1 /*
   2  * Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "logging/logStream.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/metaspaceShared.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/handles.inline.hpp"
  40 #include "runtime/handshake.hpp"
  41 #include "runtime/interfaceSupport.inline.hpp"
  42 #include "runtime/mutexLocker.hpp"
  43 #include "runtime/objectMonitor.hpp"
  44 #include "runtime/objectMonitor.inline.hpp"
  45 #include "runtime/osThread.hpp"
  46 #include "runtime/safepointMechanism.inline.hpp"
  47 #include "runtime/safepointVerifiers.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/synchronizer.hpp"
  51 #include "runtime/thread.inline.hpp"
  52 #include "runtime/timer.hpp"
  53 #include "runtime/vframe.hpp"
  54 #include "runtime/vmThread.hpp"
  55 #include "utilities/align.hpp"
  56 #include "utilities/dtrace.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/preserveException.hpp"
  59 
  60 // The "core" versions of monitor enter and exit reside in this file.
  61 // The interpreter and compilers contain specialized transliterated
  62 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  63 // for instance.  If you make changes here, make sure to modify the
  64 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  65 //
  66 // -----------------------------------------------------------------------------
  67 
  68 #ifdef DTRACE_ENABLED
  69 
  70 // Only bother with this argument setup if dtrace is available
  71 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  72 
  73 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  74   char* bytes = NULL;                                                      \
  75   int len = 0;                                                             \
  76   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  77   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  78   if (klassname != NULL) {                                                 \
  79     bytes = (char*)klassname->bytes();                                     \
  80     len = klassname->utf8_length();                                        \
  81   }
  82 
  83 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  84   {                                                                        \
  85     if (DTraceMonitorProbes) {                                             \
  86       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  87       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  88                            (uintptr_t)(monitor), bytes, len, (millis));    \
  89     }                                                                      \
  90   }
  91 
  92 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  93 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  94 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  95 
  96 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  97   {                                                                        \
  98     if (DTraceMonitorProbes) {                                             \
  99       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 100       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
 101                                     (uintptr_t)(monitor), bytes, len);     \
 102     }                                                                      \
 103   }
 104 
 105 #else //  ndef DTRACE_ENABLED
 106 
 107 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 108 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 109 
 110 #endif // ndef DTRACE_ENABLED
 111 
 112 // This exists only as a workaround of dtrace bug 6254741
 113 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 114   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 115   return 0;
 116 }
 117 
 118 #define NINFLATIONLOCKS 256
 119 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 120 
 121 // global list of blocks of monitors
 122 PaddedObjectMonitor* ObjectSynchronizer::g_block_list = NULL;
 123 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false;
 124 bool volatile ObjectSynchronizer::_is_special_deflation_requested = false;
 125 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0;
 126 
 127 struct ObjectMonitorListGlobals {
 128   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 129   // These are highly shared list related variables.
 130   // To avoid false-sharing they need to be the sole occupants of a cache line.
 131 
 132   // Global ObjectMonitor free list. Newly allocated and deflated
 133   // ObjectMonitors are prepended here.
 134   ObjectMonitor* _free_list;
 135   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(ObjectMonitor*));
 136 
 137   // Global ObjectMonitor in-use list. When a JavaThread is exiting,
 138   // ObjectMonitors on its per-thread in-use list are prepended here.
 139   ObjectMonitor* _in_use_list;
 140   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(ObjectMonitor*));
 141 
 142   // Global ObjectMonitor wait list. Deflated ObjectMonitors wait on
 143   // this list until after a handshake or a safepoint for platforms
 144   // that don't support handshakes. After the handshake or safepoint,
 145   // the deflated ObjectMonitors are prepended to free_list.
 146   ObjectMonitor* _wait_list;
 147   DEFINE_PAD_MINUS_SIZE(3, OM_CACHE_LINE_SIZE, sizeof(ObjectMonitor*));
 148 
 149   int _free_count;    // # on free_list
 150   DEFINE_PAD_MINUS_SIZE(4, OM_CACHE_LINE_SIZE, sizeof(int));
 151 
 152   int _in_use_count;  // # on in_use_list
 153   DEFINE_PAD_MINUS_SIZE(5, OM_CACHE_LINE_SIZE, sizeof(int));
 154 
 155   int _population;    // # Extant -- in circulation
 156   DEFINE_PAD_MINUS_SIZE(6, OM_CACHE_LINE_SIZE, sizeof(int));
 157 
 158   int _wait_count;    // # on wait_list
 159   DEFINE_PAD_MINUS_SIZE(7, OM_CACHE_LINE_SIZE, sizeof(int));
 160 };
 161 static ObjectMonitorListGlobals om_list_globals;
 162 
 163 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 164 
 165 
 166 // =====================> Spin-lock functions
 167 
 168 // ObjectMonitors are not lockable outside of this file. We use spin-locks
 169 // implemented using a bit in the _next_om field instead of the heavier
 170 // weight locking mechanisms for faster list management.
 171 
 172 #define OM_LOCK_BIT 0x1
 173 
 174 // Return true if the ObjectMonitor is locked.
 175 // Otherwise returns false.
 176 static bool is_locked(ObjectMonitor* om) {
 177   return ((intptr_t)om->next_om_acquire() & OM_LOCK_BIT) == OM_LOCK_BIT;
 178 }
 179 
 180 // Mark an ObjectMonitor* with OM_LOCK_BIT and return it.
 181 static ObjectMonitor* mark_om_ptr(ObjectMonitor* om) {
 182   return (ObjectMonitor*)((intptr_t)om | OM_LOCK_BIT);
 183 }
 184 
 185 // Return the unmarked next field in an ObjectMonitor. Note: the next
 186 // field may or may not have been marked with OM_LOCK_BIT originally.
 187 static ObjectMonitor* unmarked_next(ObjectMonitor* om) {
 188   return (ObjectMonitor*)((intptr_t)om->next_om() & ~OM_LOCK_BIT);
 189 }
 190 
 191 // Try to lock an ObjectMonitor. Returns true if locking was successful.
 192 // Otherwise returns false.
 193 static bool try_om_lock(ObjectMonitor* om) {
 194   // Get current next field without any OM_LOCK_BIT value.
 195   ObjectMonitor* next = unmarked_next(om);
 196   if (om->try_set_next_om(next, mark_om_ptr(next)) != next) {
 197     return false;  // Cannot lock the ObjectMonitor.
 198   }
 199   return true;
 200 }
 201 
 202 // Lock an ObjectMonitor.
 203 static void om_lock(ObjectMonitor* om) {
 204   while (true) {
 205     if (try_om_lock(om)) {
 206       return;
 207     }
 208   }
 209 }
 210 
 211 // Unlock an ObjectMonitor.
 212 static void om_unlock(ObjectMonitor* om) {
 213   ObjectMonitor* next = om->next_om();
 214   guarantee(((intptr_t)next & OM_LOCK_BIT) == OM_LOCK_BIT, "next=" INTPTR_FORMAT
 215             " must have OM_LOCK_BIT=%x set.", p2i(next), OM_LOCK_BIT);
 216 
 217   next = (ObjectMonitor*)((intptr_t)next & ~OM_LOCK_BIT);  // Clear OM_LOCK_BIT.
 218   om->release_set_next_om(next);
 219 }
 220 
 221 // Get the list head after locking it. Returns the list head or NULL
 222 // if the list is empty.
 223 static ObjectMonitor* get_list_head_locked(ObjectMonitor** list_p) {
 224   while (true) {
 225     // Acquire semantics not needed on this list load since we're
 226     // checking for NULL here or following up with a cmpxchg() via
 227     // try_om_lock() below and we retry on cmpxchg() failure.
 228     ObjectMonitor* mid = Atomic::load(list_p);
 229     if (mid == NULL) {
 230       return NULL;  // The list is empty.
 231     }
 232     if (try_om_lock(mid)) {
 233       // Acquire semantics not needed on this list load since memory is
 234       // already consistent due to the cmpxchg() via try_om_lock() above.
 235       if (Atomic::load(list_p) != mid) {
 236         // The list head changed before we could lock it so we have to retry.
 237         om_unlock(mid);
 238         continue;
 239       }
 240       return mid;
 241     }
 242   }
 243 }
 244 
 245 #undef OM_LOCK_BIT
 246 
 247 
 248 // =====================> List Management functions
 249 
 250 // Prepend a list of ObjectMonitors to the specified *list_p. 'tail' is
 251 // the last ObjectMonitor in the list and there are 'count' on the list.
 252 // Also updates the specified *count_p.
 253 static void prepend_list_to_common(ObjectMonitor* list, ObjectMonitor* tail,
 254                                    int count, ObjectMonitor** list_p,
 255                                    int* count_p) {
 256   while (true) {
 257     // Acquire semantics not needed on this list load since we're
 258     // following up with a cmpxchg() via try_om_lock() below and we
 259     // retry on cmpxchg() failure.
 260     ObjectMonitor* cur = Atomic::load(list_p);
 261     // Prepend list to *list_p.
 262     if (!try_om_lock(tail)) {
 263       // Failed to lock tail due to a list walker so try it all again.
 264       continue;
 265     }
 266     // Release semantics not needed on this "unlock" since memory is
 267     // already consistent due to the cmpxchg() via try_om_lock() above.
 268     tail->set_next_om(cur);  // tail now points to cur (and unlocks tail)
 269     if (cur == NULL) {
 270       // No potential race with takers or other prependers since
 271       // *list_p is empty.
 272       if (Atomic::cmpxchg(list_p, cur, list) == cur) {
 273         // Successfully switched *list_p to the list value.
 274         Atomic::add(count_p, count);
 275         break;
 276       }
 277       // Implied else: try it all again
 278     } else {
 279       if (!try_om_lock(cur)) {
 280         continue;  // failed to lock cur so try it all again
 281       }
 282       // We locked cur so try to switch *list_p to the list value.
 283       if (Atomic::cmpxchg(list_p, cur, list) != cur) {
 284         // The list head has changed so unlock cur and try again:
 285         om_unlock(cur);
 286         continue;
 287       }
 288       Atomic::add(count_p, count);
 289       om_unlock(cur);
 290       break;
 291     }
 292   }
 293 }
 294 
 295 // Prepend a newly allocated block of ObjectMonitors to g_block_list and
 296 // om_list_globals._free_list. Also updates om_list_globals._population
 297 // and om_list_globals._free_count.
 298 void ObjectSynchronizer::prepend_block_to_lists(PaddedObjectMonitor* new_blk) {
 299   // First we handle g_block_list:
 300   while (true) {
 301     PaddedObjectMonitor* cur = Atomic::load(&g_block_list);
 302     // Prepend new_blk to g_block_list. The first ObjectMonitor in
 303     // a block is reserved for use as linkage to the next block.
 304     new_blk[0].set_next_om(cur);
 305     if (Atomic::cmpxchg(&g_block_list, cur, new_blk) == cur) {
 306       // Successfully switched g_block_list to the new_blk value.
 307       Atomic::add(&om_list_globals._population, _BLOCKSIZE - 1);
 308       break;
 309     }
 310     // Implied else: try it all again
 311   }
 312 
 313   // Second we handle om_list_globals._free_list:
 314   prepend_list_to_common(new_blk + 1, &new_blk[_BLOCKSIZE - 1], _BLOCKSIZE - 1,
 315                          &om_list_globals._free_list, &om_list_globals._free_count);
 316 }
 317 
 318 // Prepend a list of ObjectMonitors to om_list_globals._free_list.
 319 // 'tail' is the last ObjectMonitor in the list and there are 'count'
 320 // on the list. Also updates om_list_globals._free_count.
 321 static void prepend_list_to_global_free_list(ObjectMonitor* list,
 322                                              ObjectMonitor* tail, int count) {
 323   prepend_list_to_common(list, tail, count, &om_list_globals._free_list,
 324                          &om_list_globals._free_count);
 325 }
 326 
 327 // Prepend a list of ObjectMonitors to om_list_globals._wait_list.
 328 // 'tail' is the last ObjectMonitor in the list and there are 'count'
 329 // on the list. Also updates om_list_globals._wait_count.
 330 static void prepend_list_to_global_wait_list(ObjectMonitor* list,
 331                                              ObjectMonitor* tail, int count) {
 332   prepend_list_to_common(list, tail, count, &om_list_globals._wait_list,
 333                          &om_list_globals._wait_count);
 334 }
 335 
 336 // Prepend a list of ObjectMonitors to om_list_globals._in_use_list.
 337 // 'tail' is the last ObjectMonitor in the list and there are 'count'
 338 // on the list. Also updates om_list_globals._in_use_list.
 339 static void prepend_list_to_global_in_use_list(ObjectMonitor* list,
 340                                                ObjectMonitor* tail, int count) {
 341   prepend_list_to_common(list, tail, count, &om_list_globals._in_use_list,
 342                          &om_list_globals._in_use_count);
 343 }
 344 
 345 // Prepend an ObjectMonitor to the specified list. Also updates
 346 // the specified counter.
 347 static void prepend_to_common(ObjectMonitor* m, ObjectMonitor** list_p,
 348                               int* count_p) {
 349   while (true) {
 350     om_lock(m);  // Lock m so we can safely update its next field.
 351     ObjectMonitor* cur = NULL;
 352     // Lock the list head to guard against races with a list walker
 353     // or async deflater thread (which only races in om_in_use_list):
 354     if ((cur = get_list_head_locked(list_p)) != NULL) {
 355       // List head is now locked so we can safely switch it. Release
 356       // semantics not needed on this "unlock" since memory is already
 357       // consistent due to the cmpxchg() via get_list_head_locked() above.
 358       m->set_next_om(cur);  // m now points to cur (and unlocks m)
 359       OrderAccess::storestore();  // Make sure set_next_om() is seen first.
 360       Atomic::store(list_p, m);  // Switch list head to unlocked m.
 361       om_unlock(cur);
 362       break;
 363     }
 364     // The list is empty so try to set the list head.
 365     assert(cur == NULL, "cur must be NULL: cur=" INTPTR_FORMAT, p2i(cur));
 366     // Release semantics not needed on this "unlock" since memory
 367     // is already consistent.
 368     m->set_next_om(cur);  // m now points to NULL (and unlocks m)
 369     if (Atomic::cmpxchg(list_p, cur, m) == cur) {
 370       // List head is now unlocked m.
 371       break;
 372     }
 373     // Implied else: try it all again
 374   }
 375   Atomic::inc(count_p);
 376 }
 377 
 378 // Prepend an ObjectMonitor to a per-thread om_free_list.
 379 // Also updates the per-thread om_free_count.
 380 static void prepend_to_om_free_list(Thread* self, ObjectMonitor* m) {
 381   prepend_to_common(m, &self->om_free_list, &self->om_free_count);
 382 }
 383 
 384 // Prepend an ObjectMonitor to a per-thread om_in_use_list.
 385 // Also updates the per-thread om_in_use_count.
 386 static void prepend_to_om_in_use_list(Thread* self, ObjectMonitor* m) {
 387   prepend_to_common(m, &self->om_in_use_list, &self->om_in_use_count);
 388 }
 389 
 390 // Take an ObjectMonitor from the start of the specified list. Also
 391 // decrements the specified counter. Returns NULL if none are available.
 392 static ObjectMonitor* take_from_start_of_common(ObjectMonitor** list_p,
 393                                                 int* count_p) {
 394   ObjectMonitor* take = NULL;
 395   // Lock the list head to guard against races with a list walker
 396   // or async deflater thread (which only races in om_list_globals._free_list):
 397   if ((take = get_list_head_locked(list_p)) == NULL) {
 398     return NULL;  // None are available.
 399   }
 400   ObjectMonitor* next = unmarked_next(take);
 401   // Switch locked list head to next (which unlocks the list head, but
 402   // leaves take locked). Release semantics not needed on this "unlock"
 403   // since memory is already consistent due to the cmpxchg() via
 404   // get_list_head_locked() above.
 405   Atomic::store(list_p, next);
 406   Atomic::dec(count_p);
 407   // Unlock take, but leave the next value for any lagging list
 408   // walkers. It will get cleaned up when take is prepended to
 409   // the in-use list:
 410   om_unlock(take);
 411   return take;
 412 }
 413 
 414 // Take an ObjectMonitor from the start of the om_list_globals._free_list.
 415 // Also updates om_list_globals._free_count. Returns NULL if none are
 416 // available.
 417 static ObjectMonitor* take_from_start_of_global_free_list() {
 418   return take_from_start_of_common(&om_list_globals._free_list,
 419                                    &om_list_globals._free_count);
 420 }
 421 
 422 // Take an ObjectMonitor from the start of a per-thread free-list.
 423 // Also updates om_free_count. Returns NULL if none are available.
 424 static ObjectMonitor* take_from_start_of_om_free_list(Thread* self) {
 425   return take_from_start_of_common(&self->om_free_list, &self->om_free_count);
 426 }
 427 
 428 
 429 // =====================> Quick functions
 430 
 431 // The quick_* forms are special fast-path variants used to improve
 432 // performance.  In the simplest case, a "quick_*" implementation could
 433 // simply return false, in which case the caller will perform the necessary
 434 // state transitions and call the slow-path form.
 435 // The fast-path is designed to handle frequently arising cases in an efficient
 436 // manner and is just a degenerate "optimistic" variant of the slow-path.
 437 // returns true  -- to indicate the call was satisfied.
 438 // returns false -- to indicate the call needs the services of the slow-path.
 439 // A no-loitering ordinance is in effect for code in the quick_* family
 440 // operators: safepoints or indefinite blocking (blocking that might span a
 441 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 442 // entry.
 443 //
 444 // Consider: An interesting optimization is to have the JIT recognize the
 445 // following common idiom:
 446 //   synchronized (someobj) { .... ; notify(); }
 447 // That is, we find a notify() or notifyAll() call that immediately precedes
 448 // the monitorexit operation.  In that case the JIT could fuse the operations
 449 // into a single notifyAndExit() runtime primitive.
 450 
 451 bool ObjectSynchronizer::quick_notify(oopDesc* obj, Thread* self, bool all) {
 452   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 453   assert(self->is_Java_thread(), "invariant");
 454   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 455   NoSafepointVerifier nsv;
 456   if (obj == NULL) return false;  // slow-path for invalid obj
 457   const markWord mark = obj->mark();
 458 
 459   if (mark.has_locker() && self->is_lock_owned((address)mark.locker())) {
 460     // Degenerate notify
 461     // stack-locked by caller so by definition the implied waitset is empty.
 462     return true;
 463   }
 464 
 465   if (mark.has_monitor()) {
 466     ObjectMonitor* const mon = mark.monitor();
 467     assert(mon->object() == obj, "invariant");
 468     if (mon->owner() != self) return false;  // slow-path for IMS exception
 469 
 470     if (mon->first_waiter() != NULL) {
 471       // We have one or more waiters. Since this is an inflated monitor
 472       // that we own, we can transfer one or more threads from the waitset
 473       // to the entrylist here and now, avoiding the slow-path.
 474       if (all) {
 475         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
 476       } else {
 477         DTRACE_MONITOR_PROBE(notify, mon, obj, self);
 478       }
 479       int free_count = 0;
 480       do {
 481         mon->INotify(self);
 482         ++free_count;
 483       } while (mon->first_waiter() != NULL && all);
 484       OM_PERFDATA_OP(Notifications, inc(free_count));
 485     }
 486     return true;
 487   }
 488 
 489   // biased locking and any other IMS exception states take the slow-path
 490   return false;
 491 }
 492 
 493 
 494 // The LockNode emitted directly at the synchronization site would have
 495 // been too big if it were to have included support for the cases of inflated
 496 // recursive enter and exit, so they go here instead.
 497 // Note that we can't safely call AsyncPrintJavaStack() from within
 498 // quick_enter() as our thread state remains _in_Java.
 499 
 500 bool ObjectSynchronizer::quick_enter(oop obj, Thread* self,
 501                                      BasicLock * lock) {
 502   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 503   assert(self->is_Java_thread(), "invariant");
 504   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 505   NoSafepointVerifier nsv;
 506   if (obj == NULL) return false;       // Need to throw NPE
 507 
 508   const markWord mark = obj->mark();
 509 
 510   if (mark.has_monitor()) {
 511     ObjectMonitor* const m = mark.monitor();
 512     if (AsyncDeflateIdleMonitors) {
 513       // An async deflation can race us before we manage to make the
 514       // ObjectMonitor busy by setting the owner below. If we detect
 515       // that race we just bail out to the slow-path here.
 516       if (m->object() == NULL) {
 517         return false;
 518       }
 519     } else {
 520       assert(m->object() == obj, "invariant");
 521     }
 522     Thread* const owner = (Thread *) m->_owner;
 523 
 524     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 525     // and observability
 526     // Case: light contention possibly amenable to TLE
 527     // Case: TLE inimical operations such as nested/recursive synchronization
 528 
 529     if (owner == self) {
 530       m->_recursions++;
 531       return true;
 532     }
 533 
 534     // This Java Monitor is inflated so obj's header will never be
 535     // displaced to this thread's BasicLock. Make the displaced header
 536     // non-NULL so this BasicLock is not seen as recursive nor as
 537     // being locked. We do this unconditionally so that this thread's
 538     // BasicLock cannot be mis-interpreted by any stack walkers. For
 539     // performance reasons, stack walkers generally first check for
 540     // Biased Locking in the object's header, the second check is for
 541     // stack-locking in the object's header, the third check is for
 542     // recursive stack-locking in the displaced header in the BasicLock,
 543     // and last are the inflated Java Monitor (ObjectMonitor) checks.
 544     lock->set_displaced_header(markWord::unused_mark());
 545 
 546     if (owner == NULL && m->try_set_owner_from(NULL, self) == NULL) {
 547       assert(m->_recursions == 0, "invariant");
 548       return true;
 549     }
 550   }
 551 
 552   // Note that we could inflate in quick_enter.
 553   // This is likely a useful optimization
 554   // Critically, in quick_enter() we must not:
 555   // -- perform bias revocation, or
 556   // -- block indefinitely, or
 557   // -- reach a safepoint
 558 
 559   return false;        // revert to slow-path
 560 }
 561 
 562 // -----------------------------------------------------------------------------
 563 // Monitor Enter/Exit
 564 // The interpreter and compiler assembly code tries to lock using the fast path
 565 // of this algorithm. Make sure to update that code if the following function is
 566 // changed. The implementation is extremely sensitive to race condition. Be careful.
 567 
 568 void ObjectSynchronizer::enter(Handle obj, BasicLock* lock, TRAPS) {
 569   if (UseBiasedLocking) {
 570     if (!SafepointSynchronize::is_at_safepoint()) {
 571       BiasedLocking::revoke(obj, THREAD);
 572     } else {
 573       BiasedLocking::revoke_at_safepoint(obj);
 574     }
 575   }
 576 
 577   markWord mark = obj->mark();
 578   assert(!mark.has_bias_pattern(), "should not see bias pattern here");
 579 
 580   if (mark.is_neutral()) {
 581     // Anticipate successful CAS -- the ST of the displaced mark must
 582     // be visible <= the ST performed by the CAS.
 583     lock->set_displaced_header(mark);
 584     if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) {
 585       return;
 586     }
 587     // Fall through to inflate() ...
 588   } else if (mark.has_locker() &&
 589              THREAD->is_lock_owned((address)mark.locker())) {
 590     assert(lock != mark.locker(), "must not re-lock the same lock");
 591     assert(lock != (BasicLock*)obj->mark().value(), "don't relock with same BasicLock");
 592     lock->set_displaced_header(markWord::from_pointer(NULL));
 593     return;
 594   }
 595 
 596   // The object header will never be displaced to this lock,
 597   // so it does not matter what the value is, except that it
 598   // must be non-zero to avoid looking like a re-entrant lock,
 599   // and must not look locked either.
 600   lock->set_displaced_header(markWord::unused_mark());
 601   // An async deflation can race after the inflate() call and before
 602   // enter() can make the ObjectMonitor busy. enter() returns false if
 603   // we have lost the race to async deflation and we simply try again.
 604   while (true) {
 605     ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_monitor_enter);
 606     if (monitor->enter(THREAD)) {
 607       return;
 608     }
 609   }
 610 }
 611 
 612 void ObjectSynchronizer::exit(oop object, BasicLock* lock, TRAPS) {
 613   markWord mark = object->mark();
 614   // We cannot check for Biased Locking if we are racing an inflation.
 615   assert(mark == markWord::INFLATING() ||
 616          !mark.has_bias_pattern(), "should not see bias pattern here");
 617 
 618   markWord dhw = lock->displaced_header();
 619   if (dhw.value() == 0) {
 620     // If the displaced header is NULL, then this exit matches up with
 621     // a recursive enter. No real work to do here except for diagnostics.
 622 #ifndef PRODUCT
 623     if (mark != markWord::INFLATING()) {
 624       // Only do diagnostics if we are not racing an inflation. Simply
 625       // exiting a recursive enter of a Java Monitor that is being
 626       // inflated is safe; see the has_monitor() comment below.
 627       assert(!mark.is_neutral(), "invariant");
 628       assert(!mark.has_locker() ||
 629              THREAD->is_lock_owned((address)mark.locker()), "invariant");
 630       if (mark.has_monitor()) {
 631         // The BasicLock's displaced_header is marked as a recursive
 632         // enter and we have an inflated Java Monitor (ObjectMonitor).
 633         // This is a special case where the Java Monitor was inflated
 634         // after this thread entered the stack-lock recursively. When a
 635         // Java Monitor is inflated, we cannot safely walk the Java
 636         // Monitor owner's stack and update the BasicLocks because a
 637         // Java Monitor can be asynchronously inflated by a thread that
 638         // does not own the Java Monitor.
 639         ObjectMonitor* m = mark.monitor();
 640         assert(((oop)(m->object()))->mark() == mark, "invariant");
 641         assert(m->is_entered(THREAD), "invariant");
 642       }
 643     }
 644 #endif
 645     return;
 646   }
 647 
 648   if (mark == markWord::from_pointer(lock)) {
 649     // If the object is stack-locked by the current thread, try to
 650     // swing the displaced header from the BasicLock back to the mark.
 651     assert(dhw.is_neutral(), "invariant");
 652     if (object->cas_set_mark(dhw, mark) == mark) {
 653       return;
 654     }
 655   }
 656 
 657   // We have to take the slow-path of possible inflation and then exit.
 658   // The ObjectMonitor* can't be async deflated until ownership is
 659   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 660   ObjectMonitor* monitor = inflate(THREAD, object, inflate_cause_vm_internal);
 661   monitor->exit(true, THREAD);
 662 }
 663 
 664 // -----------------------------------------------------------------------------
 665 // Class Loader  support to workaround deadlocks on the class loader lock objects
 666 // Also used by GC
 667 // complete_exit()/reenter() are used to wait on a nested lock
 668 // i.e. to give up an outer lock completely and then re-enter
 669 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 670 //  1) complete_exit lock1 - saving recursion count
 671 //  2) wait on lock2
 672 //  3) when notified on lock2, unlock lock2
 673 //  4) reenter lock1 with original recursion count
 674 //  5) lock lock2
 675 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 676 intx ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 677   if (UseBiasedLocking) {
 678     BiasedLocking::revoke(obj, THREAD);
 679     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 680   }
 681 
 682   // The ObjectMonitor* can't be async deflated until ownership is
 683   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 684   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal);
 685   intptr_t ret_code = monitor->complete_exit(THREAD);
 686   return ret_code;
 687 }
 688 
 689 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 690 void ObjectSynchronizer::reenter(Handle obj, intx recursions, TRAPS) {
 691   if (UseBiasedLocking) {
 692     BiasedLocking::revoke(obj, THREAD);
 693     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 694   }
 695 
 696   // An async deflation can race after the inflate() call and before
 697   // reenter() -> enter() can make the ObjectMonitor busy. reenter() ->
 698   // enter() returns false if we have lost the race to async deflation
 699   // and we simply try again.
 700   while (true) {
 701     ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal);
 702     if (monitor->reenter(recursions, THREAD)) {
 703       return;
 704     }
 705   }
 706 }
 707 
 708 // -----------------------------------------------------------------------------
 709 // JNI locks on java objects
 710 // NOTE: must use heavy weight monitor to handle jni monitor enter
 711 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 712   // the current locking is from JNI instead of Java code
 713   if (UseBiasedLocking) {
 714     BiasedLocking::revoke(obj, THREAD);
 715     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 716   }
 717   THREAD->set_current_pending_monitor_is_from_java(false);
 718   // An async deflation can race after the inflate() call and before
 719   // enter() can make the ObjectMonitor busy. enter() returns false if
 720   // we have lost the race to async deflation and we simply try again.
 721   while (true) {
 722     ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_jni_enter);
 723     if (monitor->enter(THREAD)) {
 724       break;
 725     }
 726   }
 727   THREAD->set_current_pending_monitor_is_from_java(true);
 728 }
 729 
 730 // NOTE: must use heavy weight monitor to handle jni monitor exit
 731 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 732   if (UseBiasedLocking) {
 733     Handle h_obj(THREAD, obj);
 734     BiasedLocking::revoke(h_obj, THREAD);
 735     obj = h_obj();
 736   }
 737   assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 738 
 739   // The ObjectMonitor* can't be async deflated until ownership is
 740   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 741   ObjectMonitor* monitor = inflate(THREAD, obj, inflate_cause_jni_exit);
 742   // If this thread has locked the object, exit the monitor. We
 743   // intentionally do not use CHECK here because we must exit the
 744   // monitor even if an exception is pending.
 745   if (monitor->check_owner(THREAD)) {
 746     monitor->exit(true, THREAD);
 747   }
 748 }
 749 
 750 // -----------------------------------------------------------------------------
 751 // Internal VM locks on java objects
 752 // standard constructor, allows locking failures
 753 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool do_lock) {
 754   _dolock = do_lock;
 755   _thread = thread;
 756   _thread->check_for_valid_safepoint_state();
 757   _obj = obj;
 758 
 759   if (_dolock) {
 760     ObjectSynchronizer::enter(_obj, &_lock, _thread);
 761   }
 762 }
 763 
 764 ObjectLocker::~ObjectLocker() {
 765   if (_dolock) {
 766     ObjectSynchronizer::exit(_obj(), &_lock, _thread);
 767   }
 768 }
 769 
 770 
 771 // -----------------------------------------------------------------------------
 772 //  Wait/Notify/NotifyAll
 773 // NOTE: must use heavy weight monitor to handle wait()
 774 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 775   if (UseBiasedLocking) {
 776     BiasedLocking::revoke(obj, THREAD);
 777     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 778   }
 779   if (millis < 0) {
 780     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 781   }
 782   // The ObjectMonitor* can't be async deflated because the _waiters
 783   // field is incremented before ownership is dropped and decremented
 784   // after ownership is regained.
 785   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_wait);
 786 
 787   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 788   monitor->wait(millis, true, THREAD);
 789 
 790   // This dummy call is in place to get around dtrace bug 6254741.  Once
 791   // that's fixed we can uncomment the following line, remove the call
 792   // and change this function back into a "void" func.
 793   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 794   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 795   return ret_code;
 796 }
 797 
 798 void ObjectSynchronizer::wait_uninterruptibly(Handle obj, jlong millis, TRAPS) {
 799   if (UseBiasedLocking) {
 800     BiasedLocking::revoke(obj, THREAD);
 801     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 802   }
 803   if (millis < 0) {
 804     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 805   }
 806   // The ObjectMonitor* can't be async deflated because the _waiters
 807   // field is incremented before ownership is dropped and decremented
 808   // after ownership is regained.
 809   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_wait);
 810   monitor->wait(millis, false, THREAD);
 811 }
 812 
 813 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 814   if (UseBiasedLocking) {
 815     BiasedLocking::revoke(obj, THREAD);
 816     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 817   }
 818 
 819   markWord mark = obj->mark();
 820   if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) {
 821     return;
 822   }
 823   // The ObjectMonitor* can't be async deflated until ownership is
 824   // dropped by the calling thread.
 825   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_notify);
 826   monitor->notify(THREAD);
 827 }
 828 
 829 // NOTE: see comment of notify()
 830 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 831   if (UseBiasedLocking) {
 832     BiasedLocking::revoke(obj, THREAD);
 833     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 834   }
 835 
 836   markWord mark = obj->mark();
 837   if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) {
 838     return;
 839   }
 840   // The ObjectMonitor* can't be async deflated until ownership is
 841   // dropped by the calling thread.
 842   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_notify);
 843   monitor->notifyAll(THREAD);
 844 }
 845 
 846 // -----------------------------------------------------------------------------
 847 // Hash Code handling
 848 //
 849 // Performance concern:
 850 // OrderAccess::storestore() calls release() which at one time stored 0
 851 // into the global volatile OrderAccess::dummy variable. This store was
 852 // unnecessary for correctness. Many threads storing into a common location
 853 // causes considerable cache migration or "sloshing" on large SMP systems.
 854 // As such, I avoided using OrderAccess::storestore(). In some cases
 855 // OrderAccess::fence() -- which incurs local latency on the executing
 856 // processor -- is a better choice as it scales on SMP systems.
 857 //
 858 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 859 // a discussion of coherency costs. Note that all our current reference
 860 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 861 // x64, and SPARC.
 862 //
 863 // As a general policy we use "volatile" to control compiler-based reordering
 864 // and explicit fences (barriers) to control for architectural reordering
 865 // performed by the CPU(s) or platform.
 866 
 867 struct SharedGlobals {
 868   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 869   // These are highly shared mostly-read variables.
 870   // To avoid false-sharing they need to be the sole occupants of a cache line.
 871   volatile int stw_random;
 872   volatile int stw_cycle;
 873   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 874   // Hot RW variable -- Sequester to avoid false-sharing
 875   volatile int hc_sequence;
 876   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 877 };
 878 
 879 static SharedGlobals GVars;
 880 
 881 static markWord read_stable_mark(oop obj) {
 882   markWord mark = obj->mark();
 883   if (!mark.is_being_inflated()) {
 884     return mark;       // normal fast-path return
 885   }
 886 
 887   int its = 0;
 888   for (;;) {
 889     markWord mark = obj->mark();
 890     if (!mark.is_being_inflated()) {
 891       return mark;    // normal fast-path return
 892     }
 893 
 894     // The object is being inflated by some other thread.
 895     // The caller of read_stable_mark() must wait for inflation to complete.
 896     // Avoid live-lock
 897     // TODO: consider calling SafepointSynchronize::do_call_back() while
 898     // spinning to see if there's a safepoint pending.  If so, immediately
 899     // yielding or blocking would be appropriate.  Avoid spinning while
 900     // there is a safepoint pending.
 901     // TODO: add inflation contention performance counters.
 902     // TODO: restrict the aggregate number of spinners.
 903 
 904     ++its;
 905     if (its > 10000 || !os::is_MP()) {
 906       if (its & 1) {
 907         os::naked_yield();
 908       } else {
 909         // Note that the following code attenuates the livelock problem but is not
 910         // a complete remedy.  A more complete solution would require that the inflating
 911         // thread hold the associated inflation lock.  The following code simply restricts
 912         // the number of spinners to at most one.  We'll have N-2 threads blocked
 913         // on the inflationlock, 1 thread holding the inflation lock and using
 914         // a yield/park strategy, and 1 thread in the midst of inflation.
 915         // A more refined approach would be to change the encoding of INFLATING
 916         // to allow encapsulation of a native thread pointer.  Threads waiting for
 917         // inflation to complete would use CAS to push themselves onto a singly linked
 918         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 919         // and calling park().  When inflation was complete the thread that accomplished inflation
 920         // would detach the list and set the markword to inflated with a single CAS and
 921         // then for each thread on the list, set the flag and unpark() the thread.
 922         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 923         // wakes at most one thread whereas we need to wake the entire list.
 924         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 925         int YieldThenBlock = 0;
 926         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 927         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 928         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 929         while (obj->mark() == markWord::INFLATING()) {
 930           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 931           // so we periodically call self->_ParkEvent->park(1).
 932           // We use a mixed spin/yield/block mechanism.
 933           if ((YieldThenBlock++) >= 16) {
 934             Thread::current()->_ParkEvent->park(1);
 935           } else {
 936             os::naked_yield();
 937           }
 938         }
 939         Thread::muxRelease(gInflationLocks + ix);
 940       }
 941     } else {
 942       SpinPause();       // SMP-polite spinning
 943     }
 944   }
 945 }
 946 
 947 // hashCode() generation :
 948 //
 949 // Possibilities:
 950 // * MD5Digest of {obj,stw_random}
 951 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function.
 952 // * A DES- or AES-style SBox[] mechanism
 953 // * One of the Phi-based schemes, such as:
 954 //   2654435761 = 2^32 * Phi (golden ratio)
 955 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ;
 956 // * A variation of Marsaglia's shift-xor RNG scheme.
 957 // * (obj ^ stw_random) is appealing, but can result
 958 //   in undesirable regularity in the hashCode values of adjacent objects
 959 //   (objects allocated back-to-back, in particular).  This could potentially
 960 //   result in hashtable collisions and reduced hashtable efficiency.
 961 //   There are simple ways to "diffuse" the middle address bits over the
 962 //   generated hashCode values:
 963 
 964 static inline intptr_t get_next_hash(Thread* self, oop obj) {
 965   intptr_t value = 0;
 966   if (hashCode == 0) {
 967     // This form uses global Park-Miller RNG.
 968     // On MP system we'll have lots of RW access to a global, so the
 969     // mechanism induces lots of coherency traffic.
 970     value = os::random();
 971   } else if (hashCode == 1) {
 972     // This variation has the property of being stable (idempotent)
 973     // between STW operations.  This can be useful in some of the 1-0
 974     // synchronization schemes.
 975     intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3;
 976     value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random;
 977   } else if (hashCode == 2) {
 978     value = 1;            // for sensitivity testing
 979   } else if (hashCode == 3) {
 980     value = ++GVars.hc_sequence;
 981   } else if (hashCode == 4) {
 982     value = cast_from_oop<intptr_t>(obj);
 983   } else {
 984     // Marsaglia's xor-shift scheme with thread-specific state
 985     // This is probably the best overall implementation -- we'll
 986     // likely make this the default in future releases.
 987     unsigned t = self->_hashStateX;
 988     t ^= (t << 11);
 989     self->_hashStateX = self->_hashStateY;
 990     self->_hashStateY = self->_hashStateZ;
 991     self->_hashStateZ = self->_hashStateW;
 992     unsigned v = self->_hashStateW;
 993     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 994     self->_hashStateW = v;
 995     value = v;
 996   }
 997 
 998   value &= markWord::hash_mask;
 999   if (value == 0) value = 0xBAD;
1000   assert(value != markWord::no_hash, "invariant");
1001   return value;
1002 }
1003 
1004 intptr_t ObjectSynchronizer::FastHashCode(Thread* self, oop obj) {
1005   if (UseBiasedLocking) {
1006     // NOTE: many places throughout the JVM do not expect a safepoint
1007     // to be taken here, in particular most operations on perm gen
1008     // objects. However, we only ever bias Java instances and all of
1009     // the call sites of identity_hash that might revoke biases have
1010     // been checked to make sure they can handle a safepoint. The
1011     // added check of the bias pattern is to avoid useless calls to
1012     // thread-local storage.
1013     if (obj->mark().has_bias_pattern()) {
1014       // Handle for oop obj in case of STW safepoint
1015       Handle hobj(self, obj);
1016       // Relaxing assertion for bug 6320749.
1017       assert(Universe::verify_in_progress() ||
1018              !SafepointSynchronize::is_at_safepoint(),
1019              "biases should not be seen by VM thread here");
1020       BiasedLocking::revoke(hobj, JavaThread::current());
1021       obj = hobj();
1022       assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
1023     }
1024   }
1025 
1026   // hashCode() is a heap mutator ...
1027   // Relaxing assertion for bug 6320749.
1028   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
1029          !SafepointSynchronize::is_at_safepoint(), "invariant");
1030   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
1031          self->is_Java_thread() , "invariant");
1032   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
1033          ((JavaThread *)self)->thread_state() != _thread_blocked, "invariant");
1034 
1035   while (true) {
1036     ObjectMonitor* monitor = NULL;
1037     markWord temp, test;
1038     intptr_t hash;
1039     markWord mark = read_stable_mark(obj);
1040 
1041     // object should remain ineligible for biased locking
1042     assert(!mark.has_bias_pattern(), "invariant");
1043 
1044     if (mark.is_neutral()) {            // if this is a normal header
1045       hash = mark.hash();
1046       if (hash != 0) {                  // if it has a hash, just return it
1047         return hash;
1048       }
1049       hash = get_next_hash(self, obj);  // get a new hash
1050       temp = mark.copy_set_hash(hash);  // merge the hash into header
1051                                         // try to install the hash
1052       test = obj->cas_set_mark(temp, mark);
1053       if (test == mark) {               // if the hash was installed, return it
1054         return hash;
1055       }
1056       // Failed to install the hash. It could be that another thread
1057       // installed the hash just before our attempt or inflation has
1058       // occurred or... so we fall thru to inflate the monitor for
1059       // stability and then install the hash.
1060     } else if (mark.has_monitor()) {
1061       monitor = mark.monitor();
1062       temp = monitor->header();
1063       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1064       hash = temp.hash();
1065       if (hash != 0) {
1066         // It has a hash.
1067 
1068         // Separate load of dmw/header above from the loads in
1069         // is_being_async_deflated().
1070         if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
1071           // A non-multiple copy atomic (nMCA) machine needs a bigger
1072           // hammer to separate the load above and the loads below.
1073           OrderAccess::fence();
1074         } else {
1075           OrderAccess::loadload();
1076         }
1077         if (monitor->is_being_async_deflated()) {
1078           // But we can't safely use the hash if we detect that async
1079           // deflation has occurred. So we attempt to restore the
1080           // header/dmw to the object's header so that we only retry
1081           // once if the deflater thread happens to be slow.
1082           monitor->install_displaced_markword_in_object(obj);
1083           continue;
1084         }
1085         return hash;
1086       }
1087       // Fall thru so we only have one place that installs the hash in
1088       // the ObjectMonitor.
1089     } else if (self->is_lock_owned((address)mark.locker())) {
1090       // This is a stack lock owned by the calling thread so fetch the
1091       // displaced markWord from the BasicLock on the stack.
1092       temp = mark.displaced_mark_helper();
1093       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1094       hash = temp.hash();
1095       if (hash != 0) {                  // if it has a hash, just return it
1096         return hash;
1097       }
1098       // WARNING:
1099       // The displaced header in the BasicLock on a thread's stack
1100       // is strictly immutable. It CANNOT be changed in ANY cases.
1101       // So we have to inflate the stack lock into an ObjectMonitor
1102       // even if the current thread owns the lock. The BasicLock on
1103       // a thread's stack can be asynchronously read by other threads
1104       // during an inflate() call so any change to that stack memory
1105       // may not propagate to other threads correctly.
1106     }
1107 
1108     // Inflate the monitor to set the hash.
1109 
1110     // An async deflation can race after the inflate() call and before we
1111     // can update the ObjectMonitor's header with the hash value below.
1112     monitor = inflate(self, obj, inflate_cause_hash_code);
1113     // Load ObjectMonitor's header/dmw field and see if it has a hash.
1114     mark = monitor->header();
1115     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1116     hash = mark.hash();
1117     if (hash == 0) {                    // if it does not have a hash
1118       hash = get_next_hash(self, obj);  // get a new hash
1119       temp = mark.copy_set_hash(hash);  // merge the hash into header
1120       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1121       uintptr_t v = Atomic::cmpxchg((volatile uintptr_t*)monitor->header_addr(), mark.value(), temp.value());
1122       test = markWord(v);
1123       if (test != mark) {
1124         // The attempt to update the ObjectMonitor's header/dmw field
1125         // did not work. This can happen if another thread managed to
1126         // merge in the hash just before our cmpxchg().
1127         // If we add any new usages of the header/dmw field, this code
1128         // will need to be updated.
1129         hash = test.hash();
1130         assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
1131         assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash");
1132       }
1133       if (monitor->is_being_async_deflated()) {
1134         // If we detect that async deflation has occurred, then we
1135         // attempt to restore the header/dmw to the object's header
1136         // so that we only retry once if the deflater thread happens
1137         // to be slow.
1138         monitor->install_displaced_markword_in_object(obj);
1139         continue;
1140       }
1141     }
1142     // We finally get the hash.
1143     return hash;
1144   }
1145 }
1146 
1147 // Deprecated -- use FastHashCode() instead.
1148 
1149 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
1150   return FastHashCode(Thread::current(), obj());
1151 }
1152 
1153 
1154 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
1155                                                    Handle h_obj) {
1156   if (UseBiasedLocking) {
1157     BiasedLocking::revoke(h_obj, thread);
1158     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
1159   }
1160 
1161   assert(thread == JavaThread::current(), "Can only be called on current thread");
1162   oop obj = h_obj();
1163 
1164   markWord mark = read_stable_mark(obj);
1165 
1166   // Uncontended case, header points to stack
1167   if (mark.has_locker()) {
1168     return thread->is_lock_owned((address)mark.locker());
1169   }
1170   // Contended case, header points to ObjectMonitor (tagged pointer)
1171   if (mark.has_monitor()) {
1172     // The first stage of async deflation does not affect any field
1173     // used by this comparison so the ObjectMonitor* is usable here.
1174     ObjectMonitor* monitor = mark.monitor();
1175     return monitor->is_entered(thread) != 0;
1176   }
1177   // Unlocked case, header in place
1178   assert(mark.is_neutral(), "sanity check");
1179   return false;
1180 }
1181 
1182 // Be aware of this method could revoke bias of the lock object.
1183 // This method queries the ownership of the lock handle specified by 'h_obj'.
1184 // If the current thread owns the lock, it returns owner_self. If no
1185 // thread owns the lock, it returns owner_none. Otherwise, it will return
1186 // owner_other.
1187 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
1188 (JavaThread *self, Handle h_obj) {
1189   // The caller must beware this method can revoke bias, and
1190   // revocation can result in a safepoint.
1191   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
1192   assert(self->thread_state() != _thread_blocked, "invariant");
1193 
1194   // Possible mark states: neutral, biased, stack-locked, inflated
1195 
1196   if (UseBiasedLocking && h_obj()->mark().has_bias_pattern()) {
1197     // CASE: biased
1198     BiasedLocking::revoke(h_obj, self);
1199     assert(!h_obj->mark().has_bias_pattern(),
1200            "biases should be revoked by now");
1201   }
1202 
1203   assert(self == JavaThread::current(), "Can only be called on current thread");
1204   oop obj = h_obj();
1205   markWord mark = read_stable_mark(obj);
1206 
1207   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
1208   if (mark.has_locker()) {
1209     return self->is_lock_owned((address)mark.locker()) ?
1210       owner_self : owner_other;
1211   }
1212 
1213   // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor.
1214   // The Object:ObjectMonitor relationship is stable as long as we're
1215   // not at a safepoint and AsyncDeflateIdleMonitors is false.
1216   if (mark.has_monitor()) {
1217     // The first stage of async deflation does not affect any field
1218     // used by this comparison so the ObjectMonitor* is usable here.
1219     ObjectMonitor* monitor = mark.monitor();
1220     void* owner = monitor->owner();
1221     if (owner == NULL) return owner_none;
1222     return (owner == self ||
1223             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
1224   }
1225 
1226   // CASE: neutral
1227   assert(mark.is_neutral(), "sanity check");
1228   return owner_none;           // it's unlocked
1229 }
1230 
1231 // FIXME: jvmti should call this
1232 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
1233   if (UseBiasedLocking) {
1234     if (SafepointSynchronize::is_at_safepoint()) {
1235       BiasedLocking::revoke_at_safepoint(h_obj);
1236     } else {
1237       BiasedLocking::revoke(h_obj, JavaThread::current());
1238     }
1239     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
1240   }
1241 
1242   oop obj = h_obj();
1243   address owner = NULL;
1244 
1245   markWord mark = read_stable_mark(obj);
1246 
1247   // Uncontended case, header points to stack
1248   if (mark.has_locker()) {
1249     owner = (address) mark.locker();
1250   }
1251 
1252   // Contended case, header points to ObjectMonitor (tagged pointer)
1253   else if (mark.has_monitor()) {
1254     // The first stage of async deflation does not affect any field
1255     // used by this comparison so the ObjectMonitor* is usable here.
1256     ObjectMonitor* monitor = mark.monitor();
1257     assert(monitor != NULL, "monitor should be non-null");
1258     owner = (address) monitor->owner();
1259   }
1260 
1261   if (owner != NULL) {
1262     // owning_thread_from_monitor_owner() may also return NULL here
1263     return Threads::owning_thread_from_monitor_owner(t_list, owner);
1264   }
1265 
1266   // Unlocked case, header in place
1267   // Cannot have assertion since this object may have been
1268   // locked by another thread when reaching here.
1269   // assert(mark.is_neutral(), "sanity check");
1270 
1271   return NULL;
1272 }
1273 
1274 // Visitors ...
1275 
1276 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
1277   PaddedObjectMonitor* block = Atomic::load(&g_block_list);
1278   while (block != NULL) {
1279     assert(block->object() == CHAINMARKER, "must be a block header");
1280     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
1281       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
1282       if (mid->object() != NULL) {
1283         // Only process with closure if the object is set.
1284 
1285         // monitors_iterate() is only called at a safepoint or when the
1286         // target thread is suspended or when the target thread is
1287         // operating on itself. The current closures in use today are
1288         // only interested in an owned ObjectMonitor and ownership
1289         // cannot be dropped under the calling contexts so the
1290         // ObjectMonitor cannot be async deflated.
1291         closure->do_monitor(mid);
1292       }
1293     }
1294     // unmarked_next() is not needed with g_block_list (no locking
1295     // used with block linkage _next_om fields).
1296     block = (PaddedObjectMonitor*)block->next_om();
1297   }
1298 }
1299 
1300 static bool monitors_used_above_threshold() {
1301   int population = Atomic::load(&om_list_globals._population);
1302   if (population == 0) {
1303     return false;
1304   }
1305   if (MonitorUsedDeflationThreshold > 0) {
1306     int monitors_used = population - Atomic::load(&om_list_globals._free_count) -
1307                         Atomic::load(&om_list_globals._wait_count);
1308     int monitor_usage = (monitors_used * 100LL) / population;
1309     return monitor_usage > MonitorUsedDeflationThreshold;
1310   }
1311   return false;
1312 }
1313 
1314 bool ObjectSynchronizer::is_async_deflation_needed() {
1315   if (!AsyncDeflateIdleMonitors) {
1316     return false;
1317   }
1318   if (is_async_deflation_requested()) {
1319     // Async deflation request.
1320     return true;
1321   }
1322   if (AsyncDeflationInterval > 0 &&
1323       time_since_last_async_deflation_ms() > AsyncDeflationInterval &&
1324       monitors_used_above_threshold()) {
1325     // It's been longer than our specified deflate interval and there
1326     // are too many monitors in use. We don't deflate more frequently
1327     // than AsyncDeflationInterval (unless is_async_deflation_requested)
1328     // in order to not swamp the ServiceThread.
1329     _last_async_deflation_time_ns = os::javaTimeNanos();
1330     return true;
1331   }
1332   return false;
1333 }
1334 
1335 bool ObjectSynchronizer::is_safepoint_deflation_needed() {
1336   if (!AsyncDeflateIdleMonitors) {
1337     if (monitors_used_above_threshold()) {
1338       // Too many monitors in use.
1339       return true;
1340     }
1341     return false;
1342   }
1343   if (is_special_deflation_requested()) {
1344     // For AsyncDeflateIdleMonitors only do a safepoint deflation
1345     // if there is a special deflation request.
1346     return true;
1347   }
1348   return false;
1349 }
1350 
1351 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1352   return (os::javaTimeNanos() - _last_async_deflation_time_ns) / (NANOUNITS / MILLIUNITS);
1353 }
1354 
1355 void ObjectSynchronizer::oops_do(OopClosure* f) {
1356   // We only scan the global used list here (for moribund threads), and
1357   // the thread-local monitors in Thread::oops_do().
1358   global_used_oops_do(f);
1359 }
1360 
1361 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
1362   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1363   // Acquire semantics not needed since we're at a safepoint.
1364   list_oops_do(Atomic::load(&om_list_globals._in_use_list), f);
1365 }
1366 
1367 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
1368   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1369   list_oops_do(thread->om_in_use_list, f);
1370 }
1371 
1372 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) {
1373   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1374   // The oops_do() phase does not overlap with monitor deflation
1375   // so no need to lock ObjectMonitors for the list traversal.
1376   for (ObjectMonitor* mid = list; mid != NULL; mid = unmarked_next(mid)) {
1377     if (mid->object() != NULL) {
1378       f->do_oop((oop*)mid->object_addr());
1379     }
1380   }
1381 }
1382 
1383 
1384 // -----------------------------------------------------------------------------
1385 // ObjectMonitor Lifecycle
1386 // -----------------------
1387 // Inflation unlinks monitors from om_list_globals._free_list or a per-thread
1388 // free list and associates them with objects. Deflation -- which occurs at
1389 // STW-time or asynchronously -- disassociates idle monitors from objects.
1390 // Such scavenged monitors are returned to the om_list_globals._free_list.
1391 //
1392 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
1393 //
1394 // Lifecycle:
1395 // --   unassigned and on the om_list_globals._free_list
1396 // --   unassigned and on a per-thread free list
1397 // --   assigned to an object.  The object is inflated and the mark refers
1398 //      to the ObjectMonitor.
1399 
1400 ObjectMonitor* ObjectSynchronizer::om_alloc(Thread* self) {
1401   // A large MAXPRIVATE value reduces both list lock contention
1402   // and list coherency traffic, but also tends to increase the
1403   // number of ObjectMonitors in circulation as well as the STW
1404   // scavenge costs.  As usual, we lean toward time in space-time
1405   // tradeoffs.
1406   const int MAXPRIVATE = 1024;
1407   NoSafepointVerifier nsv;
1408 
1409   for (;;) {
1410     ObjectMonitor* m;
1411 
1412     // 1: try to allocate from the thread's local om_free_list.
1413     // Threads will attempt to allocate first from their local list, then
1414     // from the global list, and only after those attempts fail will the
1415     // thread attempt to instantiate new monitors. Thread-local free lists
1416     // improve allocation latency, as well as reducing coherency traffic
1417     // on the shared global list.
1418     m = take_from_start_of_om_free_list(self);
1419     if (m != NULL) {
1420       guarantee(m->object() == NULL, "invariant");
1421       m->set_allocation_state(ObjectMonitor::New);
1422       prepend_to_om_in_use_list(self, m);
1423       return m;
1424     }
1425 
1426     // 2: try to allocate from the global om_list_globals._free_list
1427     // If we're using thread-local free lists then try
1428     // to reprovision the caller's free list.
1429     // Acquire semantics not needed on this list load since memory
1430     // is already consistent due to the cmpxchg() via
1431     // take_from_start_of_om_free_list() above.
1432     if (Atomic::load(&om_list_globals._free_list) != NULL) {
1433       // Reprovision the thread's om_free_list.
1434       // Use bulk transfers to reduce the allocation rate and heat
1435       // on various locks.
1436       for (int i = self->om_free_provision; --i >= 0;) {
1437         ObjectMonitor* take = take_from_start_of_global_free_list();
1438         if (take == NULL) {
1439           break;  // No more are available.
1440         }
1441         guarantee(take->object() == NULL, "invariant");
1442         if (AsyncDeflateIdleMonitors) {
1443           // We allowed 3 field values to linger during async deflation.
1444           // Clear or restore them as appropriate.
1445           take->set_header(markWord::zero());
1446           // DEFLATER_MARKER is the only non-NULL value we should see here.
1447           take->try_set_owner_from(DEFLATER_MARKER, NULL);
1448           if (take->contentions() < 0) {
1449             // Add back max_jint to restore the contentions field to its
1450             // proper value.
1451             take->add_to_contentions(max_jint);
1452 
1453 #ifdef ASSERT
1454             jint l_contentions = take->contentions();
1455 #endif
1456             assert(l_contentions >= 0, "must not be negative: l_contentions=%d, contentions=%d",
1457                    l_contentions, take->contentions());
1458           }
1459         }
1460         take->Recycle();
1461         // Since we're taking from the global free-list, take must be Free.
1462         // om_release() also sets the allocation state to Free because it
1463         // is called from other code paths.
1464         assert(take->is_free(), "invariant");
1465         om_release(self, take, false);
1466       }
1467       self->om_free_provision += 1 + (self->om_free_provision / 2);
1468       if (self->om_free_provision > MAXPRIVATE) self->om_free_provision = MAXPRIVATE;
1469       continue;
1470     }
1471 
1472     // 3: allocate a block of new ObjectMonitors
1473     // Both the local and global free lists are empty -- resort to malloc().
1474     // In the current implementation ObjectMonitors are TSM - immortal.
1475     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1476     // each ObjectMonitor to start at the beginning of a cache line,
1477     // so we use align_up().
1478     // A better solution would be to use C++ placement-new.
1479     // BEWARE: As it stands currently, we don't run the ctors!
1480     assert(_BLOCKSIZE > 1, "invariant");
1481     size_t neededsize = sizeof(PaddedObjectMonitor) * _BLOCKSIZE;
1482     PaddedObjectMonitor* temp;
1483     size_t aligned_size = neededsize + (OM_CACHE_LINE_SIZE - 1);
1484     void* real_malloc_addr = NEW_C_HEAP_ARRAY(char, aligned_size, mtInternal);
1485     temp = (PaddedObjectMonitor*)align_up(real_malloc_addr, OM_CACHE_LINE_SIZE);
1486     (void)memset((void *) temp, 0, neededsize);
1487 
1488     // Format the block.
1489     // initialize the linked list, each monitor points to its next
1490     // forming the single linked free list, the very first monitor
1491     // will points to next block, which forms the block list.
1492     // The trick of using the 1st element in the block as g_block_list
1493     // linkage should be reconsidered.  A better implementation would
1494     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1495 
1496     for (int i = 1; i < _BLOCKSIZE; i++) {
1497       temp[i].set_next_om((ObjectMonitor*)&temp[i + 1]);
1498       assert(temp[i].is_free(), "invariant");
1499     }
1500 
1501     // terminate the last monitor as the end of list
1502     temp[_BLOCKSIZE - 1].set_next_om((ObjectMonitor*)NULL);
1503 
1504     // Element [0] is reserved for global list linkage
1505     temp[0].set_object(CHAINMARKER);
1506 
1507     // Consider carving out this thread's current request from the
1508     // block in hand.  This avoids some lock traffic and redundant
1509     // list activity.
1510 
1511     prepend_block_to_lists(temp);
1512   }
1513 }
1514 
1515 // Place "m" on the caller's private per-thread om_free_list.
1516 // In practice there's no need to clamp or limit the number of
1517 // monitors on a thread's om_free_list as the only non-allocation time
1518 // we'll call om_release() is to return a monitor to the free list after
1519 // a CAS attempt failed. This doesn't allow unbounded #s of monitors to
1520 // accumulate on a thread's free list.
1521 //
1522 // Key constraint: all ObjectMonitors on a thread's free list and the global
1523 // free list must have their object field set to null. This prevents the
1524 // scavenger -- deflate_monitor_list() or deflate_monitor_list_using_JT()
1525 // -- from reclaiming them while we are trying to release them.
1526 
1527 void ObjectSynchronizer::om_release(Thread* self, ObjectMonitor* m,
1528                                     bool from_per_thread_alloc) {
1529   guarantee(m->header().value() == 0, "invariant");
1530   guarantee(m->object() == NULL, "invariant");
1531   NoSafepointVerifier nsv;
1532 
1533   if ((m->is_busy() | m->_recursions) != 0) {
1534     stringStream ss;
1535     fatal("freeing in-use monitor: %s, recursions=" INTX_FORMAT,
1536           m->is_busy_to_string(&ss), m->_recursions);
1537   }
1538   m->set_allocation_state(ObjectMonitor::Free);
1539   // _next_om is used for both per-thread in-use and free lists so
1540   // we have to remove 'm' from the in-use list first (as needed).
1541   if (from_per_thread_alloc) {
1542     // Need to remove 'm' from om_in_use_list.
1543     ObjectMonitor* mid = NULL;
1544     ObjectMonitor* next = NULL;
1545 
1546     // This list walk can race with another list walker or with async
1547     // deflation so we have to worry about an ObjectMonitor being
1548     // removed from this list while we are walking it.
1549 
1550     // Lock the list head to avoid racing with another list walker
1551     // or with async deflation.
1552     if ((mid = get_list_head_locked(&self->om_in_use_list)) == NULL) {
1553       fatal("thread=" INTPTR_FORMAT " in-use list must not be empty.", p2i(self));
1554     }
1555     next = unmarked_next(mid);
1556     if (m == mid) {
1557       // First special case:
1558       // 'm' matches mid, is the list head and is locked. Switch the list
1559       // head to next which unlocks the list head, but leaves the extracted
1560       // mid locked. Release semantics not needed on this "unlock" since
1561       // memory is already consistent due to the get_list_head_locked()
1562       // above.
1563       Atomic::store(&self->om_in_use_list, next);
1564     } else if (m == next) {
1565       // Second special case:
1566       // 'm' matches next after the list head and we already have the list
1567       // head locked so set mid to what we are extracting:
1568       mid = next;
1569       // Lock mid to prevent races with a list walker or an async
1570       // deflater thread that's ahead of us. The locked list head
1571       // prevents races from behind us.
1572       om_lock(mid);
1573       // Update next to what follows mid (if anything):
1574       next = unmarked_next(mid);
1575       // Switch next after the list head to new next which unlocks the
1576       // list head, but leaves the extracted mid locked. Release semantics
1577       // not needed on this "unlock" since memory is already consistent
1578       // due to the get_list_head_locked() above.
1579       self->om_in_use_list->set_next_om(next);
1580     } else {
1581       // We have to search the list to find 'm'.
1582       guarantee(next != NULL, "thread=" INTPTR_FORMAT ": om_in_use_list=" INTPTR_FORMAT
1583                 " is too short.", p2i(self), p2i(self->om_in_use_list));
1584       // Our starting anchor is next after the list head which is the
1585       // last ObjectMonitor we checked:
1586       ObjectMonitor* anchor = next;
1587       // Lock anchor to prevent races with a list walker or an async
1588       // deflater thread that's ahead of us. The locked list head
1589       // prevents races from behind us.
1590       om_lock(anchor);
1591       om_unlock(mid);  // Unlock the list head now that anchor is locked.
1592       while ((mid = unmarked_next(anchor)) != NULL) {
1593         if (m == mid) {
1594           // We found 'm' on the per-thread in-use list so extract it.
1595           // Update next to what follows mid (if anything):
1596           next = unmarked_next(mid);
1597           // Switch next after the anchor to new next which unlocks the
1598           // anchor, but leaves the extracted mid locked. Release semantics
1599           // not needed on this "unlock" since memory is already consistent
1600           // due to the om_unlock() above before entering the loop or the
1601           // om_unlock() below before looping again.
1602           anchor->set_next_om(next);
1603           break;
1604         } else {
1605           // Lock the next anchor to prevent races with a list walker
1606           // or an async deflater thread that's ahead of us. The locked
1607           // current anchor prevents races from behind us.
1608           om_lock(mid);
1609           // Unlock current anchor now that next anchor is locked:
1610           om_unlock(anchor);
1611           anchor = mid;  // Advance to new anchor and try again.
1612         }
1613       }
1614     }
1615 
1616     if (mid == NULL) {
1617       // Reached end of the list and didn't find 'm' so:
1618       fatal("thread=" INTPTR_FORMAT " must find m=" INTPTR_FORMAT "on om_in_use_list="
1619             INTPTR_FORMAT, p2i(self), p2i(m), p2i(self->om_in_use_list));
1620     }
1621 
1622     // At this point mid is disconnected from the in-use list so
1623     // its lock no longer has any effects on the in-use list.
1624     Atomic::dec(&self->om_in_use_count);
1625     // Unlock mid, but leave the next value for any lagging list
1626     // walkers. It will get cleaned up when mid is prepended to
1627     // the thread's free list:
1628     om_unlock(mid);
1629   }
1630 
1631   prepend_to_om_free_list(self, m);
1632   guarantee(m->is_free(), "invariant");
1633 }
1634 
1635 // Return ObjectMonitors on a moribund thread's free and in-use
1636 // lists to the appropriate global lists. The ObjectMonitors on the
1637 // per-thread in-use list may still be in use by other threads.
1638 //
1639 // We currently call om_flush() from Threads::remove() before the
1640 // thread has been excised from the thread list and is no longer a
1641 // mutator. This means that om_flush() cannot run concurrently with
1642 // a safepoint and interleave with deflate_idle_monitors(). In
1643 // particular, this ensures that the thread's in-use monitors are
1644 // scanned by a GC safepoint, either via Thread::oops_do() (before
1645 // om_flush() is called) or via ObjectSynchronizer::oops_do() (after
1646 // om_flush() is called).
1647 //
1648 // With AsyncDeflateIdleMonitors, deflate_global_idle_monitors_using_JT()
1649 // and deflate_per_thread_idle_monitors_using_JT() (in another thread) can
1650 // run at the same time as om_flush() so we have to follow a careful
1651 // protocol to prevent list corruption.
1652 
1653 void ObjectSynchronizer::om_flush(Thread* self) {
1654   // Process the per-thread in-use list first to be consistent.
1655   int in_use_count = 0;
1656   ObjectMonitor* in_use_list = NULL;
1657   ObjectMonitor* in_use_tail = NULL;
1658   NoSafepointVerifier nsv;
1659 
1660   // This function can race with a list walker or with an async
1661   // deflater thread so we lock the list head to prevent confusion.
1662   // An async deflater thread checks to see if the target thread
1663   // is exiting, but if it has made it past that check before we
1664   // started exiting, then it is racing to get to the in-use list.
1665   if ((in_use_list = get_list_head_locked(&self->om_in_use_list)) != NULL) {
1666     // At this point, we have locked the in-use list head so a racing
1667     // thread cannot come in after us. However, a racing thread could
1668     // be ahead of us; we'll detect that and delay to let it finish.
1669     //
1670     // The thread is going away, however the ObjectMonitors on the
1671     // om_in_use_list may still be in-use by other threads. Link
1672     // them to in_use_tail, which will be linked into the global
1673     // in-use list (om_list_globals._in_use_list) below.
1674     //
1675     // Account for the in-use list head before the loop since it is
1676     // already locked (by this thread):
1677     in_use_tail = in_use_list;
1678     in_use_count++;
1679     for (ObjectMonitor* cur_om = unmarked_next(in_use_list); cur_om != NULL;) {
1680       if (is_locked(cur_om)) {
1681         // cur_om is locked so there must be a racing walker or async
1682         // deflater thread ahead of us so we'll give it a chance to finish.
1683         while (is_locked(cur_om)) {
1684           os::naked_short_sleep(1);
1685         }
1686         // Refetch the possibly changed next field and try again.
1687         cur_om = unmarked_next(in_use_tail);
1688         continue;
1689       }
1690       if (cur_om->object() == NULL) {
1691         // cur_om was deflated and the object ref was cleared while it
1692         // was locked. We happened to see it just after it was unlocked
1693         // (and added to the free list). Refetch the possibly changed
1694         // next field and try again.
1695         cur_om = unmarked_next(in_use_tail);
1696         continue;
1697       }
1698       in_use_tail = cur_om;
1699       in_use_count++;
1700       cur_om = unmarked_next(cur_om);
1701     }
1702     guarantee(in_use_tail != NULL, "invariant");
1703     int l_om_in_use_count = Atomic::load(&self->om_in_use_count);
1704     ADIM_guarantee(l_om_in_use_count == in_use_count, "in-use counts don't match: "
1705                    "l_om_in_use_count=%d, in_use_count=%d", l_om_in_use_count, in_use_count);
1706     Atomic::store(&self->om_in_use_count, 0);
1707     OrderAccess::storestore();  // Make sure counter update is seen first.
1708     // Clear the in-use list head (which also unlocks it):
1709     Atomic::store(&self->om_in_use_list, (ObjectMonitor*)NULL);
1710     om_unlock(in_use_list);
1711   }
1712 
1713   int free_count = 0;
1714   ObjectMonitor* free_list = NULL;
1715   ObjectMonitor* free_tail = NULL;
1716   // This function can race with a list walker thread so we lock the
1717   // list head to prevent confusion.
1718   if ((free_list = get_list_head_locked(&self->om_free_list)) != NULL) {
1719     // At this point, we have locked the free list head so a racing
1720     // thread cannot come in after us. However, a racing thread could
1721     // be ahead of us; we'll detect that and delay to let it finish.
1722     //
1723     // The thread is going away. Set 'free_tail' to the last per-thread free
1724     // monitor which will be linked to om_list_globals._free_list below.
1725     //
1726     // Account for the free list head before the loop since it is
1727     // already locked (by this thread):
1728     free_tail = free_list;
1729     free_count++;
1730     for (ObjectMonitor* s = unmarked_next(free_list); s != NULL; s = unmarked_next(s)) {
1731       if (is_locked(s)) {
1732         // s is locked so there must be a racing walker thread ahead
1733         // of us so we'll give it a chance to finish.
1734         while (is_locked(s)) {
1735           os::naked_short_sleep(1);
1736         }
1737       }
1738       free_tail = s;
1739       free_count++;
1740       guarantee(s->object() == NULL, "invariant");
1741       if (s->is_busy()) {
1742         stringStream ss;
1743         fatal("must be !is_busy: %s", s->is_busy_to_string(&ss));
1744       }
1745     }
1746     guarantee(free_tail != NULL, "invariant");
1747     int l_om_free_count = Atomic::load(&self->om_free_count);
1748     ADIM_guarantee(l_om_free_count == free_count, "free counts don't match: "
1749                    "l_om_free_count=%d, free_count=%d", l_om_free_count, free_count);
1750     Atomic::store(&self->om_free_count, 0);
1751     OrderAccess::storestore();  // Make sure counter update is seen first.
1752     Atomic::store(&self->om_free_list, (ObjectMonitor*)NULL);
1753     om_unlock(free_list);
1754   }
1755 
1756   if (free_tail != NULL) {
1757     prepend_list_to_global_free_list(free_list, free_tail, free_count);
1758   }
1759 
1760   if (in_use_tail != NULL) {
1761     prepend_list_to_global_in_use_list(in_use_list, in_use_tail, in_use_count);
1762   }
1763 
1764   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1765   LogStreamHandle(Info, monitorinflation) lsh_info;
1766   LogStream* ls = NULL;
1767   if (log_is_enabled(Debug, monitorinflation)) {
1768     ls = &lsh_debug;
1769   } else if ((free_count != 0 || in_use_count != 0) &&
1770              log_is_enabled(Info, monitorinflation)) {
1771     ls = &lsh_info;
1772   }
1773   if (ls != NULL) {
1774     ls->print_cr("om_flush: jt=" INTPTR_FORMAT ", free_count=%d"
1775                  ", in_use_count=%d" ", om_free_provision=%d",
1776                  p2i(self), free_count, in_use_count, self->om_free_provision);
1777   }
1778 }
1779 
1780 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1781                                        const oop obj,
1782                                        ObjectSynchronizer::InflateCause cause) {
1783   assert(event != NULL, "invariant");
1784   assert(event->should_commit(), "invariant");
1785   event->set_monitorClass(obj->klass());
1786   event->set_address((uintptr_t)(void*)obj);
1787   event->set_cause((u1)cause);
1788   event->commit();
1789 }
1790 
1791 // Fast path code shared by multiple functions
1792 void ObjectSynchronizer::inflate_helper(oop obj) {
1793   markWord mark = obj->mark();
1794   if (mark.has_monitor()) {
1795     ObjectMonitor* monitor = mark.monitor();
1796     assert(ObjectSynchronizer::verify_objmon_isinpool(monitor), "monitor=" INTPTR_FORMAT " is invalid", p2i(monitor));
1797     markWord dmw = monitor->header();
1798     assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value());
1799     return;
1800   }
1801   (void)inflate(Thread::current(), obj, inflate_cause_vm_internal);
1802 }
1803 
1804 ObjectMonitor* ObjectSynchronizer::inflate(Thread* self, oop object,
1805                                            const InflateCause cause) {
1806   // Inflate mutates the heap ...
1807   // Relaxing assertion for bug 6320749.
1808   assert(Universe::verify_in_progress() ||
1809          !SafepointSynchronize::is_at_safepoint(), "invariant");
1810 
1811   EventJavaMonitorInflate event;
1812 
1813   for (;;) {
1814     const markWord mark = object->mark();
1815     assert(!mark.has_bias_pattern(), "invariant");
1816 
1817     // The mark can be in one of the following states:
1818     // *  Inflated     - just return
1819     // *  Stack-locked - coerce it to inflated
1820     // *  INFLATING    - busy wait for conversion to complete
1821     // *  Neutral      - aggressively inflate the object.
1822     // *  BIASED       - Illegal.  We should never see this
1823 
1824     // CASE: inflated
1825     if (mark.has_monitor()) {
1826       ObjectMonitor* inf = mark.monitor();
1827       markWord dmw = inf->header();
1828       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1829       assert(AsyncDeflateIdleMonitors || inf->object() == object, "invariant");
1830       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1831       return inf;
1832     }
1833 
1834     // CASE: inflation in progress - inflating over a stack-lock.
1835     // Some other thread is converting from stack-locked to inflated.
1836     // Only that thread can complete inflation -- other threads must wait.
1837     // The INFLATING value is transient.
1838     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1839     // We could always eliminate polling by parking the thread on some auxiliary list.
1840     if (mark == markWord::INFLATING()) {
1841       read_stable_mark(object);
1842       continue;
1843     }
1844 
1845     // CASE: stack-locked
1846     // Could be stack-locked either by this thread or by some other thread.
1847     //
1848     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1849     // to install INFLATING into the mark word.  We originally installed INFLATING,
1850     // allocated the objectmonitor, and then finally STed the address of the
1851     // objectmonitor into the mark.  This was correct, but artificially lengthened
1852     // the interval in which INFLATED appeared in the mark, thus increasing
1853     // the odds of inflation contention.
1854     //
1855     // We now use per-thread private objectmonitor free lists.
1856     // These list are reprovisioned from the global free list outside the
1857     // critical INFLATING...ST interval.  A thread can transfer
1858     // multiple objectmonitors en-mass from the global free list to its local free list.
1859     // This reduces coherency traffic and lock contention on the global free list.
1860     // Using such local free lists, it doesn't matter if the om_alloc() call appears
1861     // before or after the CAS(INFLATING) operation.
1862     // See the comments in om_alloc().
1863 
1864     LogStreamHandle(Trace, monitorinflation) lsh;
1865 
1866     if (mark.has_locker()) {
1867       ObjectMonitor* m = om_alloc(self);
1868       // Optimistically prepare the objectmonitor - anticipate successful CAS
1869       // We do this before the CAS in order to minimize the length of time
1870       // in which INFLATING appears in the mark.
1871       m->Recycle();
1872       m->_Responsible  = NULL;
1873       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1874 
1875       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1876       if (cmp != mark) {
1877         // om_release() will reset the allocation state from New to Free.
1878         om_release(self, m, true);
1879         continue;       // Interference -- just retry
1880       }
1881 
1882       // We've successfully installed INFLATING (0) into the mark-word.
1883       // This is the only case where 0 will appear in a mark-word.
1884       // Only the singular thread that successfully swings the mark-word
1885       // to 0 can perform (or more precisely, complete) inflation.
1886       //
1887       // Why do we CAS a 0 into the mark-word instead of just CASing the
1888       // mark-word from the stack-locked value directly to the new inflated state?
1889       // Consider what happens when a thread unlocks a stack-locked object.
1890       // It attempts to use CAS to swing the displaced header value from the
1891       // on-stack BasicLock back into the object header.  Recall also that the
1892       // header value (hash code, etc) can reside in (a) the object header, or
1893       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1894       // header in an ObjectMonitor.  The inflate() routine must copy the header
1895       // value from the BasicLock on the owner's stack to the ObjectMonitor, all
1896       // the while preserving the hashCode stability invariants.  If the owner
1897       // decides to release the lock while the value is 0, the unlock will fail
1898       // and control will eventually pass from slow_exit() to inflate.  The owner
1899       // will then spin, waiting for the 0 value to disappear.   Put another way,
1900       // the 0 causes the owner to stall if the owner happens to try to
1901       // drop the lock (restoring the header from the BasicLock to the object)
1902       // while inflation is in-progress.  This protocol avoids races that might
1903       // would otherwise permit hashCode values to change or "flicker" for an object.
1904       // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable.
1905       // 0 serves as a "BUSY" inflate-in-progress indicator.
1906 
1907 
1908       // fetch the displaced mark from the owner's stack.
1909       // The owner can't die or unwind past the lock while our INFLATING
1910       // object is in the mark.  Furthermore the owner can't complete
1911       // an unlock on the object, either.
1912       markWord dmw = mark.displaced_mark_helper();
1913       // Catch if the object's header is not neutral (not locked and
1914       // not marked is what we care about here).
1915       ADIM_guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1916 
1917       // Setup monitor fields to proper values -- prepare the monitor
1918       m->set_header(dmw);
1919 
1920       // Optimization: if the mark.locker stack address is associated
1921       // with this thread we could simply set m->_owner = self.
1922       // Note that a thread can inflate an object
1923       // that it has stack-locked -- as might happen in wait() -- directly
1924       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1925       if (AsyncDeflateIdleMonitors) {
1926         m->set_owner_from(NULL, DEFLATER_MARKER, mark.locker());
1927       } else {
1928         m->set_owner_from(NULL, mark.locker());
1929       }
1930       m->set_object(object);
1931       // TODO-FIXME: assert BasicLock->dhw != 0.
1932 
1933       // Must preserve store ordering. The monitor state must
1934       // be stable at the time of publishing the monitor address.
1935       guarantee(object->mark() == markWord::INFLATING(), "invariant");
1936       // Release semantics so that above set_object() is seen first.
1937       object->release_set_mark(markWord::encode(m));
1938 
1939       // Once ObjectMonitor is configured and the object is associated
1940       // with the ObjectMonitor, it is safe to allow async deflation:
1941       assert(m->is_new(), "freshly allocated monitor must be new");
1942       // Release semantics needed to keep allocation_state from floating up.
1943       m->release_set_allocation_state(ObjectMonitor::Old);
1944 
1945       // Hopefully the performance counters are allocated on distinct cache lines
1946       // to avoid false sharing on MP systems ...
1947       OM_PERFDATA_OP(Inflations, inc());
1948       if (log_is_enabled(Trace, monitorinflation)) {
1949         ResourceMark rm(self);
1950         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1951                      INTPTR_FORMAT ", type='%s'", p2i(object),
1952                      object->mark().value(), object->klass()->external_name());
1953       }
1954       if (event.should_commit()) {
1955         post_monitor_inflate_event(&event, object, cause);
1956       }
1957       return m;
1958     }
1959 
1960     // CASE: neutral
1961     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1962     // If we know we're inflating for entry it's better to inflate by swinging a
1963     // pre-locked ObjectMonitor pointer into the object header.   A successful
1964     // CAS inflates the object *and* confers ownership to the inflating thread.
1965     // In the current implementation we use a 2-step mechanism where we CAS()
1966     // to inflate and then CAS() again to try to swing _owner from NULL to self.
1967     // An inflateTry() method that we could call from enter() would be useful.
1968 
1969     // Catch if the object's header is not neutral (not locked and
1970     // not marked is what we care about here).
1971     ADIM_guarantee(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1972     ObjectMonitor* m = om_alloc(self);
1973     // prepare m for installation - set monitor to initial state
1974     m->Recycle();
1975     m->set_header(mark);
1976     if (AsyncDeflateIdleMonitors) {
1977       // DEFLATER_MARKER is the only non-NULL value we should see here.
1978       m->try_set_owner_from(DEFLATER_MARKER, NULL);
1979     }
1980     m->set_object(object);
1981     m->_Responsible  = NULL;
1982     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1983 
1984     if (object->cas_set_mark(markWord::encode(m), mark) != mark) {
1985       m->set_header(markWord::zero());
1986       m->set_object(NULL);
1987       m->Recycle();
1988       // om_release() will reset the allocation state from New to Free.
1989       om_release(self, m, true);
1990       m = NULL;
1991       continue;
1992       // interference - the markword changed - just retry.
1993       // The state-transitions are one-way, so there's no chance of
1994       // live-lock -- "Inflated" is an absorbing state.
1995     }
1996 
1997     // Once the ObjectMonitor is configured and object is associated
1998     // with the ObjectMonitor, it is safe to allow async deflation:
1999     assert(m->is_new(), "freshly allocated monitor must be new");
2000     // Release semantics are not needed to keep allocation_state from
2001     // floating up since cas_set_mark() takes care of it.
2002     m->set_allocation_state(ObjectMonitor::Old);
2003 
2004     // Hopefully the performance counters are allocated on distinct
2005     // cache lines to avoid false sharing on MP systems ...
2006     OM_PERFDATA_OP(Inflations, inc());
2007     if (log_is_enabled(Trace, monitorinflation)) {
2008       ResourceMark rm(self);
2009       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
2010                    INTPTR_FORMAT ", type='%s'", p2i(object),
2011                    object->mark().value(), object->klass()->external_name());
2012     }
2013     if (event.should_commit()) {
2014       post_monitor_inflate_event(&event, object, cause);
2015     }
2016     return m;
2017   }
2018 }
2019 
2020 
2021 // We maintain a list of in-use monitors for each thread.
2022 //
2023 // For safepoint based deflation:
2024 // deflate_thread_local_monitors() scans a single thread's in-use list, while
2025 // deflate_idle_monitors() scans only a global list of in-use monitors which
2026 // is populated only as a thread dies (see om_flush()).
2027 //
2028 // These operations are called at all safepoints, immediately after mutators
2029 // are stopped, but before any objects have moved. Collectively they traverse
2030 // the population of in-use monitors, deflating where possible. The scavenged
2031 // monitors are returned to the global monitor free list.
2032 //
2033 // Beware that we scavenge at *every* stop-the-world point. Having a large
2034 // number of monitors in-use could negatively impact performance. We also want
2035 // to minimize the total # of monitors in circulation, as they incur a small
2036 // footprint penalty.
2037 //
2038 // Perversely, the heap size -- and thus the STW safepoint rate --
2039 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
2040 // which in turn can mean large(r) numbers of ObjectMonitors in circulation.
2041 // This is an unfortunate aspect of this design.
2042 //
2043 // For async deflation:
2044 // If a special deflation request is made, then the safepoint based
2045 // deflation mechanism is used. Otherwise, an async deflation request
2046 // is registered with the ServiceThread and it is notified.
2047 
2048 void ObjectSynchronizer::do_safepoint_work(DeflateMonitorCounters* counters) {
2049   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2050 
2051   // The per-thread in-use lists are handled in
2052   // ParallelSPCleanupThreadClosure::do_thread().
2053 
2054   if (!AsyncDeflateIdleMonitors || is_special_deflation_requested()) {
2055     // Use the older mechanism for the global in-use list or if a
2056     // special deflation has been requested before the safepoint.
2057     ObjectSynchronizer::deflate_idle_monitors(counters);
2058     return;
2059   }
2060 
2061   log_debug(monitorinflation)("requesting async deflation of idle monitors.");
2062   // Request deflation of idle monitors by the ServiceThread:
2063   set_is_async_deflation_requested(true);
2064   MonitorLocker ml(Service_lock, Mutex::_no_safepoint_check_flag);
2065   ml.notify_all();
2066 
2067   if (log_is_enabled(Debug, monitorinflation)) {
2068     // exit_globals()'s call to audit_and_print_stats() is done
2069     // at the Info level and not at a safepoint.
2070     // For safepoint based deflation, audit_and_print_stats() is called
2071     // in ObjectSynchronizer::finish_deflate_idle_monitors() at the
2072     // Debug level at a safepoint.
2073     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2074   }
2075 }
2076 
2077 // Deflate a single monitor if not in-use
2078 // Return true if deflated, false if in-use
2079 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
2080                                          ObjectMonitor** free_head_p,
2081                                          ObjectMonitor** free_tail_p) {
2082   bool deflated;
2083   // Normal case ... The monitor is associated with obj.
2084   const markWord mark = obj->mark();
2085   guarantee(mark == markWord::encode(mid), "should match: mark="
2086             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, mark.value(),
2087             markWord::encode(mid).value());
2088   // Make sure that mark.monitor() and markWord::encode() agree:
2089   guarantee(mark.monitor() == mid, "should match: monitor()=" INTPTR_FORMAT
2090             ", mid=" INTPTR_FORMAT, p2i(mark.monitor()), p2i(mid));
2091   const markWord dmw = mid->header();
2092   guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
2093 
2094   if (mid->is_busy()) {
2095     // Easy checks are first - the ObjectMonitor is busy so no deflation.
2096     deflated = false;
2097   } else {
2098     // Deflate the monitor if it is no longer being used
2099     // It's idle - scavenge and return to the global free list
2100     // plain old deflation ...
2101     if (log_is_enabled(Trace, monitorinflation)) {
2102       ResourceMark rm;
2103       log_trace(monitorinflation)("deflate_monitor: "
2104                                   "object=" INTPTR_FORMAT ", mark="
2105                                   INTPTR_FORMAT ", type='%s'", p2i(obj),
2106                                   mark.value(), obj->klass()->external_name());
2107     }
2108 
2109     // Restore the header back to obj
2110     // XXX - I have no rationale for this "release", but it's been here forever.
2111     obj->release_set_mark(dmw);
2112     if (AsyncDeflateIdleMonitors) {
2113       // clear() expects the owner field to be NULL.
2114       // DEFLATER_MARKER is the only non-NULL value we should see here.
2115       mid->try_set_owner_from(DEFLATER_MARKER, NULL);
2116     }
2117     mid->clear();
2118 
2119     assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT,
2120            p2i(mid->object()));
2121     assert(mid->is_free(), "invariant");
2122 
2123     // Move the deflated ObjectMonitor to the working free list
2124     // defined by free_head_p and free_tail_p.
2125     if (*free_head_p == NULL) *free_head_p = mid;
2126     if (*free_tail_p != NULL) {
2127       // We append to the list so the caller can use mid->_next_om
2128       // to fix the linkages in its context.
2129       ObjectMonitor* prevtail = *free_tail_p;
2130       // Should have been cleaned up by the caller:
2131       // Note: Should not have to lock prevtail here since we're at a
2132       // safepoint and ObjectMonitors on the local free list should
2133       // not be accessed in parallel.
2134 #ifdef ASSERT
2135       ObjectMonitor* l_next_om = prevtail->next_om();
2136 #endif
2137       assert(l_next_om == NULL, "must be NULL: _next_om=" INTPTR_FORMAT, p2i(l_next_om));
2138       prevtail->set_next_om(mid);
2139     }
2140     *free_tail_p = mid;
2141     // At this point, mid->_next_om still refers to its current
2142     // value and another ObjectMonitor's _next_om field still
2143     // refers to this ObjectMonitor. Those linkages have to be
2144     // cleaned up by the caller who has the complete context.
2145     deflated = true;
2146   }
2147   return deflated;
2148 }
2149 
2150 // Deflate the specified ObjectMonitor if not in-use using a JavaThread.
2151 // Returns true if it was deflated and false otherwise.
2152 //
2153 // The async deflation protocol sets owner to DEFLATER_MARKER and
2154 // makes contentions negative as signals to contending threads that
2155 // an async deflation is in progress. There are a number of checks
2156 // as part of the protocol to make sure that the calling thread has
2157 // not lost the race to a contending thread.
2158 //
2159 // The ObjectMonitor has been successfully async deflated when:
2160 //   (contentions < 0)
2161 // Contending threads that see that condition know to retry their operation.
2162 //
2163 bool ObjectSynchronizer::deflate_monitor_using_JT(ObjectMonitor* mid,
2164                                                   ObjectMonitor** free_head_p,
2165                                                   ObjectMonitor** free_tail_p) {
2166   assert(AsyncDeflateIdleMonitors, "sanity check");
2167   assert(Thread::current()->is_Java_thread(), "precondition");
2168   // A newly allocated ObjectMonitor should not be seen here so we
2169   // avoid an endless inflate/deflate cycle.
2170   assert(mid->is_old(), "must be old: allocation_state=%d",
2171          (int) mid->allocation_state());
2172 
2173   if (mid->is_busy()) {
2174     // Easy checks are first - the ObjectMonitor is busy so no deflation.
2175     return false;
2176   }
2177 
2178   // Set a NULL owner to DEFLATER_MARKER to force any contending thread
2179   // through the slow path. This is just the first part of the async
2180   // deflation dance.
2181   if (mid->try_set_owner_from(NULL, DEFLATER_MARKER) != NULL) {
2182     // The owner field is no longer NULL so we lost the race since the
2183     // ObjectMonitor is now busy.
2184     return false;
2185   }
2186 
2187   if (mid->contentions() > 0 || mid->_waiters != 0) {
2188     // Another thread has raced to enter the ObjectMonitor after
2189     // mid->is_busy() above or has already entered and waited on
2190     // it which makes it busy so no deflation. Restore owner to
2191     // NULL if it is still DEFLATER_MARKER.
2192     if (mid->try_set_owner_from(DEFLATER_MARKER, NULL) != DEFLATER_MARKER) {
2193       // Deferred decrement for the JT EnterI() that cancelled the async deflation.
2194       mid->add_to_contentions(-1);
2195     }
2196     return false;
2197   }
2198 
2199   // Make a zero contentions field negative to force any contending threads
2200   // to retry. This is the second part of the async deflation dance.
2201   if (Atomic::cmpxchg(&mid->_contentions, (jint)0, -max_jint) != 0) {
2202     // Contentions was no longer 0 so we lost the race since the
2203     // ObjectMonitor is now busy. Restore owner to NULL if it is
2204     // still DEFLATER_MARKER:
2205     if (mid->try_set_owner_from(DEFLATER_MARKER, NULL) != DEFLATER_MARKER) {
2206       // Deferred decrement for the JT EnterI() that cancelled the async deflation.
2207       mid->add_to_contentions(-1);
2208     }
2209     return false;
2210   }
2211 
2212   // Sanity checks for the races:
2213   guarantee(mid->owner_is_DEFLATER_MARKER(), "must be deflater marker");
2214   guarantee(mid->contentions() < 0, "must be negative: contentions=%d",
2215             mid->contentions());
2216   guarantee(mid->_waiters == 0, "must be 0: waiters=%d", mid->_waiters);
2217   guarantee(mid->_cxq == NULL, "must be no contending threads: cxq="
2218             INTPTR_FORMAT, p2i(mid->_cxq));
2219   guarantee(mid->_EntryList == NULL,
2220             "must be no entering threads: EntryList=" INTPTR_FORMAT,
2221             p2i(mid->_EntryList));
2222 
2223   const oop obj = (oop) mid->object();
2224   if (log_is_enabled(Trace, monitorinflation)) {
2225     ResourceMark rm;
2226     log_trace(monitorinflation)("deflate_monitor_using_JT: "
2227                                 "object=" INTPTR_FORMAT ", mark="
2228                                 INTPTR_FORMAT ", type='%s'",
2229                                 p2i(obj), obj->mark().value(),
2230                                 obj->klass()->external_name());
2231   }
2232 
2233   // Install the old mark word if nobody else has already done it.
2234   mid->install_displaced_markword_in_object(obj);
2235   mid->clear_common();
2236 
2237   assert(mid->object() == NULL, "must be NULL: object=" INTPTR_FORMAT,
2238          p2i(mid->object()));
2239   assert(mid->is_free(), "must be free: allocation_state=%d",
2240          (int)mid->allocation_state());
2241 
2242   // Move the deflated ObjectMonitor to the working free list
2243   // defined by free_head_p and free_tail_p.
2244   if (*free_head_p == NULL) {
2245     // First one on the list.
2246     *free_head_p = mid;
2247   }
2248   if (*free_tail_p != NULL) {
2249     // We append to the list so the caller can use mid->_next_om
2250     // to fix the linkages in its context.
2251     ObjectMonitor* prevtail = *free_tail_p;
2252     // prevtail should have been cleaned up by the caller:
2253 #ifdef ASSERT
2254     ObjectMonitor* l_next_om = unmarked_next(prevtail);
2255 #endif
2256     assert(l_next_om == NULL, "must be NULL: _next_om=" INTPTR_FORMAT, p2i(l_next_om));
2257     om_lock(prevtail);
2258     prevtail->set_next_om(mid);  // prevtail now points to mid (and is unlocked)
2259   }
2260   *free_tail_p = mid;
2261 
2262   // At this point, mid->_next_om still refers to its current
2263   // value and another ObjectMonitor's _next_om field still
2264   // refers to this ObjectMonitor. Those linkages have to be
2265   // cleaned up by the caller who has the complete context.
2266 
2267   // We leave owner == DEFLATER_MARKER and contentions < 0
2268   // to force any racing threads to retry.
2269   return true;  // Success, ObjectMonitor has been deflated.
2270 }
2271 
2272 // Walk a given monitor list, and deflate idle monitors.
2273 // The given list could be a per-thread list or a global list.
2274 //
2275 // In the case of parallel processing of thread local monitor lists,
2276 // work is done by Threads::parallel_threads_do() which ensures that
2277 // each Java thread is processed by exactly one worker thread, and
2278 // thus avoid conflicts that would arise when worker threads would
2279 // process the same monitor lists concurrently.
2280 //
2281 // See also ParallelSPCleanupTask and
2282 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
2283 // Threads::parallel_java_threads_do() in thread.cpp.
2284 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** list_p,
2285                                              int* count_p,
2286                                              ObjectMonitor** free_head_p,
2287                                              ObjectMonitor** free_tail_p) {
2288   ObjectMonitor* cur_mid_in_use = NULL;
2289   ObjectMonitor* mid = NULL;
2290   ObjectMonitor* next = NULL;
2291   int deflated_count = 0;
2292 
2293   // This list walk executes at a safepoint and does not race with any
2294   // other list walkers.
2295 
2296   for (mid = Atomic::load(list_p); mid != NULL; mid = next) {
2297     next = unmarked_next(mid);
2298     oop obj = (oop) mid->object();
2299     if (obj != NULL && deflate_monitor(mid, obj, free_head_p, free_tail_p)) {
2300       // Deflation succeeded and already updated free_head_p and
2301       // free_tail_p as needed. Finish the move to the local free list
2302       // by unlinking mid from the global or per-thread in-use list.
2303       if (cur_mid_in_use == NULL) {
2304         // mid is the list head so switch the list head to next:
2305         Atomic::store(list_p, next);
2306       } else {
2307         // Switch cur_mid_in_use's next field to next:
2308         cur_mid_in_use->set_next_om(next);
2309       }
2310       // At this point mid is disconnected from the in-use list.
2311       deflated_count++;
2312       Atomic::dec(count_p);
2313       // mid is current tail in the free_head_p list so NULL terminate it.
2314       // No release semantics needed since Atomic::dec() already provides it.
2315       mid->set_next_om(NULL);
2316     } else {
2317       cur_mid_in_use = mid;
2318     }
2319   }
2320   return deflated_count;
2321 }
2322 
2323 // Walk a given ObjectMonitor list and deflate idle ObjectMonitors using
2324 // a JavaThread. Returns the number of deflated ObjectMonitors. The given
2325 // list could be a per-thread in-use list or the global in-use list.
2326 // If a safepoint has started, then we save state via saved_mid_in_use_p
2327 // and return to the caller to honor the safepoint.
2328 //
2329 int ObjectSynchronizer::deflate_monitor_list_using_JT(ObjectMonitor** list_p,
2330                                                       int* count_p,
2331                                                       ObjectMonitor** free_head_p,
2332                                                       ObjectMonitor** free_tail_p,
2333                                                       ObjectMonitor** saved_mid_in_use_p) {
2334   assert(AsyncDeflateIdleMonitors, "sanity check");
2335   JavaThread* self = JavaThread::current();
2336 
2337   ObjectMonitor* cur_mid_in_use = NULL;
2338   ObjectMonitor* mid = NULL;
2339   ObjectMonitor* next = NULL;
2340   ObjectMonitor* next_next = NULL;
2341   int deflated_count = 0;
2342   NoSafepointVerifier nsv;
2343 
2344   // We use the more complicated lock-cur_mid_in_use-and-mid-as-we-go
2345   // protocol because om_release() can do list deletions in parallel;
2346   // this also prevents races with a list walker thread. We also
2347   // lock-next-next-as-we-go to prevent an om_flush() that is behind
2348   // this thread from passing us.
2349   if (*saved_mid_in_use_p == NULL) {
2350     // No saved state so start at the beginning.
2351     // Lock the list head so we can possibly deflate it:
2352     if ((mid = get_list_head_locked(list_p)) == NULL) {
2353       return 0;  // The list is empty so nothing to deflate.
2354     }
2355     next = unmarked_next(mid);
2356   } else {
2357     // We're restarting after a safepoint so restore the necessary state
2358     // before we resume.
2359     cur_mid_in_use = *saved_mid_in_use_p;
2360     // Lock cur_mid_in_use so we can possibly update its
2361     // next field to extract a deflated ObjectMonitor.
2362     om_lock(cur_mid_in_use);
2363     mid = unmarked_next(cur_mid_in_use);
2364     if (mid == NULL) {
2365       om_unlock(cur_mid_in_use);
2366       *saved_mid_in_use_p = NULL;
2367       return 0;  // The remainder is empty so nothing more to deflate.
2368     }
2369     // Lock mid so we can possibly deflate it:
2370     om_lock(mid);
2371     next = unmarked_next(mid);
2372   }
2373 
2374   while (true) {
2375     // The current mid is locked at this point. If we have a
2376     // cur_mid_in_use, then it is also locked at this point.
2377 
2378     if (next != NULL) {
2379       // We lock next so that an om_flush() thread that is behind us
2380       // cannot pass us when we unlock the current mid.
2381       om_lock(next);
2382       next_next = unmarked_next(next);
2383     }
2384 
2385     // Only try to deflate if there is an associated Java object and if
2386     // mid is old (is not newly allocated and is not newly freed).
2387     if (mid->object() != NULL && mid->is_old() &&
2388         deflate_monitor_using_JT(mid, free_head_p, free_tail_p)) {
2389       // Deflation succeeded and already updated free_head_p and
2390       // free_tail_p as needed. Finish the move to the local free list
2391       // by unlinking mid from the global or per-thread in-use list.
2392       if (cur_mid_in_use == NULL) {
2393         // mid is the list head and it is locked. Switch the list head
2394         // to next which is also locked (if not NULL) and also leave
2395         // mid locked. Release semantics needed since not all code paths
2396         // in deflate_monitor_using_JT() ensure memory consistency.
2397         Atomic::release_store(list_p, next);
2398       } else {
2399         ObjectMonitor* locked_next = mark_om_ptr(next);
2400         // mid and cur_mid_in_use are locked. Switch cur_mid_in_use's
2401         // next field to locked_next and also leave mid locked.
2402         // Release semantics needed since not all code paths in
2403         // deflate_monitor_using_JT() ensure memory consistency.
2404         cur_mid_in_use->release_set_next_om(locked_next);
2405       }
2406       // At this point mid is disconnected from the in-use list so
2407       // its lock longer has any effects on in-use list.
2408       deflated_count++;
2409       Atomic::dec(count_p);
2410       // mid is current tail in the free_head_p list so NULL terminate
2411       // it (which also unlocks it). No release semantics needed since
2412       // Atomic::dec() already provides it.
2413       mid->set_next_om(NULL);
2414 
2415       // All the list management is done so move on to the next one:
2416       mid = next;  // mid keeps non-NULL next's locked state
2417       next = next_next;
2418     } else {
2419       // mid is considered in-use if it does not have an associated
2420       // Java object or mid is not old or deflation did not succeed.
2421       // A mid->is_new() node can be seen here when it is freshly
2422       // returned by om_alloc() (and skips the deflation code path).
2423       // A mid->is_old() node can be seen here when deflation failed.
2424       // A mid->is_free() node can be seen here when a fresh node from
2425       // om_alloc() is released by om_release() due to losing the race
2426       // in inflate().
2427 
2428       // All the list management is done so move on to the next one:
2429       if (cur_mid_in_use != NULL) {
2430         om_unlock(cur_mid_in_use);
2431       }
2432       // The next cur_mid_in_use keeps mid's lock state so
2433       // that it is stable for a possible next field change. It
2434       // cannot be modified by om_release() while it is locked.
2435       cur_mid_in_use = mid;
2436       mid = next;  // mid keeps non-NULL next's locked state
2437       next = next_next;
2438 
2439       if (SafepointMechanism::should_block(self) &&
2440           // Acquire semantics are not needed on this list load since
2441           // it is not dependent on the following load which does have
2442           // acquire semantics.
2443           cur_mid_in_use != Atomic::load(list_p) && cur_mid_in_use->is_old()) {
2444         // If a safepoint has started and cur_mid_in_use is not the list
2445         // head and is old, then it is safe to use as saved state. Return
2446         // to the caller before blocking.
2447         *saved_mid_in_use_p = cur_mid_in_use;
2448         om_unlock(cur_mid_in_use);
2449         if (mid != NULL) {
2450           om_unlock(mid);
2451         }
2452         return deflated_count;
2453       }
2454     }
2455     if (mid == NULL) {
2456       if (cur_mid_in_use != NULL) {
2457         om_unlock(cur_mid_in_use);
2458       }
2459       break;  // Reached end of the list so nothing more to deflate.
2460     }
2461 
2462     // The current mid's next field is locked at this point. If we have
2463     // a cur_mid_in_use, then it is also locked at this point.
2464   }
2465   // We finished the list without a safepoint starting so there's
2466   // no need to save state.
2467   *saved_mid_in_use_p = NULL;
2468   return deflated_count;
2469 }
2470 
2471 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2472   counters->n_in_use = 0;              // currently associated with objects
2473   counters->n_in_circulation = 0;      // extant
2474   counters->n_scavenged = 0;           // reclaimed (global and per-thread)
2475   counters->per_thread_scavenged = 0;  // per-thread scavenge total
2476   counters->per_thread_times = 0.0;    // per-thread scavenge times
2477 }
2478 
2479 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
2480   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2481 
2482   if (AsyncDeflateIdleMonitors) {
2483     // Nothing to do when global idle ObjectMonitors are deflated using
2484     // a JavaThread unless a special deflation has been requested.
2485     if (!is_special_deflation_requested()) {
2486       return;
2487     }
2488   }
2489 
2490   bool deflated = false;
2491 
2492   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
2493   ObjectMonitor* free_tail_p = NULL;
2494   elapsedTimer timer;
2495 
2496   if (log_is_enabled(Info, monitorinflation)) {
2497     timer.start();
2498   }
2499 
2500   // Note: the thread-local monitors lists get deflated in
2501   // a separate pass. See deflate_thread_local_monitors().
2502 
2503   // For moribund threads, scan om_list_globals._in_use_list
2504   int deflated_count = 0;
2505   // Acquire semantics not needed since we are at a safepoint.
2506   if (Atomic::load(&om_list_globals._in_use_list) != NULL) {
2507     // Update n_in_circulation before om_list_globals._in_use_count is
2508     // updated by deflation.
2509     Atomic::add(&counters->n_in_circulation,
2510                 Atomic::load(&om_list_globals._in_use_count));
2511 
2512     deflated_count = deflate_monitor_list(&om_list_globals._in_use_list,
2513                                           &om_list_globals._in_use_count,
2514                                           &free_head_p, &free_tail_p);
2515     Atomic::add(&counters->n_in_use, Atomic::load(&om_list_globals._in_use_count));
2516   }
2517 
2518   if (free_head_p != NULL) {
2519     // Move the deflated ObjectMonitors back to the global free list.
2520     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
2521 #ifdef ASSERT
2522     ObjectMonitor* l_next_om = free_tail_p->next_om();
2523 #endif
2524     assert(l_next_om == NULL, "must be NULL: _next_om=" INTPTR_FORMAT, p2i(l_next_om));
2525     prepend_list_to_global_free_list(free_head_p, free_tail_p, deflated_count);
2526     Atomic::add(&counters->n_scavenged, deflated_count);
2527   }
2528   timer.stop();
2529 
2530   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2531   LogStreamHandle(Info, monitorinflation) lsh_info;
2532   LogStream* ls = NULL;
2533   if (log_is_enabled(Debug, monitorinflation)) {
2534     ls = &lsh_debug;
2535   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2536     ls = &lsh_info;
2537   }
2538   if (ls != NULL) {
2539     ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2540   }
2541 }
2542 
2543 class HandshakeForDeflation : public HandshakeClosure {
2544  public:
2545   HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {}
2546 
2547   void do_thread(Thread* thread) {
2548     log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread="
2549                                 INTPTR_FORMAT, p2i(thread));
2550   }
2551 };
2552 
2553 void ObjectSynchronizer::deflate_idle_monitors_using_JT() {
2554   assert(AsyncDeflateIdleMonitors, "sanity check");
2555 
2556   // Deflate any global idle monitors.
2557   deflate_global_idle_monitors_using_JT();
2558 
2559   int count = 0;
2560   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2561     if (Atomic::load(&jt->om_in_use_count) > 0 && !jt->is_exiting()) {
2562       // This JavaThread is using ObjectMonitors so deflate any that
2563       // are idle unless this JavaThread is exiting; do not race with
2564       // ObjectSynchronizer::om_flush().
2565       deflate_per_thread_idle_monitors_using_JT(jt);
2566       count++;
2567     }
2568   }
2569   if (count > 0) {
2570     log_debug(monitorinflation)("did async deflation of idle monitors for %d thread(s).", count);
2571   }
2572 
2573   log_info(monitorinflation)("async global_population=%d, global_in_use_count=%d, "
2574                              "global_free_count=%d, global_wait_count=%d",
2575                              Atomic::load(&om_list_globals._population),
2576                              Atomic::load(&om_list_globals._in_use_count),
2577                              Atomic::load(&om_list_globals._free_count),
2578                              Atomic::load(&om_list_globals._wait_count));
2579 
2580   // The ServiceThread's async deflation request has been processed.
2581   set_is_async_deflation_requested(false);
2582 
2583   if (Atomic::load(&om_list_globals._wait_count) > 0) {
2584     // There are deflated ObjectMonitors waiting for a handshake
2585     // (or a safepoint) for safety.
2586 
2587     ObjectMonitor* list = Atomic::load(&om_list_globals._wait_list);
2588     ADIM_guarantee(list != NULL, "om_list_globals._wait_list must not be NULL");
2589     int count = Atomic::load(&om_list_globals._wait_count);
2590     Atomic::store(&om_list_globals._wait_count, 0);
2591     OrderAccess::storestore();  // Make sure counter update is seen first.
2592     Atomic::store(&om_list_globals._wait_list, (ObjectMonitor*)NULL);
2593 
2594     // Find the tail for prepend_list_to_common(). No need to mark
2595     // ObjectMonitors for this list walk since only the deflater
2596     // thread manages the wait list.
2597     int l_count = 0;
2598     ObjectMonitor* tail = NULL;
2599     for (ObjectMonitor* n = list; n != NULL; n = unmarked_next(n)) {
2600       tail = n;
2601       l_count++;
2602     }
2603     ADIM_guarantee(count == l_count, "count=%d != l_count=%d", count, l_count);
2604 
2605     // Will execute a safepoint if !ThreadLocalHandshakes:
2606     HandshakeForDeflation hfd_hc;
2607     Handshake::execute(&hfd_hc);
2608 
2609     prepend_list_to_common(list, tail, count, &om_list_globals._free_list,
2610                            &om_list_globals._free_count);
2611 
2612     log_info(monitorinflation)("moved %d idle monitors from global waiting list to global free list", count);
2613   }
2614 }
2615 
2616 // Deflate global idle ObjectMonitors using a JavaThread.
2617 //
2618 void ObjectSynchronizer::deflate_global_idle_monitors_using_JT() {
2619   assert(AsyncDeflateIdleMonitors, "sanity check");
2620   assert(Thread::current()->is_Java_thread(), "precondition");
2621   JavaThread* self = JavaThread::current();
2622 
2623   deflate_common_idle_monitors_using_JT(true /* is_global */, self);
2624 }
2625 
2626 // Deflate the specified JavaThread's idle ObjectMonitors using a JavaThread.
2627 //
2628 void ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT(JavaThread* target) {
2629   assert(AsyncDeflateIdleMonitors, "sanity check");
2630   assert(Thread::current()->is_Java_thread(), "precondition");
2631 
2632   deflate_common_idle_monitors_using_JT(false /* !is_global */, target);
2633 }
2634 
2635 // Deflate global or per-thread idle ObjectMonitors using a JavaThread.
2636 //
2637 void ObjectSynchronizer::deflate_common_idle_monitors_using_JT(bool is_global, JavaThread* target) {
2638   JavaThread* self = JavaThread::current();
2639 
2640   int deflated_count = 0;
2641   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged ObjectMonitors
2642   ObjectMonitor* free_tail_p = NULL;
2643   ObjectMonitor* saved_mid_in_use_p = NULL;
2644   elapsedTimer timer;
2645 
2646   if (log_is_enabled(Info, monitorinflation)) {
2647     timer.start();
2648   }
2649 
2650   if (is_global) {
2651     OM_PERFDATA_OP(MonExtant, set_value(Atomic::load(&om_list_globals._in_use_count)));
2652   } else {
2653     OM_PERFDATA_OP(MonExtant, inc(Atomic::load(&target->om_in_use_count)));
2654   }
2655 
2656   do {
2657     if (saved_mid_in_use_p != NULL) {
2658       // We looped around because deflate_monitor_list_using_JT()
2659       // detected a pending safepoint. Honoring the safepoint is good,
2660       // but as long as is_special_deflation_requested() is supported,
2661       // we can't safely restart using saved_mid_in_use_p. That saved
2662       // ObjectMonitor could have been deflated by safepoint based
2663       // deflation and would no longer be on the in-use list where we
2664       // originally found it.
2665       saved_mid_in_use_p = NULL;
2666     }
2667     int local_deflated_count;
2668     if (is_global) {
2669       local_deflated_count =
2670           deflate_monitor_list_using_JT(&om_list_globals._in_use_list,
2671                                         &om_list_globals._in_use_count,
2672                                         &free_head_p, &free_tail_p,
2673                                         &saved_mid_in_use_p);
2674     } else {
2675       local_deflated_count =
2676           deflate_monitor_list_using_JT(&target->om_in_use_list,
2677                                         &target->om_in_use_count, &free_head_p,
2678                                         &free_tail_p, &saved_mid_in_use_p);
2679     }
2680     deflated_count += local_deflated_count;
2681 
2682     if (free_head_p != NULL) {
2683       // Move the deflated ObjectMonitors to the global free list.
2684       guarantee(free_tail_p != NULL && local_deflated_count > 0, "free_tail_p=" INTPTR_FORMAT ", local_deflated_count=%d", p2i(free_tail_p), local_deflated_count);
2685       // Note: The target thread can be doing an om_alloc() that
2686       // is trying to prepend an ObjectMonitor on its in-use list
2687       // at the same time that we have deflated the current in-use
2688       // list head and put it on the local free list. prepend_to_common()
2689       // will detect the race and retry which avoids list corruption,
2690       // but the next field in free_tail_p can flicker to marked
2691       // and then unmarked while prepend_to_common() is sorting it
2692       // all out.
2693 #ifdef ASSERT
2694       ObjectMonitor* l_next_om = unmarked_next(free_tail_p);
2695 #endif
2696       assert(l_next_om == NULL, "must be NULL: _next_om=" INTPTR_FORMAT, p2i(l_next_om));
2697 
2698       prepend_list_to_global_wait_list(free_head_p, free_tail_p, local_deflated_count);
2699 
2700       OM_PERFDATA_OP(Deflations, inc(local_deflated_count));
2701     }
2702 
2703     if (saved_mid_in_use_p != NULL) {
2704       // deflate_monitor_list_using_JT() detected a safepoint starting.
2705       timer.stop();
2706       {
2707         if (is_global) {
2708           log_debug(monitorinflation)("pausing deflation of global idle monitors for a safepoint.");
2709         } else {
2710           log_debug(monitorinflation)("jt=" INTPTR_FORMAT ": pausing deflation of per-thread idle monitors for a safepoint.", p2i(target));
2711         }
2712         assert(SafepointMechanism::should_block(self), "sanity check");
2713         ThreadBlockInVM blocker(self);
2714       }
2715       // Prepare for another loop after the safepoint.
2716       free_head_p = NULL;
2717       free_tail_p = NULL;
2718       if (log_is_enabled(Info, monitorinflation)) {
2719         timer.start();
2720       }
2721     }
2722   } while (saved_mid_in_use_p != NULL);
2723   timer.stop();
2724 
2725   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2726   LogStreamHandle(Info, monitorinflation) lsh_info;
2727   LogStream* ls = NULL;
2728   if (log_is_enabled(Debug, monitorinflation)) {
2729     ls = &lsh_debug;
2730   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2731     ls = &lsh_info;
2732   }
2733   if (ls != NULL) {
2734     if (is_global) {
2735       ls->print_cr("async-deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2736     } else {
2737       ls->print_cr("jt=" INTPTR_FORMAT ": async-deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(target), timer.seconds(), deflated_count);
2738     }
2739   }
2740 }
2741 
2742 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2743   // Report the cumulative time for deflating each thread's idle
2744   // monitors. Note: if the work is split among more than one
2745   // worker thread, then the reported time will likely be more
2746   // than a beginning to end measurement of the phase.
2747   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d", counters->per_thread_times, counters->per_thread_scavenged);
2748 
2749   bool needs_special_deflation = is_special_deflation_requested();
2750   if (AsyncDeflateIdleMonitors && !needs_special_deflation) {
2751     // Nothing to do when idle ObjectMonitors are deflated using
2752     // a JavaThread unless a special deflation has been requested.
2753     return;
2754   }
2755 
2756   if (log_is_enabled(Debug, monitorinflation)) {
2757     // exit_globals()'s call to audit_and_print_stats() is done
2758     // at the Info level and not at a safepoint.
2759     // For async deflation, audit_and_print_stats() is called in
2760     // ObjectSynchronizer::do_safepoint_work() at the Debug level
2761     // at a safepoint.
2762     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2763   } else if (log_is_enabled(Info, monitorinflation)) {
2764     log_info(monitorinflation)("global_population=%d, global_in_use_count=%d, "
2765                                "global_free_count=%d, global_wait_count=%d",
2766                                Atomic::load(&om_list_globals._population),
2767                                Atomic::load(&om_list_globals._in_use_count),
2768                                Atomic::load(&om_list_globals._free_count),
2769                                Atomic::load(&om_list_globals._wait_count));
2770   }
2771 
2772   OM_PERFDATA_OP(Deflations, inc(counters->n_scavenged));
2773   OM_PERFDATA_OP(MonExtant, set_value(counters->n_in_circulation));
2774 
2775   GVars.stw_random = os::random();
2776   GVars.stw_cycle++;
2777 
2778   if (needs_special_deflation) {
2779     set_is_special_deflation_requested(false);  // special deflation is done
2780   }
2781 }
2782 
2783 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
2784   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2785 
2786   if (AsyncDeflateIdleMonitors && !is_special_deflation_requested()) {
2787     // Nothing to do if a special deflation has NOT been requested.
2788     return;
2789   }
2790 
2791   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
2792   ObjectMonitor* free_tail_p = NULL;
2793   elapsedTimer timer;
2794 
2795   if (log_is_enabled(Info, safepoint, cleanup) ||
2796       log_is_enabled(Info, monitorinflation)) {
2797     timer.start();
2798   }
2799 
2800   // Update n_in_circulation before om_in_use_count is updated by deflation.
2801   Atomic::add(&counters->n_in_circulation, Atomic::load(&thread->om_in_use_count));
2802 
2803   int deflated_count = deflate_monitor_list(&thread->om_in_use_list, &thread->om_in_use_count, &free_head_p, &free_tail_p);
2804   Atomic::add(&counters->n_in_use, Atomic::load(&thread->om_in_use_count));
2805 
2806   if (free_head_p != NULL) {
2807     // Move the deflated ObjectMonitors back to the global free list.
2808     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
2809 #ifdef ASSERT
2810     ObjectMonitor* l_next_om = free_tail_p->next_om();
2811 #endif
2812     assert(l_next_om == NULL, "must be NULL: _next_om=" INTPTR_FORMAT, p2i(l_next_om));
2813     prepend_list_to_global_free_list(free_head_p, free_tail_p, deflated_count);
2814     Atomic::add(&counters->n_scavenged, deflated_count);
2815     Atomic::add(&counters->per_thread_scavenged, deflated_count);
2816   }
2817 
2818   timer.stop();
2819   counters->per_thread_times += timer.seconds();
2820 
2821   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2822   LogStreamHandle(Info, monitorinflation) lsh_info;
2823   LogStream* ls = NULL;
2824   if (log_is_enabled(Debug, monitorinflation)) {
2825     ls = &lsh_debug;
2826   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2827     ls = &lsh_info;
2828   }
2829   if (ls != NULL) {
2830     ls->print_cr("jt=" INTPTR_FORMAT ": deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(thread), timer.seconds(), deflated_count);
2831   }
2832 }
2833 
2834 // Monitor cleanup on JavaThread::exit
2835 
2836 // Iterate through monitor cache and attempt to release thread's monitors
2837 // Gives up on a particular monitor if an exception occurs, but continues
2838 // the overall iteration, swallowing the exception.
2839 class ReleaseJavaMonitorsClosure: public MonitorClosure {
2840  private:
2841   TRAPS;
2842 
2843  public:
2844   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
2845   void do_monitor(ObjectMonitor* mid) {
2846     if (mid->owner() == THREAD) {
2847       (void)mid->complete_exit(CHECK);
2848     }
2849   }
2850 };
2851 
2852 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
2853 // ignored.  This is meant to be called during JNI thread detach which assumes
2854 // all remaining monitors are heavyweight.  All exceptions are swallowed.
2855 // Scanning the extant monitor list can be time consuming.
2856 // A simple optimization is to add a per-thread flag that indicates a thread
2857 // called jni_monitorenter() during its lifetime.
2858 //
2859 // Instead of No_Savepoint_Verifier it might be cheaper to
2860 // use an idiom of the form:
2861 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
2862 //   <code that must not run at safepoint>
2863 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
2864 // Since the tests are extremely cheap we could leave them enabled
2865 // for normal product builds.
2866 
2867 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
2868   assert(THREAD == JavaThread::current(), "must be current Java thread");
2869   NoSafepointVerifier nsv;
2870   ReleaseJavaMonitorsClosure rjmc(THREAD);
2871   ObjectSynchronizer::monitors_iterate(&rjmc);
2872   THREAD->clear_pending_exception();
2873 }
2874 
2875 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
2876   switch (cause) {
2877     case inflate_cause_vm_internal:    return "VM Internal";
2878     case inflate_cause_monitor_enter:  return "Monitor Enter";
2879     case inflate_cause_wait:           return "Monitor Wait";
2880     case inflate_cause_notify:         return "Monitor Notify";
2881     case inflate_cause_hash_code:      return "Monitor Hash Code";
2882     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
2883     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
2884     default:
2885       ShouldNotReachHere();
2886   }
2887   return "Unknown";
2888 }
2889 
2890 //------------------------------------------------------------------------------
2891 // Debugging code
2892 
2893 u_char* ObjectSynchronizer::get_gvars_addr() {
2894   return (u_char*)&GVars;
2895 }
2896 
2897 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() {
2898   return (u_char*)&GVars.hc_sequence;
2899 }
2900 
2901 size_t ObjectSynchronizer::get_gvars_size() {
2902   return sizeof(SharedGlobals);
2903 }
2904 
2905 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() {
2906   return (u_char*)&GVars.stw_random;
2907 }
2908 
2909 // This function can be called at a safepoint or it can be called when
2910 // we are trying to exit the VM. When we are trying to exit the VM, the
2911 // list walker functions can run in parallel with the other list
2912 // operations so spin-locking is used for safety.
2913 //
2914 // Calls to this function can be added in various places as a debugging
2915 // aid; pass 'true' for the 'on_exit' parameter to have in-use monitor
2916 // details logged at the Info level and 'false' for the 'on_exit'
2917 // parameter to have in-use monitor details logged at the Trace level.
2918 // deflate_monitor_list() no longer uses spin-locking so be careful
2919 // when adding audit_and_print_stats() calls at a safepoint.
2920 //
2921 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) {
2922   assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant");
2923 
2924   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2925   LogStreamHandle(Info, monitorinflation) lsh_info;
2926   LogStreamHandle(Trace, monitorinflation) lsh_trace;
2927   LogStream* ls = NULL;
2928   if (log_is_enabled(Trace, monitorinflation)) {
2929     ls = &lsh_trace;
2930   } else if (log_is_enabled(Debug, monitorinflation)) {
2931     ls = &lsh_debug;
2932   } else if (log_is_enabled(Info, monitorinflation)) {
2933     ls = &lsh_info;
2934   }
2935   assert(ls != NULL, "sanity check");
2936 
2937   // Log counts for the global and per-thread monitor lists:
2938   int chk_om_population = log_monitor_list_counts(ls);
2939   int error_cnt = 0;
2940 
2941   ls->print_cr("Checking global lists:");
2942 
2943   // Check om_list_globals._population:
2944   if (Atomic::load(&om_list_globals._population) == chk_om_population) {
2945     ls->print_cr("global_population=%d equals chk_om_population=%d",
2946                  Atomic::load(&om_list_globals._population), chk_om_population);
2947   } else {
2948     // With fine grained locks on the monitor lists, it is possible for
2949     // log_monitor_list_counts() to return a value that doesn't match
2950     // om_list_globals._population. So far a higher value has been
2951     // seen in testing so something is being double counted by
2952     // log_monitor_list_counts().
2953     ls->print_cr("WARNING: global_population=%d is not equal to "
2954                  "chk_om_population=%d",
2955                  Atomic::load(&om_list_globals._population), chk_om_population);
2956   }
2957 
2958   // Check om_list_globals._in_use_list and om_list_globals._in_use_count:
2959   chk_global_in_use_list_and_count(ls, &error_cnt);
2960 
2961   // Check om_list_globals._free_list and om_list_globals._free_count:
2962   chk_global_free_list_and_count(ls, &error_cnt);
2963 
2964   // Check om_list_globals._wait_list and om_list_globals._wait_count:
2965   chk_global_wait_list_and_count(ls, &error_cnt);
2966 
2967   ls->print_cr("Checking per-thread lists:");
2968 
2969   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2970     // Check om_in_use_list and om_in_use_count:
2971     chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt);
2972 
2973     // Check om_free_list and om_free_count:
2974     chk_per_thread_free_list_and_count(jt, ls, &error_cnt);
2975   }
2976 
2977   if (error_cnt == 0) {
2978     ls->print_cr("No errors found in monitor list checks.");
2979   } else {
2980     log_error(monitorinflation)("found monitor list errors: error_cnt=%d", error_cnt);
2981   }
2982 
2983   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
2984       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
2985     // When exiting this log output is at the Info level. When called
2986     // at a safepoint, this log output is at the Trace level since
2987     // there can be a lot of it.
2988     log_in_use_monitor_details(ls);
2989   }
2990 
2991   ls->flush();
2992 
2993   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
2994 }
2995 
2996 // Check a free monitor entry; log any errors.
2997 void ObjectSynchronizer::chk_free_entry(JavaThread* jt, ObjectMonitor* n,
2998                                         outputStream * out, int *error_cnt_p) {
2999   stringStream ss;
3000   if (n->is_busy()) {
3001     if (jt != NULL) {
3002       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3003                     ": free per-thread monitor must not be busy: %s", p2i(jt),
3004                     p2i(n), n->is_busy_to_string(&ss));
3005     } else {
3006       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
3007                     "must not be busy: %s", p2i(n), n->is_busy_to_string(&ss));
3008     }
3009     *error_cnt_p = *error_cnt_p + 1;
3010   }
3011   if (n->header().value() != 0) {
3012     if (jt != NULL) {
3013       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3014                     ": free per-thread monitor must have NULL _header "
3015                     "field: _header=" INTPTR_FORMAT, p2i(jt), p2i(n),
3016                     n->header().value());
3017       *error_cnt_p = *error_cnt_p + 1;
3018     } else if (!AsyncDeflateIdleMonitors) {
3019       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
3020                     "must have NULL _header field: _header=" INTPTR_FORMAT,
3021                     p2i(n), n->header().value());
3022       *error_cnt_p = *error_cnt_p + 1;
3023     }
3024   }
3025   if (n->object() != NULL) {
3026     if (jt != NULL) {
3027       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3028                     ": free per-thread monitor must have NULL _object "
3029                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
3030                     p2i(n->object()));
3031     } else {
3032       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
3033                     "must have NULL _object field: _object=" INTPTR_FORMAT,
3034                     p2i(n), p2i(n->object()));
3035     }
3036     *error_cnt_p = *error_cnt_p + 1;
3037   }
3038 }
3039 
3040 // Lock the next ObjectMonitor for traversal and unlock the current
3041 // ObjectMonitor. Returns the next ObjectMonitor if there is one.
3042 // Otherwise returns NULL (after unlocking the current ObjectMonitor).
3043 // This function is used by the various list walker functions to
3044 // safely walk a list without allowing an ObjectMonitor to be moved
3045 // to another list in the middle of a walk.
3046 static ObjectMonitor* lock_next_for_traversal(ObjectMonitor* cur) {
3047   assert(is_locked(cur), "cur=" INTPTR_FORMAT " must be locked", p2i(cur));
3048   ObjectMonitor* next = unmarked_next(cur);
3049   if (next == NULL) {  // Reached the end of the list.
3050     om_unlock(cur);
3051     return NULL;
3052   }
3053   om_lock(next);   // Lock next before unlocking current to keep
3054   om_unlock(cur);  // from being by-passed by another thread.
3055   return next;
3056 }
3057 
3058 // Check the global free list and count; log the results of the checks.
3059 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
3060                                                         int *error_cnt_p) {
3061   int chk_om_free_count = 0;
3062   ObjectMonitor* cur = NULL;
3063   if ((cur = get_list_head_locked(&om_list_globals._free_list)) != NULL) {
3064     // Marked the global free list head so process the list.
3065     while (true) {
3066       chk_free_entry(NULL /* jt */, cur, out, error_cnt_p);
3067       chk_om_free_count++;
3068 
3069       cur = lock_next_for_traversal(cur);
3070       if (cur == NULL) {
3071         break;
3072       }
3073     }
3074   }
3075   int l_free_count = Atomic::load(&om_list_globals._free_count);
3076   if (l_free_count == chk_om_free_count) {
3077     out->print_cr("global_free_count=%d equals chk_om_free_count=%d",
3078                   l_free_count, chk_om_free_count);
3079   } else {
3080     // With fine grained locks on om_list_globals._free_list, it
3081     // is possible for an ObjectMonitor to be prepended to
3082     // om_list_globals._free_list after we started calculating
3083     // chk_om_free_count so om_list_globals._free_count may not
3084     // match anymore.
3085     out->print_cr("WARNING: global_free_count=%d is not equal to "
3086                   "chk_om_free_count=%d", l_free_count, chk_om_free_count);
3087   }
3088 }
3089 
3090 // Check the global wait list and count; log the results of the checks.
3091 void ObjectSynchronizer::chk_global_wait_list_and_count(outputStream * out,
3092                                                         int *error_cnt_p) {
3093   int chk_om_wait_count = 0;
3094   ObjectMonitor* cur = NULL;
3095   if ((cur = get_list_head_locked(&om_list_globals._wait_list)) != NULL) {
3096     // Marked the global wait list head so process the list.
3097     while (true) {
3098       // Rules for om_list_globals._wait_list are the same as for
3099       // om_list_globals._free_list:
3100       chk_free_entry(NULL /* jt */, cur, out, error_cnt_p);
3101       chk_om_wait_count++;
3102 
3103       cur = lock_next_for_traversal(cur);
3104       if (cur == NULL) {
3105         break;
3106       }
3107     }
3108   }
3109   if (Atomic::load(&om_list_globals._wait_count) == chk_om_wait_count) {
3110     out->print_cr("global_wait_count=%d equals chk_om_wait_count=%d",
3111                   Atomic::load(&om_list_globals._wait_count), chk_om_wait_count);
3112   } else {
3113     out->print_cr("ERROR: global_wait_count=%d is not equal to "
3114                   "chk_om_wait_count=%d",
3115                   Atomic::load(&om_list_globals._wait_count), chk_om_wait_count);
3116     *error_cnt_p = *error_cnt_p + 1;
3117   }
3118 }
3119 
3120 // Check the global in-use list and count; log the results of the checks.
3121 void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out,
3122                                                           int *error_cnt_p) {
3123   int chk_om_in_use_count = 0;
3124   ObjectMonitor* cur = NULL;
3125   if ((cur = get_list_head_locked(&om_list_globals._in_use_list)) != NULL) {
3126     // Marked the global in-use list head so process the list.
3127     while (true) {
3128       chk_in_use_entry(NULL /* jt */, cur, out, error_cnt_p);
3129       chk_om_in_use_count++;
3130 
3131       cur = lock_next_for_traversal(cur);
3132       if (cur == NULL) {
3133         break;
3134       }
3135     }
3136   }
3137   int l_in_use_count = Atomic::load(&om_list_globals._in_use_count);
3138   if (l_in_use_count == chk_om_in_use_count) {
3139     out->print_cr("global_in_use_count=%d equals chk_om_in_use_count=%d",
3140                   l_in_use_count, chk_om_in_use_count);
3141   } else {
3142     // With fine grained locks on the monitor lists, it is possible for
3143     // an exiting JavaThread to put its in-use ObjectMonitors on the
3144     // global in-use list after chk_om_in_use_count is calculated above.
3145     out->print_cr("WARNING: global_in_use_count=%d is not equal to chk_om_in_use_count=%d",
3146                   l_in_use_count, chk_om_in_use_count);
3147   }
3148 }
3149 
3150 // Check an in-use monitor entry; log any errors.
3151 void ObjectSynchronizer::chk_in_use_entry(JavaThread* jt, ObjectMonitor* n,
3152                                           outputStream * out, int *error_cnt_p) {
3153   if (n->header().value() == 0) {
3154     if (jt != NULL) {
3155       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3156                     ": in-use per-thread monitor must have non-NULL _header "
3157                     "field.", p2i(jt), p2i(n));
3158     } else {
3159       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
3160                     "must have non-NULL _header field.", p2i(n));
3161     }
3162     *error_cnt_p = *error_cnt_p + 1;
3163   }
3164   if (n->object() == NULL) {
3165     if (jt != NULL) {
3166       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3167                     ": in-use per-thread monitor must have non-NULL _object "
3168                     "field.", p2i(jt), p2i(n));
3169     } else {
3170       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
3171                     "must have non-NULL _object field.", p2i(n));
3172     }
3173     *error_cnt_p = *error_cnt_p + 1;
3174   }
3175   const oop obj = (oop)n->object();
3176   const markWord mark = obj->mark();
3177   if (!mark.has_monitor()) {
3178     if (jt != NULL) {
3179       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3180                     ": in-use per-thread monitor's object does not think "
3181                     "it has a monitor: obj=" INTPTR_FORMAT ", mark="
3182                     INTPTR_FORMAT,  p2i(jt), p2i(n), p2i(obj), mark.value());
3183     } else {
3184       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
3185                     "monitor's object does not think it has a monitor: obj="
3186                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
3187                     p2i(obj), mark.value());
3188     }
3189     *error_cnt_p = *error_cnt_p + 1;
3190   }
3191   ObjectMonitor* const obj_mon = mark.monitor();
3192   if (n != obj_mon) {
3193     if (jt != NULL) {
3194       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3195                     ": in-use per-thread monitor's object does not refer "
3196                     "to the same monitor: obj=" INTPTR_FORMAT ", mark="
3197                     INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt),
3198                     p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
3199     } else {
3200       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
3201                     "monitor's object does not refer to the same monitor: obj="
3202                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
3203                     INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
3204     }
3205     *error_cnt_p = *error_cnt_p + 1;
3206   }
3207 }
3208 
3209 // Check the thread's free list and count; log the results of the checks.
3210 void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt,
3211                                                             outputStream * out,
3212                                                             int *error_cnt_p) {
3213   int chk_om_free_count = 0;
3214   ObjectMonitor* cur = NULL;
3215   if ((cur = get_list_head_locked(&jt->om_free_list)) != NULL) {
3216     // Marked the per-thread free list head so process the list.
3217     while (true) {
3218       chk_free_entry(jt, cur, out, error_cnt_p);
3219       chk_om_free_count++;
3220 
3221       cur = lock_next_for_traversal(cur);
3222       if (cur == NULL) {
3223         break;
3224       }
3225     }
3226   }
3227   int l_om_free_count = Atomic::load(&jt->om_free_count);
3228   if (l_om_free_count == chk_om_free_count) {
3229     out->print_cr("jt=" INTPTR_FORMAT ": om_free_count=%d equals "
3230                   "chk_om_free_count=%d", p2i(jt), l_om_free_count, chk_om_free_count);
3231   } else {
3232     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_free_count=%d is not "
3233                   "equal to chk_om_free_count=%d", p2i(jt), l_om_free_count,
3234                   chk_om_free_count);
3235     *error_cnt_p = *error_cnt_p + 1;
3236   }
3237 }
3238 
3239 // Check the thread's in-use list and count; log the results of the checks.
3240 void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt,
3241                                                               outputStream * out,
3242                                                               int *error_cnt_p) {
3243   int chk_om_in_use_count = 0;
3244   ObjectMonitor* cur = NULL;
3245   if ((cur = get_list_head_locked(&jt->om_in_use_list)) != NULL) {
3246     // Marked the per-thread in-use list head so process the list.
3247     while (true) {
3248       chk_in_use_entry(jt, cur, out, error_cnt_p);
3249       chk_om_in_use_count++;
3250 
3251       cur = lock_next_for_traversal(cur);
3252       if (cur == NULL) {
3253         break;
3254       }
3255     }
3256   }
3257   int l_om_in_use_count = Atomic::load(&jt->om_in_use_count);
3258   if (l_om_in_use_count == chk_om_in_use_count) {
3259     out->print_cr("jt=" INTPTR_FORMAT ": om_in_use_count=%d equals "
3260                   "chk_om_in_use_count=%d", p2i(jt), l_om_in_use_count,
3261                   chk_om_in_use_count);
3262   } else {
3263     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_in_use_count=%d is not "
3264                   "equal to chk_om_in_use_count=%d", p2i(jt), l_om_in_use_count,
3265                   chk_om_in_use_count);
3266     *error_cnt_p = *error_cnt_p + 1;
3267   }
3268 }
3269 
3270 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
3271 // flags indicate why the entry is in-use, 'object' and 'object type'
3272 // indicate the associated object and its type.
3273 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out) {
3274   stringStream ss;
3275   if (Atomic::load(&om_list_globals._in_use_count) > 0) {
3276     out->print_cr("In-use global monitor info:");
3277     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
3278     out->print_cr("%18s  %s  %18s  %18s",
3279                   "monitor", "BHL", "object", "object type");
3280     out->print_cr("==================  ===  ==================  ==================");
3281     ObjectMonitor* cur = NULL;
3282     if ((cur = get_list_head_locked(&om_list_globals._in_use_list)) != NULL) {
3283       // Marked the global in-use list head so process the list.
3284       while (true) {
3285         const oop obj = (oop) cur->object();
3286         const markWord mark = cur->header();
3287         ResourceMark rm;
3288         out->print(INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT "  %s", p2i(cur),
3289                    cur->is_busy() != 0, mark.hash() != 0, cur->owner() != NULL,
3290                    p2i(obj), obj->klass()->external_name());
3291         if (cur->is_busy() != 0) {
3292           out->print(" (%s)", cur->is_busy_to_string(&ss));
3293           ss.reset();
3294         }
3295         out->cr();
3296 
3297         cur = lock_next_for_traversal(cur);
3298         if (cur == NULL) {
3299           break;
3300         }
3301       }
3302     }
3303   }
3304 
3305   out->print_cr("In-use per-thread monitor info:");
3306   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
3307   out->print_cr("%18s  %18s  %s  %18s  %18s",
3308                 "jt", "monitor", "BHL", "object", "object type");
3309   out->print_cr("==================  ==================  ===  ==================  ==================");
3310   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
3311     ObjectMonitor* cur = NULL;
3312     if ((cur = get_list_head_locked(&jt->om_in_use_list)) != NULL) {
3313       // Marked the global in-use list head so process the list.
3314       while (true) {
3315         const oop obj = (oop) cur->object();
3316         const markWord mark = cur->header();
3317         ResourceMark rm;
3318         out->print(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT
3319                    "  %s", p2i(jt), p2i(cur), cur->is_busy() != 0,
3320                    mark.hash() != 0, cur->owner() != NULL, p2i(obj),
3321                    obj->klass()->external_name());
3322         if (cur->is_busy() != 0) {
3323           out->print(" (%s)", cur->is_busy_to_string(&ss));
3324           ss.reset();
3325         }
3326         out->cr();
3327 
3328         cur = lock_next_for_traversal(cur);
3329         if (cur == NULL) {
3330           break;
3331         }
3332       }
3333     }
3334   }
3335 
3336   out->flush();
3337 }
3338 
3339 // Log counts for the global and per-thread monitor lists and return
3340 // the population count.
3341 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
3342   int pop_count = 0;
3343   out->print_cr("%18s  %10s  %10s  %10s  %10s",
3344                 "Global Lists:", "InUse", "Free", "Wait", "Total");
3345   out->print_cr("==================  ==========  ==========  ==========  ==========");
3346   int l_in_use_count = Atomic::load(&om_list_globals._in_use_count);
3347   int l_free_count = Atomic::load(&om_list_globals._free_count);
3348   int l_wait_count = Atomic::load(&om_list_globals._wait_count);
3349   out->print_cr("%18s  %10d  %10d  %10d  %10d", "", l_in_use_count,
3350                 l_free_count, l_wait_count,
3351                 Atomic::load(&om_list_globals._population));
3352   pop_count += l_in_use_count + l_free_count + l_wait_count;
3353 
3354   out->print_cr("%18s  %10s  %10s  %10s",
3355                 "Per-Thread Lists:", "InUse", "Free", "Provision");
3356   out->print_cr("==================  ==========  ==========  ==========");
3357 
3358   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
3359     int l_om_in_use_count = Atomic::load(&jt->om_in_use_count);
3360     int l_om_free_count = Atomic::load(&jt->om_free_count);
3361     out->print_cr(INTPTR_FORMAT "  %10d  %10d  %10d", p2i(jt),
3362                   l_om_in_use_count, l_om_free_count, jt->om_free_provision);
3363     pop_count += l_om_in_use_count + l_om_free_count;
3364   }
3365   return pop_count;
3366 }
3367 
3368 #ifndef PRODUCT
3369 
3370 // Check if monitor belongs to the monitor cache
3371 // The list is grow-only so it's *relatively* safe to traverse
3372 // the list of extant blocks without taking a lock.
3373 
3374 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
3375   PaddedObjectMonitor* block = Atomic::load(&g_block_list);
3376   while (block != NULL) {
3377     assert(block->object() == CHAINMARKER, "must be a block header");
3378     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
3379       address mon = (address)monitor;
3380       address blk = (address)block;
3381       size_t diff = mon - blk;
3382       assert((diff % sizeof(PaddedObjectMonitor)) == 0, "must be aligned");
3383       return 1;
3384     }
3385     // unmarked_next() is not needed with g_block_list (no locking
3386     // used with block linkage _next_om fields).
3387     block = (PaddedObjectMonitor*)block->next_om();
3388   }
3389   return 0;
3390 }
3391 
3392 #endif