRIVATE) Self->omFreeProvision = MAXPRIVATE;
1075 
1076       const int mx = MonitorBound;
1077       if (mx > 0 && (gMonitorPopulation-gMonitorFreeCount) > mx) {
1078         // We can't safely induce a STW safepoint from omAlloc() as our thread
1079         // state may not be appropriate for such activities and callers may hold
1080         // naked oops, so instead we defer the action.
1081         InduceScavenge(Self, "omAlloc");
1082       }
1083       continue;
1084     }
1085 
1086     // 3: allocate a block of new ObjectMonitors
1087     // Both the local and global free lists are empty -- resort to malloc().
1088     // In the current implementation objectMonitors are TSM - immortal.
1089     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1090     // each ObjectMonitor to start at the beginning of a cache line,
1091     // so we use align_up().
1092     // A better solution would be to use C++ placement-new.
1093     // BEWARE: As it stands currently, we don't run the ctors!
1094     assert(_BLOCKSIZE > 1, "invariant");
1095     size_t neededsize = sizeof(PaddedEnd<ObjectMonitor>) * _BLOCKSIZE;
1096     PaddedEnd<ObjectMonitor> * temp;
1097     size_t aligned_size = neededsize + (DEFAULT_CACHE_LINE_SIZE - 1);
1098     void* real_malloc_addr = (void *)NEW_C_HEAP_ARRAY(char, aligned_size,
1099                                                       mtInternal);
1100     temp = (PaddedEnd<ObjectMonitor> *)
1101              align_up(real_malloc_addr, DEFAULT_CACHE_LINE_SIZE);
1102 
1103     // NOTE: (almost) no way to recover if allocation failed.
1104     // We might be able to induce a STW safepoint and scavenge enough
1105     // objectMonitors to permit progress.
1106     if (temp == NULL) {
1107       vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR,
1108                             "Allocate ObjectMonitors");
1109     }
1110     (void)memset((void *) temp, 0, neededsize);
1111 
1112     // Format the block.
1113     // initialize the linked list, each monitor points to its next
1114     // forming the single linked free list, the very first monitor
1115     // will points to next block, which forms the block list.
1116     // The trick of using the 1st element in the block as gBlockList
1117     // linkage should be reconsidered.  A better implementation would
1118     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1119 
1120     for (int i = 1; i < _BLOCKSIZE; i++) {
1121       temp[i].FreeNext = (ObjectMonitor *)&temp[i+1];
1122     }
1123 
1124     // terminate the last monitor as the end of list
1125     temp[_BLOCKSIZE - 1].FreeNext = NULL;
1126 
1127     // Element [0] is reserved for global list linkage
1128     temp[0].set_object(CHAINMARKER);
1129 
1130     // Consider carving out this thread's current request from the
1131     // block in hand.  This avoids some lock traffic and redundant
1132     // list activity.
1133 
1134     // Acquire the gListLock to manipulate gBlockList and gFreeList.
1135     // An Oyama-Taura-Yonezawa scheme might be more efficient.
1136     Thread::muxAcquire(&gListLock, "omAlloc(2)");
1137     gMonitorPopulation += _BLOCKSIZE-1;
1138     gMonitorFreeCount += _BLOCKSIZE-1;
1139 
1140     // Add the new block to the list of extant blocks (gBlockList).
1141     // The very first objectMonitor in a block is reserved and dedicated.
1142     // It serves as blocklist "next" linkage.
1143     temp[0].FreeNext = gBlockList;
1144     // There are lock-free uses of gBlockList so make sure that
1145     // the previous stores happen before we update gBlockList.
1146     OrderAccess::release_store(&gBlockList, temp);
1147 
1148     // Add the new string of objectMonitors to the global free list
1149     temp[_BLOCKSIZE - 1].FreeNext = gFreeList;
1150     gFreeList = temp + 1;
1151     Thread::muxRelease(&gListLock);
1152   }
1153 }
1154 
1155 // Place "m" on the caller's private per-thread omFreeList.
1156 // In practice there's no need to clamp or limit the number of
1157 // monitors on a thread's omFreeList as the only time we'll call
1158 // omRelease is to return a monitor to the free list after a CAS
1159 // attempt failed.  This doesn't allow unbounded #s of monitors to
1160 // accumulate on a thread's free list.
1161 //
1162 // Key constraint: all ObjectMonitors on a thread's free list and the global
1163 // free list must have their object field set to null. This prevents the
1164 // scavenger -- deflate_monitor_list() -- from reclaiming them.
1165 
1166 void ObjectSynchronizer::omRelease(Thread * Self, ObjectMonitor * m,
1167                                    bool fromPerThreadAlloc) {
1168   guarantee(m->header() == NULL, "invariant");
1169   guarantee(m->object() == NULL, "invariant");
1170   stringStream ss;
1171   guarantee((m->is_busy() | m->_recursions) == 0, "freeing in-use monitor: "
1172             "%s, recursions=" INTPTR_FORMAT, m->is_busy_to_string(&ss),
1173             m->_recursions);
1174   // Remove from omInUseList
1175   if (fromPerThreadAlloc) {
1176     ObjectMonitor* cur_mid_in_use = NULL;
1177     bool extracted = false;
1178     for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; cur_mid_in_use = mid, mid = mid->FreeNext) {
1179       if (m == mid) {
1180         // extract from per-thread in-use list
1181         if (mid == Self->omInUseList) {
1182           Self->omInUseList = mid->FreeNext;
1183         } else if (cur_mid_in_use != NULL) {
1184           cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1185         }
1186         extracted = true;
1187         Self->omInUseCount--;
1188         break;
1189       }
1190     }
1191     assert(extracted, "Should have extracted from in-use list");
1192   }
1193 
1194   // FreeNext is used for both omInUseList and omFreeList, so clear old before setting new
1195   m->FreeNext = Self->omFreeList;
1196   Self->omFreeList = m;
1197   Self->omFreeCount++;
1198 }
1199 
1200 // Return the monitors of a moribund thread's local free list to
1201 // the global free list.  Typically a thread calls omFlush() when
1202 // it's dying.  We could also consider having the VM thread steal
1203 // monitors from threads that have not run java code over a few
1204 // consecutive STW safepoints.  Relatedly, we might decay
1205 // omFreeProvision at STW safepoints.
1206 //
1207 // Also return the monitors of a moribund thread's omInUseList to
1208 // a global gOmInUseList under the global list lock so these
1209 // will continue to be scanned.
1210 //
1211 // We currently call omFlush() from Threads::remove() _before the thread
1212 // has been excised from the thread list and is no longer a mutator.
1213 // This means that omFlush() cannot run concurrently with a safepoint and
1214 // interleave with the deflate_idle_monitors scavenge operator. In particular,
1215 // this ensures that the thread's monitors are scanned by a GC safepoint,
1216 // either via Thread::oops_do() (if safepoint happens before omFlush()) or via
1217 // ObjectSynchronizer::oops_do() (if it happens after omFlush() and the thread's
1218 // monitors have been transferred to the global in-use list).
1219 
1220 void ObjectSynchronizer::omFlush(Thread * Self) {
1221   ObjectMonitor * list = Self->omFreeList;  // Null-terminated SLL
1222   ObjectMonitor * tail = NULL;
1223   int tally = 0;
1224   if (list != NULL) {
1225     ObjectMonitor * s;
1226     // The thread is going away. Set 'tail' to the last per-thread free
1227     // monitor which will be linked to gFreeList below under the gListLock.
1228     stringStream ss;
1229     for (s = list; s != NULL; s = s->FreeNext) {
1230       tally++;
1231       tail = s;
1232       guarantee(s->object() == NULL, "invariant");
1233       guarantee(!s->is_busy(), "must be !is_busy: %s", s->is_busy_to_string(&ss));
1234     }
1235     guarantee(tail != NULL, "invariant");
1236     assert(Self->omFreeCount == tally, "free-count off");
1237     Self->omFreeList = NULL;
1238     Self->omFreeCount = 0;
1239   }
1240 
1241   ObjectMonitor * inUseList = Self->omInUseList;
1242   ObjectMonitor * inUseTail = NULL;
1243   int inUseTally = 0;
1244   if (inUseList != NULL) {
1245     ObjectMonitor *cur_om;
1246     // The thread is going away, however the omInUseList inflated
1247     // monitors may still be in-use by other threads.
1248     // Link them to inUseTail, which will be linked into the global in-use list
1249     // gOmInUseList below, under the gListLock
1250     for (cur_om = inUseList; cur_om != NULL; cur_om = cur_om->FreeNext) {
1251       inUseTail = cur_om;
1252       inUseTally++;
1253     }
1254     guarantee(inUseTail != NULL, "invariant");
1255     assert(Self->omInUseCount == inUseTally, "in-use count off");
1256     Self->omInUseList = NULL;
1257     Self->omInUseCount = 0;
1258   }
1259 
1260   Thread::muxAcquire(&gListLock, "omFlush");
1261   if (tail != NULL) {
1262     tail->FreeNext = gFreeList;
1263     gFreeList = list;
1264     gMonitorFreeCount += tally;
1265   }
1266 
1267   if (inUseTail != NULL) {
1268     inUseTail->FreeNext = gOmInUseList;
1269     gOmInUseList = inUseList;
1270     gOmInUseCount += inUseTally;
1271   }
1272 
1273   Thread::muxRelease(&gListLock);
1274 
1275   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1276   LogStreamHandle(Info, monitorinflation) lsh_info;
1277   LogStream * ls = NULL;
1278   if (log_is_enabled(Debug, monitorinflation)) {
1279     ls = &lsh_debug;
1280   } else if ((tally != 0 || inUseTally != 0) &&
1281              log_is_enabled(Info, monitorinflation)) {
1282     ls = &lsh_info;
1283   }
1284   if (ls != NULL) {
1285     ls->print_cr("omFlush: jt=" INTPTR_FORMAT ", free_monitor_tally=%d"
1286                  ", in_use_monitor_tally=%d" ", omFreeProvision=%d",
1287                  p2i(Self), tally, inUseTally, Self->omFreeProvision);
1288   }
1289 }
1290 
1291 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1292                                        const oop obj,
1293                                        ObjectSynchronizer::InflateCause cause) {
1294   assert(event != NULL, "invariant");
1295   assert(event->should_commit(), "invariant");
1296   event->set_monitorClass(obj->klass());
1297   event->set_address((uintptr_t)(void*)obj);
1298   event->set_cause((u1)cause);
1299   event->commit();
1300 }
1301 
1302 // Fast path code shared by multiple functions
1303 void ObjectSynchronizer::inflate_helper(oop obj) {
1304   markOop mark = obj->mark();
1305   if (mark->has_monitor()) {
1306     assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
1307     assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
1308     return;
1309   }
1310   inflate(Thread::current(), obj, inflate_cause_vm_internal);
1311 }
1312 
1313 ObjectMonitor* ObjectSynchronizer::inflate(Thread * Self,
1314                                            oop object,
1315                                            const InflateCause cause) {
1316   // Inflate mutates the heap ...
1317   // Relaxing assertion for bug 6320749.
1318   assert(Universe::verify_in_progress() ||
1319          !SafepointSynchronize::is_at_safepoint(), "invariant");
1320 
1321   EventJavaMonitorInflate event;
1322 
1323   for (;;) {
1324     const markOop mark = object->mark();
1325     assert(!mark->has_bias_pattern(), "invariant");
1326 
1327     // The mark can be in one of the following states:
1328     // *  Inflated     - just return
1329     // *  Stack-locked - coerce it to inflated
1330     // *  INFLATING    - busy wait for conversion to complete
1331     // *  Neutral      - aggressively inflate the object.
1332     // *  BIASED       - Illegal.  We should never see this
1333 
1334     // CASE: inflated
1335     if (mark->has_monitor()) {
1336       ObjectMonitor * inf = mark->monitor();
1337       markOop dmw = inf->header();
1338       assert(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1339       assert(oopDesc::equals((oop) inf->object(), object), "invariant");
1340       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1341       return inf;
1342     }
1343 
1344     // CASE: inflation in progress - inflating over a stack-lock.
1345     // Some other thread is converting from stack-locked to inflated.
1346     // Only that thread can complete inflation -- other threads must wait.
1347     // The INFLATING value is transient.
1348     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1349     // We could always eliminate polling by parking the thread on some auxiliary list.
1350     if (mark == markOopDesc::INFLATING()) {
1351       ReadStableMark(object);
1352       continue;
1353     }
1354 
1355     // CASE: stack-locked
1356     // Could be stack-locked either by this thread or by some other thread.
1357     //
1358     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1359     // to install INFLATING into the mark word.  We originally installed INFLATING,
1360     // allocated the objectmonitor, and then finally STed the address of the
1361     // objectmonitor into the mark.  This was correct, but artificially lengthened
1362     // the interval in which INFLATED appeared in the mark, thus increasing
1363     // the odds of inflation contention.
1364     //
1365     // We now use per-thread private objectmonitor free lists.
1366     // These list are reprovisioned from the global free list outside the
1367     // critical INFLATING...ST interval.  A thread can transfer
1368     // multiple objectmonitors en-mass from the global free list to its local free list.
1369     // This reduces coherency traffic and lock contention on the global free list.
1370     // Using such local free lists, it doesn't matter if the omAlloc() call appears
1371     // before or after the CAS(INFLATING) operation.
1372     // See the comments in omAlloc().
1373 
1374     LogStreamHandle(Trace, monitorinflation) lsh;
1375 
1376     if (mark->has_locker()) {
1377       ObjectMonitor * m = omAlloc(Self);
1378       // Optimistically prepare the objectmonitor - anticipate successful CAS
1379       // We do this before the CAS in order to minimize the length of time
1380       // in which INFLATING appears in the mark.
1381       m->Recycle();
1382       m->_Responsible  = NULL;
1383       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1384 
1385       markOop cmp = object->cas_set_mark(markOopDesc::INFLATING(), mark);
1386       if (cmp != mark) {
1387         omRelease(Self, m, true);
1388         continue;       // Interference -- just retry
1389       }
1390 
1391       // We've successfully installed INFLATING (0) into the mark-word.
1392       // This is the only case where 0 will appear in a mark-word.
1393       // Only the singular thread that successfully swings the mark-word
1394       // to 0 can perform (or more precisely, complete) inflation.
1395       //
1396       // Why do we CAS a 0 into the mark-word instead of just CASing the
1397       // mark-word from the stack-locked value directly to the new inflated state?
1398       // Consider what happens when a thread unlocks a stack-locked object.
1399       // It attempts to use CAS to swing the displaced header value from the
1400       // on-stack basiclock back into the object header.  Recall also that the
1401       // header value (hash code, etc) can reside in (a) the object header, or
1402       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1403       // header in an objectMonitor.  The inflate() routine must copy the header
1404       // value from the basiclock on the owner's stack to the objectMonitor, all
1405       // the while preserving the hashCode stability invariants.  If the owner
1406       // decides to release the lock while the value is 0, the unlock will fail
1407       // and control will eventually pass from slow_exit() to inflate.  The owner
1408       // will then spin, waiting for the 0 value to disappear.   Put another way,
1409       // the 0 causes the owner to stall if the owner happens to try to
1410       // drop the lock (restoring the header from the basiclock to the object)
1411       // while inflation is in-progress.  This protocol avoids races that might
1412       // would otherwise permit hashCode values to change or "flicker" for an object.
1413       // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1414       // 0 serves as a "BUSY" inflate-in-progress indicator.
1415 
1416 
1417       // fetch the displaced mark from the owner's stack.
1418       // The owner can't die or unwind past the lock while our INFLATING
1419       // object is in the mark.  Furthermore the owner can't complete
1420       // an unlock on the object, either.
1421       markOop dmw = mark->displaced_mark_helper();
1422       // Catch if the object's header is not neutral (not locked and
1423       // not marked is what we care about here).
1424       assert(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1425 
1426       // Setup monitor fields to proper values -- prepare the monitor
1427       m->set_header(dmw);
1428 
1429       // Optimization: if the mark->locker stack address is associated
1430       // with this thread we could simply set m->_owner = Self.
1431       // Note that a thread can inflate an object
1432       // that it has stack-locked -- as might happen in wait() -- directly
1433       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1434       m->set_owner(mark->locker());
1435       m->set_object(object);
1436       // TODO-FIXME: assert BasicLock->dhw != 0.
1437 
1438       // Must preserve store ordering. The monitor state must
1439       // be stable at the time of publishing the monitor address.
1440       guarantee(object->mark() == markOopDesc::INFLATING(), "invariant");
1441       object->release_set_mark(markOopDesc::encode(m));
1442 
1443       // Hopefully the performance counters are allocated on distinct cache lines
1444       // to avoid false sharing on MP systems ...
1445       OM_PERFDATA_OP(Inflations, inc());
1446       if (log_is_enabled(Trace, monitorinflation)) {
1447         ResourceMark rm(Self);
1448         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1449                      INTPTR_FORMAT ", type='%s'", p2i(object),
1450                      p2i(object->mark()), object->klass()->external_name());
1451       }
1452       if (event.should_commit()) {
1453         post_monitor_inflate_event(&event, object, cause);
1454       }
1455       return m;
1456     }
1457 
1458     // CASE: neutral
1459     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1460     // If we know we're inflating for entry it's better to inflate by swinging a
1461     // pre-locked objectMonitor pointer into the object header.   A successful
1462     // CAS inflates the object *and* confers ownership to the inflating thread.
1463     // In the current implementation we use a 2-step mechanism where we CAS()
1464     // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1465     // An inflateTry() method that we could call from fast_enter() and slow_enter()
1466     // would be useful.
1467 
1468     // Catch if the object's header is not neutral (not locked and
1469     // not marked is what we care about here).
1470     assert(mark->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(mark));
1471     ObjectMonitor * m = omAlloc(Self);
1472     // prepare m for installation - set monitor to initial state
1473     m->Recycle();
1474     m->set_header(mark);
1475     m->set_object(object);
1476     m->_Responsible  = NULL;
1477     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1478 
1479     if (object->cas_set_mark(markOopDesc::encode(m), mark) != mark) {
1480       m->set_header(NULL);
1481       m->set_object(NULL);
1482       m->Recycle();
1483       omRelease(Self, m, true);
1484       m = NULL;
1485       continue;
1486       // interference - the markword changed - just retry.
1487       // The state-transitions are one-way, so there's no chance of
1488       // live-lock -- "Inflated" is an absorbing state.
1489     }
1490 
1491     // Hopefully the performance counters are allocated on distinct
1492     // cache lines to avoid false sharing on MP systems ...
1493     OM_PERFDATA_OP(Inflations, inc());
1494     if (log_is_enabled(Trace, monitorinflation)) {
1495       ResourceMark rm(Self);
1496       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
1497                    INTPTR_FORMAT ", type='%s'", p2i(object),
1498                    p2i(object->mark()), object->klass()->external_name());
1499     }
1500     if (event.should_commit()) {
1501       post_monitor_inflate_event(&event, object, cause);
1502     }
1503     return m;
1504   }
1505 }
1506 
1507 
1508 // We maintain a list of in-use monitors for each thread.
1509 //
1510 // deflate_thread_local_monitors() scans a single thread's in-use list, while
1511 // deflate_idle_monitors() scans only a global list of in-use monitors which
1512 // is populated only as a thread dies (see omFlush()).
1513 //
1514 // These operations are called at all safepoints, immediately after mutators
1515 // are stopped, but before any objects have moved. Collectively they traverse
1516 // the population of in-use monitors, deflating where possible. The scavenged
1517 // monitors are returned to the global monitor free list.
1518 //
1519 // Beware that we scavenge at *every* stop-the-world point. Having a large
1520 // number of monitors in-use could negatively impact performance. We also want
1521 // to minimize the total # of monitors in circulation, as they incur a small
1522 // footprint penalty.
1523 //
1524 // Perversely, the heap size -- and thus the STW safepoint rate --
1525 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1526 // which in turn can mean large(r) numbers of ObjectMonitors in circulation.
1527 // This is an unfortunate aspect of this design.
1528 
1529 // Deflate a single monitor if not in-use
1530 // Return true if deflated, false if in-use
1531 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1532                                          ObjectMonitor** freeHeadp,
1533                                          ObjectMonitor** freeTailp) {
1534   bool deflated;
1535   // Normal case ... The monitor is associated with obj.
1536   const markOop mark = obj->mark();
1537   guarantee(mark == markOopDesc::encode(mid), "should match: mark="
1538             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, p2i(mark),
1539             p2i(markOopDesc::encode(mid)));
1540   // Make sure that mark->monitor() and markOopDesc::encode() agree:
1541   guarantee(mark->monitor() == mid, "should match: monitor()=" INTPTR_FORMAT
1542             ", mid=" INTPTR_FORMAT, p2i(mark->monitor()), p2i(mid));
1543   const markOop dmw = mid->header();
1544   guarantee(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1545 
1546   if (mid->is_busy()) {
1547     deflated = false;
1548   } else {
1549     // Deflate the monitor if it is no longer being used
1550     // It's idle - scavenge and return to the global free list
1551     // plain old deflation ...
1552     if (log_is_enabled(Trace, monitorinflation)) {
1553       ResourceMark rm;
1554       log_trace(monitorinflation)("deflate_monitor: "
1555                                   "object=" INTPTR_FORMAT ", mark="
1556                                   INTPTR_FORMAT ", type='%s'", p2i(obj),
1557                                   p2i(mark), obj->klass()->external_name());
1558     }
1559 
1560     // Restore the header back to obj
1561     obj->release_set_mark(dmw);
1562     mid->clear();
1563 
1564     assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT,
1565            p2i(mid->object()));
1566 
1567     // Move the object to the working free list defined by freeHeadp, freeTailp
1568     if (*freeHeadp == NULL) *freeHeadp = mid;
1569     if (*freeTailp != NULL) {
1570       ObjectMonitor * prevtail = *freeTailp;
1571       assert(prevtail->FreeNext == NULL, "cleaned up deflated?");
1572       prevtail->FreeNext = mid;
1573     }
1574     *freeTailp = mid;
1575     deflated = true;
1576   }
1577   return deflated;
1578 }
1579 
1580 // Walk a given monitor list, and deflate idle monitors
1581 // The given list could be a per-thread list or a global list
1582 // Caller acquires gListLock as needed.
1583 //
1584 // In the case of parallel processing of thread local monitor lists,
1585 // work is done by Threads::parallel_threads_do() which ensures that
1586 // each Java thread is processed by exactly one worker thread, and
1587 // thus avoid conflicts that would arise when worker threads would
1588 // process the same monitor lists concurrently.
1589 //
1590 // See also ParallelSPCleanupTask and
1591 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
1592 // Threads::parallel_java_threads_do() in thread.cpp.
1593 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** listHeadp,
1594                                              ObjectMonitor** freeHeadp,
1595                                              ObjectMonitor** freeTailp) {
1596   ObjectMonitor* mid;
1597   ObjectMonitor* next;
1598   ObjectMonitor* cur_mid_in_use = NULL;
1599   int deflated_count = 0;
1600 
1601   for (mid = *listHeadp; mid != NULL;) {
1602     oop obj = (oop) mid->object();
1603     if (obj != NULL && deflate_monitor(mid, obj, freeHeadp, freeTailp)) {
1604       // if deflate_monitor succeeded,
1605       // extract from per-thread in-use list
1606       if (mid == *listHeadp) {
1607         *listHeadp = mid->FreeNext;
1608       } else if (cur_mid_in_use != NULL) {
1609         cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1610       }
1611       next = mid->FreeNext;
1612       mid->FreeNext = NULL;  // This mid is current tail in the freeHeadp list
1613       mid = next;
1614       deflated_count++;
1615     } else {
1616       cur_mid_in_use = mid;
1617       mid = mid->FreeNext;
1618     }
1619   }
1620   return deflated_count;
1621 }
1622 
1623 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
1624   counters->nInuse = 0;              // currently associated with objects
1625   counters->nInCirculation = 0;      // extant
1626   counters->nScavenged = 0;          // reclaimed (global and per-thread)
1627   counters->perThreadScavenged = 0;  // per-thread scavenge total
1628   counters->perThreadTimes = 0.0;    // per-thread scavenge times
1629 }
1630 
1631 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
1632   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1633   bool deflated = false;
1634 
1635   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
1636   ObjectMonitor * freeTailp = NULL;
1637   elapsedTimer timer;
1638 
1639   if (log_is_enabled(Info, monitorinflation)) {
1640     timer.start();
1641   }
1642 
1643   // Prevent omFlush from changing mids in Thread dtor's during deflation
1644   // And in case the vm thread is acquiring a lock during a safepoint
1645   // See e.g. 6320749
1646   Thread::muxAcquire(&gListLock, "deflate_idle_monitors");
1647 
1648   // Note: the thread-local monitors lists get deflated in
1649   // a separate pass. See deflate_thread_local_monitors().
1650 
1651   // For moribund threads, scan gOmInUseList
1652   int deflated_count = 0;
1653   if (gOmInUseList) {
1654     counters->nInCirculation += gOmInUseCount;
1655     deflated_count = deflate_monitor_list((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp);
1656     gOmInUseCount -= deflated_count;
1657     counters->nScavenged += deflated_count;
1658     counters->nInuse += gOmInUseCount;
1659   }
1660 
1661   // Move the scavenged monitors back to the global free list.
1662   if (freeHeadp != NULL) {
1663     guarantee(freeTailp != NULL && counters->nScavenged > 0, "invariant");
1664     assert(freeTailp->FreeNext == NULL, "invariant");
1665     // constant-time list splice - prepend scavenged segment to gFreeList
1666     freeTailp->FreeNext = gFreeList;
1667     gFreeList = freeHeadp;
1668   }
1669   Thread::muxRelease(&gListLock);
1670   timer.stop();
1671 
1672   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1673   LogStreamHandle(Info, monitorinflation) lsh_info;
1674   LogStream * ls = NULL;
1675   if (log_is_enabled(Debug, monitorinflation)) {
1676     ls = &lsh_debug;
1677   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
1678     ls = &lsh_info;
1679   }
1680   if (ls != NULL) {
1681     ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
1682   }
1683 }
1684 
1685 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
1686   // Report the cumulative time for deflating each thread's idle
1687   // monitors. Note: if the work is split among more than one
1688   // worker thread, then the reported time will likely be more
1689   // than a beginning to end measurement of the phase.
1690   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d", counters->perThreadTimes, counters->perThreadScavenged);
1691 
1692   gMonitorFreeCount += counters->nScavenged;
1693 
1694   if (log_is_enabled(Debug, monitorinflation)) {
1695     // exit_globals()'s call to audit_and_print_stats() is done
1696     // at the Info level.
1697     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
1698   } else if (log_is_enabled(Info, monitorinflation)) {
1699     Thread::muxAcquire(&gListLock, "finish_deflate_idle_monitors");
1700     log_info(monitorinflation)("gMonitorPopulation=%d, gOmInUseCount=%d, "
1701                                "gMonitorFreeCount=%d", gMonitorPopulation,
1702                                gOmInUseCount, gMonitorFreeCount);
1703     Thread::muxRelease(&gListLock);
1704   }
1705 
1706   ForceMonitorScavenge = 0;    // Reset
1707 
1708   OM_PERFDATA_OP(Deflations, inc(counters->nScavenged));
1709   OM_PERFDATA_OP(MonExtant, set_value(counters->nInCirculation));
1710 
1711   GVars.stwRandom = os::random();
1712   GVars.stwCycle++;
1713 }
1714 
1715 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
1716   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1717 
1718   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
1719   ObjectMonitor * freeTailp = NULL;
1720   elapsedTimer timer;
1721 
1722   if (log_is_enabled(Info, safepoint, cleanup) ||
1723       log_is_enabled(Info, monitorinflation)) {
1724     timer.start();
1725   }
1726 
1727   int deflated_count = deflate_monitor_list(thread->omInUseList_addr(), &freeHeadp, &freeTailp);
1728 
1729   Thread::muxAcquire(&gListLock, "deflate_thread_local_monitors");
1730 
1731   // Adjust counters
1732   counters->nInCirculation += thread->omInUseCount;
1733   thread->omInUseCount -= deflated_count;
1734   counters->nScavenged += deflated_count;
1735   counters->nInuse += thread->omInUseCount;
1736   counters->perThreadScavenged += deflated_count;
1737 
1738   // Move the scavenged monitors back to the global free list.
1739   if (freeHeadp != NULL) {
1740     guarantee(freeTailp != NULL && deflated_count > 0, "invariant");
1741     assert(freeTailp->FreeNext == NULL, "invariant");
1742 
1743     // constant-time list splice - prepend scavenged segment to gFreeList
1744     freeTailp->FreeNext = gFreeList;
1745     gFreeList = freeHeadp;
1746   }
1747 
1748   timer.stop();
1749   // Safepoint logging cares about cumulative perThreadTimes and
1750   // we'll capture most of the cost, but not the muxRelease() which
1751   // should be cheap.
1752   counters->perThreadTimes += timer.seconds();
1753 
1754   Thread::muxRelease(&gListLock);
1755 
1756   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1757   LogStreamHandle(Info, monitorinflation) lsh_info;
1758   LogStream * ls = NULL;
1759   if (log_is_enabled(Debug, monitorinflation)) {
1760     ls = &lsh_debug;
1761   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
1762     ls = &lsh_info;
1763   }
1764   if (ls != NULL) {
1765     ls->print_cr("jt=" INTPTR_FORMAT ": deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(thread), timer.seconds(), deflated_count);
1766   }
1767 }
1768 
1769 // Monitor cleanup on JavaThread::exit
1770 
1771 // Iterate through monitor cache and attempt to release thread's monitors
1772 // Gives up on a particular monitor if an exception occurs, but continues
1773 // the overall iteration, swallowing the exception.
1774 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1775  private:
1776   TRAPS;
1777 
1778  public:
1779   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
1780   void do_monitor(ObjectMonitor* mid) {
1781     if (mid->owner() == THREAD) {
1782       (void)mid->complete_exit(CHECK);
1783     }
1784   }
1785 };
1786 
1787 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
1788 // ignored.  This is meant to be called during JNI thread detach which assumes
1789 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1790 // Scanning the extant monitor list can be time consuming.
1791 // A simple optimization is to add a per-thread flag that indicates a thread
1792 // called jni_monitorenter() during its lifetime.
1793 //
1794 // Instead of No_Savepoint_Verifier it might be cheaper to
1795 // use an idiom of the form:
1796 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1797 //   <code that must not run at safepoint>
1798 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1799 // Since the tests are extremely cheap we could leave them enabled
1800 // for normal product builds.
1801 
1802 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
1803   assert(THREAD == JavaThread::current(), "must be current Java thread");
1804   NoSafepointVerifier nsv;
1805   ReleaseJavaMonitorsClosure rjmc(THREAD);
1806   Thread::muxAcquire(&gListLock, "release_monitors_owned_by_thread");
1807   ObjectSynchronizer::monitors_iterate(&rjmc);
1808   Thread::muxRelease(&gListLock);
1809   THREAD->clear_pending_exception();
1810 }
1811 
1812 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
1813   switch (cause) {
1814     case inflate_cause_vm_internal:    return "VM Internal";
1815     case inflate_cause_monitor_enter:  return "Monitor Enter";
1816     case inflate_cause_wait:           return "Monitor Wait";
1817     case inflate_cause_notify:         return "Monitor Notify";
1818     case inflate_cause_hash_code:      return "Monitor Hash Code";
1819     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
1820     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
1821     default:
1822       ShouldNotReachHere();
1823   }
1824   return "Unknown";
1825 }
1826 
1827 //------------------------------------------------------------------------------
1828 // Debugging code
1829 
1830 u_char* ObjectSynchronizer::get_gvars_addr() {
1831   return (u_char*)&GVars;
1832 }
1833 
1834 u_char* ObjectSynchronizer::get_gvars_hcSequence_addr() {
1835   return (u_char*)&GVars.hcSequence;
1836 }
1837 
1838 size_t ObjectSynchronizer::get_gvars_size() {
1839   return sizeof(SharedGlobals);
1840 }
1841 
1842 u_char* ObjectSynchronizer::get_gvars_stwRandom_addr() {
1843   return (u_char*)&GVars.stwRandom;
1844 }
1845 
1846 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) {
1847   assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant");
1848 
1849   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1850   LogStreamHandle(Info, monitorinflation) lsh_info;
1851   LogStreamHandle(Trace, monitorinflation) lsh_trace;
1852   LogStream * ls = NULL;
1853   if (log_is_enabled(Trace, monitorinflation)) {
1854     ls = &lsh_trace;
1855   } else if (log_is_enabled(Debug, monitorinflation)) {
1856     ls = &lsh_debug;
1857   } else if (log_is_enabled(Info, monitorinflation)) {
1858     ls = &lsh_info;
1859   }
1860   assert(ls != NULL, "sanity check");
1861 
1862   if (!on_exit) {
1863     // Not at VM exit so grab the global list lock.
1864     Thread::muxAcquire(&gListLock, "audit_and_print_stats");
1865   }
1866 
1867   // Log counts for the global and per-thread monitor lists:
1868   int chkMonitorPopulation = log_monitor_list_counts(ls);
1869   int error_cnt = 0;
1870 
1871   ls->print_cr("Checking global lists:");
1872 
1873   // Check gMonitorPopulation:
1874   if (gMonitorPopulation == chkMonitorPopulation) {
1875     ls->print_cr("gMonitorPopulation=%d equals chkMonitorPopulation=%d",
1876                  gMonitorPopulation, chkMonitorPopulation);
1877   } else {
1878     ls->print_cr("ERROR: gMonitorPopulation=%d is not equal to "
1879                  "chkMonitorPopulation=%d", gMonitorPopulation,
1880                  chkMonitorPopulation);
1881     error_cnt++;
1882   }
1883 
1884   // Check gOmInUseList and gOmInUseCount:
1885   chk_global_in_use_list_and_count(ls, &error_cnt);
1886 
1887   // Check gFreeList and gMonitorFreeCount:
1888   chk_global_free_list_and_count(ls, &error_cnt);
1889 
1890   if (!on_exit) {
1891     Thread::muxRelease(&gListLock);
1892   }
1893 
1894   ls->print_cr("Checking per-thread lists:");
1895 
1896   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1897     // Check omInUseList and omInUseCount:
1898     chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt);
1899 
1900     // Check omFreeList and omFreeCount:
1901     chk_per_thread_free_list_and_count(jt, ls, &error_cnt);
1902   }
1903 
1904   if (error_cnt == 0) {
1905     ls->print_cr("No errors found in monitor list checks.");
1906   } else {
1907     log_error(monitorinflation)("found monitor list errors: error_cnt=%d", error_cnt);
1908   }
1909 
1910   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
1911       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
1912     // When exiting this log output is at the Info level. When called
1913     // at a safepoint, this log output is at the Trace level since
1914     // there can be a lot of it.
1915     log_in_use_monitor_details(ls, on_exit);
1916   }
1917 
1918   ls->flush();
1919 
1920   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
1921 }
1922 
1923 // Check a free monitor entry; log any errors.
1924 void ObjectSynchronizer::chk_free_entry(JavaThread * jt, ObjectMonitor * n,
1925                                         outputStream * out, int *error_cnt_p) {
1926   stringStream ss;
1927   if (n->is_busy()) {
1928     if (jt != NULL) {
1929       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
1930                     ": free per-thread monitor must not be busy: %s", p2i(jt),
1931                     p2i(n), n->is_busy_to_string(&ss));
1932     } else {
1933       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
1934                     "must not be busy: %s", p2i(n), n->is_busy_to_string(&ss));
1935     }
1936     *error_cnt_p = *error_cnt_p + 1;
1937   }
1938   if (n->header() != NULL) {
1939     if (jt != NULL) {
1940       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
1941                     ": free per-thread monitor must have NULL _header "
1942                     "field: _header=" INTPTR_FORMAT, p2i(jt), p2i(n),
1943                     p2i(n->header()));
1944     } else {
1945       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
1946                     "must have NULL _header field: _header=" INTPTR_FORMAT,
1947                     p2i(n), p2i(n->header()));
1948     }
1949     *error_cnt_p = *error_cnt_p + 1;
1950   }
1951   if (n->object() != NULL) {
1952     if (jt != NULL) {
1953       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
1954                     ": free per-thread monitor must have NULL _object "
1955                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
1956                     p2i(n->object()));
1957     } else {
1958       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
1959                     "must have NULL _object field: _object=" INTPTR_FORMAT,
1960                     p2i(n), p2i(n->object()));
1961     }
1962     *error_cnt_p = *error_cnt_p + 1;
1963   }
1964 }
1965 
1966 // Check the global free list and count; log the results of the checks.
1967 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
1968                                                         int *error_cnt_p) {
1969   int chkMonitorFreeCount = 0;
1970   for (ObjectMonitor * n = gFreeList; n != NULL; n = n->FreeNext) {
1971     chk_free_entry(NULL /* jt */, n, out, error_cnt_p);
1972     chkMonitorFreeCount++;
1973   }
1974   if (gMonitorFreeCount == chkMonitorFreeCount) {
1975     out->print_cr("gMonitorFreeCount=%d equals chkMonitorFreeCount=%d",
1976                   gMonitorFreeCount, chkMonitorFreeCount);
1977   } else {
1978     out->print_cr("ERROR: gMonitorFreeCount=%d is not equal to "
1979                   "chkMonitorFreeCount=%d", gMonitorFreeCount,
1980                   chkMonitorFreeCount);
1981     *error_cnt_p = *error_cnt_p + 1;
1982   }
1983 }
1984 
1985 // Check the global in-use list and count; log the results of the checks.
1986 void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out,
1987                                                           int *error_cnt_p) {
1988   int chkOmInUseCount = 0;
1989   for (ObjectMonitor * n = gOmInUseList; n != NULL; n = n->FreeNext) {
1990     chk_in_use_entry(NULL /* jt */, n, out, error_cnt_p);
1991     chkOmInUseCount++;
1992   }
1993   if (gOmInUseCount == chkOmInUseCount) {
1994     out->print_cr("gOmInUseCount=%d equals chkOmInUseCount=%d", gOmInUseCount,
1995                   chkOmInUseCount);
1996   } else {
1997     out->print_cr("ERROR: gOmInUseCount=%d is not equal to chkOmInUseCount=%d",
1998                   gOmInUseCount, chkOmInUseCount);
1999     *error_cnt_p = *error_cnt_p + 1;
2000   }
2001 }
2002 
2003 // Check an in-use monitor entry; log any errors.
2004 void ObjectSynchronizer::chk_in_use_entry(JavaThread * jt, ObjectMonitor * n,
2005                                           outputStream * out, int *error_cnt_p) {
2006   if (n->header() == NULL) {
2007     if (jt != NULL) {
2008       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2009                     ": in-use per-thread monitor must have non-NULL _header "
2010                     "field.", p2i(jt), p2i(n));
2011     } else {
2012       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
2013                     "must have non-NULL _header field.", p2i(n));
2014     }
2015     *error_cnt_p = *error_cnt_p + 1;
2016   }
2017   if (n->object() == NULL) {
2018     if (jt != NULL) {
2019       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2020                     ": in-use per-thread monitor must have non-NULL _object "
2021                     "field.", p2i(jt), p2i(n));
2022     } else {
2023       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
2024                     "must have non-NULL _object field.", p2i(n));
2025     }
2026     *error_cnt_p = *error_cnt_p + 1;
2027   }
2028   const oop obj = (oop)n->object();
2029   const markOop mark = obj->mark();
2030   if (!mark->has_monitor()) {
2031     if (jt != NULL) {
2032       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2033                     ": in-use per-thread monitor's object does not think "
2034                     "it has a monitor: obj=" INTPTR_FORMAT ", mark="
2035                     INTPTR_FORMAT,  p2i(jt), p2i(n), p2i(obj), p2i(mark));
2036     } else {
2037       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2038                     "monitor's object does not think it has a monitor: obj="
2039                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
2040                     p2i(obj), p2i(mark));
2041     }
2042     *error_cnt_p = *error_cnt_p + 1;
2043   }
2044   ObjectMonitor * const obj_mon = mark->monitor();
2045   if (n != obj_mon) {
2046     if (jt != NULL) {
2047       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2048                     ": in-use per-thread monitor's object does not refer "
2049                     "to the same monitor: obj=" INTPTR_FORMAT ", mark="
2050                     INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt),
2051                     p2i(n), p2i(obj), p2i(mark), p2i(obj_mon));
2052     } else {
2053       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2054                     "monitor's object does not refer to the same monitor: obj="
2055                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
2056                     INTPTR_FORMAT, p2i(n), p2i(obj), p2i(mark), p2i(obj_mon));
2057     }
2058     *error_cnt_p = *error_cnt_p + 1;
2059   }
2060 }
2061 
2062 // Check the thread's free list and count; log the results of the checks.
2063 void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt,
2064                                                             outputStream * out,
2065                                                             int *error_cnt_p) {
2066   int chkOmFreeCount = 0;
2067   for (ObjectMonitor * n = jt->omFreeList; n != NULL; n = n->FreeNext) {
2068     chk_free_entry(jt, n, out, error_cnt_p);
2069     chkOmFreeCount++;
2070   }
2071   if (jt->omFreeCount == chkOmFreeCount) {
2072     out->print_cr("jt=" INTPTR_FORMAT ": omFreeCount=%d equals "
2073                   "chkOmFreeCount=%d", p2i(jt), jt->omFreeCount, chkOmFreeCount);
2074   } else {
2075     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": omFreeCount=%d is not "
2076                   "equal to chkOmFreeCount=%d", p2i(jt), jt->omFreeCount,
2077                   chkOmFreeCount);
2078     *error_cnt_p = *error_cnt_p + 1;
2079   }
2080 }
2081 
2082 // Check the thread's in-use list and count; log the results of the checks.
2083 void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt,
2084                                                               outputStream * out,
2085                                                               int *error_cnt_p) {
2086   int chkOmInUseCount = 0;
2087   for (ObjectMonitor * n = jt->omInUseList; n != NULL; n = n->FreeNext) {
2088     chk_in_use_entry(jt, n, out, error_cnt_p);
2089     chkOmInUseCount++;
2090   }
2091   if (jt->omInUseCount == chkOmInUseCount) {
2092     out->print_cr("jt=" INTPTR_FORMAT ": omInUseCount=%d equals "
2093                   "chkOmInUseCount=%d", p2i(jt), jt->omInUseCount,
2094                   chkOmInUseCount);
2095   } else {
2096     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": omInUseCount=%d is not "
2097                   "equal to chkOmInUseCount=%d", p2i(jt), jt->omInUseCount,
2098                   chkOmInUseCount);
2099     *error_cnt_p = *error_cnt_p + 1;
2100   }
2101 }
2102 
2103 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
2104 // flags indicate why the entry is in-use, 'object' and 'object type'
2105 // indicate the associated object and its type.
2106 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out,
2107                                                     bool on_exit) {
2108   if (!on_exit) {
2109     // Not at VM exit so grab the global list lock.
2110     Thread::muxAcquire(&gListLock, "log_in_use_monitor_details");
2111   }
2112 
2113   stringStream ss;
2114   if (gOmInUseCount > 0) {
2115     out->print_cr("In-use global monitor info:");
2116     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2117     out->print_cr("%18s  %s  %18s  %18s",
2118                   "monitor", "BHL", "object", "object type");
2119     out->print_cr("==================  ===  ==================  ==================");
2120     for (ObjectMonitor * n = gOmInUseList; n != NULL; n = n->FreeNext) {
2121       const oop obj = (oop) n->object();
2122       const markOop mark = n->header();
2123       ResourceMark rm;
2124       out->print(INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT "  %s", p2i(n),
2125                  n->is_busy() != 0, mark->hash() != 0, n->owner() != NULL,
2126                  p2i(obj), obj->klass()->external_name());
2127       if (n->is_busy() != 0) {
2128         out->print(" (%s)", n->is_busy_to_string(&ss));
2129         ss.reset();
2130       }
2131       out->cr();
2132     }
2133   }
2134 
2135   if (!on_exit) {
2136     Thread::muxRelease(&gListLock);
2137   }
2138 
2139   out->print_cr("In-use per-thread monitor info:");
2140   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2141   out->print_cr("%18s  %18s  %s  %18s  %18s",
2142                 "jt", "monitor", "BHL", "object", "object type");
2143   out->print_cr("==================  ==================  ===  ==================  ==================");
2144   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2145     for (ObjectMonitor * n = jt->omInUseList; n != NULL; n = n->FreeNext) {
2146       const oop obj = (oop) n->object();
2147       const markOop mark = n->header();
2148       ResourceMark rm;
2149       out->print(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT
2150                  "  %s", p2i(jt), p2i(n), n->is_busy() != 0,
2151                  mark->hash() != 0, n->owner() != NULL, p2i(obj),
2152                  obj->klass()->external_name());
2153       if (n->is_busy() != 0) {
2154         out->print(" (%s)", n->is_busy_to_string(&ss));
2155         ss.reset();
2156       }
2157       out->cr();
2158     }
2159   }
2160 
2161   out->flush();
2162 }
2163 
2164 // Log counts for the global and per-thread monitor lists and return
2165 // the population count.
2166 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
2167   int popCount = 0;
2168   out->print_cr("%18s  %10s  %10s  %10s",
2169                 "Global Lists:", "InUse", "Free", "Total");
2170   out->print_cr("==================  ==========  ==========  ==========");
2171   out->print_cr("%18s  %10d  %10d  %10d", "",
2172                 gOmInUseCount, gMonitorFreeCount, gMonitorPopulation);
2173   popCount += gOmInUseCount + gMonitorFreeCount;
2174 
2175   out->print_cr("%18s  %10s  %10s  %10s",
2176                 "Per-Thread Lists:", "InUse", "Free", "Provision");
2177   out->print_cr("==================  ==========  ==========  ==========");
2178 
2179   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2180     out->print_cr(INTPTR_FORMAT "  %10d  %10d  %10d", p2i(jt),
2181                   jt->omInUseCount, jt->omFreeCount, jt->omFreeProvision);
2182     popCount += jt->omInUseCount + jt->omFreeCount;
2183   }
2184   return popCount;
2185 }
2186 
2187 #ifndef PRODUCT
2188 
2189 // Check if monitor belongs to the monitor cache
2190 // The list is grow-only so it's *relatively* safe to traverse
2191 // the list of extant blocks without taking a lock.
2192 
2193 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
2194   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
2195   while (block != NULL) {
2196     assert(block->object() == CHAINMARKER, "must be a block header");
2197     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
2198       address mon = (address)monitor;
2199       address blk = (address)block;
2200       size_t diff = mon - blk;
2201       assert((diff % sizeof(PaddedEnd<ObjectMonitor>)) == 0, "must be aligned");
2202       return 1;
2203     }
2204     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
2205   }
2206   return 0;
2207 }
2208 
2209 #endif