/* * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_GC_G1_G1CONCURRENTMARK_HPP #define SHARE_GC_G1_G1CONCURRENTMARK_HPP #include "gc/g1/g1ConcurrentMarkBitMap.hpp" #include "gc/g1/g1ConcurrentMarkObjArrayProcessor.hpp" #include "gc/g1/g1HeapVerifier.hpp" #include "gc/g1/g1RegionMarkStatsCache.hpp" #include "gc/g1/heapRegionSet.hpp" #include "gc/shared/taskTerminator.hpp" #include "gc/shared/taskqueue.hpp" #include "gc/shared/verifyOption.hpp" #include "gc/shared/workgroup.hpp" #include "memory/allocation.hpp" #include "utilities/compilerWarnings.hpp" class ConcurrentGCTimer; class G1ConcurrentMarkThread; class G1CollectedHeap; class G1CMOopClosure; class G1CMTask; class G1ConcurrentMark; class G1OldTracer; class G1RegionToSpaceMapper; class G1SurvivorRegions; class ThreadClosure; PRAGMA_DIAG_PUSH // warning C4522: multiple assignment operators specified PRAGMA_DISABLE_MSVC_WARNING(4522) // This is a container class for either an oop or a continuation address for // mark stack entries. Both are pushed onto the mark stack. class G1TaskQueueEntry { private: void* _holder; static const uintptr_t ArraySliceBit = 1; G1TaskQueueEntry(oop obj) : _holder(obj) { assert(_holder != NULL, "Not allowed to set NULL task queue element"); } G1TaskQueueEntry(HeapWord* addr) : _holder((void*)((uintptr_t)addr | ArraySliceBit)) { } public: G1TaskQueueEntry(const G1TaskQueueEntry& other) { _holder = other._holder; } G1TaskQueueEntry() : _holder(NULL) { } static G1TaskQueueEntry from_slice(HeapWord* what) { return G1TaskQueueEntry(what); } static G1TaskQueueEntry from_oop(oop obj) { return G1TaskQueueEntry(obj); } G1TaskQueueEntry& operator=(const G1TaskQueueEntry& t) { _holder = t._holder; return *this; } volatile G1TaskQueueEntry& operator=(const volatile G1TaskQueueEntry& t) volatile { _holder = t._holder; return *this; } oop obj() const { assert(!is_array_slice(), "Trying to read array slice " PTR_FORMAT " as oop", p2i(_holder)); return (oop)_holder; } HeapWord* slice() const { assert(is_array_slice(), "Trying to read oop " PTR_FORMAT " as array slice", p2i(_holder)); return (HeapWord*)((uintptr_t)_holder & ~ArraySliceBit); } bool is_oop() const { return !is_array_slice(); } bool is_array_slice() const { return ((uintptr_t)_holder & ArraySliceBit) != 0; } bool is_null() const { return _holder == NULL; } }; PRAGMA_DIAG_POP typedef GenericTaskQueue G1CMTaskQueue; typedef GenericTaskQueueSet G1CMTaskQueueSet; // Closure used by CM during concurrent reference discovery // and reference processing (during remarking) to determine // if a particular object is alive. It is primarily used // to determine if referents of discovered reference objects // are alive. An instance is also embedded into the // reference processor as the _is_alive_non_header field class G1CMIsAliveClosure : public BoolObjectClosure { G1CollectedHeap* _g1h; public: G1CMIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) { } bool do_object_b(oop obj); }; class G1CMSubjectToDiscoveryClosure : public BoolObjectClosure { G1CollectedHeap* _g1h; public: G1CMSubjectToDiscoveryClosure(G1CollectedHeap* g1h) : _g1h(g1h) { } bool do_object_b(oop obj); }; // Represents the overflow mark stack used by concurrent marking. // // Stores oops in a huge buffer in virtual memory that is always fully committed. // Resizing may only happen during a STW pause when the stack is empty. // // Memory is allocated on a "chunk" basis, i.e. a set of oops. For this, the mark // stack memory is split into evenly sized chunks of oops. Users can only // add or remove entries on that basis. // Chunks are filled in increasing address order. Not completely filled chunks // have a NULL element as a terminating element. // // Every chunk has a header containing a single pointer element used for memory // management. This wastes some space, but is negligible (< .1% with current sizing). // // Memory management is done using a mix of tracking a high water-mark indicating // that all chunks at a lower address are valid chunks, and a singly linked free // list connecting all empty chunks. class G1CMMarkStack { public: // Number of TaskQueueEntries that can fit in a single chunk. static const size_t EntriesPerChunk = 1024 - 1 /* One reference for the next pointer */; private: struct TaskQueueEntryChunk { TaskQueueEntryChunk* next; G1TaskQueueEntry data[EntriesPerChunk]; }; size_t _max_chunk_capacity; // Maximum number of TaskQueueEntryChunk elements on the stack. TaskQueueEntryChunk* _base; // Bottom address of allocated memory area. size_t _chunk_capacity; // Current maximum number of TaskQueueEntryChunk elements. char _pad0[DEFAULT_CACHE_LINE_SIZE]; TaskQueueEntryChunk* volatile _free_list; // Linked list of free chunks that can be allocated by users. char _pad1[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*)]; TaskQueueEntryChunk* volatile _chunk_list; // List of chunks currently containing data. volatile size_t _chunks_in_chunk_list; char _pad2[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*) - sizeof(size_t)]; volatile size_t _hwm; // High water mark within the reserved space. char _pad4[DEFAULT_CACHE_LINE_SIZE - sizeof(size_t)]; // Allocate a new chunk from the reserved memory, using the high water mark. Returns // NULL if out of memory. TaskQueueEntryChunk* allocate_new_chunk(); // Atomically add the given chunk to the list. void add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem); // Atomically remove and return a chunk from the given list. Returns NULL if the // list is empty. TaskQueueEntryChunk* remove_chunk_from_list(TaskQueueEntryChunk* volatile* list); void add_chunk_to_chunk_list(TaskQueueEntryChunk* elem); void add_chunk_to_free_list(TaskQueueEntryChunk* elem); TaskQueueEntryChunk* remove_chunk_from_chunk_list(); TaskQueueEntryChunk* remove_chunk_from_free_list(); // Resizes the mark stack to the given new capacity. Releases any previous // memory if successful. bool resize(size_t new_capacity); public: G1CMMarkStack(); ~G1CMMarkStack(); // Alignment and minimum capacity of this mark stack in number of oops. static size_t capacity_alignment(); // Allocate and initialize the mark stack with the given number of oops. bool initialize(size_t initial_capacity, size_t max_capacity); // Pushes the given buffer containing at most EntriesPerChunk elements on the mark // stack. If less than EntriesPerChunk elements are to be pushed, the array must // be terminated with a NULL. // Returns whether the buffer contents were successfully pushed to the global mark // stack. bool par_push_chunk(G1TaskQueueEntry* buffer); // Pops a chunk from this mark stack, copying them into the given buffer. This // chunk may contain up to EntriesPerChunk elements. If there are less, the last // element in the array is a NULL pointer. bool par_pop_chunk(G1TaskQueueEntry* buffer); // Return whether the chunk list is empty. Racy due to unsynchronized access to // _chunk_list. bool is_empty() const { return _chunk_list == NULL; } size_t capacity() const { return _chunk_capacity; } // Expand the stack, typically in response to an overflow condition void expand(); // Return the approximate number of oops on this mark stack. Racy due to // unsynchronized access to _chunks_in_chunk_list. size_t size() const { return _chunks_in_chunk_list * EntriesPerChunk; } void set_empty(); // Apply Fn to every oop on the mark stack. The mark stack must not // be modified while iterating. template void iterate(Fn fn) const PRODUCT_RETURN; }; // Root MemRegions are memory areas that contain objects which references are // roots wrt to the marking. They must be scanned before marking to maintain the // SATB invariant. // Typically they contain the areas from nTAMS to top of the regions. // We could scan and mark through these objects during the initial-mark pause, but for // pause time reasons we move this work to the concurrent phase. // We need to complete this procedure before the next GC because it might determine // that some of these "root objects" are dead, potentially dropping some required // references. // Root MemRegions comprise of the contents of survivor regions at the end // of the GC, and any objects copied into the old gen during GC. class G1CMRootMemRegions { // The set of root MemRegions. MemRegion* _root_regions; size_t const _max_regions; volatile size_t _num_root_regions; // Actual number of root regions. volatile size_t _claimed_root_regions; // Number of root regions currently claimed. volatile bool _scan_in_progress; volatile bool _should_abort; void notify_scan_done(); public: G1CMRootMemRegions(uint const max_regions); ~G1CMRootMemRegions(); // Reset the data structure to allow addition of new root regions. void reset(); void add(HeapWord* start, HeapWord* end); // Reset the claiming / scanning of the root regions. void prepare_for_scan(); // Forces get_next() to return NULL so that the iteration aborts early. void abort() { _should_abort = true; } // Return true if the CM thread are actively scanning root regions, // false otherwise. bool scan_in_progress() { return _scan_in_progress; } // Claim the next root MemRegion to scan atomically, or return NULL if // all have been claimed. const MemRegion* claim_next(); // The number of root regions to scan. uint num_root_regions() const; void cancel_scan(); // Flag that we're done with root region scanning and notify anyone // who's waiting on it. If aborted is false, assume that all regions // have been claimed. void scan_finished(); // If CM threads are still scanning root regions, wait until they // are done. Return true if we had to wait, false otherwise. bool wait_until_scan_finished(); }; // This class manages data structures and methods for doing liveness analysis in // G1's concurrent cycle. class G1ConcurrentMark : public CHeapObj { friend class G1ConcurrentMarkThread; friend class G1CMRefProcTaskProxy; friend class G1CMRefProcTaskExecutor; friend class G1CMKeepAliveAndDrainClosure; friend class G1CMDrainMarkingStackClosure; friend class G1CMBitMapClosure; friend class G1CMConcurrentMarkingTask; friend class G1CMRemarkTask; friend class G1CMTask; G1ConcurrentMarkThread* _cm_thread; // The thread doing the work G1CollectedHeap* _g1h; // The heap // Concurrent marking support structures G1CMBitMap _mark_bitmap_1; G1CMBitMap _mark_bitmap_2; G1CMBitMap* _prev_mark_bitmap; // Completed mark bitmap G1CMBitMap* _next_mark_bitmap; // Under-construction mark bitmap // Heap bounds MemRegion const _heap; // Root region tracking and claiming G1CMRootMemRegions _root_regions; // For grey objects G1CMMarkStack _global_mark_stack; // Grey objects behind global finger HeapWord* volatile _finger; // The global finger, region aligned, // always pointing to the end of the // last claimed region uint _worker_id_offset; uint _max_num_tasks; // Maximum number of marking tasks uint _num_active_tasks; // Number of tasks currently active G1CMTask** _tasks; // Task queue array (max_worker_id length) G1CMTaskQueueSet* _task_queues; // Task queue set TaskTerminator _terminator; // For termination // Two sync barriers that are used to synchronize tasks when an // overflow occurs. The algorithm is the following. All tasks enter // the first one to ensure that they have all stopped manipulating // the global data structures. After they exit it, they re-initialize // their data structures and task 0 re-initializes the global data // structures. Then, they enter the second sync barrier. This // ensure, that no task starts doing work before all data // structures (local and global) have been re-initialized. When they // exit it, they are free to start working again. WorkGangBarrierSync _first_overflow_barrier_sync; WorkGangBarrierSync _second_overflow_barrier_sync; // This is set by any task, when an overflow on the global data // structures is detected volatile bool _has_overflown; // True: marking is concurrent, false: we're in remark volatile bool _concurrent; // Set at the end of a Full GC so that marking aborts volatile bool _aborted_by_fullgc; // Set at the end of a inital mark young GC if doesn't need to do concurrent mark // so that marking aborts volatile bool _aborted_by_initial_mark; // Used when remark aborts due to an overflow to indicate that // another concurrent marking phase should start volatile bool _restart_for_overflow; ConcurrentGCTimer* _gc_timer_cm; G1OldTracer* _gc_tracer_cm; // Timing statistics. All of them are in ms NumberSeq _init_times; NumberSeq _remark_times; NumberSeq _remark_mark_times; NumberSeq _remark_weak_ref_times; NumberSeq _cleanup_times; double _total_cleanup_time; double* _accum_task_vtime; // Accumulated task vtime WorkGang* _concurrent_workers; uint _num_concurrent_workers; // The number of marking worker threads we're using uint _max_concurrent_workers; // Maximum number of marking worker threads void verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller); void finalize_marking(); void weak_refs_work_parallel_part(BoolObjectClosure* is_alive, bool purged_classes); void weak_refs_work(bool clear_all_soft_refs); void report_object_count(bool mark_completed); void swap_mark_bitmaps(); void reclaim_empty_regions(); // After reclaiming empty regions, update heap sizes. void compute_new_sizes(); // Clear statistics gathered during the concurrent cycle for the given region after // it has been reclaimed. void clear_statistics(HeapRegion* r); // Resets the global marking data structures, as well as the // task local ones; should be called during initial mark. void reset(); // Resets all the marking data structures. Called when we have to restart // marking or when marking completes (via set_non_marking_state below). void reset_marking_for_restart(); // We do this after we're done with marking so that the marking data // structures are initialized to a sensible and predictable state. void reset_at_marking_complete(); // Called to indicate how many threads are currently active. void set_concurrency(uint active_tasks); // Should be called to indicate which phase we're in (concurrent // mark or remark) and how many threads are currently active. void set_concurrency_and_phase(uint active_tasks, bool concurrent); // Prints all gathered CM-related statistics void print_stats(); HeapWord* finger() { return _finger; } bool concurrent() { return _concurrent; } uint active_tasks() { return _num_active_tasks; } TaskTerminator* terminator() { return &_terminator; } // Claims the next available region to be scanned by a marking // task/thread. It might return NULL if the next region is empty or // we have run out of regions. In the latter case, out_of_regions() // determines whether we've really run out of regions or the task // should call claim_region() again. This might seem a bit // awkward. Originally, the code was written so that claim_region() // either successfully returned with a non-empty region or there // were no more regions to be claimed. The problem with this was // that, in certain circumstances, it iterated over large chunks of // the heap finding only empty regions and, while it was working, it // was preventing the calling task to call its regular clock // method. So, this way, each task will spend very little time in // claim_region() and is allowed to call the regular clock method // frequently. HeapRegion* claim_region(uint worker_id); // Determines whether we've run out of regions to scan. Note that // the finger can point past the heap end in case the heap was expanded // to satisfy an allocation without doing a GC. This is fine, because all // objects in those regions will be considered live anyway because of // SATB guarantees (i.e. their TAMS will be equal to bottom). bool out_of_regions() { return _finger >= _heap.end(); } // Returns the task with the given id G1CMTask* task(uint id) { // During initial mark we use the parallel gc threads to do some work, so // we can only compare against _max_num_tasks. assert(id < _max_num_tasks, "Task id %u not within bounds up to %u", id, _max_num_tasks); return _tasks[id]; } // Access / manipulation of the overflow flag which is set to // indicate that the global stack has overflown bool has_overflown() { return _has_overflown; } void set_has_overflown() { _has_overflown = true; } void clear_has_overflown() { _has_overflown = false; } bool restart_for_overflow() { return _restart_for_overflow; } // Methods to enter the two overflow sync barriers void enter_first_sync_barrier(uint worker_id); void enter_second_sync_barrier(uint worker_id); // Clear the given bitmap in parallel using the given WorkGang. If may_yield is // true, periodically insert checks to see if this method should exit prematurely. void clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield); // Region statistics gathered during marking. G1RegionMarkStats* _region_mark_stats; // Top pointer for each region at the start of the rebuild remembered set process // for regions which remembered sets need to be rebuilt. A NULL for a given region // means that this region does not be scanned during the rebuilding remembered // set phase at all. HeapWord* volatile* _top_at_rebuild_starts; public: void add_to_liveness(uint worker_id, oop const obj, size_t size); // Liveness of the given region as determined by concurrent marking, i.e. the amount of // live words between bottom and nTAMS. size_t liveness(uint region) const { return _region_mark_stats[region]._live_words; } // Sets the internal top_at_region_start for the given region to current top of the region. inline void update_top_at_rebuild_start(HeapRegion* r); // TARS for the given region during remembered set rebuilding. inline HeapWord* top_at_rebuild_start(uint region) const; // Clear statistics gathered during the concurrent cycle for the given region after // it has been reclaimed. void clear_statistics_in_region(uint region_idx); // Notification for eagerly reclaimed regions to clean up. void humongous_object_eagerly_reclaimed(HeapRegion* r); // Manipulation of the global mark stack. // The push and pop operations are used by tasks for transfers // between task-local queues and the global mark stack. bool mark_stack_push(G1TaskQueueEntry* arr) { if (!_global_mark_stack.par_push_chunk(arr)) { set_has_overflown(); return false; } return true; } bool mark_stack_pop(G1TaskQueueEntry* arr) { return _global_mark_stack.par_pop_chunk(arr); } size_t mark_stack_size() const { return _global_mark_stack.size(); } size_t partial_mark_stack_size_target() const { return _global_mark_stack.capacity() / 3; } bool mark_stack_empty() const { return _global_mark_stack.is_empty(); } G1CMRootMemRegions* root_regions() { return &_root_regions; } void concurrent_cycle_start(); // Abandon current marking iteration due to a Full GC. void concurrent_cycle_abort_by_fullgc(); void concurrent_cycle_end(); void concurrent_cycle_abort_by_initial_mark(); void update_accum_task_vtime(int i, double vtime) { _accum_task_vtime[i] += vtime; } double all_task_accum_vtime() { double ret = 0.0; for (uint i = 0; i < _max_num_tasks; ++i) ret += _accum_task_vtime[i]; return ret; } // Attempts to steal an object from the task queues of other tasks bool try_stealing(uint worker_id, G1TaskQueueEntry& task_entry); G1ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage); ~G1ConcurrentMark(); G1ConcurrentMarkThread* cm_thread() { return _cm_thread; } const G1CMBitMap* const prev_mark_bitmap() const { return _prev_mark_bitmap; } G1CMBitMap* next_mark_bitmap() const { return _next_mark_bitmap; } // Calculates the number of concurrent GC threads to be used in the marking phase. uint calc_active_marking_workers(); // Moves all per-task cached data into global state. void flush_all_task_caches(); // Prepare internal data structures for the next mark cycle. This includes clearing // the next mark bitmap and some internal data structures. This method is intended // to be called concurrently to the mutator. It will yield to safepoint requests. void cleanup_for_next_mark(); // Clear the previous marking bitmap during safepoint. void clear_prev_bitmap(WorkGang* workers); // These two methods do the work that needs to be done at the start and end of the // initial mark pause. void pre_initial_mark(); void post_initial_mark(); // Scan all the root regions and mark everything reachable from // them. void scan_root_regions(); // Scan a single root MemRegion to mark everything reachable from it. void scan_root_region(const MemRegion* region, uint worker_id); // Do concurrent phase of marking, to a tentative transitive closure. void mark_from_roots(); // Do concurrent preclean work. void preclean(); void remark(); void cleanup(); // Mark in the previous bitmap. Caution: the prev bitmap is usually read-only, so use // this carefully. inline void mark_in_prev_bitmap(oop p); // Clears marks for all objects in the given range, for the prev or // next bitmaps. Caution: the previous bitmap is usually // read-only, so use this carefully! void clear_range_in_prev_bitmap(MemRegion mr); inline bool is_marked_in_prev_bitmap(oop p) const; // Verify that there are no collection set oops on the stacks (taskqueues / // global mark stack) and fingers (global / per-task). // If marking is not in progress, it's a no-op. void verify_no_collection_set_oops() PRODUCT_RETURN; inline bool do_yield_check(); bool aborted_by_fullgc() { return _aborted_by_fullgc; } bool aborted_by_initial_mark() { return _aborted_by_initial_mark; } bool has_aborted() { return aborted_by_fullgc() || aborted_by_initial_mark(); } void print_summary_info(); void print_worker_threads_on(outputStream* st) const; void threads_do(ThreadClosure* tc) const; void print_on_error(outputStream* st) const; // Mark the given object on the next bitmap if it is below nTAMS. inline bool mark_in_next_bitmap(uint worker_id, HeapRegion* const hr, oop const obj); inline bool mark_in_next_bitmap(uint worker_id, oop const obj); inline bool is_marked_in_next_bitmap(oop p) const; ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; } G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; } private: // Rebuilds the remembered sets for chosen regions in parallel and concurrently to the application. void rebuild_rem_set_concurrently(); }; // A class representing a marking task. class G1CMTask : public TerminatorTerminator { private: enum PrivateConstants { // The regular clock call is called once the scanned words reaches // this limit words_scanned_period = 12*1024, // The regular clock call is called once the number of visited // references reaches this limit refs_reached_period = 1024, // Initial value for the hash seed, used in the work stealing code init_hash_seed = 17 }; // Number of entries in the per-task stats entry. This seems enough to have a very // low cache miss rate. static const uint RegionMarkStatsCacheSize = 1024; G1CMObjArrayProcessor _objArray_processor; uint _worker_id; G1CollectedHeap* _g1h; G1ConcurrentMark* _cm; G1CMBitMap* _next_mark_bitmap; // the task queue of this task G1CMTaskQueue* _task_queue; G1RegionMarkStatsCache _mark_stats_cache; // Number of calls to this task uint _calls; // When the virtual timer reaches this time, the marking step should exit double _time_target_ms; // Start time of the current marking step double _start_time_ms; // Oop closure used for iterations over oops G1CMOopClosure* _cm_oop_closure; // Region this task is scanning, NULL if we're not scanning any HeapRegion* _curr_region; // Local finger of this task, NULL if we're not scanning a region HeapWord* _finger; // Limit of the region this task is scanning, NULL if we're not scanning one HeapWord* _region_limit; // Number of words this task has scanned size_t _words_scanned; // When _words_scanned reaches this limit, the regular clock is // called. Notice that this might be decreased under certain // circumstances (i.e. when we believe that we did an expensive // operation). size_t _words_scanned_limit; // Initial value of _words_scanned_limit (i.e. what it was // before it was decreased). size_t _real_words_scanned_limit; // Number of references this task has visited size_t _refs_reached; // When _refs_reached reaches this limit, the regular clock is // called. Notice this this might be decreased under certain // circumstances (i.e. when we believe that we did an expensive // operation). size_t _refs_reached_limit; // Initial value of _refs_reached_limit (i.e. what it was before // it was decreased). size_t _real_refs_reached_limit; // If true, then the task has aborted for some reason bool _has_aborted; // Set when the task aborts because it has met its time quota bool _has_timed_out; // True when we're draining SATB buffers; this avoids the task // aborting due to SATB buffers being available (as we're already // dealing with them) bool _draining_satb_buffers; // Number sequence of past step times NumberSeq _step_times_ms; // Elapsed time of this task double _elapsed_time_ms; // Termination time of this task double _termination_time_ms; // When this task got into the termination protocol double _termination_start_time_ms; TruncatedSeq _marking_step_diff_ms; // Updates the local fields after this task has claimed // a new region to scan void setup_for_region(HeapRegion* hr); // Makes the limit of the region up-to-date void update_region_limit(); // Called when either the words scanned or the refs visited limit // has been reached void reached_limit(); // Recalculates the words scanned and refs visited limits void recalculate_limits(); // Decreases the words scanned and refs visited limits when we reach // an expensive operation void decrease_limits(); // Checks whether the words scanned or refs visited reached their // respective limit and calls reached_limit() if they have void check_limits() { if (_words_scanned >= _words_scanned_limit || _refs_reached >= _refs_reached_limit) { reached_limit(); } } // Supposed to be called regularly during a marking step as // it checks a bunch of conditions that might cause the marking step // to abort // Return true if the marking step should continue. Otherwise, return false to abort bool regular_clock_call(); // Set abort flag if regular_clock_call() check fails inline void abort_marking_if_regular_check_fail(); // Test whether obj might have already been passed over by the // mark bitmap scan, and so needs to be pushed onto the mark stack. bool is_below_finger(oop obj, HeapWord* global_finger) const; template void process_grey_task_entry(G1TaskQueueEntry task_entry); public: // Apply the closure on the given area of the objArray. Return the number of words // scanned. inline size_t scan_objArray(objArrayOop obj, MemRegion mr); // Resets the task; should be called right at the beginning of a marking phase. void reset(G1CMBitMap* next_mark_bitmap); // Clears all the fields that correspond to a claimed region. void clear_region_fields(); // The main method of this class which performs a marking step // trying not to exceed the given duration. However, it might exit // prematurely, according to some conditions (i.e. SATB buffers are // available for processing). void do_marking_step(double target_ms, bool do_termination, bool is_serial); // These two calls start and stop the timer void record_start_time() { _elapsed_time_ms = os::elapsedTime() * 1000.0; } void record_end_time() { _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms; } // Returns the worker ID associated with this task. uint worker_id() { return _worker_id; } // From TerminatorTerminator. It determines whether this task should // exit the termination protocol after it's entered it. virtual bool should_exit_termination(); // Resets the local region fields after a task has finished scanning a // region; or when they have become stale as a result of the region // being evacuated. void giveup_current_region(); HeapWord* finger() { return _finger; } bool has_aborted() { return _has_aborted; } void set_has_aborted() { _has_aborted = true; } void clear_has_aborted() { _has_aborted = false; } void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure); // Increment the number of references this task has visited. void increment_refs_reached() { ++_refs_reached; } // Grey the object by marking it. If not already marked, push it on // the local queue if below the finger. obj is required to be below its region's NTAMS. // Returns whether there has been a mark to the bitmap. inline bool make_reference_grey(oop obj); // Grey the object (by calling make_grey_reference) if required, // e.g. obj is below its containing region's NTAMS. // Precondition: obj is a valid heap object. // Returns true if the reference caused a mark to be set in the next bitmap. template inline bool deal_with_reference(T* p); // Scans an object and visits its children. inline void scan_task_entry(G1TaskQueueEntry task_entry); // Pushes an object on the local queue. inline void push(G1TaskQueueEntry task_entry); // Move entries to the global stack. void move_entries_to_global_stack(); // Move entries from the global stack, return true if we were successful to do so. bool get_entries_from_global_stack(); // Pops and scans objects from the local queue. If partially is // true, then it stops when the queue size is of a given limit. If // partially is false, then it stops when the queue is empty. void drain_local_queue(bool partially); // Moves entries from the global stack to the local queue and // drains the local queue. If partially is true, then it stops when // both the global stack and the local queue reach a given size. If // partially if false, it tries to empty them totally. void drain_global_stack(bool partially); // Keeps picking SATB buffers and processing them until no SATB // buffers are available. void drain_satb_buffers(); // Moves the local finger to a new location inline void move_finger_to(HeapWord* new_finger) { assert(new_finger >= _finger && new_finger < _region_limit, "invariant"); _finger = new_finger; } G1CMTask(uint worker_id, G1ConcurrentMark *cm, G1CMTaskQueue* task_queue, G1RegionMarkStats* mark_stats, uint max_regions); inline void update_liveness(oop const obj, size_t const obj_size); // Clear (without flushing) the mark cache entry for the given region. void clear_mark_stats_cache(uint region_idx); // Evict the whole statistics cache into the global statistics. Returns the // number of cache hits and misses so far. Pair flush_mark_stats_cache(); // Prints statistics associated with this task void print_stats(); }; // Class that's used to to print out per-region liveness // information. It's currently used at the end of marking and also // after we sort the old regions at the end of the cleanup operation. class G1PrintRegionLivenessInfoClosure : public HeapRegionClosure { // Accumulators for these values. size_t _total_used_bytes; size_t _total_capacity_bytes; size_t _total_prev_live_bytes; size_t _total_next_live_bytes; // Accumulator for the remembered set size size_t _total_remset_bytes; // Accumulator for strong code roots memory size size_t _total_strong_code_roots_bytes; static double bytes_to_mb(size_t val) { return (double) val / (double) M; } public: // The header and footer are printed in the constructor and // destructor respectively. G1PrintRegionLivenessInfoClosure(const char* phase_name); virtual bool do_heap_region(HeapRegion* r); ~G1PrintRegionLivenessInfoClosure(); }; #endif // SHARE_GC_G1_G1CONCURRENTMARK_HPP