1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "gc/g1/g1BarrierSet.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorState.hpp"
  31 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1DirtyCardQueue.hpp"
  34 #include "gc/g1/g1HeapVerifier.hpp"
  35 #include "gc/g1/g1OopClosures.inline.hpp"
  36 #include "gc/g1/g1Policy.hpp"
  37 #include "gc/g1/g1RegionMarkStatsCache.inline.hpp"
  38 #include "gc/g1/g1StringDedup.hpp"
  39 #include "gc/g1/g1ThreadLocalData.hpp"
  40 #include "gc/g1/g1Trace.hpp"
  41 #include "gc/g1/heapRegion.inline.hpp"
  42 #include "gc/g1/heapRegionRemSet.hpp"
  43 #include "gc/g1/heapRegionSet.inline.hpp"
  44 #include "gc/shared/gcId.hpp"
  45 #include "gc/shared/gcTimer.hpp"
  46 #include "gc/shared/gcTraceTime.inline.hpp"
  47 #include "gc/shared/gcVMOperations.hpp"
  48 #include "gc/shared/genOopClosures.inline.hpp"
  49 #include "gc/shared/referencePolicy.hpp"
  50 #include "gc/shared/strongRootsScope.hpp"
  51 #include "gc/shared/suspendibleThreadSet.hpp"
  52 #include "gc/shared/taskTerminator.hpp"
  53 #include "gc/shared/taskqueue.inline.hpp"
  54 #include "gc/shared/weakProcessor.inline.hpp"
  55 #include "gc/shared/workerPolicy.hpp"
  56 #include "include/jvm.h"
  57 #include "logging/log.hpp"
  58 #include "memory/allocation.hpp"
  59 #include "memory/iterator.hpp"
  60 #include "memory/resourceArea.hpp"
  61 #include "memory/universe.hpp"
  62 #include "oops/access.inline.hpp"
  63 #include "oops/oop.inline.hpp"
  64 #include "runtime/atomic.hpp"
  65 #include "runtime/handles.inline.hpp"
  66 #include "runtime/java.hpp"
  67 #include "runtime/orderAccess.hpp"
  68 #include "runtime/prefetch.inline.hpp"
  69 #include "services/memTracker.hpp"
  70 #include "utilities/align.hpp"
  71 #include "utilities/growableArray.hpp"
  72 
  73 bool G1CMBitMapClosure::do_addr(HeapWord* const addr) {
  74   assert(addr < _cm->finger(), "invariant");
  75   assert(addr >= _task->finger(), "invariant");
  76 
  77   // We move that task's local finger along.
  78   _task->move_finger_to(addr);
  79 
  80   _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
  81   // we only partially drain the local queue and global stack
  82   _task->drain_local_queue(true);
  83   _task->drain_global_stack(true);
  84 
  85   // if the has_aborted flag has been raised, we need to bail out of
  86   // the iteration
  87   return !_task->has_aborted();
  88 }
  89 
  90 G1CMMarkStack::G1CMMarkStack() :
  91   _max_chunk_capacity(0),
  92   _base(NULL),
  93   _chunk_capacity(0) {
  94   set_empty();
  95 }
  96 
  97 bool G1CMMarkStack::resize(size_t new_capacity) {
  98   assert(is_empty(), "Only resize when stack is empty.");
  99   assert(new_capacity <= _max_chunk_capacity,
 100          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
 101 
 102   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk>::allocate_or_null(new_capacity, mtGC);
 103 
 104   if (new_base == NULL) {
 105     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
 106     return false;
 107   }
 108   // Release old mapping.
 109   if (_base != NULL) {
 110     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 111   }
 112 
 113   _base = new_base;
 114   _chunk_capacity = new_capacity;
 115   set_empty();
 116 
 117   return true;
 118 }
 119 
 120 size_t G1CMMarkStack::capacity_alignment() {
 121   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
 122 }
 123 
 124 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
 125   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
 126 
 127   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 128 
 129   _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 130   size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 131 
 132   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 133             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 134             _max_chunk_capacity,
 135             initial_chunk_capacity);
 136 
 137   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 138                 initial_chunk_capacity, _max_chunk_capacity);
 139 
 140   return resize(initial_chunk_capacity);
 141 }
 142 
 143 void G1CMMarkStack::expand() {
 144   if (_chunk_capacity == _max_chunk_capacity) {
 145     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 146     return;
 147   }
 148   size_t old_capacity = _chunk_capacity;
 149   // Double capacity if possible
 150   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 151 
 152   if (resize(new_capacity)) {
 153     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 154                   old_capacity, new_capacity);
 155   } else {
 156     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 157                     old_capacity, new_capacity);
 158   }
 159 }
 160 
 161 G1CMMarkStack::~G1CMMarkStack() {
 162   if (_base != NULL) {
 163     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 164   }
 165 }
 166 
 167 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 168   elem->next = *list;
 169   *list = elem;
 170 }
 171 
 172 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 173   MutexLocker x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 174   add_chunk_to_list(&_chunk_list, elem);
 175   _chunks_in_chunk_list++;
 176 }
 177 
 178 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 179   MutexLocker x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 180   add_chunk_to_list(&_free_list, elem);
 181 }
 182 
 183 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 184   TaskQueueEntryChunk* result = *list;
 185   if (result != NULL) {
 186     *list = (*list)->next;
 187   }
 188   return result;
 189 }
 190 
 191 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 192   MutexLocker x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 193   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 194   if (result != NULL) {
 195     _chunks_in_chunk_list--;
 196   }
 197   return result;
 198 }
 199 
 200 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 201   MutexLocker x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 202   return remove_chunk_from_list(&_free_list);
 203 }
 204 
 205 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 206   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 207   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 208   // wraparound of _hwm.
 209   if (_hwm >= _chunk_capacity) {
 210     return NULL;
 211   }
 212 
 213   size_t cur_idx = Atomic::fetch_and_add(&_hwm, 1u);
 214   if (cur_idx >= _chunk_capacity) {
 215     return NULL;
 216   }
 217 
 218   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 219   result->next = NULL;
 220   return result;
 221 }
 222 
 223 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 224   // Get a new chunk.
 225   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 226 
 227   if (new_chunk == NULL) {
 228     // Did not get a chunk from the free list. Allocate from backing memory.
 229     new_chunk = allocate_new_chunk();
 230 
 231     if (new_chunk == NULL) {
 232       return false;
 233     }
 234   }
 235 
 236   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 237 
 238   add_chunk_to_chunk_list(new_chunk);
 239 
 240   return true;
 241 }
 242 
 243 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 244   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 245 
 246   if (cur == NULL) {
 247     return false;
 248   }
 249 
 250   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 251 
 252   add_chunk_to_free_list(cur);
 253   return true;
 254 }
 255 
 256 void G1CMMarkStack::set_empty() {
 257   _chunks_in_chunk_list = 0;
 258   _hwm = 0;
 259   _chunk_list = NULL;
 260   _free_list = NULL;
 261 }
 262 
 263 G1CMRootMemRegions::G1CMRootMemRegions(uint const max_regions) :
 264     _root_regions(MemRegion::create_array(max_regions, mtGC)),
 265     _max_regions(max_regions),
 266     _num_root_regions(0),
 267     _claimed_root_regions(0),
 268     _scan_in_progress(false),
 269     _should_abort(false) { }
 270 
 271 G1CMRootMemRegions::~G1CMRootMemRegions() {
 272   MemRegion::destroy_array(_root_regions, _max_regions);
 273 }
 274 
 275 void G1CMRootMemRegions::reset() {
 276   _num_root_regions = 0;
 277 }
 278 
 279 void G1CMRootMemRegions::add(HeapWord* start, HeapWord* end) {
 280   assert_at_safepoint();
 281   size_t idx = Atomic::fetch_and_add(&_num_root_regions, 1u);
 282   assert(idx < _max_regions, "Trying to add more root MemRegions than there is space " SIZE_FORMAT, _max_regions);
 283   assert(start != NULL && end != NULL && start <= end, "Start (" PTR_FORMAT ") should be less or equal to "
 284          "end (" PTR_FORMAT ")", p2i(start), p2i(end));
 285   _root_regions[idx].set_start(start);
 286   _root_regions[idx].set_end(end);
 287 }
 288 
 289 void G1CMRootMemRegions::prepare_for_scan() {
 290   assert(!scan_in_progress(), "pre-condition");
 291 
 292   _scan_in_progress = _num_root_regions > 0;
 293 
 294   _claimed_root_regions = 0;
 295   _should_abort = false;
 296 }
 297 
 298 const MemRegion* G1CMRootMemRegions::claim_next() {
 299   if (_should_abort) {
 300     // If someone has set the should_abort flag, we return NULL to
 301     // force the caller to bail out of their loop.
 302     return NULL;
 303   }
 304 
 305   if (_claimed_root_regions >= _num_root_regions) {
 306     return NULL;
 307   }
 308 
 309   size_t claimed_index = Atomic::fetch_and_add(&_claimed_root_regions, 1u);
 310   if (claimed_index < _num_root_regions) {
 311     return &_root_regions[claimed_index];
 312   }
 313   return NULL;
 314 }
 315 
 316 uint G1CMRootMemRegions::num_root_regions() const {
 317   return (uint)_num_root_regions;
 318 }
 319 
 320 void G1CMRootMemRegions::notify_scan_done() {
 321   MutexLocker x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 322   _scan_in_progress = false;
 323   RootRegionScan_lock->notify_all();
 324 }
 325 
 326 void G1CMRootMemRegions::cancel_scan() {
 327   notify_scan_done();
 328 }
 329 
 330 void G1CMRootMemRegions::scan_finished() {
 331   assert(scan_in_progress(), "pre-condition");
 332 
 333   if (!_should_abort) {
 334     assert(_claimed_root_regions >= num_root_regions(),
 335            "we should have claimed all root regions, claimed " SIZE_FORMAT ", length = %u",
 336            _claimed_root_regions, num_root_regions());
 337   }
 338 
 339   notify_scan_done();
 340 }
 341 
 342 bool G1CMRootMemRegions::wait_until_scan_finished() {
 343   if (!scan_in_progress()) {
 344     return false;
 345   }
 346 
 347   {
 348     MonitorLocker ml(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 349     while (scan_in_progress()) {
 350       ml.wait();
 351     }
 352   }
 353   return true;
 354 }
 355 
 356 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h,
 357                                    G1RegionToSpaceMapper* prev_bitmap_storage,
 358                                    G1RegionToSpaceMapper* next_bitmap_storage) :
 359   // _cm_thread set inside the constructor
 360   _g1h(g1h),
 361 
 362   _mark_bitmap_1(),
 363   _mark_bitmap_2(),
 364   _prev_mark_bitmap(&_mark_bitmap_1),
 365   _next_mark_bitmap(&_mark_bitmap_2),
 366 
 367   _heap(_g1h->reserved_region()),
 368 
 369   _root_regions(_g1h->max_regions()),
 370 
 371   _global_mark_stack(),
 372 
 373   // _finger set in set_non_marking_state
 374 
 375   _worker_id_offset(G1DirtyCardQueueSet::num_par_ids() + G1ConcRefinementThreads),
 376   _max_num_tasks(ParallelGCThreads),
 377   // _num_active_tasks set in set_non_marking_state()
 378   // _tasks set inside the constructor
 379 
 380   _task_queues(new G1CMTaskQueueSet((int) _max_num_tasks)),
 381   _terminator((int) _max_num_tasks, _task_queues),
 382 
 383   _first_overflow_barrier_sync(),
 384   _second_overflow_barrier_sync(),
 385 
 386   _has_overflown(false),
 387   _concurrent(false),
 388   _aborted_by_fullgc(false),
 389   _aborted_by_initial_mark(false),
 390   _restart_for_overflow(false),
 391   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 392   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 393 
 394   // _verbose_level set below
 395 
 396   _init_times(),
 397   _remark_times(),
 398   _remark_mark_times(),
 399   _remark_weak_ref_times(),
 400   _cleanup_times(),
 401   _total_cleanup_time(0.0),
 402 
 403   _accum_task_vtime(NULL),
 404 
 405   _concurrent_workers(NULL),
 406   _num_concurrent_workers(0),
 407   _max_concurrent_workers(0),
 408 
 409   _region_mark_stats(NEW_C_HEAP_ARRAY(G1RegionMarkStats, _g1h->max_regions(), mtGC)),
 410   _top_at_rebuild_starts(NEW_C_HEAP_ARRAY(HeapWord*, _g1h->max_regions(), mtGC))
 411 {
 412   assert(CGC_lock != NULL, "CGC_lock must be initialized");
 413 
 414   _mark_bitmap_1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 415   _mark_bitmap_2.initialize(g1h->reserved_region(), next_bitmap_storage);
 416 
 417   // Create & start ConcurrentMark thread.
 418   _cm_thread = new G1ConcurrentMarkThread(this);
 419   if (_cm_thread->osthread() == NULL) {
 420     vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 421   }
 422 
 423   log_debug(gc)("ConcGCThreads: %u offset %u", ConcGCThreads, _worker_id_offset);
 424   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 425 
 426   _num_concurrent_workers = ConcGCThreads;
 427   _max_concurrent_workers = _num_concurrent_workers;
 428 
 429   _concurrent_workers = new WorkGang("G1 Conc", _max_concurrent_workers, false, true);
 430   _concurrent_workers->initialize_workers();
 431 
 432   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 433     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 434   }
 435 
 436   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_num_tasks, mtGC);
 437   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_num_tasks, mtGC);
 438 
 439   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 440   _num_active_tasks = _max_num_tasks;
 441 
 442   for (uint i = 0; i < _max_num_tasks; ++i) {
 443     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 444     task_queue->initialize();
 445     _task_queues->register_queue(i, task_queue);
 446 
 447     _tasks[i] = new G1CMTask(i, this, task_queue, _region_mark_stats, _g1h->max_regions());
 448 
 449     _accum_task_vtime[i] = 0.0;
 450   }
 451 
 452   reset_at_marking_complete();
 453 }
 454 
 455 void G1ConcurrentMark::reset() {
 456   _aborted_by_fullgc = false;
 457   _aborted_by_initial_mark = false;
 458 
 459   reset_marking_for_restart();
 460 
 461   // Reset all tasks, since different phases will use different number of active
 462   // threads. So, it's easiest to have all of them ready.
 463   for (uint i = 0; i < _max_num_tasks; ++i) {
 464     _tasks[i]->reset(_next_mark_bitmap);
 465   }
 466 
 467   uint max_regions = _g1h->max_regions();
 468   for (uint i = 0; i < max_regions; i++) {
 469     _top_at_rebuild_starts[i] = NULL;
 470     _region_mark_stats[i].clear();
 471   }
 472 }
 473 
 474 void G1ConcurrentMark::clear_statistics_in_region(uint region_idx) {
 475   for (uint j = 0; j < _max_num_tasks; ++j) {
 476     _tasks[j]->clear_mark_stats_cache(region_idx);
 477   }
 478   _top_at_rebuild_starts[region_idx] = NULL;
 479   _region_mark_stats[region_idx].clear();
 480 }
 481 
 482 void G1ConcurrentMark::clear_statistics(HeapRegion* r) {
 483   uint const region_idx = r->hrm_index();
 484   if (r->is_humongous()) {
 485     assert(r->is_starts_humongous(), "Got humongous continues region here");
 486     uint const size_in_regions = (uint)_g1h->humongous_obj_size_in_regions(oop(r->humongous_start_region()->bottom())->size());
 487     for (uint j = region_idx; j < (region_idx + size_in_regions); j++) {
 488       clear_statistics_in_region(j);
 489     }
 490   } else {
 491     clear_statistics_in_region(region_idx);
 492   }
 493 }
 494 
 495 static void clear_mark_if_set(G1CMBitMap* bitmap, HeapWord* addr) {
 496   if (bitmap->is_marked(addr)) {
 497     bitmap->clear(addr);
 498   }
 499 }
 500 
 501 void G1ConcurrentMark::humongous_object_eagerly_reclaimed(HeapRegion* r) {
 502   assert_at_safepoint_on_vm_thread();
 503 
 504   // Need to clear all mark bits of the humongous object.
 505   clear_mark_if_set(_prev_mark_bitmap, r->bottom());
 506   clear_mark_if_set(_next_mark_bitmap, r->bottom());
 507 
 508   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
 509     return;
 510   }
 511 
 512   // Clear any statistics about the region gathered so far.
 513   clear_statistics(r);
 514 }
 515 
 516 void G1ConcurrentMark::reset_marking_for_restart() {
 517   _global_mark_stack.set_empty();
 518 
 519   // Expand the marking stack, if we have to and if we can.
 520   if (has_overflown()) {
 521     _global_mark_stack.expand();
 522 
 523     uint max_regions = _g1h->max_regions();
 524     for (uint i = 0; i < max_regions; i++) {
 525       _region_mark_stats[i].clear_during_overflow();
 526     }
 527   }
 528 
 529   clear_has_overflown();
 530   _finger = _heap.start();
 531 
 532   for (uint i = 0; i < _max_num_tasks; ++i) {
 533     G1CMTaskQueue* queue = _task_queues->queue(i);
 534     queue->set_empty();
 535   }
 536 }
 537 
 538 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 539   assert(active_tasks <= _max_num_tasks, "we should not have more");
 540 
 541   _num_active_tasks = active_tasks;
 542   // Need to update the three data structures below according to the
 543   // number of active threads for this phase.
 544   _terminator.reset_for_reuse(active_tasks);
 545   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 546   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 547 }
 548 
 549 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 550   set_concurrency(active_tasks);
 551 
 552   _concurrent = concurrent;
 553 
 554   if (!concurrent) {
 555     // At this point we should be in a STW phase, and completed marking.
 556     assert_at_safepoint_on_vm_thread();
 557     assert(out_of_regions(),
 558            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 559            p2i(_finger), p2i(_heap.end()));
 560   }
 561 }
 562 
 563 void G1ConcurrentMark::reset_at_marking_complete() {
 564   // We set the global marking state to some default values when we're
 565   // not doing marking.
 566   reset_marking_for_restart();
 567   _num_active_tasks = 0;
 568 }
 569 
 570 G1ConcurrentMark::~G1ConcurrentMark() {
 571   FREE_C_HEAP_ARRAY(HeapWord*, _top_at_rebuild_starts);
 572   FREE_C_HEAP_ARRAY(G1RegionMarkStats, _region_mark_stats);
 573   // The G1ConcurrentMark instance is never freed.
 574   ShouldNotReachHere();
 575 }
 576 
 577 class G1ClearBitMapTask : public AbstractGangTask {
 578 public:
 579   static size_t chunk_size() { return M; }
 580 
 581 private:
 582   // Heap region closure used for clearing the given mark bitmap.
 583   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 584   private:
 585     G1CMBitMap* _bitmap;
 586     G1ConcurrentMark* _cm;
 587   public:
 588     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _bitmap(bitmap), _cm(cm) {
 589     }
 590 
 591     virtual bool do_heap_region(HeapRegion* r) {
 592       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 593 
 594       HeapWord* cur = r->bottom();
 595       HeapWord* const end = r->end();
 596 
 597       while (cur < end) {
 598         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 599         _bitmap->clear_range(mr);
 600 
 601         cur += chunk_size_in_words;
 602 
 603         // Abort iteration if after yielding the marking has been aborted.
 604         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 605           return true;
 606         }
 607         // Repeat the asserts from before the start of the closure. We will do them
 608         // as asserts here to minimize their overhead on the product. However, we
 609         // will have them as guarantees at the beginning / end of the bitmap
 610         // clearing to get some checking in the product.
 611         assert(_cm == NULL || _cm->cm_thread()->during_cycle(), "invariant");
 612         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 613       }
 614       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 615 
 616       return false;
 617     }
 618   };
 619 
 620   G1ClearBitmapHRClosure _cl;
 621   HeapRegionClaimer _hr_claimer;
 622   bool _suspendible; // If the task is suspendible, workers must join the STS.
 623 
 624 public:
 625   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 626     AbstractGangTask("G1 Clear Bitmap"),
 627     _cl(bitmap, suspendible ? cm : NULL),
 628     _hr_claimer(n_workers),
 629     _suspendible(suspendible)
 630   { }
 631 
 632   void work(uint worker_id) {
 633     SuspendibleThreadSetJoiner sts_join(_suspendible);
 634     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hr_claimer, worker_id);
 635   }
 636 
 637   bool is_complete() {
 638     return _cl.is_complete();
 639   }
 640 };
 641 
 642 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 643   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 644 
 645   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 646   size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 647 
 648   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 649 
 650   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 651 
 652   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 653   workers->run_task(&cl, num_workers);
 654   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 655 }
 656 
 657 void G1ConcurrentMark::cleanup_for_next_mark() {
 658   // Make sure that the concurrent mark thread looks to still be in
 659   // the current cycle.
 660   guarantee(cm_thread()->during_cycle(), "invariant");
 661 
 662   // We are finishing up the current cycle by clearing the next
 663   // marking bitmap and getting it ready for the next cycle. During
 664   // this time no other cycle can start. So, let's make sure that this
 665   // is the case.
 666   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 667 
 668   clear_bitmap(_next_mark_bitmap, _concurrent_workers, true);
 669 
 670   // Repeat the asserts from above.
 671   guarantee(cm_thread()->during_cycle(), "invariant");
 672   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 673 }
 674 
 675 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 676   assert_at_safepoint_on_vm_thread();
 677   clear_bitmap(_prev_mark_bitmap, workers, false);
 678 }
 679 
 680 class NoteStartOfMarkHRClosure : public HeapRegionClosure {
 681 public:
 682   bool do_heap_region(HeapRegion* r) {
 683     r->note_start_of_marking();
 684     return false;
 685   }
 686 };
 687 
 688 void G1ConcurrentMark::pre_initial_mark() {
 689   assert_at_safepoint_on_vm_thread();
 690 
 691   // Reset marking state.
 692   reset();
 693 
 694   // For each region note start of marking.
 695   NoteStartOfMarkHRClosure startcl;
 696   _g1h->heap_region_iterate(&startcl);
 697 
 698   _root_regions.reset();
 699 }
 700 
 701 
 702 void G1ConcurrentMark::post_initial_mark() {
 703   // Start Concurrent Marking weak-reference discovery.
 704   ReferenceProcessor* rp = _g1h->ref_processor_cm();
 705   // enable ("weak") refs discovery
 706   rp->enable_discovery();
 707   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 708 
 709   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
 710   // This is the start of  the marking cycle, we're expected all
 711   // threads to have SATB queues with active set to false.
 712   satb_mq_set.set_active_all_threads(true, /* new active value */
 713                                      false /* expected_active */);
 714 
 715   _root_regions.prepare_for_scan();
 716 
 717   // update_g1_committed() will be called at the end of an evac pause
 718   // when marking is on. So, it's also called at the end of the
 719   // initial-mark pause to update the heap end, if the heap expands
 720   // during it. No need to call it here.
 721 }
 722 
 723 /*
 724  * Notice that in the next two methods, we actually leave the STS
 725  * during the barrier sync and join it immediately afterwards. If we
 726  * do not do this, the following deadlock can occur: one thread could
 727  * be in the barrier sync code, waiting for the other thread to also
 728  * sync up, whereas another one could be trying to yield, while also
 729  * waiting for the other threads to sync up too.
 730  *
 731  * Note, however, that this code is also used during remark and in
 732  * this case we should not attempt to leave / enter the STS, otherwise
 733  * we'll either hit an assert (debug / fastdebug) or deadlock
 734  * (product). So we should only leave / enter the STS if we are
 735  * operating concurrently.
 736  *
 737  * Because the thread that does the sync barrier has left the STS, it
 738  * is possible to be suspended for a Full GC or an evacuation pause
 739  * could occur. This is actually safe, since the entering the sync
 740  * barrier is one of the last things do_marking_step() does, and it
 741  * doesn't manipulate any data structures afterwards.
 742  */
 743 
 744 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 745   bool barrier_aborted;
 746   {
 747     SuspendibleThreadSetLeaver sts_leave(concurrent());
 748     barrier_aborted = !_first_overflow_barrier_sync.enter();
 749   }
 750 
 751   // at this point everyone should have synced up and not be doing any
 752   // more work
 753 
 754   if (barrier_aborted) {
 755     // If the barrier aborted we ignore the overflow condition and
 756     // just abort the whole marking phase as quickly as possible.
 757     return;
 758   }
 759 }
 760 
 761 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 762   SuspendibleThreadSetLeaver sts_leave(concurrent());
 763   _second_overflow_barrier_sync.enter();
 764 
 765   // at this point everything should be re-initialized and ready to go
 766 }
 767 
 768 class G1CMConcurrentMarkingTask : public AbstractGangTask {
 769   G1ConcurrentMark*     _cm;
 770 
 771 public:
 772   void work(uint worker_id) {
 773     assert(Thread::current()->is_ConcurrentGC_thread(), "Not a concurrent GC thread");
 774     ResourceMark rm;
 775 
 776     double start_vtime = os::elapsedVTime();
 777 
 778     {
 779       SuspendibleThreadSetJoiner sts_join;
 780 
 781       assert(worker_id < _cm->active_tasks(), "invariant");
 782 
 783       G1CMTask* task = _cm->task(worker_id);
 784       task->record_start_time();
 785       if (!_cm->has_aborted()) {
 786         do {
 787           task->do_marking_step(G1ConcMarkStepDurationMillis,
 788                                 true  /* do_termination */,
 789                                 false /* is_serial*/);
 790 
 791           _cm->do_yield_check();
 792         } while (!_cm->has_aborted() && task->has_aborted());
 793       }
 794       task->record_end_time();
 795       guarantee(!task->has_aborted() || _cm->has_aborted(), "invariant");
 796     }
 797 
 798     double end_vtime = os::elapsedVTime();
 799     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 800   }
 801 
 802   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm) :
 803       AbstractGangTask("Concurrent Mark"), _cm(cm) { }
 804 
 805   ~G1CMConcurrentMarkingTask() { }
 806 };
 807 
 808 uint G1ConcurrentMark::calc_active_marking_workers() {
 809   uint result = 0;
 810   if (!UseDynamicNumberOfGCThreads || !FLAG_IS_DEFAULT(ConcGCThreads)) {
 811     result = _max_concurrent_workers;
 812   } else {
 813     result =
 814       WorkerPolicy::calc_default_active_workers(_max_concurrent_workers,
 815                                                 1, /* Minimum workers */
 816                                                 _num_concurrent_workers,
 817                                                 Threads::number_of_non_daemon_threads());
 818     // Don't scale the result down by scale_concurrent_workers() because
 819     // that scaling has already gone into "_max_concurrent_workers".
 820   }
 821   assert(result > 0 && result <= _max_concurrent_workers,
 822          "Calculated number of marking workers must be larger than zero and at most the maximum %u, but is %u",
 823          _max_concurrent_workers, result);
 824   return result;
 825 }
 826 
 827 void G1ConcurrentMark::scan_root_region(const MemRegion* region, uint worker_id) {
 828 #ifdef ASSERT
 829   HeapWord* last = region->last();
 830   HeapRegion* hr = _g1h->heap_region_containing(last);
 831   assert(hr->is_old() || hr->next_top_at_mark_start() == hr->bottom(),
 832          "Root regions must be old or survivor/eden but region %u is %s", hr->hrm_index(), hr->get_type_str());
 833   assert(hr->next_top_at_mark_start() == region->start(),
 834          "MemRegion start should be equal to nTAMS");
 835 #endif
 836 
 837   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 838 
 839   const uintx interval = PrefetchScanIntervalInBytes;
 840   HeapWord* curr = region->start();
 841   const HeapWord* end = region->end();
 842   while (curr < end) {
 843     Prefetch::read(curr, interval);
 844     oop obj = oop(curr);
 845     int size = obj->oop_iterate_size(&cl);
 846     assert(size == obj->size(), "sanity");
 847     curr += size;
 848   }
 849 }
 850 
 851 class G1CMRootRegionScanTask : public AbstractGangTask {
 852   G1ConcurrentMark* _cm;
 853 public:
 854   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 855     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
 856 
 857   void work(uint worker_id) {
 858     assert(Thread::current()->is_ConcurrentGC_thread(),
 859            "this should only be done by a conc GC thread");
 860 
 861     G1CMRootMemRegions* root_regions = _cm->root_regions();
 862     const MemRegion* region = root_regions->claim_next();
 863     while (region != NULL) {
 864       _cm->scan_root_region(region, worker_id);
 865       region = root_regions->claim_next();
 866     }
 867   }
 868 };
 869 
 870 void G1ConcurrentMark::scan_root_regions() {
 871   // scan_in_progress() will have been set to true only if there was
 872   // at least one root region to scan. So, if it's false, we
 873   // should not attempt to do any further work.
 874   if (root_regions()->scan_in_progress()) {
 875     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 876 
 877     _num_concurrent_workers = MIN2(calc_active_marking_workers(),
 878                                    // We distribute work on a per-region basis, so starting
 879                                    // more threads than that is useless.
 880                                    root_regions()->num_root_regions());
 881     assert(_num_concurrent_workers <= _max_concurrent_workers,
 882            "Maximum number of marking threads exceeded");
 883 
 884     G1CMRootRegionScanTask task(this);
 885     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
 886                         task.name(), _num_concurrent_workers, root_regions()->num_root_regions());
 887     _concurrent_workers->run_task(&task, _num_concurrent_workers);
 888 
 889     // It's possible that has_aborted() is true here without actually
 890     // aborting the survivor scan earlier. This is OK as it's
 891     // mainly used for sanity checking.
 892     root_regions()->scan_finished();
 893   }
 894 }
 895 
 896 void G1ConcurrentMark::concurrent_cycle_start() {
 897   _gc_timer_cm->register_gc_start();
 898 
 899   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
 900 
 901   _g1h->trace_heap_before_gc(_gc_tracer_cm);
 902 }
 903 
 904 void G1ConcurrentMark::concurrent_cycle_end() {
 905   _g1h->collector_state()->set_clearing_next_bitmap(false);
 906 
 907   _g1h->trace_heap_after_gc(_gc_tracer_cm);
 908 
 909   if (aborted_by_fullgc()) {
 910     log_info(gc, marking)("Concurrent Mark Abort due to Full GC");
 911     _gc_tracer_cm->report_concurrent_mode_failure();
 912   } else if (aborted_by_initial_mark()) {
 913     log_info(gc, marking)("Concurrent Mark Abort due to Humongous Reclaim");
 914   }
 915 
 916   _gc_timer_cm->register_gc_end();
 917 
 918   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
 919 }
 920 
 921 void G1ConcurrentMark::mark_from_roots() {
 922   _restart_for_overflow = false;
 923 
 924   _num_concurrent_workers = calc_active_marking_workers();
 925 
 926   uint active_workers = MAX2(1U, _num_concurrent_workers);
 927 
 928   // Setting active workers is not guaranteed since fewer
 929   // worker threads may currently exist and more may not be
 930   // available.
 931   active_workers = _concurrent_workers->update_active_workers(active_workers);
 932   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _concurrent_workers->total_workers());
 933 
 934   // Parallel task terminator is set in "set_concurrency_and_phase()"
 935   set_concurrency_and_phase(active_workers, true /* concurrent */);
 936 
 937   G1CMConcurrentMarkingTask marking_task(this);
 938   _concurrent_workers->run_task(&marking_task);
 939   print_stats();
 940 }
 941 
 942 void G1ConcurrentMark::verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller) {
 943   G1HeapVerifier* verifier = _g1h->verifier();
 944 
 945   verifier->verify_region_sets_optional();
 946 
 947   if (VerifyDuringGC) {
 948     GCTraceTime(Debug, gc, phases) debug(caller, _gc_timer_cm);
 949 
 950     size_t const BufLen = 512;
 951     char buffer[BufLen];
 952 
 953     jio_snprintf(buffer, BufLen, "During GC (%s)", caller);
 954     verifier->verify(type, vo, buffer);
 955   }
 956 
 957   verifier->check_bitmaps(caller);
 958 }
 959 
 960 class G1UpdateRemSetTrackingBeforeRebuildTask : public AbstractGangTask {
 961   G1CollectedHeap* _g1h;
 962   G1ConcurrentMark* _cm;
 963   HeapRegionClaimer _hrclaimer;
 964   uint volatile _total_selected_for_rebuild;
 965 
 966   G1PrintRegionLivenessInfoClosure _cl;
 967 
 968   class G1UpdateRemSetTrackingBeforeRebuild : public HeapRegionClosure {
 969     G1CollectedHeap* _g1h;
 970     G1ConcurrentMark* _cm;
 971 
 972     G1PrintRegionLivenessInfoClosure* _cl;
 973 
 974     uint _num_regions_selected_for_rebuild;  // The number of regions actually selected for rebuild.
 975 
 976     void update_remset_before_rebuild(HeapRegion* hr) {
 977       G1RemSetTrackingPolicy* tracking_policy = _g1h->policy()->remset_tracker();
 978 
 979       bool selected_for_rebuild;
 980       if (hr->is_humongous()) {
 981         bool const is_live = _cm->liveness(hr->humongous_start_region()->hrm_index()) > 0;
 982         selected_for_rebuild = tracking_policy->update_humongous_before_rebuild(hr, is_live);
 983       } else {
 984         size_t const live_bytes = _cm->liveness(hr->hrm_index());
 985         selected_for_rebuild = tracking_policy->update_before_rebuild(hr, live_bytes);
 986       }
 987       if (selected_for_rebuild) {
 988         _num_regions_selected_for_rebuild++;
 989       }
 990       _cm->update_top_at_rebuild_start(hr);
 991     }
 992 
 993     // Distribute the given words across the humongous object starting with hr and
 994     // note end of marking.
 995     void distribute_marked_bytes(HeapRegion* hr, size_t marked_words) {
 996       uint const region_idx = hr->hrm_index();
 997       size_t const obj_size_in_words = (size_t)oop(hr->bottom())->size();
 998       uint const num_regions_in_humongous = (uint)G1CollectedHeap::humongous_obj_size_in_regions(obj_size_in_words);
 999 
1000       // "Distributing" zero words means that we only note end of marking for these
1001       // regions.
1002       assert(marked_words == 0 || obj_size_in_words == marked_words,
1003              "Marked words should either be 0 or the same as humongous object (" SIZE_FORMAT ") but is " SIZE_FORMAT,
1004              obj_size_in_words, marked_words);
1005 
1006       for (uint i = region_idx; i < (region_idx + num_regions_in_humongous); i++) {
1007         HeapRegion* const r = _g1h->region_at(i);
1008         size_t const words_to_add = MIN2(HeapRegion::GrainWords, marked_words);
1009 
1010         log_trace(gc, marking)("Adding " SIZE_FORMAT " words to humongous region %u (%s)",
1011                                words_to_add, i, r->get_type_str());
1012         add_marked_bytes_and_note_end(r, words_to_add * HeapWordSize);
1013         marked_words -= words_to_add;
1014       }
1015       assert(marked_words == 0,
1016              SIZE_FORMAT " words left after distributing space across %u regions",
1017              marked_words, num_regions_in_humongous);
1018     }
1019 
1020     void update_marked_bytes(HeapRegion* hr) {
1021       uint const region_idx = hr->hrm_index();
1022       size_t const marked_words = _cm->liveness(region_idx);
1023       // The marking attributes the object's size completely to the humongous starts
1024       // region. We need to distribute this value across the entire set of regions a
1025       // humongous object spans.
1026       if (hr->is_humongous()) {
1027         assert(hr->is_starts_humongous() || marked_words == 0,
1028                "Should not have marked words " SIZE_FORMAT " in non-starts humongous region %u (%s)",
1029                marked_words, region_idx, hr->get_type_str());
1030         if (hr->is_starts_humongous()) {
1031           distribute_marked_bytes(hr, marked_words);
1032         }
1033       } else {
1034         log_trace(gc, marking)("Adding " SIZE_FORMAT " words to region %u (%s)", marked_words, region_idx, hr->get_type_str());
1035         add_marked_bytes_and_note_end(hr, marked_words * HeapWordSize);
1036       }
1037     }
1038 
1039     void add_marked_bytes_and_note_end(HeapRegion* hr, size_t marked_bytes) {
1040       hr->add_to_marked_bytes(marked_bytes);
1041       _cl->do_heap_region(hr);
1042       hr->note_end_of_marking();
1043     }
1044 
1045   public:
1046     G1UpdateRemSetTrackingBeforeRebuild(G1CollectedHeap* g1h, G1ConcurrentMark* cm, G1PrintRegionLivenessInfoClosure* cl) :
1047       _g1h(g1h), _cm(cm), _cl(cl), _num_regions_selected_for_rebuild(0) { }
1048 
1049     virtual bool do_heap_region(HeapRegion* r) {
1050       update_remset_before_rebuild(r);
1051       update_marked_bytes(r);
1052 
1053       return false;
1054     }
1055 
1056     uint num_selected_for_rebuild() const { return _num_regions_selected_for_rebuild; }
1057   };
1058 
1059 public:
1060   G1UpdateRemSetTrackingBeforeRebuildTask(G1CollectedHeap* g1h, G1ConcurrentMark* cm, uint num_workers) :
1061     AbstractGangTask("G1 Update RemSet Tracking Before Rebuild"),
1062     _g1h(g1h), _cm(cm), _hrclaimer(num_workers), _total_selected_for_rebuild(0), _cl("Post-Marking") { }
1063 
1064   virtual void work(uint worker_id) {
1065     G1UpdateRemSetTrackingBeforeRebuild update_cl(_g1h, _cm, &_cl);
1066     _g1h->heap_region_par_iterate_from_worker_offset(&update_cl, &_hrclaimer, worker_id);
1067     Atomic::add(&_total_selected_for_rebuild, update_cl.num_selected_for_rebuild());
1068   }
1069 
1070   uint total_selected_for_rebuild() const { return _total_selected_for_rebuild; }
1071 
1072   // Number of regions for which roughly one thread should be spawned for this work.
1073   static const uint RegionsPerThread = 384;
1074 };
1075 
1076 class G1UpdateRemSetTrackingAfterRebuild : public HeapRegionClosure {
1077   G1CollectedHeap* _g1h;
1078 public:
1079   G1UpdateRemSetTrackingAfterRebuild(G1CollectedHeap* g1h) : _g1h(g1h) { }
1080 
1081   virtual bool do_heap_region(HeapRegion* r) {
1082     _g1h->policy()->remset_tracker()->update_after_rebuild(r);
1083     return false;
1084   }
1085 };
1086 
1087 void G1ConcurrentMark::remark() {
1088   assert_at_safepoint_on_vm_thread();
1089 
1090   // If a full collection has happened, we should not continue. However we might
1091   // have ended up here as the Remark VM operation has been scheduled already.
1092   if (has_aborted()) {
1093     return;
1094   }
1095 
1096   G1Policy* policy = _g1h->policy();
1097   policy->record_concurrent_mark_remark_start();
1098 
1099   double start = os::elapsedTime();
1100 
1101   verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark before");
1102 
1103   {
1104     GCTraceTime(Debug, gc, phases) debug("Finalize Marking", _gc_timer_cm);
1105     finalize_marking();
1106   }
1107 
1108   double mark_work_end = os::elapsedTime();
1109 
1110   bool const mark_finished = !has_overflown();
1111   if (mark_finished) {
1112     weak_refs_work(false /* clear_all_soft_refs */);
1113 
1114     SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1115     // We're done with marking.
1116     // This is the end of the marking cycle, we're expected all
1117     // threads to have SATB queues with active set to true.
1118     satb_mq_set.set_active_all_threads(false, /* new active value */
1119                                        true /* expected_active */);
1120 
1121     {
1122       GCTraceTime(Debug, gc, phases) debug("Flush Task Caches", _gc_timer_cm);
1123       flush_all_task_caches();
1124     }
1125 
1126     // Install newly created mark bitmap as "prev".
1127     swap_mark_bitmaps();
1128     {
1129       GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking Before Rebuild", _gc_timer_cm);
1130 
1131       uint const workers_by_capacity = (_g1h->num_regions() + G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread - 1) /
1132                                        G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread;
1133       uint const num_workers = MIN2(_g1h->workers()->active_workers(), workers_by_capacity);
1134 
1135       G1UpdateRemSetTrackingBeforeRebuildTask cl(_g1h, this, num_workers);
1136       log_debug(gc,ergo)("Running %s using %u workers for %u regions in heap", cl.name(), num_workers, _g1h->num_regions());
1137       _g1h->workers()->run_task(&cl, num_workers);
1138 
1139       log_debug(gc, remset, tracking)("Remembered Set Tracking update regions total %u, selected %u",
1140                                       _g1h->num_regions(), cl.total_selected_for_rebuild());
1141     }
1142     {
1143       GCTraceTime(Debug, gc, phases) debug("Reclaim Empty Regions", _gc_timer_cm);
1144       reclaim_empty_regions();
1145     }
1146 
1147     // Clean out dead classes
1148     if (ClassUnloadingWithConcurrentMark) {
1149       GCTraceTime(Debug, gc, phases) debug("Purge Metaspace", _gc_timer_cm);
1150       ClassLoaderDataGraph::purge();
1151     }
1152 
1153     _g1h->resize_heap_if_necessary();
1154 
1155     compute_new_sizes();
1156 
1157     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark after");
1158 
1159     assert(!restart_for_overflow(), "sanity");
1160     // Completely reset the marking state since marking completed
1161     reset_at_marking_complete();
1162   } else {
1163     // We overflowed.  Restart concurrent marking.
1164     _restart_for_overflow = true;
1165 
1166     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark overflow");
1167 
1168     // Clear the marking state because we will be restarting
1169     // marking due to overflowing the global mark stack.
1170     reset_marking_for_restart();
1171   }
1172 
1173   {
1174     GCTraceTime(Debug, gc, phases) debug("Report Object Count", _gc_timer_cm);
1175     report_object_count(mark_finished);
1176   }
1177 
1178   // Statistics
1179   double now = os::elapsedTime();
1180   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1181   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1182   _remark_times.add((now - start) * 1000.0);
1183 
1184   policy->record_concurrent_mark_remark_end();
1185 }
1186 
1187 class G1ReclaimEmptyRegionsTask : public AbstractGangTask {
1188   // Per-region work during the Cleanup pause.
1189   class G1ReclaimEmptyRegionsClosure : public HeapRegionClosure {
1190     G1CollectedHeap* _g1h;
1191     size_t _freed_bytes;
1192     FreeRegionList* _local_cleanup_list;
1193     uint _old_regions_removed;
1194     uint _humongous_regions_removed;
1195 
1196   public:
1197     G1ReclaimEmptyRegionsClosure(G1CollectedHeap* g1h,
1198                                  FreeRegionList* local_cleanup_list) :
1199       _g1h(g1h),
1200       _freed_bytes(0),
1201       _local_cleanup_list(local_cleanup_list),
1202       _old_regions_removed(0),
1203       _humongous_regions_removed(0) { }
1204 
1205     size_t freed_bytes() { return _freed_bytes; }
1206     const uint old_regions_removed() { return _old_regions_removed; }
1207     const uint humongous_regions_removed() { return _humongous_regions_removed; }
1208 
1209     bool do_heap_region(HeapRegion *hr) {
1210       if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young() && !hr->is_archive()) {
1211         _freed_bytes += hr->used();
1212         hr->set_containing_set(NULL);
1213         if (hr->is_humongous()) {
1214           _humongous_regions_removed++;
1215           _g1h->free_humongous_region(hr, _local_cleanup_list);
1216         } else {
1217           _old_regions_removed++;
1218           _g1h->free_region(hr, _local_cleanup_list);
1219         }
1220         hr->clear_cardtable();
1221         _g1h->concurrent_mark()->clear_statistics_in_region(hr->hrm_index());
1222         log_trace(gc)("Reclaimed empty region %u (%s) bot " PTR_FORMAT, hr->hrm_index(), hr->get_short_type_str(), p2i(hr->bottom()));
1223       }
1224 
1225       return false;
1226     }
1227   };
1228 
1229   G1CollectedHeap* _g1h;
1230   FreeRegionList* _cleanup_list;
1231   HeapRegionClaimer _hrclaimer;
1232 
1233 public:
1234   G1ReclaimEmptyRegionsTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1235     AbstractGangTask("G1 Cleanup"),
1236     _g1h(g1h),
1237     _cleanup_list(cleanup_list),
1238     _hrclaimer(n_workers) {
1239   }
1240 
1241   void work(uint worker_id) {
1242     FreeRegionList local_cleanup_list("Local Cleanup List");
1243     G1ReclaimEmptyRegionsClosure cl(_g1h, &local_cleanup_list);
1244     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hrclaimer, worker_id);
1245     assert(cl.is_complete(), "Shouldn't have aborted!");
1246 
1247     // Now update the old/humongous region sets
1248     _g1h->remove_from_old_sets(cl.old_regions_removed(), cl.humongous_regions_removed());
1249     {
1250       MutexLocker x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1251       _g1h->decrement_summary_bytes(cl.freed_bytes());
1252 
1253       _cleanup_list->add_ordered(&local_cleanup_list);
1254       assert(local_cleanup_list.is_empty(), "post-condition");
1255     }
1256   }
1257 };
1258 
1259 void G1ConcurrentMark::reclaim_empty_regions() {
1260   WorkGang* workers = _g1h->workers();
1261   FreeRegionList empty_regions_list("Empty Regions After Mark List");
1262 
1263   G1ReclaimEmptyRegionsTask cl(_g1h, &empty_regions_list, workers->active_workers());
1264   workers->run_task(&cl);
1265 
1266   if (!empty_regions_list.is_empty()) {
1267     log_debug(gc)("Reclaimed %u empty regions", empty_regions_list.length());
1268     // Now print the empty regions list.
1269     G1HRPrinter* hrp = _g1h->hr_printer();
1270     if (hrp->is_active()) {
1271       FreeRegionListIterator iter(&empty_regions_list);
1272       while (iter.more_available()) {
1273         HeapRegion* hr = iter.get_next();
1274         hrp->cleanup(hr);
1275       }
1276     }
1277     // And actually make them available.
1278     _g1h->prepend_to_freelist(&empty_regions_list);
1279   }
1280 }
1281 
1282 void G1ConcurrentMark::compute_new_sizes() {
1283   MetaspaceGC::compute_new_size();
1284 
1285   // Cleanup will have freed any regions completely full of garbage.
1286   // Update the soft reference policy with the new heap occupancy.
1287   Universe::update_heap_info_at_gc();
1288 
1289   // We reclaimed old regions so we should calculate the sizes to make
1290   // sure we update the old gen/space data.
1291   _g1h->g1mm()->update_sizes();
1292 }
1293 
1294 void G1ConcurrentMark::cleanup() {
1295   assert_at_safepoint_on_vm_thread();
1296 
1297   // If a full collection has happened, we shouldn't do this.
1298   if (has_aborted()) {
1299     return;
1300   }
1301 
1302   G1Policy* policy = _g1h->policy();
1303   policy->record_concurrent_mark_cleanup_start();
1304 
1305   double start = os::elapsedTime();
1306 
1307   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup before");
1308 
1309   {
1310     GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking After Rebuild", _gc_timer_cm);
1311     G1UpdateRemSetTrackingAfterRebuild cl(_g1h);
1312     _g1h->heap_region_iterate(&cl);
1313   }
1314 
1315   if (log_is_enabled(Trace, gc, liveness)) {
1316     G1PrintRegionLivenessInfoClosure cl("Post-Cleanup");
1317     _g1h->heap_region_iterate(&cl);
1318   }
1319 
1320   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup after");
1321 
1322   // We need to make this be a "collection" so any collection pause that
1323   // races with it goes around and waits for Cleanup to finish.
1324   _g1h->increment_total_collections();
1325 
1326   // Local statistics
1327   double recent_cleanup_time = (os::elapsedTime() - start);
1328   _total_cleanup_time += recent_cleanup_time;
1329   _cleanup_times.add(recent_cleanup_time);
1330 
1331   {
1332     GCTraceTime(Debug, gc, phases) debug("Finalize Concurrent Mark Cleanup", _gc_timer_cm);
1333     policy->record_concurrent_mark_cleanup_end();
1334   }
1335 }
1336 
1337 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1338 // Uses the G1CMTask associated with a worker thread (for serial reference
1339 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1340 // trace referent objects.
1341 //
1342 // Using the G1CMTask and embedded local queues avoids having the worker
1343 // threads operating on the global mark stack. This reduces the risk
1344 // of overflowing the stack - which we would rather avoid at this late
1345 // state. Also using the tasks' local queues removes the potential
1346 // of the workers interfering with each other that could occur if
1347 // operating on the global stack.
1348 
1349 class G1CMKeepAliveAndDrainClosure : public OopClosure {
1350   G1ConcurrentMark* _cm;
1351   G1CMTask*         _task;
1352   uint              _ref_counter_limit;
1353   uint              _ref_counter;
1354   bool              _is_serial;
1355 public:
1356   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1357     _cm(cm), _task(task), _ref_counter_limit(G1RefProcDrainInterval),
1358     _ref_counter(_ref_counter_limit), _is_serial(is_serial) {
1359     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1360   }
1361 
1362   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1363   virtual void do_oop(      oop* p) { do_oop_work(p); }
1364 
1365   template <class T> void do_oop_work(T* p) {
1366     if (_cm->has_overflown()) {
1367       return;
1368     }
1369     if (!_task->deal_with_reference(p)) {
1370       // We did not add anything to the mark bitmap (or mark stack), so there is
1371       // no point trying to drain it.
1372       return;
1373     }
1374     _ref_counter--;
1375 
1376     if (_ref_counter == 0) {
1377       // We have dealt with _ref_counter_limit references, pushing them
1378       // and objects reachable from them on to the local stack (and
1379       // possibly the global stack). Call G1CMTask::do_marking_step() to
1380       // process these entries.
1381       //
1382       // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1383       // there's nothing more to do (i.e. we're done with the entries that
1384       // were pushed as a result of the G1CMTask::deal_with_reference() calls
1385       // above) or we overflow.
1386       //
1387       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1388       // flag while there may still be some work to do. (See the comment at
1389       // the beginning of G1CMTask::do_marking_step() for those conditions -
1390       // one of which is reaching the specified time target.) It is only
1391       // when G1CMTask::do_marking_step() returns without setting the
1392       // has_aborted() flag that the marking step has completed.
1393       do {
1394         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1395         _task->do_marking_step(mark_step_duration_ms,
1396                                false      /* do_termination */,
1397                                _is_serial);
1398       } while (_task->has_aborted() && !_cm->has_overflown());
1399       _ref_counter = _ref_counter_limit;
1400     }
1401   }
1402 };
1403 
1404 // 'Drain' oop closure used by both serial and parallel reference processing.
1405 // Uses the G1CMTask associated with a given worker thread (for serial
1406 // reference processing the G1CMtask for worker 0 is used). Calls the
1407 // do_marking_step routine, with an unbelievably large timeout value,
1408 // to drain the marking data structures of the remaining entries
1409 // added by the 'keep alive' oop closure above.
1410 
1411 class G1CMDrainMarkingStackClosure : public VoidClosure {
1412   G1ConcurrentMark* _cm;
1413   G1CMTask*         _task;
1414   bool              _is_serial;
1415  public:
1416   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1417     _cm(cm), _task(task), _is_serial(is_serial) {
1418     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1419   }
1420 
1421   void do_void() {
1422     do {
1423       // We call G1CMTask::do_marking_step() to completely drain the local
1424       // and global marking stacks of entries pushed by the 'keep alive'
1425       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1426       //
1427       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1428       // if there's nothing more to do (i.e. we've completely drained the
1429       // entries that were pushed as a a result of applying the 'keep alive'
1430       // closure to the entries on the discovered ref lists) or we overflow
1431       // the global marking stack.
1432       //
1433       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1434       // flag while there may still be some work to do. (See the comment at
1435       // the beginning of G1CMTask::do_marking_step() for those conditions -
1436       // one of which is reaching the specified time target.) It is only
1437       // when G1CMTask::do_marking_step() returns without setting the
1438       // has_aborted() flag that the marking step has completed.
1439 
1440       _task->do_marking_step(1000000000.0 /* something very large */,
1441                              true         /* do_termination */,
1442                              _is_serial);
1443     } while (_task->has_aborted() && !_cm->has_overflown());
1444   }
1445 };
1446 
1447 // Implementation of AbstractRefProcTaskExecutor for parallel
1448 // reference processing at the end of G1 concurrent marking
1449 
1450 class G1CMRefProcTaskExecutor : public AbstractRefProcTaskExecutor {
1451 private:
1452   G1CollectedHeap*  _g1h;
1453   G1ConcurrentMark* _cm;
1454   WorkGang*         _workers;
1455   uint              _active_workers;
1456 
1457 public:
1458   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1459                           G1ConcurrentMark* cm,
1460                           WorkGang* workers,
1461                           uint n_workers) :
1462     _g1h(g1h), _cm(cm),
1463     _workers(workers), _active_workers(n_workers) { }
1464 
1465   virtual void execute(ProcessTask& task, uint ergo_workers);
1466 };
1467 
1468 class G1CMRefProcTaskProxy : public AbstractGangTask {
1469   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1470   ProcessTask&      _proc_task;
1471   G1CollectedHeap*  _g1h;
1472   G1ConcurrentMark* _cm;
1473 
1474 public:
1475   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1476                        G1CollectedHeap* g1h,
1477                        G1ConcurrentMark* cm) :
1478     AbstractGangTask("Process reference objects in parallel"),
1479     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1480     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1481     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1482   }
1483 
1484   virtual void work(uint worker_id) {
1485     ResourceMark rm;
1486     HandleMark hm;
1487     G1CMTask* task = _cm->task(worker_id);
1488     G1CMIsAliveClosure g1_is_alive(_g1h);
1489     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1490     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1491 
1492     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1493   }
1494 };
1495 
1496 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
1497   assert(_workers != NULL, "Need parallel worker threads.");
1498   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1499   assert(_workers->active_workers() >= ergo_workers,
1500          "Ergonomically chosen workers(%u) should be less than or equal to active workers(%u)",
1501          ergo_workers, _workers->active_workers());
1502 
1503   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1504 
1505   // We need to reset the concurrency level before each
1506   // proxy task execution, so that the termination protocol
1507   // and overflow handling in G1CMTask::do_marking_step() knows
1508   // how many workers to wait for.
1509   _cm->set_concurrency(ergo_workers);
1510   _workers->run_task(&proc_task_proxy, ergo_workers);
1511 }
1512 
1513 void G1ConcurrentMark::weak_refs_work(bool clear_all_soft_refs) {
1514   ResourceMark rm;
1515   HandleMark   hm;
1516 
1517   // Is alive closure.
1518   G1CMIsAliveClosure g1_is_alive(_g1h);
1519 
1520   // Inner scope to exclude the cleaning of the string table
1521   // from the displayed time.
1522   {
1523     GCTraceTime(Debug, gc, phases) debug("Reference Processing", _gc_timer_cm);
1524 
1525     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1526 
1527     // See the comment in G1CollectedHeap::ref_processing_init()
1528     // about how reference processing currently works in G1.
1529 
1530     // Set the soft reference policy
1531     rp->setup_policy(clear_all_soft_refs);
1532     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1533 
1534     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1535     // in serial reference processing. Note these closures are also
1536     // used for serially processing (by the the current thread) the
1537     // JNI references during parallel reference processing.
1538     //
1539     // These closures do not need to synchronize with the worker
1540     // threads involved in parallel reference processing as these
1541     // instances are executed serially by the current thread (e.g.
1542     // reference processing is not multi-threaded and is thus
1543     // performed by the current thread instead of a gang worker).
1544     //
1545     // The gang tasks involved in parallel reference processing create
1546     // their own instances of these closures, which do their own
1547     // synchronization among themselves.
1548     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1549     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1550 
1551     // We need at least one active thread. If reference processing
1552     // is not multi-threaded we use the current (VMThread) thread,
1553     // otherwise we use the work gang from the G1CollectedHeap and
1554     // we utilize all the worker threads we can.
1555     bool processing_is_mt = rp->processing_is_mt();
1556     uint active_workers = (processing_is_mt ? _g1h->workers()->active_workers() : 1U);
1557     active_workers = clamp(active_workers, 1u, _max_num_tasks);
1558 
1559     // Parallel processing task executor.
1560     G1CMRefProcTaskExecutor par_task_executor(_g1h, this,
1561                                               _g1h->workers(), active_workers);
1562     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1563 
1564     // Set the concurrency level. The phase was already set prior to
1565     // executing the remark task.
1566     set_concurrency(active_workers);
1567 
1568     // Set the degree of MT processing here.  If the discovery was done MT,
1569     // the number of threads involved during discovery could differ from
1570     // the number of active workers.  This is OK as long as the discovered
1571     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1572     rp->set_active_mt_degree(active_workers);
1573 
1574     ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->max_num_queues());
1575 
1576     // Process the weak references.
1577     const ReferenceProcessorStats& stats =
1578         rp->process_discovered_references(&g1_is_alive,
1579                                           &g1_keep_alive,
1580                                           &g1_drain_mark_stack,
1581                                           executor,
1582                                           &pt);
1583     _gc_tracer_cm->report_gc_reference_stats(stats);
1584     pt.print_all_references();
1585 
1586     // The do_oop work routines of the keep_alive and drain_marking_stack
1587     // oop closures will set the has_overflown flag if we overflow the
1588     // global marking stack.
1589 
1590     assert(has_overflown() || _global_mark_stack.is_empty(),
1591            "Mark stack should be empty (unless it has overflown)");
1592 
1593     assert(rp->num_queues() == active_workers, "why not");
1594 
1595     rp->verify_no_references_recorded();
1596     assert(!rp->discovery_enabled(), "Post condition");
1597   }
1598 
1599   if (has_overflown()) {
1600     // We can not trust g1_is_alive and the contents of the heap if the marking stack
1601     // overflowed while processing references. Exit the VM.
1602     fatal("Overflow during reference processing, can not continue. Please "
1603           "increase MarkStackSizeMax (current value: " SIZE_FORMAT ") and "
1604           "restart.", MarkStackSizeMax);
1605     return;
1606   }
1607 
1608   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1609 
1610   {
1611     GCTraceTime(Debug, gc, phases) debug("Weak Processing", _gc_timer_cm);
1612     WeakProcessor::weak_oops_do(_g1h->workers(), &g1_is_alive, &do_nothing_cl, 1);
1613   }
1614 
1615   // Unload Klasses, String, Code Cache, etc.
1616   if (ClassUnloadingWithConcurrentMark) {
1617     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1618     bool purged_classes = SystemDictionary::do_unloading(_gc_timer_cm);
1619     _g1h->complete_cleaning(&g1_is_alive, purged_classes);
1620   } else if (StringDedup::is_enabled()) {
1621     GCTraceTime(Debug, gc, phases) debug("String Deduplication", _gc_timer_cm);
1622     _g1h->string_dedup_cleaning(&g1_is_alive, NULL);
1623   }
1624 }
1625 
1626 class G1PrecleanYieldClosure : public YieldClosure {
1627   G1ConcurrentMark* _cm;
1628 
1629 public:
1630   G1PrecleanYieldClosure(G1ConcurrentMark* cm) : _cm(cm) { }
1631 
1632   virtual bool should_return() {
1633     return _cm->has_aborted();
1634   }
1635 
1636   virtual bool should_return_fine_grain() {
1637     _cm->do_yield_check();
1638     return _cm->has_aborted();
1639   }
1640 };
1641 
1642 void G1ConcurrentMark::preclean() {
1643   assert(G1UseReferencePrecleaning, "Precleaning must be enabled.");
1644 
1645   SuspendibleThreadSetJoiner joiner;
1646 
1647   G1CMKeepAliveAndDrainClosure keep_alive(this, task(0), true /* is_serial */);
1648   G1CMDrainMarkingStackClosure drain_mark_stack(this, task(0), true /* is_serial */);
1649 
1650   set_concurrency_and_phase(1, true);
1651 
1652   G1PrecleanYieldClosure yield_cl(this);
1653 
1654   ReferenceProcessor* rp = _g1h->ref_processor_cm();
1655   // Precleaning is single threaded. Temporarily disable MT discovery.
1656   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
1657   rp->preclean_discovered_references(rp->is_alive_non_header(),
1658                                      &keep_alive,
1659                                      &drain_mark_stack,
1660                                      &yield_cl,
1661                                      _gc_timer_cm);
1662 }
1663 
1664 // When sampling object counts, we already swapped the mark bitmaps, so we need to use
1665 // the prev bitmap determining liveness.
1666 class G1ObjectCountIsAliveClosure: public BoolObjectClosure {
1667   G1CollectedHeap* _g1h;
1668 public:
1669   G1ObjectCountIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) { }
1670 
1671   bool do_object_b(oop obj) {
1672     return obj != NULL &&
1673            (!_g1h->is_in_g1_reserved(obj) || !_g1h->is_obj_dead(obj));
1674   }
1675 };
1676 
1677 void G1ConcurrentMark::report_object_count(bool mark_completed) {
1678   // Depending on the completion of the marking liveness needs to be determined
1679   // using either the next or prev bitmap.
1680   if (mark_completed) {
1681     G1ObjectCountIsAliveClosure is_alive(_g1h);
1682     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1683   } else {
1684     G1CMIsAliveClosure is_alive(_g1h);
1685     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1686   }
1687 }
1688 
1689 
1690 void G1ConcurrentMark::swap_mark_bitmaps() {
1691   G1CMBitMap* temp = _prev_mark_bitmap;
1692   _prev_mark_bitmap = _next_mark_bitmap;
1693   _next_mark_bitmap = temp;
1694   _g1h->collector_state()->set_clearing_next_bitmap(true);
1695 }
1696 
1697 // Closure for marking entries in SATB buffers.
1698 class G1CMSATBBufferClosure : public SATBBufferClosure {
1699 private:
1700   G1CMTask* _task;
1701   G1CollectedHeap* _g1h;
1702 
1703   // This is very similar to G1CMTask::deal_with_reference, but with
1704   // more relaxed requirements for the argument, so this must be more
1705   // circumspect about treating the argument as an object.
1706   void do_entry(void* entry) const {
1707     _task->increment_refs_reached();
1708     oop const obj = static_cast<oop>(entry);
1709     _task->make_reference_grey(obj);
1710   }
1711 
1712 public:
1713   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1714     : _task(task), _g1h(g1h) { }
1715 
1716   virtual void do_buffer(void** buffer, size_t size) {
1717     for (size_t i = 0; i < size; ++i) {
1718       do_entry(buffer[i]);
1719     }
1720   }
1721 };
1722 
1723 class G1RemarkThreadsClosure : public ThreadClosure {
1724   G1CMSATBBufferClosure _cm_satb_cl;
1725   G1CMOopClosure _cm_cl;
1726   MarkingCodeBlobClosure _code_cl;
1727   uintx _claim_token;
1728 
1729  public:
1730   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1731     _cm_satb_cl(task, g1h),
1732     _cm_cl(g1h, task),
1733     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1734     _claim_token(Threads::thread_claim_token()) {}
1735 
1736   void do_thread(Thread* thread) {
1737     if (thread->claim_threads_do(true, _claim_token)) {
1738       SATBMarkQueue& queue = G1ThreadLocalData::satb_mark_queue(thread);
1739       queue.apply_closure_and_empty(&_cm_satb_cl);
1740       if (thread->is_Java_thread()) {
1741         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1742         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1743         // * Alive if on the stack of an executing method
1744         // * Weakly reachable otherwise
1745         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1746         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1747         JavaThread* jt = (JavaThread*)thread;
1748         jt->nmethods_do(&_code_cl);
1749       }
1750     }
1751   }
1752 };
1753 
1754 class G1CMRemarkTask : public AbstractGangTask {
1755   G1ConcurrentMark* _cm;
1756 public:
1757   void work(uint worker_id) {
1758     G1CMTask* task = _cm->task(worker_id);
1759     task->record_start_time();
1760     {
1761       ResourceMark rm;
1762       HandleMark hm;
1763 
1764       G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1765       Threads::threads_do(&threads_f);
1766     }
1767 
1768     do {
1769       task->do_marking_step(1000000000.0 /* something very large */,
1770                             true         /* do_termination       */,
1771                             false        /* is_serial            */);
1772     } while (task->has_aborted() && !_cm->has_overflown());
1773     // If we overflow, then we do not want to restart. We instead
1774     // want to abort remark and do concurrent marking again.
1775     task->record_end_time();
1776   }
1777 
1778   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1779     AbstractGangTask("Par Remark"), _cm(cm) {
1780     _cm->terminator()->reset_for_reuse(active_workers);
1781   }
1782 };
1783 
1784 void G1ConcurrentMark::finalize_marking() {
1785   ResourceMark rm;
1786   HandleMark   hm;
1787 
1788   _g1h->ensure_parsability(false);
1789 
1790   // this is remark, so we'll use up all active threads
1791   uint active_workers = _g1h->workers()->active_workers();
1792   set_concurrency_and_phase(active_workers, false /* concurrent */);
1793   // Leave _parallel_marking_threads at it's
1794   // value originally calculated in the G1ConcurrentMark
1795   // constructor and pass values of the active workers
1796   // through the gang in the task.
1797 
1798   {
1799     StrongRootsScope srs(active_workers);
1800 
1801     G1CMRemarkTask remarkTask(this, active_workers);
1802     // We will start all available threads, even if we decide that the
1803     // active_workers will be fewer. The extra ones will just bail out
1804     // immediately.
1805     _g1h->workers()->run_task(&remarkTask);
1806   }
1807 
1808   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1809   guarantee(has_overflown() ||
1810             satb_mq_set.completed_buffers_num() == 0,
1811             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1812             BOOL_TO_STR(has_overflown()),
1813             satb_mq_set.completed_buffers_num());
1814 
1815   print_stats();
1816 }
1817 
1818 void G1ConcurrentMark::flush_all_task_caches() {
1819   size_t hits = 0;
1820   size_t misses = 0;
1821   for (uint i = 0; i < _max_num_tasks; i++) {
1822     Pair<size_t, size_t> stats = _tasks[i]->flush_mark_stats_cache();
1823     hits += stats.first;
1824     misses += stats.second;
1825   }
1826   size_t sum = hits + misses;
1827   log_debug(gc, stats)("Mark stats cache hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %1.3lf",
1828                        hits, misses, percent_of(hits, sum));
1829 }
1830 
1831 void G1ConcurrentMark::clear_range_in_prev_bitmap(MemRegion mr) {
1832   _prev_mark_bitmap->clear_range(mr);
1833 }
1834 
1835 HeapRegion*
1836 G1ConcurrentMark::claim_region(uint worker_id) {
1837   // "checkpoint" the finger
1838   HeapWord* finger = _finger;
1839 
1840   while (finger < _heap.end()) {
1841     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1842 
1843     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1844     // Make sure that the reads below do not float before loading curr_region.
1845     OrderAccess::loadload();
1846     // Above heap_region_containing may return NULL as we always scan claim
1847     // until the end of the heap. In this case, just jump to the next region.
1848     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1849 
1850     // Is the gap between reading the finger and doing the CAS too long?
1851     HeapWord* res = Atomic::cmpxchg(&_finger, finger, end);
1852     if (res == finger && curr_region != NULL) {
1853       // we succeeded
1854       HeapWord*   bottom        = curr_region->bottom();
1855       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1856 
1857       // notice that _finger == end cannot be guaranteed here since,
1858       // someone else might have moved the finger even further
1859       assert(_finger >= end, "the finger should have moved forward");
1860 
1861       if (limit > bottom) {
1862         return curr_region;
1863       } else {
1864         assert(limit == bottom,
1865                "the region limit should be at bottom");
1866         // we return NULL and the caller should try calling
1867         // claim_region() again.
1868         return NULL;
1869       }
1870     } else {
1871       assert(_finger > finger, "the finger should have moved forward");
1872       // read it again
1873       finger = _finger;
1874     }
1875   }
1876 
1877   return NULL;
1878 }
1879 
1880 #ifndef PRODUCT
1881 class VerifyNoCSetOops {
1882   G1CollectedHeap* _g1h;
1883   const char* _phase;
1884   int _info;
1885 
1886 public:
1887   VerifyNoCSetOops(const char* phase, int info = -1) :
1888     _g1h(G1CollectedHeap::heap()),
1889     _phase(phase),
1890     _info(info)
1891   { }
1892 
1893   void operator()(G1TaskQueueEntry task_entry) const {
1894     if (task_entry.is_array_slice()) {
1895       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1896       return;
1897     }
1898     guarantee(oopDesc::is_oop(task_entry.obj()),
1899               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1900               p2i(task_entry.obj()), _phase, _info);
1901     HeapRegion* r = _g1h->heap_region_containing(task_entry.obj());
1902     guarantee(!(r->in_collection_set() || r->has_index_in_opt_cset()),
1903               "obj " PTR_FORMAT " from %s (%d) in region %u in (optional) collection set",
1904               p2i(task_entry.obj()), _phase, _info, r->hrm_index());
1905   }
1906 };
1907 
1908 void G1ConcurrentMark::verify_no_collection_set_oops() {
1909   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1910   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
1911     return;
1912   }
1913 
1914   // Verify entries on the global mark stack
1915   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
1916 
1917   // Verify entries on the task queues
1918   for (uint i = 0; i < _max_num_tasks; ++i) {
1919     G1CMTaskQueue* queue = _task_queues->queue(i);
1920     queue->iterate(VerifyNoCSetOops("Queue", i));
1921   }
1922 
1923   // Verify the global finger
1924   HeapWord* global_finger = finger();
1925   if (global_finger != NULL && global_finger < _heap.end()) {
1926     // Since we always iterate over all regions, we might get a NULL HeapRegion
1927     // here.
1928     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1929     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1930               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1931               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1932   }
1933 
1934   // Verify the task fingers
1935   assert(_num_concurrent_workers <= _max_num_tasks, "sanity");
1936   for (uint i = 0; i < _num_concurrent_workers; ++i) {
1937     G1CMTask* task = _tasks[i];
1938     HeapWord* task_finger = task->finger();
1939     if (task_finger != NULL && task_finger < _heap.end()) {
1940       // See above note on the global finger verification.
1941       HeapRegion* r = _g1h->heap_region_containing(task_finger);
1942       guarantee(r == NULL || task_finger == r->bottom() ||
1943                 !r->in_collection_set() || !r->has_index_in_opt_cset(),
1944                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
1945                 p2i(task_finger), HR_FORMAT_PARAMS(r));
1946     }
1947   }
1948 }
1949 #endif // PRODUCT
1950 
1951 void G1ConcurrentMark::rebuild_rem_set_concurrently() {
1952   _g1h->rem_set()->rebuild_rem_set(this, _concurrent_workers, _worker_id_offset);
1953 }
1954 
1955 void G1ConcurrentMark::print_stats() {
1956   if (!log_is_enabled(Debug, gc, stats)) {
1957     return;
1958   }
1959   log_debug(gc, stats)("---------------------------------------------------------------------");
1960   for (size_t i = 0; i < _num_active_tasks; ++i) {
1961     _tasks[i]->print_stats();
1962     log_debug(gc, stats)("---------------------------------------------------------------------");
1963   }
1964 }
1965 
1966 void G1ConcurrentMark::concurrent_cycle_abort_by_initial_mark() {
1967   _aborted_by_initial_mark = true;
1968   _g1h->collector_state()->set_in_initial_mark_gc(false);
1969 }
1970 
1971 void G1ConcurrentMark::concurrent_cycle_abort_by_fullgc() {
1972   if (!cm_thread()->during_cycle() || _aborted_by_fullgc) {
1973     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
1974     return;
1975   }
1976 
1977   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
1978   // concurrent bitmap clearing.
1979   {
1980     GCTraceTime(Debug, gc) debug("Clear Next Bitmap");
1981     clear_bitmap(_next_mark_bitmap, _g1h->workers(), false);
1982   }
1983   // Note we cannot clear the previous marking bitmap here
1984   // since VerifyDuringGC verifies the objects marked during
1985   // a full GC against the previous bitmap.
1986 
1987   // Empty mark stack
1988   reset_marking_for_restart();
1989   for (uint i = 0; i < _max_num_tasks; ++i) {
1990     _tasks[i]->clear_region_fields();
1991   }
1992   _first_overflow_barrier_sync.abort();
1993   _second_overflow_barrier_sync.abort();
1994   _aborted_by_fullgc = true;
1995 
1996   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1997   satb_mq_set.abandon_partial_marking();
1998   // This can be called either during or outside marking, we'll read
1999   // the expected_active value from the SATB queue set.
2000   satb_mq_set.set_active_all_threads(
2001                                  false, /* new active value */
2002                                  satb_mq_set.is_active() /* expected_active */);
2003 }
2004 
2005 static void print_ms_time_info(const char* prefix, const char* name,
2006                                NumberSeq& ns) {
2007   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2008                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2009   if (ns.num() > 0) {
2010     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2011                            prefix, ns.sd(), ns.maximum());
2012   }
2013 }
2014 
2015 void G1ConcurrentMark::print_summary_info() {
2016   Log(gc, marking) log;
2017   if (!log.is_trace()) {
2018     return;
2019   }
2020 
2021   log.trace(" Concurrent marking:");
2022   print_ms_time_info("  ", "init marks", _init_times);
2023   print_ms_time_info("  ", "remarks", _remark_times);
2024   {
2025     print_ms_time_info("     ", "final marks", _remark_mark_times);
2026     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2027 
2028   }
2029   print_ms_time_info("  ", "cleanups", _cleanup_times);
2030   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2031             _total_cleanup_time, (_cleanup_times.num() > 0 ? _total_cleanup_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2032   log.trace("  Total stop_world time = %8.2f s.",
2033             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2034   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2035             cm_thread()->vtime_accum(), cm_thread()->vtime_mark_accum());
2036 }
2037 
2038 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2039   _concurrent_workers->print_worker_threads_on(st);
2040 }
2041 
2042 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2043   _concurrent_workers->threads_do(tc);
2044 }
2045 
2046 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2047   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2048                p2i(_prev_mark_bitmap), p2i(_next_mark_bitmap));
2049   _prev_mark_bitmap->print_on_error(st, " Prev Bits: ");
2050   _next_mark_bitmap->print_on_error(st, " Next Bits: ");
2051 }
2052 
2053 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2054   ReferenceProcessor* result = g1h->ref_processor_cm();
2055   assert(result != NULL, "CM reference processor should not be NULL");
2056   return result;
2057 }
2058 
2059 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2060                                G1CMTask* task)
2061   : MetadataVisitingOopIterateClosure(get_cm_oop_closure_ref_processor(g1h)),
2062     _g1h(g1h), _task(task)
2063 { }
2064 
2065 void G1CMTask::setup_for_region(HeapRegion* hr) {
2066   assert(hr != NULL,
2067         "claim_region() should have filtered out NULL regions");
2068   _curr_region  = hr;
2069   _finger       = hr->bottom();
2070   update_region_limit();
2071 }
2072 
2073 void G1CMTask::update_region_limit() {
2074   HeapRegion* hr            = _curr_region;
2075   HeapWord* bottom          = hr->bottom();
2076   HeapWord* limit           = hr->next_top_at_mark_start();
2077 
2078   if (limit == bottom) {
2079     // The region was collected underneath our feet.
2080     // We set the finger to bottom to ensure that the bitmap
2081     // iteration that will follow this will not do anything.
2082     // (this is not a condition that holds when we set the region up,
2083     // as the region is not supposed to be empty in the first place)
2084     _finger = bottom;
2085   } else if (limit >= _region_limit) {
2086     assert(limit >= _finger, "peace of mind");
2087   } else {
2088     assert(limit < _region_limit, "only way to get here");
2089     // This can happen under some pretty unusual circumstances.  An
2090     // evacuation pause empties the region underneath our feet (NTAMS
2091     // at bottom). We then do some allocation in the region (NTAMS
2092     // stays at bottom), followed by the region being used as a GC
2093     // alloc region (NTAMS will move to top() and the objects
2094     // originally below it will be grayed). All objects now marked in
2095     // the region are explicitly grayed, if below the global finger,
2096     // and we do not need in fact to scan anything else. So, we simply
2097     // set _finger to be limit to ensure that the bitmap iteration
2098     // doesn't do anything.
2099     _finger = limit;
2100   }
2101 
2102   _region_limit = limit;
2103 }
2104 
2105 void G1CMTask::giveup_current_region() {
2106   assert(_curr_region != NULL, "invariant");
2107   clear_region_fields();
2108 }
2109 
2110 void G1CMTask::clear_region_fields() {
2111   // Values for these three fields that indicate that we're not
2112   // holding on to a region.
2113   _curr_region   = NULL;
2114   _finger        = NULL;
2115   _region_limit  = NULL;
2116 }
2117 
2118 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2119   if (cm_oop_closure == NULL) {
2120     assert(_cm_oop_closure != NULL, "invariant");
2121   } else {
2122     assert(_cm_oop_closure == NULL, "invariant");
2123   }
2124   _cm_oop_closure = cm_oop_closure;
2125 }
2126 
2127 void G1CMTask::reset(G1CMBitMap* next_mark_bitmap) {
2128   guarantee(next_mark_bitmap != NULL, "invariant");
2129   _next_mark_bitmap              = next_mark_bitmap;
2130   clear_region_fields();
2131 
2132   _calls                         = 0;
2133   _elapsed_time_ms               = 0.0;
2134   _termination_time_ms           = 0.0;
2135   _termination_start_time_ms     = 0.0;
2136 
2137   _mark_stats_cache.reset();
2138 }
2139 
2140 bool G1CMTask::should_exit_termination() {
2141   if (!regular_clock_call()) {
2142     return true;
2143   }
2144 
2145   // This is called when we are in the termination protocol. We should
2146   // quit if, for some reason, this task wants to abort or the global
2147   // stack is not empty (this means that we can get work from it).
2148   return !_cm->mark_stack_empty() || has_aborted();
2149 }
2150 
2151 void G1CMTask::reached_limit() {
2152   assert(_words_scanned >= _words_scanned_limit ||
2153          _refs_reached >= _refs_reached_limit ,
2154          "shouldn't have been called otherwise");
2155   abort_marking_if_regular_check_fail();
2156 }
2157 
2158 bool G1CMTask::regular_clock_call() {
2159   if (has_aborted()) {
2160     return false;
2161   }
2162 
2163   // First, we need to recalculate the words scanned and refs reached
2164   // limits for the next clock call.
2165   recalculate_limits();
2166 
2167   // During the regular clock call we do the following
2168 
2169   // (1) If an overflow has been flagged, then we abort.
2170   if (_cm->has_overflown()) {
2171     return false;
2172   }
2173 
2174   // If we are not concurrent (i.e. we're doing remark) we don't need
2175   // to check anything else. The other steps are only needed during
2176   // the concurrent marking phase.
2177   if (!_cm->concurrent()) {
2178     return true;
2179   }
2180 
2181   // (2) If marking has been aborted for Full GC, then we also abort.
2182   if (_cm->has_aborted()) {
2183     return false;
2184   }
2185 
2186   double curr_time_ms = os::elapsedVTime() * 1000.0;
2187 
2188   // (4) We check whether we should yield. If we have to, then we abort.
2189   if (SuspendibleThreadSet::should_yield()) {
2190     // We should yield. To do this we abort the task. The caller is
2191     // responsible for yielding.
2192     return false;
2193   }
2194 
2195   // (5) We check whether we've reached our time quota. If we have,
2196   // then we abort.
2197   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2198   if (elapsed_time_ms > _time_target_ms) {
2199     _has_timed_out = true;
2200     return false;
2201   }
2202 
2203   // (6) Finally, we check whether there are enough completed STAB
2204   // buffers available for processing. If there are, we abort.
2205   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2206   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2207     // we do need to process SATB buffers, we'll abort and restart
2208     // the marking task to do so
2209     return false;
2210   }
2211   return true;
2212 }
2213 
2214 void G1CMTask::recalculate_limits() {
2215   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2216   _words_scanned_limit      = _real_words_scanned_limit;
2217 
2218   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2219   _refs_reached_limit       = _real_refs_reached_limit;
2220 }
2221 
2222 void G1CMTask::decrease_limits() {
2223   // This is called when we believe that we're going to do an infrequent
2224   // operation which will increase the per byte scanned cost (i.e. move
2225   // entries to/from the global stack). It basically tries to decrease the
2226   // scanning limit so that the clock is called earlier.
2227 
2228   _words_scanned_limit = _real_words_scanned_limit - 3 * words_scanned_period / 4;
2229   _refs_reached_limit  = _real_refs_reached_limit - 3 * refs_reached_period / 4;
2230 }
2231 
2232 void G1CMTask::move_entries_to_global_stack() {
2233   // Local array where we'll store the entries that will be popped
2234   // from the local queue.
2235   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2236 
2237   size_t n = 0;
2238   G1TaskQueueEntry task_entry;
2239   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2240     buffer[n] = task_entry;
2241     ++n;
2242   }
2243   if (n < G1CMMarkStack::EntriesPerChunk) {
2244     buffer[n] = G1TaskQueueEntry();
2245   }
2246 
2247   if (n > 0) {
2248     if (!_cm->mark_stack_push(buffer)) {
2249       set_has_aborted();
2250     }
2251   }
2252 
2253   // This operation was quite expensive, so decrease the limits.
2254   decrease_limits();
2255 }
2256 
2257 bool G1CMTask::get_entries_from_global_stack() {
2258   // Local array where we'll store the entries that will be popped
2259   // from the global stack.
2260   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2261 
2262   if (!_cm->mark_stack_pop(buffer)) {
2263     return false;
2264   }
2265 
2266   // We did actually pop at least one entry.
2267   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2268     G1TaskQueueEntry task_entry = buffer[i];
2269     if (task_entry.is_null()) {
2270       break;
2271     }
2272     assert(task_entry.is_array_slice() || oopDesc::is_oop(task_entry.obj()), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2273     bool success = _task_queue->push(task_entry);
2274     // We only call this when the local queue is empty or under a
2275     // given target limit. So, we do not expect this push to fail.
2276     assert(success, "invariant");
2277   }
2278 
2279   // This operation was quite expensive, so decrease the limits
2280   decrease_limits();
2281   return true;
2282 }
2283 
2284 void G1CMTask::drain_local_queue(bool partially) {
2285   if (has_aborted()) {
2286     return;
2287   }
2288 
2289   // Decide what the target size is, depending whether we're going to
2290   // drain it partially (so that other tasks can steal if they run out
2291   // of things to do) or totally (at the very end).
2292   size_t target_size;
2293   if (partially) {
2294     target_size = MIN2((size_t)_task_queue->max_elems()/3, (size_t)GCDrainStackTargetSize);
2295   } else {
2296     target_size = 0;
2297   }
2298 
2299   if (_task_queue->size() > target_size) {
2300     G1TaskQueueEntry entry;
2301     bool ret = _task_queue->pop_local(entry);
2302     while (ret) {
2303       scan_task_entry(entry);
2304       if (_task_queue->size() <= target_size || has_aborted()) {
2305         ret = false;
2306       } else {
2307         ret = _task_queue->pop_local(entry);
2308       }
2309     }
2310   }
2311 }
2312 
2313 void G1CMTask::drain_global_stack(bool partially) {
2314   if (has_aborted()) {
2315     return;
2316   }
2317 
2318   // We have a policy to drain the local queue before we attempt to
2319   // drain the global stack.
2320   assert(partially || _task_queue->size() == 0, "invariant");
2321 
2322   // Decide what the target size is, depending whether we're going to
2323   // drain it partially (so that other tasks can steal if they run out
2324   // of things to do) or totally (at the very end).
2325   // Notice that when draining the global mark stack partially, due to the racyness
2326   // of the mark stack size update we might in fact drop below the target. But,
2327   // this is not a problem.
2328   // In case of total draining, we simply process until the global mark stack is
2329   // totally empty, disregarding the size counter.
2330   if (partially) {
2331     size_t const target_size = _cm->partial_mark_stack_size_target();
2332     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2333       if (get_entries_from_global_stack()) {
2334         drain_local_queue(partially);
2335       }
2336     }
2337   } else {
2338     while (!has_aborted() && get_entries_from_global_stack()) {
2339       drain_local_queue(partially);
2340     }
2341   }
2342 }
2343 
2344 // SATB Queue has several assumptions on whether to call the par or
2345 // non-par versions of the methods. this is why some of the code is
2346 // replicated. We should really get rid of the single-threaded version
2347 // of the code to simplify things.
2348 void G1CMTask::drain_satb_buffers() {
2349   if (has_aborted()) {
2350     return;
2351   }
2352 
2353   // We set this so that the regular clock knows that we're in the
2354   // middle of draining buffers and doesn't set the abort flag when it
2355   // notices that SATB buffers are available for draining. It'd be
2356   // very counter productive if it did that. :-)
2357   _draining_satb_buffers = true;
2358 
2359   G1CMSATBBufferClosure satb_cl(this, _g1h);
2360   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2361 
2362   // This keeps claiming and applying the closure to completed buffers
2363   // until we run out of buffers or we need to abort.
2364   while (!has_aborted() &&
2365          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2366     abort_marking_if_regular_check_fail();
2367   }
2368 
2369   // Can't assert qset is empty here, even if not aborted.  If concurrent,
2370   // some other thread might be adding to the queue.  If not concurrent,
2371   // some other thread might have won the race for the last buffer, but
2372   // has not yet decremented the count.
2373 
2374   _draining_satb_buffers = false;
2375 
2376   // again, this was a potentially expensive operation, decrease the
2377   // limits to get the regular clock call early
2378   decrease_limits();
2379 }
2380 
2381 void G1CMTask::clear_mark_stats_cache(uint region_idx) {
2382   _mark_stats_cache.reset(region_idx);
2383 }
2384 
2385 Pair<size_t, size_t> G1CMTask::flush_mark_stats_cache() {
2386   return _mark_stats_cache.evict_all();
2387 }
2388 
2389 void G1CMTask::print_stats() {
2390   log_debug(gc, stats)("Marking Stats, task = %u, calls = %u", _worker_id, _calls);
2391   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2392                        _elapsed_time_ms, _termination_time_ms);
2393   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms max = %1.2lfms, total = %1.2lfms",
2394                        _step_times_ms.num(),
2395                        _step_times_ms.avg(),
2396                        _step_times_ms.sd(),
2397                        _step_times_ms.maximum(),
2398                        _step_times_ms.sum());
2399   size_t const hits = _mark_stats_cache.hits();
2400   size_t const misses = _mark_stats_cache.misses();
2401   log_debug(gc, stats)("  Mark Stats Cache: hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %.3f",
2402                        hits, misses, percent_of(hits, hits + misses));
2403 }
2404 
2405 bool G1ConcurrentMark::try_stealing(uint worker_id, G1TaskQueueEntry& task_entry) {
2406   return _task_queues->steal(worker_id, task_entry);
2407 }
2408 
2409 /*****************************************************************************
2410 
2411     The do_marking_step(time_target_ms, ...) method is the building
2412     block of the parallel marking framework. It can be called in parallel
2413     with other invocations of do_marking_step() on different tasks
2414     (but only one per task, obviously) and concurrently with the
2415     mutator threads, or during remark, hence it eliminates the need
2416     for two versions of the code. When called during remark, it will
2417     pick up from where the task left off during the concurrent marking
2418     phase. Interestingly, tasks are also claimable during evacuation
2419     pauses too, since do_marking_step() ensures that it aborts before
2420     it needs to yield.
2421 
2422     The data structures that it uses to do marking work are the
2423     following:
2424 
2425       (1) Marking Bitmap. If there are gray objects that appear only
2426       on the bitmap (this happens either when dealing with an overflow
2427       or when the initial marking phase has simply marked the roots
2428       and didn't push them on the stack), then tasks claim heap
2429       regions whose bitmap they then scan to find gray objects. A
2430       global finger indicates where the end of the last claimed region
2431       is. A local finger indicates how far into the region a task has
2432       scanned. The two fingers are used to determine how to gray an
2433       object (i.e. whether simply marking it is OK, as it will be
2434       visited by a task in the future, or whether it needs to be also
2435       pushed on a stack).
2436 
2437       (2) Local Queue. The local queue of the task which is accessed
2438       reasonably efficiently by the task. Other tasks can steal from
2439       it when they run out of work. Throughout the marking phase, a
2440       task attempts to keep its local queue short but not totally
2441       empty, so that entries are available for stealing by other
2442       tasks. Only when there is no more work, a task will totally
2443       drain its local queue.
2444 
2445       (3) Global Mark Stack. This handles local queue overflow. During
2446       marking only sets of entries are moved between it and the local
2447       queues, as access to it requires a mutex and more fine-grain
2448       interaction with it which might cause contention. If it
2449       overflows, then the marking phase should restart and iterate
2450       over the bitmap to identify gray objects. Throughout the marking
2451       phase, tasks attempt to keep the global mark stack at a small
2452       length but not totally empty, so that entries are available for
2453       popping by other tasks. Only when there is no more work, tasks
2454       will totally drain the global mark stack.
2455 
2456       (4) SATB Buffer Queue. This is where completed SATB buffers are
2457       made available. Buffers are regularly removed from this queue
2458       and scanned for roots, so that the queue doesn't get too
2459       long. During remark, all completed buffers are processed, as
2460       well as the filled in parts of any uncompleted buffers.
2461 
2462     The do_marking_step() method tries to abort when the time target
2463     has been reached. There are a few other cases when the
2464     do_marking_step() method also aborts:
2465 
2466       (1) When the marking phase has been aborted (after a Full GC).
2467 
2468       (2) When a global overflow (on the global stack) has been
2469       triggered. Before the task aborts, it will actually sync up with
2470       the other tasks to ensure that all the marking data structures
2471       (local queues, stacks, fingers etc.)  are re-initialized so that
2472       when do_marking_step() completes, the marking phase can
2473       immediately restart.
2474 
2475       (3) When enough completed SATB buffers are available. The
2476       do_marking_step() method only tries to drain SATB buffers right
2477       at the beginning. So, if enough buffers are available, the
2478       marking step aborts and the SATB buffers are processed at
2479       the beginning of the next invocation.
2480 
2481       (4) To yield. when we have to yield then we abort and yield
2482       right at the end of do_marking_step(). This saves us from a lot
2483       of hassle as, by yielding we might allow a Full GC. If this
2484       happens then objects will be compacted underneath our feet, the
2485       heap might shrink, etc. We save checking for this by just
2486       aborting and doing the yield right at the end.
2487 
2488     From the above it follows that the do_marking_step() method should
2489     be called in a loop (or, otherwise, regularly) until it completes.
2490 
2491     If a marking step completes without its has_aborted() flag being
2492     true, it means it has completed the current marking phase (and
2493     also all other marking tasks have done so and have all synced up).
2494 
2495     A method called regular_clock_call() is invoked "regularly" (in
2496     sub ms intervals) throughout marking. It is this clock method that
2497     checks all the abort conditions which were mentioned above and
2498     decides when the task should abort. A work-based scheme is used to
2499     trigger this clock method: when the number of object words the
2500     marking phase has scanned or the number of references the marking
2501     phase has visited reach a given limit. Additional invocations to
2502     the method clock have been planted in a few other strategic places
2503     too. The initial reason for the clock method was to avoid calling
2504     vtime too regularly, as it is quite expensive. So, once it was in
2505     place, it was natural to piggy-back all the other conditions on it
2506     too and not constantly check them throughout the code.
2507 
2508     If do_termination is true then do_marking_step will enter its
2509     termination protocol.
2510 
2511     The value of is_serial must be true when do_marking_step is being
2512     called serially (i.e. by the VMThread) and do_marking_step should
2513     skip any synchronization in the termination and overflow code.
2514     Examples include the serial remark code and the serial reference
2515     processing closures.
2516 
2517     The value of is_serial must be false when do_marking_step is
2518     being called by any of the worker threads in a work gang.
2519     Examples include the concurrent marking code (CMMarkingTask),
2520     the MT remark code, and the MT reference processing closures.
2521 
2522  *****************************************************************************/
2523 
2524 void G1CMTask::do_marking_step(double time_target_ms,
2525                                bool do_termination,
2526                                bool is_serial) {
2527   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2528 
2529   _start_time_ms = os::elapsedVTime() * 1000.0;
2530 
2531   // If do_stealing is true then do_marking_step will attempt to
2532   // steal work from the other G1CMTasks. It only makes sense to
2533   // enable stealing when the termination protocol is enabled
2534   // and do_marking_step() is not being called serially.
2535   bool do_stealing = do_termination && !is_serial;
2536 
2537   G1Predictions const& predictor = _g1h->policy()->predictor();
2538   double diff_prediction_ms = predictor.predict_zero_bounded(&_marking_step_diff_ms);
2539   _time_target_ms = time_target_ms - diff_prediction_ms;
2540 
2541   // set up the variables that are used in the work-based scheme to
2542   // call the regular clock method
2543   _words_scanned = 0;
2544   _refs_reached  = 0;
2545   recalculate_limits();
2546 
2547   // clear all flags
2548   clear_has_aborted();
2549   _has_timed_out = false;
2550   _draining_satb_buffers = false;
2551 
2552   ++_calls;
2553 
2554   // Set up the bitmap and oop closures. Anything that uses them is
2555   // eventually called from this method, so it is OK to allocate these
2556   // statically.
2557   G1CMBitMapClosure bitmap_closure(this, _cm);
2558   G1CMOopClosure cm_oop_closure(_g1h, this);
2559   set_cm_oop_closure(&cm_oop_closure);
2560 
2561   if (_cm->has_overflown()) {
2562     // This can happen if the mark stack overflows during a GC pause
2563     // and this task, after a yield point, restarts. We have to abort
2564     // as we need to get into the overflow protocol which happens
2565     // right at the end of this task.
2566     set_has_aborted();
2567   }
2568 
2569   // First drain any available SATB buffers. After this, we will not
2570   // look at SATB buffers before the next invocation of this method.
2571   // If enough completed SATB buffers are queued up, the regular clock
2572   // will abort this task so that it restarts.
2573   drain_satb_buffers();
2574   // ...then partially drain the local queue and the global stack
2575   drain_local_queue(true);
2576   drain_global_stack(true);
2577 
2578   do {
2579     if (!has_aborted() && _curr_region != NULL) {
2580       // This means that we're already holding on to a region.
2581       assert(_finger != NULL, "if region is not NULL, then the finger "
2582              "should not be NULL either");
2583 
2584       // We might have restarted this task after an evacuation pause
2585       // which might have evacuated the region we're holding on to
2586       // underneath our feet. Let's read its limit again to make sure
2587       // that we do not iterate over a region of the heap that
2588       // contains garbage (update_region_limit() will also move
2589       // _finger to the start of the region if it is found empty).
2590       update_region_limit();
2591       // We will start from _finger not from the start of the region,
2592       // as we might be restarting this task after aborting half-way
2593       // through scanning this region. In this case, _finger points to
2594       // the address where we last found a marked object. If this is a
2595       // fresh region, _finger points to start().
2596       MemRegion mr = MemRegion(_finger, _region_limit);
2597 
2598       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2599              "humongous regions should go around loop once only");
2600 
2601       // Some special cases:
2602       // If the memory region is empty, we can just give up the region.
2603       // If the current region is humongous then we only need to check
2604       // the bitmap for the bit associated with the start of the object,
2605       // scan the object if it's live, and give up the region.
2606       // Otherwise, let's iterate over the bitmap of the part of the region
2607       // that is left.
2608       // If the iteration is successful, give up the region.
2609       if (mr.is_empty()) {
2610         giveup_current_region();
2611         abort_marking_if_regular_check_fail();
2612       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2613         if (_next_mark_bitmap->is_marked(mr.start())) {
2614           // The object is marked - apply the closure
2615           bitmap_closure.do_addr(mr.start());
2616         }
2617         // Even if this task aborted while scanning the humongous object
2618         // we can (and should) give up the current region.
2619         giveup_current_region();
2620         abort_marking_if_regular_check_fail();
2621       } else if (_next_mark_bitmap->iterate(&bitmap_closure, mr)) {
2622         giveup_current_region();
2623         abort_marking_if_regular_check_fail();
2624       } else {
2625         assert(has_aborted(), "currently the only way to do so");
2626         // The only way to abort the bitmap iteration is to return
2627         // false from the do_bit() method. However, inside the
2628         // do_bit() method we move the _finger to point to the
2629         // object currently being looked at. So, if we bail out, we
2630         // have definitely set _finger to something non-null.
2631         assert(_finger != NULL, "invariant");
2632 
2633         // Region iteration was actually aborted. So now _finger
2634         // points to the address of the object we last scanned. If we
2635         // leave it there, when we restart this task, we will rescan
2636         // the object. It is easy to avoid this. We move the finger by
2637         // enough to point to the next possible object header.
2638         assert(_finger < _region_limit, "invariant");
2639         HeapWord* const new_finger = _finger + ((oop)_finger)->size();
2640         // Check if bitmap iteration was aborted while scanning the last object
2641         if (new_finger >= _region_limit) {
2642           giveup_current_region();
2643         } else {
2644           move_finger_to(new_finger);
2645         }
2646       }
2647     }
2648     // At this point we have either completed iterating over the
2649     // region we were holding on to, or we have aborted.
2650 
2651     // We then partially drain the local queue and the global stack.
2652     // (Do we really need this?)
2653     drain_local_queue(true);
2654     drain_global_stack(true);
2655 
2656     // Read the note on the claim_region() method on why it might
2657     // return NULL with potentially more regions available for
2658     // claiming and why we have to check out_of_regions() to determine
2659     // whether we're done or not.
2660     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2661       // We are going to try to claim a new region. We should have
2662       // given up on the previous one.
2663       // Separated the asserts so that we know which one fires.
2664       assert(_curr_region  == NULL, "invariant");
2665       assert(_finger       == NULL, "invariant");
2666       assert(_region_limit == NULL, "invariant");
2667       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2668       if (claimed_region != NULL) {
2669         // Yes, we managed to claim one
2670         setup_for_region(claimed_region);
2671         assert(_curr_region == claimed_region, "invariant");
2672       }
2673       // It is important to call the regular clock here. It might take
2674       // a while to claim a region if, for example, we hit a large
2675       // block of empty regions. So we need to call the regular clock
2676       // method once round the loop to make sure it's called
2677       // frequently enough.
2678       abort_marking_if_regular_check_fail();
2679     }
2680 
2681     if (!has_aborted() && _curr_region == NULL) {
2682       assert(_cm->out_of_regions(),
2683              "at this point we should be out of regions");
2684     }
2685   } while ( _curr_region != NULL && !has_aborted());
2686 
2687   if (!has_aborted()) {
2688     // We cannot check whether the global stack is empty, since other
2689     // tasks might be pushing objects to it concurrently.
2690     assert(_cm->out_of_regions(),
2691            "at this point we should be out of regions");
2692     // Try to reduce the number of available SATB buffers so that
2693     // remark has less work to do.
2694     drain_satb_buffers();
2695   }
2696 
2697   // Since we've done everything else, we can now totally drain the
2698   // local queue and global stack.
2699   drain_local_queue(false);
2700   drain_global_stack(false);
2701 
2702   // Attempt at work stealing from other task's queues.
2703   if (do_stealing && !has_aborted()) {
2704     // We have not aborted. This means that we have finished all that
2705     // we could. Let's try to do some stealing...
2706 
2707     // We cannot check whether the global stack is empty, since other
2708     // tasks might be pushing objects to it concurrently.
2709     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2710            "only way to reach here");
2711     while (!has_aborted()) {
2712       G1TaskQueueEntry entry;
2713       if (_cm->try_stealing(_worker_id, entry)) {
2714         scan_task_entry(entry);
2715 
2716         // And since we're towards the end, let's totally drain the
2717         // local queue and global stack.
2718         drain_local_queue(false);
2719         drain_global_stack(false);
2720       } else {
2721         break;
2722       }
2723     }
2724   }
2725 
2726   // We still haven't aborted. Now, let's try to get into the
2727   // termination protocol.
2728   if (do_termination && !has_aborted()) {
2729     // We cannot check whether the global stack is empty, since other
2730     // tasks might be concurrently pushing objects on it.
2731     // Separated the asserts so that we know which one fires.
2732     assert(_cm->out_of_regions(), "only way to reach here");
2733     assert(_task_queue->size() == 0, "only way to reach here");
2734     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2735 
2736     // The G1CMTask class also extends the TerminatorTerminator class,
2737     // hence its should_exit_termination() method will also decide
2738     // whether to exit the termination protocol or not.
2739     bool finished = (is_serial ||
2740                      _cm->terminator()->offer_termination(this));
2741     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2742     _termination_time_ms +=
2743       termination_end_time_ms - _termination_start_time_ms;
2744 
2745     if (finished) {
2746       // We're all done.
2747 
2748       // We can now guarantee that the global stack is empty, since
2749       // all other tasks have finished. We separated the guarantees so
2750       // that, if a condition is false, we can immediately find out
2751       // which one.
2752       guarantee(_cm->out_of_regions(), "only way to reach here");
2753       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2754       guarantee(_task_queue->size() == 0, "only way to reach here");
2755       guarantee(!_cm->has_overflown(), "only way to reach here");
2756       guarantee(!has_aborted(), "should never happen if termination has completed");
2757     } else {
2758       // Apparently there's more work to do. Let's abort this task. It
2759       // will restart it and we can hopefully find more things to do.
2760       set_has_aborted();
2761     }
2762   }
2763 
2764   // Mainly for debugging purposes to make sure that a pointer to the
2765   // closure which was statically allocated in this frame doesn't
2766   // escape it by accident.
2767   set_cm_oop_closure(NULL);
2768   double end_time_ms = os::elapsedVTime() * 1000.0;
2769   double elapsed_time_ms = end_time_ms - _start_time_ms;
2770   // Update the step history.
2771   _step_times_ms.add(elapsed_time_ms);
2772 
2773   if (has_aborted()) {
2774     // The task was aborted for some reason.
2775     if (_has_timed_out) {
2776       double diff_ms = elapsed_time_ms - _time_target_ms;
2777       // Keep statistics of how well we did with respect to hitting
2778       // our target only if we actually timed out (if we aborted for
2779       // other reasons, then the results might get skewed).
2780       _marking_step_diff_ms.add(diff_ms);
2781     }
2782 
2783     if (_cm->has_overflown()) {
2784       // This is the interesting one. We aborted because a global
2785       // overflow was raised. This means we have to restart the
2786       // marking phase and start iterating over regions. However, in
2787       // order to do this we have to make sure that all tasks stop
2788       // what they are doing and re-initialize in a safe manner. We
2789       // will achieve this with the use of two barrier sync points.
2790 
2791       if (!is_serial) {
2792         // We only need to enter the sync barrier if being called
2793         // from a parallel context
2794         _cm->enter_first_sync_barrier(_worker_id);
2795 
2796         // When we exit this sync barrier we know that all tasks have
2797         // stopped doing marking work. So, it's now safe to
2798         // re-initialize our data structures.
2799       }
2800 
2801       clear_region_fields();
2802       flush_mark_stats_cache();
2803 
2804       if (!is_serial) {
2805         // If we're executing the concurrent phase of marking, reset the marking
2806         // state; otherwise the marking state is reset after reference processing,
2807         // during the remark pause.
2808         // If we reset here as a result of an overflow during the remark we will
2809         // see assertion failures from any subsequent set_concurrency_and_phase()
2810         // calls.
2811         if (_cm->concurrent() && _worker_id == 0) {
2812           // Worker 0 is responsible for clearing the global data structures because
2813           // of an overflow. During STW we should not clear the overflow flag (in
2814           // G1ConcurrentMark::reset_marking_state()) since we rely on it being true when we exit
2815           // method to abort the pause and restart concurrent marking.
2816           _cm->reset_marking_for_restart();
2817 
2818           log_info(gc, marking)("Concurrent Mark reset for overflow");
2819         }
2820 
2821         // ...and enter the second barrier.
2822         _cm->enter_second_sync_barrier(_worker_id);
2823       }
2824       // At this point, if we're during the concurrent phase of
2825       // marking, everything has been re-initialized and we're
2826       // ready to restart.
2827     }
2828   }
2829 }
2830 
2831 G1CMTask::G1CMTask(uint worker_id,
2832                    G1ConcurrentMark* cm,
2833                    G1CMTaskQueue* task_queue,
2834                    G1RegionMarkStats* mark_stats,
2835                    uint max_regions) :
2836   _objArray_processor(this),
2837   _worker_id(worker_id),
2838   _g1h(G1CollectedHeap::heap()),
2839   _cm(cm),
2840   _next_mark_bitmap(NULL),
2841   _task_queue(task_queue),
2842   _mark_stats_cache(mark_stats, max_regions, RegionMarkStatsCacheSize),
2843   _calls(0),
2844   _time_target_ms(0.0),
2845   _start_time_ms(0.0),
2846   _cm_oop_closure(NULL),
2847   _curr_region(NULL),
2848   _finger(NULL),
2849   _region_limit(NULL),
2850   _words_scanned(0),
2851   _words_scanned_limit(0),
2852   _real_words_scanned_limit(0),
2853   _refs_reached(0),
2854   _refs_reached_limit(0),
2855   _real_refs_reached_limit(0),
2856   _has_aborted(false),
2857   _has_timed_out(false),
2858   _draining_satb_buffers(false),
2859   _step_times_ms(),
2860   _elapsed_time_ms(0.0),
2861   _termination_time_ms(0.0),
2862   _termination_start_time_ms(0.0),
2863   _marking_step_diff_ms()
2864 {
2865   guarantee(task_queue != NULL, "invariant");
2866 
2867   _marking_step_diff_ms.add(0.5);
2868 }
2869 
2870 // These are formatting macros that are used below to ensure
2871 // consistent formatting. The *_H_* versions are used to format the
2872 // header for a particular value and they should be kept consistent
2873 // with the corresponding macro. Also note that most of the macros add
2874 // the necessary white space (as a prefix) which makes them a bit
2875 // easier to compose.
2876 
2877 // All the output lines are prefixed with this string to be able to
2878 // identify them easily in a large log file.
2879 #define G1PPRL_LINE_PREFIX            "###"
2880 
2881 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2882 #ifdef _LP64
2883 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2884 #else // _LP64
2885 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2886 #endif // _LP64
2887 
2888 // For per-region info
2889 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2890 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2891 #define G1PPRL_STATE_FORMAT           "   %-5s"
2892 #define G1PPRL_STATE_H_FORMAT         "   %5s"
2893 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2894 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2895 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2896 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2897 
2898 // For summary info
2899 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2900 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2901 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2902 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2903 
2904 G1PrintRegionLivenessInfoClosure::G1PrintRegionLivenessInfoClosure(const char* phase_name) :
2905   _total_used_bytes(0), _total_capacity_bytes(0),
2906   _total_prev_live_bytes(0), _total_next_live_bytes(0),
2907   _total_remset_bytes(0), _total_strong_code_roots_bytes(0)
2908 {
2909   if (!log_is_enabled(Trace, gc, liveness)) {
2910     return;
2911   }
2912 
2913   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2914   MemRegion g1_reserved = g1h->g1_reserved();
2915   double now = os::elapsedTime();
2916 
2917   // Print the header of the output.
2918   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2919   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2920                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2921                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2922                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2923                           HeapRegion::GrainBytes);
2924   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2925   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2926                           G1PPRL_TYPE_H_FORMAT
2927                           G1PPRL_ADDR_BASE_H_FORMAT
2928                           G1PPRL_BYTE_H_FORMAT
2929                           G1PPRL_BYTE_H_FORMAT
2930                           G1PPRL_BYTE_H_FORMAT
2931                           G1PPRL_DOUBLE_H_FORMAT
2932                           G1PPRL_BYTE_H_FORMAT
2933                           G1PPRL_STATE_H_FORMAT
2934                           G1PPRL_BYTE_H_FORMAT,
2935                           "type", "address-range",
2936                           "used", "prev-live", "next-live", "gc-eff",
2937                           "remset", "state", "code-roots");
2938   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2939                           G1PPRL_TYPE_H_FORMAT
2940                           G1PPRL_ADDR_BASE_H_FORMAT
2941                           G1PPRL_BYTE_H_FORMAT
2942                           G1PPRL_BYTE_H_FORMAT
2943                           G1PPRL_BYTE_H_FORMAT
2944                           G1PPRL_DOUBLE_H_FORMAT
2945                           G1PPRL_BYTE_H_FORMAT
2946                           G1PPRL_STATE_H_FORMAT
2947                           G1PPRL_BYTE_H_FORMAT,
2948                           "", "",
2949                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
2950                           "(bytes)", "", "(bytes)");
2951 }
2952 
2953 bool G1PrintRegionLivenessInfoClosure::do_heap_region(HeapRegion* r) {
2954   if (!log_is_enabled(Trace, gc, liveness)) {
2955     return false;
2956   }
2957 
2958   const char* type       = r->get_type_str();
2959   HeapWord* bottom       = r->bottom();
2960   HeapWord* end          = r->end();
2961   size_t capacity_bytes  = r->capacity();
2962   size_t used_bytes      = r->used();
2963   size_t prev_live_bytes = r->live_bytes();
2964   size_t next_live_bytes = r->next_live_bytes();
2965   double gc_eff          = r->gc_efficiency();
2966   size_t remset_bytes    = r->rem_set()->mem_size();
2967   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
2968   const char* remset_type = r->rem_set()->get_short_state_str();
2969 
2970   _total_used_bytes      += used_bytes;
2971   _total_capacity_bytes  += capacity_bytes;
2972   _total_prev_live_bytes += prev_live_bytes;
2973   _total_next_live_bytes += next_live_bytes;
2974   _total_remset_bytes    += remset_bytes;
2975   _total_strong_code_roots_bytes += strong_code_roots_bytes;
2976 
2977   // Print a line for this particular region.
2978   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2979                           G1PPRL_TYPE_FORMAT
2980                           G1PPRL_ADDR_BASE_FORMAT
2981                           G1PPRL_BYTE_FORMAT
2982                           G1PPRL_BYTE_FORMAT
2983                           G1PPRL_BYTE_FORMAT
2984                           G1PPRL_DOUBLE_FORMAT
2985                           G1PPRL_BYTE_FORMAT
2986                           G1PPRL_STATE_FORMAT
2987                           G1PPRL_BYTE_FORMAT,
2988                           type, p2i(bottom), p2i(end),
2989                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
2990                           remset_bytes, remset_type, strong_code_roots_bytes);
2991 
2992   return false;
2993 }
2994 
2995 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
2996   if (!log_is_enabled(Trace, gc, liveness)) {
2997     return;
2998   }
2999 
3000   // add static memory usages to remembered set sizes
3001   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3002   // Print the footer of the output.
3003   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3004   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3005                          " SUMMARY"
3006                          G1PPRL_SUM_MB_FORMAT("capacity")
3007                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3008                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3009                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3010                          G1PPRL_SUM_MB_FORMAT("remset")
3011                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3012                          bytes_to_mb(_total_capacity_bytes),
3013                          bytes_to_mb(_total_used_bytes),
3014                          percent_of(_total_used_bytes, _total_capacity_bytes),
3015                          bytes_to_mb(_total_prev_live_bytes),
3016                          percent_of(_total_prev_live_bytes, _total_capacity_bytes),
3017                          bytes_to_mb(_total_next_live_bytes),
3018                          percent_of(_total_next_live_bytes, _total_capacity_bytes),
3019                          bytes_to_mb(_total_remset_bytes),
3020                          bytes_to_mb(_total_strong_code_roots_bytes));
3021 }