1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "logging/logStream.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/metaspaceShared.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/handles.inline.hpp"
  40 #include "runtime/interfaceSupport.inline.hpp"
  41 #include "runtime/mutexLocker.hpp"
  42 #include "runtime/objectMonitor.hpp"
  43 #include "runtime/objectMonitor.inline.hpp"
  44 #include "runtime/osThread.hpp"
  45 #include "runtime/safepointVerifiers.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/synchronizer.hpp"
  49 #include "runtime/thread.inline.hpp"
  50 #include "runtime/timer.hpp"
  51 #include "runtime/vframe.hpp"
  52 #include "runtime/vmThread.hpp"
  53 #include "utilities/align.hpp"
  54 #include "utilities/dtrace.hpp"
  55 #include "utilities/events.hpp"
  56 #include "utilities/preserveException.hpp"
  57 
  58 // The "core" versions of monitor enter and exit reside in this file.
  59 // The interpreter and compilers contain specialized transliterated
  60 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  61 // for instance.  If you make changes here, make sure to modify the
  62 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  63 //
  64 // -----------------------------------------------------------------------------
  65 
  66 #ifdef DTRACE_ENABLED
  67 
  68 // Only bother with this argument setup if dtrace is available
  69 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  70 
  71 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  72   char* bytes = NULL;                                                      \
  73   int len = 0;                                                             \
  74   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  75   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  76   if (klassname != NULL) {                                                 \
  77     bytes = (char*)klassname->bytes();                                     \
  78     len = klassname->utf8_length();                                        \
  79   }
  80 
  81 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  82   {                                                                        \
  83     if (DTraceMonitorProbes) {                                             \
  84       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  85       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  86                            (uintptr_t)(monitor), bytes, len, (millis));    \
  87     }                                                                      \
  88   }
  89 
  90 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  91 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  92 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  93 
  94 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  95   {                                                                        \
  96     if (DTraceMonitorProbes) {                                             \
  97       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  98       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
  99                                     (uintptr_t)(monitor), bytes, len);     \
 100     }                                                                      \
 101   }
 102 
 103 #else //  ndef DTRACE_ENABLED
 104 
 105 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 106 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 107 
 108 #endif // ndef DTRACE_ENABLED
 109 
 110 // This exists only as a workaround of dtrace bug 6254741
 111 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 112   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 113   return 0;
 114 }
 115 
 116 #define NINFLATIONLOCKS 256
 117 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 118 
 119 // global list of blocks of monitors
 120 PaddedObjectMonitor* volatile ObjectSynchronizer::g_block_list = NULL;
 121 // Global ObjectMonitor free list. Newly allocated and deflated
 122 // ObjectMonitors are prepended here.
 123 ObjectMonitor* volatile ObjectSynchronizer::g_free_list = NULL;
 124 // Global ObjectMonitor in-use list. When a JavaThread is exiting,
 125 // ObjectMonitors on its per-thread in-use list are prepended here.
 126 ObjectMonitor* volatile ObjectSynchronizer::g_om_in_use_list = NULL;
 127 int ObjectSynchronizer::g_om_in_use_count = 0;  // # on g_om_in_use_list
 128 
 129 static volatile intptr_t gListLock = 0;   // protects global monitor lists
 130 static volatile int g_om_free_count = 0;  // # on g_free_list
 131 static volatile int g_om_population = 0;  // # Extant -- in circulation
 132 
 133 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 134 
 135 
 136 // =====================> Quick functions
 137 
 138 // The quick_* forms are special fast-path variants used to improve
 139 // performance.  In the simplest case, a "quick_*" implementation could
 140 // simply return false, in which case the caller will perform the necessary
 141 // state transitions and call the slow-path form.
 142 // The fast-path is designed to handle frequently arising cases in an efficient
 143 // manner and is just a degenerate "optimistic" variant of the slow-path.
 144 // returns true  -- to indicate the call was satisfied.
 145 // returns false -- to indicate the call needs the services of the slow-path.
 146 // A no-loitering ordinance is in effect for code in the quick_* family
 147 // operators: safepoints or indefinite blocking (blocking that might span a
 148 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 149 // entry.
 150 //
 151 // Consider: An interesting optimization is to have the JIT recognize the
 152 // following common idiom:
 153 //   synchronized (someobj) { .... ; notify(); }
 154 // That is, we find a notify() or notifyAll() call that immediately precedes
 155 // the monitorexit operation.  In that case the JIT could fuse the operations
 156 // into a single notifyAndExit() runtime primitive.
 157 
 158 bool ObjectSynchronizer::quick_notify(oopDesc* obj, Thread* self, bool all) {
 159   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 160   assert(self->is_Java_thread(), "invariant");
 161   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 162   NoSafepointVerifier nsv;
 163   if (obj == NULL) return false;  // slow-path for invalid obj
 164   const markWord mark = obj->mark();
 165 
 166   if (mark.has_locker() && self->is_lock_owned((address)mark.locker())) {
 167     // Degenerate notify
 168     // stack-locked by caller so by definition the implied waitset is empty.
 169     return true;
 170   }
 171 
 172   if (mark.has_monitor()) {
 173     ObjectMonitor* const mon = mark.monitor();
 174     assert(mon->object() == obj, "invariant");
 175     if (mon->owner() != self) return false;  // slow-path for IMS exception
 176 
 177     if (mon->first_waiter() != NULL) {
 178       // We have one or more waiters. Since this is an inflated monitor
 179       // that we own, we can transfer one or more threads from the waitset
 180       // to the entrylist here and now, avoiding the slow-path.
 181       if (all) {
 182         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
 183       } else {
 184         DTRACE_MONITOR_PROBE(notify, mon, obj, self);
 185       }
 186       int free_count = 0;
 187       do {
 188         mon->INotify(self);
 189         ++free_count;
 190       } while (mon->first_waiter() != NULL && all);
 191       OM_PERFDATA_OP(Notifications, inc(free_count));
 192     }
 193     return true;
 194   }
 195 
 196   // biased locking and any other IMS exception states take the slow-path
 197   return false;
 198 }
 199 
 200 
 201 // The LockNode emitted directly at the synchronization site would have
 202 // been too big if it were to have included support for the cases of inflated
 203 // recursive enter and exit, so they go here instead.
 204 // Note that we can't safely call AsyncPrintJavaStack() from within
 205 // quick_enter() as our thread state remains _in_Java.
 206 
 207 bool ObjectSynchronizer::quick_enter(oop obj, Thread* self,
 208                                      BasicLock * lock) {
 209   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 210   assert(self->is_Java_thread(), "invariant");
 211   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 212   NoSafepointVerifier nsv;
 213   if (obj == NULL) return false;       // Need to throw NPE
 214   const markWord mark = obj->mark();
 215 
 216   if (mark.has_monitor()) {
 217     ObjectMonitor* const m = mark.monitor();
 218     assert(m->object() == obj, "invariant");
 219     Thread* const owner = (Thread *) m->_owner;
 220 
 221     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 222     // and observability
 223     // Case: light contention possibly amenable to TLE
 224     // Case: TLE inimical operations such as nested/recursive synchronization
 225 
 226     if (owner == self) {
 227       m->_recursions++;
 228       return true;
 229     }
 230 
 231     // This Java Monitor is inflated so obj's header will never be
 232     // displaced to this thread's BasicLock. Make the displaced header
 233     // non-NULL so this BasicLock is not seen as recursive nor as
 234     // being locked. We do this unconditionally so that this thread's
 235     // BasicLock cannot be mis-interpreted by any stack walkers. For
 236     // performance reasons, stack walkers generally first check for
 237     // Biased Locking in the object's header, the second check is for
 238     // stack-locking in the object's header, the third check is for
 239     // recursive stack-locking in the displaced header in the BasicLock,
 240     // and last are the inflated Java Monitor (ObjectMonitor) checks.
 241     lock->set_displaced_header(markWord::unused_mark());
 242 
 243     if (owner == NULL && m->try_set_owner_from(NULL, self) == NULL) {
 244       assert(m->_recursions == 0, "invariant");
 245       return true;
 246     }
 247   }
 248 
 249   // Note that we could inflate in quick_enter.
 250   // This is likely a useful optimization
 251   // Critically, in quick_enter() we must not:
 252   // -- perform bias revocation, or
 253   // -- block indefinitely, or
 254   // -- reach a safepoint
 255 
 256   return false;        // revert to slow-path
 257 }
 258 
 259 // -----------------------------------------------------------------------------
 260 // Monitor Enter/Exit
 261 // The interpreter and compiler assembly code tries to lock using the fast path
 262 // of this algorithm. Make sure to update that code if the following function is
 263 // changed. The implementation is extremely sensitive to race condition. Be careful.
 264 
 265 void ObjectSynchronizer::enter(Handle obj, BasicLock* lock, TRAPS) {
 266   if (UseBiasedLocking) {
 267     if (!SafepointSynchronize::is_at_safepoint()) {
 268       BiasedLocking::revoke(obj, THREAD);
 269     } else {
 270       BiasedLocking::revoke_at_safepoint(obj);
 271     }
 272   }
 273 
 274   markWord mark = obj->mark();
 275   assert(!mark.has_bias_pattern(), "should not see bias pattern here");
 276 
 277   if (mark.is_neutral()) {
 278     // Anticipate successful CAS -- the ST of the displaced mark must
 279     // be visible <= the ST performed by the CAS.
 280     lock->set_displaced_header(mark);
 281     if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) {
 282       return;
 283     }
 284     // Fall through to inflate() ...
 285   } else if (mark.has_locker() &&
 286              THREAD->is_lock_owned((address)mark.locker())) {
 287     assert(lock != mark.locker(), "must not re-lock the same lock");
 288     assert(lock != (BasicLock*)obj->mark().value(), "don't relock with same BasicLock");
 289     lock->set_displaced_header(markWord::from_pointer(NULL));
 290     return;
 291   }
 292 
 293   // The object header will never be displaced to this lock,
 294   // so it does not matter what the value is, except that it
 295   // must be non-zero to avoid looking like a re-entrant lock,
 296   // and must not look locked either.
 297   lock->set_displaced_header(markWord::unused_mark());
 298   inflate(THREAD, obj(), inflate_cause_monitor_enter)->enter(THREAD);
 299 }
 300 
 301 void ObjectSynchronizer::exit(oop object, BasicLock* lock, TRAPS) {
 302   markWord mark = object->mark();
 303   // We cannot check for Biased Locking if we are racing an inflation.
 304   assert(mark == markWord::INFLATING() ||
 305          !mark.has_bias_pattern(), "should not see bias pattern here");
 306 
 307   markWord dhw = lock->displaced_header();
 308   if (dhw.value() == 0) {
 309     // If the displaced header is NULL, then this exit matches up with
 310     // a recursive enter. No real work to do here except for diagnostics.
 311 #ifndef PRODUCT
 312     if (mark != markWord::INFLATING()) {
 313       // Only do diagnostics if we are not racing an inflation. Simply
 314       // exiting a recursive enter of a Java Monitor that is being
 315       // inflated is safe; see the has_monitor() comment below.
 316       assert(!mark.is_neutral(), "invariant");
 317       assert(!mark.has_locker() ||
 318              THREAD->is_lock_owned((address)mark.locker()), "invariant");
 319       if (mark.has_monitor()) {
 320         // The BasicLock's displaced_header is marked as a recursive
 321         // enter and we have an inflated Java Monitor (ObjectMonitor).
 322         // This is a special case where the Java Monitor was inflated
 323         // after this thread entered the stack-lock recursively. When a
 324         // Java Monitor is inflated, we cannot safely walk the Java
 325         // Monitor owner's stack and update the BasicLocks because a
 326         // Java Monitor can be asynchronously inflated by a thread that
 327         // does not own the Java Monitor.
 328         ObjectMonitor* m = mark.monitor();
 329         assert(((oop)(m->object()))->mark() == mark, "invariant");
 330         assert(m->is_entered(THREAD), "invariant");
 331       }
 332     }
 333 #endif
 334     return;
 335   }
 336 
 337   if (mark == markWord::from_pointer(lock)) {
 338     // If the object is stack-locked by the current thread, try to
 339     // swing the displaced header from the BasicLock back to the mark.
 340     assert(dhw.is_neutral(), "invariant");
 341     if (object->cas_set_mark(dhw, mark) == mark) {
 342       return;
 343     }
 344   }
 345 
 346   // We have to take the slow-path of possible inflation and then exit.
 347   inflate(THREAD, object, inflate_cause_vm_internal)->exit(true, THREAD);
 348 }
 349 
 350 // -----------------------------------------------------------------------------
 351 // Class Loader  support to workaround deadlocks on the class loader lock objects
 352 // Also used by GC
 353 // complete_exit()/reenter() are used to wait on a nested lock
 354 // i.e. to give up an outer lock completely and then re-enter
 355 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 356 //  1) complete_exit lock1 - saving recursion count
 357 //  2) wait on lock2
 358 //  3) when notified on lock2, unlock lock2
 359 //  4) reenter lock1 with original recursion count
 360 //  5) lock lock2
 361 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 362 intx ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 363   if (UseBiasedLocking) {
 364     BiasedLocking::revoke(obj, THREAD);
 365     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 366   }
 367 
 368   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal);
 369 
 370   return monitor->complete_exit(THREAD);
 371 }
 372 
 373 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 374 void ObjectSynchronizer::reenter(Handle obj, intx recursions, TRAPS) {
 375   if (UseBiasedLocking) {
 376     BiasedLocking::revoke(obj, THREAD);
 377     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 378   }
 379 
 380   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal);
 381 
 382   monitor->reenter(recursions, THREAD);
 383 }
 384 // -----------------------------------------------------------------------------
 385 // JNI locks on java objects
 386 // NOTE: must use heavy weight monitor to handle jni monitor enter
 387 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 388   // the current locking is from JNI instead of Java code
 389   if (UseBiasedLocking) {
 390     BiasedLocking::revoke(obj, THREAD);
 391     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 392   }
 393   THREAD->set_current_pending_monitor_is_from_java(false);
 394   inflate(THREAD, obj(), inflate_cause_jni_enter)->enter(THREAD);
 395   THREAD->set_current_pending_monitor_is_from_java(true);
 396 }
 397 
 398 // NOTE: must use heavy weight monitor to handle jni monitor exit
 399 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 400   if (UseBiasedLocking) {
 401     Handle h_obj(THREAD, obj);
 402     BiasedLocking::revoke(h_obj, THREAD);
 403     obj = h_obj();
 404   }
 405   assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 406 
 407   ObjectMonitor* monitor = inflate(THREAD, obj, inflate_cause_jni_exit);
 408   // If this thread has locked the object, exit the monitor. We
 409   // intentionally do not use CHECK here because we must exit the
 410   // monitor even if an exception is pending.
 411   if (monitor->check_owner(THREAD)) {
 412     monitor->exit(true, THREAD);
 413   }
 414 }
 415 
 416 // -----------------------------------------------------------------------------
 417 // Internal VM locks on java objects
 418 // standard constructor, allows locking failures
 419 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool do_lock) {
 420   _dolock = do_lock;
 421   _thread = thread;
 422   _thread->check_for_valid_safepoint_state();
 423   _obj = obj;
 424 
 425   if (_dolock) {
 426     ObjectSynchronizer::enter(_obj, &_lock, _thread);
 427   }
 428 }
 429 
 430 ObjectLocker::~ObjectLocker() {
 431   if (_dolock) {
 432     ObjectSynchronizer::exit(_obj(), &_lock, _thread);
 433   }
 434 }
 435 
 436 
 437 // -----------------------------------------------------------------------------
 438 //  Wait/Notify/NotifyAll
 439 // NOTE: must use heavy weight monitor to handle wait()
 440 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 441   if (UseBiasedLocking) {
 442     BiasedLocking::revoke(obj, THREAD);
 443     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 444   }
 445   if (millis < 0) {
 446     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 447   }
 448   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_wait);
 449 
 450   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 451   monitor->wait(millis, true, THREAD);
 452 
 453   // This dummy call is in place to get around dtrace bug 6254741.  Once
 454   // that's fixed we can uncomment the following line, remove the call
 455   // and change this function back into a "void" func.
 456   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 457   return dtrace_waited_probe(monitor, obj, THREAD);
 458 }
 459 
 460 void ObjectSynchronizer::wait_uninterruptibly(Handle obj, jlong millis, TRAPS) {
 461   if (UseBiasedLocking) {
 462     BiasedLocking::revoke(obj, THREAD);
 463     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 464   }
 465   if (millis < 0) {
 466     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 467   }
 468   inflate(THREAD, obj(), inflate_cause_wait)->wait(millis, false, THREAD);
 469 }
 470 
 471 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 472   if (UseBiasedLocking) {
 473     BiasedLocking::revoke(obj, THREAD);
 474     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 475   }
 476 
 477   markWord mark = obj->mark();
 478   if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) {
 479     return;
 480   }
 481   inflate(THREAD, obj(), inflate_cause_notify)->notify(THREAD);
 482 }
 483 
 484 // NOTE: see comment of notify()
 485 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 486   if (UseBiasedLocking) {
 487     BiasedLocking::revoke(obj, THREAD);
 488     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 489   }
 490 
 491   markWord mark = obj->mark();
 492   if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) {
 493     return;
 494   }
 495   inflate(THREAD, obj(), inflate_cause_notify)->notifyAll(THREAD);
 496 }
 497 
 498 // -----------------------------------------------------------------------------
 499 // Hash Code handling
 500 //
 501 // Performance concern:
 502 // OrderAccess::storestore() calls release() which at one time stored 0
 503 // into the global volatile OrderAccess::dummy variable. This store was
 504 // unnecessary for correctness. Many threads storing into a common location
 505 // causes considerable cache migration or "sloshing" on large SMP systems.
 506 // As such, I avoided using OrderAccess::storestore(). In some cases
 507 // OrderAccess::fence() -- which incurs local latency on the executing
 508 // processor -- is a better choice as it scales on SMP systems.
 509 //
 510 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 511 // a discussion of coherency costs. Note that all our current reference
 512 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 513 // x64, and SPARC.
 514 //
 515 // As a general policy we use "volatile" to control compiler-based reordering
 516 // and explicit fences (barriers) to control for architectural reordering
 517 // performed by the CPU(s) or platform.
 518 
 519 struct SharedGlobals {
 520   char         _pad_prefix[DEFAULT_CACHE_LINE_SIZE];
 521   // These are highly shared mostly-read variables.
 522   // To avoid false-sharing they need to be the sole occupants of a cache line.
 523   volatile int stw_random;
 524   volatile int stw_cycle;
 525   DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 526   // Hot RW variable -- Sequester to avoid false-sharing
 527   volatile int hc_sequence;
 528   DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int));
 529 };
 530 
 531 static SharedGlobals GVars;
 532 static int _forceMonitorScavenge = 0; // Scavenge required and pending
 533 
 534 static markWord read_stable_mark(oop obj) {
 535   markWord mark = obj->mark();
 536   if (!mark.is_being_inflated()) {
 537     return mark;       // normal fast-path return
 538   }
 539 
 540   int its = 0;
 541   for (;;) {
 542     markWord mark = obj->mark();
 543     if (!mark.is_being_inflated()) {
 544       return mark;    // normal fast-path return
 545     }
 546 
 547     // The object is being inflated by some other thread.
 548     // The caller of read_stable_mark() must wait for inflation to complete.
 549     // Avoid live-lock
 550     // TODO: consider calling SafepointSynchronize::do_call_back() while
 551     // spinning to see if there's a safepoint pending.  If so, immediately
 552     // yielding or blocking would be appropriate.  Avoid spinning while
 553     // there is a safepoint pending.
 554     // TODO: add inflation contention performance counters.
 555     // TODO: restrict the aggregate number of spinners.
 556 
 557     ++its;
 558     if (its > 10000 || !os::is_MP()) {
 559       if (its & 1) {
 560         os::naked_yield();
 561       } else {
 562         // Note that the following code attenuates the livelock problem but is not
 563         // a complete remedy.  A more complete solution would require that the inflating
 564         // thread hold the associated inflation lock.  The following code simply restricts
 565         // the number of spinners to at most one.  We'll have N-2 threads blocked
 566         // on the inflationlock, 1 thread holding the inflation lock and using
 567         // a yield/park strategy, and 1 thread in the midst of inflation.
 568         // A more refined approach would be to change the encoding of INFLATING
 569         // to allow encapsulation of a native thread pointer.  Threads waiting for
 570         // inflation to complete would use CAS to push themselves onto a singly linked
 571         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 572         // and calling park().  When inflation was complete the thread that accomplished inflation
 573         // would detach the list and set the markword to inflated with a single CAS and
 574         // then for each thread on the list, set the flag and unpark() the thread.
 575         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 576         // wakes at most one thread whereas we need to wake the entire list.
 577         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 578         int YieldThenBlock = 0;
 579         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 580         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 581         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 582         while (obj->mark() == markWord::INFLATING()) {
 583           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 584           // so we periodically call self->_ParkEvent->park(1).
 585           // We use a mixed spin/yield/block mechanism.
 586           if ((YieldThenBlock++) >= 16) {
 587             Thread::current()->_ParkEvent->park(1);
 588           } else {
 589             os::naked_yield();
 590           }
 591         }
 592         Thread::muxRelease(gInflationLocks + ix);
 593       }
 594     } else {
 595       SpinPause();       // SMP-polite spinning
 596     }
 597   }
 598 }
 599 
 600 // hashCode() generation :
 601 //
 602 // Possibilities:
 603 // * MD5Digest of {obj,stw_random}
 604 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function.
 605 // * A DES- or AES-style SBox[] mechanism
 606 // * One of the Phi-based schemes, such as:
 607 //   2654435761 = 2^32 * Phi (golden ratio)
 608 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ;
 609 // * A variation of Marsaglia's shift-xor RNG scheme.
 610 // * (obj ^ stw_random) is appealing, but can result
 611 //   in undesirable regularity in the hashCode values of adjacent objects
 612 //   (objects allocated back-to-back, in particular).  This could potentially
 613 //   result in hashtable collisions and reduced hashtable efficiency.
 614 //   There are simple ways to "diffuse" the middle address bits over the
 615 //   generated hashCode values:
 616 
 617 static inline intptr_t get_next_hash(Thread* self, oop obj) {
 618   intptr_t value = 0;
 619   if (hashCode == 0) {
 620     // This form uses global Park-Miller RNG.
 621     // On MP system we'll have lots of RW access to a global, so the
 622     // mechanism induces lots of coherency traffic.
 623     value = os::random();
 624   } else if (hashCode == 1) {
 625     // This variation has the property of being stable (idempotent)
 626     // between STW operations.  This can be useful in some of the 1-0
 627     // synchronization schemes.
 628     intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3;
 629     value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random;
 630   } else if (hashCode == 2) {
 631     value = 1;            // for sensitivity testing
 632   } else if (hashCode == 3) {
 633     value = ++GVars.hc_sequence;
 634   } else if (hashCode == 4) {
 635     value = cast_from_oop<intptr_t>(obj);
 636   } else {
 637     // Marsaglia's xor-shift scheme with thread-specific state
 638     // This is probably the best overall implementation -- we'll
 639     // likely make this the default in future releases.
 640     unsigned t = self->_hashStateX;
 641     t ^= (t << 11);
 642     self->_hashStateX = self->_hashStateY;
 643     self->_hashStateY = self->_hashStateZ;
 644     self->_hashStateZ = self->_hashStateW;
 645     unsigned v = self->_hashStateW;
 646     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 647     self->_hashStateW = v;
 648     value = v;
 649   }
 650 
 651   value &= markWord::hash_mask;
 652   if (value == 0) value = 0xBAD;
 653   assert(value != markWord::no_hash, "invariant");
 654   return value;
 655 }
 656 
 657 intptr_t ObjectSynchronizer::FastHashCode(Thread* self, oop obj) {
 658   if (UseBiasedLocking) {
 659     // NOTE: many places throughout the JVM do not expect a safepoint
 660     // to be taken here, in particular most operations on perm gen
 661     // objects. However, we only ever bias Java instances and all of
 662     // the call sites of identity_hash that might revoke biases have
 663     // been checked to make sure they can handle a safepoint. The
 664     // added check of the bias pattern is to avoid useless calls to
 665     // thread-local storage.
 666     if (obj->mark().has_bias_pattern()) {
 667       // Handle for oop obj in case of STW safepoint
 668       Handle hobj(self, obj);
 669       // Relaxing assertion for bug 6320749.
 670       assert(Universe::verify_in_progress() ||
 671              !SafepointSynchronize::is_at_safepoint(),
 672              "biases should not be seen by VM thread here");
 673       BiasedLocking::revoke(hobj, JavaThread::current());
 674       obj = hobj();
 675       assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 676     }
 677   }
 678 
 679   // hashCode() is a heap mutator ...
 680   // Relaxing assertion for bug 6320749.
 681   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 682          !SafepointSynchronize::is_at_safepoint(), "invariant");
 683   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 684          self->is_Java_thread() , "invariant");
 685   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 686          ((JavaThread *)self)->thread_state() != _thread_blocked, "invariant");
 687 
 688   ObjectMonitor* monitor = NULL;
 689   markWord temp, test;
 690   intptr_t hash;
 691   markWord mark = read_stable_mark(obj);
 692 
 693   // object should remain ineligible for biased locking
 694   assert(!mark.has_bias_pattern(), "invariant");
 695 
 696   if (mark.is_neutral()) {            // if this is a normal header
 697     hash = mark.hash();
 698     if (hash != 0) {                  // if it has a hash, just return it
 699       return hash;
 700     }
 701     hash = get_next_hash(self, obj);  // get a new hash
 702     temp = mark.copy_set_hash(hash);  // merge the hash into header
 703                                       // try to install the hash
 704     test = obj->cas_set_mark(temp, mark);
 705     if (test == mark) {               // if the hash was installed, return it
 706       return hash;
 707     }
 708     // Failed to install the hash. It could be that another thread
 709     // installed the hash just before our attempt or inflation has
 710     // occurred or... so we fall thru to inflate the monitor for
 711     // stability and then install the hash.
 712   } else if (mark.has_monitor()) {
 713     monitor = mark.monitor();
 714     temp = monitor->header();
 715     assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
 716     hash = temp.hash();
 717     if (hash != 0) {                  // if it has a hash, just return it
 718       return hash;
 719     }
 720     // Fall thru so we only have one place that installs the hash in
 721     // the ObjectMonitor.
 722   } else if (self->is_lock_owned((address)mark.locker())) {
 723     // This is a stack lock owned by the calling thread so fetch the
 724     // displaced markWord from the BasicLock on the stack.
 725     temp = mark.displaced_mark_helper();
 726     assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
 727     hash = temp.hash();
 728     if (hash != 0) {                  // if it has a hash, just return it
 729       return hash;
 730     }
 731     // WARNING:
 732     // The displaced header in the BasicLock on a thread's stack
 733     // is strictly immutable. It CANNOT be changed in ANY cases.
 734     // So we have to inflate the stack lock into an ObjectMonitor
 735     // even if the current thread owns the lock. The BasicLock on
 736     // a thread's stack can be asynchronously read by other threads
 737     // during an inflate() call so any change to that stack memory
 738     // may not propagate to other threads correctly.
 739   }
 740 
 741   // Inflate the monitor to set the hash.
 742   monitor = inflate(self, obj, inflate_cause_hash_code);
 743   // Load ObjectMonitor's header/dmw field and see if it has a hash.
 744   mark = monitor->header();
 745   assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
 746   hash = mark.hash();
 747   if (hash == 0) {                    // if it does not have a hash
 748     hash = get_next_hash(self, obj);  // get a new hash
 749     temp = mark.copy_set_hash(hash);  // merge the hash into header
 750     assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
 751     uintptr_t v = Atomic::cmpxchg((volatile uintptr_t*)monitor->header_addr(), mark.value(), temp.value());
 752     test = markWord(v);
 753     if (test != mark) {
 754       // The attempt to update the ObjectMonitor's header/dmw field
 755       // did not work. This can happen if another thread managed to
 756       // merge in the hash just before our cmpxchg().
 757       // If we add any new usages of the header/dmw field, this code
 758       // will need to be updated.
 759       hash = test.hash();
 760       assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
 761       assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash");
 762     }
 763   }
 764   // We finally get the hash.
 765   return hash;
 766 }
 767 
 768 // Deprecated -- use FastHashCode() instead.
 769 
 770 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 771   return FastHashCode(Thread::current(), obj());
 772 }
 773 
 774 
 775 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 776                                                    Handle h_obj) {
 777   if (UseBiasedLocking) {
 778     BiasedLocking::revoke(h_obj, thread);
 779     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
 780   }
 781 
 782   assert(thread == JavaThread::current(), "Can only be called on current thread");
 783   oop obj = h_obj();
 784 
 785   markWord mark = read_stable_mark(obj);
 786 
 787   // Uncontended case, header points to stack
 788   if (mark.has_locker()) {
 789     return thread->is_lock_owned((address)mark.locker());
 790   }
 791   // Contended case, header points to ObjectMonitor (tagged pointer)
 792   if (mark.has_monitor()) {
 793     ObjectMonitor* monitor = mark.monitor();
 794     return monitor->is_entered(thread) != 0;
 795   }
 796   // Unlocked case, header in place
 797   assert(mark.is_neutral(), "sanity check");
 798   return false;
 799 }
 800 
 801 // Be aware of this method could revoke bias of the lock object.
 802 // This method queries the ownership of the lock handle specified by 'h_obj'.
 803 // If the current thread owns the lock, it returns owner_self. If no
 804 // thread owns the lock, it returns owner_none. Otherwise, it will return
 805 // owner_other.
 806 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 807 (JavaThread *self, Handle h_obj) {
 808   // The caller must beware this method can revoke bias, and
 809   // revocation can result in a safepoint.
 810   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 811   assert(self->thread_state() != _thread_blocked, "invariant");
 812 
 813   // Possible mark states: neutral, biased, stack-locked, inflated
 814 
 815   if (UseBiasedLocking && h_obj()->mark().has_bias_pattern()) {
 816     // CASE: biased
 817     BiasedLocking::revoke(h_obj, self);
 818     assert(!h_obj->mark().has_bias_pattern(),
 819            "biases should be revoked by now");
 820   }
 821 
 822   assert(self == JavaThread::current(), "Can only be called on current thread");
 823   oop obj = h_obj();
 824   markWord mark = read_stable_mark(obj);
 825 
 826   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 827   if (mark.has_locker()) {
 828     return self->is_lock_owned((address)mark.locker()) ?
 829       owner_self : owner_other;
 830   }
 831 
 832   // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor.
 833   // The Object:ObjectMonitor relationship is stable as long as we're
 834   // not at a safepoint.
 835   if (mark.has_monitor()) {
 836     void* owner = mark.monitor()->_owner;
 837     if (owner == NULL) return owner_none;
 838     return (owner == self ||
 839             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 840   }
 841 
 842   // CASE: neutral
 843   assert(mark.is_neutral(), "sanity check");
 844   return owner_none;           // it's unlocked
 845 }
 846 
 847 // FIXME: jvmti should call this
 848 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
 849   if (UseBiasedLocking) {
 850     if (SafepointSynchronize::is_at_safepoint()) {
 851       BiasedLocking::revoke_at_safepoint(h_obj);
 852     } else {
 853       BiasedLocking::revoke(h_obj, JavaThread::current());
 854     }
 855     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
 856   }
 857 
 858   oop obj = h_obj();
 859   address owner = NULL;
 860 
 861   markWord mark = read_stable_mark(obj);
 862 
 863   // Uncontended case, header points to stack
 864   if (mark.has_locker()) {
 865     owner = (address) mark.locker();
 866   }
 867 
 868   // Contended case, header points to ObjectMonitor (tagged pointer)
 869   else if (mark.has_monitor()) {
 870     ObjectMonitor* monitor = mark.monitor();
 871     assert(monitor != NULL, "monitor should be non-null");
 872     owner = (address) monitor->owner();
 873   }
 874 
 875   if (owner != NULL) {
 876     // owning_thread_from_monitor_owner() may also return NULL here
 877     return Threads::owning_thread_from_monitor_owner(t_list, owner);
 878   }
 879 
 880   // Unlocked case, header in place
 881   // Cannot have assertion since this object may have been
 882   // locked by another thread when reaching here.
 883   // assert(mark.is_neutral(), "sanity check");
 884 
 885   return NULL;
 886 }
 887 
 888 // Visitors ...
 889 
 890 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 891   PaddedObjectMonitor* block = Atomic::load_acquire(&g_block_list);
 892   while (block != NULL) {
 893     assert(block->object() == CHAINMARKER, "must be a block header");
 894     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 895       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
 896       oop object = (oop)mid->object();
 897       if (object != NULL) {
 898         // Only process with closure if the object is set.
 899         closure->do_monitor(mid);
 900       }
 901     }
 902     block = (PaddedObjectMonitor*)block->_next_om;
 903   }
 904 }
 905 
 906 static bool monitors_used_above_threshold() {
 907   if (g_om_population == 0) {
 908     return false;
 909   }
 910   int monitors_used = g_om_population - g_om_free_count;
 911   int monitor_usage = (monitors_used * 100LL) / g_om_population;
 912   return monitor_usage > MonitorUsedDeflationThreshold;
 913 }
 914 
 915 bool ObjectSynchronizer::is_cleanup_needed() {
 916   if (MonitorUsedDeflationThreshold > 0) {
 917     if (monitors_used_above_threshold()) {
 918       return true;
 919     }
 920   }
 921   return needs_monitor_scavenge();
 922 }
 923 
 924 bool ObjectSynchronizer::needs_monitor_scavenge() {
 925   if (Atomic::load(&_forceMonitorScavenge) == 1) {
 926     log_info(monitorinflation)("Monitor scavenge needed, triggering safepoint cleanup.");
 927     return true;
 928   }
 929   return false;
 930 }
 931 
 932 void ObjectSynchronizer::oops_do(OopClosure* f) {
 933   // We only scan the global used list here (for moribund threads), and
 934   // the thread-local monitors in Thread::oops_do().
 935   global_used_oops_do(f);
 936 }
 937 
 938 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
 939   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 940   list_oops_do(g_om_in_use_list, f);
 941 }
 942 
 943 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
 944   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 945   list_oops_do(thread->om_in_use_list, f);
 946 }
 947 
 948 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) {
 949   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 950   ObjectMonitor* mid;
 951   for (mid = list; mid != NULL; mid = mid->_next_om) {
 952     if (mid->object() != NULL) {
 953       f->do_oop((oop*)mid->object_addr());
 954     }
 955   }
 956 }
 957 
 958 
 959 // -----------------------------------------------------------------------------
 960 // ObjectMonitor Lifecycle
 961 // -----------------------
 962 // Inflation unlinks monitors from the global g_free_list and
 963 // associates them with objects.  Deflation -- which occurs at
 964 // STW-time -- disassociates idle monitors from objects.  Such
 965 // scavenged monitors are returned to the g_free_list.
 966 //
 967 // The global list is protected by gListLock.  All the critical sections
 968 // are short and operate in constant-time.
 969 //
 970 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
 971 //
 972 // Lifecycle:
 973 // --   unassigned and on the global free list
 974 // --   unassigned and on a thread's private om_free_list
 975 // --   assigned to an object.  The object is inflated and the mark refers
 976 //      to the objectmonitor.
 977 
 978 
 979 // Constraining monitor pool growth via MonitorBound ...
 980 //
 981 // If MonitorBound is not set (<= 0), MonitorBound checks are disabled.
 982 //
 983 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
 984 // the rate of scavenging is driven primarily by GC.  As such,  we can find
 985 // an inordinate number of monitors in circulation.
 986 // To avoid that scenario we can artificially induce a STW safepoint
 987 // if the pool appears to be growing past some reasonable bound.
 988 // Generally we favor time in space-time tradeoffs, but as there's no
 989 // natural back-pressure on the # of extant monitors we need to impose some
 990 // type of limit.  Beware that if MonitorBound is set to too low a value
 991 // we could just loop. In addition, if MonitorBound is set to a low value
 992 // we'll incur more safepoints, which are harmful to performance.
 993 // See also: GuaranteedSafepointInterval
 994 //
 995 // If MonitorBound is set, the boundry applies to
 996 //     (g_om_population - g_om_free_count)
 997 // i.e., if there are not enough ObjectMonitors on the global free list,
 998 // then a safepoint deflation is induced. Picking a good MonitorBound value
 999 // is non-trivial.
1000 
1001 static void InduceScavenge(Thread* self, const char * Whence) {
1002   // Induce STW safepoint to trim monitors
1003   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1004   // More precisely, trigger a cleanup safepoint as the number
1005   // of active monitors passes the specified threshold.
1006   // TODO: assert thread state is reasonable
1007 
1008   if (Atomic::xchg (&_forceMonitorScavenge, 1) == 0) {
1009     VMThread::check_for_forced_cleanup();
1010   }
1011 }
1012 
1013 ObjectMonitor* ObjectSynchronizer::om_alloc(Thread* self) {
1014   // A large MAXPRIVATE value reduces both list lock contention
1015   // and list coherency traffic, but also tends to increase the
1016   // number of ObjectMonitors in circulation as well as the STW
1017   // scavenge costs.  As usual, we lean toward time in space-time
1018   // tradeoffs.
1019   const int MAXPRIVATE = 1024;
1020   stringStream ss;
1021   for (;;) {
1022     ObjectMonitor* m;
1023 
1024     // 1: try to allocate from the thread's local om_free_list.
1025     // Threads will attempt to allocate first from their local list, then
1026     // from the global list, and only after those attempts fail will the thread
1027     // attempt to instantiate new monitors.   Thread-local free lists take
1028     // heat off the gListLock and improve allocation latency, as well as reducing
1029     // coherency traffic on the shared global list.
1030     m = self->om_free_list;
1031     if (m != NULL) {
1032       self->om_free_list = m->_next_om;
1033       self->om_free_count--;
1034       guarantee(m->object() == NULL, "invariant");
1035       m->_next_om = self->om_in_use_list;
1036       self->om_in_use_list = m;
1037       self->om_in_use_count++;
1038       return m;
1039     }
1040 
1041     // 2: try to allocate from the global g_free_list
1042     // CONSIDER: use muxTry() instead of muxAcquire().
1043     // If the muxTry() fails then drop immediately into case 3.
1044     // If we're using thread-local free lists then try
1045     // to reprovision the caller's free list.
1046     if (g_free_list != NULL) {
1047       // Reprovision the thread's om_free_list.
1048       // Use bulk transfers to reduce the allocation rate and heat
1049       // on various locks.
1050       Thread::muxAcquire(&gListLock, "om_alloc(1)");
1051       for (int i = self->om_free_provision; --i >= 0 && g_free_list != NULL;) {
1052         g_om_free_count--;
1053         ObjectMonitor* take = g_free_list;
1054         g_free_list = take->_next_om;
1055         guarantee(take->object() == NULL, "invariant");
1056         take->Recycle();
1057         om_release(self, take, false);
1058       }
1059       Thread::muxRelease(&gListLock);
1060       self->om_free_provision += 1 + (self->om_free_provision/2);
1061       if (self->om_free_provision > MAXPRIVATE) self->om_free_provision = MAXPRIVATE;
1062 
1063       const int mx = MonitorBound;
1064       if (mx > 0 && (g_om_population-g_om_free_count) > mx) {
1065         // Not enough ObjectMonitors on the global free list.
1066         // We can't safely induce a STW safepoint from om_alloc() as our thread
1067         // state may not be appropriate for such activities and callers may hold
1068         // naked oops, so instead we defer the action.
1069         InduceScavenge(self, "om_alloc");
1070       }
1071       continue;
1072     }
1073 
1074     // 3: allocate a block of new ObjectMonitors
1075     // Both the local and global free lists are empty -- resort to malloc().
1076     // In the current implementation ObjectMonitors are TSM - immortal.
1077     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1078     // each ObjectMonitor to start at the beginning of a cache line,
1079     // so we use align_up().
1080     // A better solution would be to use C++ placement-new.
1081     // BEWARE: As it stands currently, we don't run the ctors!
1082     assert(_BLOCKSIZE > 1, "invariant");
1083     size_t neededsize = sizeof(PaddedObjectMonitor) * _BLOCKSIZE;
1084     PaddedObjectMonitor* temp;
1085     size_t aligned_size = neededsize + (DEFAULT_CACHE_LINE_SIZE - 1);
1086     void* real_malloc_addr = NEW_C_HEAP_ARRAY(char, aligned_size, mtInternal);
1087     temp = (PaddedObjectMonitor*)align_up(real_malloc_addr, DEFAULT_CACHE_LINE_SIZE);
1088     (void)memset((void *) temp, 0, neededsize);
1089 
1090     // Format the block.
1091     // initialize the linked list, each monitor points to its next
1092     // forming the single linked free list, the very first monitor
1093     // will points to next block, which forms the block list.
1094     // The trick of using the 1st element in the block as g_block_list
1095     // linkage should be reconsidered.  A better implementation would
1096     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1097 
1098     for (int i = 1; i < _BLOCKSIZE; i++) {
1099       temp[i]._next_om = (ObjectMonitor *)&temp[i+1];
1100     }
1101 
1102     // terminate the last monitor as the end of list
1103     temp[_BLOCKSIZE - 1]._next_om = NULL;
1104 
1105     // Element [0] is reserved for global list linkage
1106     temp[0].set_object(CHAINMARKER);
1107 
1108     // Consider carving out this thread's current request from the
1109     // block in hand.  This avoids some lock traffic and redundant
1110     // list activity.
1111 
1112     // Acquire the gListLock to manipulate g_block_list and g_free_list.
1113     // An Oyama-Taura-Yonezawa scheme might be more efficient.
1114     Thread::muxAcquire(&gListLock, "om_alloc(2)");
1115     g_om_population += _BLOCKSIZE-1;
1116     g_om_free_count += _BLOCKSIZE-1;
1117 
1118     // Add the new block to the list of extant blocks (g_block_list).
1119     // The very first ObjectMonitor in a block is reserved and dedicated.
1120     // It serves as blocklist "next" linkage.
1121     temp[0]._next_om = g_block_list;
1122     // There are lock-free uses of g_block_list so make sure that
1123     // the previous stores happen before we update g_block_list.
1124     Atomic::release_store(&g_block_list, temp);
1125 
1126     // Add the new string of ObjectMonitors to the global free list
1127     temp[_BLOCKSIZE - 1]._next_om = g_free_list;
1128     g_free_list = temp + 1;
1129     Thread::muxRelease(&gListLock);
1130   }
1131 }
1132 
1133 // Place "m" on the caller's private per-thread om_free_list.
1134 // In practice there's no need to clamp or limit the number of
1135 // monitors on a thread's om_free_list as the only non-allocation time
1136 // we'll call om_release() is to return a monitor to the free list after
1137 // a CAS attempt failed. This doesn't allow unbounded #s of monitors to
1138 // accumulate on a thread's free list.
1139 //
1140 // Key constraint: all ObjectMonitors on a thread's free list and the global
1141 // free list must have their object field set to null. This prevents the
1142 // scavenger -- deflate_monitor_list() -- from reclaiming them while we
1143 // are trying to release them.
1144 
1145 void ObjectSynchronizer::om_release(Thread* self, ObjectMonitor* m,
1146                                     bool from_per_thread_alloc) {
1147   guarantee(m->header().value() == 0, "invariant");
1148   guarantee(m->object() == NULL, "invariant");
1149   stringStream ss;
1150   guarantee((m->is_busy() | m->_recursions) == 0, "freeing in-use monitor: "
1151             "%s, recursions=" INTX_FORMAT, m->is_busy_to_string(&ss),
1152             m->_recursions);
1153   // _next_om is used for both per-thread in-use and free lists so
1154   // we have to remove 'm' from the in-use list first (as needed).
1155   if (from_per_thread_alloc) {
1156     // Need to remove 'm' from om_in_use_list.
1157     ObjectMonitor* cur_mid_in_use = NULL;
1158     bool extracted = false;
1159     for (ObjectMonitor* mid = self->om_in_use_list; mid != NULL; cur_mid_in_use = mid, mid = mid->_next_om) {
1160       if (m == mid) {
1161         // extract from per-thread in-use list
1162         if (mid == self->om_in_use_list) {
1163           self->om_in_use_list = mid->_next_om;
1164         } else if (cur_mid_in_use != NULL) {
1165           cur_mid_in_use->_next_om = mid->_next_om; // maintain the current thread in-use list
1166         }
1167         extracted = true;
1168         self->om_in_use_count--;
1169         break;
1170       }
1171     }
1172     assert(extracted, "Should have extracted from in-use list");
1173   }
1174 
1175   m->_next_om = self->om_free_list;
1176   self->om_free_list = m;
1177   self->om_free_count++;
1178 }
1179 
1180 // Return ObjectMonitors on a moribund thread's free and in-use
1181 // lists to the appropriate global lists. The ObjectMonitors on the
1182 // per-thread in-use list may still be in use by other threads.
1183 //
1184 // We currently call om_flush() from Threads::remove() before the
1185 // thread has been excised from the thread list and is no longer a
1186 // mutator. This means that om_flush() cannot run concurrently with
1187 // a safepoint and interleave with deflate_idle_monitors(). In
1188 // particular, this ensures that the thread's in-use monitors are
1189 // scanned by a GC safepoint, either via Thread::oops_do() (before
1190 // om_flush() is called) or via ObjectSynchronizer::oops_do() (after
1191 // om_flush() is called).
1192 
1193 void ObjectSynchronizer::om_flush(Thread* self) {
1194   ObjectMonitor* free_list = self->om_free_list;
1195   ObjectMonitor* free_tail = NULL;
1196   int free_count = 0;
1197   if (free_list != NULL) {
1198     ObjectMonitor* s;
1199     // The thread is going away. Set 'free_tail' to the last per-thread free
1200     // monitor which will be linked to g_free_list below under the gListLock.
1201     stringStream ss;
1202     for (s = free_list; s != NULL; s = s->_next_om) {
1203       free_count++;
1204       free_tail = s;
1205       guarantee(s->object() == NULL, "invariant");
1206       guarantee(!s->is_busy(), "must be !is_busy: %s", s->is_busy_to_string(&ss));
1207     }
1208     guarantee(free_tail != NULL, "invariant");
1209     assert(self->om_free_count == free_count, "free-count off");
1210     self->om_free_list = NULL;
1211     self->om_free_count = 0;
1212   }
1213 
1214   ObjectMonitor* in_use_list = self->om_in_use_list;
1215   ObjectMonitor* in_use_tail = NULL;
1216   int in_use_count = 0;
1217   if (in_use_list != NULL) {
1218     // The thread is going away, however the ObjectMonitors on the
1219     // om_in_use_list may still be in-use by other threads. Link
1220     // them to in_use_tail, which will be linked into the global
1221     // in-use list g_om_in_use_list below, under the gListLock.
1222     ObjectMonitor *cur_om;
1223     for (cur_om = in_use_list; cur_om != NULL; cur_om = cur_om->_next_om) {
1224       in_use_tail = cur_om;
1225       in_use_count++;
1226     }
1227     guarantee(in_use_tail != NULL, "invariant");
1228     assert(self->om_in_use_count == in_use_count, "in-use count off");
1229     self->om_in_use_list = NULL;
1230     self->om_in_use_count = 0;
1231   }
1232 
1233   Thread::muxAcquire(&gListLock, "om_flush");
1234   if (free_tail != NULL) {
1235     free_tail->_next_om = g_free_list;
1236     g_free_list = free_list;
1237     g_om_free_count += free_count;
1238   }
1239 
1240   if (in_use_tail != NULL) {
1241     in_use_tail->_next_om = g_om_in_use_list;
1242     g_om_in_use_list = in_use_list;
1243     g_om_in_use_count += in_use_count;
1244   }
1245 
1246   Thread::muxRelease(&gListLock);
1247 
1248   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1249   LogStreamHandle(Info, monitorinflation) lsh_info;
1250   LogStream* ls = NULL;
1251   if (log_is_enabled(Debug, monitorinflation)) {
1252     ls = &lsh_debug;
1253   } else if ((free_count != 0 || in_use_count != 0) &&
1254              log_is_enabled(Info, monitorinflation)) {
1255     ls = &lsh_info;
1256   }
1257   if (ls != NULL) {
1258     ls->print_cr("om_flush: jt=" INTPTR_FORMAT ", free_count=%d"
1259                  ", in_use_count=%d" ", om_free_provision=%d",
1260                  p2i(self), free_count, in_use_count, self->om_free_provision);
1261   }
1262 }
1263 
1264 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1265                                        const oop obj,
1266                                        ObjectSynchronizer::InflateCause cause) {
1267   assert(event != NULL, "invariant");
1268   assert(event->should_commit(), "invariant");
1269   event->set_monitorClass(obj->klass());
1270   event->set_address((uintptr_t)(void*)obj);
1271   event->set_cause((u1)cause);
1272   event->commit();
1273 }
1274 
1275 // Fast path code shared by multiple functions
1276 void ObjectSynchronizer::inflate_helper(oop obj) {
1277   markWord mark = obj->mark();
1278   if (mark.has_monitor()) {
1279     assert(ObjectSynchronizer::verify_objmon_isinpool(mark.monitor()), "monitor is invalid");
1280     assert(mark.monitor()->header().is_neutral(), "monitor must record a good object header");
1281     return;
1282   }
1283   inflate(Thread::current(), obj, inflate_cause_vm_internal);
1284 }
1285 
1286 ObjectMonitor* ObjectSynchronizer::inflate(Thread* self,
1287                                            oop object,
1288                                            const InflateCause cause) {
1289   // Inflate mutates the heap ...
1290   // Relaxing assertion for bug 6320749.
1291   assert(Universe::verify_in_progress() ||
1292          !SafepointSynchronize::is_at_safepoint(), "invariant");
1293 
1294   EventJavaMonitorInflate event;
1295 
1296   for (;;) {
1297     const markWord mark = object->mark();
1298     assert(!mark.has_bias_pattern(), "invariant");
1299 
1300     // The mark can be in one of the following states:
1301     // *  Inflated     - just return
1302     // *  Stack-locked - coerce it to inflated
1303     // *  INFLATING    - busy wait for conversion to complete
1304     // *  Neutral      - aggressively inflate the object.
1305     // *  BIASED       - Illegal.  We should never see this
1306 
1307     // CASE: inflated
1308     if (mark.has_monitor()) {
1309       ObjectMonitor* inf = mark.monitor();
1310       markWord dmw = inf->header();
1311       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1312       assert(inf->object() == object, "invariant");
1313       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1314       return inf;
1315     }
1316 
1317     // CASE: inflation in progress - inflating over a stack-lock.
1318     // Some other thread is converting from stack-locked to inflated.
1319     // Only that thread can complete inflation -- other threads must wait.
1320     // The INFLATING value is transient.
1321     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1322     // We could always eliminate polling by parking the thread on some auxiliary list.
1323     if (mark == markWord::INFLATING()) {
1324       read_stable_mark(object);
1325       continue;
1326     }
1327 
1328     // CASE: stack-locked
1329     // Could be stack-locked either by this thread or by some other thread.
1330     //
1331     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1332     // to install INFLATING into the mark word.  We originally installed INFLATING,
1333     // allocated the objectmonitor, and then finally STed the address of the
1334     // objectmonitor into the mark.  This was correct, but artificially lengthened
1335     // the interval in which INFLATED appeared in the mark, thus increasing
1336     // the odds of inflation contention.
1337     //
1338     // We now use per-thread private objectmonitor free lists.
1339     // These list are reprovisioned from the global free list outside the
1340     // critical INFLATING...ST interval.  A thread can transfer
1341     // multiple objectmonitors en-mass from the global free list to its local free list.
1342     // This reduces coherency traffic and lock contention on the global free list.
1343     // Using such local free lists, it doesn't matter if the om_alloc() call appears
1344     // before or after the CAS(INFLATING) operation.
1345     // See the comments in om_alloc().
1346 
1347     LogStreamHandle(Trace, monitorinflation) lsh;
1348 
1349     if (mark.has_locker()) {
1350       ObjectMonitor* m = om_alloc(self);
1351       // Optimistically prepare the objectmonitor - anticipate successful CAS
1352       // We do this before the CAS in order to minimize the length of time
1353       // in which INFLATING appears in the mark.
1354       m->Recycle();
1355       m->_Responsible  = NULL;
1356       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1357 
1358       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1359       if (cmp != mark) {
1360         om_release(self, m, true);
1361         continue;       // Interference -- just retry
1362       }
1363 
1364       // We've successfully installed INFLATING (0) into the mark-word.
1365       // This is the only case where 0 will appear in a mark-word.
1366       // Only the singular thread that successfully swings the mark-word
1367       // to 0 can perform (or more precisely, complete) inflation.
1368       //
1369       // Why do we CAS a 0 into the mark-word instead of just CASing the
1370       // mark-word from the stack-locked value directly to the new inflated state?
1371       // Consider what happens when a thread unlocks a stack-locked object.
1372       // It attempts to use CAS to swing the displaced header value from the
1373       // on-stack BasicLock back into the object header.  Recall also that the
1374       // header value (hash code, etc) can reside in (a) the object header, or
1375       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1376       // header in an ObjectMonitor.  The inflate() routine must copy the header
1377       // value from the BasicLock on the owner's stack to the ObjectMonitor, all
1378       // the while preserving the hashCode stability invariants.  If the owner
1379       // decides to release the lock while the value is 0, the unlock will fail
1380       // and control will eventually pass from slow_exit() to inflate.  The owner
1381       // will then spin, waiting for the 0 value to disappear.   Put another way,
1382       // the 0 causes the owner to stall if the owner happens to try to
1383       // drop the lock (restoring the header from the BasicLock to the object)
1384       // while inflation is in-progress.  This protocol avoids races that might
1385       // would otherwise permit hashCode values to change or "flicker" for an object.
1386       // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable.
1387       // 0 serves as a "BUSY" inflate-in-progress indicator.
1388 
1389 
1390       // fetch the displaced mark from the owner's stack.
1391       // The owner can't die or unwind past the lock while our INFLATING
1392       // object is in the mark.  Furthermore the owner can't complete
1393       // an unlock on the object, either.
1394       markWord dmw = mark.displaced_mark_helper();
1395       // Catch if the object's header is not neutral (not locked and
1396       // not marked is what we care about here).
1397       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1398 
1399       // Setup monitor fields to proper values -- prepare the monitor
1400       m->set_header(dmw);
1401 
1402       // Optimization: if the mark.locker stack address is associated
1403       // with this thread we could simply set m->_owner = self.
1404       // Note that a thread can inflate an object
1405       // that it has stack-locked -- as might happen in wait() -- directly
1406       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1407       m->set_owner_from(NULL, mark.locker());
1408       m->set_object(object);
1409       // TODO-FIXME: assert BasicLock->dhw != 0.
1410 
1411       // Must preserve store ordering. The monitor state must
1412       // be stable at the time of publishing the monitor address.
1413       guarantee(object->mark() == markWord::INFLATING(), "invariant");
1414       object->release_set_mark(markWord::encode(m));
1415 
1416       // Hopefully the performance counters are allocated on distinct cache lines
1417       // to avoid false sharing on MP systems ...
1418       OM_PERFDATA_OP(Inflations, inc());
1419       if (log_is_enabled(Trace, monitorinflation)) {
1420         ResourceMark rm(self);
1421         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1422                      INTPTR_FORMAT ", type='%s'", p2i(object),
1423                      object->mark().value(), object->klass()->external_name());
1424       }
1425       if (event.should_commit()) {
1426         post_monitor_inflate_event(&event, object, cause);
1427       }
1428       return m;
1429     }
1430 
1431     // CASE: neutral
1432     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1433     // If we know we're inflating for entry it's better to inflate by swinging a
1434     // pre-locked ObjectMonitor pointer into the object header.   A successful
1435     // CAS inflates the object *and* confers ownership to the inflating thread.
1436     // In the current implementation we use a 2-step mechanism where we CAS()
1437     // to inflate and then CAS() again to try to swing _owner from NULL to self.
1438     // An inflateTry() method that we could call from enter() would be useful.
1439 
1440     // Catch if the object's header is not neutral (not locked and
1441     // not marked is what we care about here).
1442     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1443     ObjectMonitor* m = om_alloc(self);
1444     // prepare m for installation - set monitor to initial state
1445     m->Recycle();
1446     m->set_header(mark);
1447     m->set_object(object);
1448     m->_Responsible  = NULL;
1449     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1450 
1451     if (object->cas_set_mark(markWord::encode(m), mark) != mark) {
1452       m->set_header(markWord::zero());
1453       m->set_object(NULL);
1454       m->Recycle();
1455       om_release(self, m, true);
1456       m = NULL;
1457       continue;
1458       // interference - the markword changed - just retry.
1459       // The state-transitions are one-way, so there's no chance of
1460       // live-lock -- "Inflated" is an absorbing state.
1461     }
1462 
1463     // Hopefully the performance counters are allocated on distinct
1464     // cache lines to avoid false sharing on MP systems ...
1465     OM_PERFDATA_OP(Inflations, inc());
1466     if (log_is_enabled(Trace, monitorinflation)) {
1467       ResourceMark rm(self);
1468       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
1469                    INTPTR_FORMAT ", type='%s'", p2i(object),
1470                    object->mark().value(), object->klass()->external_name());
1471     }
1472     if (event.should_commit()) {
1473       post_monitor_inflate_event(&event, object, cause);
1474     }
1475     return m;
1476   }
1477 }
1478 
1479 
1480 // We maintain a list of in-use monitors for each thread.
1481 //
1482 // deflate_thread_local_monitors() scans a single thread's in-use list, while
1483 // deflate_idle_monitors() scans only a global list of in-use monitors which
1484 // is populated only as a thread dies (see om_flush()).
1485 //
1486 // These operations are called at all safepoints, immediately after mutators
1487 // are stopped, but before any objects have moved. Collectively they traverse
1488 // the population of in-use monitors, deflating where possible. The scavenged
1489 // monitors are returned to the global monitor free list.
1490 //
1491 // Beware that we scavenge at *every* stop-the-world point. Having a large
1492 // number of monitors in-use could negatively impact performance. We also want
1493 // to minimize the total # of monitors in circulation, as they incur a small
1494 // footprint penalty.
1495 //
1496 // Perversely, the heap size -- and thus the STW safepoint rate --
1497 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1498 // which in turn can mean large(r) numbers of ObjectMonitors in circulation.
1499 // This is an unfortunate aspect of this design.
1500 
1501 // Deflate a single monitor if not in-use
1502 // Return true if deflated, false if in-use
1503 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1504                                          ObjectMonitor** free_head_p,
1505                                          ObjectMonitor** free_tail_p) {
1506   bool deflated;
1507   // Normal case ... The monitor is associated with obj.
1508   const markWord mark = obj->mark();
1509   guarantee(mark == markWord::encode(mid), "should match: mark="
1510             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, mark.value(),
1511             markWord::encode(mid).value());
1512   // Make sure that mark.monitor() and markWord::encode() agree:
1513   guarantee(mark.monitor() == mid, "should match: monitor()=" INTPTR_FORMAT
1514             ", mid=" INTPTR_FORMAT, p2i(mark.monitor()), p2i(mid));
1515   const markWord dmw = mid->header();
1516   guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1517 
1518   if (mid->is_busy()) {
1519     deflated = false;
1520   } else {
1521     // Deflate the monitor if it is no longer being used
1522     // It's idle - scavenge and return to the global free list
1523     // plain old deflation ...
1524     if (log_is_enabled(Trace, monitorinflation)) {
1525       ResourceMark rm;
1526       log_trace(monitorinflation)("deflate_monitor: "
1527                                   "object=" INTPTR_FORMAT ", mark="
1528                                   INTPTR_FORMAT ", type='%s'", p2i(obj),
1529                                   mark.value(), obj->klass()->external_name());
1530     }
1531 
1532     // Restore the header back to obj
1533     obj->release_set_mark(dmw);
1534     mid->clear();
1535 
1536     assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT,
1537            p2i(mid->object()));
1538 
1539     // Move the deflated ObjectMonitor to the working free list
1540     // defined by free_head_p and free_tail_p.
1541     if (*free_head_p == NULL) *free_head_p = mid;
1542     if (*free_tail_p != NULL) {
1543       // We append to the list so the caller can use mid->_next_om
1544       // to fix the linkages in its context.
1545       ObjectMonitor* prevtail = *free_tail_p;
1546       // Should have been cleaned up by the caller:
1547       assert(prevtail->_next_om == NULL, "cleaned up deflated?");
1548       prevtail->_next_om = mid;
1549     }
1550     *free_tail_p = mid;
1551     // At this point, mid->_next_om still refers to its current
1552     // value and another ObjectMonitor's _next_om field still
1553     // refers to this ObjectMonitor. Those linkages have to be
1554     // cleaned up by the caller who has the complete context.
1555     deflated = true;
1556   }
1557   return deflated;
1558 }
1559 
1560 // Walk a given monitor list, and deflate idle monitors
1561 // The given list could be a per-thread list or a global list
1562 // Caller acquires gListLock as needed.
1563 //
1564 // In the case of parallel processing of thread local monitor lists,
1565 // work is done by Threads::parallel_threads_do() which ensures that
1566 // each Java thread is processed by exactly one worker thread, and
1567 // thus avoid conflicts that would arise when worker threads would
1568 // process the same monitor lists concurrently.
1569 //
1570 // See also ParallelSPCleanupTask and
1571 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
1572 // Threads::parallel_java_threads_do() in thread.cpp.
1573 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** list_p,
1574                                              ObjectMonitor** free_head_p,
1575                                              ObjectMonitor** free_tail_p) {
1576   ObjectMonitor* mid;
1577   ObjectMonitor* next;
1578   ObjectMonitor* cur_mid_in_use = NULL;
1579   int deflated_count = 0;
1580 
1581   for (mid = *list_p; mid != NULL;) {
1582     oop obj = (oop) mid->object();
1583     if (obj != NULL && deflate_monitor(mid, obj, free_head_p, free_tail_p)) {
1584       // Deflation succeeded and already updated free_head_p and
1585       // free_tail_p as needed. Finish the move to the local free list
1586       // by unlinking mid from the global or per-thread in-use list.
1587       if (mid == *list_p) {
1588         *list_p = mid->_next_om;
1589       } else if (cur_mid_in_use != NULL) {
1590         cur_mid_in_use->_next_om = mid->_next_om; // maintain the current thread in-use list
1591       }
1592       next = mid->_next_om;
1593       mid->_next_om = NULL;  // This mid is current tail in the free_head_p list
1594       mid = next;
1595       deflated_count++;
1596     } else {
1597       cur_mid_in_use = mid;
1598       mid = mid->_next_om;
1599     }
1600   }
1601   return deflated_count;
1602 }
1603 
1604 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
1605   counters->n_in_use = 0;              // currently associated with objects
1606   counters->n_in_circulation = 0;      // extant
1607   counters->n_scavenged = 0;           // reclaimed (global and per-thread)
1608   counters->per_thread_scavenged = 0;  // per-thread scavenge total
1609   counters->per_thread_times = 0.0;    // per-thread scavenge times
1610 }
1611 
1612 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
1613   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1614   bool deflated = false;
1615 
1616   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
1617   ObjectMonitor* free_tail_p = NULL;
1618   elapsedTimer timer;
1619 
1620   if (log_is_enabled(Info, monitorinflation)) {
1621     timer.start();
1622   }
1623 
1624   // Prevent om_flush from changing mids in Thread dtor's during deflation
1625   // And in case the vm thread is acquiring a lock during a safepoint
1626   // See e.g. 6320749
1627   Thread::muxAcquire(&gListLock, "deflate_idle_monitors");
1628 
1629   // Note: the thread-local monitors lists get deflated in
1630   // a separate pass. See deflate_thread_local_monitors().
1631 
1632   // For moribund threads, scan g_om_in_use_list
1633   int deflated_count = 0;
1634   if (g_om_in_use_list) {
1635     counters->n_in_circulation += g_om_in_use_count;
1636     deflated_count = deflate_monitor_list((ObjectMonitor **)&g_om_in_use_list, &free_head_p, &free_tail_p);
1637     g_om_in_use_count -= deflated_count;
1638     counters->n_scavenged += deflated_count;
1639     counters->n_in_use += g_om_in_use_count;
1640   }
1641 
1642   if (free_head_p != NULL) {
1643     // Move the deflated ObjectMonitors back to the global free list.
1644     guarantee(free_tail_p != NULL && counters->n_scavenged > 0, "invariant");
1645     assert(free_tail_p->_next_om == NULL, "invariant");
1646     // constant-time list splice - prepend scavenged segment to g_free_list
1647     free_tail_p->_next_om = g_free_list;
1648     g_free_list = free_head_p;
1649   }
1650   Thread::muxRelease(&gListLock);
1651   timer.stop();
1652 
1653   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1654   LogStreamHandle(Info, monitorinflation) lsh_info;
1655   LogStream* ls = NULL;
1656   if (log_is_enabled(Debug, monitorinflation)) {
1657     ls = &lsh_debug;
1658   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
1659     ls = &lsh_info;
1660   }
1661   if (ls != NULL) {
1662     ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
1663   }
1664 }
1665 
1666 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
1667   // Report the cumulative time for deflating each thread's idle
1668   // monitors. Note: if the work is split among more than one
1669   // worker thread, then the reported time will likely be more
1670   // than a beginning to end measurement of the phase.
1671   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d", counters->per_thread_times, counters->per_thread_scavenged);
1672 
1673   g_om_free_count += counters->n_scavenged;
1674 
1675   if (log_is_enabled(Debug, monitorinflation)) {
1676     // exit_globals()'s call to audit_and_print_stats() is done
1677     // at the Info level.
1678     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
1679   } else if (log_is_enabled(Info, monitorinflation)) {
1680     Thread::muxAcquire(&gListLock, "finish_deflate_idle_monitors");
1681     log_info(monitorinflation)("g_om_population=%d, g_om_in_use_count=%d, "
1682                                "g_om_free_count=%d", g_om_population,
1683                                g_om_in_use_count, g_om_free_count);
1684     Thread::muxRelease(&gListLock);
1685   }
1686 
1687   Atomic::store(&_forceMonitorScavenge, 0);    // Reset
1688 
1689   OM_PERFDATA_OP(Deflations, inc(counters->n_scavenged));
1690   OM_PERFDATA_OP(MonExtant, set_value(counters->n_in_circulation));
1691 
1692   GVars.stw_random = os::random();
1693   GVars.stw_cycle++;
1694 }
1695 
1696 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
1697   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1698 
1699   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
1700   ObjectMonitor* free_tail_p = NULL;
1701   elapsedTimer timer;
1702 
1703   if (log_is_enabled(Info, safepoint, cleanup) ||
1704       log_is_enabled(Info, monitorinflation)) {
1705     timer.start();
1706   }
1707 
1708   int deflated_count = deflate_monitor_list(thread->om_in_use_list_addr(), &free_head_p, &free_tail_p);
1709 
1710   Thread::muxAcquire(&gListLock, "deflate_thread_local_monitors");
1711 
1712   // Adjust counters
1713   counters->n_in_circulation += thread->om_in_use_count;
1714   thread->om_in_use_count -= deflated_count;
1715   counters->n_scavenged += deflated_count;
1716   counters->n_in_use += thread->om_in_use_count;
1717   counters->per_thread_scavenged += deflated_count;
1718 
1719   if (free_head_p != NULL) {
1720     // Move the deflated ObjectMonitors back to the global free list.
1721     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
1722     assert(free_tail_p->_next_om == NULL, "invariant");
1723 
1724     // constant-time list splice - prepend scavenged segment to g_free_list
1725     free_tail_p->_next_om = g_free_list;
1726     g_free_list = free_head_p;
1727   }
1728 
1729   timer.stop();
1730   // Safepoint logging cares about cumulative per_thread_times and
1731   // we'll capture most of the cost, but not the muxRelease() which
1732   // should be cheap.
1733   counters->per_thread_times += timer.seconds();
1734 
1735   Thread::muxRelease(&gListLock);
1736 
1737   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1738   LogStreamHandle(Info, monitorinflation) lsh_info;
1739   LogStream* ls = NULL;
1740   if (log_is_enabled(Debug, monitorinflation)) {
1741     ls = &lsh_debug;
1742   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
1743     ls = &lsh_info;
1744   }
1745   if (ls != NULL) {
1746     ls->print_cr("jt=" INTPTR_FORMAT ": deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(thread), timer.seconds(), deflated_count);
1747   }
1748 }
1749 
1750 // Monitor cleanup on JavaThread::exit
1751 
1752 // Iterate through monitor cache and attempt to release thread's monitors
1753 // Gives up on a particular monitor if an exception occurs, but continues
1754 // the overall iteration, swallowing the exception.
1755 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1756  private:
1757   TRAPS;
1758 
1759  public:
1760   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
1761   void do_monitor(ObjectMonitor* mid) {
1762     if (mid->owner() == THREAD) {
1763       (void)mid->complete_exit(CHECK);
1764     }
1765   }
1766 };
1767 
1768 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
1769 // ignored.  This is meant to be called during JNI thread detach which assumes
1770 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1771 // Scanning the extant monitor list can be time consuming.
1772 // A simple optimization is to add a per-thread flag that indicates a thread
1773 // called jni_monitorenter() during its lifetime.
1774 //
1775 // Instead of No_Savepoint_Verifier it might be cheaper to
1776 // use an idiom of the form:
1777 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1778 //   <code that must not run at safepoint>
1779 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1780 // Since the tests are extremely cheap we could leave them enabled
1781 // for normal product builds.
1782 
1783 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
1784   assert(THREAD == JavaThread::current(), "must be current Java thread");
1785   NoSafepointVerifier nsv;
1786   ReleaseJavaMonitorsClosure rjmc(THREAD);
1787   Thread::muxAcquire(&gListLock, "release_monitors_owned_by_thread");
1788   ObjectSynchronizer::monitors_iterate(&rjmc);
1789   Thread::muxRelease(&gListLock);
1790   THREAD->clear_pending_exception();
1791 }
1792 
1793 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
1794   switch (cause) {
1795     case inflate_cause_vm_internal:    return "VM Internal";
1796     case inflate_cause_monitor_enter:  return "Monitor Enter";
1797     case inflate_cause_wait:           return "Monitor Wait";
1798     case inflate_cause_notify:         return "Monitor Notify";
1799     case inflate_cause_hash_code:      return "Monitor Hash Code";
1800     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
1801     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
1802     default:
1803       ShouldNotReachHere();
1804   }
1805   return "Unknown";
1806 }
1807 
1808 //------------------------------------------------------------------------------
1809 // Debugging code
1810 
1811 u_char* ObjectSynchronizer::get_gvars_addr() {
1812   return (u_char*)&GVars;
1813 }
1814 
1815 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() {
1816   return (u_char*)&GVars.hc_sequence;
1817 }
1818 
1819 size_t ObjectSynchronizer::get_gvars_size() {
1820   return sizeof(SharedGlobals);
1821 }
1822 
1823 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() {
1824   return (u_char*)&GVars.stw_random;
1825 }
1826 
1827 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) {
1828   assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant");
1829 
1830   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1831   LogStreamHandle(Info, monitorinflation) lsh_info;
1832   LogStreamHandle(Trace, monitorinflation) lsh_trace;
1833   LogStream* ls = NULL;
1834   if (log_is_enabled(Trace, monitorinflation)) {
1835     ls = &lsh_trace;
1836   } else if (log_is_enabled(Debug, monitorinflation)) {
1837     ls = &lsh_debug;
1838   } else if (log_is_enabled(Info, monitorinflation)) {
1839     ls = &lsh_info;
1840   }
1841   assert(ls != NULL, "sanity check");
1842 
1843   if (!on_exit) {
1844     // Not at VM exit so grab the global list lock.
1845     Thread::muxAcquire(&gListLock, "audit_and_print_stats");
1846   }
1847 
1848   // Log counts for the global and per-thread monitor lists:
1849   int chk_om_population = log_monitor_list_counts(ls);
1850   int error_cnt = 0;
1851 
1852   ls->print_cr("Checking global lists:");
1853 
1854   // Check g_om_population:
1855   if (g_om_population == chk_om_population) {
1856     ls->print_cr("g_om_population=%d equals chk_om_population=%d",
1857                  g_om_population, chk_om_population);
1858   } else {
1859     ls->print_cr("ERROR: g_om_population=%d is not equal to "
1860                  "chk_om_population=%d", g_om_population,
1861                  chk_om_population);
1862     error_cnt++;
1863   }
1864 
1865   // Check g_om_in_use_list and g_om_in_use_count:
1866   chk_global_in_use_list_and_count(ls, &error_cnt);
1867 
1868   // Check g_free_list and g_om_free_count:
1869   chk_global_free_list_and_count(ls, &error_cnt);
1870 
1871   if (!on_exit) {
1872     Thread::muxRelease(&gListLock);
1873   }
1874 
1875   ls->print_cr("Checking per-thread lists:");
1876 
1877   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1878     // Check om_in_use_list and om_in_use_count:
1879     chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt);
1880 
1881     // Check om_free_list and om_free_count:
1882     chk_per_thread_free_list_and_count(jt, ls, &error_cnt);
1883   }
1884 
1885   if (error_cnt == 0) {
1886     ls->print_cr("No errors found in monitor list checks.");
1887   } else {
1888     log_error(monitorinflation)("found monitor list errors: error_cnt=%d", error_cnt);
1889   }
1890 
1891   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
1892       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
1893     // When exiting this log output is at the Info level. When called
1894     // at a safepoint, this log output is at the Trace level since
1895     // there can be a lot of it.
1896     log_in_use_monitor_details(ls, on_exit);
1897   }
1898 
1899   ls->flush();
1900 
1901   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
1902 }
1903 
1904 // Check a free monitor entry; log any errors.
1905 void ObjectSynchronizer::chk_free_entry(JavaThread* jt, ObjectMonitor* n,
1906                                         outputStream * out, int *error_cnt_p) {
1907   stringStream ss;
1908   if (n->is_busy()) {
1909     if (jt != NULL) {
1910       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
1911                     ": free per-thread monitor must not be busy: %s", p2i(jt),
1912                     p2i(n), n->is_busy_to_string(&ss));
1913     } else {
1914       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
1915                     "must not be busy: %s", p2i(n), n->is_busy_to_string(&ss));
1916     }
1917     *error_cnt_p = *error_cnt_p + 1;
1918   }
1919   if (n->header().value() != 0) {
1920     if (jt != NULL) {
1921       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
1922                     ": free per-thread monitor must have NULL _header "
1923                     "field: _header=" INTPTR_FORMAT, p2i(jt), p2i(n),
1924                     n->header().value());
1925     } else {
1926       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
1927                     "must have NULL _header field: _header=" INTPTR_FORMAT,
1928                     p2i(n), n->header().value());
1929     }
1930     *error_cnt_p = *error_cnt_p + 1;
1931   }
1932   if (n->object() != NULL) {
1933     if (jt != NULL) {
1934       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
1935                     ": free per-thread monitor must have NULL _object "
1936                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
1937                     p2i(n->object()));
1938     } else {
1939       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
1940                     "must have NULL _object field: _object=" INTPTR_FORMAT,
1941                     p2i(n), p2i(n->object()));
1942     }
1943     *error_cnt_p = *error_cnt_p + 1;
1944   }
1945 }
1946 
1947 // Check the global free list and count; log the results of the checks.
1948 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
1949                                                         int *error_cnt_p) {
1950   int chk_om_free_count = 0;
1951   for (ObjectMonitor* n = g_free_list; n != NULL; n = n->_next_om) {
1952     chk_free_entry(NULL /* jt */, n, out, error_cnt_p);
1953     chk_om_free_count++;
1954   }
1955   if (g_om_free_count == chk_om_free_count) {
1956     out->print_cr("g_om_free_count=%d equals chk_om_free_count=%d",
1957                   g_om_free_count, chk_om_free_count);
1958   } else {
1959     out->print_cr("ERROR: g_om_free_count=%d is not equal to "
1960                   "chk_om_free_count=%d", g_om_free_count,
1961                   chk_om_free_count);
1962     *error_cnt_p = *error_cnt_p + 1;
1963   }
1964 }
1965 
1966 // Check the global in-use list and count; log the results of the checks.
1967 void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out,
1968                                                           int *error_cnt_p) {
1969   int chk_om_in_use_count = 0;
1970   for (ObjectMonitor* n = g_om_in_use_list; n != NULL; n = n->_next_om) {
1971     chk_in_use_entry(NULL /* jt */, n, out, error_cnt_p);
1972     chk_om_in_use_count++;
1973   }
1974   if (g_om_in_use_count == chk_om_in_use_count) {
1975     out->print_cr("g_om_in_use_count=%d equals chk_om_in_use_count=%d", g_om_in_use_count,
1976                   chk_om_in_use_count);
1977   } else {
1978     out->print_cr("ERROR: g_om_in_use_count=%d is not equal to chk_om_in_use_count=%d",
1979                   g_om_in_use_count, chk_om_in_use_count);
1980     *error_cnt_p = *error_cnt_p + 1;
1981   }
1982 }
1983 
1984 // Check an in-use monitor entry; log any errors.
1985 void ObjectSynchronizer::chk_in_use_entry(JavaThread* jt, ObjectMonitor* n,
1986                                           outputStream * out, int *error_cnt_p) {
1987   if (n->header().value() == 0) {
1988     if (jt != NULL) {
1989       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
1990                     ": in-use per-thread monitor must have non-NULL _header "
1991                     "field.", p2i(jt), p2i(n));
1992     } else {
1993       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
1994                     "must have non-NULL _header field.", p2i(n));
1995     }
1996     *error_cnt_p = *error_cnt_p + 1;
1997   }
1998   if (n->object() == NULL) {
1999     if (jt != NULL) {
2000       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2001                     ": in-use per-thread monitor must have non-NULL _object "
2002                     "field.", p2i(jt), p2i(n));
2003     } else {
2004       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
2005                     "must have non-NULL _object field.", p2i(n));
2006     }
2007     *error_cnt_p = *error_cnt_p + 1;
2008   }
2009   const oop obj = (oop)n->object();
2010   const markWord mark = obj->mark();
2011   if (!mark.has_monitor()) {
2012     if (jt != NULL) {
2013       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2014                     ": in-use per-thread monitor's object does not think "
2015                     "it has a monitor: obj=" INTPTR_FORMAT ", mark="
2016                     INTPTR_FORMAT,  p2i(jt), p2i(n), p2i(obj), mark.value());
2017     } else {
2018       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2019                     "monitor's object does not think it has a monitor: obj="
2020                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
2021                     p2i(obj), mark.value());
2022     }
2023     *error_cnt_p = *error_cnt_p + 1;
2024   }
2025   ObjectMonitor* const obj_mon = mark.monitor();
2026   if (n != obj_mon) {
2027     if (jt != NULL) {
2028       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2029                     ": in-use per-thread monitor's object does not refer "
2030                     "to the same monitor: obj=" INTPTR_FORMAT ", mark="
2031                     INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt),
2032                     p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
2033     } else {
2034       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2035                     "monitor's object does not refer to the same monitor: obj="
2036                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
2037                     INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
2038     }
2039     *error_cnt_p = *error_cnt_p + 1;
2040   }
2041 }
2042 
2043 // Check the thread's free list and count; log the results of the checks.
2044 void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt,
2045                                                             outputStream * out,
2046                                                             int *error_cnt_p) {
2047   int chk_om_free_count = 0;
2048   for (ObjectMonitor* n = jt->om_free_list; n != NULL; n = n->_next_om) {
2049     chk_free_entry(jt, n, out, error_cnt_p);
2050     chk_om_free_count++;
2051   }
2052   if (jt->om_free_count == chk_om_free_count) {
2053     out->print_cr("jt=" INTPTR_FORMAT ": om_free_count=%d equals "
2054                   "chk_om_free_count=%d", p2i(jt), jt->om_free_count, chk_om_free_count);
2055   } else {
2056     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_free_count=%d is not "
2057                   "equal to chk_om_free_count=%d", p2i(jt), jt->om_free_count,
2058                   chk_om_free_count);
2059     *error_cnt_p = *error_cnt_p + 1;
2060   }
2061 }
2062 
2063 // Check the thread's in-use list and count; log the results of the checks.
2064 void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt,
2065                                                               outputStream * out,
2066                                                               int *error_cnt_p) {
2067   int chk_om_in_use_count = 0;
2068   for (ObjectMonitor* n = jt->om_in_use_list; n != NULL; n = n->_next_om) {
2069     chk_in_use_entry(jt, n, out, error_cnt_p);
2070     chk_om_in_use_count++;
2071   }
2072   if (jt->om_in_use_count == chk_om_in_use_count) {
2073     out->print_cr("jt=" INTPTR_FORMAT ": om_in_use_count=%d equals "
2074                   "chk_om_in_use_count=%d", p2i(jt), jt->om_in_use_count,
2075                   chk_om_in_use_count);
2076   } else {
2077     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_in_use_count=%d is not "
2078                   "equal to chk_om_in_use_count=%d", p2i(jt), jt->om_in_use_count,
2079                   chk_om_in_use_count);
2080     *error_cnt_p = *error_cnt_p + 1;
2081   }
2082 }
2083 
2084 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
2085 // flags indicate why the entry is in-use, 'object' and 'object type'
2086 // indicate the associated object and its type.
2087 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out,
2088                                                     bool on_exit) {
2089   if (!on_exit) {
2090     // Not at VM exit so grab the global list lock.
2091     Thread::muxAcquire(&gListLock, "log_in_use_monitor_details");
2092   }
2093 
2094   stringStream ss;
2095   if (g_om_in_use_count > 0) {
2096     out->print_cr("In-use global monitor info:");
2097     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2098     out->print_cr("%18s  %s  %18s  %18s",
2099                   "monitor", "BHL", "object", "object type");
2100     out->print_cr("==================  ===  ==================  ==================");
2101     for (ObjectMonitor* n = g_om_in_use_list; n != NULL; n = n->_next_om) {
2102       const oop obj = (oop) n->object();
2103       const markWord mark = n->header();
2104       ResourceMark rm;
2105       out->print(INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT "  %s", p2i(n),
2106                  n->is_busy() != 0, mark.hash() != 0, n->owner() != NULL,
2107                  p2i(obj), obj->klass()->external_name());
2108       if (n->is_busy() != 0) {
2109         out->print(" (%s)", n->is_busy_to_string(&ss));
2110         ss.reset();
2111       }
2112       out->cr();
2113     }
2114   }
2115 
2116   if (!on_exit) {
2117     Thread::muxRelease(&gListLock);
2118   }
2119 
2120   out->print_cr("In-use per-thread monitor info:");
2121   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2122   out->print_cr("%18s  %18s  %s  %18s  %18s",
2123                 "jt", "monitor", "BHL", "object", "object type");
2124   out->print_cr("==================  ==================  ===  ==================  ==================");
2125   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2126     for (ObjectMonitor* n = jt->om_in_use_list; n != NULL; n = n->_next_om) {
2127       const oop obj = (oop) n->object();
2128       const markWord mark = n->header();
2129       ResourceMark rm;
2130       out->print(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT
2131                  "  %s", p2i(jt), p2i(n), n->is_busy() != 0,
2132                  mark.hash() != 0, n->owner() != NULL, p2i(obj),
2133                  obj->klass()->external_name());
2134       if (n->is_busy() != 0) {
2135         out->print(" (%s)", n->is_busy_to_string(&ss));
2136         ss.reset();
2137       }
2138       out->cr();
2139     }
2140   }
2141 
2142   out->flush();
2143 }
2144 
2145 // Log counts for the global and per-thread monitor lists and return
2146 // the population count.
2147 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
2148   int pop_count = 0;
2149   out->print_cr("%18s  %10s  %10s  %10s",
2150                 "Global Lists:", "InUse", "Free", "Total");
2151   out->print_cr("==================  ==========  ==========  ==========");
2152   out->print_cr("%18s  %10d  %10d  %10d", "",
2153                 g_om_in_use_count, g_om_free_count, g_om_population);
2154   pop_count += g_om_in_use_count + g_om_free_count;
2155 
2156   out->print_cr("%18s  %10s  %10s  %10s",
2157                 "Per-Thread Lists:", "InUse", "Free", "Provision");
2158   out->print_cr("==================  ==========  ==========  ==========");
2159 
2160   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2161     out->print_cr(INTPTR_FORMAT "  %10d  %10d  %10d", p2i(jt),
2162                   jt->om_in_use_count, jt->om_free_count, jt->om_free_provision);
2163     pop_count += jt->om_in_use_count + jt->om_free_count;
2164   }
2165   return pop_count;
2166 }
2167 
2168 #ifndef PRODUCT
2169 
2170 // Check if monitor belongs to the monitor cache
2171 // The list is grow-only so it's *relatively* safe to traverse
2172 // the list of extant blocks without taking a lock.
2173 
2174 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
2175   PaddedObjectMonitor* block = Atomic::load_acquire(&g_block_list);
2176   while (block != NULL) {
2177     assert(block->object() == CHAINMARKER, "must be a block header");
2178     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
2179       address mon = (address)monitor;
2180       address blk = (address)block;
2181       size_t diff = mon - blk;
2182       assert((diff % sizeof(PaddedObjectMonitor)) == 0, "must be aligned");
2183       return 1;
2184     }
2185     block = (PaddedObjectMonitor*)block->_next_om;
2186   }
2187   return 0;
2188 }
2189 
2190 #endif