1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "os_linux.inline.hpp"
  31 #include "runtime/handles.inline.hpp"
  32 #include "runtime/perfMemory.hpp"
  33 #include "services/memTracker.hpp"
  34 #include "utilities/exceptions.hpp"
  35 
  36 // put OS-includes here
  37 # include <sys/types.h>
  38 # include <sys/mman.h>
  39 # include <errno.h>
  40 # include <stdio.h>
  41 # include <unistd.h>
  42 # include <sys/stat.h>
  43 # include <signal.h>
  44 # include <pwd.h>
  45 
  46 static char* backing_store_file_name = NULL;  // name of the backing store
  47                                               // file, if successfully created.
  48 
  49 // Standard Memory Implementation Details
  50 
  51 // create the PerfData memory region in standard memory.
  52 //
  53 static char* create_standard_memory(size_t size) {
  54 
  55   // allocate an aligned chuck of memory
  56   char* mapAddress = os::reserve_memory(size);
  57 
  58   if (mapAddress == NULL) {
  59     return NULL;
  60   }
  61 
  62   // commit memory
  63   if (!os::commit_memory(mapAddress, size, !ExecMem)) {
  64     if (PrintMiscellaneous && Verbose) {
  65       warning("Could not commit PerfData memory\n");
  66     }
  67     os::release_memory(mapAddress, size);
  68     return NULL;
  69   }
  70 
  71   return mapAddress;
  72 }
  73 
  74 // delete the PerfData memory region
  75 //
  76 static void delete_standard_memory(char* addr, size_t size) {
  77 
  78   // there are no persistent external resources to cleanup for standard
  79   // memory. since DestroyJavaVM does not support unloading of the JVM,
  80   // cleanup of the memory resource is not performed. The memory will be
  81   // reclaimed by the OS upon termination of the process.
  82   //
  83   return;
  84 }
  85 
  86 // save the specified memory region to the given file
  87 //
  88 // Note: this function might be called from signal handler (by os::abort()),
  89 // don't allocate heap memory.
  90 //
  91 static void save_memory_to_file(char* addr, size_t size) {
  92 
  93  const char* destfile = PerfMemory::get_perfdata_file_path();
  94  assert(destfile[0] != '\0', "invalid PerfData file path");
  95 
  96   int result;
  97 
  98   RESTARTABLE(::open(destfile, O_CREAT|O_WRONLY|O_TRUNC, S_IREAD|S_IWRITE),
  99               result);;
 100   if (result == OS_ERR) {
 101     if (PrintMiscellaneous && Verbose) {
 102       warning("Could not create Perfdata save file: %s: %s\n",
 103               destfile, strerror(errno));
 104     }
 105   } else {
 106     int fd = result;
 107 
 108     for (size_t remaining = size; remaining > 0;) {
 109 
 110       RESTARTABLE(::write(fd, addr, remaining), result);
 111       if (result == OS_ERR) {
 112         if (PrintMiscellaneous && Verbose) {
 113           warning("Could not write Perfdata save file: %s: %s\n",
 114                   destfile, strerror(errno));
 115         }
 116         break;
 117       }
 118 
 119       remaining -= (size_t)result;
 120       addr += result;
 121     }
 122 
 123     result = ::close(fd);
 124     if (PrintMiscellaneous && Verbose) {
 125       if (result == OS_ERR) {
 126         warning("Could not close %s: %s\n", destfile, strerror(errno));
 127       }
 128     }
 129   }
 130   FREE_C_HEAP_ARRAY(char, destfile, mtInternal);
 131 }
 132 
 133 
 134 // Shared Memory Implementation Details
 135 
 136 // Note: the solaris and linux shared memory implementation uses the mmap
 137 // interface with a backing store file to implement named shared memory.
 138 // Using the file system as the name space for shared memory allows a
 139 // common name space to be supported across a variety of platforms. It
 140 // also provides a name space that Java applications can deal with through
 141 // simple file apis.
 142 //
 143 // The solaris and linux implementations store the backing store file in
 144 // a user specific temporary directory located in the /tmp file system,
 145 // which is always a local file system and is sometimes a RAM based file
 146 // system.
 147 
 148 // return the user specific temporary directory name.
 149 //
 150 // the caller is expected to free the allocated memory.
 151 //
 152 static char* get_user_tmp_dir(const char* user) {
 153 
 154   const char* tmpdir = os::get_temp_directory();
 155   const char* perfdir = PERFDATA_NAME;
 156   size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
 157   char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 158 
 159   // construct the path name to user specific tmp directory
 160   snprintf(dirname, nbytes, "%s/%s_%s", tmpdir, perfdir, user);
 161 
 162   return dirname;
 163 }
 164 
 165 // convert the given file name into a process id. if the file
 166 // does not meet the file naming constraints, return 0.
 167 //
 168 static pid_t filename_to_pid(const char* filename) {
 169 
 170   // a filename that doesn't begin with a digit is not a
 171   // candidate for conversion.
 172   //
 173   if (!isdigit(*filename)) {
 174     return 0;
 175   }
 176 
 177   // check if file name can be converted to an integer without
 178   // any leftover characters.
 179   //
 180   char* remainder = NULL;
 181   errno = 0;
 182   pid_t pid = (pid_t)strtol(filename, &remainder, 10);
 183 
 184   if (errno != 0) {
 185     return 0;
 186   }
 187 
 188   // check for left over characters. If any, then the filename is
 189   // not a candidate for conversion.
 190   //
 191   if (remainder != NULL && *remainder != '\0') {
 192     return 0;
 193   }
 194 
 195   // successful conversion, return the pid
 196   return pid;
 197 }
 198 
 199 
 200 // check if the given path is considered a secure directory for
 201 // the backing store files. Returns true if the directory exists
 202 // and is considered a secure location. Returns false if the path
 203 // is a symbolic link or if an error occurred.
 204 //
 205 static bool is_directory_secure(const char* path) {
 206   struct stat statbuf;
 207   int result = 0;
 208 
 209   RESTARTABLE(::lstat(path, &statbuf), result);
 210   if (result == OS_ERR) {
 211     return false;
 212   }
 213 
 214   // the path exists, now check it's mode
 215   if (S_ISLNK(statbuf.st_mode) || !S_ISDIR(statbuf.st_mode)) {
 216     // the path represents a link or some non-directory file type,
 217     // which is not what we expected. declare it insecure.
 218     //
 219     return false;
 220   }
 221   else {
 222     // we have an existing directory, check if the permissions are safe.
 223     //
 224     if ((statbuf.st_mode & (S_IWGRP|S_IWOTH)) != 0) {
 225       // the directory is open for writing and could be subjected
 226       // to a symlnk attack. declare it insecure.
 227       //
 228       return false;
 229     }
 230   }
 231   return true;
 232 }
 233 
 234 
 235 // return the user name for the given user id
 236 //
 237 // the caller is expected to free the allocated memory.
 238 //
 239 static char* get_user_name(uid_t uid) {
 240 
 241   struct passwd pwent;
 242 
 243   // determine the max pwbuf size from sysconf, and hardcode
 244   // a default if this not available through sysconf.
 245   //
 246   long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 247   if (bufsize == -1)
 248     bufsize = 1024;
 249 
 250   char* pwbuf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 251 
 252   // POSIX interface to getpwuid_r is used on LINUX
 253   struct passwd* p;
 254   int result = getpwuid_r(uid, &pwent, pwbuf, (size_t)bufsize, &p);
 255 
 256   if (result != 0 || p == NULL || p->pw_name == NULL || *(p->pw_name) == '\0') {
 257     if (PrintMiscellaneous && Verbose) {
 258       if (result != 0) {
 259         warning("Could not retrieve passwd entry: %s\n",
 260                 strerror(result));
 261       }
 262       else if (p == NULL) {
 263         // this check is added to protect against an observed problem
 264         // with getpwuid_r() on RedHat 9 where getpwuid_r returns 0,
 265         // indicating success, but has p == NULL. This was observed when
 266         // inserting a file descriptor exhaustion fault prior to the call
 267         // getpwuid_r() call. In this case, error is set to the appropriate
 268         // error condition, but this is undocumented behavior. This check
 269         // is safe under any condition, but the use of errno in the output
 270         // message may result in an erroneous message.
 271         // Bug Id 89052 was opened with RedHat.
 272         //
 273         warning("Could not retrieve passwd entry: %s\n",
 274                 strerror(errno));
 275       }
 276       else {
 277         warning("Could not determine user name: %s\n",
 278                 p->pw_name == NULL ? "pw_name = NULL" :
 279                                      "pw_name zero length");
 280       }
 281     }
 282     FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
 283     return NULL;
 284   }
 285 
 286   char* user_name = NEW_C_HEAP_ARRAY(char, strlen(p->pw_name) + 1, mtInternal);
 287   strcpy(user_name, p->pw_name);
 288 
 289   FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
 290   return user_name;
 291 }
 292 
 293 // return the name of the user that owns the process identified by vmid.
 294 //
 295 // This method uses a slow directory search algorithm to find the backing
 296 // store file for the specified vmid and returns the user name, as determined
 297 // by the user name suffix of the hsperfdata_<username> directory name.
 298 //
 299 // the caller is expected to free the allocated memory.
 300 //
 301 static char* get_user_name_slow(int vmid, TRAPS) {
 302 
 303   // short circuit the directory search if the process doesn't even exist.
 304   if (kill(vmid, 0) == OS_ERR) {
 305     if (errno == ESRCH) {
 306       THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
 307                   "Process not found");
 308     }
 309     else /* EPERM */ {
 310       THROW_MSG_0(vmSymbols::java_io_IOException(), strerror(errno));
 311     }
 312   }
 313 
 314   // directory search
 315   char* oldest_user = NULL;
 316   time_t oldest_ctime = 0;
 317 
 318   const char* tmpdirname = os::get_temp_directory();
 319 
 320   DIR* tmpdirp = os::opendir(tmpdirname);
 321 
 322   if (tmpdirp == NULL) {
 323     return NULL;
 324   }
 325 
 326   // for each entry in the directory that matches the pattern hsperfdata_*,
 327   // open the directory and check if the file for the given vmid exists.
 328   // The file with the expected name and the latest creation date is used
 329   // to determine the user name for the process id.
 330   //
 331   struct dirent* dentry;
 332   char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
 333   errno = 0;
 334   while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
 335 
 336     // check if the directory entry is a hsperfdata file
 337     if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
 338       continue;
 339     }
 340 
 341     char* usrdir_name = NEW_C_HEAP_ARRAY(char,
 342                      strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
 343     strcpy(usrdir_name, tmpdirname);
 344     strcat(usrdir_name, "/");
 345     strcat(usrdir_name, dentry->d_name);
 346 
 347     DIR* subdirp = os::opendir(usrdir_name);
 348 
 349     if (subdirp == NULL) {
 350       FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
 351       continue;
 352     }
 353 
 354     // Since we don't create the backing store files in directories
 355     // pointed to by symbolic links, we also don't follow them when
 356     // looking for the files. We check for a symbolic link after the
 357     // call to opendir in order to eliminate a small window where the
 358     // symlink can be exploited.
 359     //
 360     if (!is_directory_secure(usrdir_name)) {
 361       FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
 362       os::closedir(subdirp);
 363       continue;
 364     }
 365 
 366     struct dirent* udentry;
 367     char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
 368     errno = 0;
 369     while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
 370 
 371       if (filename_to_pid(udentry->d_name) == vmid) {
 372         struct stat statbuf;
 373         int result;
 374 
 375         char* filename = NEW_C_HEAP_ARRAY(char,
 376                    strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
 377 
 378         strcpy(filename, usrdir_name);
 379         strcat(filename, "/");
 380         strcat(filename, udentry->d_name);
 381 
 382         // don't follow symbolic links for the file
 383         RESTARTABLE(::lstat(filename, &statbuf), result);
 384         if (result == OS_ERR) {
 385            FREE_C_HEAP_ARRAY(char, filename, mtInternal);
 386            continue;
 387         }
 388 
 389         // skip over files that are not regular files.
 390         if (!S_ISREG(statbuf.st_mode)) {
 391           FREE_C_HEAP_ARRAY(char, filename, mtInternal);
 392           continue;
 393         }
 394 
 395         // compare and save filename with latest creation time
 396         if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
 397 
 398           if (statbuf.st_ctime > oldest_ctime) {
 399             char* user = strchr(dentry->d_name, '_') + 1;
 400 
 401             if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user, mtInternal);
 402             oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
 403 
 404             strcpy(oldest_user, user);
 405             oldest_ctime = statbuf.st_ctime;
 406           }
 407         }
 408 
 409         FREE_C_HEAP_ARRAY(char, filename, mtInternal);
 410       }
 411     }
 412     os::closedir(subdirp);
 413     FREE_C_HEAP_ARRAY(char, udbuf, mtInternal);
 414     FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
 415   }
 416   os::closedir(tmpdirp);
 417   FREE_C_HEAP_ARRAY(char, tdbuf, mtInternal);
 418 
 419   return(oldest_user);
 420 }
 421 
 422 // return the name of the user that owns the JVM indicated by the given vmid.
 423 //
 424 static char* get_user_name(int vmid, TRAPS) {
 425   return get_user_name_slow(vmid, CHECK_NULL);
 426 }
 427 
 428 // return the file name of the backing store file for the named
 429 // shared memory region for the given user name and vmid.
 430 //
 431 // the caller is expected to free the allocated memory.
 432 //
 433 static char* get_sharedmem_filename(const char* dirname, int vmid) {
 434 
 435   // add 2 for the file separator and a null terminator.
 436   size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
 437 
 438   char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 439   snprintf(name, nbytes, "%s/%d", dirname, vmid);
 440 
 441   return name;
 442 }
 443 
 444 
 445 // remove file
 446 //
 447 // this method removes the file specified by the given path
 448 //
 449 static void remove_file(const char* path) {
 450 
 451   int result;
 452 
 453   // if the file is a directory, the following unlink will fail. since
 454   // we don't expect to find directories in the user temp directory, we
 455   // won't try to handle this situation. even if accidentially or
 456   // maliciously planted, the directory's presence won't hurt anything.
 457   //
 458   RESTARTABLE(::unlink(path), result);
 459   if (PrintMiscellaneous && Verbose && result == OS_ERR) {
 460     if (errno != ENOENT) {
 461       warning("Could not unlink shared memory backing"
 462               " store file %s : %s\n", path, strerror(errno));
 463     }
 464   }
 465 }
 466 
 467 
 468 // remove file
 469 //
 470 // this method removes the file with the given file name in the
 471 // named directory.
 472 //
 473 static void remove_file(const char* dirname, const char* filename) {
 474 
 475   size_t nbytes = strlen(dirname) + strlen(filename) + 2;
 476   char* path = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 477 
 478   strcpy(path, dirname);
 479   strcat(path, "/");
 480   strcat(path, filename);
 481 
 482   remove_file(path);
 483 
 484   FREE_C_HEAP_ARRAY(char, path, mtInternal);
 485 }
 486 
 487 
 488 // cleanup stale shared memory resources
 489 //
 490 // This method attempts to remove all stale shared memory files in
 491 // the named user temporary directory. It scans the named directory
 492 // for files matching the pattern ^$[0-9]*$. For each file found, the
 493 // process id is extracted from the file name and a test is run to
 494 // determine if the process is alive. If the process is not alive,
 495 // any stale file resources are removed.
 496 //
 497 static void cleanup_sharedmem_resources(const char* dirname) {
 498 
 499   // open the user temp directory
 500   DIR* dirp = os::opendir(dirname);
 501 
 502   if (dirp == NULL) {
 503     // directory doesn't exist, so there is nothing to cleanup
 504     return;
 505   }
 506 
 507   if (!is_directory_secure(dirname)) {
 508     // the directory is not a secure directory
 509     return;
 510   }
 511 
 512   // for each entry in the directory that matches the expected file
 513   // name pattern, determine if the file resources are stale and if
 514   // so, remove the file resources. Note, instrumented HotSpot processes
 515   // for this user may start and/or terminate during this search and
 516   // remove or create new files in this directory. The behavior of this
 517   // loop under these conditions is dependent upon the implementation of
 518   // opendir/readdir.
 519   //
 520   struct dirent* entry;
 521   char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
 522   errno = 0;
 523   while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
 524 
 525     pid_t pid = filename_to_pid(entry->d_name);
 526 
 527     if (pid == 0) {
 528 
 529       if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
 530 
 531         // attempt to remove all unexpected files, except "." and ".."
 532         remove_file(dirname, entry->d_name);
 533       }
 534 
 535       errno = 0;
 536       continue;
 537     }
 538 
 539     // we now have a file name that converts to a valid integer
 540     // that could represent a process id . if this process id
 541     // matches the current process id or the process is not running,
 542     // then remove the stale file resources.
 543     //
 544     // process liveness is detected by sending signal number 0 to
 545     // the process id (see kill(2)). if kill determines that the
 546     // process does not exist, then the file resources are removed.
 547     // if kill determines that that we don't have permission to
 548     // signal the process, then the file resources are assumed to
 549     // be stale and are removed because the resources for such a
 550     // process should be in a different user specific directory.
 551     //
 552     if ((pid == os::current_process_id()) ||
 553         (kill(pid, 0) == OS_ERR && (errno == ESRCH || errno == EPERM))) {
 554 
 555         remove_file(dirname, entry->d_name);
 556     }
 557     errno = 0;
 558   }
 559   os::closedir(dirp);
 560   FREE_C_HEAP_ARRAY(char, dbuf, mtInternal);
 561 }
 562 
 563 // make the user specific temporary directory. Returns true if
 564 // the directory exists and is secure upon return. Returns false
 565 // if the directory exists but is either a symlink, is otherwise
 566 // insecure, or if an error occurred.
 567 //
 568 static bool make_user_tmp_dir(const char* dirname) {
 569 
 570   // create the directory with 0755 permissions. note that the directory
 571   // will be owned by euid::egid, which may not be the same as uid::gid.
 572   //
 573   if (mkdir(dirname, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) == OS_ERR) {
 574     if (errno == EEXIST) {
 575       // The directory already exists and was probably created by another
 576       // JVM instance. However, this could also be the result of a
 577       // deliberate symlink. Verify that the existing directory is safe.
 578       //
 579       if (!is_directory_secure(dirname)) {
 580         // directory is not secure
 581         if (PrintMiscellaneous && Verbose) {
 582           warning("%s directory is insecure\n", dirname);
 583         }
 584         return false;
 585       }
 586     }
 587     else {
 588       // we encountered some other failure while attempting
 589       // to create the directory
 590       //
 591       if (PrintMiscellaneous && Verbose) {
 592         warning("could not create directory %s: %s\n",
 593                 dirname, strerror(errno));
 594       }
 595       return false;
 596     }
 597   }
 598   return true;
 599 }
 600 
 601 // create the shared memory file resources
 602 //
 603 // This method creates the shared memory file with the given size
 604 // This method also creates the user specific temporary directory, if
 605 // it does not yet exist.
 606 //
 607 static int create_sharedmem_resources(const char* dirname, const char* filename, size_t size) {
 608 
 609   // make the user temporary directory
 610   if (!make_user_tmp_dir(dirname)) {
 611     // could not make/find the directory or the found directory
 612     // was not secure
 613     return -1;
 614   }
 615 
 616   int result;
 617 
 618   RESTARTABLE(::open(filename, O_RDWR|O_CREAT|O_TRUNC, S_IREAD|S_IWRITE), result);
 619   if (result == OS_ERR) {
 620     if (PrintMiscellaneous && Verbose) {
 621       warning("could not create file %s: %s\n", filename, strerror(errno));
 622     }
 623     return -1;
 624   }
 625 
 626   // save the file descriptor
 627   int fd = result;
 628 
 629   // set the file size
 630   RESTARTABLE(::ftruncate(fd, (off_t)size), result);
 631   if (result == OS_ERR) {
 632     if (PrintMiscellaneous && Verbose) {
 633       warning("could not set shared memory file size: %s\n", strerror(errno));
 634     }
 635     ::close(fd);
 636     return -1;
 637   }
 638 
 639   // Verify that we have enough disk space for this file.
 640   // We'll get random SIGBUS crashes on memory accesses if
 641   // we don't.
 642 
 643   for (size_t seekpos = 0; seekpos < size; seekpos += os::vm_page_size()) {
 644     int zero_int = 0;
 645     result = (int)os::seek_to_file_offset(fd, (jlong)(seekpos));
 646     if (result == -1 ) break;
 647     RESTARTABLE(::write(fd, &zero_int, 1), result);
 648     if (result != 1) {
 649       if (errno == ENOSPC) {
 650         warning("Insufficient space for shared memory file:\n   %s\nTry using the -Djava.io.tmpdir= option to select an alternate temp location.\n", filename);
 651       }
 652       break;
 653     }
 654   }
 655 
 656   if (result != -1) {
 657     return fd;
 658   } else {
 659     ::close(fd);
 660     return -1;
 661   }
 662 }
 663 
 664 // open the shared memory file for the given user and vmid. returns
 665 // the file descriptor for the open file or -1 if the file could not
 666 // be opened.
 667 //
 668 static int open_sharedmem_file(const char* filename, int oflags, TRAPS) {
 669 
 670   // open the file
 671   int result;
 672   RESTARTABLE(::open(filename, oflags), result);
 673   if (result == OS_ERR) {
 674     if (errno == ENOENT) {
 675       THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
 676                   "Process not found", OS_ERR);
 677     }
 678     else if (errno == EACCES) {
 679       THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
 680                   "Permission denied", OS_ERR);
 681     }
 682     else {
 683       THROW_MSG_(vmSymbols::java_io_IOException(), strerror(errno), OS_ERR);
 684     }
 685   }
 686 
 687   return result;
 688 }
 689 
 690 // create a named shared memory region. returns the address of the
 691 // memory region on success or NULL on failure. A return value of
 692 // NULL will ultimately disable the shared memory feature.
 693 //
 694 // On Solaris and Linux, the name space for shared memory objects
 695 // is the file system name space.
 696 //
 697 // A monitoring application attaching to a JVM does not need to know
 698 // the file system name of the shared memory object. However, it may
 699 // be convenient for applications to discover the existence of newly
 700 // created and terminating JVMs by watching the file system name space
 701 // for files being created or removed.
 702 //
 703 static char* mmap_create_shared(size_t size) {
 704 
 705   int result;
 706   int fd;
 707   char* mapAddress;
 708 
 709   int vmid = os::current_process_id();
 710 
 711   char* user_name = get_user_name(geteuid());
 712 
 713   if (user_name == NULL)
 714     return NULL;
 715 
 716   char* dirname = get_user_tmp_dir(user_name);
 717   char* filename = get_sharedmem_filename(dirname, vmid);
 718 
 719   // cleanup any stale shared memory files
 720   cleanup_sharedmem_resources(dirname);
 721 
 722   assert(((size > 0) && (size % os::vm_page_size() == 0)),
 723          "unexpected PerfMemory region size");
 724 
 725   fd = create_sharedmem_resources(dirname, filename, size);
 726 
 727   FREE_C_HEAP_ARRAY(char, user_name, mtInternal);
 728   FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
 729 
 730   if (fd == -1) {
 731     FREE_C_HEAP_ARRAY(char, filename, mtInternal);
 732     return NULL;
 733   }
 734 
 735   mapAddress = (char*)::mmap((char*)0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
 736 
 737   result = ::close(fd);
 738   assert(result != OS_ERR, "could not close file");
 739 
 740   if (mapAddress == MAP_FAILED) {
 741     if (PrintMiscellaneous && Verbose) {
 742       warning("mmap failed -  %s\n", strerror(errno));
 743     }
 744     remove_file(filename);
 745     FREE_C_HEAP_ARRAY(char, filename, mtInternal);
 746     return NULL;
 747   }
 748 
 749   // save the file name for use in delete_shared_memory()
 750   backing_store_file_name = filename;
 751 
 752   // clear the shared memory region
 753   (void)::memset((void*) mapAddress, 0, size);
 754 
 755   // it does not go through os api, the operation has to record from here
 756   MemTracker::record_virtual_memory_reserve((address)mapAddress, size, mtInternal, CURRENT_PC);
 757 
 758   return mapAddress;
 759 }
 760 
 761 // release a named shared memory region
 762 //
 763 static void unmap_shared(char* addr, size_t bytes) {
 764   os::release_memory(addr, bytes);
 765 }
 766 
 767 // create the PerfData memory region in shared memory.
 768 //
 769 static char* create_shared_memory(size_t size) {
 770 
 771   // create the shared memory region.
 772   return mmap_create_shared(size);
 773 }
 774 
 775 // delete the shared PerfData memory region
 776 //
 777 static void delete_shared_memory(char* addr, size_t size) {
 778 
 779   // cleanup the persistent shared memory resources. since DestroyJavaVM does
 780   // not support unloading of the JVM, unmapping of the memory resource is
 781   // not performed. The memory will be reclaimed by the OS upon termination of
 782   // the process. The backing store file is deleted from the file system.
 783 
 784   assert(!PerfDisableSharedMem, "shouldn't be here");
 785 
 786   if (backing_store_file_name != NULL) {
 787     remove_file(backing_store_file_name);
 788     // Don't.. Free heap memory could deadlock os::abort() if it is called
 789     // from signal handler. OS will reclaim the heap memory.
 790     // FREE_C_HEAP_ARRAY(char, backing_store_file_name);
 791     backing_store_file_name = NULL;
 792   }
 793 }
 794 
 795 // return the size of the file for the given file descriptor
 796 // or 0 if it is not a valid size for a shared memory file
 797 //
 798 static size_t sharedmem_filesize(int fd, TRAPS) {
 799 
 800   struct stat statbuf;
 801   int result;
 802 
 803   RESTARTABLE(::fstat(fd, &statbuf), result);
 804   if (result == OS_ERR) {
 805     if (PrintMiscellaneous && Verbose) {
 806       warning("fstat failed: %s\n", strerror(errno));
 807     }
 808     THROW_MSG_0(vmSymbols::java_io_IOException(),
 809                 "Could not determine PerfMemory size");
 810   }
 811 
 812   if ((statbuf.st_size == 0) ||
 813      ((size_t)statbuf.st_size % os::vm_page_size() != 0)) {
 814     THROW_MSG_0(vmSymbols::java_lang_Exception(),
 815                 "Invalid PerfMemory size");
 816   }
 817 
 818   return (size_t)statbuf.st_size;
 819 }
 820 
 821 // attach to a named shared memory region.
 822 //
 823 static void mmap_attach_shared(const char* user, int vmid, PerfMemory::PerfMemoryMode mode, char** addr, size_t* sizep, TRAPS) {
 824 
 825   char* mapAddress;
 826   int result;
 827   int fd;
 828   size_t size = 0;
 829   const char* luser = NULL;
 830 
 831   int mmap_prot;
 832   int file_flags;
 833 
 834   ResourceMark rm;
 835 
 836   // map the high level access mode to the appropriate permission
 837   // constructs for the file and the shared memory mapping.
 838   if (mode == PerfMemory::PERF_MODE_RO) {
 839     mmap_prot = PROT_READ;
 840     file_flags = O_RDONLY;
 841   }
 842   else if (mode == PerfMemory::PERF_MODE_RW) {
 843 #ifdef LATER
 844     mmap_prot = PROT_READ | PROT_WRITE;
 845     file_flags = O_RDWR;
 846 #else
 847     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
 848               "Unsupported access mode");
 849 #endif
 850   }
 851   else {
 852     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
 853               "Illegal access mode");
 854   }
 855 
 856   if (user == NULL || strlen(user) == 0) {
 857     luser = get_user_name(vmid, CHECK);
 858   }
 859   else {
 860     luser = user;
 861   }
 862 
 863   if (luser == NULL) {
 864     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
 865               "Could not map vmid to user Name");
 866   }
 867 
 868   char* dirname = get_user_tmp_dir(luser);
 869 
 870   // since we don't follow symbolic links when creating the backing
 871   // store file, we don't follow them when attaching either.
 872   //
 873   if (!is_directory_secure(dirname)) {
 874     FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
 875     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
 876               "Process not found");
 877   }
 878 
 879   char* filename = get_sharedmem_filename(dirname, vmid);
 880 
 881   // copy heap memory to resource memory. the open_sharedmem_file
 882   // method below need to use the filename, but could throw an
 883   // exception. using a resource array prevents the leak that
 884   // would otherwise occur.
 885   char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
 886   strcpy(rfilename, filename);
 887 
 888   // free the c heap resources that are no longer needed
 889   if (luser != user) FREE_C_HEAP_ARRAY(char, luser, mtInternal);
 890   FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
 891   FREE_C_HEAP_ARRAY(char, filename, mtInternal);
 892 
 893   // open the shared memory file for the give vmid
 894   fd = open_sharedmem_file(rfilename, file_flags, THREAD);
 895 
 896   if (fd == OS_ERR) {
 897     return;
 898   }
 899 
 900   if (HAS_PENDING_EXCEPTION) {
 901     ::close(fd);
 902     return;
 903   }
 904 
 905   if (*sizep == 0) {
 906     size = sharedmem_filesize(fd, CHECK);
 907   } else {
 908     size = *sizep;
 909   }
 910 
 911   assert(size > 0, "unexpected size <= 0");
 912 
 913   mapAddress = (char*)::mmap((char*)0, size, mmap_prot, MAP_SHARED, fd, 0);
 914 
 915   result = ::close(fd);
 916   assert(result != OS_ERR, "could not close file");
 917 
 918   if (mapAddress == MAP_FAILED) {
 919     if (PrintMiscellaneous && Verbose) {
 920       warning("mmap failed: %s\n", strerror(errno));
 921     }
 922     THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
 923               "Could not map PerfMemory");
 924   }
 925 
 926   // it does not go through os api, the operation has to record from here
 927   MemTracker::record_virtual_memory_reserve((address)mapAddress, size, mtInternal, CURRENT_PC);
 928 
 929   *addr = mapAddress;
 930   *sizep = size;
 931 
 932   if (PerfTraceMemOps) {
 933     tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
 934                INTPTR_FORMAT "\n", size, vmid, (void*)mapAddress);
 935   }
 936 }
 937 
 938 
 939 
 940 
 941 // create the PerfData memory region
 942 //
 943 // This method creates the memory region used to store performance
 944 // data for the JVM. The memory may be created in standard or
 945 // shared memory.
 946 //
 947 void PerfMemory::create_memory_region(size_t size) {
 948 
 949   if (PerfDisableSharedMem) {
 950     // do not share the memory for the performance data.
 951     _start = create_standard_memory(size);
 952   }
 953   else {
 954     _start = create_shared_memory(size);
 955     if (_start == NULL) {
 956 
 957       // creation of the shared memory region failed, attempt
 958       // to create a contiguous, non-shared memory region instead.
 959       //
 960       if (PrintMiscellaneous && Verbose) {
 961         warning("Reverting to non-shared PerfMemory region.\n");
 962       }
 963       PerfDisableSharedMem = true;
 964       _start = create_standard_memory(size);
 965     }
 966   }
 967 
 968   if (_start != NULL) _capacity = size;
 969 
 970 }
 971 
 972 // delete the PerfData memory region
 973 //
 974 // This method deletes the memory region used to store performance
 975 // data for the JVM. The memory region indicated by the <address, size>
 976 // tuple will be inaccessible after a call to this method.
 977 //
 978 void PerfMemory::delete_memory_region() {
 979 
 980   assert((start() != NULL && capacity() > 0), "verify proper state");
 981 
 982   // If user specifies PerfDataSaveFile, it will save the performance data
 983   // to the specified file name no matter whether PerfDataSaveToFile is specified
 984   // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
 985   // -XX:+PerfDataSaveToFile.
 986   if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
 987     save_memory_to_file(start(), capacity());
 988   }
 989 
 990   if (PerfDisableSharedMem) {
 991     delete_standard_memory(start(), capacity());
 992   }
 993   else {
 994     delete_shared_memory(start(), capacity());
 995   }
 996 }
 997 
 998 // attach to the PerfData memory region for another JVM
 999 //
1000 // This method returns an <address, size> tuple that points to
1001 // a memory buffer that is kept reasonably synchronized with
1002 // the PerfData memory region for the indicated JVM. This
1003 // buffer may be kept in synchronization via shared memory
1004 // or some other mechanism that keeps the buffer updated.
1005 //
1006 // If the JVM chooses not to support the attachability feature,
1007 // this method should throw an UnsupportedOperation exception.
1008 //
1009 // This implementation utilizes named shared memory to map
1010 // the indicated process's PerfData memory region into this JVMs
1011 // address space.
1012 //
1013 void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode, char** addrp, size_t* sizep, TRAPS) {
1014 
1015   if (vmid == 0 || vmid == os::current_process_id()) {
1016      *addrp = start();
1017      *sizep = capacity();
1018      return;
1019   }
1020 
1021   mmap_attach_shared(user, vmid, mode, addrp, sizep, CHECK);
1022 }
1023 
1024 // detach from the PerfData memory region of another JVM
1025 //
1026 // This method detaches the PerfData memory region of another
1027 // JVM, specified as an <address, size> tuple of a buffer
1028 // in this process's address space. This method may perform
1029 // arbitrary actions to accomplish the detachment. The memory
1030 // region specified by <address, size> will be inaccessible after
1031 // a call to this method.
1032 //
1033 // If the JVM chooses not to support the attachability feature,
1034 // this method should throw an UnsupportedOperation exception.
1035 //
1036 // This implementation utilizes named shared memory to detach
1037 // the indicated process's PerfData memory region from this
1038 // process's address space.
1039 //
1040 void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
1041 
1042   assert(addr != 0, "address sanity check");
1043   assert(bytes > 0, "capacity sanity check");
1044 
1045   if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
1046     // prevent accidental detachment of this process's PerfMemory region
1047     return;
1048   }
1049 
1050   unmap_shared(addr, bytes);
1051 }
1052 
1053 char* PerfMemory::backing_store_filename() {
1054   return backing_store_file_name;
1055 }