1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_bsd.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_bsd.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_bsd.inline.hpp"
  40 #include "os_share_bsd.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/objectMonitor.hpp"
  53 #include "runtime/orderAccess.inline.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "semaphore_bsd.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/decoder.hpp"
  67 #include "utilities/defaultStream.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/growableArray.hpp"
  70 #include "utilities/vmError.hpp"
  71 
  72 // put OS-includes here
  73 # include <sys/types.h>
  74 # include <sys/mman.h>
  75 # include <sys/stat.h>
  76 # include <sys/select.h>
  77 # include <pthread.h>
  78 # include <signal.h>
  79 # include <errno.h>
  80 # include <dlfcn.h>
  81 # include <stdio.h>
  82 # include <unistd.h>
  83 # include <sys/resource.h>
  84 # include <pthread.h>
  85 # include <sys/stat.h>
  86 # include <sys/time.h>
  87 # include <sys/times.h>
  88 # include <sys/utsname.h>
  89 # include <sys/socket.h>
  90 # include <sys/wait.h>
  91 # include <time.h>
  92 # include <pwd.h>
  93 # include <poll.h>
  94 # include <semaphore.h>
  95 # include <fcntl.h>
  96 # include <string.h>
  97 # include <sys/param.h>
  98 # include <sys/sysctl.h>
  99 # include <sys/ipc.h>
 100 # include <sys/shm.h>
 101 #ifndef __APPLE__
 102 # include <link.h>
 103 #endif
 104 # include <stdint.h>
 105 # include <inttypes.h>
 106 # include <sys/ioctl.h>
 107 # include <sys/syscall.h>
 108 
 109 #if defined(__FreeBSD__) || defined(__NetBSD__)
 110   #include <elf.h>
 111 #endif
 112 
 113 #ifdef __APPLE__
 114   #include <mach/mach.h> // semaphore_* API
 115   #include <mach-o/dyld.h>
 116   #include <sys/proc_info.h>
 117   #include <objc/objc-auto.h>
 118 #endif
 119 
 120 #ifndef MAP_ANONYMOUS
 121   #define MAP_ANONYMOUS MAP_ANON
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 // for timer info max values which include all bits
 127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 128 
 129 #define LARGEPAGES_BIT (1 << 6)
 130 
 131 ////////////////////////////////////////////////////////////////////////////////
 132 // global variables
 133 julong os::Bsd::_physical_memory = 0;
 134 
 135 #ifdef __APPLE__
 136 mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
 137 volatile uint64_t         os::Bsd::_max_abstime   = 0;
 138 #else
 139 int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 140 #endif
 141 pthread_t os::Bsd::_main_thread;
 142 int os::Bsd::_page_size = -1;
 143 
 144 static jlong initial_time_count=0;
 145 
 146 static int clock_tics_per_sec = 100;
 147 
 148 // For diagnostics to print a message once. see run_periodic_checks
 149 static sigset_t check_signal_done;
 150 static bool check_signals = true;
 151 
 152 static pid_t _initial_pid = 0;
 153 
 154 // Signal number used to suspend/resume a thread
 155 
 156 // do not use any signal number less than SIGSEGV, see 4355769
 157 static int SR_signum = SIGUSR2;
 158 sigset_t SR_sigset;
 159 
 160 
 161 ////////////////////////////////////////////////////////////////////////////////
 162 // utility functions
 163 
 164 static int SR_initialize();
 165 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 166 
 167 julong os::available_memory() {
 168   return Bsd::available_memory();
 169 }
 170 
 171 // available here means free
 172 julong os::Bsd::available_memory() {
 173   uint64_t available = physical_memory() >> 2;
 174 #ifdef __APPLE__
 175   mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
 176   vm_statistics64_data_t vmstat;
 177   kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
 178                                          (host_info64_t)&vmstat, &count);
 179   assert(kerr == KERN_SUCCESS,
 180          "host_statistics64 failed - check mach_host_self() and count");
 181   if (kerr == KERN_SUCCESS) {
 182     available = vmstat.free_count * os::vm_page_size();
 183   }
 184 #endif
 185   return available;
 186 }
 187 
 188 julong os::physical_memory() {
 189   return Bsd::physical_memory();
 190 }
 191 
 192 // Return true if user is running as root.
 193 
 194 bool os::have_special_privileges() {
 195   static bool init = false;
 196   static bool privileges = false;
 197   if (!init) {
 198     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 199     init = true;
 200   }
 201   return privileges;
 202 }
 203 
 204 
 205 
 206 // Cpu architecture string
 207 #if   defined(ZERO)
 208 static char cpu_arch[] = ZERO_LIBARCH;
 209 #elif defined(IA64)
 210 static char cpu_arch[] = "ia64";
 211 #elif defined(IA32)
 212 static char cpu_arch[] = "i386";
 213 #elif defined(AMD64)
 214 static char cpu_arch[] = "amd64";
 215 #elif defined(ARM)
 216 static char cpu_arch[] = "arm";
 217 #elif defined(PPC32)
 218 static char cpu_arch[] = "ppc";
 219 #elif defined(SPARC)
 220   #ifdef _LP64
 221 static char cpu_arch[] = "sparcv9";
 222   #else
 223 static char cpu_arch[] = "sparc";
 224   #endif
 225 #else
 226   #error Add appropriate cpu_arch setting
 227 #endif
 228 
 229 // Compiler variant
 230 #ifdef COMPILER2
 231   #define COMPILER_VARIANT "server"
 232 #else
 233   #define COMPILER_VARIANT "client"
 234 #endif
 235 
 236 
 237 void os::Bsd::initialize_system_info() {
 238   int mib[2];
 239   size_t len;
 240   int cpu_val;
 241   julong mem_val;
 242 
 243   // get processors count via hw.ncpus sysctl
 244   mib[0] = CTL_HW;
 245   mib[1] = HW_NCPU;
 246   len = sizeof(cpu_val);
 247   if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
 248     assert(len == sizeof(cpu_val), "unexpected data size");
 249     set_processor_count(cpu_val);
 250   } else {
 251     set_processor_count(1);   // fallback
 252   }
 253 
 254   // get physical memory via hw.memsize sysctl (hw.memsize is used
 255   // since it returns a 64 bit value)
 256   mib[0] = CTL_HW;
 257 
 258 #if defined (HW_MEMSIZE) // Apple
 259   mib[1] = HW_MEMSIZE;
 260 #elif defined(HW_PHYSMEM) // Most of BSD
 261   mib[1] = HW_PHYSMEM;
 262 #elif defined(HW_REALMEM) // Old FreeBSD
 263   mib[1] = HW_REALMEM;
 264 #else
 265   #error No ways to get physmem
 266 #endif
 267 
 268   len = sizeof(mem_val);
 269   if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
 270     assert(len == sizeof(mem_val), "unexpected data size");
 271     _physical_memory = mem_val;
 272   } else {
 273     _physical_memory = 256 * 1024 * 1024;       // fallback (XXXBSD?)
 274   }
 275 
 276 #ifdef __OpenBSD__
 277   {
 278     // limit _physical_memory memory view on OpenBSD since
 279     // datasize rlimit restricts us anyway.
 280     struct rlimit limits;
 281     getrlimit(RLIMIT_DATA, &limits);
 282     _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
 283   }
 284 #endif
 285 }
 286 
 287 #ifdef __APPLE__
 288 static const char *get_home() {
 289   const char *home_dir = ::getenv("HOME");
 290   if ((home_dir == NULL) || (*home_dir == '\0')) {
 291     struct passwd *passwd_info = getpwuid(geteuid());
 292     if (passwd_info != NULL) {
 293       home_dir = passwd_info->pw_dir;
 294     }
 295   }
 296 
 297   return home_dir;
 298 }
 299 #endif
 300 
 301 void os::init_system_properties_values() {
 302   // The next steps are taken in the product version:
 303   //
 304   // Obtain the JAVA_HOME value from the location of libjvm.so.
 305   // This library should be located at:
 306   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 307   //
 308   // If "/jre/lib/" appears at the right place in the path, then we
 309   // assume libjvm.so is installed in a JDK and we use this path.
 310   //
 311   // Otherwise exit with message: "Could not create the Java virtual machine."
 312   //
 313   // The following extra steps are taken in the debugging version:
 314   //
 315   // If "/jre/lib/" does NOT appear at the right place in the path
 316   // instead of exit check for $JAVA_HOME environment variable.
 317   //
 318   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 319   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 320   // it looks like libjvm.so is installed there
 321   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 322   //
 323   // Otherwise exit.
 324   //
 325   // Important note: if the location of libjvm.so changes this
 326   // code needs to be changed accordingly.
 327 
 328   // See ld(1):
 329   //      The linker uses the following search paths to locate required
 330   //      shared libraries:
 331   //        1: ...
 332   //        ...
 333   //        7: The default directories, normally /lib and /usr/lib.
 334 #ifndef DEFAULT_LIBPATH
 335   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 336 #endif
 337 
 338 // Base path of extensions installed on the system.
 339 #define SYS_EXT_DIR     "/usr/java/packages"
 340 #define EXTENSIONS_DIR  "/lib/ext"
 341 
 342 #ifndef __APPLE__
 343 
 344   // Buffer that fits several sprintfs.
 345   // Note that the space for the colon and the trailing null are provided
 346   // by the nulls included by the sizeof operator.
 347   const size_t bufsize =
 348     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 349          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 350   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 351 
 352   // sysclasspath, java_home, dll_dir
 353   {
 354     char *pslash;
 355     os::jvm_path(buf, bufsize);
 356 
 357     // Found the full path to libjvm.so.
 358     // Now cut the path to <java_home>/jre if we can.
 359     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 360     pslash = strrchr(buf, '/');
 361     if (pslash != NULL) {
 362       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 363     }
 364     Arguments::set_dll_dir(buf);
 365 
 366     if (pslash != NULL) {
 367       pslash = strrchr(buf, '/');
 368       if (pslash != NULL) {
 369         *pslash = '\0';          // Get rid of /<arch>.
 370         pslash = strrchr(buf, '/');
 371         if (pslash != NULL) {
 372           *pslash = '\0';        // Get rid of /lib.
 373         }
 374       }
 375     }
 376     Arguments::set_java_home(buf);
 377     set_boot_path('/', ':');
 378   }
 379 
 380   // Where to look for native libraries.
 381   //
 382   // Note: Due to a legacy implementation, most of the library path
 383   // is set in the launcher. This was to accomodate linking restrictions
 384   // on legacy Bsd implementations (which are no longer supported).
 385   // Eventually, all the library path setting will be done here.
 386   //
 387   // However, to prevent the proliferation of improperly built native
 388   // libraries, the new path component /usr/java/packages is added here.
 389   // Eventually, all the library path setting will be done here.
 390   {
 391     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 392     // should always exist (until the legacy problem cited above is
 393     // addressed).
 394     const char *v = ::getenv("LD_LIBRARY_PATH");
 395     const char *v_colon = ":";
 396     if (v == NULL) { v = ""; v_colon = ""; }
 397     // That's +1 for the colon and +1 for the trailing '\0'.
 398     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 399                                                      strlen(v) + 1 +
 400                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 401                                                      mtInternal);
 402     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 403     Arguments::set_library_path(ld_library_path);
 404     FREE_C_HEAP_ARRAY(char, ld_library_path);
 405   }
 406 
 407   // Extensions directories.
 408   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 409   Arguments::set_ext_dirs(buf);
 410 
 411   FREE_C_HEAP_ARRAY(char, buf);
 412 
 413 #else // __APPLE__
 414 
 415   #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
 416   #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
 417 
 418   const char *user_home_dir = get_home();
 419   // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
 420   size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
 421     sizeof(SYS_EXTENSIONS_DIRS);
 422 
 423   // Buffer that fits several sprintfs.
 424   // Note that the space for the colon and the trailing null are provided
 425   // by the nulls included by the sizeof operator.
 426   const size_t bufsize =
 427     MAX2((size_t)MAXPATHLEN,  // for dll_dir & friends.
 428          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size); // extensions dir
 429   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 430 
 431   // sysclasspath, java_home, dll_dir
 432   {
 433     char *pslash;
 434     os::jvm_path(buf, bufsize);
 435 
 436     // Found the full path to libjvm.so.
 437     // Now cut the path to <java_home>/jre if we can.
 438     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 439     pslash = strrchr(buf, '/');
 440     if (pslash != NULL) {
 441       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 442     }
 443 #ifdef STATIC_BUILD
 444     strcat(buf, "/lib");
 445 #endif
 446 
 447     Arguments::set_dll_dir(buf);
 448 
 449     if (pslash != NULL) {
 450       pslash = strrchr(buf, '/');
 451       if (pslash != NULL) {
 452         *pslash = '\0';          // Get rid of /lib.
 453       }
 454     }
 455     Arguments::set_java_home(buf);
 456     set_boot_path('/', ':');
 457   }
 458 
 459   // Where to look for native libraries.
 460   //
 461   // Note: Due to a legacy implementation, most of the library path
 462   // is set in the launcher. This was to accomodate linking restrictions
 463   // on legacy Bsd implementations (which are no longer supported).
 464   // Eventually, all the library path setting will be done here.
 465   //
 466   // However, to prevent the proliferation of improperly built native
 467   // libraries, the new path component /usr/java/packages is added here.
 468   // Eventually, all the library path setting will be done here.
 469   {
 470     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 471     // should always exist (until the legacy problem cited above is
 472     // addressed).
 473     // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
 474     // can specify a directory inside an app wrapper
 475     const char *l = ::getenv("JAVA_LIBRARY_PATH");
 476     const char *l_colon = ":";
 477     if (l == NULL) { l = ""; l_colon = ""; }
 478 
 479     const char *v = ::getenv("DYLD_LIBRARY_PATH");
 480     const char *v_colon = ":";
 481     if (v == NULL) { v = ""; v_colon = ""; }
 482 
 483     // Apple's Java6 has "." at the beginning of java.library.path.
 484     // OpenJDK on Windows has "." at the end of java.library.path.
 485     // OpenJDK on Linux and Solaris don't have "." in java.library.path
 486     // at all. To ease the transition from Apple's Java6 to OpenJDK7,
 487     // "." is appended to the end of java.library.path. Yes, this
 488     // could cause a change in behavior, but Apple's Java6 behavior
 489     // can be achieved by putting "." at the beginning of the
 490     // JAVA_LIBRARY_PATH environment variable.
 491     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 492                                                      strlen(v) + 1 + strlen(l) + 1 +
 493                                                      system_ext_size + 3,
 494                                                      mtInternal);
 495     sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
 496             v, v_colon, l, l_colon, user_home_dir);
 497     Arguments::set_library_path(ld_library_path);
 498     FREE_C_HEAP_ARRAY(char, ld_library_path);
 499   }
 500 
 501   // Extensions directories.
 502   //
 503   // Note that the space for the colon and the trailing null are provided
 504   // by the nulls included by the sizeof operator (so actually one byte more
 505   // than necessary is allocated).
 506   sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
 507           user_home_dir, Arguments::get_java_home());
 508   Arguments::set_ext_dirs(buf);
 509 
 510   FREE_C_HEAP_ARRAY(char, buf);
 511 
 512 #undef SYS_EXTENSIONS_DIR
 513 #undef SYS_EXTENSIONS_DIRS
 514 
 515 #endif // __APPLE__
 516 
 517 #undef SYS_EXT_DIR
 518 #undef EXTENSIONS_DIR
 519 }
 520 
 521 ////////////////////////////////////////////////////////////////////////////////
 522 // breakpoint support
 523 
 524 void os::breakpoint() {
 525   BREAKPOINT;
 526 }
 527 
 528 extern "C" void breakpoint() {
 529   // use debugger to set breakpoint here
 530 }
 531 
 532 ////////////////////////////////////////////////////////////////////////////////
 533 // signal support
 534 
 535 debug_only(static bool signal_sets_initialized = false);
 536 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 537 
 538 bool os::Bsd::is_sig_ignored(int sig) {
 539   struct sigaction oact;
 540   sigaction(sig, (struct sigaction*)NULL, &oact);
 541   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 542                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 543   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 544     return true;
 545   } else {
 546     return false;
 547   }
 548 }
 549 
 550 void os::Bsd::signal_sets_init() {
 551   // Should also have an assertion stating we are still single-threaded.
 552   assert(!signal_sets_initialized, "Already initialized");
 553   // Fill in signals that are necessarily unblocked for all threads in
 554   // the VM. Currently, we unblock the following signals:
 555   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 556   //                         by -Xrs (=ReduceSignalUsage));
 557   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 558   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 559   // the dispositions or masks wrt these signals.
 560   // Programs embedding the VM that want to use the above signals for their
 561   // own purposes must, at this time, use the "-Xrs" option to prevent
 562   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 563   // (See bug 4345157, and other related bugs).
 564   // In reality, though, unblocking these signals is really a nop, since
 565   // these signals are not blocked by default.
 566   sigemptyset(&unblocked_sigs);
 567   sigemptyset(&allowdebug_blocked_sigs);
 568   sigaddset(&unblocked_sigs, SIGILL);
 569   sigaddset(&unblocked_sigs, SIGSEGV);
 570   sigaddset(&unblocked_sigs, SIGBUS);
 571   sigaddset(&unblocked_sigs, SIGFPE);
 572   sigaddset(&unblocked_sigs, SR_signum);
 573 
 574   if (!ReduceSignalUsage) {
 575     if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 576       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 577       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 578     }
 579     if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 580       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 581       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 582     }
 583     if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 584       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 585       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 586     }
 587   }
 588   // Fill in signals that are blocked by all but the VM thread.
 589   sigemptyset(&vm_sigs);
 590   if (!ReduceSignalUsage) {
 591     sigaddset(&vm_sigs, BREAK_SIGNAL);
 592   }
 593   debug_only(signal_sets_initialized = true);
 594 
 595 }
 596 
 597 // These are signals that are unblocked while a thread is running Java.
 598 // (For some reason, they get blocked by default.)
 599 sigset_t* os::Bsd::unblocked_signals() {
 600   assert(signal_sets_initialized, "Not initialized");
 601   return &unblocked_sigs;
 602 }
 603 
 604 // These are the signals that are blocked while a (non-VM) thread is
 605 // running Java. Only the VM thread handles these signals.
 606 sigset_t* os::Bsd::vm_signals() {
 607   assert(signal_sets_initialized, "Not initialized");
 608   return &vm_sigs;
 609 }
 610 
 611 // These are signals that are blocked during cond_wait to allow debugger in
 612 sigset_t* os::Bsd::allowdebug_blocked_signals() {
 613   assert(signal_sets_initialized, "Not initialized");
 614   return &allowdebug_blocked_sigs;
 615 }
 616 
 617 void os::Bsd::hotspot_sigmask(Thread* thread) {
 618 
 619   //Save caller's signal mask before setting VM signal mask
 620   sigset_t caller_sigmask;
 621   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 622 
 623   OSThread* osthread = thread->osthread();
 624   osthread->set_caller_sigmask(caller_sigmask);
 625 
 626   pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
 627 
 628   if (!ReduceSignalUsage) {
 629     if (thread->is_VM_thread()) {
 630       // Only the VM thread handles BREAK_SIGNAL ...
 631       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 632     } else {
 633       // ... all other threads block BREAK_SIGNAL
 634       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 635     }
 636   }
 637 }
 638 
 639 
 640 //////////////////////////////////////////////////////////////////////////////
 641 // create new thread
 642 
 643 #ifdef __APPLE__
 644 // library handle for calling objc_registerThreadWithCollector()
 645 // without static linking to the libobjc library
 646   #define OBJC_LIB "/usr/lib/libobjc.dylib"
 647   #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
 648 typedef void (*objc_registerThreadWithCollector_t)();
 649 extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
 650 objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
 651 #endif
 652 
 653 #ifdef __APPLE__
 654 static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
 655   // Additional thread_id used to correlate threads in SA
 656   thread_identifier_info_data_t     m_ident_info;
 657   mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
 658 
 659   thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
 660               (thread_info_t) &m_ident_info, &count);
 661 
 662   return m_ident_info.thread_id;
 663 }
 664 #endif
 665 
 666 // Thread start routine for all newly created threads
 667 static void *java_start(Thread *thread) {
 668   // Try to randomize the cache line index of hot stack frames.
 669   // This helps when threads of the same stack traces evict each other's
 670   // cache lines. The threads can be either from the same JVM instance, or
 671   // from different JVM instances. The benefit is especially true for
 672   // processors with hyperthreading technology.
 673   static int counter = 0;
 674   int pid = os::current_process_id();
 675   alloca(((pid ^ counter++) & 7) * 128);
 676 
 677   thread->initialize_thread_current();
 678 
 679   OSThread* osthread = thread->osthread();
 680   Monitor* sync = osthread->startThread_lock();
 681 
 682   osthread->set_thread_id(os::Bsd::gettid());
 683 
 684 #ifdef __APPLE__
 685   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 686   guarantee(unique_thread_id != 0, "unique thread id was not found");
 687   osthread->set_unique_thread_id(unique_thread_id);
 688 #endif
 689   // initialize signal mask for this thread
 690   os::Bsd::hotspot_sigmask(thread);
 691 
 692   // initialize floating point control register
 693   os::Bsd::init_thread_fpu_state();
 694 
 695 #ifdef __APPLE__
 696   // register thread with objc gc
 697   if (objc_registerThreadWithCollectorFunction != NULL) {
 698     objc_registerThreadWithCollectorFunction();
 699   }
 700 #endif
 701 
 702   // handshaking with parent thread
 703   {
 704     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 705 
 706     // notify parent thread
 707     osthread->set_state(INITIALIZED);
 708     sync->notify_all();
 709 
 710     // wait until os::start_thread()
 711     while (osthread->get_state() == INITIALIZED) {
 712       sync->wait(Mutex::_no_safepoint_check_flag);
 713     }
 714   }
 715 
 716   // call one more level start routine
 717   thread->run();
 718 
 719   return 0;
 720 }
 721 
 722 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 723   assert(thread->osthread() == NULL, "caller responsible");
 724 
 725   // Allocate the OSThread object
 726   OSThread* osthread = new OSThread(NULL, NULL);
 727   if (osthread == NULL) {
 728     return false;
 729   }
 730 
 731   // set the correct thread state
 732   osthread->set_thread_type(thr_type);
 733 
 734   // Initial state is ALLOCATED but not INITIALIZED
 735   osthread->set_state(ALLOCATED);
 736 
 737   thread->set_osthread(osthread);
 738 
 739   // init thread attributes
 740   pthread_attr_t attr;
 741   pthread_attr_init(&attr);
 742   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 743 
 744   // calculate stack size if it's not specified by caller
 745   if (stack_size == 0) {
 746     stack_size = os::Bsd::default_stack_size(thr_type);
 747 
 748     switch (thr_type) {
 749     case os::java_thread:
 750       // Java threads use ThreadStackSize which default value can be
 751       // changed with the flag -Xss
 752       assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 753       stack_size = JavaThread::stack_size_at_create();
 754       break;
 755     case os::compiler_thread:
 756       if (CompilerThreadStackSize > 0) {
 757         stack_size = (size_t)(CompilerThreadStackSize * K);
 758         break;
 759       } // else fall through:
 760         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 761     case os::vm_thread:
 762     case os::pgc_thread:
 763     case os::cgc_thread:
 764     case os::watcher_thread:
 765       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 766       break;
 767     }
 768   }
 769 
 770   stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
 771   pthread_attr_setstacksize(&attr, stack_size);
 772 
 773   ThreadState state;
 774 
 775   {
 776     pthread_t tid;
 777     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 778 
 779     pthread_attr_destroy(&attr);
 780 
 781     if (ret != 0) {
 782       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 783         perror("pthread_create()");
 784       }
 785       // Need to clean up stuff we've allocated so far
 786       thread->set_osthread(NULL);
 787       delete osthread;
 788       return false;
 789     }
 790 
 791     // Store pthread info into the OSThread
 792     osthread->set_pthread_id(tid);
 793 
 794     // Wait until child thread is either initialized or aborted
 795     {
 796       Monitor* sync_with_child = osthread->startThread_lock();
 797       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 798       while ((state = osthread->get_state()) == ALLOCATED) {
 799         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 800       }
 801     }
 802 
 803   }
 804 
 805   // Aborted due to thread limit being reached
 806   if (state == ZOMBIE) {
 807     thread->set_osthread(NULL);
 808     delete osthread;
 809     return false;
 810   }
 811 
 812   // The thread is returned suspended (in state INITIALIZED),
 813   // and is started higher up in the call chain
 814   assert(state == INITIALIZED, "race condition");
 815   return true;
 816 }
 817 
 818 /////////////////////////////////////////////////////////////////////////////
 819 // attach existing thread
 820 
 821 // bootstrap the main thread
 822 bool os::create_main_thread(JavaThread* thread) {
 823   assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
 824   return create_attached_thread(thread);
 825 }
 826 
 827 bool os::create_attached_thread(JavaThread* thread) {
 828 #ifdef ASSERT
 829   thread->verify_not_published();
 830 #endif
 831 
 832   // Allocate the OSThread object
 833   OSThread* osthread = new OSThread(NULL, NULL);
 834 
 835   if (osthread == NULL) {
 836     return false;
 837   }
 838 
 839   osthread->set_thread_id(os::Bsd::gettid());
 840 
 841   // Store pthread info into the OSThread
 842 #ifdef __APPLE__
 843   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 844   guarantee(unique_thread_id != 0, "just checking");
 845   osthread->set_unique_thread_id(unique_thread_id);
 846 #endif
 847   osthread->set_pthread_id(::pthread_self());
 848 
 849   // initialize floating point control register
 850   os::Bsd::init_thread_fpu_state();
 851 
 852   // Initial thread state is RUNNABLE
 853   osthread->set_state(RUNNABLE);
 854 
 855   thread->set_osthread(osthread);
 856 
 857   // initialize signal mask for this thread
 858   // and save the caller's signal mask
 859   os::Bsd::hotspot_sigmask(thread);
 860 
 861   return true;
 862 }
 863 
 864 void os::pd_start_thread(Thread* thread) {
 865   OSThread * osthread = thread->osthread();
 866   assert(osthread->get_state() != INITIALIZED, "just checking");
 867   Monitor* sync_with_child = osthread->startThread_lock();
 868   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 869   sync_with_child->notify();
 870 }
 871 
 872 // Free Bsd resources related to the OSThread
 873 void os::free_thread(OSThread* osthread) {
 874   assert(osthread != NULL, "osthread not set");
 875 
 876   if (Thread::current()->osthread() == osthread) {
 877     // Restore caller's signal mask
 878     sigset_t sigmask = osthread->caller_sigmask();
 879     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 880   }
 881 
 882   delete osthread;
 883 }
 884 
 885 ////////////////////////////////////////////////////////////////////////////////
 886 // time support
 887 
 888 // Time since start-up in seconds to a fine granularity.
 889 // Used by VMSelfDestructTimer and the MemProfiler.
 890 double os::elapsedTime() {
 891 
 892   return ((double)os::elapsed_counter()) / os::elapsed_frequency();
 893 }
 894 
 895 jlong os::elapsed_counter() {
 896   return javaTimeNanos() - initial_time_count;
 897 }
 898 
 899 jlong os::elapsed_frequency() {
 900   return NANOSECS_PER_SEC; // nanosecond resolution
 901 }
 902 
 903 bool os::supports_vtime() { return true; }
 904 bool os::enable_vtime()   { return false; }
 905 bool os::vtime_enabled()  { return false; }
 906 
 907 double os::elapsedVTime() {
 908   // better than nothing, but not much
 909   return elapsedTime();
 910 }
 911 
 912 jlong os::javaTimeMillis() {
 913   timeval time;
 914   int status = gettimeofday(&time, NULL);
 915   assert(status != -1, "bsd error");
 916   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
 917 }
 918 
 919 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 920   timeval time;
 921   int status = gettimeofday(&time, NULL);
 922   assert(status != -1, "bsd error");
 923   seconds = jlong(time.tv_sec);
 924   nanos = jlong(time.tv_usec) * 1000;
 925 }
 926 
 927 #ifndef __APPLE__
 928   #ifndef CLOCK_MONOTONIC
 929     #define CLOCK_MONOTONIC (1)
 930   #endif
 931 #endif
 932 
 933 #ifdef __APPLE__
 934 void os::Bsd::clock_init() {
 935   mach_timebase_info(&_timebase_info);
 936 }
 937 #else
 938 void os::Bsd::clock_init() {
 939   struct timespec res;
 940   struct timespec tp;
 941   if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
 942       ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
 943     // yes, monotonic clock is supported
 944     _clock_gettime = ::clock_gettime;
 945   }
 946 }
 947 #endif
 948 
 949 
 950 
 951 #ifdef __APPLE__
 952 
 953 jlong os::javaTimeNanos() {
 954   const uint64_t tm = mach_absolute_time();
 955   const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
 956   const uint64_t prev = Bsd::_max_abstime;
 957   if (now <= prev) {
 958     return prev;   // same or retrograde time;
 959   }
 960   const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
 961   assert(obsv >= prev, "invariant");   // Monotonicity
 962   // If the CAS succeeded then we're done and return "now".
 963   // If the CAS failed and the observed value "obsv" is >= now then
 964   // we should return "obsv".  If the CAS failed and now > obsv > prv then
 965   // some other thread raced this thread and installed a new value, in which case
 966   // we could either (a) retry the entire operation, (b) retry trying to install now
 967   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
 968   // we might discard a higher "now" value in deference to a slightly lower but freshly
 969   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
 970   // to (a) or (b) -- and greatly reduces coherence traffic.
 971   // We might also condition (c) on the magnitude of the delta between obsv and now.
 972   // Avoiding excessive CAS operations to hot RW locations is critical.
 973   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
 974   return (prev == obsv) ? now : obsv;
 975 }
 976 
 977 #else // __APPLE__
 978 
 979 jlong os::javaTimeNanos() {
 980   if (os::supports_monotonic_clock()) {
 981     struct timespec tp;
 982     int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
 983     assert(status == 0, "gettime error");
 984     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
 985     return result;
 986   } else {
 987     timeval time;
 988     int status = gettimeofday(&time, NULL);
 989     assert(status != -1, "bsd error");
 990     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
 991     return 1000 * usecs;
 992   }
 993 }
 994 
 995 #endif // __APPLE__
 996 
 997 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 998   if (os::supports_monotonic_clock()) {
 999     info_ptr->max_value = ALL_64_BITS;
1000 
1001     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1002     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1003     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1004   } else {
1005     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1006     info_ptr->max_value = ALL_64_BITS;
1007 
1008     // gettimeofday is a real time clock so it skips
1009     info_ptr->may_skip_backward = true;
1010     info_ptr->may_skip_forward = true;
1011   }
1012 
1013   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1014 }
1015 
1016 // Return the real, user, and system times in seconds from an
1017 // arbitrary fixed point in the past.
1018 bool os::getTimesSecs(double* process_real_time,
1019                       double* process_user_time,
1020                       double* process_system_time) {
1021   struct tms ticks;
1022   clock_t real_ticks = times(&ticks);
1023 
1024   if (real_ticks == (clock_t) (-1)) {
1025     return false;
1026   } else {
1027     double ticks_per_second = (double) clock_tics_per_sec;
1028     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1029     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1030     *process_real_time = ((double) real_ticks) / ticks_per_second;
1031 
1032     return true;
1033   }
1034 }
1035 
1036 
1037 char * os::local_time_string(char *buf, size_t buflen) {
1038   struct tm t;
1039   time_t long_time;
1040   time(&long_time);
1041   localtime_r(&long_time, &t);
1042   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1043                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1044                t.tm_hour, t.tm_min, t.tm_sec);
1045   return buf;
1046 }
1047 
1048 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1049   return localtime_r(clock, res);
1050 }
1051 
1052 ////////////////////////////////////////////////////////////////////////////////
1053 // runtime exit support
1054 
1055 // Note: os::shutdown() might be called very early during initialization, or
1056 // called from signal handler. Before adding something to os::shutdown(), make
1057 // sure it is async-safe and can handle partially initialized VM.
1058 void os::shutdown() {
1059 
1060   // allow PerfMemory to attempt cleanup of any persistent resources
1061   perfMemory_exit();
1062 
1063   // needs to remove object in file system
1064   AttachListener::abort();
1065 
1066   // flush buffered output, finish log files
1067   ostream_abort();
1068 
1069   // Check for abort hook
1070   abort_hook_t abort_hook = Arguments::abort_hook();
1071   if (abort_hook != NULL) {
1072     abort_hook();
1073   }
1074 
1075 }
1076 
1077 // Note: os::abort() might be called very early during initialization, or
1078 // called from signal handler. Before adding something to os::abort(), make
1079 // sure it is async-safe and can handle partially initialized VM.
1080 void os::abort(bool dump_core, void* siginfo, const void* context) {
1081   os::shutdown();
1082   if (dump_core) {
1083 #ifndef PRODUCT
1084     fdStream out(defaultStream::output_fd());
1085     out.print_raw("Current thread is ");
1086     char buf[16];
1087     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1088     out.print_raw_cr(buf);
1089     out.print_raw_cr("Dumping core ...");
1090 #endif
1091     ::abort(); // dump core
1092   }
1093 
1094   ::exit(1);
1095 }
1096 
1097 // Die immediately, no exit hook, no abort hook, no cleanup.
1098 void os::die() {
1099   // _exit() on BsdThreads only kills current thread
1100   ::abort();
1101 }
1102 
1103 // This method is a copy of JDK's sysGetLastErrorString
1104 // from src/solaris/hpi/src/system_md.c
1105 
1106 size_t os::lasterror(char *buf, size_t len) {
1107   if (errno == 0)  return 0;
1108 
1109   const char *s = ::strerror(errno);
1110   size_t n = ::strlen(s);
1111   if (n >= len) {
1112     n = len - 1;
1113   }
1114   ::strncpy(buf, s, n);
1115   buf[n] = '\0';
1116   return n;
1117 }
1118 
1119 // Information of current thread in variety of formats
1120 pid_t os::Bsd::gettid() {
1121   int retval = -1;
1122 
1123 #ifdef __APPLE__ //XNU kernel
1124   // despite the fact mach port is actually not a thread id use it
1125   // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1126   retval = ::pthread_mach_thread_np(::pthread_self());
1127   guarantee(retval != 0, "just checking");
1128   return retval;
1129 
1130 #else
1131   #ifdef __FreeBSD__
1132   retval = syscall(SYS_thr_self);
1133   #else
1134     #ifdef __OpenBSD__
1135   retval = syscall(SYS_getthrid);
1136     #else
1137       #ifdef __NetBSD__
1138   retval = (pid_t) syscall(SYS__lwp_self);
1139       #endif
1140     #endif
1141   #endif
1142 #endif
1143 
1144   if (retval == -1) {
1145     return getpid();
1146   }
1147 }
1148 
1149 intx os::current_thread_id() {
1150 #ifdef __APPLE__
1151   return (intx)::pthread_mach_thread_np(::pthread_self());
1152 #else
1153   return (intx)::pthread_self();
1154 #endif
1155 }
1156 
1157 int os::current_process_id() {
1158 
1159   // Under the old bsd thread library, bsd gives each thread
1160   // its own process id. Because of this each thread will return
1161   // a different pid if this method were to return the result
1162   // of getpid(2). Bsd provides no api that returns the pid
1163   // of the launcher thread for the vm. This implementation
1164   // returns a unique pid, the pid of the launcher thread
1165   // that starts the vm 'process'.
1166 
1167   // Under the NPTL, getpid() returns the same pid as the
1168   // launcher thread rather than a unique pid per thread.
1169   // Use gettid() if you want the old pre NPTL behaviour.
1170 
1171   // if you are looking for the result of a call to getpid() that
1172   // returns a unique pid for the calling thread, then look at the
1173   // OSThread::thread_id() method in osThread_bsd.hpp file
1174 
1175   return (int)(_initial_pid ? _initial_pid : getpid());
1176 }
1177 
1178 // DLL functions
1179 
1180 #define JNI_LIB_PREFIX "lib"
1181 #ifdef __APPLE__
1182   #define JNI_LIB_SUFFIX ".dylib"
1183 #else
1184   #define JNI_LIB_SUFFIX ".so"
1185 #endif
1186 
1187 const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1188 
1189 // This must be hard coded because it's the system's temporary
1190 // directory not the java application's temp directory, ala java.io.tmpdir.
1191 #ifdef __APPLE__
1192 // macosx has a secure per-user temporary directory
1193 char temp_path_storage[PATH_MAX];
1194 const char* os::get_temp_directory() {
1195   static char *temp_path = NULL;
1196   if (temp_path == NULL) {
1197     int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1198     if (pathSize == 0 || pathSize > PATH_MAX) {
1199       strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1200     }
1201     temp_path = temp_path_storage;
1202   }
1203   return temp_path;
1204 }
1205 #else // __APPLE__
1206 const char* os::get_temp_directory() { return "/tmp"; }
1207 #endif // __APPLE__
1208 
1209 static bool file_exists(const char* filename) {
1210   struct stat statbuf;
1211   if (filename == NULL || strlen(filename) == 0) {
1212     return false;
1213   }
1214   return os::stat(filename, &statbuf) == 0;
1215 }
1216 
1217 bool os::dll_build_name(char* buffer, size_t buflen,
1218                         const char* pname, const char* fname) {
1219   bool retval = false;
1220   // Copied from libhpi
1221   const size_t pnamelen = pname ? strlen(pname) : 0;
1222 
1223   // Return error on buffer overflow.
1224   if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1225     return retval;
1226   }
1227 
1228   if (pnamelen == 0) {
1229     snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1230     retval = true;
1231   } else if (strchr(pname, *os::path_separator()) != NULL) {
1232     int n;
1233     char** pelements = split_path(pname, &n);
1234     if (pelements == NULL) {
1235       return false;
1236     }
1237     for (int i = 0; i < n; i++) {
1238       // Really shouldn't be NULL, but check can't hurt
1239       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1240         continue; // skip the empty path values
1241       }
1242       snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1243                pelements[i], fname);
1244       if (file_exists(buffer)) {
1245         retval = true;
1246         break;
1247       }
1248     }
1249     // release the storage
1250     for (int i = 0; i < n; i++) {
1251       if (pelements[i] != NULL) {
1252         FREE_C_HEAP_ARRAY(char, pelements[i]);
1253       }
1254     }
1255     if (pelements != NULL) {
1256       FREE_C_HEAP_ARRAY(char*, pelements);
1257     }
1258   } else {
1259     snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1260     retval = true;
1261   }
1262   return retval;
1263 }
1264 
1265 // check if addr is inside libjvm.so
1266 bool os::address_is_in_vm(address addr) {
1267   static address libjvm_base_addr;
1268   Dl_info dlinfo;
1269 
1270   if (libjvm_base_addr == NULL) {
1271     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1272       libjvm_base_addr = (address)dlinfo.dli_fbase;
1273     }
1274     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1275   }
1276 
1277   if (dladdr((void *)addr, &dlinfo) != 0) {
1278     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1279   }
1280 
1281   return false;
1282 }
1283 
1284 
1285 #define MACH_MAXSYMLEN 256
1286 
1287 bool os::dll_address_to_function_name(address addr, char *buf,
1288                                       int buflen, int *offset,
1289                                       bool demangle) {
1290   // buf is not optional, but offset is optional
1291   assert(buf != NULL, "sanity check");
1292 
1293   Dl_info dlinfo;
1294   char localbuf[MACH_MAXSYMLEN];
1295 
1296   if (dladdr((void*)addr, &dlinfo) != 0) {
1297     // see if we have a matching symbol
1298     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1299       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1300         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1301       }
1302       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1303       return true;
1304     }
1305     // no matching symbol so try for just file info
1306     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1307       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1308                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1309         return true;
1310       }
1311     }
1312 
1313     // Handle non-dynamic manually:
1314     if (dlinfo.dli_fbase != NULL &&
1315         Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1316                         dlinfo.dli_fbase)) {
1317       if (!(demangle && Decoder::demangle(localbuf, buf, buflen))) {
1318         jio_snprintf(buf, buflen, "%s", localbuf);
1319       }
1320       return true;
1321     }
1322   }
1323   buf[0] = '\0';
1324   if (offset != NULL) *offset = -1;
1325   return false;
1326 }
1327 
1328 // ported from solaris version
1329 bool os::dll_address_to_library_name(address addr, char* buf,
1330                                      int buflen, int* offset) {
1331   // buf is not optional, but offset is optional
1332   assert(buf != NULL, "sanity check");
1333 
1334   Dl_info dlinfo;
1335 
1336   if (dladdr((void*)addr, &dlinfo) != 0) {
1337     if (dlinfo.dli_fname != NULL) {
1338       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1339     }
1340     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1341       *offset = addr - (address)dlinfo.dli_fbase;
1342     }
1343     return true;
1344   }
1345 
1346   buf[0] = '\0';
1347   if (offset) *offset = -1;
1348   return false;
1349 }
1350 
1351 // Loads .dll/.so and
1352 // in case of error it checks if .dll/.so was built for the
1353 // same architecture as Hotspot is running on
1354 
1355 #ifdef __APPLE__
1356 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1357 #ifdef STATIC_BUILD
1358   return os::get_default_process_handle();
1359 #else
1360   void * result= ::dlopen(filename, RTLD_LAZY);
1361   if (result != NULL) {
1362     // Successful loading
1363     return result;
1364   }
1365 
1366   // Read system error message into ebuf
1367   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1368   ebuf[ebuflen-1]='\0';
1369 
1370   return NULL;
1371 #endif // STATIC_BUILD
1372 }
1373 #else
1374 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1375 #ifdef STATIC_BUILD
1376   return os::get_default_process_handle();
1377 #else
1378   void * result= ::dlopen(filename, RTLD_LAZY);
1379   if (result != NULL) {
1380     // Successful loading
1381     return result;
1382   }
1383 
1384   Elf32_Ehdr elf_head;
1385 
1386   // Read system error message into ebuf
1387   // It may or may not be overwritten below
1388   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1389   ebuf[ebuflen-1]='\0';
1390   int diag_msg_max_length=ebuflen-strlen(ebuf);
1391   char* diag_msg_buf=ebuf+strlen(ebuf);
1392 
1393   if (diag_msg_max_length==0) {
1394     // No more space in ebuf for additional diagnostics message
1395     return NULL;
1396   }
1397 
1398 
1399   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1400 
1401   if (file_descriptor < 0) {
1402     // Can't open library, report dlerror() message
1403     return NULL;
1404   }
1405 
1406   bool failed_to_read_elf_head=
1407     (sizeof(elf_head)!=
1408      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1409 
1410   ::close(file_descriptor);
1411   if (failed_to_read_elf_head) {
1412     // file i/o error - report dlerror() msg
1413     return NULL;
1414   }
1415 
1416   typedef struct {
1417     Elf32_Half  code;         // Actual value as defined in elf.h
1418     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1419     char        elf_class;    // 32 or 64 bit
1420     char        endianess;    // MSB or LSB
1421     char*       name;         // String representation
1422   } arch_t;
1423 
1424   #ifndef EM_486
1425     #define EM_486          6               /* Intel 80486 */
1426   #endif
1427 
1428   #ifndef EM_MIPS_RS3_LE
1429     #define EM_MIPS_RS3_LE  10              /* MIPS */
1430   #endif
1431 
1432   #ifndef EM_PPC64
1433     #define EM_PPC64        21              /* PowerPC64 */
1434   #endif
1435 
1436   #ifndef EM_S390
1437     #define EM_S390         22              /* IBM System/390 */
1438   #endif
1439 
1440   #ifndef EM_IA_64
1441     #define EM_IA_64        50              /* HP/Intel IA-64 */
1442   #endif
1443 
1444   #ifndef EM_X86_64
1445     #define EM_X86_64       62              /* AMD x86-64 */
1446   #endif
1447 
1448   static const arch_t arch_array[]={
1449     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1450     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1451     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1452     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1453     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1454     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1455     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1456     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1457     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1458     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1459     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1460     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1461     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1462     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1463     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1464     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1465   };
1466 
1467   #if  (defined IA32)
1468   static  Elf32_Half running_arch_code=EM_386;
1469   #elif   (defined AMD64)
1470   static  Elf32_Half running_arch_code=EM_X86_64;
1471   #elif  (defined IA64)
1472   static  Elf32_Half running_arch_code=EM_IA_64;
1473   #elif  (defined __sparc) && (defined _LP64)
1474   static  Elf32_Half running_arch_code=EM_SPARCV9;
1475   #elif  (defined __sparc) && (!defined _LP64)
1476   static  Elf32_Half running_arch_code=EM_SPARC;
1477   #elif  (defined __powerpc64__)
1478   static  Elf32_Half running_arch_code=EM_PPC64;
1479   #elif  (defined __powerpc__)
1480   static  Elf32_Half running_arch_code=EM_PPC;
1481   #elif  (defined ARM)
1482   static  Elf32_Half running_arch_code=EM_ARM;
1483   #elif  (defined S390)
1484   static  Elf32_Half running_arch_code=EM_S390;
1485   #elif  (defined ALPHA)
1486   static  Elf32_Half running_arch_code=EM_ALPHA;
1487   #elif  (defined MIPSEL)
1488   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1489   #elif  (defined PARISC)
1490   static  Elf32_Half running_arch_code=EM_PARISC;
1491   #elif  (defined MIPS)
1492   static  Elf32_Half running_arch_code=EM_MIPS;
1493   #elif  (defined M68K)
1494   static  Elf32_Half running_arch_code=EM_68K;
1495   #else
1496     #error Method os::dll_load requires that one of following is defined:\
1497          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1498   #endif
1499 
1500   // Identify compatability class for VM's architecture and library's architecture
1501   // Obtain string descriptions for architectures
1502 
1503   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1504   int running_arch_index=-1;
1505 
1506   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1507     if (running_arch_code == arch_array[i].code) {
1508       running_arch_index    = i;
1509     }
1510     if (lib_arch.code == arch_array[i].code) {
1511       lib_arch.compat_class = arch_array[i].compat_class;
1512       lib_arch.name         = arch_array[i].name;
1513     }
1514   }
1515 
1516   assert(running_arch_index != -1,
1517          "Didn't find running architecture code (running_arch_code) in arch_array");
1518   if (running_arch_index == -1) {
1519     // Even though running architecture detection failed
1520     // we may still continue with reporting dlerror() message
1521     return NULL;
1522   }
1523 
1524   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1525     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1526     return NULL;
1527   }
1528 
1529 #ifndef S390
1530   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1531     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1532     return NULL;
1533   }
1534 #endif // !S390
1535 
1536   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1537     if (lib_arch.name!=NULL) {
1538       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1539                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1540                  lib_arch.name, arch_array[running_arch_index].name);
1541     } else {
1542       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1543                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1544                  lib_arch.code,
1545                  arch_array[running_arch_index].name);
1546     }
1547   }
1548 
1549   return NULL;
1550 #endif // STATIC_BUILD
1551 }
1552 #endif // !__APPLE__
1553 
1554 void* os::get_default_process_handle() {
1555 #ifdef __APPLE__
1556   // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1557   // to avoid finding unexpected symbols on second (or later)
1558   // loads of a library.
1559   return (void*)::dlopen(NULL, RTLD_FIRST);
1560 #else
1561   return (void*)::dlopen(NULL, RTLD_LAZY);
1562 #endif
1563 }
1564 
1565 // XXX: Do we need a lock around this as per Linux?
1566 void* os::dll_lookup(void* handle, const char* name) {
1567   return dlsym(handle, name);
1568 }
1569 
1570 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1571   outputStream * out = (outputStream *) param;
1572   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1573   return 0;
1574 }
1575 
1576 void os::print_dll_info(outputStream *st) {
1577   st->print_cr("Dynamic libraries:");
1578   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1579     st->print_cr("Error: Cannot print dynamic libraries.");
1580   }
1581 }
1582 
1583 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1584 #ifdef RTLD_DI_LINKMAP
1585   Dl_info dli;
1586   void *handle;
1587   Link_map *map;
1588   Link_map *p;
1589 
1590   if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1591       dli.dli_fname == NULL) {
1592     return 1;
1593   }
1594   handle = dlopen(dli.dli_fname, RTLD_LAZY);
1595   if (handle == NULL) {
1596     return 1;
1597   }
1598   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1599   if (map == NULL) {
1600     dlclose(handle);
1601     return 1;
1602   }
1603 
1604   while (map->l_prev != NULL)
1605     map = map->l_prev;
1606 
1607   while (map != NULL) {
1608     // Value for top_address is returned as 0 since we don't have any information about module size
1609     if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1610       dlclose(handle);
1611       return 1;
1612     }
1613     map = map->l_next;
1614   }
1615 
1616   dlclose(handle);
1617 #elif defined(__APPLE__)
1618   for (uint32_t i = 1; i < _dyld_image_count(); i++) {
1619     // Value for top_address is returned as 0 since we don't have any information about module size
1620     if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
1621       return 1;
1622     }
1623   }
1624   return 0;
1625 #else
1626   return 1;
1627 #endif
1628 }
1629 
1630 void os::get_summary_os_info(char* buf, size_t buflen) {
1631   // These buffers are small because we want this to be brief
1632   // and not use a lot of stack while generating the hs_err file.
1633   char os[100];
1634   size_t size = sizeof(os);
1635   int mib_kern[] = { CTL_KERN, KERN_OSTYPE };
1636   if (sysctl(mib_kern, 2, os, &size, NULL, 0) < 0) {
1637 #ifdef __APPLE__
1638       strncpy(os, "Darwin", sizeof(os));
1639 #elif __OpenBSD__
1640       strncpy(os, "OpenBSD", sizeof(os));
1641 #else
1642       strncpy(os, "BSD", sizeof(os));
1643 #endif
1644   }
1645 
1646   char release[100];
1647   size = sizeof(release);
1648   int mib_release[] = { CTL_KERN, KERN_OSRELEASE };
1649   if (sysctl(mib_release, 2, release, &size, NULL, 0) < 0) {
1650       // if error, leave blank
1651       strncpy(release, "", sizeof(release));
1652   }
1653   snprintf(buf, buflen, "%s %s", os, release);
1654 }
1655 
1656 void os::print_os_info_brief(outputStream* st) {
1657   os::Posix::print_uname_info(st);
1658 }
1659 
1660 void os::print_os_info(outputStream* st) {
1661   st->print("OS:");
1662 
1663   os::Posix::print_uname_info(st);
1664 
1665   os::Posix::print_rlimit_info(st);
1666 
1667   os::Posix::print_load_average(st);
1668 }
1669 
1670 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1671   // Nothing to do for now.
1672 }
1673 
1674 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1675   unsigned int mhz;
1676   size_t size = sizeof(mhz);
1677   int mib[] = { CTL_HW, HW_CPU_FREQ };
1678   if (sysctl(mib, 2, &mhz, &size, NULL, 0) < 0) {
1679     mhz = 1;  // looks like an error but can be divided by
1680   } else {
1681     mhz /= 1000000;  // reported in millions
1682   }
1683 
1684   char model[100];
1685   size = sizeof(model);
1686   int mib_model[] = { CTL_HW, HW_MODEL };
1687   if (sysctl(mib_model, 2, model, &size, NULL, 0) < 0) {
1688     strncpy(model, cpu_arch, sizeof(model));
1689   }
1690 
1691   char machine[100];
1692   size = sizeof(machine);
1693   int mib_machine[] = { CTL_HW, HW_MACHINE };
1694   if (sysctl(mib_machine, 2, machine, &size, NULL, 0) < 0) {
1695       strncpy(machine, "", sizeof(machine));
1696   }
1697 
1698   snprintf(buf, buflen, "%s %s %d MHz", model, machine, mhz);
1699 }
1700 
1701 void os::print_memory_info(outputStream* st) {
1702 
1703   st->print("Memory:");
1704   st->print(" %dk page", os::vm_page_size()>>10);
1705 
1706   st->print(", physical " UINT64_FORMAT "k",
1707             os::physical_memory() >> 10);
1708   st->print("(" UINT64_FORMAT "k free)",
1709             os::available_memory() >> 10);
1710   st->cr();
1711 }
1712 
1713 static void print_signal_handler(outputStream* st, int sig,
1714                                  char* buf, size_t buflen);
1715 
1716 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1717   st->print_cr("Signal Handlers:");
1718   print_signal_handler(st, SIGSEGV, buf, buflen);
1719   print_signal_handler(st, SIGBUS , buf, buflen);
1720   print_signal_handler(st, SIGFPE , buf, buflen);
1721   print_signal_handler(st, SIGPIPE, buf, buflen);
1722   print_signal_handler(st, SIGXFSZ, buf, buflen);
1723   print_signal_handler(st, SIGILL , buf, buflen);
1724   print_signal_handler(st, SR_signum, buf, buflen);
1725   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1726   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1727   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1728   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1729 }
1730 
1731 static char saved_jvm_path[MAXPATHLEN] = {0};
1732 
1733 // Find the full path to the current module, libjvm
1734 void os::jvm_path(char *buf, jint buflen) {
1735   // Error checking.
1736   if (buflen < MAXPATHLEN) {
1737     assert(false, "must use a large-enough buffer");
1738     buf[0] = '\0';
1739     return;
1740   }
1741   // Lazy resolve the path to current module.
1742   if (saved_jvm_path[0] != 0) {
1743     strcpy(buf, saved_jvm_path);
1744     return;
1745   }
1746 
1747   char dli_fname[MAXPATHLEN];
1748   bool ret = dll_address_to_library_name(
1749                                          CAST_FROM_FN_PTR(address, os::jvm_path),
1750                                          dli_fname, sizeof(dli_fname), NULL);
1751   assert(ret, "cannot locate libjvm");
1752   char *rp = NULL;
1753   if (ret && dli_fname[0] != '\0') {
1754     rp = realpath(dli_fname, buf);
1755   }
1756   if (rp == NULL) {
1757     return;
1758   }
1759 
1760   if (Arguments::sun_java_launcher_is_altjvm()) {
1761     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1762     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1763     // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1764     // appears at the right place in the string, then assume we are
1765     // installed in a JDK and we're done. Otherwise, check for a
1766     // JAVA_HOME environment variable and construct a path to the JVM
1767     // being overridden.
1768 
1769     const char *p = buf + strlen(buf) - 1;
1770     for (int count = 0; p > buf && count < 5; ++count) {
1771       for (--p; p > buf && *p != '/'; --p)
1772         /* empty */ ;
1773     }
1774 
1775     if (strncmp(p, "/jre/lib/", 9) != 0) {
1776       // Look for JAVA_HOME in the environment.
1777       char* java_home_var = ::getenv("JAVA_HOME");
1778       if (java_home_var != NULL && java_home_var[0] != 0) {
1779         char* jrelib_p;
1780         int len;
1781 
1782         // Check the current module name "libjvm"
1783         p = strrchr(buf, '/');
1784         assert(strstr(p, "/libjvm") == p, "invalid library name");
1785 
1786         rp = realpath(java_home_var, buf);
1787         if (rp == NULL) {
1788           return;
1789         }
1790 
1791         // determine if this is a legacy image or modules image
1792         // modules image doesn't have "jre" subdirectory
1793         len = strlen(buf);
1794         assert(len < buflen, "Ran out of buffer space");
1795         jrelib_p = buf + len;
1796 
1797         // Add the appropriate library subdir
1798         snprintf(jrelib_p, buflen-len, "/jre/lib");
1799         if (0 != access(buf, F_OK)) {
1800           snprintf(jrelib_p, buflen-len, "/lib");
1801         }
1802 
1803         // Add the appropriate client or server subdir
1804         len = strlen(buf);
1805         jrelib_p = buf + len;
1806         snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1807         if (0 != access(buf, F_OK)) {
1808           snprintf(jrelib_p, buflen-len, "%s", "");
1809         }
1810 
1811         // If the path exists within JAVA_HOME, add the JVM library name
1812         // to complete the path to JVM being overridden.  Otherwise fallback
1813         // to the path to the current library.
1814         if (0 == access(buf, F_OK)) {
1815           // Use current module name "libjvm"
1816           len = strlen(buf);
1817           snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1818         } else {
1819           // Fall back to path of current library
1820           rp = realpath(dli_fname, buf);
1821           if (rp == NULL) {
1822             return;
1823           }
1824         }
1825       }
1826     }
1827   }
1828 
1829   strncpy(saved_jvm_path, buf, MAXPATHLEN);
1830   saved_jvm_path[MAXPATHLEN - 1] = '\0';
1831 }
1832 
1833 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1834   // no prefix required, not even "_"
1835 }
1836 
1837 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1838   // no suffix required
1839 }
1840 
1841 ////////////////////////////////////////////////////////////////////////////////
1842 // sun.misc.Signal support
1843 
1844 static volatile jint sigint_count = 0;
1845 
1846 static void UserHandler(int sig, void *siginfo, void *context) {
1847   // 4511530 - sem_post is serialized and handled by the manager thread. When
1848   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1849   // don't want to flood the manager thread with sem_post requests.
1850   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
1851     return;
1852   }
1853 
1854   // Ctrl-C is pressed during error reporting, likely because the error
1855   // handler fails to abort. Let VM die immediately.
1856   if (sig == SIGINT && is_error_reported()) {
1857     os::die();
1858   }
1859 
1860   os::signal_notify(sig);
1861 }
1862 
1863 void* os::user_handler() {
1864   return CAST_FROM_FN_PTR(void*, UserHandler);
1865 }
1866 
1867 extern "C" {
1868   typedef void (*sa_handler_t)(int);
1869   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1870 }
1871 
1872 void* os::signal(int signal_number, void* handler) {
1873   struct sigaction sigAct, oldSigAct;
1874 
1875   sigfillset(&(sigAct.sa_mask));
1876   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1877   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1878 
1879   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1880     // -1 means registration failed
1881     return (void *)-1;
1882   }
1883 
1884   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1885 }
1886 
1887 void os::signal_raise(int signal_number) {
1888   ::raise(signal_number);
1889 }
1890 
1891 // The following code is moved from os.cpp for making this
1892 // code platform specific, which it is by its very nature.
1893 
1894 // Will be modified when max signal is changed to be dynamic
1895 int os::sigexitnum_pd() {
1896   return NSIG;
1897 }
1898 
1899 // a counter for each possible signal value
1900 static volatile jint pending_signals[NSIG+1] = { 0 };
1901 
1902 // Bsd(POSIX) specific hand shaking semaphore.
1903 #ifdef __APPLE__
1904 typedef semaphore_t os_semaphore_t;
1905 
1906   #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1907   #define SEM_WAIT(sem)           semaphore_wait(sem)
1908   #define SEM_POST(sem)           semaphore_signal(sem)
1909   #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1910 #else
1911 typedef sem_t os_semaphore_t;
1912 
1913   #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1914   #define SEM_WAIT(sem)           sem_wait(&sem)
1915   #define SEM_POST(sem)           sem_post(&sem)
1916   #define SEM_DESTROY(sem)        sem_destroy(&sem)
1917 #endif
1918 
1919 #ifdef __APPLE__
1920 // OS X doesn't support unamed POSIX semaphores, so the implementation in os_posix.cpp can't be used.
1921 
1922 static const char* sem_init_strerror(kern_return_t value) {
1923   switch (value) {
1924     case KERN_INVALID_ARGUMENT:  return "Invalid argument";
1925     case KERN_RESOURCE_SHORTAGE: return "Resource shortage";
1926     default:                     return "Unknown";
1927   }
1928 }
1929 
1930 OSXSemaphore::OSXSemaphore(uint value) {
1931   kern_return_t ret = SEM_INIT(_semaphore, value);
1932 
1933   guarantee(ret == KERN_SUCCESS, "Failed to create semaphore: %s", sem_init_strerror(ret));
1934 }
1935 
1936 OSXSemaphore::~OSXSemaphore() {
1937   SEM_DESTROY(_semaphore);
1938 }
1939 
1940 void OSXSemaphore::signal(uint count) {
1941   for (uint i = 0; i < count; i++) {
1942     kern_return_t ret = SEM_POST(_semaphore);
1943 
1944     assert(ret == KERN_SUCCESS, "Failed to signal semaphore");
1945   }
1946 }
1947 
1948 void OSXSemaphore::wait() {
1949   kern_return_t ret;
1950   while ((ret = SEM_WAIT(_semaphore)) == KERN_ABORTED) {
1951     // Semaphore was interrupted. Retry.
1952   }
1953   assert(ret == KERN_SUCCESS, "Failed to wait on semaphore");
1954 }
1955 
1956 jlong OSXSemaphore::currenttime() {
1957   struct timeval tv;
1958   gettimeofday(&tv, NULL);
1959   return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1960 }
1961 
1962 bool OSXSemaphore::trywait() {
1963   return timedwait(0, 0);
1964 }
1965 
1966 bool OSXSemaphore::timedwait(unsigned int sec, int nsec) {
1967   kern_return_t kr = KERN_ABORTED;
1968   mach_timespec_t waitspec;
1969   waitspec.tv_sec = sec;
1970   waitspec.tv_nsec = nsec;
1971 
1972   jlong starttime = currenttime();
1973 
1974   kr = semaphore_timedwait(_semaphore, waitspec);
1975   while (kr == KERN_ABORTED) {
1976     jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
1977 
1978     jlong current = currenttime();
1979     jlong passedtime = current - starttime;
1980 
1981     if (passedtime >= totalwait) {
1982       waitspec.tv_sec = 0;
1983       waitspec.tv_nsec = 0;
1984     } else {
1985       jlong waittime = totalwait - (current - starttime);
1986       waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
1987       waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
1988     }
1989 
1990     kr = semaphore_timedwait(_semaphore, waitspec);
1991   }
1992 
1993   return kr == KERN_SUCCESS;
1994 }
1995 
1996 #else
1997 // Use POSIX implementation of semaphores.
1998 
1999 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2000   struct timespec ts;
2001   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2002 
2003   return ts;
2004 }
2005 
2006 #endif // __APPLE__
2007 
2008 static os_semaphore_t sig_sem;
2009 
2010 #ifdef __APPLE__
2011 static OSXSemaphore sr_semaphore;
2012 #else
2013 static PosixSemaphore sr_semaphore;
2014 #endif
2015 
2016 void os::signal_init_pd() {
2017   // Initialize signal structures
2018   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2019 
2020   // Initialize signal semaphore
2021   ::SEM_INIT(sig_sem, 0);
2022 }
2023 
2024 void os::signal_notify(int sig) {
2025   Atomic::inc(&pending_signals[sig]);
2026   ::SEM_POST(sig_sem);
2027 }
2028 
2029 static int check_pending_signals(bool wait) {
2030   Atomic::store(0, &sigint_count);
2031   for (;;) {
2032     for (int i = 0; i < NSIG + 1; i++) {
2033       jint n = pending_signals[i];
2034       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2035         return i;
2036       }
2037     }
2038     if (!wait) {
2039       return -1;
2040     }
2041     JavaThread *thread = JavaThread::current();
2042     ThreadBlockInVM tbivm(thread);
2043 
2044     bool threadIsSuspended;
2045     do {
2046       thread->set_suspend_equivalent();
2047       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2048       ::SEM_WAIT(sig_sem);
2049 
2050       // were we externally suspended while we were waiting?
2051       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2052       if (threadIsSuspended) {
2053         // The semaphore has been incremented, but while we were waiting
2054         // another thread suspended us. We don't want to continue running
2055         // while suspended because that would surprise the thread that
2056         // suspended us.
2057         ::SEM_POST(sig_sem);
2058 
2059         thread->java_suspend_self();
2060       }
2061     } while (threadIsSuspended);
2062   }
2063 }
2064 
2065 int os::signal_lookup() {
2066   return check_pending_signals(false);
2067 }
2068 
2069 int os::signal_wait() {
2070   return check_pending_signals(true);
2071 }
2072 
2073 ////////////////////////////////////////////////////////////////////////////////
2074 // Virtual Memory
2075 
2076 int os::vm_page_size() {
2077   // Seems redundant as all get out
2078   assert(os::Bsd::page_size() != -1, "must call os::init");
2079   return os::Bsd::page_size();
2080 }
2081 
2082 // Solaris allocates memory by pages.
2083 int os::vm_allocation_granularity() {
2084   assert(os::Bsd::page_size() != -1, "must call os::init");
2085   return os::Bsd::page_size();
2086 }
2087 
2088 // Rationale behind this function:
2089 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2090 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2091 //  samples for JITted code. Here we create private executable mapping over the code cache
2092 //  and then we can use standard (well, almost, as mapping can change) way to provide
2093 //  info for the reporting script by storing timestamp and location of symbol
2094 void bsd_wrap_code(char* base, size_t size) {
2095   static volatile jint cnt = 0;
2096 
2097   if (!UseOprofile) {
2098     return;
2099   }
2100 
2101   char buf[PATH_MAX + 1];
2102   int num = Atomic::add(1, &cnt);
2103 
2104   snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2105            os::get_temp_directory(), os::current_process_id(), num);
2106   unlink(buf);
2107 
2108   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2109 
2110   if (fd != -1) {
2111     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2112     if (rv != (off_t)-1) {
2113       if (::write(fd, "", 1) == 1) {
2114         mmap(base, size,
2115              PROT_READ|PROT_WRITE|PROT_EXEC,
2116              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2117       }
2118     }
2119     ::close(fd);
2120     unlink(buf);
2121   }
2122 }
2123 
2124 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2125                                     int err) {
2126   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2127           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2128           strerror(err), err);
2129 }
2130 
2131 // NOTE: Bsd kernel does not really reserve the pages for us.
2132 //       All it does is to check if there are enough free pages
2133 //       left at the time of mmap(). This could be a potential
2134 //       problem.
2135 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2136   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2137 #ifdef __OpenBSD__
2138   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2139   if (::mprotect(addr, size, prot) == 0) {
2140     return true;
2141   }
2142 #else
2143   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2144                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2145   if (res != (uintptr_t) MAP_FAILED) {
2146     return true;
2147   }
2148 #endif
2149 
2150   // Warn about any commit errors we see in non-product builds just
2151   // in case mmap() doesn't work as described on the man page.
2152   NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2153 
2154   return false;
2155 }
2156 
2157 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2158                           bool exec) {
2159   // alignment_hint is ignored on this OS
2160   return pd_commit_memory(addr, size, exec);
2161 }
2162 
2163 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2164                                   const char* mesg) {
2165   assert(mesg != NULL, "mesg must be specified");
2166   if (!pd_commit_memory(addr, size, exec)) {
2167     // add extra info in product mode for vm_exit_out_of_memory():
2168     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2169     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2170   }
2171 }
2172 
2173 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2174                                   size_t alignment_hint, bool exec,
2175                                   const char* mesg) {
2176   // alignment_hint is ignored on this OS
2177   pd_commit_memory_or_exit(addr, size, exec, mesg);
2178 }
2179 
2180 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2181 }
2182 
2183 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2184   ::madvise(addr, bytes, MADV_DONTNEED);
2185 }
2186 
2187 void os::numa_make_global(char *addr, size_t bytes) {
2188 }
2189 
2190 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2191 }
2192 
2193 bool os::numa_topology_changed()   { return false; }
2194 
2195 size_t os::numa_get_groups_num() {
2196   return 1;
2197 }
2198 
2199 int os::numa_get_group_id() {
2200   return 0;
2201 }
2202 
2203 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2204   if (size > 0) {
2205     ids[0] = 0;
2206     return 1;
2207   }
2208   return 0;
2209 }
2210 
2211 bool os::get_page_info(char *start, page_info* info) {
2212   return false;
2213 }
2214 
2215 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2216   return end;
2217 }
2218 
2219 
2220 bool os::pd_uncommit_memory(char* addr, size_t size) {
2221 #ifdef __OpenBSD__
2222   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2223   return ::mprotect(addr, size, PROT_NONE) == 0;
2224 #else
2225   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2226                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2227   return res  != (uintptr_t) MAP_FAILED;
2228 #endif
2229 }
2230 
2231 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2232   return os::commit_memory(addr, size, !ExecMem);
2233 }
2234 
2235 // If this is a growable mapping, remove the guard pages entirely by
2236 // munmap()ping them.  If not, just call uncommit_memory().
2237 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2238   return os::uncommit_memory(addr, size);
2239 }
2240 
2241 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2242 // at 'requested_addr'. If there are existing memory mappings at the same
2243 // location, however, they will be overwritten. If 'fixed' is false,
2244 // 'requested_addr' is only treated as a hint, the return value may or
2245 // may not start from the requested address. Unlike Bsd mmap(), this
2246 // function returns NULL to indicate failure.
2247 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2248   char * addr;
2249   int flags;
2250 
2251   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2252   if (fixed) {
2253     assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2254     flags |= MAP_FIXED;
2255   }
2256 
2257   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2258   // touch an uncommitted page. Otherwise, the read/write might
2259   // succeed if we have enough swap space to back the physical page.
2260   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2261                        flags, -1, 0);
2262 
2263   return addr == MAP_FAILED ? NULL : addr;
2264 }
2265 
2266 static int anon_munmap(char * addr, size_t size) {
2267   return ::munmap(addr, size) == 0;
2268 }
2269 
2270 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2271                             size_t alignment_hint) {
2272   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2273 }
2274 
2275 bool os::pd_release_memory(char* addr, size_t size) {
2276   return anon_munmap(addr, size);
2277 }
2278 
2279 static bool bsd_mprotect(char* addr, size_t size, int prot) {
2280   // Bsd wants the mprotect address argument to be page aligned.
2281   char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2282 
2283   // According to SUSv3, mprotect() should only be used with mappings
2284   // established by mmap(), and mmap() always maps whole pages. Unaligned
2285   // 'addr' likely indicates problem in the VM (e.g. trying to change
2286   // protection of malloc'ed or statically allocated memory). Check the
2287   // caller if you hit this assert.
2288   assert(addr == bottom, "sanity check");
2289 
2290   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2291   return ::mprotect(bottom, size, prot) == 0;
2292 }
2293 
2294 // Set protections specified
2295 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2296                         bool is_committed) {
2297   unsigned int p = 0;
2298   switch (prot) {
2299   case MEM_PROT_NONE: p = PROT_NONE; break;
2300   case MEM_PROT_READ: p = PROT_READ; break;
2301   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2302   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2303   default:
2304     ShouldNotReachHere();
2305   }
2306   // is_committed is unused.
2307   return bsd_mprotect(addr, bytes, p);
2308 }
2309 
2310 bool os::guard_memory(char* addr, size_t size) {
2311   return bsd_mprotect(addr, size, PROT_NONE);
2312 }
2313 
2314 bool os::unguard_memory(char* addr, size_t size) {
2315   return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2316 }
2317 
2318 bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2319   return false;
2320 }
2321 
2322 // Large page support
2323 
2324 static size_t _large_page_size = 0;
2325 
2326 void os::large_page_init() {
2327 }
2328 
2329 
2330 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2331   fatal("This code is not used or maintained.");
2332 
2333   // "exec" is passed in but not used.  Creating the shared image for
2334   // the code cache doesn't have an SHM_X executable permission to check.
2335   assert(UseLargePages && UseSHM, "only for SHM large pages");
2336 
2337   key_t key = IPC_PRIVATE;
2338   char *addr;
2339 
2340   bool warn_on_failure = UseLargePages &&
2341                          (!FLAG_IS_DEFAULT(UseLargePages) ||
2342                           !FLAG_IS_DEFAULT(LargePageSizeInBytes));
2343 
2344   // Create a large shared memory region to attach to based on size.
2345   // Currently, size is the total size of the heap
2346   int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2347   if (shmid == -1) {
2348     // Possible reasons for shmget failure:
2349     // 1. shmmax is too small for Java heap.
2350     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2351     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2352     // 2. not enough large page memory.
2353     //    > check available large pages: cat /proc/meminfo
2354     //    > increase amount of large pages:
2355     //          echo new_value > /proc/sys/vm/nr_hugepages
2356     //      Note 1: different Bsd may use different name for this property,
2357     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2358     //      Note 2: it's possible there's enough physical memory available but
2359     //            they are so fragmented after a long run that they can't
2360     //            coalesce into large pages. Try to reserve large pages when
2361     //            the system is still "fresh".
2362     if (warn_on_failure) {
2363       warning("Failed to reserve shared memory (errno = %d).", errno);
2364     }
2365     return NULL;
2366   }
2367 
2368   // attach to the region
2369   addr = (char*)shmat(shmid, req_addr, 0);
2370   int err = errno;
2371 
2372   // Remove shmid. If shmat() is successful, the actual shared memory segment
2373   // will be deleted when it's detached by shmdt() or when the process
2374   // terminates. If shmat() is not successful this will remove the shared
2375   // segment immediately.
2376   shmctl(shmid, IPC_RMID, NULL);
2377 
2378   if ((intptr_t)addr == -1) {
2379     if (warn_on_failure) {
2380       warning("Failed to attach shared memory (errno = %d).", err);
2381     }
2382     return NULL;
2383   }
2384 
2385   // The memory is committed
2386   MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2387 
2388   return addr;
2389 }
2390 
2391 bool os::release_memory_special(char* base, size_t bytes) {
2392   if (MemTracker::tracking_level() > NMT_minimal) {
2393     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2394     // detaching the SHM segment will also delete it, see reserve_memory_special()
2395     int rslt = shmdt(base);
2396     if (rslt == 0) {
2397       tkr.record((address)base, bytes);
2398       return true;
2399     } else {
2400       return false;
2401     }
2402   } else {
2403     return shmdt(base) == 0;
2404   }
2405 }
2406 
2407 size_t os::large_page_size() {
2408   return _large_page_size;
2409 }
2410 
2411 // HugeTLBFS allows application to commit large page memory on demand;
2412 // with SysV SHM the entire memory region must be allocated as shared
2413 // memory.
2414 bool os::can_commit_large_page_memory() {
2415   return UseHugeTLBFS;
2416 }
2417 
2418 bool os::can_execute_large_page_memory() {
2419   return UseHugeTLBFS;
2420 }
2421 
2422 // Reserve memory at an arbitrary address, only if that area is
2423 // available (and not reserved for something else).
2424 
2425 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2426   const int max_tries = 10;
2427   char* base[max_tries];
2428   size_t size[max_tries];
2429   const size_t gap = 0x000000;
2430 
2431   // Assert only that the size is a multiple of the page size, since
2432   // that's all that mmap requires, and since that's all we really know
2433   // about at this low abstraction level.  If we need higher alignment,
2434   // we can either pass an alignment to this method or verify alignment
2435   // in one of the methods further up the call chain.  See bug 5044738.
2436   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2437 
2438   // Repeatedly allocate blocks until the block is allocated at the
2439   // right spot.
2440 
2441   // Bsd mmap allows caller to pass an address as hint; give it a try first,
2442   // if kernel honors the hint then we can return immediately.
2443   char * addr = anon_mmap(requested_addr, bytes, false);
2444   if (addr == requested_addr) {
2445     return requested_addr;
2446   }
2447 
2448   if (addr != NULL) {
2449     // mmap() is successful but it fails to reserve at the requested address
2450     anon_munmap(addr, bytes);
2451   }
2452 
2453   int i;
2454   for (i = 0; i < max_tries; ++i) {
2455     base[i] = reserve_memory(bytes);
2456 
2457     if (base[i] != NULL) {
2458       // Is this the block we wanted?
2459       if (base[i] == requested_addr) {
2460         size[i] = bytes;
2461         break;
2462       }
2463 
2464       // Does this overlap the block we wanted? Give back the overlapped
2465       // parts and try again.
2466 
2467       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2468       if (top_overlap >= 0 && top_overlap < bytes) {
2469         unmap_memory(base[i], top_overlap);
2470         base[i] += top_overlap;
2471         size[i] = bytes - top_overlap;
2472       } else {
2473         size_t bottom_overlap = base[i] + bytes - requested_addr;
2474         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2475           unmap_memory(requested_addr, bottom_overlap);
2476           size[i] = bytes - bottom_overlap;
2477         } else {
2478           size[i] = bytes;
2479         }
2480       }
2481     }
2482   }
2483 
2484   // Give back the unused reserved pieces.
2485 
2486   for (int j = 0; j < i; ++j) {
2487     if (base[j] != NULL) {
2488       unmap_memory(base[j], size[j]);
2489     }
2490   }
2491 
2492   if (i < max_tries) {
2493     return requested_addr;
2494   } else {
2495     return NULL;
2496   }
2497 }
2498 
2499 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2500   RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2501 }
2502 
2503 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2504   RESTARTABLE_RETURN_INT(::pread(fd, buf, nBytes, offset));
2505 }
2506 
2507 void os::naked_short_sleep(jlong ms) {
2508   struct timespec req;
2509 
2510   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2511   req.tv_sec = 0;
2512   if (ms > 0) {
2513     req.tv_nsec = (ms % 1000) * 1000000;
2514   } else {
2515     req.tv_nsec = 1;
2516   }
2517 
2518   nanosleep(&req, NULL);
2519 
2520   return;
2521 }
2522 
2523 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2524 void os::infinite_sleep() {
2525   while (true) {    // sleep forever ...
2526     ::sleep(100);   // ... 100 seconds at a time
2527   }
2528 }
2529 
2530 // Used to convert frequent JVM_Yield() to nops
2531 bool os::dont_yield() {
2532   return DontYieldALot;
2533 }
2534 
2535 void os::naked_yield() {
2536   sched_yield();
2537 }
2538 
2539 ////////////////////////////////////////////////////////////////////////////////
2540 // thread priority support
2541 
2542 // Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2543 // only supports dynamic priority, static priority must be zero. For real-time
2544 // applications, Bsd supports SCHED_RR which allows static priority (1-99).
2545 // However, for large multi-threaded applications, SCHED_RR is not only slower
2546 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2547 // of 5 runs - Sep 2005).
2548 //
2549 // The following code actually changes the niceness of kernel-thread/LWP. It
2550 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
2551 // not the entire user process, and user level threads are 1:1 mapped to kernel
2552 // threads. It has always been the case, but could change in the future. For
2553 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2554 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2555 
2556 #if !defined(__APPLE__)
2557 int os::java_to_os_priority[CriticalPriority + 1] = {
2558   19,              // 0 Entry should never be used
2559 
2560    0,              // 1 MinPriority
2561    3,              // 2
2562    6,              // 3
2563 
2564   10,              // 4
2565   15,              // 5 NormPriority
2566   18,              // 6
2567 
2568   21,              // 7
2569   25,              // 8
2570   28,              // 9 NearMaxPriority
2571 
2572   31,              // 10 MaxPriority
2573 
2574   31               // 11 CriticalPriority
2575 };
2576 #else
2577 // Using Mach high-level priority assignments
2578 int os::java_to_os_priority[CriticalPriority + 1] = {
2579    0,              // 0 Entry should never be used (MINPRI_USER)
2580 
2581   27,              // 1 MinPriority
2582   28,              // 2
2583   29,              // 3
2584 
2585   30,              // 4
2586   31,              // 5 NormPriority (BASEPRI_DEFAULT)
2587   32,              // 6
2588 
2589   33,              // 7
2590   34,              // 8
2591   35,              // 9 NearMaxPriority
2592 
2593   36,              // 10 MaxPriority
2594 
2595   36               // 11 CriticalPriority
2596 };
2597 #endif
2598 
2599 static int prio_init() {
2600   if (ThreadPriorityPolicy == 1) {
2601     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2602     // if effective uid is not root. Perhaps, a more elegant way of doing
2603     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2604     if (geteuid() != 0) {
2605       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2606         warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2607       }
2608       ThreadPriorityPolicy = 0;
2609     }
2610   }
2611   if (UseCriticalJavaThreadPriority) {
2612     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2613   }
2614   return 0;
2615 }
2616 
2617 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2618   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2619 
2620 #ifdef __OpenBSD__
2621   // OpenBSD pthread_setprio starves low priority threads
2622   return OS_OK;
2623 #elif defined(__FreeBSD__)
2624   int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2625 #elif defined(__APPLE__) || defined(__NetBSD__)
2626   struct sched_param sp;
2627   int policy;
2628   pthread_t self = pthread_self();
2629 
2630   if (pthread_getschedparam(self, &policy, &sp) != 0) {
2631     return OS_ERR;
2632   }
2633 
2634   sp.sched_priority = newpri;
2635   if (pthread_setschedparam(self, policy, &sp) != 0) {
2636     return OS_ERR;
2637   }
2638 
2639   return OS_OK;
2640 #else
2641   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2642   return (ret == 0) ? OS_OK : OS_ERR;
2643 #endif
2644 }
2645 
2646 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2647   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2648     *priority_ptr = java_to_os_priority[NormPriority];
2649     return OS_OK;
2650   }
2651 
2652   errno = 0;
2653 #if defined(__OpenBSD__) || defined(__FreeBSD__)
2654   *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2655 #elif defined(__APPLE__) || defined(__NetBSD__)
2656   int policy;
2657   struct sched_param sp;
2658 
2659   pthread_getschedparam(pthread_self(), &policy, &sp);
2660   *priority_ptr = sp.sched_priority;
2661 #else
2662   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2663 #endif
2664   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2665 }
2666 
2667 // Hint to the underlying OS that a task switch would not be good.
2668 // Void return because it's a hint and can fail.
2669 void os::hint_no_preempt() {}
2670 
2671 ////////////////////////////////////////////////////////////////////////////////
2672 // suspend/resume support
2673 
2674 //  the low-level signal-based suspend/resume support is a remnant from the
2675 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2676 //  within hotspot. Now there is a single use-case for this:
2677 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
2678 //      that runs in the watcher thread.
2679 //  The remaining code is greatly simplified from the more general suspension
2680 //  code that used to be used.
2681 //
2682 //  The protocol is quite simple:
2683 //  - suspend:
2684 //      - sends a signal to the target thread
2685 //      - polls the suspend state of the osthread using a yield loop
2686 //      - target thread signal handler (SR_handler) sets suspend state
2687 //        and blocks in sigsuspend until continued
2688 //  - resume:
2689 //      - sets target osthread state to continue
2690 //      - sends signal to end the sigsuspend loop in the SR_handler
2691 //
2692 //  Note that the SR_lock plays no role in this suspend/resume protocol.
2693 
2694 static void resume_clear_context(OSThread *osthread) {
2695   osthread->set_ucontext(NULL);
2696   osthread->set_siginfo(NULL);
2697 }
2698 
2699 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2700   osthread->set_ucontext(context);
2701   osthread->set_siginfo(siginfo);
2702 }
2703 
2704 // Handler function invoked when a thread's execution is suspended or
2705 // resumed. We have to be careful that only async-safe functions are
2706 // called here (Note: most pthread functions are not async safe and
2707 // should be avoided.)
2708 //
2709 // Note: sigwait() is a more natural fit than sigsuspend() from an
2710 // interface point of view, but sigwait() prevents the signal hander
2711 // from being run. libpthread would get very confused by not having
2712 // its signal handlers run and prevents sigwait()'s use with the
2713 // mutex granting granting signal.
2714 //
2715 // Currently only ever called on the VMThread or JavaThread
2716 //
2717 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2718   // Save and restore errno to avoid confusing native code with EINTR
2719   // after sigsuspend.
2720   int old_errno = errno;
2721 
2722   Thread* thread = Thread::current();
2723   OSThread* osthread = thread->osthread();
2724   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2725 
2726   os::SuspendResume::State current = osthread->sr.state();
2727   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2728     suspend_save_context(osthread, siginfo, context);
2729 
2730     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2731     os::SuspendResume::State state = osthread->sr.suspended();
2732     if (state == os::SuspendResume::SR_SUSPENDED) {
2733       sigset_t suspend_set;  // signals for sigsuspend()
2734 
2735       // get current set of blocked signals and unblock resume signal
2736       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2737       sigdelset(&suspend_set, SR_signum);
2738 
2739       sr_semaphore.signal();
2740       // wait here until we are resumed
2741       while (1) {
2742         sigsuspend(&suspend_set);
2743 
2744         os::SuspendResume::State result = osthread->sr.running();
2745         if (result == os::SuspendResume::SR_RUNNING) {
2746           sr_semaphore.signal();
2747           break;
2748         } else if (result != os::SuspendResume::SR_SUSPENDED) {
2749           ShouldNotReachHere();
2750         }
2751       }
2752 
2753     } else if (state == os::SuspendResume::SR_RUNNING) {
2754       // request was cancelled, continue
2755     } else {
2756       ShouldNotReachHere();
2757     }
2758 
2759     resume_clear_context(osthread);
2760   } else if (current == os::SuspendResume::SR_RUNNING) {
2761     // request was cancelled, continue
2762   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2763     // ignore
2764   } else {
2765     // ignore
2766   }
2767 
2768   errno = old_errno;
2769 }
2770 
2771 
2772 static int SR_initialize() {
2773   struct sigaction act;
2774   char *s;
2775   // Get signal number to use for suspend/resume
2776   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2777     int sig = ::strtol(s, 0, 10);
2778     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2779         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2780       SR_signum = sig;
2781     } else {
2782       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2783               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2784     }
2785   }
2786 
2787   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2788          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2789 
2790   sigemptyset(&SR_sigset);
2791   sigaddset(&SR_sigset, SR_signum);
2792 
2793   // Set up signal handler for suspend/resume
2794   act.sa_flags = SA_RESTART|SA_SIGINFO;
2795   act.sa_handler = (void (*)(int)) SR_handler;
2796 
2797   // SR_signum is blocked by default.
2798   // 4528190 - We also need to block pthread restart signal (32 on all
2799   // supported Bsd platforms). Note that BsdThreads need to block
2800   // this signal for all threads to work properly. So we don't have
2801   // to use hard-coded signal number when setting up the mask.
2802   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2803 
2804   if (sigaction(SR_signum, &act, 0) == -1) {
2805     return -1;
2806   }
2807 
2808   // Save signal flag
2809   os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2810   return 0;
2811 }
2812 
2813 static int sr_notify(OSThread* osthread) {
2814   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2815   assert_status(status == 0, status, "pthread_kill");
2816   return status;
2817 }
2818 
2819 // "Randomly" selected value for how long we want to spin
2820 // before bailing out on suspending a thread, also how often
2821 // we send a signal to a thread we want to resume
2822 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2823 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2824 
2825 // returns true on success and false on error - really an error is fatal
2826 // but this seems the normal response to library errors
2827 static bool do_suspend(OSThread* osthread) {
2828   assert(osthread->sr.is_running(), "thread should be running");
2829   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2830 
2831   // mark as suspended and send signal
2832   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2833     // failed to switch, state wasn't running?
2834     ShouldNotReachHere();
2835     return false;
2836   }
2837 
2838   if (sr_notify(osthread) != 0) {
2839     ShouldNotReachHere();
2840   }
2841 
2842   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2843   while (true) {
2844     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2845       break;
2846     } else {
2847       // timeout
2848       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2849       if (cancelled == os::SuspendResume::SR_RUNNING) {
2850         return false;
2851       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2852         // make sure that we consume the signal on the semaphore as well
2853         sr_semaphore.wait();
2854         break;
2855       } else {
2856         ShouldNotReachHere();
2857         return false;
2858       }
2859     }
2860   }
2861 
2862   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2863   return true;
2864 }
2865 
2866 static void do_resume(OSThread* osthread) {
2867   assert(osthread->sr.is_suspended(), "thread should be suspended");
2868   assert(!sr_semaphore.trywait(), "invalid semaphore state");
2869 
2870   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2871     // failed to switch to WAKEUP_REQUEST
2872     ShouldNotReachHere();
2873     return;
2874   }
2875 
2876   while (true) {
2877     if (sr_notify(osthread) == 0) {
2878       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2879         if (osthread->sr.is_running()) {
2880           return;
2881         }
2882       }
2883     } else {
2884       ShouldNotReachHere();
2885     }
2886   }
2887 
2888   guarantee(osthread->sr.is_running(), "Must be running!");
2889 }
2890 
2891 ///////////////////////////////////////////////////////////////////////////////////
2892 // signal handling (except suspend/resume)
2893 
2894 // This routine may be used by user applications as a "hook" to catch signals.
2895 // The user-defined signal handler must pass unrecognized signals to this
2896 // routine, and if it returns true (non-zero), then the signal handler must
2897 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
2898 // routine will never retun false (zero), but instead will execute a VM panic
2899 // routine kill the process.
2900 //
2901 // If this routine returns false, it is OK to call it again.  This allows
2902 // the user-defined signal handler to perform checks either before or after
2903 // the VM performs its own checks.  Naturally, the user code would be making
2904 // a serious error if it tried to handle an exception (such as a null check
2905 // or breakpoint) that the VM was generating for its own correct operation.
2906 //
2907 // This routine may recognize any of the following kinds of signals:
2908 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2909 // It should be consulted by handlers for any of those signals.
2910 //
2911 // The caller of this routine must pass in the three arguments supplied
2912 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2913 // field of the structure passed to sigaction().  This routine assumes that
2914 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2915 //
2916 // Note that the VM will print warnings if it detects conflicting signal
2917 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2918 //
2919 extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2920                                                void* ucontext,
2921                                                int abort_if_unrecognized);
2922 
2923 void signalHandler(int sig, siginfo_t* info, void* uc) {
2924   assert(info != NULL && uc != NULL, "it must be old kernel");
2925   int orig_errno = errno;  // Preserve errno value over signal handler.
2926   JVM_handle_bsd_signal(sig, info, uc, true);
2927   errno = orig_errno;
2928 }
2929 
2930 
2931 // This boolean allows users to forward their own non-matching signals
2932 // to JVM_handle_bsd_signal, harmlessly.
2933 bool os::Bsd::signal_handlers_are_installed = false;
2934 
2935 // For signal-chaining
2936 struct sigaction sigact[NSIG];
2937 uint32_t sigs = 0;
2938 #if (32 < NSIG-1)
2939 #error "Not all signals can be encoded in sigs. Adapt its type!"
2940 #endif
2941 bool os::Bsd::libjsig_is_loaded = false;
2942 typedef struct sigaction *(*get_signal_t)(int);
2943 get_signal_t os::Bsd::get_signal_action = NULL;
2944 
2945 struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
2946   struct sigaction *actp = NULL;
2947 
2948   if (libjsig_is_loaded) {
2949     // Retrieve the old signal handler from libjsig
2950     actp = (*get_signal_action)(sig);
2951   }
2952   if (actp == NULL) {
2953     // Retrieve the preinstalled signal handler from jvm
2954     actp = get_preinstalled_handler(sig);
2955   }
2956 
2957   return actp;
2958 }
2959 
2960 static bool call_chained_handler(struct sigaction *actp, int sig,
2961                                  siginfo_t *siginfo, void *context) {
2962   // Call the old signal handler
2963   if (actp->sa_handler == SIG_DFL) {
2964     // It's more reasonable to let jvm treat it as an unexpected exception
2965     // instead of taking the default action.
2966     return false;
2967   } else if (actp->sa_handler != SIG_IGN) {
2968     if ((actp->sa_flags & SA_NODEFER) == 0) {
2969       // automaticlly block the signal
2970       sigaddset(&(actp->sa_mask), sig);
2971     }
2972 
2973     sa_handler_t hand;
2974     sa_sigaction_t sa;
2975     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
2976     // retrieve the chained handler
2977     if (siginfo_flag_set) {
2978       sa = actp->sa_sigaction;
2979     } else {
2980       hand = actp->sa_handler;
2981     }
2982 
2983     if ((actp->sa_flags & SA_RESETHAND) != 0) {
2984       actp->sa_handler = SIG_DFL;
2985     }
2986 
2987     // try to honor the signal mask
2988     sigset_t oset;
2989     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
2990 
2991     // call into the chained handler
2992     if (siginfo_flag_set) {
2993       (*sa)(sig, siginfo, context);
2994     } else {
2995       (*hand)(sig);
2996     }
2997 
2998     // restore the signal mask
2999     pthread_sigmask(SIG_SETMASK, &oset, 0);
3000   }
3001   // Tell jvm's signal handler the signal is taken care of.
3002   return true;
3003 }
3004 
3005 bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3006   bool chained = false;
3007   // signal-chaining
3008   if (UseSignalChaining) {
3009     struct sigaction *actp = get_chained_signal_action(sig);
3010     if (actp != NULL) {
3011       chained = call_chained_handler(actp, sig, siginfo, context);
3012     }
3013   }
3014   return chained;
3015 }
3016 
3017 struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3018   if ((((uint32_t)1 << (sig-1)) & sigs) != 0) {
3019     return &sigact[sig];
3020   }
3021   return NULL;
3022 }
3023 
3024 void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3025   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3026   sigact[sig] = oldAct;
3027   sigs |= (uint32_t)1 << (sig-1);
3028 }
3029 
3030 // for diagnostic
3031 int sigflags[NSIG];
3032 
3033 int os::Bsd::get_our_sigflags(int sig) {
3034   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3035   return sigflags[sig];
3036 }
3037 
3038 void os::Bsd::set_our_sigflags(int sig, int flags) {
3039   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3040   if (sig > 0 && sig < NSIG) {
3041     sigflags[sig] = flags;
3042   }
3043 }
3044 
3045 void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3046   // Check for overwrite.
3047   struct sigaction oldAct;
3048   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3049 
3050   void* oldhand = oldAct.sa_sigaction
3051                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3052                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3053   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3054       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3055       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3056     if (AllowUserSignalHandlers || !set_installed) {
3057       // Do not overwrite; user takes responsibility to forward to us.
3058       return;
3059     } else if (UseSignalChaining) {
3060       // save the old handler in jvm
3061       save_preinstalled_handler(sig, oldAct);
3062       // libjsig also interposes the sigaction() call below and saves the
3063       // old sigaction on it own.
3064     } else {
3065       fatal("Encountered unexpected pre-existing sigaction handler "
3066             "%#lx for signal %d.", (long)oldhand, sig);
3067     }
3068   }
3069 
3070   struct sigaction sigAct;
3071   sigfillset(&(sigAct.sa_mask));
3072   sigAct.sa_handler = SIG_DFL;
3073   if (!set_installed) {
3074     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3075   } else {
3076     sigAct.sa_sigaction = signalHandler;
3077     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3078   }
3079 #ifdef __APPLE__
3080   // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3081   // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3082   // if the signal handler declares it will handle it on alternate stack.
3083   // Notice we only declare we will handle it on alt stack, but we are not
3084   // actually going to use real alt stack - this is just a workaround.
3085   // Please see ux_exception.c, method catch_mach_exception_raise for details
3086   // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3087   if (sig == SIGSEGV) {
3088     sigAct.sa_flags |= SA_ONSTACK;
3089   }
3090 #endif
3091 
3092   // Save flags, which are set by ours
3093   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3094   sigflags[sig] = sigAct.sa_flags;
3095 
3096   int ret = sigaction(sig, &sigAct, &oldAct);
3097   assert(ret == 0, "check");
3098 
3099   void* oldhand2  = oldAct.sa_sigaction
3100                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3101                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3102   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3103 }
3104 
3105 // install signal handlers for signals that HotSpot needs to
3106 // handle in order to support Java-level exception handling.
3107 
3108 void os::Bsd::install_signal_handlers() {
3109   if (!signal_handlers_are_installed) {
3110     signal_handlers_are_installed = true;
3111 
3112     // signal-chaining
3113     typedef void (*signal_setting_t)();
3114     signal_setting_t begin_signal_setting = NULL;
3115     signal_setting_t end_signal_setting = NULL;
3116     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3117                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3118     if (begin_signal_setting != NULL) {
3119       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3120                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3121       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3122                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3123       libjsig_is_loaded = true;
3124       assert(UseSignalChaining, "should enable signal-chaining");
3125     }
3126     if (libjsig_is_loaded) {
3127       // Tell libjsig jvm is setting signal handlers
3128       (*begin_signal_setting)();
3129     }
3130 
3131     set_signal_handler(SIGSEGV, true);
3132     set_signal_handler(SIGPIPE, true);
3133     set_signal_handler(SIGBUS, true);
3134     set_signal_handler(SIGILL, true);
3135     set_signal_handler(SIGFPE, true);
3136     set_signal_handler(SIGXFSZ, true);
3137 
3138 #if defined(__APPLE__)
3139     // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3140     // signals caught and handled by the JVM. To work around this, we reset the mach task
3141     // signal handler that's placed on our process by CrashReporter. This disables
3142     // CrashReporter-based reporting.
3143     //
3144     // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3145     // on caught fatal signals.
3146     //
3147     // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3148     // handlers. By replacing the existing task exception handler, we disable gdb's mach
3149     // exception handling, while leaving the standard BSD signal handlers functional.
3150     kern_return_t kr;
3151     kr = task_set_exception_ports(mach_task_self(),
3152                                   EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3153                                   MACH_PORT_NULL,
3154                                   EXCEPTION_STATE_IDENTITY,
3155                                   MACHINE_THREAD_STATE);
3156 
3157     assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3158 #endif
3159 
3160     if (libjsig_is_loaded) {
3161       // Tell libjsig jvm finishes setting signal handlers
3162       (*end_signal_setting)();
3163     }
3164 
3165     // We don't activate signal checker if libjsig is in place, we trust ourselves
3166     // and if UserSignalHandler is installed all bets are off
3167     if (CheckJNICalls) {
3168       if (libjsig_is_loaded) {
3169         if (PrintJNIResolving) {
3170           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3171         }
3172         check_signals = false;
3173       }
3174       if (AllowUserSignalHandlers) {
3175         if (PrintJNIResolving) {
3176           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3177         }
3178         check_signals = false;
3179       }
3180     }
3181   }
3182 }
3183 
3184 
3185 /////
3186 // glibc on Bsd platform uses non-documented flag
3187 // to indicate, that some special sort of signal
3188 // trampoline is used.
3189 // We will never set this flag, and we should
3190 // ignore this flag in our diagnostic
3191 #ifdef SIGNIFICANT_SIGNAL_MASK
3192   #undef SIGNIFICANT_SIGNAL_MASK
3193 #endif
3194 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3195 
3196 static const char* get_signal_handler_name(address handler,
3197                                            char* buf, int buflen) {
3198   int offset;
3199   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3200   if (found) {
3201     // skip directory names
3202     const char *p1, *p2;
3203     p1 = buf;
3204     size_t len = strlen(os::file_separator());
3205     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3206     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3207   } else {
3208     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3209   }
3210   return buf;
3211 }
3212 
3213 static void print_signal_handler(outputStream* st, int sig,
3214                                  char* buf, size_t buflen) {
3215   struct sigaction sa;
3216 
3217   sigaction(sig, NULL, &sa);
3218 
3219   // See comment for SIGNIFICANT_SIGNAL_MASK define
3220   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3221 
3222   st->print("%s: ", os::exception_name(sig, buf, buflen));
3223 
3224   address handler = (sa.sa_flags & SA_SIGINFO)
3225     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3226     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3227 
3228   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3229     st->print("SIG_DFL");
3230   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3231     st->print("SIG_IGN");
3232   } else {
3233     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3234   }
3235 
3236   st->print(", sa_mask[0]=");
3237   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3238 
3239   address rh = VMError::get_resetted_sighandler(sig);
3240   // May be, handler was resetted by VMError?
3241   if (rh != NULL) {
3242     handler = rh;
3243     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3244   }
3245 
3246   st->print(", sa_flags=");
3247   os::Posix::print_sa_flags(st, sa.sa_flags);
3248 
3249   // Check: is it our handler?
3250   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3251       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3252     // It is our signal handler
3253     // check for flags, reset system-used one!
3254     if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3255       st->print(
3256                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3257                 os::Bsd::get_our_sigflags(sig));
3258     }
3259   }
3260   st->cr();
3261 }
3262 
3263 
3264 #define DO_SIGNAL_CHECK(sig)                      \
3265   do {                                            \
3266     if (!sigismember(&check_signal_done, sig)) {  \
3267       os::Bsd::check_signal_handler(sig);         \
3268     }                                             \
3269   } while (0)
3270 
3271 // This method is a periodic task to check for misbehaving JNI applications
3272 // under CheckJNI, we can add any periodic checks here
3273 
3274 void os::run_periodic_checks() {
3275 
3276   if (check_signals == false) return;
3277 
3278   // SEGV and BUS if overridden could potentially prevent
3279   // generation of hs*.log in the event of a crash, debugging
3280   // such a case can be very challenging, so we absolutely
3281   // check the following for a good measure:
3282   DO_SIGNAL_CHECK(SIGSEGV);
3283   DO_SIGNAL_CHECK(SIGILL);
3284   DO_SIGNAL_CHECK(SIGFPE);
3285   DO_SIGNAL_CHECK(SIGBUS);
3286   DO_SIGNAL_CHECK(SIGPIPE);
3287   DO_SIGNAL_CHECK(SIGXFSZ);
3288 
3289 
3290   // ReduceSignalUsage allows the user to override these handlers
3291   // see comments at the very top and jvm_solaris.h
3292   if (!ReduceSignalUsage) {
3293     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3294     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3295     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3296     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3297   }
3298 
3299   DO_SIGNAL_CHECK(SR_signum);
3300 }
3301 
3302 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3303 
3304 static os_sigaction_t os_sigaction = NULL;
3305 
3306 void os::Bsd::check_signal_handler(int sig) {
3307   char buf[O_BUFLEN];
3308   address jvmHandler = NULL;
3309 
3310 
3311   struct sigaction act;
3312   if (os_sigaction == NULL) {
3313     // only trust the default sigaction, in case it has been interposed
3314     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3315     if (os_sigaction == NULL) return;
3316   }
3317 
3318   os_sigaction(sig, (struct sigaction*)NULL, &act);
3319 
3320 
3321   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3322 
3323   address thisHandler = (act.sa_flags & SA_SIGINFO)
3324     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3325     : CAST_FROM_FN_PTR(address, act.sa_handler);
3326 
3327 
3328   switch (sig) {
3329   case SIGSEGV:
3330   case SIGBUS:
3331   case SIGFPE:
3332   case SIGPIPE:
3333   case SIGILL:
3334   case SIGXFSZ:
3335     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3336     break;
3337 
3338   case SHUTDOWN1_SIGNAL:
3339   case SHUTDOWN2_SIGNAL:
3340   case SHUTDOWN3_SIGNAL:
3341   case BREAK_SIGNAL:
3342     jvmHandler = (address)user_handler();
3343     break;
3344 
3345   default:
3346     if (sig == SR_signum) {
3347       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3348     } else {
3349       return;
3350     }
3351     break;
3352   }
3353 
3354   if (thisHandler != jvmHandler) {
3355     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3356     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3357     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3358     // No need to check this sig any longer
3359     sigaddset(&check_signal_done, sig);
3360     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3361     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3362       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3363                     exception_name(sig, buf, O_BUFLEN));
3364     }
3365   } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3366     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3367     tty->print("expected:");
3368     os::Posix::print_sa_flags(tty, os::Bsd::get_our_sigflags(sig));
3369     tty->cr();
3370     tty->print("  found:");
3371     os::Posix::print_sa_flags(tty, act.sa_flags);
3372     tty->cr();
3373     // No need to check this sig any longer
3374     sigaddset(&check_signal_done, sig);
3375   }
3376 
3377   // Dump all the signal
3378   if (sigismember(&check_signal_done, sig)) {
3379     print_signal_handlers(tty, buf, O_BUFLEN);
3380   }
3381 }
3382 
3383 extern void report_error(char* file_name, int line_no, char* title,
3384                          char* format, ...);
3385 
3386 // this is called _before_ the most of global arguments have been parsed
3387 void os::init(void) {
3388   char dummy;   // used to get a guess on initial stack address
3389 //  first_hrtime = gethrtime();
3390 
3391   // With BsdThreads the JavaMain thread pid (primordial thread)
3392   // is different than the pid of the java launcher thread.
3393   // So, on Bsd, the launcher thread pid is passed to the VM
3394   // via the sun.java.launcher.pid property.
3395   // Use this property instead of getpid() if it was correctly passed.
3396   // See bug 6351349.
3397   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3398 
3399   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3400 
3401   clock_tics_per_sec = CLK_TCK;
3402 
3403   init_random(1234567);
3404 
3405   ThreadCritical::initialize();
3406 
3407   Bsd::set_page_size(getpagesize());
3408   if (Bsd::page_size() == -1) {
3409     fatal("os_bsd.cpp: os::init: sysconf failed (%s)", strerror(errno));
3410   }
3411   init_page_sizes((size_t) Bsd::page_size());
3412 
3413   Bsd::initialize_system_info();
3414 
3415   // main_thread points to the aboriginal thread
3416   Bsd::_main_thread = pthread_self();
3417 
3418   Bsd::clock_init();
3419   initial_time_count = javaTimeNanos();
3420 
3421 #ifdef __APPLE__
3422   // XXXDARWIN
3423   // Work around the unaligned VM callbacks in hotspot's
3424   // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3425   // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3426   // alignment when doing symbol lookup. To work around this, we force early
3427   // binding of all symbols now, thus binding when alignment is known-good.
3428   _dyld_bind_fully_image_containing_address((const void *) &os::init);
3429 #endif
3430 }
3431 
3432 // To install functions for atexit system call
3433 extern "C" {
3434   static void perfMemory_exit_helper() {
3435     perfMemory_exit();
3436   }
3437 }
3438 
3439 // this is called _after_ the global arguments have been parsed
3440 jint os::init_2(void) {
3441   // Allocate a single page and mark it as readable for safepoint polling
3442   address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3443   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3444 
3445   os::set_polling_page(polling_page);
3446 
3447 #ifndef PRODUCT
3448   if (Verbose && PrintMiscellaneous) {
3449     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
3450                (intptr_t)polling_page);
3451   }
3452 #endif
3453 
3454   if (!UseMembar) {
3455     address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3456     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3457     os::set_memory_serialize_page(mem_serialize_page);
3458 
3459 #ifndef PRODUCT
3460     if (Verbose && PrintMiscellaneous) {
3461       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
3462                  (intptr_t)mem_serialize_page);
3463     }
3464 #endif
3465   }
3466 
3467   // initialize suspend/resume support - must do this before signal_sets_init()
3468   if (SR_initialize() != 0) {
3469     perror("SR_initialize failed");
3470     return JNI_ERR;
3471   }
3472 
3473   Bsd::signal_sets_init();
3474   Bsd::install_signal_handlers();
3475 
3476   // Check minimum allowable stack size for thread creation and to initialize
3477   // the java system classes, including StackOverflowError - depends on page
3478   // size.  Add a page for compiler2 recursion in main thread.
3479   // Add in 2*BytesPerWord times page size to account for VM stack during
3480   // class initialization depending on 32 or 64 bit VM.
3481   os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3482                                     JavaThread::stack_guard_zone_size() +
3483                                     JavaThread::stack_shadow_zone_size() +
3484                                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3485 
3486   size_t threadStackSizeInBytes = ThreadStackSize * K;
3487   if (threadStackSizeInBytes != 0 &&
3488       threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3489     tty->print_cr("\nThe stack size specified is too small, "
3490                   "Specify at least %dk",
3491                   os::Bsd::min_stack_allowed/ K);
3492     return JNI_ERR;
3493   }
3494 
3495   // Make the stack size a multiple of the page size so that
3496   // the yellow/red zones can be guarded.
3497   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3498                                                 vm_page_size()));
3499 
3500   if (MaxFDLimit) {
3501     // set the number of file descriptors to max. print out error
3502     // if getrlimit/setrlimit fails but continue regardless.
3503     struct rlimit nbr_files;
3504     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3505     if (status != 0) {
3506       if (PrintMiscellaneous && (Verbose || WizardMode)) {
3507         perror("os::init_2 getrlimit failed");
3508       }
3509     } else {
3510       nbr_files.rlim_cur = nbr_files.rlim_max;
3511 
3512 #ifdef __APPLE__
3513       // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3514       // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3515       // be used instead
3516       nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3517 #endif
3518 
3519       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3520       if (status != 0) {
3521         if (PrintMiscellaneous && (Verbose || WizardMode)) {
3522           perror("os::init_2 setrlimit failed");
3523         }
3524       }
3525     }
3526   }
3527 
3528   // at-exit methods are called in the reverse order of their registration.
3529   // atexit functions are called on return from main or as a result of a
3530   // call to exit(3C). There can be only 32 of these functions registered
3531   // and atexit() does not set errno.
3532 
3533   if (PerfAllowAtExitRegistration) {
3534     // only register atexit functions if PerfAllowAtExitRegistration is set.
3535     // atexit functions can be delayed until process exit time, which
3536     // can be problematic for embedded VM situations. Embedded VMs should
3537     // call DestroyJavaVM() to assure that VM resources are released.
3538 
3539     // note: perfMemory_exit_helper atexit function may be removed in
3540     // the future if the appropriate cleanup code can be added to the
3541     // VM_Exit VMOperation's doit method.
3542     if (atexit(perfMemory_exit_helper) != 0) {
3543       warning("os::init2 atexit(perfMemory_exit_helper) failed");
3544     }
3545   }
3546 
3547   // initialize thread priority policy
3548   prio_init();
3549 
3550 #ifdef __APPLE__
3551   // dynamically link to objective c gc registration
3552   void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3553   if (handleLibObjc != NULL) {
3554     objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3555   }
3556 #endif
3557 
3558   return JNI_OK;
3559 }
3560 
3561 // Mark the polling page as unreadable
3562 void os::make_polling_page_unreadable(void) {
3563   if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
3564     fatal("Could not disable polling page");
3565   }
3566 }
3567 
3568 // Mark the polling page as readable
3569 void os::make_polling_page_readable(void) {
3570   if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3571     fatal("Could not enable polling page");
3572   }
3573 }
3574 
3575 int os::active_processor_count() {
3576   return _processor_count;
3577 }
3578 
3579 void os::set_native_thread_name(const char *name) {
3580 #if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3581   // This is only supported in Snow Leopard and beyond
3582   if (name != NULL) {
3583     // Add a "Java: " prefix to the name
3584     char buf[MAXTHREADNAMESIZE];
3585     snprintf(buf, sizeof(buf), "Java: %s", name);
3586     pthread_setname_np(buf);
3587   }
3588 #endif
3589 }
3590 
3591 bool os::distribute_processes(uint length, uint* distribution) {
3592   // Not yet implemented.
3593   return false;
3594 }
3595 
3596 bool os::bind_to_processor(uint processor_id) {
3597   // Not yet implemented.
3598   return false;
3599 }
3600 
3601 void os::SuspendedThreadTask::internal_do_task() {
3602   if (do_suspend(_thread->osthread())) {
3603     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3604     do_task(context);
3605     do_resume(_thread->osthread());
3606   }
3607 }
3608 
3609 ///
3610 class PcFetcher : public os::SuspendedThreadTask {
3611  public:
3612   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3613   ExtendedPC result();
3614  protected:
3615   void do_task(const os::SuspendedThreadTaskContext& context);
3616  private:
3617   ExtendedPC _epc;
3618 };
3619 
3620 ExtendedPC PcFetcher::result() {
3621   guarantee(is_done(), "task is not done yet.");
3622   return _epc;
3623 }
3624 
3625 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3626   Thread* thread = context.thread();
3627   OSThread* osthread = thread->osthread();
3628   if (osthread->ucontext() != NULL) {
3629     _epc = os::Bsd::ucontext_get_pc((const ucontext_t *) context.ucontext());
3630   } else {
3631     // NULL context is unexpected, double-check this is the VMThread
3632     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3633   }
3634 }
3635 
3636 // Suspends the target using the signal mechanism and then grabs the PC before
3637 // resuming the target. Used by the flat-profiler only
3638 ExtendedPC os::get_thread_pc(Thread* thread) {
3639   // Make sure that it is called by the watcher for the VMThread
3640   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3641   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3642 
3643   PcFetcher fetcher(thread);
3644   fetcher.run();
3645   return fetcher.result();
3646 }
3647 
3648 ////////////////////////////////////////////////////////////////////////////////
3649 // debug support
3650 
3651 bool os::find(address addr, outputStream* st) {
3652   Dl_info dlinfo;
3653   memset(&dlinfo, 0, sizeof(dlinfo));
3654   if (dladdr(addr, &dlinfo) != 0) {
3655     st->print(PTR_FORMAT ": ", addr);
3656     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3657       st->print("%s+%#x", dlinfo.dli_sname,
3658                 addr - (intptr_t)dlinfo.dli_saddr);
3659     } else if (dlinfo.dli_fbase != NULL) {
3660       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3661     } else {
3662       st->print("<absolute address>");
3663     }
3664     if (dlinfo.dli_fname != NULL) {
3665       st->print(" in %s", dlinfo.dli_fname);
3666     }
3667     if (dlinfo.dli_fbase != NULL) {
3668       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3669     }
3670     st->cr();
3671 
3672     if (Verbose) {
3673       // decode some bytes around the PC
3674       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3675       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3676       address       lowest = (address) dlinfo.dli_sname;
3677       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3678       if (begin < lowest)  begin = lowest;
3679       Dl_info dlinfo2;
3680       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3681           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
3682         end = (address) dlinfo2.dli_saddr;
3683       }
3684       Disassembler::decode(begin, end, st);
3685     }
3686     return true;
3687   }
3688   return false;
3689 }
3690 
3691 ////////////////////////////////////////////////////////////////////////////////
3692 // misc
3693 
3694 // This does not do anything on Bsd. This is basically a hook for being
3695 // able to use structured exception handling (thread-local exception filters)
3696 // on, e.g., Win32.
3697 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3698                               const methodHandle& method, JavaCallArguments* args,
3699                               Thread* thread) {
3700   f(value, method, args, thread);
3701 }
3702 
3703 void os::print_statistics() {
3704 }
3705 
3706 bool os::message_box(const char* title, const char* message) {
3707   int i;
3708   fdStream err(defaultStream::error_fd());
3709   for (i = 0; i < 78; i++) err.print_raw("=");
3710   err.cr();
3711   err.print_raw_cr(title);
3712   for (i = 0; i < 78; i++) err.print_raw("-");
3713   err.cr();
3714   err.print_raw_cr(message);
3715   for (i = 0; i < 78; i++) err.print_raw("=");
3716   err.cr();
3717 
3718   char buf[16];
3719   // Prevent process from exiting upon "read error" without consuming all CPU
3720   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3721 
3722   return buf[0] == 'y' || buf[0] == 'Y';
3723 }
3724 
3725 int os::stat(const char *path, struct stat *sbuf) {
3726   char pathbuf[MAX_PATH];
3727   if (strlen(path) > MAX_PATH - 1) {
3728     errno = ENAMETOOLONG;
3729     return -1;
3730   }
3731   os::native_path(strcpy(pathbuf, path));
3732   return ::stat(pathbuf, sbuf);
3733 }
3734 
3735 bool os::check_heap(bool force) {
3736   return true;
3737 }
3738 
3739 // Is a (classpath) directory empty?
3740 bool os::dir_is_empty(const char* path) {
3741   DIR *dir = NULL;
3742   struct dirent *ptr;
3743 
3744   dir = opendir(path);
3745   if (dir == NULL) return true;
3746 
3747   // Scan the directory
3748   bool result = true;
3749   char buf[sizeof(struct dirent) + MAX_PATH];
3750   while (result && (ptr = ::readdir(dir)) != NULL) {
3751     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3752       result = false;
3753     }
3754   }
3755   closedir(dir);
3756   return result;
3757 }
3758 
3759 // This code originates from JDK's sysOpen and open64_w
3760 // from src/solaris/hpi/src/system_md.c
3761 
3762 int os::open(const char *path, int oflag, int mode) {
3763   if (strlen(path) > MAX_PATH - 1) {
3764     errno = ENAMETOOLONG;
3765     return -1;
3766   }
3767   int fd;
3768 
3769   fd = ::open(path, oflag, mode);
3770   if (fd == -1) return -1;
3771 
3772   // If the open succeeded, the file might still be a directory
3773   {
3774     struct stat buf;
3775     int ret = ::fstat(fd, &buf);
3776     int st_mode = buf.st_mode;
3777 
3778     if (ret != -1) {
3779       if ((st_mode & S_IFMT) == S_IFDIR) {
3780         errno = EISDIR;
3781         ::close(fd);
3782         return -1;
3783       }
3784     } else {
3785       ::close(fd);
3786       return -1;
3787     }
3788   }
3789 
3790   // All file descriptors that are opened in the JVM and not
3791   // specifically destined for a subprocess should have the
3792   // close-on-exec flag set.  If we don't set it, then careless 3rd
3793   // party native code might fork and exec without closing all
3794   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3795   // UNIXProcess.c), and this in turn might:
3796   //
3797   // - cause end-of-file to fail to be detected on some file
3798   //   descriptors, resulting in mysterious hangs, or
3799   //
3800   // - might cause an fopen in the subprocess to fail on a system
3801   //   suffering from bug 1085341.
3802   //
3803   // (Yes, the default setting of the close-on-exec flag is a Unix
3804   // design flaw)
3805   //
3806   // See:
3807   // 1085341: 32-bit stdio routines should support file descriptors >255
3808   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3809   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3810   //
3811 #ifdef FD_CLOEXEC
3812   {
3813     int flags = ::fcntl(fd, F_GETFD);
3814     if (flags != -1) {
3815       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3816     }
3817   }
3818 #endif
3819 
3820   return fd;
3821 }
3822 
3823 
3824 // create binary file, rewriting existing file if required
3825 int os::create_binary_file(const char* path, bool rewrite_existing) {
3826   int oflags = O_WRONLY | O_CREAT;
3827   if (!rewrite_existing) {
3828     oflags |= O_EXCL;
3829   }
3830   return ::open(path, oflags, S_IREAD | S_IWRITE);
3831 }
3832 
3833 // return current position of file pointer
3834 jlong os::current_file_offset(int fd) {
3835   return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3836 }
3837 
3838 // move file pointer to the specified offset
3839 jlong os::seek_to_file_offset(int fd, jlong offset) {
3840   return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3841 }
3842 
3843 // This code originates from JDK's sysAvailable
3844 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3845 
3846 int os::available(int fd, jlong *bytes) {
3847   jlong cur, end;
3848   int mode;
3849   struct stat buf;
3850 
3851   if (::fstat(fd, &buf) >= 0) {
3852     mode = buf.st_mode;
3853     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3854       int n;
3855       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3856         *bytes = n;
3857         return 1;
3858       }
3859     }
3860   }
3861   if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3862     return 0;
3863   } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3864     return 0;
3865   } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3866     return 0;
3867   }
3868   *bytes = end - cur;
3869   return 1;
3870 }
3871 
3872 // Map a block of memory.
3873 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3874                         char *addr, size_t bytes, bool read_only,
3875                         bool allow_exec) {
3876   int prot;
3877   int flags;
3878 
3879   if (read_only) {
3880     prot = PROT_READ;
3881     flags = MAP_SHARED;
3882   } else {
3883     prot = PROT_READ | PROT_WRITE;
3884     flags = MAP_PRIVATE;
3885   }
3886 
3887   if (allow_exec) {
3888     prot |= PROT_EXEC;
3889   }
3890 
3891   if (addr != NULL) {
3892     flags |= MAP_FIXED;
3893   }
3894 
3895   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3896                                      fd, file_offset);
3897   if (mapped_address == MAP_FAILED) {
3898     return NULL;
3899   }
3900   return mapped_address;
3901 }
3902 
3903 
3904 // Remap a block of memory.
3905 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3906                           char *addr, size_t bytes, bool read_only,
3907                           bool allow_exec) {
3908   // same as map_memory() on this OS
3909   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3910                         allow_exec);
3911 }
3912 
3913 
3914 // Unmap a block of memory.
3915 bool os::pd_unmap_memory(char* addr, size_t bytes) {
3916   return munmap(addr, bytes) == 0;
3917 }
3918 
3919 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3920 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3921 // of a thread.
3922 //
3923 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3924 // the fast estimate available on the platform.
3925 
3926 jlong os::current_thread_cpu_time() {
3927 #ifdef __APPLE__
3928   return os::thread_cpu_time(Thread::current(), true /* user + sys */);
3929 #else
3930   Unimplemented();
3931   return 0;
3932 #endif
3933 }
3934 
3935 jlong os::thread_cpu_time(Thread* thread) {
3936 #ifdef __APPLE__
3937   return os::thread_cpu_time(thread, true /* user + sys */);
3938 #else
3939   Unimplemented();
3940   return 0;
3941 #endif
3942 }
3943 
3944 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3945 #ifdef __APPLE__
3946   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3947 #else
3948   Unimplemented();
3949   return 0;
3950 #endif
3951 }
3952 
3953 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3954 #ifdef __APPLE__
3955   struct thread_basic_info tinfo;
3956   mach_msg_type_number_t tcount = THREAD_INFO_MAX;
3957   kern_return_t kr;
3958   thread_t mach_thread;
3959 
3960   mach_thread = thread->osthread()->thread_id();
3961   kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
3962   if (kr != KERN_SUCCESS) {
3963     return -1;
3964   }
3965 
3966   if (user_sys_cpu_time) {
3967     jlong nanos;
3968     nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
3969     nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
3970     return nanos;
3971   } else {
3972     return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
3973   }
3974 #else
3975   Unimplemented();
3976   return 0;
3977 #endif
3978 }
3979 
3980 
3981 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3982   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3983   info_ptr->may_skip_backward = false;     // elapsed time not wall time
3984   info_ptr->may_skip_forward = false;      // elapsed time not wall time
3985   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3986 }
3987 
3988 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3989   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3990   info_ptr->may_skip_backward = false;     // elapsed time not wall time
3991   info_ptr->may_skip_forward = false;      // elapsed time not wall time
3992   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3993 }
3994 
3995 bool os::is_thread_cpu_time_supported() {
3996 #ifdef __APPLE__
3997   return true;
3998 #else
3999   return false;
4000 #endif
4001 }
4002 
4003 // System loadavg support.  Returns -1 if load average cannot be obtained.
4004 // Bsd doesn't yet have a (official) notion of processor sets,
4005 // so just return the system wide load average.
4006 int os::loadavg(double loadavg[], int nelem) {
4007   return ::getloadavg(loadavg, nelem);
4008 }
4009 
4010 void os::pause() {
4011   char filename[MAX_PATH];
4012   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4013     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4014   } else {
4015     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4016   }
4017 
4018   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4019   if (fd != -1) {
4020     struct stat buf;
4021     ::close(fd);
4022     while (::stat(filename, &buf) == 0) {
4023       (void)::poll(NULL, 0, 100);
4024     }
4025   } else {
4026     jio_fprintf(stderr,
4027                 "Could not open pause file '%s', continuing immediately.\n", filename);
4028   }
4029 }
4030 
4031 
4032 // Refer to the comments in os_solaris.cpp park-unpark. The next two
4033 // comment paragraphs are worth repeating here:
4034 //
4035 // Assumption:
4036 //    Only one parker can exist on an event, which is why we allocate
4037 //    them per-thread. Multiple unparkers can coexist.
4038 //
4039 // _Event serves as a restricted-range semaphore.
4040 //   -1 : thread is blocked, i.e. there is a waiter
4041 //    0 : neutral: thread is running or ready,
4042 //        could have been signaled after a wait started
4043 //    1 : signaled - thread is running or ready
4044 //
4045 
4046 // utility to compute the abstime argument to timedwait:
4047 // millis is the relative timeout time
4048 // abstime will be the absolute timeout time
4049 // TODO: replace compute_abstime() with unpackTime()
4050 
4051 static struct timespec* compute_abstime(struct timespec* abstime,
4052                                         jlong millis) {
4053   if (millis < 0)  millis = 0;
4054   struct timeval now;
4055   int status = gettimeofday(&now, NULL);
4056   assert(status == 0, "gettimeofday");
4057   jlong seconds = millis / 1000;
4058   millis %= 1000;
4059   if (seconds > 50000000) { // see man cond_timedwait(3T)
4060     seconds = 50000000;
4061   }
4062   abstime->tv_sec = now.tv_sec  + seconds;
4063   long       usec = now.tv_usec + millis * 1000;
4064   if (usec >= 1000000) {
4065     abstime->tv_sec += 1;
4066     usec -= 1000000;
4067   }
4068   abstime->tv_nsec = usec * 1000;
4069   return abstime;
4070 }
4071 
4072 void os::PlatformEvent::park() {       // AKA "down()"
4073   // Transitions for _Event:
4074   //   -1 => -1 : illegal
4075   //    1 =>  0 : pass - return immediately
4076   //    0 => -1 : block; then set _Event to 0 before returning
4077 
4078   // Invariant: Only the thread associated with the Event/PlatformEvent
4079   // may call park().
4080   // TODO: assert that _Assoc != NULL or _Assoc == Self
4081   assert(_nParked == 0, "invariant");
4082 
4083   int v;
4084   for (;;) {
4085     v = _Event;
4086     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4087   }
4088   guarantee(v >= 0, "invariant");
4089   if (v == 0) {
4090     // Do this the hard way by blocking ...
4091     int status = pthread_mutex_lock(_mutex);
4092     assert_status(status == 0, status, "mutex_lock");
4093     guarantee(_nParked == 0, "invariant");
4094     ++_nParked;
4095     while (_Event < 0) {
4096       status = pthread_cond_wait(_cond, _mutex);
4097       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4098       // Treat this the same as if the wait was interrupted
4099       if (status == ETIMEDOUT) { status = EINTR; }
4100       assert_status(status == 0 || status == EINTR, status, "cond_wait");
4101     }
4102     --_nParked;
4103 
4104     _Event = 0;
4105     status = pthread_mutex_unlock(_mutex);
4106     assert_status(status == 0, status, "mutex_unlock");
4107     // Paranoia to ensure our locked and lock-free paths interact
4108     // correctly with each other.
4109     OrderAccess::fence();
4110   }
4111   guarantee(_Event >= 0, "invariant");
4112 }
4113 
4114 int os::PlatformEvent::park(jlong millis) {
4115   // Transitions for _Event:
4116   //   -1 => -1 : illegal
4117   //    1 =>  0 : pass - return immediately
4118   //    0 => -1 : block; then set _Event to 0 before returning
4119 
4120   guarantee(_nParked == 0, "invariant");
4121 
4122   int v;
4123   for (;;) {
4124     v = _Event;
4125     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4126   }
4127   guarantee(v >= 0, "invariant");
4128   if (v != 0) return OS_OK;
4129 
4130   // We do this the hard way, by blocking the thread.
4131   // Consider enforcing a minimum timeout value.
4132   struct timespec abst;
4133   compute_abstime(&abst, millis);
4134 
4135   int ret = OS_TIMEOUT;
4136   int status = pthread_mutex_lock(_mutex);
4137   assert_status(status == 0, status, "mutex_lock");
4138   guarantee(_nParked == 0, "invariant");
4139   ++_nParked;
4140 
4141   // Object.wait(timo) will return because of
4142   // (a) notification
4143   // (b) timeout
4144   // (c) thread.interrupt
4145   //
4146   // Thread.interrupt and object.notify{All} both call Event::set.
4147   // That is, we treat thread.interrupt as a special case of notification.
4148   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4149   // We assume all ETIME returns are valid.
4150   //
4151   // TODO: properly differentiate simultaneous notify+interrupt.
4152   // In that case, we should propagate the notify to another waiter.
4153 
4154   while (_Event < 0) {
4155     status = pthread_cond_timedwait(_cond, _mutex, &abst);
4156     assert_status(status == 0 || status == EINTR ||
4157                   status == ETIMEDOUT,
4158                   status, "cond_timedwait");
4159     if (!FilterSpuriousWakeups) break;                 // previous semantics
4160     if (status == ETIMEDOUT) break;
4161     // We consume and ignore EINTR and spurious wakeups.
4162   }
4163   --_nParked;
4164   if (_Event >= 0) {
4165     ret = OS_OK;
4166   }
4167   _Event = 0;
4168   status = pthread_mutex_unlock(_mutex);
4169   assert_status(status == 0, status, "mutex_unlock");
4170   assert(_nParked == 0, "invariant");
4171   // Paranoia to ensure our locked and lock-free paths interact
4172   // correctly with each other.
4173   OrderAccess::fence();
4174   return ret;
4175 }
4176 
4177 void os::PlatformEvent::unpark() {
4178   // Transitions for _Event:
4179   //    0 => 1 : just return
4180   //    1 => 1 : just return
4181   //   -1 => either 0 or 1; must signal target thread
4182   //         That is, we can safely transition _Event from -1 to either
4183   //         0 or 1.
4184   // See also: "Semaphores in Plan 9" by Mullender & Cox
4185   //
4186   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4187   // that it will take two back-to-back park() calls for the owning
4188   // thread to block. This has the benefit of forcing a spurious return
4189   // from the first park() call after an unpark() call which will help
4190   // shake out uses of park() and unpark() without condition variables.
4191 
4192   if (Atomic::xchg(1, &_Event) >= 0) return;
4193 
4194   // Wait for the thread associated with the event to vacate
4195   int status = pthread_mutex_lock(_mutex);
4196   assert_status(status == 0, status, "mutex_lock");
4197   int AnyWaiters = _nParked;
4198   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4199   status = pthread_mutex_unlock(_mutex);
4200   assert_status(status == 0, status, "mutex_unlock");
4201   if (AnyWaiters != 0) {
4202     // Note that we signal() *after* dropping the lock for "immortal" Events.
4203     // This is safe and avoids a common class of  futile wakeups.  In rare
4204     // circumstances this can cause a thread to return prematurely from
4205     // cond_{timed}wait() but the spurious wakeup is benign and the victim
4206     // will simply re-test the condition and re-park itself.
4207     // This provides particular benefit if the underlying platform does not
4208     // provide wait morphing.
4209     status = pthread_cond_signal(_cond);
4210     assert_status(status == 0, status, "cond_signal");
4211   }
4212 }
4213 
4214 
4215 // JSR166
4216 // -------------------------------------------------------
4217 
4218 // The solaris and bsd implementations of park/unpark are fairly
4219 // conservative for now, but can be improved. They currently use a
4220 // mutex/condvar pair, plus a a count.
4221 // Park decrements count if > 0, else does a condvar wait.  Unpark
4222 // sets count to 1 and signals condvar.  Only one thread ever waits
4223 // on the condvar. Contention seen when trying to park implies that someone
4224 // is unparking you, so don't wait. And spurious returns are fine, so there
4225 // is no need to track notifications.
4226 
4227 #define MAX_SECS 100000000
4228 
4229 // This code is common to bsd and solaris and will be moved to a
4230 // common place in dolphin.
4231 //
4232 // The passed in time value is either a relative time in nanoseconds
4233 // or an absolute time in milliseconds. Either way it has to be unpacked
4234 // into suitable seconds and nanoseconds components and stored in the
4235 // given timespec structure.
4236 // Given time is a 64-bit value and the time_t used in the timespec is only
4237 // a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4238 // overflow if times way in the future are given. Further on Solaris versions
4239 // prior to 10 there is a restriction (see cond_timedwait) that the specified
4240 // number of seconds, in abstime, is less than current_time  + 100,000,000.
4241 // As it will be 28 years before "now + 100000000" will overflow we can
4242 // ignore overflow and just impose a hard-limit on seconds using the value
4243 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
4244 // years from "now".
4245 
4246 static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4247   assert(time > 0, "convertTime");
4248 
4249   struct timeval now;
4250   int status = gettimeofday(&now, NULL);
4251   assert(status == 0, "gettimeofday");
4252 
4253   time_t max_secs = now.tv_sec + MAX_SECS;
4254 
4255   if (isAbsolute) {
4256     jlong secs = time / 1000;
4257     if (secs > max_secs) {
4258       absTime->tv_sec = max_secs;
4259     } else {
4260       absTime->tv_sec = secs;
4261     }
4262     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4263   } else {
4264     jlong secs = time / NANOSECS_PER_SEC;
4265     if (secs >= MAX_SECS) {
4266       absTime->tv_sec = max_secs;
4267       absTime->tv_nsec = 0;
4268     } else {
4269       absTime->tv_sec = now.tv_sec + secs;
4270       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4271       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4272         absTime->tv_nsec -= NANOSECS_PER_SEC;
4273         ++absTime->tv_sec; // note: this must be <= max_secs
4274       }
4275     }
4276   }
4277   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4278   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4279   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4280   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4281 }
4282 
4283 void Parker::park(bool isAbsolute, jlong time) {
4284   // Ideally we'd do something useful while spinning, such
4285   // as calling unpackTime().
4286 
4287   // Optional fast-path check:
4288   // Return immediately if a permit is available.
4289   // We depend on Atomic::xchg() having full barrier semantics
4290   // since we are doing a lock-free update to _counter.
4291   if (Atomic::xchg(0, &_counter) > 0) return;
4292 
4293   Thread* thread = Thread::current();
4294   assert(thread->is_Java_thread(), "Must be JavaThread");
4295   JavaThread *jt = (JavaThread *)thread;
4296 
4297   // Optional optimization -- avoid state transitions if there's an interrupt pending.
4298   // Check interrupt before trying to wait
4299   if (Thread::is_interrupted(thread, false)) {
4300     return;
4301   }
4302 
4303   // Next, demultiplex/decode time arguments
4304   struct timespec absTime;
4305   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4306     return;
4307   }
4308   if (time > 0) {
4309     unpackTime(&absTime, isAbsolute, time);
4310   }
4311 
4312 
4313   // Enter safepoint region
4314   // Beware of deadlocks such as 6317397.
4315   // The per-thread Parker:: mutex is a classic leaf-lock.
4316   // In particular a thread must never block on the Threads_lock while
4317   // holding the Parker:: mutex.  If safepoints are pending both the
4318   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4319   ThreadBlockInVM tbivm(jt);
4320 
4321   // Don't wait if cannot get lock since interference arises from
4322   // unblocking.  Also. check interrupt before trying wait
4323   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4324     return;
4325   }
4326 
4327   int status;
4328   if (_counter > 0)  { // no wait needed
4329     _counter = 0;
4330     status = pthread_mutex_unlock(_mutex);
4331     assert_status(status == 0, status, "invariant");
4332     // Paranoia to ensure our locked and lock-free paths interact
4333     // correctly with each other and Java-level accesses.
4334     OrderAccess::fence();
4335     return;
4336   }
4337 
4338 #ifdef ASSERT
4339   // Don't catch signals while blocked; let the running threads have the signals.
4340   // (This allows a debugger to break into the running thread.)
4341   sigset_t oldsigs;
4342   sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4343   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4344 #endif
4345 
4346   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4347   jt->set_suspend_equivalent();
4348   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4349 
4350   if (time == 0) {
4351     status = pthread_cond_wait(_cond, _mutex);
4352   } else {
4353     status = pthread_cond_timedwait(_cond, _mutex, &absTime);
4354   }
4355   assert_status(status == 0 || status == EINTR ||
4356                 status == ETIMEDOUT,
4357                 status, "cond_timedwait");
4358 
4359 #ifdef ASSERT
4360   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4361 #endif
4362 
4363   _counter = 0;
4364   status = pthread_mutex_unlock(_mutex);
4365   assert_status(status == 0, status, "invariant");
4366   // Paranoia to ensure our locked and lock-free paths interact
4367   // correctly with each other and Java-level accesses.
4368   OrderAccess::fence();
4369 
4370   // If externally suspended while waiting, re-suspend
4371   if (jt->handle_special_suspend_equivalent_condition()) {
4372     jt->java_suspend_self();
4373   }
4374 }
4375 
4376 void Parker::unpark() {
4377   int status = pthread_mutex_lock(_mutex);
4378   assert_status(status == 0, status, "invariant");
4379   const int s = _counter;
4380   _counter = 1;
4381   status = pthread_mutex_unlock(_mutex);
4382   assert_status(status == 0, status, "invariant");
4383   if (s < 1) {
4384     status = pthread_cond_signal(_cond);
4385     assert_status(status == 0, status, "invariant");
4386   }
4387 }
4388 
4389 
4390 // Darwin has no "environ" in a dynamic library.
4391 #ifdef __APPLE__
4392   #include <crt_externs.h>
4393   #define environ (*_NSGetEnviron())
4394 #else
4395 extern char** environ;
4396 #endif
4397 
4398 // Run the specified command in a separate process. Return its exit value,
4399 // or -1 on failure (e.g. can't fork a new process).
4400 // Unlike system(), this function can be called from signal handler. It
4401 // doesn't block SIGINT et al.
4402 int os::fork_and_exec(char* cmd) {
4403   const char * argv[4] = {"sh", "-c", cmd, NULL};
4404 
4405   // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4406   // pthread_atfork handlers and reset pthread library. All we need is a
4407   // separate process to execve. Make a direct syscall to fork process.
4408   // On IA64 there's no fork syscall, we have to use fork() and hope for
4409   // the best...
4410   pid_t pid = fork();
4411 
4412   if (pid < 0) {
4413     // fork failed
4414     return -1;
4415 
4416   } else if (pid == 0) {
4417     // child process
4418 
4419     // execve() in BsdThreads will call pthread_kill_other_threads_np()
4420     // first to kill every thread on the thread list. Because this list is
4421     // not reset by fork() (see notes above), execve() will instead kill
4422     // every thread in the parent process. We know this is the only thread
4423     // in the new process, so make a system call directly.
4424     // IA64 should use normal execve() from glibc to match the glibc fork()
4425     // above.
4426     execve("/bin/sh", (char* const*)argv, environ);
4427 
4428     // execve failed
4429     _exit(-1);
4430 
4431   } else  {
4432     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4433     // care about the actual exit code, for now.
4434 
4435     int status;
4436 
4437     // Wait for the child process to exit.  This returns immediately if
4438     // the child has already exited. */
4439     while (waitpid(pid, &status, 0) < 0) {
4440       switch (errno) {
4441       case ECHILD: return 0;
4442       case EINTR: break;
4443       default: return -1;
4444       }
4445     }
4446 
4447     if (WIFEXITED(status)) {
4448       // The child exited normally; get its exit code.
4449       return WEXITSTATUS(status);
4450     } else if (WIFSIGNALED(status)) {
4451       // The child exited because of a signal
4452       // The best value to return is 0x80 + signal number,
4453       // because that is what all Unix shells do, and because
4454       // it allows callers to distinguish between process exit and
4455       // process death by signal.
4456       return 0x80 + WTERMSIG(status);
4457     } else {
4458       // Unknown exit code; pass it through
4459       return status;
4460     }
4461   }
4462 }
4463 
4464 // is_headless_jre()
4465 //
4466 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
4467 // in order to report if we are running in a headless jre
4468 //
4469 // Since JDK8 xawt/libmawt.so was moved into the same directory
4470 // as libawt.so, and renamed libawt_xawt.so
4471 //
4472 bool os::is_headless_jre() {
4473 #ifdef __APPLE__
4474   // We no longer build headless-only on Mac OS X
4475   return false;
4476 #else
4477   struct stat statbuf;
4478   char buf[MAXPATHLEN];
4479   char libmawtpath[MAXPATHLEN];
4480   const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4481   const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4482   char *p;
4483 
4484   // Get path to libjvm.so
4485   os::jvm_path(buf, sizeof(buf));
4486 
4487   // Get rid of libjvm.so
4488   p = strrchr(buf, '/');
4489   if (p == NULL) {
4490     return false;
4491   } else {
4492     *p = '\0';
4493   }
4494 
4495   // Get rid of client or server
4496   p = strrchr(buf, '/');
4497   if (p == NULL) {
4498     return false;
4499   } else {
4500     *p = '\0';
4501   }
4502 
4503   // check xawt/libmawt.so
4504   strcpy(libmawtpath, buf);
4505   strcat(libmawtpath, xawtstr);
4506   if (::stat(libmawtpath, &statbuf) == 0) return false;
4507 
4508   // check libawt_xawt.so
4509   strcpy(libmawtpath, buf);
4510   strcat(libmawtpath, new_xawtstr);
4511   if (::stat(libmawtpath, &statbuf) == 0) return false;
4512 
4513   return true;
4514 #endif
4515 }
4516 
4517 // Get the default path to the core file
4518 // Returns the length of the string
4519 int os::get_core_path(char* buffer, size_t bufferSize) {
4520   int n = jio_snprintf(buffer, bufferSize, "/cores/core.%d", current_process_id());
4521 
4522   // Truncate if theoretical string was longer than bufferSize
4523   n = MIN2(n, (int)bufferSize);
4524 
4525   return n;
4526 }
4527 
4528 #ifndef PRODUCT
4529 void TestReserveMemorySpecial_test() {
4530   // No tests available for this platform
4531 }
4532 #endif
4533 
4534 bool os::start_debugging(char *buf, int buflen) {
4535   int len = (int)strlen(buf);
4536   char *p = &buf[len];
4537 
4538   jio_snprintf(p, buflen-len,
4539              "\n\n"
4540              "Do you want to debug the problem?\n\n"
4541              "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " INTX_FORMAT " (" INTPTR_FORMAT ")\n"
4542              "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
4543              "Otherwise, press RETURN to abort...",
4544              os::current_process_id(), os::current_process_id(),
4545              os::current_thread_id(), os::current_thread_id());
4546 
4547   bool yes = os::message_box("Unexpected Error", buf);
4548 
4549   if (yes) {
4550     // yes, user asked VM to launch debugger
4551     jio_snprintf(buf, sizeof(buf), "gdb /proc/%d/exe %d",
4552                      os::current_process_id(), os::current_process_id());
4553 
4554     os::fork_and_exec(buf);
4555     yes = false;
4556   }
4557   return yes;
4558 }