1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "gc/shared/gcId.hpp"
  35 #include "gc/shared/gcLocker.inline.hpp"
  36 #include "gc/shared/workgroup.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "interpreter/linkResolver.hpp"
  39 #include "interpreter/oopMapCache.hpp"
  40 #include "jvmtifiles/jvmtiEnv.hpp"
  41 #include "logging/log.hpp"
  42 #include "logging/logConfiguration.hpp"
  43 #include "memory/metaspaceShared.hpp"
  44 #include "memory/oopFactory.hpp"
  45 #include "memory/universe.inline.hpp"
  46 #include "oops/instanceKlass.hpp"
  47 #include "oops/objArrayOop.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "oops/symbol.hpp"
  50 #include "oops/verifyOopClosure.hpp"
  51 #include "prims/jvm_misc.hpp"
  52 #include "prims/jvmtiExport.hpp"
  53 #include "prims/jvmtiThreadState.hpp"
  54 #include "prims/privilegedStack.hpp"
  55 #include "runtime/arguments.hpp"
  56 #include "runtime/atomic.inline.hpp"
  57 #include "runtime/biasedLocking.hpp"
  58 #include "runtime/commandLineFlagConstraintList.hpp"
  59 #include "runtime/commandLineFlagRangeList.hpp"
  60 #include "runtime/deoptimization.hpp"
  61 #include "runtime/fprofiler.hpp"
  62 #include "runtime/frame.inline.hpp"
  63 #include "runtime/globals.hpp"
  64 #include "runtime/init.hpp"
  65 #include "runtime/interfaceSupport.hpp"
  66 #include "runtime/java.hpp"
  67 #include "runtime/javaCalls.hpp"
  68 #include "runtime/jniPeriodicChecker.hpp"
  69 #include "runtime/memprofiler.hpp"
  70 #include "runtime/mutexLocker.hpp"
  71 #include "runtime/objectMonitor.hpp"
  72 #include "runtime/orderAccess.inline.hpp"
  73 #include "runtime/osThread.hpp"
  74 #include "runtime/safepoint.hpp"
  75 #include "runtime/sharedRuntime.hpp"
  76 #include "runtime/statSampler.hpp"
  77 #include "runtime/stubRoutines.hpp"
  78 #include "runtime/sweeper.hpp"
  79 #include "runtime/task.hpp"
  80 #include "runtime/thread.inline.hpp"
  81 #include "runtime/threadCritical.hpp"
  82 #include "runtime/vframe.hpp"
  83 #include "runtime/vframeArray.hpp"
  84 #include "runtime/vframe_hp.hpp"
  85 #include "runtime/vmThread.hpp"
  86 #include "runtime/vm_operations.hpp"
  87 #include "runtime/vm_version.hpp"
  88 #include "services/attachListener.hpp"
  89 #include "services/management.hpp"
  90 #include "services/memTracker.hpp"
  91 #include "services/threadService.hpp"
  92 #include "trace/traceMacros.hpp"
  93 #include "trace/tracing.hpp"
  94 #include "utilities/defaultStream.hpp"
  95 #include "utilities/dtrace.hpp"
  96 #include "utilities/events.hpp"
  97 #include "utilities/macros.hpp"
  98 #include "utilities/preserveException.hpp"
  99 #if INCLUDE_ALL_GCS
 100 #include "gc/cms/concurrentMarkSweepThread.hpp"
 101 #include "gc/g1/concurrentMarkThread.inline.hpp"
 102 #include "gc/parallel/pcTasks.hpp"
 103 #endif // INCLUDE_ALL_GCS
 104 #if INCLUDE_JVMCI
 105 #include "jvmci/jvmciCompiler.hpp"
 106 #include "jvmci/jvmciRuntime.hpp"
 107 #endif
 108 #ifdef COMPILER1
 109 #include "c1/c1_Compiler.hpp"
 110 #endif
 111 #ifdef COMPILER2
 112 #include "opto/c2compiler.hpp"
 113 #include "opto/idealGraphPrinter.hpp"
 114 #endif
 115 #if INCLUDE_RTM_OPT
 116 #include "runtime/rtmLocking.hpp"
 117 #endif
 118 
 119 #ifdef DTRACE_ENABLED
 120 
 121 // Only bother with this argument setup if dtrace is available
 122 
 123   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 124   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 125 
 126   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 127     {                                                                      \
 128       ResourceMark rm(this);                                               \
 129       int len = 0;                                                         \
 130       const char* name = (javathread)->get_thread_name();                  \
 131       len = strlen(name);                                                  \
 132       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 133         (char *) name, len,                                                \
 134         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 135         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 136         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 137     }
 138 
 139 #else //  ndef DTRACE_ENABLED
 140 
 141   #define DTRACE_THREAD_PROBE(probe, javathread)
 142 
 143 #endif // ndef DTRACE_ENABLED
 144 
 145 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 146 // Current thread is maintained as a thread-local variable
 147 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 148 #endif
 149 
 150 // Class hierarchy
 151 // - Thread
 152 //   - VMThread
 153 //   - WatcherThread
 154 //   - ConcurrentMarkSweepThread
 155 //   - JavaThread
 156 //     - CompilerThread
 157 
 158 // ======= Thread ========
 159 // Support for forcing alignment of thread objects for biased locking
 160 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 161   if (UseBiasedLocking) {
 162     const int alignment = markOopDesc::biased_lock_alignment;
 163     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 164     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 165                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 166                                                          AllocFailStrategy::RETURN_NULL);
 167     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 168     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 169            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 170            "JavaThread alignment code overflowed allocated storage");
 171     if (TraceBiasedLocking) {
 172       if (aligned_addr != real_malloc_addr) {
 173         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 174                       p2i(real_malloc_addr), p2i(aligned_addr));
 175       }
 176     }
 177     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 178     return aligned_addr;
 179   } else {
 180     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 181                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 182   }
 183 }
 184 
 185 void Thread::operator delete(void* p) {
 186   if (UseBiasedLocking) {
 187     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 188     FreeHeap(real_malloc_addr);
 189   } else {
 190     FreeHeap(p);
 191   }
 192 }
 193 
 194 
 195 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 196 // JavaThread
 197 
 198 
 199 Thread::Thread() {
 200   // stack and get_thread
 201   set_stack_base(NULL);
 202   set_stack_size(0);
 203   set_self_raw_id(0);
 204   set_lgrp_id(-1);
 205   DEBUG_ONLY(clear_suspendible_thread();)
 206 
 207   // allocated data structures
 208   set_osthread(NULL);
 209   set_resource_area(new (mtThread)ResourceArea());
 210   DEBUG_ONLY(_current_resource_mark = NULL;)
 211   set_handle_area(new (mtThread) HandleArea(NULL));
 212   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 213   set_active_handles(NULL);
 214   set_free_handle_block(NULL);
 215   set_last_handle_mark(NULL);
 216 
 217   // This initial value ==> never claimed.
 218   _oops_do_parity = 0;
 219 
 220   // the handle mark links itself to last_handle_mark
 221   new HandleMark(this);
 222 
 223   // plain initialization
 224   debug_only(_owned_locks = NULL;)
 225   debug_only(_allow_allocation_count = 0;)
 226   NOT_PRODUCT(_allow_safepoint_count = 0;)
 227   NOT_PRODUCT(_skip_gcalot = false;)
 228   _jvmti_env_iteration_count = 0;
 229   set_allocated_bytes(0);
 230   _vm_operation_started_count = 0;
 231   _vm_operation_completed_count = 0;
 232   _current_pending_monitor = NULL;
 233   _current_pending_monitor_is_from_java = true;
 234   _current_waiting_monitor = NULL;
 235   _num_nested_signal = 0;
 236   omFreeList = NULL;
 237   omFreeCount = 0;
 238   omFreeProvision = 32;
 239   omInUseList = NULL;
 240   omInUseCount = 0;
 241 
 242 #ifdef ASSERT
 243   _visited_for_critical_count = false;
 244 #endif
 245 
 246   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 247                          Monitor::_safepoint_check_sometimes);
 248   _suspend_flags = 0;
 249 
 250   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 251   _hashStateX = os::random();
 252   _hashStateY = 842502087;
 253   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 254   _hashStateW = 273326509;
 255 
 256   _OnTrap   = 0;
 257   _schedctl = NULL;
 258   _Stalled  = 0;
 259   _TypeTag  = 0x2BAD;
 260 
 261   // Many of the following fields are effectively final - immutable
 262   // Note that nascent threads can't use the Native Monitor-Mutex
 263   // construct until the _MutexEvent is initialized ...
 264   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 265   // we might instead use a stack of ParkEvents that we could provision on-demand.
 266   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 267   // and ::Release()
 268   _ParkEvent   = ParkEvent::Allocate(this);
 269   _SleepEvent  = ParkEvent::Allocate(this);
 270   _MutexEvent  = ParkEvent::Allocate(this);
 271   _MuxEvent    = ParkEvent::Allocate(this);
 272 
 273 #ifdef CHECK_UNHANDLED_OOPS
 274   if (CheckUnhandledOops) {
 275     _unhandled_oops = new UnhandledOops(this);
 276   }
 277 #endif // CHECK_UNHANDLED_OOPS
 278 #ifdef ASSERT
 279   if (UseBiasedLocking) {
 280     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 281     assert(this == _real_malloc_address ||
 282            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 283            "bug in forced alignment of thread objects");
 284   }
 285 #endif // ASSERT
 286 }
 287 
 288 void Thread::initialize_thread_current() {
 289 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 290   assert(_thr_current == NULL, "Thread::current already initialized");
 291   _thr_current = this;
 292 #endif
 293   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 294   ThreadLocalStorage::set_thread(this);
 295   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 296 }
 297 
 298 void Thread::clear_thread_current() {
 299   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 300 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 301   _thr_current = NULL;
 302 #endif
 303   ThreadLocalStorage::set_thread(NULL);
 304 }
 305 
 306 void Thread::record_stack_base_and_size() {
 307   set_stack_base(os::current_stack_base());
 308   set_stack_size(os::current_stack_size());
 309   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 310   // in initialize_thread(). Without the adjustment, stack size is
 311   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 312   // So far, only Solaris has real implementation of initialize_thread().
 313   //
 314   // set up any platform-specific state.
 315   os::initialize_thread(this);
 316 
 317   // Set stack limits after thread is initialized.
 318   if (is_Java_thread()) {
 319     ((JavaThread*) this)->set_stack_overflow_limit();
 320     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 321   }
 322 #if INCLUDE_NMT
 323   // record thread's native stack, stack grows downward
 324   MemTracker::record_thread_stack(stack_end(), stack_size());
 325 #endif // INCLUDE_NMT
 326 }
 327 
 328 
 329 Thread::~Thread() {
 330   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 331   ObjectSynchronizer::omFlush(this);
 332 
 333   EVENT_THREAD_DESTRUCT(this);
 334 
 335   // stack_base can be NULL if the thread is never started or exited before
 336   // record_stack_base_and_size called. Although, we would like to ensure
 337   // that all started threads do call record_stack_base_and_size(), there is
 338   // not proper way to enforce that.
 339 #if INCLUDE_NMT
 340   if (_stack_base != NULL) {
 341     MemTracker::release_thread_stack(stack_end(), stack_size());
 342 #ifdef ASSERT
 343     set_stack_base(NULL);
 344 #endif
 345   }
 346 #endif // INCLUDE_NMT
 347 
 348   // deallocate data structures
 349   delete resource_area();
 350   // since the handle marks are using the handle area, we have to deallocated the root
 351   // handle mark before deallocating the thread's handle area,
 352   assert(last_handle_mark() != NULL, "check we have an element");
 353   delete last_handle_mark();
 354   assert(last_handle_mark() == NULL, "check we have reached the end");
 355 
 356   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 357   // We NULL out the fields for good hygiene.
 358   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 359   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 360   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 361   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 362 
 363   delete handle_area();
 364   delete metadata_handles();
 365 
 366   // osthread() can be NULL, if creation of thread failed.
 367   if (osthread() != NULL) os::free_thread(osthread());
 368 
 369   delete _SR_lock;
 370 
 371   // clear Thread::current if thread is deleting itself.
 372   // Needed to ensure JNI correctly detects non-attached threads.
 373   if (this == Thread::current()) {
 374     clear_thread_current();
 375   }
 376 
 377   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 378 }
 379 
 380 // NOTE: dummy function for assertion purpose.
 381 void Thread::run() {
 382   ShouldNotReachHere();
 383 }
 384 
 385 #ifdef ASSERT
 386 // Private method to check for dangling thread pointer
 387 void check_for_dangling_thread_pointer(Thread *thread) {
 388   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 389          "possibility of dangling Thread pointer");
 390 }
 391 #endif
 392 
 393 ThreadPriority Thread::get_priority(const Thread* const thread) {
 394   ThreadPriority priority;
 395   // Can return an error!
 396   (void)os::get_priority(thread, priority);
 397   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 398   return priority;
 399 }
 400 
 401 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 402   debug_only(check_for_dangling_thread_pointer(thread);)
 403   // Can return an error!
 404   (void)os::set_priority(thread, priority);
 405 }
 406 
 407 
 408 void Thread::start(Thread* thread) {
 409   // Start is different from resume in that its safety is guaranteed by context or
 410   // being called from a Java method synchronized on the Thread object.
 411   if (!DisableStartThread) {
 412     if (thread->is_Java_thread()) {
 413       // Initialize the thread state to RUNNABLE before starting this thread.
 414       // Can not set it after the thread started because we do not know the
 415       // exact thread state at that time. It could be in MONITOR_WAIT or
 416       // in SLEEPING or some other state.
 417       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 418                                           java_lang_Thread::RUNNABLE);
 419     }
 420     os::start_thread(thread);
 421   }
 422 }
 423 
 424 // Enqueue a VM_Operation to do the job for us - sometime later
 425 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 426   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 427   VMThread::execute(vm_stop);
 428 }
 429 
 430 
 431 // Check if an external suspend request has completed (or has been
 432 // cancelled). Returns true if the thread is externally suspended and
 433 // false otherwise.
 434 //
 435 // The bits parameter returns information about the code path through
 436 // the routine. Useful for debugging:
 437 //
 438 // set in is_ext_suspend_completed():
 439 // 0x00000001 - routine was entered
 440 // 0x00000010 - routine return false at end
 441 // 0x00000100 - thread exited (return false)
 442 // 0x00000200 - suspend request cancelled (return false)
 443 // 0x00000400 - thread suspended (return true)
 444 // 0x00001000 - thread is in a suspend equivalent state (return true)
 445 // 0x00002000 - thread is native and walkable (return true)
 446 // 0x00004000 - thread is native_trans and walkable (needed retry)
 447 //
 448 // set in wait_for_ext_suspend_completion():
 449 // 0x00010000 - routine was entered
 450 // 0x00020000 - suspend request cancelled before loop (return false)
 451 // 0x00040000 - thread suspended before loop (return true)
 452 // 0x00080000 - suspend request cancelled in loop (return false)
 453 // 0x00100000 - thread suspended in loop (return true)
 454 // 0x00200000 - suspend not completed during retry loop (return false)
 455 
 456 // Helper class for tracing suspend wait debug bits.
 457 //
 458 // 0x00000100 indicates that the target thread exited before it could
 459 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 460 // 0x00080000 each indicate a cancelled suspend request so they don't
 461 // count as wait failures either.
 462 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 463 
 464 class TraceSuspendDebugBits : public StackObj {
 465  private:
 466   JavaThread * jt;
 467   bool         is_wait;
 468   bool         called_by_wait;  // meaningful when !is_wait
 469   uint32_t *   bits;
 470 
 471  public:
 472   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 473                         uint32_t *_bits) {
 474     jt             = _jt;
 475     is_wait        = _is_wait;
 476     called_by_wait = _called_by_wait;
 477     bits           = _bits;
 478   }
 479 
 480   ~TraceSuspendDebugBits() {
 481     if (!is_wait) {
 482 #if 1
 483       // By default, don't trace bits for is_ext_suspend_completed() calls.
 484       // That trace is very chatty.
 485       return;
 486 #else
 487       if (!called_by_wait) {
 488         // If tracing for is_ext_suspend_completed() is enabled, then only
 489         // trace calls to it from wait_for_ext_suspend_completion()
 490         return;
 491       }
 492 #endif
 493     }
 494 
 495     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 496       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 497         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 498         ResourceMark rm;
 499 
 500         tty->print_cr(
 501                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 502                       jt->get_thread_name(), *bits);
 503 
 504         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 505       }
 506     }
 507   }
 508 };
 509 #undef DEBUG_FALSE_BITS
 510 
 511 
 512 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 513                                           uint32_t *bits) {
 514   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 515 
 516   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 517   bool do_trans_retry;           // flag to force the retry
 518 
 519   *bits |= 0x00000001;
 520 
 521   do {
 522     do_trans_retry = false;
 523 
 524     if (is_exiting()) {
 525       // Thread is in the process of exiting. This is always checked
 526       // first to reduce the risk of dereferencing a freed JavaThread.
 527       *bits |= 0x00000100;
 528       return false;
 529     }
 530 
 531     if (!is_external_suspend()) {
 532       // Suspend request is cancelled. This is always checked before
 533       // is_ext_suspended() to reduce the risk of a rogue resume
 534       // confusing the thread that made the suspend request.
 535       *bits |= 0x00000200;
 536       return false;
 537     }
 538 
 539     if (is_ext_suspended()) {
 540       // thread is suspended
 541       *bits |= 0x00000400;
 542       return true;
 543     }
 544 
 545     // Now that we no longer do hard suspends of threads running
 546     // native code, the target thread can be changing thread state
 547     // while we are in this routine:
 548     //
 549     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 550     //
 551     // We save a copy of the thread state as observed at this moment
 552     // and make our decision about suspend completeness based on the
 553     // copy. This closes the race where the thread state is seen as
 554     // _thread_in_native_trans in the if-thread_blocked check, but is
 555     // seen as _thread_blocked in if-thread_in_native_trans check.
 556     JavaThreadState save_state = thread_state();
 557 
 558     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 559       // If the thread's state is _thread_blocked and this blocking
 560       // condition is known to be equivalent to a suspend, then we can
 561       // consider the thread to be externally suspended. This means that
 562       // the code that sets _thread_blocked has been modified to do
 563       // self-suspension if the blocking condition releases. We also
 564       // used to check for CONDVAR_WAIT here, but that is now covered by
 565       // the _thread_blocked with self-suspension check.
 566       //
 567       // Return true since we wouldn't be here unless there was still an
 568       // external suspend request.
 569       *bits |= 0x00001000;
 570       return true;
 571     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 572       // Threads running native code will self-suspend on native==>VM/Java
 573       // transitions. If its stack is walkable (should always be the case
 574       // unless this function is called before the actual java_suspend()
 575       // call), then the wait is done.
 576       *bits |= 0x00002000;
 577       return true;
 578     } else if (!called_by_wait && !did_trans_retry &&
 579                save_state == _thread_in_native_trans &&
 580                frame_anchor()->walkable()) {
 581       // The thread is transitioning from thread_in_native to another
 582       // thread state. check_safepoint_and_suspend_for_native_trans()
 583       // will force the thread to self-suspend. If it hasn't gotten
 584       // there yet we may have caught the thread in-between the native
 585       // code check above and the self-suspend. Lucky us. If we were
 586       // called by wait_for_ext_suspend_completion(), then it
 587       // will be doing the retries so we don't have to.
 588       //
 589       // Since we use the saved thread state in the if-statement above,
 590       // there is a chance that the thread has already transitioned to
 591       // _thread_blocked by the time we get here. In that case, we will
 592       // make a single unnecessary pass through the logic below. This
 593       // doesn't hurt anything since we still do the trans retry.
 594 
 595       *bits |= 0x00004000;
 596 
 597       // Once the thread leaves thread_in_native_trans for another
 598       // thread state, we break out of this retry loop. We shouldn't
 599       // need this flag to prevent us from getting back here, but
 600       // sometimes paranoia is good.
 601       did_trans_retry = true;
 602 
 603       // We wait for the thread to transition to a more usable state.
 604       for (int i = 1; i <= SuspendRetryCount; i++) {
 605         // We used to do an "os::yield_all(i)" call here with the intention
 606         // that yielding would increase on each retry. However, the parameter
 607         // is ignored on Linux which means the yield didn't scale up. Waiting
 608         // on the SR_lock below provides a much more predictable scale up for
 609         // the delay. It also provides a simple/direct point to check for any
 610         // safepoint requests from the VMThread
 611 
 612         // temporarily drops SR_lock while doing wait with safepoint check
 613         // (if we're a JavaThread - the WatcherThread can also call this)
 614         // and increase delay with each retry
 615         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 616 
 617         // check the actual thread state instead of what we saved above
 618         if (thread_state() != _thread_in_native_trans) {
 619           // the thread has transitioned to another thread state so
 620           // try all the checks (except this one) one more time.
 621           do_trans_retry = true;
 622           break;
 623         }
 624       } // end retry loop
 625 
 626 
 627     }
 628   } while (do_trans_retry);
 629 
 630   *bits |= 0x00000010;
 631   return false;
 632 }
 633 
 634 // Wait for an external suspend request to complete (or be cancelled).
 635 // Returns true if the thread is externally suspended and false otherwise.
 636 //
 637 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 638                                                  uint32_t *bits) {
 639   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 640                              false /* !called_by_wait */, bits);
 641 
 642   // local flag copies to minimize SR_lock hold time
 643   bool is_suspended;
 644   bool pending;
 645   uint32_t reset_bits;
 646 
 647   // set a marker so is_ext_suspend_completed() knows we are the caller
 648   *bits |= 0x00010000;
 649 
 650   // We use reset_bits to reinitialize the bits value at the top of
 651   // each retry loop. This allows the caller to make use of any
 652   // unused bits for their own marking purposes.
 653   reset_bits = *bits;
 654 
 655   {
 656     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 657     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 658                                             delay, bits);
 659     pending = is_external_suspend();
 660   }
 661   // must release SR_lock to allow suspension to complete
 662 
 663   if (!pending) {
 664     // A cancelled suspend request is the only false return from
 665     // is_ext_suspend_completed() that keeps us from entering the
 666     // retry loop.
 667     *bits |= 0x00020000;
 668     return false;
 669   }
 670 
 671   if (is_suspended) {
 672     *bits |= 0x00040000;
 673     return true;
 674   }
 675 
 676   for (int i = 1; i <= retries; i++) {
 677     *bits = reset_bits;  // reinit to only track last retry
 678 
 679     // We used to do an "os::yield_all(i)" call here with the intention
 680     // that yielding would increase on each retry. However, the parameter
 681     // is ignored on Linux which means the yield didn't scale up. Waiting
 682     // on the SR_lock below provides a much more predictable scale up for
 683     // the delay. It also provides a simple/direct point to check for any
 684     // safepoint requests from the VMThread
 685 
 686     {
 687       MutexLocker ml(SR_lock());
 688       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 689       // can also call this)  and increase delay with each retry
 690       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 691 
 692       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 693                                               delay, bits);
 694 
 695       // It is possible for the external suspend request to be cancelled
 696       // (by a resume) before the actual suspend operation is completed.
 697       // Refresh our local copy to see if we still need to wait.
 698       pending = is_external_suspend();
 699     }
 700 
 701     if (!pending) {
 702       // A cancelled suspend request is the only false return from
 703       // is_ext_suspend_completed() that keeps us from staying in the
 704       // retry loop.
 705       *bits |= 0x00080000;
 706       return false;
 707     }
 708 
 709     if (is_suspended) {
 710       *bits |= 0x00100000;
 711       return true;
 712     }
 713   } // end retry loop
 714 
 715   // thread did not suspend after all our retries
 716   *bits |= 0x00200000;
 717   return false;
 718 }
 719 
 720 #ifndef PRODUCT
 721 void JavaThread::record_jump(address target, address instr, const char* file,
 722                              int line) {
 723 
 724   // This should not need to be atomic as the only way for simultaneous
 725   // updates is via interrupts. Even then this should be rare or non-existent
 726   // and we don't care that much anyway.
 727 
 728   int index = _jmp_ring_index;
 729   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 730   _jmp_ring[index]._target = (intptr_t) target;
 731   _jmp_ring[index]._instruction = (intptr_t) instr;
 732   _jmp_ring[index]._file = file;
 733   _jmp_ring[index]._line = line;
 734 }
 735 #endif // PRODUCT
 736 
 737 // Called by flat profiler
 738 // Callers have already called wait_for_ext_suspend_completion
 739 // The assertion for that is currently too complex to put here:
 740 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 741   bool gotframe = false;
 742   // self suspension saves needed state.
 743   if (has_last_Java_frame() && _anchor.walkable()) {
 744     *_fr = pd_last_frame();
 745     gotframe = true;
 746   }
 747   return gotframe;
 748 }
 749 
 750 void Thread::interrupt(Thread* thread) {
 751   debug_only(check_for_dangling_thread_pointer(thread);)
 752   os::interrupt(thread);
 753 }
 754 
 755 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 756   debug_only(check_for_dangling_thread_pointer(thread);)
 757   // Note:  If clear_interrupted==false, this simply fetches and
 758   // returns the value of the field osthread()->interrupted().
 759   return os::is_interrupted(thread, clear_interrupted);
 760 }
 761 
 762 
 763 // GC Support
 764 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 765   jint thread_parity = _oops_do_parity;
 766   if (thread_parity != strong_roots_parity) {
 767     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 768     if (res == thread_parity) {
 769       return true;
 770     } else {
 771       guarantee(res == strong_roots_parity, "Or else what?");
 772       return false;
 773     }
 774   }
 775   return false;
 776 }
 777 
 778 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 779   active_handles()->oops_do(f);
 780   // Do oop for ThreadShadow
 781   f->do_oop((oop*)&_pending_exception);
 782   handle_area()->oops_do(f);
 783 }
 784 
 785 void Thread::nmethods_do(CodeBlobClosure* cf) {
 786   // no nmethods in a generic thread...
 787 }
 788 
 789 void Thread::metadata_handles_do(void f(Metadata*)) {
 790   // Only walk the Handles in Thread.
 791   if (metadata_handles() != NULL) {
 792     for (int i = 0; i< metadata_handles()->length(); i++) {
 793       f(metadata_handles()->at(i));
 794     }
 795   }
 796 }
 797 
 798 void Thread::print_on(outputStream* st) const {
 799   // get_priority assumes osthread initialized
 800   if (osthread() != NULL) {
 801     int os_prio;
 802     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 803       st->print("os_prio=%d ", os_prio);
 804     }
 805     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 806     ext().print_on(st);
 807     osthread()->print_on(st);
 808   }
 809   debug_only(if (WizardMode) print_owned_locks_on(st);)
 810 }
 811 
 812 // Thread::print_on_error() is called by fatal error handler. Don't use
 813 // any lock or allocate memory.
 814 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 815   if (is_VM_thread())                 st->print("VMThread");
 816   else if (is_Compiler_thread())      st->print("CompilerThread");
 817   else if (is_Java_thread())          st->print("JavaThread");
 818   else if (is_GC_task_thread())       st->print("GCTaskThread");
 819   else if (is_Watcher_thread())       st->print("WatcherThread");
 820   else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
 821   else                                st->print("Thread");
 822 
 823   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 824             p2i(stack_end()), p2i(stack_base()));
 825 
 826   if (osthread()) {
 827     st->print(" [id=%d]", osthread()->thread_id());
 828   }
 829 }
 830 
 831 #ifdef ASSERT
 832 void Thread::print_owned_locks_on(outputStream* st) const {
 833   Monitor *cur = _owned_locks;
 834   if (cur == NULL) {
 835     st->print(" (no locks) ");
 836   } else {
 837     st->print_cr(" Locks owned:");
 838     while (cur) {
 839       cur->print_on(st);
 840       cur = cur->next();
 841     }
 842   }
 843 }
 844 
 845 static int ref_use_count  = 0;
 846 
 847 bool Thread::owns_locks_but_compiled_lock() const {
 848   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 849     if (cur != Compile_lock) return true;
 850   }
 851   return false;
 852 }
 853 
 854 
 855 #endif
 856 
 857 #ifndef PRODUCT
 858 
 859 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 860 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 861 // no threads which allow_vm_block's are held
 862 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 863   // Check if current thread is allowed to block at a safepoint
 864   if (!(_allow_safepoint_count == 0)) {
 865     fatal("Possible safepoint reached by thread that does not allow it");
 866   }
 867   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 868     fatal("LEAF method calling lock?");
 869   }
 870 
 871 #ifdef ASSERT
 872   if (potential_vm_operation && is_Java_thread()
 873       && !Universe::is_bootstrapping()) {
 874     // Make sure we do not hold any locks that the VM thread also uses.
 875     // This could potentially lead to deadlocks
 876     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 877       // Threads_lock is special, since the safepoint synchronization will not start before this is
 878       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 879       // since it is used to transfer control between JavaThreads and the VMThread
 880       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 881       if ((cur->allow_vm_block() &&
 882            cur != Threads_lock &&
 883            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 884            cur != VMOperationRequest_lock &&
 885            cur != VMOperationQueue_lock) ||
 886            cur->rank() == Mutex::special) {
 887         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 888       }
 889     }
 890   }
 891 
 892   if (GCALotAtAllSafepoints) {
 893     // We could enter a safepoint here and thus have a gc
 894     InterfaceSupport::check_gc_alot();
 895   }
 896 #endif
 897 }
 898 #endif
 899 
 900 bool Thread::is_in_stack(address adr) const {
 901   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 902   address end = os::current_stack_pointer();
 903   // Allow non Java threads to call this without stack_base
 904   if (_stack_base == NULL) return true;
 905   if (stack_base() >= adr && adr >= end) return true;
 906 
 907   return false;
 908 }
 909 
 910 bool Thread::is_in_usable_stack(address adr) const {
 911   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 912   size_t usable_stack_size = _stack_size - stack_guard_size;
 913 
 914   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 915 }
 916 
 917 
 918 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 919 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 920 // used for compilation in the future. If that change is made, the need for these methods
 921 // should be revisited, and they should be removed if possible.
 922 
 923 bool Thread::is_lock_owned(address adr) const {
 924   return on_local_stack(adr);
 925 }
 926 
 927 bool Thread::set_as_starting_thread() {
 928   // NOTE: this must be called inside the main thread.
 929   return os::create_main_thread((JavaThread*)this);
 930 }
 931 
 932 static void initialize_class(Symbol* class_name, TRAPS) {
 933   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 934   InstanceKlass::cast(klass)->initialize(CHECK);
 935 }
 936 
 937 
 938 // Creates the initial ThreadGroup
 939 static Handle create_initial_thread_group(TRAPS) {
 940   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 941   instanceKlassHandle klass (THREAD, k);
 942 
 943   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 944   {
 945     JavaValue result(T_VOID);
 946     JavaCalls::call_special(&result,
 947                             system_instance,
 948                             klass,
 949                             vmSymbols::object_initializer_name(),
 950                             vmSymbols::void_method_signature(),
 951                             CHECK_NH);
 952   }
 953   Universe::set_system_thread_group(system_instance());
 954 
 955   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 956   {
 957     JavaValue result(T_VOID);
 958     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 959     JavaCalls::call_special(&result,
 960                             main_instance,
 961                             klass,
 962                             vmSymbols::object_initializer_name(),
 963                             vmSymbols::threadgroup_string_void_signature(),
 964                             system_instance,
 965                             string,
 966                             CHECK_NH);
 967   }
 968   return main_instance;
 969 }
 970 
 971 // Creates the initial Thread
 972 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 973                                  TRAPS) {
 974   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 975   instanceKlassHandle klass (THREAD, k);
 976   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 977 
 978   java_lang_Thread::set_thread(thread_oop(), thread);
 979   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 980   thread->set_threadObj(thread_oop());
 981 
 982   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 983 
 984   JavaValue result(T_VOID);
 985   JavaCalls::call_special(&result, thread_oop,
 986                           klass,
 987                           vmSymbols::object_initializer_name(),
 988                           vmSymbols::threadgroup_string_void_signature(),
 989                           thread_group,
 990                           string,
 991                           CHECK_NULL);
 992   return thread_oop();
 993 }
 994 
 995 static void call_initializeSystemClass(TRAPS) {
 996   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 997   instanceKlassHandle klass (THREAD, k);
 998 
 999   JavaValue result(T_VOID);
1000   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1001                          vmSymbols::void_method_signature(), CHECK);
1002 }
1003 
1004 char java_runtime_name[128] = "";
1005 char java_runtime_version[128] = "";
1006 
1007 // extract the JRE name from sun.misc.Version.java_runtime_name
1008 static const char* get_java_runtime_name(TRAPS) {
1009   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1010                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1011   fieldDescriptor fd;
1012   bool found = k != NULL &&
1013                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1014                                                         vmSymbols::string_signature(), &fd);
1015   if (found) {
1016     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1017     if (name_oop == NULL) {
1018       return NULL;
1019     }
1020     const char* name = java_lang_String::as_utf8_string(name_oop,
1021                                                         java_runtime_name,
1022                                                         sizeof(java_runtime_name));
1023     return name;
1024   } else {
1025     return NULL;
1026   }
1027 }
1028 
1029 // extract the JRE version from sun.misc.Version.java_runtime_version
1030 static const char* get_java_runtime_version(TRAPS) {
1031   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1032                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1033   fieldDescriptor fd;
1034   bool found = k != NULL &&
1035                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1036                                                         vmSymbols::string_signature(), &fd);
1037   if (found) {
1038     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1039     if (name_oop == NULL) {
1040       return NULL;
1041     }
1042     const char* name = java_lang_String::as_utf8_string(name_oop,
1043                                                         java_runtime_version,
1044                                                         sizeof(java_runtime_version));
1045     return name;
1046   } else {
1047     return NULL;
1048   }
1049 }
1050 
1051 // General purpose hook into Java code, run once when the VM is initialized.
1052 // The Java library method itself may be changed independently from the VM.
1053 static void call_postVMInitHook(TRAPS) {
1054   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1055   instanceKlassHandle klass (THREAD, k);
1056   if (klass.not_null()) {
1057     JavaValue result(T_VOID);
1058     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1059                            vmSymbols::void_method_signature(),
1060                            CHECK);
1061   }
1062 }
1063 
1064 static void reset_vm_info_property(TRAPS) {
1065   // the vm info string
1066   ResourceMark rm(THREAD);
1067   const char *vm_info = VM_Version::vm_info_string();
1068 
1069   // java.lang.System class
1070   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1071   instanceKlassHandle klass (THREAD, k);
1072 
1073   // setProperty arguments
1074   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1075   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1076 
1077   // return value
1078   JavaValue r(T_OBJECT);
1079 
1080   // public static String setProperty(String key, String value);
1081   JavaCalls::call_static(&r,
1082                          klass,
1083                          vmSymbols::setProperty_name(),
1084                          vmSymbols::string_string_string_signature(),
1085                          key_str,
1086                          value_str,
1087                          CHECK);
1088 }
1089 
1090 
1091 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1092                                     bool daemon, TRAPS) {
1093   assert(thread_group.not_null(), "thread group should be specified");
1094   assert(threadObj() == NULL, "should only create Java thread object once");
1095 
1096   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1097   instanceKlassHandle klass (THREAD, k);
1098   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1099 
1100   java_lang_Thread::set_thread(thread_oop(), this);
1101   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1102   set_threadObj(thread_oop());
1103 
1104   JavaValue result(T_VOID);
1105   if (thread_name != NULL) {
1106     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1107     // Thread gets assigned specified name and null target
1108     JavaCalls::call_special(&result,
1109                             thread_oop,
1110                             klass,
1111                             vmSymbols::object_initializer_name(),
1112                             vmSymbols::threadgroup_string_void_signature(),
1113                             thread_group, // Argument 1
1114                             name,         // Argument 2
1115                             THREAD);
1116   } else {
1117     // Thread gets assigned name "Thread-nnn" and null target
1118     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1119     JavaCalls::call_special(&result,
1120                             thread_oop,
1121                             klass,
1122                             vmSymbols::object_initializer_name(),
1123                             vmSymbols::threadgroup_runnable_void_signature(),
1124                             thread_group, // Argument 1
1125                             Handle(),     // Argument 2
1126                             THREAD);
1127   }
1128 
1129 
1130   if (daemon) {
1131     java_lang_Thread::set_daemon(thread_oop());
1132   }
1133 
1134   if (HAS_PENDING_EXCEPTION) {
1135     return;
1136   }
1137 
1138   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1139   Handle threadObj(THREAD, this->threadObj());
1140 
1141   JavaCalls::call_special(&result,
1142                           thread_group,
1143                           group,
1144                           vmSymbols::add_method_name(),
1145                           vmSymbols::thread_void_signature(),
1146                           threadObj,          // Arg 1
1147                           THREAD);
1148 }
1149 
1150 // NamedThread --  non-JavaThread subclasses with multiple
1151 // uniquely named instances should derive from this.
1152 NamedThread::NamedThread() : Thread() {
1153   _name = NULL;
1154   _processed_thread = NULL;
1155   _gc_id = GCId::undefined();
1156 }
1157 
1158 NamedThread::~NamedThread() {
1159   if (_name != NULL) {
1160     FREE_C_HEAP_ARRAY(char, _name);
1161     _name = NULL;
1162   }
1163 }
1164 
1165 void NamedThread::set_name(const char* format, ...) {
1166   guarantee(_name == NULL, "Only get to set name once.");
1167   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1168   guarantee(_name != NULL, "alloc failure");
1169   va_list ap;
1170   va_start(ap, format);
1171   jio_vsnprintf(_name, max_name_len, format, ap);
1172   va_end(ap);
1173 }
1174 
1175 void NamedThread::initialize_named_thread() {
1176   set_native_thread_name(name());
1177 }
1178 
1179 void NamedThread::print_on(outputStream* st) const {
1180   st->print("\"%s\" ", name());
1181   Thread::print_on(st);
1182   st->cr();
1183 }
1184 
1185 
1186 // ======= WatcherThread ========
1187 
1188 // The watcher thread exists to simulate timer interrupts.  It should
1189 // be replaced by an abstraction over whatever native support for
1190 // timer interrupts exists on the platform.
1191 
1192 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1193 bool WatcherThread::_startable = false;
1194 volatile bool  WatcherThread::_should_terminate = false;
1195 
1196 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1197   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1198   if (os::create_thread(this, os::watcher_thread)) {
1199     _watcher_thread = this;
1200 
1201     // Set the watcher thread to the highest OS priority which should not be
1202     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1203     // is created. The only normal thread using this priority is the reference
1204     // handler thread, which runs for very short intervals only.
1205     // If the VMThread's priority is not lower than the WatcherThread profiling
1206     // will be inaccurate.
1207     os::set_priority(this, MaxPriority);
1208     if (!DisableStartThread) {
1209       os::start_thread(this);
1210     }
1211   }
1212 }
1213 
1214 int WatcherThread::sleep() const {
1215   // The WatcherThread does not participate in the safepoint protocol
1216   // for the PeriodicTask_lock because it is not a JavaThread.
1217   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1218 
1219   if (_should_terminate) {
1220     // check for termination before we do any housekeeping or wait
1221     return 0;  // we did not sleep.
1222   }
1223 
1224   // remaining will be zero if there are no tasks,
1225   // causing the WatcherThread to sleep until a task is
1226   // enrolled
1227   int remaining = PeriodicTask::time_to_wait();
1228   int time_slept = 0;
1229 
1230   // we expect this to timeout - we only ever get unparked when
1231   // we should terminate or when a new task has been enrolled
1232   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1233 
1234   jlong time_before_loop = os::javaTimeNanos();
1235 
1236   while (true) {
1237     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1238                                             remaining);
1239     jlong now = os::javaTimeNanos();
1240 
1241     if (remaining == 0) {
1242       // if we didn't have any tasks we could have waited for a long time
1243       // consider the time_slept zero and reset time_before_loop
1244       time_slept = 0;
1245       time_before_loop = now;
1246     } else {
1247       // need to recalculate since we might have new tasks in _tasks
1248       time_slept = (int) ((now - time_before_loop) / 1000000);
1249     }
1250 
1251     // Change to task list or spurious wakeup of some kind
1252     if (timedout || _should_terminate) {
1253       break;
1254     }
1255 
1256     remaining = PeriodicTask::time_to_wait();
1257     if (remaining == 0) {
1258       // Last task was just disenrolled so loop around and wait until
1259       // another task gets enrolled
1260       continue;
1261     }
1262 
1263     remaining -= time_slept;
1264     if (remaining <= 0) {
1265       break;
1266     }
1267   }
1268 
1269   return time_slept;
1270 }
1271 
1272 void WatcherThread::run() {
1273   assert(this == watcher_thread(), "just checking");
1274 
1275   this->record_stack_base_and_size();
1276   this->set_native_thread_name(this->name());
1277   this->set_active_handles(JNIHandleBlock::allocate_block());
1278   while (true) {
1279     assert(watcher_thread() == Thread::current(), "thread consistency check");
1280     assert(watcher_thread() == this, "thread consistency check");
1281 
1282     // Calculate how long it'll be until the next PeriodicTask work
1283     // should be done, and sleep that amount of time.
1284     int time_waited = sleep();
1285 
1286     if (is_error_reported()) {
1287       // A fatal error has happened, the error handler(VMError::report_and_die)
1288       // should abort JVM after creating an error log file. However in some
1289       // rare cases, the error handler itself might deadlock. Here we try to
1290       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1291       //
1292       // This code is in WatcherThread because WatcherThread wakes up
1293       // periodically so the fatal error handler doesn't need to do anything;
1294       // also because the WatcherThread is less likely to crash than other
1295       // threads.
1296 
1297       for (;;) {
1298         if (!ShowMessageBoxOnError
1299             && (OnError == NULL || OnError[0] == '\0')
1300             && Arguments::abort_hook() == NULL) {
1301           os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1302           fdStream err(defaultStream::output_fd());
1303           err.print_raw_cr("# [ timer expired, abort... ]");
1304           // skip atexit/vm_exit/vm_abort hooks
1305           os::die();
1306         }
1307 
1308         // Wake up 5 seconds later, the fatal handler may reset OnError or
1309         // ShowMessageBoxOnError when it is ready to abort.
1310         os::sleep(this, 5 * 1000, false);
1311       }
1312     }
1313 
1314     if (_should_terminate) {
1315       // check for termination before posting the next tick
1316       break;
1317     }
1318 
1319     PeriodicTask::real_time_tick(time_waited);
1320   }
1321 
1322   // Signal that it is terminated
1323   {
1324     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1325     _watcher_thread = NULL;
1326     Terminator_lock->notify();
1327   }
1328 }
1329 
1330 void WatcherThread::start() {
1331   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1332 
1333   if (watcher_thread() == NULL && _startable) {
1334     _should_terminate = false;
1335     // Create the single instance of WatcherThread
1336     new WatcherThread();
1337   }
1338 }
1339 
1340 void WatcherThread::make_startable() {
1341   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1342   _startable = true;
1343 }
1344 
1345 void WatcherThread::stop() {
1346   {
1347     // Follow normal safepoint aware lock enter protocol since the
1348     // WatcherThread is stopped by another JavaThread.
1349     MutexLocker ml(PeriodicTask_lock);
1350     _should_terminate = true;
1351 
1352     WatcherThread* watcher = watcher_thread();
1353     if (watcher != NULL) {
1354       // unpark the WatcherThread so it can see that it should terminate
1355       watcher->unpark();
1356     }
1357   }
1358 
1359   MutexLocker mu(Terminator_lock);
1360 
1361   while (watcher_thread() != NULL) {
1362     // This wait should make safepoint checks, wait without a timeout,
1363     // and wait as a suspend-equivalent condition.
1364     //
1365     // Note: If the FlatProfiler is running, then this thread is waiting
1366     // for the WatcherThread to terminate and the WatcherThread, via the
1367     // FlatProfiler task, is waiting for the external suspend request on
1368     // this thread to complete. wait_for_ext_suspend_completion() will
1369     // eventually timeout, but that takes time. Making this wait a
1370     // suspend-equivalent condition solves that timeout problem.
1371     //
1372     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1373                           Mutex::_as_suspend_equivalent_flag);
1374   }
1375 }
1376 
1377 void WatcherThread::unpark() {
1378   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1379   PeriodicTask_lock->notify();
1380 }
1381 
1382 void WatcherThread::print_on(outputStream* st) const {
1383   st->print("\"%s\" ", name());
1384   Thread::print_on(st);
1385   st->cr();
1386 }
1387 
1388 // ======= JavaThread ========
1389 
1390 #if INCLUDE_JVMCI
1391 
1392 jlong* JavaThread::_jvmci_old_thread_counters;
1393 
1394 bool jvmci_counters_include(JavaThread* thread) {
1395   oop threadObj = thread->threadObj();
1396   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1397 }
1398 
1399 void JavaThread::collect_counters(typeArrayOop array) {
1400   if (JVMCICounterSize > 0) {
1401     MutexLocker tl(Threads_lock);
1402     for (int i = 0; i < array->length(); i++) {
1403       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1404     }
1405     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1406       if (jvmci_counters_include(tp)) {
1407         for (int i = 0; i < array->length(); i++) {
1408           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1409         }
1410       }
1411     }
1412   }
1413 }
1414 
1415 #endif // INCLUDE_JVMCI
1416 
1417 // A JavaThread is a normal Java thread
1418 
1419 void JavaThread::initialize() {
1420   // Initialize fields
1421 
1422   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1423   set_claimed_par_id(UINT_MAX);
1424 
1425   set_saved_exception_pc(NULL);
1426   set_threadObj(NULL);
1427   _anchor.clear();
1428   set_entry_point(NULL);
1429   set_jni_functions(jni_functions());
1430   set_callee_target(NULL);
1431   set_vm_result(NULL);
1432   set_vm_result_2(NULL);
1433   set_vframe_array_head(NULL);
1434   set_vframe_array_last(NULL);
1435   set_deferred_locals(NULL);
1436   set_deopt_mark(NULL);
1437   set_deopt_nmethod(NULL);
1438   clear_must_deopt_id();
1439   set_monitor_chunks(NULL);
1440   set_next(NULL);
1441   set_thread_state(_thread_new);
1442   _terminated = _not_terminated;
1443   _privileged_stack_top = NULL;
1444   _array_for_gc = NULL;
1445   _suspend_equivalent = false;
1446   _in_deopt_handler = 0;
1447   _doing_unsafe_access = false;
1448   _stack_guard_state = stack_guard_unused;
1449 #if INCLUDE_JVMCI
1450   _pending_monitorenter = false;
1451   _pending_deoptimization = -1;
1452   _pending_failed_speculation = NULL;
1453   _pending_transfer_to_interpreter = false;
1454   _jvmci._alternate_call_target = NULL;
1455   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1456   if (JVMCICounterSize > 0) {
1457     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1458     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1459   } else {
1460     _jvmci_counters = NULL;
1461   }
1462 #endif // INCLUDE_JVMCI
1463   _reserved_stack_activation = NULL;  // stack base not known yet
1464   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1465   _exception_pc  = 0;
1466   _exception_handler_pc = 0;
1467   _is_method_handle_return = 0;
1468   _jvmti_thread_state= NULL;
1469   _should_post_on_exceptions_flag = JNI_FALSE;
1470   _jvmti_get_loaded_classes_closure = NULL;
1471   _interp_only_mode    = 0;
1472   _special_runtime_exit_condition = _no_async_condition;
1473   _pending_async_exception = NULL;
1474   _thread_stat = NULL;
1475   _thread_stat = new ThreadStatistics();
1476   _blocked_on_compilation = false;
1477   _jni_active_critical = 0;
1478   _pending_jni_exception_check_fn = NULL;
1479   _do_not_unlock_if_synchronized = false;
1480   _cached_monitor_info = NULL;
1481   _parker = Parker::Allocate(this);
1482 
1483 #ifndef PRODUCT
1484   _jmp_ring_index = 0;
1485   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1486     record_jump(NULL, NULL, NULL, 0);
1487   }
1488 #endif // PRODUCT
1489 
1490   set_thread_profiler(NULL);
1491   if (FlatProfiler::is_active()) {
1492     // This is where we would decide to either give each thread it's own profiler
1493     // or use one global one from FlatProfiler,
1494     // or up to some count of the number of profiled threads, etc.
1495     ThreadProfiler* pp = new ThreadProfiler();
1496     pp->engage();
1497     set_thread_profiler(pp);
1498   }
1499 
1500   // Setup safepoint state info for this thread
1501   ThreadSafepointState::create(this);
1502 
1503   debug_only(_java_call_counter = 0);
1504 
1505   // JVMTI PopFrame support
1506   _popframe_condition = popframe_inactive;
1507   _popframe_preserved_args = NULL;
1508   _popframe_preserved_args_size = 0;
1509   _frames_to_pop_failed_realloc = 0;
1510 
1511   pd_initialize();
1512 }
1513 
1514 #if INCLUDE_ALL_GCS
1515 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1516 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1517 #endif // INCLUDE_ALL_GCS
1518 
1519 JavaThread::JavaThread(bool is_attaching_via_jni) :
1520                        Thread()
1521 #if INCLUDE_ALL_GCS
1522                        , _satb_mark_queue(&_satb_mark_queue_set),
1523                        _dirty_card_queue(&_dirty_card_queue_set)
1524 #endif // INCLUDE_ALL_GCS
1525 {
1526   initialize();
1527   if (is_attaching_via_jni) {
1528     _jni_attach_state = _attaching_via_jni;
1529   } else {
1530     _jni_attach_state = _not_attaching_via_jni;
1531   }
1532   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1533 }
1534 
1535 bool JavaThread::reguard_stack(address cur_sp) {
1536   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1537       && _stack_guard_state != stack_guard_reserved_disabled) {
1538     return true; // Stack already guarded or guard pages not needed.
1539   }
1540 
1541   if (register_stack_overflow()) {
1542     // For those architectures which have separate register and
1543     // memory stacks, we must check the register stack to see if
1544     // it has overflowed.
1545     return false;
1546   }
1547 
1548   // Java code never executes within the yellow zone: the latter is only
1549   // there to provoke an exception during stack banging.  If java code
1550   // is executing there, either StackShadowPages should be larger, or
1551   // some exception code in c1, c2 or the interpreter isn't unwinding
1552   // when it should.
1553   guarantee(cur_sp > stack_reserved_zone_base(),
1554             "not enough space to reguard - increase StackShadowPages");
1555   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1556     enable_stack_yellow_reserved_zone();
1557     if (reserved_stack_activation() != stack_base()) {
1558       set_reserved_stack_activation(stack_base());
1559     }
1560   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1561     set_reserved_stack_activation(stack_base());
1562     enable_stack_reserved_zone();
1563   }
1564   return true;
1565 }
1566 
1567 bool JavaThread::reguard_stack(void) {
1568   return reguard_stack(os::current_stack_pointer());
1569 }
1570 
1571 
1572 void JavaThread::block_if_vm_exited() {
1573   if (_terminated == _vm_exited) {
1574     // _vm_exited is set at safepoint, and Threads_lock is never released
1575     // we will block here forever
1576     Threads_lock->lock_without_safepoint_check();
1577     ShouldNotReachHere();
1578   }
1579 }
1580 
1581 
1582 // Remove this ifdef when C1 is ported to the compiler interface.
1583 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1584 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1585 
1586 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1587                        Thread()
1588 #if INCLUDE_ALL_GCS
1589                        , _satb_mark_queue(&_satb_mark_queue_set),
1590                        _dirty_card_queue(&_dirty_card_queue_set)
1591 #endif // INCLUDE_ALL_GCS
1592 {
1593   initialize();
1594   _jni_attach_state = _not_attaching_via_jni;
1595   set_entry_point(entry_point);
1596   // Create the native thread itself.
1597   // %note runtime_23
1598   os::ThreadType thr_type = os::java_thread;
1599   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1600                                                      os::java_thread;
1601   os::create_thread(this, thr_type, stack_sz);
1602   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1603   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1604   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1605   // the exception consists of creating the exception object & initializing it, initialization
1606   // will leave the VM via a JavaCall and then all locks must be unlocked).
1607   //
1608   // The thread is still suspended when we reach here. Thread must be explicit started
1609   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1610   // by calling Threads:add. The reason why this is not done here, is because the thread
1611   // object must be fully initialized (take a look at JVM_Start)
1612 }
1613 
1614 JavaThread::~JavaThread() {
1615 
1616   // JSR166 -- return the parker to the free list
1617   Parker::Release(_parker);
1618   _parker = NULL;
1619 
1620   // Free any remaining  previous UnrollBlock
1621   vframeArray* old_array = vframe_array_last();
1622 
1623   if (old_array != NULL) {
1624     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1625     old_array->set_unroll_block(NULL);
1626     delete old_info;
1627     delete old_array;
1628   }
1629 
1630   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1631   if (deferred != NULL) {
1632     // This can only happen if thread is destroyed before deoptimization occurs.
1633     assert(deferred->length() != 0, "empty array!");
1634     do {
1635       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1636       deferred->remove_at(0);
1637       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1638       delete dlv;
1639     } while (deferred->length() != 0);
1640     delete deferred;
1641   }
1642 
1643   // All Java related clean up happens in exit
1644   ThreadSafepointState::destroy(this);
1645   if (_thread_profiler != NULL) delete _thread_profiler;
1646   if (_thread_stat != NULL) delete _thread_stat;
1647 
1648 #if INCLUDE_JVMCI
1649   if (JVMCICounterSize > 0) {
1650     if (jvmci_counters_include(this)) {
1651       for (int i = 0; i < JVMCICounterSize; i++) {
1652         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1653       }
1654     }
1655     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1656   }
1657 #endif // INCLUDE_JVMCI
1658 }
1659 
1660 
1661 // The first routine called by a new Java thread
1662 void JavaThread::run() {
1663   // initialize thread-local alloc buffer related fields
1664   this->initialize_tlab();
1665 
1666   // used to test validity of stack trace backs
1667   this->record_base_of_stack_pointer();
1668 
1669   // Record real stack base and size.
1670   this->record_stack_base_and_size();
1671 
1672   this->create_stack_guard_pages();
1673 
1674   this->cache_global_variables();
1675 
1676   // Thread is now sufficient initialized to be handled by the safepoint code as being
1677   // in the VM. Change thread state from _thread_new to _thread_in_vm
1678   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1679 
1680   assert(JavaThread::current() == this, "sanity check");
1681   assert(!Thread::current()->owns_locks(), "sanity check");
1682 
1683   DTRACE_THREAD_PROBE(start, this);
1684 
1685   // This operation might block. We call that after all safepoint checks for a new thread has
1686   // been completed.
1687   this->set_active_handles(JNIHandleBlock::allocate_block());
1688 
1689   if (JvmtiExport::should_post_thread_life()) {
1690     JvmtiExport::post_thread_start(this);
1691   }
1692 
1693   EventThreadStart event;
1694   if (event.should_commit()) {
1695     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1696     event.commit();
1697   }
1698 
1699   // We call another function to do the rest so we are sure that the stack addresses used
1700   // from there will be lower than the stack base just computed
1701   thread_main_inner();
1702 
1703   // Note, thread is no longer valid at this point!
1704 }
1705 
1706 
1707 void JavaThread::thread_main_inner() {
1708   assert(JavaThread::current() == this, "sanity check");
1709   assert(this->threadObj() != NULL, "just checking");
1710 
1711   // Execute thread entry point unless this thread has a pending exception
1712   // or has been stopped before starting.
1713   // Note: Due to JVM_StopThread we can have pending exceptions already!
1714   if (!this->has_pending_exception() &&
1715       !java_lang_Thread::is_stillborn(this->threadObj())) {
1716     {
1717       ResourceMark rm(this);
1718       this->set_native_thread_name(this->get_thread_name());
1719     }
1720     HandleMark hm(this);
1721     this->entry_point()(this, this);
1722   }
1723 
1724   DTRACE_THREAD_PROBE(stop, this);
1725 
1726   this->exit(false);
1727   delete this;
1728 }
1729 
1730 
1731 static void ensure_join(JavaThread* thread) {
1732   // We do not need to grap the Threads_lock, since we are operating on ourself.
1733   Handle threadObj(thread, thread->threadObj());
1734   assert(threadObj.not_null(), "java thread object must exist");
1735   ObjectLocker lock(threadObj, thread);
1736   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1737   thread->clear_pending_exception();
1738   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1739   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1740   // Clear the native thread instance - this makes isAlive return false and allows the join()
1741   // to complete once we've done the notify_all below
1742   java_lang_Thread::set_thread(threadObj(), NULL);
1743   lock.notify_all(thread);
1744   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1745   thread->clear_pending_exception();
1746 }
1747 
1748 
1749 // For any new cleanup additions, please check to see if they need to be applied to
1750 // cleanup_failed_attach_current_thread as well.
1751 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1752   assert(this == JavaThread::current(), "thread consistency check");
1753 
1754   HandleMark hm(this);
1755   Handle uncaught_exception(this, this->pending_exception());
1756   this->clear_pending_exception();
1757   Handle threadObj(this, this->threadObj());
1758   assert(threadObj.not_null(), "Java thread object should be created");
1759 
1760   if (get_thread_profiler() != NULL) {
1761     get_thread_profiler()->disengage();
1762     ResourceMark rm;
1763     get_thread_profiler()->print(get_thread_name());
1764   }
1765 
1766 
1767   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1768   {
1769     EXCEPTION_MARK;
1770 
1771     CLEAR_PENDING_EXCEPTION;
1772   }
1773   if (!destroy_vm) {
1774     if (uncaught_exception.not_null()) {
1775       EXCEPTION_MARK;
1776       // Call method Thread.dispatchUncaughtException().
1777       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1778       JavaValue result(T_VOID);
1779       JavaCalls::call_virtual(&result,
1780                               threadObj, thread_klass,
1781                               vmSymbols::dispatchUncaughtException_name(),
1782                               vmSymbols::throwable_void_signature(),
1783                               uncaught_exception,
1784                               THREAD);
1785       if (HAS_PENDING_EXCEPTION) {
1786         ResourceMark rm(this);
1787         jio_fprintf(defaultStream::error_stream(),
1788                     "\nException: %s thrown from the UncaughtExceptionHandler"
1789                     " in thread \"%s\"\n",
1790                     pending_exception()->klass()->external_name(),
1791                     get_thread_name());
1792         CLEAR_PENDING_EXCEPTION;
1793       }
1794     }
1795 
1796     // Called before the java thread exit since we want to read info
1797     // from java_lang_Thread object
1798     EventThreadEnd event;
1799     if (event.should_commit()) {
1800       event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1801       event.commit();
1802     }
1803 
1804     // Call after last event on thread
1805     EVENT_THREAD_EXIT(this);
1806 
1807     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1808     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1809     // is deprecated anyhow.
1810     if (!is_Compiler_thread()) {
1811       int count = 3;
1812       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1813         EXCEPTION_MARK;
1814         JavaValue result(T_VOID);
1815         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1816         JavaCalls::call_virtual(&result,
1817                                 threadObj, thread_klass,
1818                                 vmSymbols::exit_method_name(),
1819                                 vmSymbols::void_method_signature(),
1820                                 THREAD);
1821         CLEAR_PENDING_EXCEPTION;
1822       }
1823     }
1824     // notify JVMTI
1825     if (JvmtiExport::should_post_thread_life()) {
1826       JvmtiExport::post_thread_end(this);
1827     }
1828 
1829     // We have notified the agents that we are exiting, before we go on,
1830     // we must check for a pending external suspend request and honor it
1831     // in order to not surprise the thread that made the suspend request.
1832     while (true) {
1833       {
1834         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1835         if (!is_external_suspend()) {
1836           set_terminated(_thread_exiting);
1837           ThreadService::current_thread_exiting(this);
1838           break;
1839         }
1840         // Implied else:
1841         // Things get a little tricky here. We have a pending external
1842         // suspend request, but we are holding the SR_lock so we
1843         // can't just self-suspend. So we temporarily drop the lock
1844         // and then self-suspend.
1845       }
1846 
1847       ThreadBlockInVM tbivm(this);
1848       java_suspend_self();
1849 
1850       // We're done with this suspend request, but we have to loop around
1851       // and check again. Eventually we will get SR_lock without a pending
1852       // external suspend request and will be able to mark ourselves as
1853       // exiting.
1854     }
1855     // no more external suspends are allowed at this point
1856   } else {
1857     // before_exit() has already posted JVMTI THREAD_END events
1858   }
1859 
1860   // Notify waiters on thread object. This has to be done after exit() is called
1861   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1862   // group should have the destroyed bit set before waiters are notified).
1863   ensure_join(this);
1864   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1865 
1866   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1867   // held by this thread must be released. The spec does not distinguish
1868   // between JNI-acquired and regular Java monitors. We can only see
1869   // regular Java monitors here if monitor enter-exit matching is broken.
1870   //
1871   // Optionally release any monitors for regular JavaThread exits. This
1872   // is provided as a work around for any bugs in monitor enter-exit
1873   // matching. This can be expensive so it is not enabled by default.
1874   //
1875   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1876   // ObjectSynchronizer::release_monitors_owned_by_thread().
1877   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1878     // Sanity check even though JNI DetachCurrentThread() would have
1879     // returned JNI_ERR if there was a Java frame. JavaThread exit
1880     // should be done executing Java code by the time we get here.
1881     assert(!this->has_last_Java_frame(),
1882            "should not have a Java frame when detaching or exiting");
1883     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1884     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1885   }
1886 
1887   // These things needs to be done while we are still a Java Thread. Make sure that thread
1888   // is in a consistent state, in case GC happens
1889   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1890 
1891   if (active_handles() != NULL) {
1892     JNIHandleBlock* block = active_handles();
1893     set_active_handles(NULL);
1894     JNIHandleBlock::release_block(block);
1895   }
1896 
1897   if (free_handle_block() != NULL) {
1898     JNIHandleBlock* block = free_handle_block();
1899     set_free_handle_block(NULL);
1900     JNIHandleBlock::release_block(block);
1901   }
1902 
1903   // These have to be removed while this is still a valid thread.
1904   remove_stack_guard_pages();
1905 
1906   if (UseTLAB) {
1907     tlab().make_parsable(true);  // retire TLAB
1908   }
1909 
1910   if (JvmtiEnv::environments_might_exist()) {
1911     JvmtiExport::cleanup_thread(this);
1912   }
1913 
1914   // We must flush any deferred card marks before removing a thread from
1915   // the list of active threads.
1916   Universe::heap()->flush_deferred_store_barrier(this);
1917   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1918 
1919 #if INCLUDE_ALL_GCS
1920   // We must flush the G1-related buffers before removing a thread
1921   // from the list of active threads. We must do this after any deferred
1922   // card marks have been flushed (above) so that any entries that are
1923   // added to the thread's dirty card queue as a result are not lost.
1924   if (UseG1GC) {
1925     flush_barrier_queues();
1926   }
1927 #endif // INCLUDE_ALL_GCS
1928 
1929   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1930   Threads::remove(this);
1931 }
1932 
1933 #if INCLUDE_ALL_GCS
1934 // Flush G1-related queues.
1935 void JavaThread::flush_barrier_queues() {
1936   satb_mark_queue().flush();
1937   dirty_card_queue().flush();
1938 }
1939 
1940 void JavaThread::initialize_queues() {
1941   assert(!SafepointSynchronize::is_at_safepoint(),
1942          "we should not be at a safepoint");
1943 
1944   SATBMarkQueue& satb_queue = satb_mark_queue();
1945   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1946   // The SATB queue should have been constructed with its active
1947   // field set to false.
1948   assert(!satb_queue.is_active(), "SATB queue should not be active");
1949   assert(satb_queue.is_empty(), "SATB queue should be empty");
1950   // If we are creating the thread during a marking cycle, we should
1951   // set the active field of the SATB queue to true.
1952   if (satb_queue_set.is_active()) {
1953     satb_queue.set_active(true);
1954   }
1955 
1956   DirtyCardQueue& dirty_queue = dirty_card_queue();
1957   // The dirty card queue should have been constructed with its
1958   // active field set to true.
1959   assert(dirty_queue.is_active(), "dirty card queue should be active");
1960 }
1961 #endif // INCLUDE_ALL_GCS
1962 
1963 void JavaThread::cleanup_failed_attach_current_thread() {
1964   if (get_thread_profiler() != NULL) {
1965     get_thread_profiler()->disengage();
1966     ResourceMark rm;
1967     get_thread_profiler()->print(get_thread_name());
1968   }
1969 
1970   if (active_handles() != NULL) {
1971     JNIHandleBlock* block = active_handles();
1972     set_active_handles(NULL);
1973     JNIHandleBlock::release_block(block);
1974   }
1975 
1976   if (free_handle_block() != NULL) {
1977     JNIHandleBlock* block = free_handle_block();
1978     set_free_handle_block(NULL);
1979     JNIHandleBlock::release_block(block);
1980   }
1981 
1982   // These have to be removed while this is still a valid thread.
1983   remove_stack_guard_pages();
1984 
1985   if (UseTLAB) {
1986     tlab().make_parsable(true);  // retire TLAB, if any
1987   }
1988 
1989 #if INCLUDE_ALL_GCS
1990   if (UseG1GC) {
1991     flush_barrier_queues();
1992   }
1993 #endif // INCLUDE_ALL_GCS
1994 
1995   Threads::remove(this);
1996   delete this;
1997 }
1998 
1999 
2000 
2001 
2002 JavaThread* JavaThread::active() {
2003   Thread* thread = Thread::current();
2004   if (thread->is_Java_thread()) {
2005     return (JavaThread*) thread;
2006   } else {
2007     assert(thread->is_VM_thread(), "this must be a vm thread");
2008     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2009     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2010     assert(ret->is_Java_thread(), "must be a Java thread");
2011     return ret;
2012   }
2013 }
2014 
2015 bool JavaThread::is_lock_owned(address adr) const {
2016   if (Thread::is_lock_owned(adr)) return true;
2017 
2018   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2019     if (chunk->contains(adr)) return true;
2020   }
2021 
2022   return false;
2023 }
2024 
2025 
2026 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2027   chunk->set_next(monitor_chunks());
2028   set_monitor_chunks(chunk);
2029 }
2030 
2031 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2032   guarantee(monitor_chunks() != NULL, "must be non empty");
2033   if (monitor_chunks() == chunk) {
2034     set_monitor_chunks(chunk->next());
2035   } else {
2036     MonitorChunk* prev = monitor_chunks();
2037     while (prev->next() != chunk) prev = prev->next();
2038     prev->set_next(chunk->next());
2039   }
2040 }
2041 
2042 // JVM support.
2043 
2044 // Note: this function shouldn't block if it's called in
2045 // _thread_in_native_trans state (such as from
2046 // check_special_condition_for_native_trans()).
2047 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2048 
2049   if (has_last_Java_frame() && has_async_condition()) {
2050     // If we are at a polling page safepoint (not a poll return)
2051     // then we must defer async exception because live registers
2052     // will be clobbered by the exception path. Poll return is
2053     // ok because the call we a returning from already collides
2054     // with exception handling registers and so there is no issue.
2055     // (The exception handling path kills call result registers but
2056     //  this is ok since the exception kills the result anyway).
2057 
2058     if (is_at_poll_safepoint()) {
2059       // if the code we are returning to has deoptimized we must defer
2060       // the exception otherwise live registers get clobbered on the
2061       // exception path before deoptimization is able to retrieve them.
2062       //
2063       RegisterMap map(this, false);
2064       frame caller_fr = last_frame().sender(&map);
2065       assert(caller_fr.is_compiled_frame(), "what?");
2066       if (caller_fr.is_deoptimized_frame()) {
2067         log_info(exceptions)("deferred async exception at compiled safepoint");
2068         return;
2069       }
2070     }
2071   }
2072 
2073   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2074   if (condition == _no_async_condition) {
2075     // Conditions have changed since has_special_runtime_exit_condition()
2076     // was called:
2077     // - if we were here only because of an external suspend request,
2078     //   then that was taken care of above (or cancelled) so we are done
2079     // - if we were here because of another async request, then it has
2080     //   been cleared between the has_special_runtime_exit_condition()
2081     //   and now so again we are done
2082     return;
2083   }
2084 
2085   // Check for pending async. exception
2086   if (_pending_async_exception != NULL) {
2087     // Only overwrite an already pending exception, if it is not a threadDeath.
2088     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2089 
2090       // We cannot call Exceptions::_throw(...) here because we cannot block
2091       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2092 
2093       if (log_is_enabled(Info, exceptions)) {
2094         ResourceMark rm;
2095         outputStream* logstream = LogHandle(exceptions)::info_stream();
2096         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2097           if (has_last_Java_frame()) {
2098             frame f = last_frame();
2099            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2100           }
2101         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2102       }
2103       _pending_async_exception = NULL;
2104       clear_has_async_exception();
2105     }
2106   }
2107 
2108   if (check_unsafe_error &&
2109       condition == _async_unsafe_access_error && !has_pending_exception()) {
2110     condition = _no_async_condition;  // done
2111     switch (thread_state()) {
2112     case _thread_in_vm: {
2113       JavaThread* THREAD = this;
2114       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2115     }
2116     case _thread_in_native: {
2117       ThreadInVMfromNative tiv(this);
2118       JavaThread* THREAD = this;
2119       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2120     }
2121     case _thread_in_Java: {
2122       ThreadInVMfromJava tiv(this);
2123       JavaThread* THREAD = this;
2124       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2125     }
2126     default:
2127       ShouldNotReachHere();
2128     }
2129   }
2130 
2131   assert(condition == _no_async_condition || has_pending_exception() ||
2132          (!check_unsafe_error && condition == _async_unsafe_access_error),
2133          "must have handled the async condition, if no exception");
2134 }
2135 
2136 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2137   //
2138   // Check for pending external suspend. Internal suspend requests do
2139   // not use handle_special_runtime_exit_condition().
2140   // If JNIEnv proxies are allowed, don't self-suspend if the target
2141   // thread is not the current thread. In older versions of jdbx, jdbx
2142   // threads could call into the VM with another thread's JNIEnv so we
2143   // can be here operating on behalf of a suspended thread (4432884).
2144   bool do_self_suspend = is_external_suspend_with_lock();
2145   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2146     //
2147     // Because thread is external suspended the safepoint code will count
2148     // thread as at a safepoint. This can be odd because we can be here
2149     // as _thread_in_Java which would normally transition to _thread_blocked
2150     // at a safepoint. We would like to mark the thread as _thread_blocked
2151     // before calling java_suspend_self like all other callers of it but
2152     // we must then observe proper safepoint protocol. (We can't leave
2153     // _thread_blocked with a safepoint in progress). However we can be
2154     // here as _thread_in_native_trans so we can't use a normal transition
2155     // constructor/destructor pair because they assert on that type of
2156     // transition. We could do something like:
2157     //
2158     // JavaThreadState state = thread_state();
2159     // set_thread_state(_thread_in_vm);
2160     // {
2161     //   ThreadBlockInVM tbivm(this);
2162     //   java_suspend_self()
2163     // }
2164     // set_thread_state(_thread_in_vm_trans);
2165     // if (safepoint) block;
2166     // set_thread_state(state);
2167     //
2168     // but that is pretty messy. Instead we just go with the way the
2169     // code has worked before and note that this is the only path to
2170     // java_suspend_self that doesn't put the thread in _thread_blocked
2171     // mode.
2172 
2173     frame_anchor()->make_walkable(this);
2174     java_suspend_self();
2175 
2176     // We might be here for reasons in addition to the self-suspend request
2177     // so check for other async requests.
2178   }
2179 
2180   if (check_asyncs) {
2181     check_and_handle_async_exceptions();
2182   }
2183 }
2184 
2185 void JavaThread::send_thread_stop(oop java_throwable)  {
2186   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2187   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2188   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2189 
2190   // Do not throw asynchronous exceptions against the compiler thread
2191   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2192   if (!can_call_java()) return;
2193 
2194   {
2195     // Actually throw the Throwable against the target Thread - however
2196     // only if there is no thread death exception installed already.
2197     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2198       // If the topmost frame is a runtime stub, then we are calling into
2199       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2200       // must deoptimize the caller before continuing, as the compiled  exception handler table
2201       // may not be valid
2202       if (has_last_Java_frame()) {
2203         frame f = last_frame();
2204         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2205           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2206           RegisterMap reg_map(this, UseBiasedLocking);
2207           frame compiled_frame = f.sender(&reg_map);
2208           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2209             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2210           }
2211         }
2212       }
2213 
2214       // Set async. pending exception in thread.
2215       set_pending_async_exception(java_throwable);
2216 
2217       if (log_is_enabled(Info, exceptions)) {
2218          ResourceMark rm;
2219         log_info(exceptions)("Pending Async. exception installed of type: %s",
2220                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2221       }
2222       // for AbortVMOnException flag
2223       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2224     }
2225   }
2226 
2227 
2228   // Interrupt thread so it will wake up from a potential wait()
2229   Thread::interrupt(this);
2230 }
2231 
2232 // External suspension mechanism.
2233 //
2234 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2235 // to any VM_locks and it is at a transition
2236 // Self-suspension will happen on the transition out of the vm.
2237 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2238 //
2239 // Guarantees on return:
2240 //   + Target thread will not execute any new bytecode (that's why we need to
2241 //     force a safepoint)
2242 //   + Target thread will not enter any new monitors
2243 //
2244 void JavaThread::java_suspend() {
2245   { MutexLocker mu(Threads_lock);
2246     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2247       return;
2248     }
2249   }
2250 
2251   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2252     if (!is_external_suspend()) {
2253       // a racing resume has cancelled us; bail out now
2254       return;
2255     }
2256 
2257     // suspend is done
2258     uint32_t debug_bits = 0;
2259     // Warning: is_ext_suspend_completed() may temporarily drop the
2260     // SR_lock to allow the thread to reach a stable thread state if
2261     // it is currently in a transient thread state.
2262     if (is_ext_suspend_completed(false /* !called_by_wait */,
2263                                  SuspendRetryDelay, &debug_bits)) {
2264       return;
2265     }
2266   }
2267 
2268   VM_ForceSafepoint vm_suspend;
2269   VMThread::execute(&vm_suspend);
2270 }
2271 
2272 // Part II of external suspension.
2273 // A JavaThread self suspends when it detects a pending external suspend
2274 // request. This is usually on transitions. It is also done in places
2275 // where continuing to the next transition would surprise the caller,
2276 // e.g., monitor entry.
2277 //
2278 // Returns the number of times that the thread self-suspended.
2279 //
2280 // Note: DO NOT call java_suspend_self() when you just want to block current
2281 //       thread. java_suspend_self() is the second stage of cooperative
2282 //       suspension for external suspend requests and should only be used
2283 //       to complete an external suspend request.
2284 //
2285 int JavaThread::java_suspend_self() {
2286   int ret = 0;
2287 
2288   // we are in the process of exiting so don't suspend
2289   if (is_exiting()) {
2290     clear_external_suspend();
2291     return ret;
2292   }
2293 
2294   assert(_anchor.walkable() ||
2295          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2296          "must have walkable stack");
2297 
2298   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2299 
2300   assert(!this->is_ext_suspended(),
2301          "a thread trying to self-suspend should not already be suspended");
2302 
2303   if (this->is_suspend_equivalent()) {
2304     // If we are self-suspending as a result of the lifting of a
2305     // suspend equivalent condition, then the suspend_equivalent
2306     // flag is not cleared until we set the ext_suspended flag so
2307     // that wait_for_ext_suspend_completion() returns consistent
2308     // results.
2309     this->clear_suspend_equivalent();
2310   }
2311 
2312   // A racing resume may have cancelled us before we grabbed SR_lock
2313   // above. Or another external suspend request could be waiting for us
2314   // by the time we return from SR_lock()->wait(). The thread
2315   // that requested the suspension may already be trying to walk our
2316   // stack and if we return now, we can change the stack out from under
2317   // it. This would be a "bad thing (TM)" and cause the stack walker
2318   // to crash. We stay self-suspended until there are no more pending
2319   // external suspend requests.
2320   while (is_external_suspend()) {
2321     ret++;
2322     this->set_ext_suspended();
2323 
2324     // _ext_suspended flag is cleared by java_resume()
2325     while (is_ext_suspended()) {
2326       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2327     }
2328   }
2329 
2330   return ret;
2331 }
2332 
2333 #ifdef ASSERT
2334 // verify the JavaThread has not yet been published in the Threads::list, and
2335 // hence doesn't need protection from concurrent access at this stage
2336 void JavaThread::verify_not_published() {
2337   if (!Threads_lock->owned_by_self()) {
2338     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2339     assert(!Threads::includes(this),
2340            "java thread shouldn't have been published yet!");
2341   } else {
2342     assert(!Threads::includes(this),
2343            "java thread shouldn't have been published yet!");
2344   }
2345 }
2346 #endif
2347 
2348 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2349 // progress or when _suspend_flags is non-zero.
2350 // Current thread needs to self-suspend if there is a suspend request and/or
2351 // block if a safepoint is in progress.
2352 // Async exception ISN'T checked.
2353 // Note only the ThreadInVMfromNative transition can call this function
2354 // directly and when thread state is _thread_in_native_trans
2355 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2356   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2357 
2358   JavaThread *curJT = JavaThread::current();
2359   bool do_self_suspend = thread->is_external_suspend();
2360 
2361   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2362 
2363   // If JNIEnv proxies are allowed, don't self-suspend if the target
2364   // thread is not the current thread. In older versions of jdbx, jdbx
2365   // threads could call into the VM with another thread's JNIEnv so we
2366   // can be here operating on behalf of a suspended thread (4432884).
2367   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2368     JavaThreadState state = thread->thread_state();
2369 
2370     // We mark this thread_blocked state as a suspend-equivalent so
2371     // that a caller to is_ext_suspend_completed() won't be confused.
2372     // The suspend-equivalent state is cleared by java_suspend_self().
2373     thread->set_suspend_equivalent();
2374 
2375     // If the safepoint code sees the _thread_in_native_trans state, it will
2376     // wait until the thread changes to other thread state. There is no
2377     // guarantee on how soon we can obtain the SR_lock and complete the
2378     // self-suspend request. It would be a bad idea to let safepoint wait for
2379     // too long. Temporarily change the state to _thread_blocked to
2380     // let the VM thread know that this thread is ready for GC. The problem
2381     // of changing thread state is that safepoint could happen just after
2382     // java_suspend_self() returns after being resumed, and VM thread will
2383     // see the _thread_blocked state. We must check for safepoint
2384     // after restoring the state and make sure we won't leave while a safepoint
2385     // is in progress.
2386     thread->set_thread_state(_thread_blocked);
2387     thread->java_suspend_self();
2388     thread->set_thread_state(state);
2389     // Make sure new state is seen by VM thread
2390     if (os::is_MP()) {
2391       if (UseMembar) {
2392         // Force a fence between the write above and read below
2393         OrderAccess::fence();
2394       } else {
2395         // Must use this rather than serialization page in particular on Windows
2396         InterfaceSupport::serialize_memory(thread);
2397       }
2398     }
2399   }
2400 
2401   if (SafepointSynchronize::do_call_back()) {
2402     // If we are safepointing, then block the caller which may not be
2403     // the same as the target thread (see above).
2404     SafepointSynchronize::block(curJT);
2405   }
2406 
2407   if (thread->is_deopt_suspend()) {
2408     thread->clear_deopt_suspend();
2409     RegisterMap map(thread, false);
2410     frame f = thread->last_frame();
2411     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2412       f = f.sender(&map);
2413     }
2414     if (f.id() == thread->must_deopt_id()) {
2415       thread->clear_must_deopt_id();
2416       f.deoptimize(thread);
2417     } else {
2418       fatal("missed deoptimization!");
2419     }
2420   }
2421 }
2422 
2423 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2424 // progress or when _suspend_flags is non-zero.
2425 // Current thread needs to self-suspend if there is a suspend request and/or
2426 // block if a safepoint is in progress.
2427 // Also check for pending async exception (not including unsafe access error).
2428 // Note only the native==>VM/Java barriers can call this function and when
2429 // thread state is _thread_in_native_trans.
2430 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2431   check_safepoint_and_suspend_for_native_trans(thread);
2432 
2433   if (thread->has_async_exception()) {
2434     // We are in _thread_in_native_trans state, don't handle unsafe
2435     // access error since that may block.
2436     thread->check_and_handle_async_exceptions(false);
2437   }
2438 }
2439 
2440 // This is a variant of the normal
2441 // check_special_condition_for_native_trans with slightly different
2442 // semantics for use by critical native wrappers.  It does all the
2443 // normal checks but also performs the transition back into
2444 // thread_in_Java state.  This is required so that critical natives
2445 // can potentially block and perform a GC if they are the last thread
2446 // exiting the GC_locker.
2447 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2448   check_special_condition_for_native_trans(thread);
2449 
2450   // Finish the transition
2451   thread->set_thread_state(_thread_in_Java);
2452 
2453   if (thread->do_critical_native_unlock()) {
2454     ThreadInVMfromJavaNoAsyncException tiv(thread);
2455     GC_locker::unlock_critical(thread);
2456     thread->clear_critical_native_unlock();
2457   }
2458 }
2459 
2460 // We need to guarantee the Threads_lock here, since resumes are not
2461 // allowed during safepoint synchronization
2462 // Can only resume from an external suspension
2463 void JavaThread::java_resume() {
2464   assert_locked_or_safepoint(Threads_lock);
2465 
2466   // Sanity check: thread is gone, has started exiting or the thread
2467   // was not externally suspended.
2468   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2469     return;
2470   }
2471 
2472   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2473 
2474   clear_external_suspend();
2475 
2476   if (is_ext_suspended()) {
2477     clear_ext_suspended();
2478     SR_lock()->notify_all();
2479   }
2480 }
2481 
2482 size_t JavaThread::_stack_red_zone_size = 0;
2483 size_t JavaThread::_stack_yellow_zone_size = 0;
2484 size_t JavaThread::_stack_reserved_zone_size = 0;
2485 size_t JavaThread::_stack_shadow_zone_size = 0;
2486 
2487 void JavaThread::create_stack_guard_pages() {
2488   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2489   address low_addr = stack_end();
2490   size_t len = stack_guard_zone_size();
2491 
2492   int allocate = os::allocate_stack_guard_pages();
2493   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2494 
2495   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2496     warning("Attempt to allocate stack guard pages failed.");
2497     return;
2498   }
2499 
2500   if (os::guard_memory((char *) low_addr, len)) {
2501     _stack_guard_state = stack_guard_enabled;
2502   } else {
2503     warning("Attempt to protect stack guard pages failed.");
2504     if (os::uncommit_memory((char *) low_addr, len)) {
2505       warning("Attempt to deallocate stack guard pages failed.");
2506     }
2507   }
2508 }
2509 
2510 void JavaThread::remove_stack_guard_pages() {
2511   assert(Thread::current() == this, "from different thread");
2512   if (_stack_guard_state == stack_guard_unused) return;
2513   address low_addr = stack_end();
2514   size_t len = stack_guard_zone_size();
2515 
2516   if (os::allocate_stack_guard_pages()) {
2517     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2518       _stack_guard_state = stack_guard_unused;
2519     } else {
2520       warning("Attempt to deallocate stack guard pages failed.");
2521     }
2522   } else {
2523     if (_stack_guard_state == stack_guard_unused) return;
2524     if (os::unguard_memory((char *) low_addr, len)) {
2525       _stack_guard_state = stack_guard_unused;
2526     } else {
2527       warning("Attempt to unprotect stack guard pages failed.");
2528     }
2529   }
2530 }
2531 
2532 void JavaThread::enable_stack_reserved_zone() {
2533   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2534   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2535 
2536   // The base notation is from the stack's point of view, growing downward.
2537   // We need to adjust it to work correctly with guard_memory()
2538   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2539 
2540   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2541   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2542 
2543   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2544     _stack_guard_state = stack_guard_enabled;
2545   } else {
2546     warning("Attempt to guard stack reserved zone failed.");
2547   }
2548   enable_register_stack_guard();
2549 }
2550 
2551 void JavaThread::disable_stack_reserved_zone() {
2552   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2553   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2554 
2555   // Simply return if called for a thread that does not use guard pages.
2556   if (_stack_guard_state == stack_guard_unused) return;
2557 
2558   // The base notation is from the stack's point of view, growing downward.
2559   // We need to adjust it to work correctly with guard_memory()
2560   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2561 
2562   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2563     _stack_guard_state = stack_guard_reserved_disabled;
2564   } else {
2565     warning("Attempt to unguard stack reserved zone failed.");
2566   }
2567   disable_register_stack_guard();
2568 }
2569 
2570 void JavaThread::enable_stack_yellow_reserved_zone() {
2571   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2572   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2573 
2574   // The base notation is from the stacks point of view, growing downward.
2575   // We need to adjust it to work correctly with guard_memory()
2576   address base = stack_red_zone_base();
2577 
2578   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2579   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2580 
2581   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2582     _stack_guard_state = stack_guard_enabled;
2583   } else {
2584     warning("Attempt to guard stack yellow zone failed.");
2585   }
2586   enable_register_stack_guard();
2587 }
2588 
2589 void JavaThread::disable_stack_yellow_reserved_zone() {
2590   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2591   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2592 
2593   // Simply return if called for a thread that does not use guard pages.
2594   if (_stack_guard_state == stack_guard_unused) return;
2595 
2596   // The base notation is from the stacks point of view, growing downward.
2597   // We need to adjust it to work correctly with guard_memory()
2598   address base = stack_red_zone_base();
2599 
2600   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2601     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2602   } else {
2603     warning("Attempt to unguard stack yellow zone failed.");
2604   }
2605   disable_register_stack_guard();
2606 }
2607 
2608 void JavaThread::enable_stack_red_zone() {
2609   // The base notation is from the stacks point of view, growing downward.
2610   // We need to adjust it to work correctly with guard_memory()
2611   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2612   address base = stack_red_zone_base() - stack_red_zone_size();
2613 
2614   guarantee(base < stack_base(), "Error calculating stack red zone");
2615   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2616 
2617   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2618     warning("Attempt to guard stack red zone failed.");
2619   }
2620 }
2621 
2622 void JavaThread::disable_stack_red_zone() {
2623   // The base notation is from the stacks point of view, growing downward.
2624   // We need to adjust it to work correctly with guard_memory()
2625   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2626   address base = stack_red_zone_base() - stack_red_zone_size();
2627   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2628     warning("Attempt to unguard stack red zone failed.");
2629   }
2630 }
2631 
2632 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2633   // ignore is there is no stack
2634   if (!has_last_Java_frame()) return;
2635   // traverse the stack frames. Starts from top frame.
2636   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2637     frame* fr = fst.current();
2638     f(fr, fst.register_map());
2639   }
2640 }
2641 
2642 
2643 #ifndef PRODUCT
2644 // Deoptimization
2645 // Function for testing deoptimization
2646 void JavaThread::deoptimize() {
2647   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2648   StackFrameStream fst(this, UseBiasedLocking);
2649   bool deopt = false;           // Dump stack only if a deopt actually happens.
2650   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2651   // Iterate over all frames in the thread and deoptimize
2652   for (; !fst.is_done(); fst.next()) {
2653     if (fst.current()->can_be_deoptimized()) {
2654 
2655       if (only_at) {
2656         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2657         // consists of comma or carriage return separated numbers so
2658         // search for the current bci in that string.
2659         address pc = fst.current()->pc();
2660         nmethod* nm =  (nmethod*) fst.current()->cb();
2661         ScopeDesc* sd = nm->scope_desc_at(pc);
2662         char buffer[8];
2663         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2664         size_t len = strlen(buffer);
2665         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2666         while (found != NULL) {
2667           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2668               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2669             // Check that the bci found is bracketed by terminators.
2670             break;
2671           }
2672           found = strstr(found + 1, buffer);
2673         }
2674         if (!found) {
2675           continue;
2676         }
2677       }
2678 
2679       if (DebugDeoptimization && !deopt) {
2680         deopt = true; // One-time only print before deopt
2681         tty->print_cr("[BEFORE Deoptimization]");
2682         trace_frames();
2683         trace_stack();
2684       }
2685       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2686     }
2687   }
2688 
2689   if (DebugDeoptimization && deopt) {
2690     tty->print_cr("[AFTER Deoptimization]");
2691     trace_frames();
2692   }
2693 }
2694 
2695 
2696 // Make zombies
2697 void JavaThread::make_zombies() {
2698   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2699     if (fst.current()->can_be_deoptimized()) {
2700       // it is a Java nmethod
2701       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2702       nm->make_not_entrant();
2703     }
2704   }
2705 }
2706 #endif // PRODUCT
2707 
2708 
2709 void JavaThread::deoptimized_wrt_marked_nmethods() {
2710   if (!has_last_Java_frame()) return;
2711   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2712   StackFrameStream fst(this, UseBiasedLocking);
2713   for (; !fst.is_done(); fst.next()) {
2714     if (fst.current()->should_be_deoptimized()) {
2715       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2716     }
2717   }
2718 }
2719 
2720 
2721 // If the caller is a NamedThread, then remember, in the current scope,
2722 // the given JavaThread in its _processed_thread field.
2723 class RememberProcessedThread: public StackObj {
2724   NamedThread* _cur_thr;
2725  public:
2726   RememberProcessedThread(JavaThread* jthr) {
2727     Thread* thread = Thread::current();
2728     if (thread->is_Named_thread()) {
2729       _cur_thr = (NamedThread *)thread;
2730       _cur_thr->set_processed_thread(jthr);
2731     } else {
2732       _cur_thr = NULL;
2733     }
2734   }
2735 
2736   ~RememberProcessedThread() {
2737     if (_cur_thr) {
2738       _cur_thr->set_processed_thread(NULL);
2739     }
2740   }
2741 };
2742 
2743 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2744   // Verify that the deferred card marks have been flushed.
2745   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2746 
2747   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2748   // since there may be more than one thread using each ThreadProfiler.
2749 
2750   // Traverse the GCHandles
2751   Thread::oops_do(f, cld_f, cf);
2752 
2753   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2754 
2755   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2756          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2757 
2758   if (has_last_Java_frame()) {
2759     // Record JavaThread to GC thread
2760     RememberProcessedThread rpt(this);
2761 
2762     // Traverse the privileged stack
2763     if (_privileged_stack_top != NULL) {
2764       _privileged_stack_top->oops_do(f);
2765     }
2766 
2767     // traverse the registered growable array
2768     if (_array_for_gc != NULL) {
2769       for (int index = 0; index < _array_for_gc->length(); index++) {
2770         f->do_oop(_array_for_gc->adr_at(index));
2771       }
2772     }
2773 
2774     // Traverse the monitor chunks
2775     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2776       chunk->oops_do(f);
2777     }
2778 
2779     // Traverse the execution stack
2780     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2781       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2782     }
2783   }
2784 
2785   // callee_target is never live across a gc point so NULL it here should
2786   // it still contain a methdOop.
2787 
2788   set_callee_target(NULL);
2789 
2790   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2791   // If we have deferred set_locals there might be oops waiting to be
2792   // written
2793   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2794   if (list != NULL) {
2795     for (int i = 0; i < list->length(); i++) {
2796       list->at(i)->oops_do(f);
2797     }
2798   }
2799 
2800   // Traverse instance variables at the end since the GC may be moving things
2801   // around using this function
2802   f->do_oop((oop*) &_threadObj);
2803   f->do_oop((oop*) &_vm_result);
2804   f->do_oop((oop*) &_exception_oop);
2805   f->do_oop((oop*) &_pending_async_exception);
2806 
2807   if (jvmti_thread_state() != NULL) {
2808     jvmti_thread_state()->oops_do(f);
2809   }
2810 }
2811 
2812 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2813   Thread::nmethods_do(cf);  // (super method is a no-op)
2814 
2815   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2816          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2817 
2818   if (has_last_Java_frame()) {
2819     // Traverse the execution stack
2820     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2821       fst.current()->nmethods_do(cf);
2822     }
2823   }
2824 }
2825 
2826 void JavaThread::metadata_do(void f(Metadata*)) {
2827   if (has_last_Java_frame()) {
2828     // Traverse the execution stack to call f() on the methods in the stack
2829     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2830       fst.current()->metadata_do(f);
2831     }
2832   } else if (is_Compiler_thread()) {
2833     // need to walk ciMetadata in current compile tasks to keep alive.
2834     CompilerThread* ct = (CompilerThread*)this;
2835     if (ct->env() != NULL) {
2836       ct->env()->metadata_do(f);
2837     }
2838     if (ct->task() != NULL) {
2839       ct->task()->metadata_do(f);
2840     }
2841   }
2842 }
2843 
2844 // Printing
2845 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2846   switch (_thread_state) {
2847   case _thread_uninitialized:     return "_thread_uninitialized";
2848   case _thread_new:               return "_thread_new";
2849   case _thread_new_trans:         return "_thread_new_trans";
2850   case _thread_in_native:         return "_thread_in_native";
2851   case _thread_in_native_trans:   return "_thread_in_native_trans";
2852   case _thread_in_vm:             return "_thread_in_vm";
2853   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2854   case _thread_in_Java:           return "_thread_in_Java";
2855   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2856   case _thread_blocked:           return "_thread_blocked";
2857   case _thread_blocked_trans:     return "_thread_blocked_trans";
2858   default:                        return "unknown thread state";
2859   }
2860 }
2861 
2862 #ifndef PRODUCT
2863 void JavaThread::print_thread_state_on(outputStream *st) const {
2864   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2865 };
2866 void JavaThread::print_thread_state() const {
2867   print_thread_state_on(tty);
2868 }
2869 #endif // PRODUCT
2870 
2871 // Called by Threads::print() for VM_PrintThreads operation
2872 void JavaThread::print_on(outputStream *st) const {
2873   st->print("\"%s\" ", get_thread_name());
2874   oop thread_oop = threadObj();
2875   if (thread_oop != NULL) {
2876     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2877     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2878     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2879   }
2880   Thread::print_on(st);
2881   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2882   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2883   if (thread_oop != NULL) {
2884     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2885   }
2886 #ifndef PRODUCT
2887   print_thread_state_on(st);
2888   _safepoint_state->print_on(st);
2889 #endif // PRODUCT
2890 }
2891 
2892 // Called by fatal error handler. The difference between this and
2893 // JavaThread::print() is that we can't grab lock or allocate memory.
2894 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2895   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2896   oop thread_obj = threadObj();
2897   if (thread_obj != NULL) {
2898     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2899   }
2900   st->print(" [");
2901   st->print("%s", _get_thread_state_name(_thread_state));
2902   if (osthread()) {
2903     st->print(", id=%d", osthread()->thread_id());
2904   }
2905   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2906             p2i(stack_end()), p2i(stack_base()));
2907   st->print("]");
2908   return;
2909 }
2910 
2911 // Verification
2912 
2913 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2914 
2915 void JavaThread::verify() {
2916   // Verify oops in the thread.
2917   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2918 
2919   // Verify the stack frames.
2920   frames_do(frame_verify);
2921 }
2922 
2923 // CR 6300358 (sub-CR 2137150)
2924 // Most callers of this method assume that it can't return NULL but a
2925 // thread may not have a name whilst it is in the process of attaching to
2926 // the VM - see CR 6412693, and there are places where a JavaThread can be
2927 // seen prior to having it's threadObj set (eg JNI attaching threads and
2928 // if vm exit occurs during initialization). These cases can all be accounted
2929 // for such that this method never returns NULL.
2930 const char* JavaThread::get_thread_name() const {
2931 #ifdef ASSERT
2932   // early safepoints can hit while current thread does not yet have TLS
2933   if (!SafepointSynchronize::is_at_safepoint()) {
2934     Thread *cur = Thread::current();
2935     if (!(cur->is_Java_thread() && cur == this)) {
2936       // Current JavaThreads are allowed to get their own name without
2937       // the Threads_lock.
2938       assert_locked_or_safepoint(Threads_lock);
2939     }
2940   }
2941 #endif // ASSERT
2942   return get_thread_name_string();
2943 }
2944 
2945 // Returns a non-NULL representation of this thread's name, or a suitable
2946 // descriptive string if there is no set name
2947 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2948   const char* name_str;
2949   oop thread_obj = threadObj();
2950   if (thread_obj != NULL) {
2951     oop name = java_lang_Thread::name(thread_obj);
2952     if (name != NULL) {
2953       if (buf == NULL) {
2954         name_str = java_lang_String::as_utf8_string(name);
2955       } else {
2956         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2957       }
2958     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2959       name_str = "<no-name - thread is attaching>";
2960     } else {
2961       name_str = Thread::name();
2962     }
2963   } else {
2964     name_str = Thread::name();
2965   }
2966   assert(name_str != NULL, "unexpected NULL thread name");
2967   return name_str;
2968 }
2969 
2970 
2971 const char* JavaThread::get_threadgroup_name() const {
2972   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2973   oop thread_obj = threadObj();
2974   if (thread_obj != NULL) {
2975     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2976     if (thread_group != NULL) {
2977       // ThreadGroup.name can be null
2978       return java_lang_ThreadGroup::name(thread_group);
2979     }
2980   }
2981   return NULL;
2982 }
2983 
2984 const char* JavaThread::get_parent_name() const {
2985   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2986   oop thread_obj = threadObj();
2987   if (thread_obj != NULL) {
2988     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2989     if (thread_group != NULL) {
2990       oop parent = java_lang_ThreadGroup::parent(thread_group);
2991       if (parent != NULL) {
2992         // ThreadGroup.name can be null
2993         return java_lang_ThreadGroup::name(parent);
2994       }
2995     }
2996   }
2997   return NULL;
2998 }
2999 
3000 ThreadPriority JavaThread::java_priority() const {
3001   oop thr_oop = threadObj();
3002   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3003   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3004   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3005   return priority;
3006 }
3007 
3008 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3009 
3010   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3011   // Link Java Thread object <-> C++ Thread
3012 
3013   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3014   // and put it into a new Handle.  The Handle "thread_oop" can then
3015   // be used to pass the C++ thread object to other methods.
3016 
3017   // Set the Java level thread object (jthread) field of the
3018   // new thread (a JavaThread *) to C++ thread object using the
3019   // "thread_oop" handle.
3020 
3021   // Set the thread field (a JavaThread *) of the
3022   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3023 
3024   Handle thread_oop(Thread::current(),
3025                     JNIHandles::resolve_non_null(jni_thread));
3026   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3027          "must be initialized");
3028   set_threadObj(thread_oop());
3029   java_lang_Thread::set_thread(thread_oop(), this);
3030 
3031   if (prio == NoPriority) {
3032     prio = java_lang_Thread::priority(thread_oop());
3033     assert(prio != NoPriority, "A valid priority should be present");
3034   }
3035 
3036   // Push the Java priority down to the native thread; needs Threads_lock
3037   Thread::set_priority(this, prio);
3038 
3039   prepare_ext();
3040 
3041   // Add the new thread to the Threads list and set it in motion.
3042   // We must have threads lock in order to call Threads::add.
3043   // It is crucial that we do not block before the thread is
3044   // added to the Threads list for if a GC happens, then the java_thread oop
3045   // will not be visited by GC.
3046   Threads::add(this);
3047 }
3048 
3049 oop JavaThread::current_park_blocker() {
3050   // Support for JSR-166 locks
3051   oop thread_oop = threadObj();
3052   if (thread_oop != NULL &&
3053       JDK_Version::current().supports_thread_park_blocker()) {
3054     return java_lang_Thread::park_blocker(thread_oop);
3055   }
3056   return NULL;
3057 }
3058 
3059 
3060 void JavaThread::print_stack_on(outputStream* st) {
3061   if (!has_last_Java_frame()) return;
3062   ResourceMark rm;
3063   HandleMark   hm;
3064 
3065   RegisterMap reg_map(this);
3066   vframe* start_vf = last_java_vframe(&reg_map);
3067   int count = 0;
3068   for (vframe* f = start_vf; f; f = f->sender()) {
3069     if (f->is_java_frame()) {
3070       javaVFrame* jvf = javaVFrame::cast(f);
3071       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3072 
3073       // Print out lock information
3074       if (JavaMonitorsInStackTrace) {
3075         jvf->print_lock_info_on(st, count);
3076       }
3077     } else {
3078       // Ignore non-Java frames
3079     }
3080 
3081     // Bail-out case for too deep stacks
3082     count++;
3083     if (MaxJavaStackTraceDepth == count) return;
3084   }
3085 }
3086 
3087 
3088 // JVMTI PopFrame support
3089 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3090   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3091   if (in_bytes(size_in_bytes) != 0) {
3092     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3093     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3094     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3095   }
3096 }
3097 
3098 void* JavaThread::popframe_preserved_args() {
3099   return _popframe_preserved_args;
3100 }
3101 
3102 ByteSize JavaThread::popframe_preserved_args_size() {
3103   return in_ByteSize(_popframe_preserved_args_size);
3104 }
3105 
3106 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3107   int sz = in_bytes(popframe_preserved_args_size());
3108   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3109   return in_WordSize(sz / wordSize);
3110 }
3111 
3112 void JavaThread::popframe_free_preserved_args() {
3113   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3114   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3115   _popframe_preserved_args = NULL;
3116   _popframe_preserved_args_size = 0;
3117 }
3118 
3119 #ifndef PRODUCT
3120 
3121 void JavaThread::trace_frames() {
3122   tty->print_cr("[Describe stack]");
3123   int frame_no = 1;
3124   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3125     tty->print("  %d. ", frame_no++);
3126     fst.current()->print_value_on(tty, this);
3127     tty->cr();
3128   }
3129 }
3130 
3131 class PrintAndVerifyOopClosure: public OopClosure {
3132  protected:
3133   template <class T> inline void do_oop_work(T* p) {
3134     oop obj = oopDesc::load_decode_heap_oop(p);
3135     if (obj == NULL) return;
3136     tty->print(INTPTR_FORMAT ": ", p2i(p));
3137     if (obj->is_oop_or_null()) {
3138       if (obj->is_objArray()) {
3139         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3140       } else {
3141         obj->print();
3142       }
3143     } else {
3144       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3145     }
3146     tty->cr();
3147   }
3148  public:
3149   virtual void do_oop(oop* p) { do_oop_work(p); }
3150   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3151 };
3152 
3153 
3154 static void oops_print(frame* f, const RegisterMap *map) {
3155   PrintAndVerifyOopClosure print;
3156   f->print_value();
3157   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3158 }
3159 
3160 // Print our all the locations that contain oops and whether they are
3161 // valid or not.  This useful when trying to find the oldest frame
3162 // where an oop has gone bad since the frame walk is from youngest to
3163 // oldest.
3164 void JavaThread::trace_oops() {
3165   tty->print_cr("[Trace oops]");
3166   frames_do(oops_print);
3167 }
3168 
3169 
3170 #ifdef ASSERT
3171 // Print or validate the layout of stack frames
3172 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3173   ResourceMark rm;
3174   PRESERVE_EXCEPTION_MARK;
3175   FrameValues values;
3176   int frame_no = 0;
3177   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3178     fst.current()->describe(values, ++frame_no);
3179     if (depth == frame_no) break;
3180   }
3181   if (validate_only) {
3182     values.validate();
3183   } else {
3184     tty->print_cr("[Describe stack layout]");
3185     values.print(this);
3186   }
3187 }
3188 #endif
3189 
3190 void JavaThread::trace_stack_from(vframe* start_vf) {
3191   ResourceMark rm;
3192   int vframe_no = 1;
3193   for (vframe* f = start_vf; f; f = f->sender()) {
3194     if (f->is_java_frame()) {
3195       javaVFrame::cast(f)->print_activation(vframe_no++);
3196     } else {
3197       f->print();
3198     }
3199     if (vframe_no > StackPrintLimit) {
3200       tty->print_cr("...<more frames>...");
3201       return;
3202     }
3203   }
3204 }
3205 
3206 
3207 void JavaThread::trace_stack() {
3208   if (!has_last_Java_frame()) return;
3209   ResourceMark rm;
3210   HandleMark   hm;
3211   RegisterMap reg_map(this);
3212   trace_stack_from(last_java_vframe(&reg_map));
3213 }
3214 
3215 
3216 #endif // PRODUCT
3217 
3218 
3219 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3220   assert(reg_map != NULL, "a map must be given");
3221   frame f = last_frame();
3222   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3223     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3224   }
3225   return NULL;
3226 }
3227 
3228 
3229 Klass* JavaThread::security_get_caller_class(int depth) {
3230   vframeStream vfst(this);
3231   vfst.security_get_caller_frame(depth);
3232   if (!vfst.at_end()) {
3233     return vfst.method()->method_holder();
3234   }
3235   return NULL;
3236 }
3237 
3238 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3239   assert(thread->is_Compiler_thread(), "must be compiler thread");
3240   CompileBroker::compiler_thread_loop();
3241 }
3242 
3243 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3244   NMethodSweeper::sweeper_loop();
3245 }
3246 
3247 // Create a CompilerThread
3248 CompilerThread::CompilerThread(CompileQueue* queue,
3249                                CompilerCounters* counters)
3250                                : JavaThread(&compiler_thread_entry) {
3251   _env   = NULL;
3252   _log   = NULL;
3253   _task  = NULL;
3254   _queue = queue;
3255   _counters = counters;
3256   _buffer_blob = NULL;
3257   _compiler = NULL;
3258 
3259 #ifndef PRODUCT
3260   _ideal_graph_printer = NULL;
3261 #endif
3262 }
3263 
3264 bool CompilerThread::can_call_java() const {
3265   return _compiler != NULL && _compiler->is_jvmci();
3266 }
3267 
3268 // Create sweeper thread
3269 CodeCacheSweeperThread::CodeCacheSweeperThread()
3270 : JavaThread(&sweeper_thread_entry) {
3271   _scanned_nmethod = NULL;
3272 }
3273 void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3274   JavaThread::oops_do(f, cld_f, cf);
3275   if (_scanned_nmethod != NULL && cf != NULL) {
3276     // Safepoints can occur when the sweeper is scanning an nmethod so
3277     // process it here to make sure it isn't unloaded in the middle of
3278     // a scan.
3279     cf->do_code_blob(_scanned_nmethod);
3280   }
3281 }
3282 
3283 
3284 // ======= Threads ========
3285 
3286 // The Threads class links together all active threads, and provides
3287 // operations over all threads.  It is protected by its own Mutex
3288 // lock, which is also used in other contexts to protect thread
3289 // operations from having the thread being operated on from exiting
3290 // and going away unexpectedly (e.g., safepoint synchronization)
3291 
3292 JavaThread* Threads::_thread_list = NULL;
3293 int         Threads::_number_of_threads = 0;
3294 int         Threads::_number_of_non_daemon_threads = 0;
3295 int         Threads::_return_code = 0;
3296 int         Threads::_thread_claim_parity = 0;
3297 size_t      JavaThread::_stack_size_at_create = 0;
3298 #ifdef ASSERT
3299 bool        Threads::_vm_complete = false;
3300 #endif
3301 
3302 // All JavaThreads
3303 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3304 
3305 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3306 void Threads::threads_do(ThreadClosure* tc) {
3307   assert_locked_or_safepoint(Threads_lock);
3308   // ALL_JAVA_THREADS iterates through all JavaThreads
3309   ALL_JAVA_THREADS(p) {
3310     tc->do_thread(p);
3311   }
3312   // Someday we could have a table or list of all non-JavaThreads.
3313   // For now, just manually iterate through them.
3314   tc->do_thread(VMThread::vm_thread());
3315   Universe::heap()->gc_threads_do(tc);
3316   WatcherThread *wt = WatcherThread::watcher_thread();
3317   // Strictly speaking, the following NULL check isn't sufficient to make sure
3318   // the data for WatcherThread is still valid upon being examined. However,
3319   // considering that WatchThread terminates when the VM is on the way to
3320   // exit at safepoint, the chance of the above is extremely small. The right
3321   // way to prevent termination of WatcherThread would be to acquire
3322   // Terminator_lock, but we can't do that without violating the lock rank
3323   // checking in some cases.
3324   if (wt != NULL) {
3325     tc->do_thread(wt);
3326   }
3327 
3328   // If CompilerThreads ever become non-JavaThreads, add them here
3329 }
3330 
3331 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3332   TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3333 
3334   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3335     create_vm_init_libraries();
3336   }
3337 
3338   initialize_class(vmSymbols::java_lang_String(), CHECK);
3339 
3340   // Inject CompactStrings value after the static initializers for String ran.
3341   java_lang_String::set_compact_strings(CompactStrings);
3342 
3343   // Initialize java_lang.System (needed before creating the thread)
3344   initialize_class(vmSymbols::java_lang_System(), CHECK);
3345   // The VM creates & returns objects of this class. Make sure it's initialized.
3346   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3347   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3348   Handle thread_group = create_initial_thread_group(CHECK);
3349   Universe::set_main_thread_group(thread_group());
3350   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3351   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3352   main_thread->set_threadObj(thread_object);
3353   // Set thread status to running since main thread has
3354   // been started and running.
3355   java_lang_Thread::set_thread_status(thread_object,
3356                                       java_lang_Thread::RUNNABLE);
3357 
3358   // The VM preresolves methods to these classes. Make sure that they get initialized
3359   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3360   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3361   call_initializeSystemClass(CHECK);
3362 
3363   // get the Java runtime name after java.lang.System is initialized
3364   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3365   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3366 
3367   // an instance of OutOfMemory exception has been allocated earlier
3368   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3369   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3370   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3371   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3372   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3373   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3374   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3375   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3376 }
3377 
3378 void Threads::initialize_jsr292_core_classes(TRAPS) {
3379   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3380   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3381   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3382 }
3383 
3384 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3385   extern void JDK_Version_init();
3386 
3387   // Preinitialize version info.
3388   VM_Version::early_initialize();
3389 
3390   // Check version
3391   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3392 
3393   // Initialize the output stream module
3394   ostream_init();
3395 
3396   // Process java launcher properties.
3397   Arguments::process_sun_java_launcher_properties(args);
3398 
3399   // Initialize the os module before using TLS
3400   os::init();
3401 
3402   // Record VM creation timing statistics
3403   TraceVmCreationTime create_vm_timer;
3404   create_vm_timer.start();
3405 
3406   // Initialize system properties.
3407   Arguments::init_system_properties();
3408 
3409   // So that JDK version can be used as a discriminator when parsing arguments
3410   JDK_Version_init();
3411 
3412   // Update/Initialize System properties after JDK version number is known
3413   Arguments::init_version_specific_system_properties();
3414 
3415   // Make sure to initialize log configuration *before* parsing arguments
3416   LogConfiguration::initialize(create_vm_timer.begin_time());
3417 
3418   // Parse arguments
3419   jint parse_result = Arguments::parse(args);
3420   if (parse_result != JNI_OK) return parse_result;
3421 
3422   os::init_before_ergo();
3423 
3424   jint ergo_result = Arguments::apply_ergo();
3425   if (ergo_result != JNI_OK) return ergo_result;
3426 
3427   // Final check of all ranges after ergonomics which may change values.
3428   if (!CommandLineFlagRangeList::check_ranges()) {
3429     return JNI_EINVAL;
3430   }
3431 
3432   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3433   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3434   if (!constraint_result) {
3435     return JNI_EINVAL;
3436   }
3437 
3438   if (PauseAtStartup) {
3439     os::pause();
3440   }
3441 
3442   HOTSPOT_VM_INIT_BEGIN();
3443 
3444   // Timing (must come after argument parsing)
3445   TraceTime timer("Create VM", TraceStartupTime);
3446 
3447   // Initialize the os module after parsing the args
3448   jint os_init_2_result = os::init_2();
3449   if (os_init_2_result != JNI_OK) return os_init_2_result;
3450 
3451   jint adjust_after_os_result = Arguments::adjust_after_os();
3452   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3453 
3454   // Initialize library-based TLS
3455   ThreadLocalStorage::init();
3456 
3457   // Initialize output stream logging
3458   ostream_init_log();
3459 
3460   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3461   // Must be before create_vm_init_agents()
3462   if (Arguments::init_libraries_at_startup()) {
3463     convert_vm_init_libraries_to_agents();
3464   }
3465 
3466   // Launch -agentlib/-agentpath and converted -Xrun agents
3467   if (Arguments::init_agents_at_startup()) {
3468     create_vm_init_agents();
3469   }
3470 
3471   // Initialize Threads state
3472   _thread_list = NULL;
3473   _number_of_threads = 0;
3474   _number_of_non_daemon_threads = 0;
3475 
3476   // Initialize global data structures and create system classes in heap
3477   vm_init_globals();
3478 
3479 #if INCLUDE_JVMCI
3480   if (JVMCICounterSize > 0) {
3481     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3482     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3483   } else {
3484     JavaThread::_jvmci_old_thread_counters = NULL;
3485   }
3486 #endif // INCLUDE_JVMCI
3487 
3488   // Attach the main thread to this os thread
3489   JavaThread* main_thread = new JavaThread();
3490   main_thread->set_thread_state(_thread_in_vm);
3491   main_thread->initialize_thread_current();
3492   // must do this before set_active_handles
3493   main_thread->record_stack_base_and_size();
3494   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3495 
3496   if (!main_thread->set_as_starting_thread()) {
3497     vm_shutdown_during_initialization(
3498                                       "Failed necessary internal allocation. Out of swap space");
3499     delete main_thread;
3500     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3501     return JNI_ENOMEM;
3502   }
3503 
3504   // Enable guard page *after* os::create_main_thread(), otherwise it would
3505   // crash Linux VM, see notes in os_linux.cpp.
3506   main_thread->create_stack_guard_pages();
3507 
3508   // Initialize Java-Level synchronization subsystem
3509   ObjectMonitor::Initialize();
3510 
3511   // Initialize global modules
3512   jint status = init_globals();
3513   if (status != JNI_OK) {
3514     delete main_thread;
3515     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3516     return status;
3517   }
3518 
3519   // Should be done after the heap is fully created
3520   main_thread->cache_global_variables();
3521 
3522   HandleMark hm;
3523 
3524   { MutexLocker mu(Threads_lock);
3525     Threads::add(main_thread);
3526   }
3527 
3528   // Any JVMTI raw monitors entered in onload will transition into
3529   // real raw monitor. VM is setup enough here for raw monitor enter.
3530   JvmtiExport::transition_pending_onload_raw_monitors();
3531 
3532   // Create the VMThread
3533   { TraceTime timer("Start VMThread", TraceStartupTime);
3534     VMThread::create();
3535     Thread* vmthread = VMThread::vm_thread();
3536 
3537     if (!os::create_thread(vmthread, os::vm_thread)) {
3538       vm_exit_during_initialization("Cannot create VM thread. "
3539                                     "Out of system resources.");
3540     }
3541 
3542     // Wait for the VM thread to become ready, and VMThread::run to initialize
3543     // Monitors can have spurious returns, must always check another state flag
3544     {
3545       MutexLocker ml(Notify_lock);
3546       os::start_thread(vmthread);
3547       while (vmthread->active_handles() == NULL) {
3548         Notify_lock->wait();
3549       }
3550     }
3551   }
3552 
3553   assert(Universe::is_fully_initialized(), "not initialized");
3554   if (VerifyDuringStartup) {
3555     // Make sure we're starting with a clean slate.
3556     VM_Verify verify_op;
3557     VMThread::execute(&verify_op);
3558   }
3559 
3560   Thread* THREAD = Thread::current();
3561 
3562   // At this point, the Universe is initialized, but we have not executed
3563   // any byte code.  Now is a good time (the only time) to dump out the
3564   // internal state of the JVM for sharing.
3565   if (DumpSharedSpaces) {
3566     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3567     ShouldNotReachHere();
3568   }
3569 
3570   // Always call even when there are not JVMTI environments yet, since environments
3571   // may be attached late and JVMTI must track phases of VM execution
3572   JvmtiExport::enter_start_phase();
3573 
3574   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3575   JvmtiExport::post_vm_start();
3576 
3577   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3578 
3579   // We need this for ClassDataSharing - the initial vm.info property is set
3580   // with the default value of CDS "sharing" which may be reset through
3581   // command line options.
3582   reset_vm_info_property(CHECK_JNI_ERR);
3583 
3584   quicken_jni_functions();
3585 
3586   // Must be run after init_ft which initializes ft_enabled
3587   if (TRACE_INITIALIZE() != JNI_OK) {
3588     vm_exit_during_initialization("Failed to initialize tracing backend");
3589   }
3590 
3591   // Set flag that basic initialization has completed. Used by exceptions and various
3592   // debug stuff, that does not work until all basic classes have been initialized.
3593   set_init_completed();
3594 
3595   LogConfiguration::post_initialize();
3596   Metaspace::post_initialize();
3597 
3598   HOTSPOT_VM_INIT_END();
3599 
3600   // record VM initialization completion time
3601 #if INCLUDE_MANAGEMENT
3602   Management::record_vm_init_completed();
3603 #endif // INCLUDE_MANAGEMENT
3604 
3605   // Compute system loader. Note that this has to occur after set_init_completed, since
3606   // valid exceptions may be thrown in the process.
3607   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3608   // set_init_completed has just been called, causing exceptions not to be shortcut
3609   // anymore. We call vm_exit_during_initialization directly instead.
3610   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3611 
3612 #if INCLUDE_ALL_GCS
3613   // Support for ConcurrentMarkSweep. This should be cleaned up
3614   // and better encapsulated. The ugly nested if test would go away
3615   // once things are properly refactored. XXX YSR
3616   if (UseConcMarkSweepGC || UseG1GC) {
3617     if (UseConcMarkSweepGC) {
3618       ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3619     } else {
3620       ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3621     }
3622   }
3623 #endif // INCLUDE_ALL_GCS
3624 
3625   // Always call even when there are not JVMTI environments yet, since environments
3626   // may be attached late and JVMTI must track phases of VM execution
3627   JvmtiExport::enter_live_phase();
3628 
3629   // Signal Dispatcher needs to be started before VMInit event is posted
3630   os::signal_init();
3631 
3632   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3633   if (!DisableAttachMechanism) {
3634     AttachListener::vm_start();
3635     if (StartAttachListener || AttachListener::init_at_startup()) {
3636       AttachListener::init();
3637     }
3638   }
3639 
3640   // Launch -Xrun agents
3641   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3642   // back-end can launch with -Xdebug -Xrunjdwp.
3643   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3644     create_vm_init_libraries();
3645   }
3646 
3647   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3648   JvmtiExport::post_vm_initialized();
3649 
3650   if (TRACE_START() != JNI_OK) {
3651     vm_exit_during_initialization("Failed to start tracing backend.");
3652   }
3653 
3654   if (CleanChunkPoolAsync) {
3655     Chunk::start_chunk_pool_cleaner_task();
3656   }
3657 
3658 #if INCLUDE_JVMCI
3659   if (EnableJVMCI) {
3660     const char* jvmciCompiler = Arguments::PropertyList_get_value(Arguments::system_properties(), "jvmci.compiler");
3661     if (jvmciCompiler != NULL) {
3662       JVMCIRuntime::save_compiler(jvmciCompiler);
3663     }
3664     JVMCIRuntime::maybe_print_flags(CHECK_JNI_ERR);
3665   }
3666 #endif // INCLUDE_JVMCI
3667 
3668   // initialize compiler(s)
3669 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3670   CompileBroker::compilation_init();
3671 #endif
3672 
3673   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3674   // It is done after compilers are initialized, because otherwise compilations of
3675   // signature polymorphic MH intrinsics can be missed
3676   // (see SystemDictionary::find_method_handle_intrinsic).
3677   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3678 
3679 #if INCLUDE_MANAGEMENT
3680   Management::initialize(THREAD);
3681 
3682   if (HAS_PENDING_EXCEPTION) {
3683     // management agent fails to start possibly due to
3684     // configuration problem and is responsible for printing
3685     // stack trace if appropriate. Simply exit VM.
3686     vm_exit(1);
3687   }
3688 #endif // INCLUDE_MANAGEMENT
3689 
3690   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3691   if (MemProfiling)                   MemProfiler::engage();
3692   StatSampler::engage();
3693   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3694 
3695   BiasedLocking::init();
3696 
3697 #if INCLUDE_RTM_OPT
3698   RTMLockingCounters::init();
3699 #endif
3700 
3701   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3702     call_postVMInitHook(THREAD);
3703     // The Java side of PostVMInitHook.run must deal with all
3704     // exceptions and provide means of diagnosis.
3705     if (HAS_PENDING_EXCEPTION) {
3706       CLEAR_PENDING_EXCEPTION;
3707     }
3708   }
3709 
3710   {
3711     MutexLocker ml(PeriodicTask_lock);
3712     // Make sure the WatcherThread can be started by WatcherThread::start()
3713     // or by dynamic enrollment.
3714     WatcherThread::make_startable();
3715     // Start up the WatcherThread if there are any periodic tasks
3716     // NOTE:  All PeriodicTasks should be registered by now. If they
3717     //   aren't, late joiners might appear to start slowly (we might
3718     //   take a while to process their first tick).
3719     if (PeriodicTask::num_tasks() > 0) {
3720       WatcherThread::start();
3721     }
3722   }
3723 
3724   CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3725 
3726   create_vm_timer.end();
3727 #ifdef ASSERT
3728   _vm_complete = true;
3729 #endif
3730   return JNI_OK;
3731 }
3732 
3733 // type for the Agent_OnLoad and JVM_OnLoad entry points
3734 extern "C" {
3735   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3736 }
3737 // Find a command line agent library and return its entry point for
3738 //         -agentlib:  -agentpath:   -Xrun
3739 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3740 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3741                                     const char *on_load_symbols[],
3742                                     size_t num_symbol_entries) {
3743   OnLoadEntry_t on_load_entry = NULL;
3744   void *library = NULL;
3745 
3746   if (!agent->valid()) {
3747     char buffer[JVM_MAXPATHLEN];
3748     char ebuf[1024] = "";
3749     const char *name = agent->name();
3750     const char *msg = "Could not find agent library ";
3751 
3752     // First check to see if agent is statically linked into executable
3753     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3754       library = agent->os_lib();
3755     } else if (agent->is_absolute_path()) {
3756       library = os::dll_load(name, ebuf, sizeof ebuf);
3757       if (library == NULL) {
3758         const char *sub_msg = " in absolute path, with error: ";
3759         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3760         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3761         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3762         // If we can't find the agent, exit.
3763         vm_exit_during_initialization(buf, NULL);
3764         FREE_C_HEAP_ARRAY(char, buf);
3765       }
3766     } else {
3767       // Try to load the agent from the standard dll directory
3768       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3769                              name)) {
3770         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3771       }
3772       if (library == NULL) { // Try the local directory
3773         char ns[1] = {0};
3774         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3775           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3776         }
3777         if (library == NULL) {
3778           const char *sub_msg = " on the library path, with error: ";
3779           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3780           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3781           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3782           // If we can't find the agent, exit.
3783           vm_exit_during_initialization(buf, NULL);
3784           FREE_C_HEAP_ARRAY(char, buf);
3785         }
3786       }
3787     }
3788     agent->set_os_lib(library);
3789     agent->set_valid();
3790   }
3791 
3792   // Find the OnLoad function.
3793   on_load_entry =
3794     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3795                                                           false,
3796                                                           on_load_symbols,
3797                                                           num_symbol_entries));
3798   return on_load_entry;
3799 }
3800 
3801 // Find the JVM_OnLoad entry point
3802 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3803   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3804   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3805 }
3806 
3807 // Find the Agent_OnLoad entry point
3808 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3809   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3810   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3811 }
3812 
3813 // For backwards compatibility with -Xrun
3814 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3815 // treated like -agentpath:
3816 // Must be called before agent libraries are created
3817 void Threads::convert_vm_init_libraries_to_agents() {
3818   AgentLibrary* agent;
3819   AgentLibrary* next;
3820 
3821   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3822     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3823     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3824 
3825     // If there is an JVM_OnLoad function it will get called later,
3826     // otherwise see if there is an Agent_OnLoad
3827     if (on_load_entry == NULL) {
3828       on_load_entry = lookup_agent_on_load(agent);
3829       if (on_load_entry != NULL) {
3830         // switch it to the agent list -- so that Agent_OnLoad will be called,
3831         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3832         Arguments::convert_library_to_agent(agent);
3833       } else {
3834         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3835       }
3836     }
3837   }
3838 }
3839 
3840 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3841 // Invokes Agent_OnLoad
3842 // Called very early -- before JavaThreads exist
3843 void Threads::create_vm_init_agents() {
3844   extern struct JavaVM_ main_vm;
3845   AgentLibrary* agent;
3846 
3847   JvmtiExport::enter_onload_phase();
3848 
3849   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3850     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3851 
3852     if (on_load_entry != NULL) {
3853       // Invoke the Agent_OnLoad function
3854       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3855       if (err != JNI_OK) {
3856         vm_exit_during_initialization("agent library failed to init", agent->name());
3857       }
3858     } else {
3859       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3860     }
3861   }
3862   JvmtiExport::enter_primordial_phase();
3863 }
3864 
3865 extern "C" {
3866   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3867 }
3868 
3869 void Threads::shutdown_vm_agents() {
3870   // Send any Agent_OnUnload notifications
3871   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3872   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3873   extern struct JavaVM_ main_vm;
3874   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3875 
3876     // Find the Agent_OnUnload function.
3877     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3878                                                    os::find_agent_function(agent,
3879                                                    false,
3880                                                    on_unload_symbols,
3881                                                    num_symbol_entries));
3882 
3883     // Invoke the Agent_OnUnload function
3884     if (unload_entry != NULL) {
3885       JavaThread* thread = JavaThread::current();
3886       ThreadToNativeFromVM ttn(thread);
3887       HandleMark hm(thread);
3888       (*unload_entry)(&main_vm);
3889     }
3890   }
3891 }
3892 
3893 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3894 // Invokes JVM_OnLoad
3895 void Threads::create_vm_init_libraries() {
3896   extern struct JavaVM_ main_vm;
3897   AgentLibrary* agent;
3898 
3899   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3900     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3901 
3902     if (on_load_entry != NULL) {
3903       // Invoke the JVM_OnLoad function
3904       JavaThread* thread = JavaThread::current();
3905       ThreadToNativeFromVM ttn(thread);
3906       HandleMark hm(thread);
3907       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3908       if (err != JNI_OK) {
3909         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3910       }
3911     } else {
3912       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3913     }
3914   }
3915 }
3916 
3917 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3918   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3919 
3920   JavaThread* java_thread = NULL;
3921   // Sequential search for now.  Need to do better optimization later.
3922   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3923     oop tobj = thread->threadObj();
3924     if (!thread->is_exiting() &&
3925         tobj != NULL &&
3926         java_tid == java_lang_Thread::thread_id(tobj)) {
3927       java_thread = thread;
3928       break;
3929     }
3930   }
3931   return java_thread;
3932 }
3933 
3934 
3935 // Last thread running calls java.lang.Shutdown.shutdown()
3936 void JavaThread::invoke_shutdown_hooks() {
3937   HandleMark hm(this);
3938 
3939   // We could get here with a pending exception, if so clear it now.
3940   if (this->has_pending_exception()) {
3941     this->clear_pending_exception();
3942   }
3943 
3944   EXCEPTION_MARK;
3945   Klass* k =
3946     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3947                                       THREAD);
3948   if (k != NULL) {
3949     // SystemDictionary::resolve_or_null will return null if there was
3950     // an exception.  If we cannot load the Shutdown class, just don't
3951     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3952     // and finalizers (if runFinalizersOnExit is set) won't be run.
3953     // Note that if a shutdown hook was registered or runFinalizersOnExit
3954     // was called, the Shutdown class would have already been loaded
3955     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3956     instanceKlassHandle shutdown_klass (THREAD, k);
3957     JavaValue result(T_VOID);
3958     JavaCalls::call_static(&result,
3959                            shutdown_klass,
3960                            vmSymbols::shutdown_method_name(),
3961                            vmSymbols::void_method_signature(),
3962                            THREAD);
3963   }
3964   CLEAR_PENDING_EXCEPTION;
3965 }
3966 
3967 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3968 // the program falls off the end of main(). Another VM exit path is through
3969 // vm_exit() when the program calls System.exit() to return a value or when
3970 // there is a serious error in VM. The two shutdown paths are not exactly
3971 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3972 // and VM_Exit op at VM level.
3973 //
3974 // Shutdown sequence:
3975 //   + Shutdown native memory tracking if it is on
3976 //   + Wait until we are the last non-daemon thread to execute
3977 //     <-- every thing is still working at this moment -->
3978 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3979 //        shutdown hooks, run finalizers if finalization-on-exit
3980 //   + Call before_exit(), prepare for VM exit
3981 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3982 //        currently the only user of this mechanism is File.deleteOnExit())
3983 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3984 //        post thread end and vm death events to JVMTI,
3985 //        stop signal thread
3986 //   + Call JavaThread::exit(), it will:
3987 //      > release JNI handle blocks, remove stack guard pages
3988 //      > remove this thread from Threads list
3989 //     <-- no more Java code from this thread after this point -->
3990 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3991 //     the compiler threads at safepoint
3992 //     <-- do not use anything that could get blocked by Safepoint -->
3993 //   + Disable tracing at JNI/JVM barriers
3994 //   + Set _vm_exited flag for threads that are still running native code
3995 //   + Delete this thread
3996 //   + Call exit_globals()
3997 //      > deletes tty
3998 //      > deletes PerfMemory resources
3999 //   + Return to caller
4000 
4001 bool Threads::destroy_vm() {
4002   JavaThread* thread = JavaThread::current();
4003 
4004 #ifdef ASSERT
4005   _vm_complete = false;
4006 #endif
4007   // Wait until we are the last non-daemon thread to execute
4008   { MutexLocker nu(Threads_lock);
4009     while (Threads::number_of_non_daemon_threads() > 1)
4010       // This wait should make safepoint checks, wait without a timeout,
4011       // and wait as a suspend-equivalent condition.
4012       //
4013       // Note: If the FlatProfiler is running and this thread is waiting
4014       // for another non-daemon thread to finish, then the FlatProfiler
4015       // is waiting for the external suspend request on this thread to
4016       // complete. wait_for_ext_suspend_completion() will eventually
4017       // timeout, but that takes time. Making this wait a suspend-
4018       // equivalent condition solves that timeout problem.
4019       //
4020       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4021                          Mutex::_as_suspend_equivalent_flag);
4022   }
4023 
4024   // Hang forever on exit if we are reporting an error.
4025   if (ShowMessageBoxOnError && is_error_reported()) {
4026     os::infinite_sleep();
4027   }
4028   os::wait_for_keypress_at_exit();
4029 
4030   // run Java level shutdown hooks
4031   thread->invoke_shutdown_hooks();
4032 
4033   before_exit(thread);
4034 
4035   thread->exit(true);
4036 
4037   // Stop VM thread.
4038   {
4039     // 4945125 The vm thread comes to a safepoint during exit.
4040     // GC vm_operations can get caught at the safepoint, and the
4041     // heap is unparseable if they are caught. Grab the Heap_lock
4042     // to prevent this. The GC vm_operations will not be able to
4043     // queue until after the vm thread is dead. After this point,
4044     // we'll never emerge out of the safepoint before the VM exits.
4045 
4046     MutexLocker ml(Heap_lock);
4047 
4048     VMThread::wait_for_vm_thread_exit();
4049     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4050     VMThread::destroy();
4051   }
4052 
4053   // clean up ideal graph printers
4054 #if defined(COMPILER2) && !defined(PRODUCT)
4055   IdealGraphPrinter::clean_up();
4056 #endif
4057 
4058   // Now, all Java threads are gone except daemon threads. Daemon threads
4059   // running Java code or in VM are stopped by the Safepoint. However,
4060   // daemon threads executing native code are still running.  But they
4061   // will be stopped at native=>Java/VM barriers. Note that we can't
4062   // simply kill or suspend them, as it is inherently deadlock-prone.
4063 
4064   VM_Exit::set_vm_exited();
4065 
4066   notify_vm_shutdown();
4067 
4068   delete thread;
4069 
4070 #if INCLUDE_JVMCI
4071   if (JVMCICounterSize > 0) {
4072     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4073   }
4074 #endif
4075 
4076   // exit_globals() will delete tty
4077   exit_globals();
4078 
4079   LogConfiguration::finalize();
4080 
4081   return true;
4082 }
4083 
4084 
4085 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4086   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4087   return is_supported_jni_version(version);
4088 }
4089 
4090 
4091 jboolean Threads::is_supported_jni_version(jint version) {
4092   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4093   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4094   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4095   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4096   return JNI_FALSE;
4097 }
4098 
4099 
4100 void Threads::add(JavaThread* p, bool force_daemon) {
4101   // The threads lock must be owned at this point
4102   assert_locked_or_safepoint(Threads_lock);
4103 
4104   // See the comment for this method in thread.hpp for its purpose and
4105   // why it is called here.
4106   p->initialize_queues();
4107   p->set_next(_thread_list);
4108   _thread_list = p;
4109   _number_of_threads++;
4110   oop threadObj = p->threadObj();
4111   bool daemon = true;
4112   // Bootstrapping problem: threadObj can be null for initial
4113   // JavaThread (or for threads attached via JNI)
4114   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4115     _number_of_non_daemon_threads++;
4116     daemon = false;
4117   }
4118 
4119   ThreadService::add_thread(p, daemon);
4120 
4121   // Possible GC point.
4122   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4123 }
4124 
4125 void Threads::remove(JavaThread* p) {
4126   // Extra scope needed for Thread_lock, so we can check
4127   // that we do not remove thread without safepoint code notice
4128   { MutexLocker ml(Threads_lock);
4129 
4130     assert(includes(p), "p must be present");
4131 
4132     JavaThread* current = _thread_list;
4133     JavaThread* prev    = NULL;
4134 
4135     while (current != p) {
4136       prev    = current;
4137       current = current->next();
4138     }
4139 
4140     if (prev) {
4141       prev->set_next(current->next());
4142     } else {
4143       _thread_list = p->next();
4144     }
4145     _number_of_threads--;
4146     oop threadObj = p->threadObj();
4147     bool daemon = true;
4148     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4149       _number_of_non_daemon_threads--;
4150       daemon = false;
4151 
4152       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4153       // on destroy_vm will wake up.
4154       if (number_of_non_daemon_threads() == 1) {
4155         Threads_lock->notify_all();
4156       }
4157     }
4158     ThreadService::remove_thread(p, daemon);
4159 
4160     // Make sure that safepoint code disregard this thread. This is needed since
4161     // the thread might mess around with locks after this point. This can cause it
4162     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4163     // of this thread since it is removed from the queue.
4164     p->set_terminated_value();
4165   } // unlock Threads_lock
4166 
4167   // Since Events::log uses a lock, we grab it outside the Threads_lock
4168   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4169 }
4170 
4171 // Threads_lock must be held when this is called (or must be called during a safepoint)
4172 bool Threads::includes(JavaThread* p) {
4173   assert(Threads_lock->is_locked(), "sanity check");
4174   ALL_JAVA_THREADS(q) {
4175     if (q == p) {
4176       return true;
4177     }
4178   }
4179   return false;
4180 }
4181 
4182 // Operations on the Threads list for GC.  These are not explicitly locked,
4183 // but the garbage collector must provide a safe context for them to run.
4184 // In particular, these things should never be called when the Threads_lock
4185 // is held by some other thread. (Note: the Safepoint abstraction also
4186 // uses the Threads_lock to guarantee this property. It also makes sure that
4187 // all threads gets blocked when exiting or starting).
4188 
4189 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4190   ALL_JAVA_THREADS(p) {
4191     p->oops_do(f, cld_f, cf);
4192   }
4193   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4194 }
4195 
4196 void Threads::change_thread_claim_parity() {
4197   // Set the new claim parity.
4198   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4199          "Not in range.");
4200   _thread_claim_parity++;
4201   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4202   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4203          "Not in range.");
4204 }
4205 
4206 #ifdef ASSERT
4207 void Threads::assert_all_threads_claimed() {
4208   ALL_JAVA_THREADS(p) {
4209     const int thread_parity = p->oops_do_parity();
4210     assert((thread_parity == _thread_claim_parity),
4211            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4212   }
4213 }
4214 #endif // ASSERT
4215 
4216 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4217   int cp = Threads::thread_claim_parity();
4218   ALL_JAVA_THREADS(p) {
4219     if (p->claim_oops_do(is_par, cp)) {
4220       p->oops_do(f, cld_f, cf);
4221     }
4222   }
4223   VMThread* vmt = VMThread::vm_thread();
4224   if (vmt->claim_oops_do(is_par, cp)) {
4225     vmt->oops_do(f, cld_f, cf);
4226   }
4227 }
4228 
4229 #if INCLUDE_ALL_GCS
4230 // Used by ParallelScavenge
4231 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4232   ALL_JAVA_THREADS(p) {
4233     q->enqueue(new ThreadRootsTask(p));
4234   }
4235   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4236 }
4237 
4238 // Used by Parallel Old
4239 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4240   ALL_JAVA_THREADS(p) {
4241     q->enqueue(new ThreadRootsMarkingTask(p));
4242   }
4243   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4244 }
4245 #endif // INCLUDE_ALL_GCS
4246 
4247 void Threads::nmethods_do(CodeBlobClosure* cf) {
4248   ALL_JAVA_THREADS(p) {
4249     p->nmethods_do(cf);
4250   }
4251   VMThread::vm_thread()->nmethods_do(cf);
4252 }
4253 
4254 void Threads::metadata_do(void f(Metadata*)) {
4255   ALL_JAVA_THREADS(p) {
4256     p->metadata_do(f);
4257   }
4258 }
4259 
4260 class ThreadHandlesClosure : public ThreadClosure {
4261   void (*_f)(Metadata*);
4262  public:
4263   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4264   virtual void do_thread(Thread* thread) {
4265     thread->metadata_handles_do(_f);
4266   }
4267 };
4268 
4269 void Threads::metadata_handles_do(void f(Metadata*)) {
4270   // Only walk the Handles in Thread.
4271   ThreadHandlesClosure handles_closure(f);
4272   threads_do(&handles_closure);
4273 }
4274 
4275 void Threads::deoptimized_wrt_marked_nmethods() {
4276   ALL_JAVA_THREADS(p) {
4277     p->deoptimized_wrt_marked_nmethods();
4278   }
4279 }
4280 
4281 
4282 // Get count Java threads that are waiting to enter the specified monitor.
4283 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4284                                                          address monitor,
4285                                                          bool doLock) {
4286   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4287          "must grab Threads_lock or be at safepoint");
4288   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4289 
4290   int i = 0;
4291   {
4292     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4293     ALL_JAVA_THREADS(p) {
4294       if (!p->can_call_java()) continue;
4295 
4296       address pending = (address)p->current_pending_monitor();
4297       if (pending == monitor) {             // found a match
4298         if (i < count) result->append(p);   // save the first count matches
4299         i++;
4300       }
4301     }
4302   }
4303   return result;
4304 }
4305 
4306 
4307 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4308                                                       bool doLock) {
4309   assert(doLock ||
4310          Threads_lock->owned_by_self() ||
4311          SafepointSynchronize::is_at_safepoint(),
4312          "must grab Threads_lock or be at safepoint");
4313 
4314   // NULL owner means not locked so we can skip the search
4315   if (owner == NULL) return NULL;
4316 
4317   {
4318     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4319     ALL_JAVA_THREADS(p) {
4320       // first, see if owner is the address of a Java thread
4321       if (owner == (address)p) return p;
4322     }
4323   }
4324   // Cannot assert on lack of success here since this function may be
4325   // used by code that is trying to report useful problem information
4326   // like deadlock detection.
4327   if (UseHeavyMonitors) return NULL;
4328 
4329   // If we didn't find a matching Java thread and we didn't force use of
4330   // heavyweight monitors, then the owner is the stack address of the
4331   // Lock Word in the owning Java thread's stack.
4332   //
4333   JavaThread* the_owner = NULL;
4334   {
4335     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4336     ALL_JAVA_THREADS(q) {
4337       if (q->is_lock_owned(owner)) {
4338         the_owner = q;
4339         break;
4340       }
4341     }
4342   }
4343   // cannot assert on lack of success here; see above comment
4344   return the_owner;
4345 }
4346 
4347 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4348 void Threads::print_on(outputStream* st, bool print_stacks,
4349                        bool internal_format, bool print_concurrent_locks) {
4350   char buf[32];
4351   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4352 
4353   st->print_cr("Full thread dump %s (%s %s):",
4354                Abstract_VM_Version::vm_name(),
4355                Abstract_VM_Version::vm_release(),
4356                Abstract_VM_Version::vm_info_string());
4357   st->cr();
4358 
4359 #if INCLUDE_SERVICES
4360   // Dump concurrent locks
4361   ConcurrentLocksDump concurrent_locks;
4362   if (print_concurrent_locks) {
4363     concurrent_locks.dump_at_safepoint();
4364   }
4365 #endif // INCLUDE_SERVICES
4366 
4367   ALL_JAVA_THREADS(p) {
4368     ResourceMark rm;
4369     p->print_on(st);
4370     if (print_stacks) {
4371       if (internal_format) {
4372         p->trace_stack();
4373       } else {
4374         p->print_stack_on(st);
4375       }
4376     }
4377     st->cr();
4378 #if INCLUDE_SERVICES
4379     if (print_concurrent_locks) {
4380       concurrent_locks.print_locks_on(p, st);
4381     }
4382 #endif // INCLUDE_SERVICES
4383   }
4384 
4385   VMThread::vm_thread()->print_on(st);
4386   st->cr();
4387   Universe::heap()->print_gc_threads_on(st);
4388   WatcherThread* wt = WatcherThread::watcher_thread();
4389   if (wt != NULL) {
4390     wt->print_on(st);
4391     st->cr();
4392   }
4393   CompileBroker::print_compiler_threads_on(st);
4394   st->flush();
4395 }
4396 
4397 // Threads::print_on_error() is called by fatal error handler. It's possible
4398 // that VM is not at safepoint and/or current thread is inside signal handler.
4399 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4400 // memory (even in resource area), it might deadlock the error handler.
4401 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4402                              int buflen) {
4403   bool found_current = false;
4404   st->print_cr("Java Threads: ( => current thread )");
4405   ALL_JAVA_THREADS(thread) {
4406     bool is_current = (current == thread);
4407     found_current = found_current || is_current;
4408 
4409     st->print("%s", is_current ? "=>" : "  ");
4410 
4411     st->print(PTR_FORMAT, p2i(thread));
4412     st->print(" ");
4413     thread->print_on_error(st, buf, buflen);
4414     st->cr();
4415   }
4416   st->cr();
4417 
4418   st->print_cr("Other Threads:");
4419   if (VMThread::vm_thread()) {
4420     bool is_current = (current == VMThread::vm_thread());
4421     found_current = found_current || is_current;
4422     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4423 
4424     st->print(PTR_FORMAT, p2i(VMThread::vm_thread()));
4425     st->print(" ");
4426     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4427     st->cr();
4428   }
4429   WatcherThread* wt = WatcherThread::watcher_thread();
4430   if (wt != NULL) {
4431     bool is_current = (current == wt);
4432     found_current = found_current || is_current;
4433     st->print("%s", is_current ? "=>" : "  ");
4434 
4435     st->print(PTR_FORMAT, p2i(wt));
4436     st->print(" ");
4437     wt->print_on_error(st, buf, buflen);
4438     st->cr();
4439   }
4440   if (!found_current) {
4441     st->cr();
4442     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4443     current->print_on_error(st, buf, buflen);
4444     st->cr();
4445   }
4446 }
4447 
4448 // Internal SpinLock and Mutex
4449 // Based on ParkEvent
4450 
4451 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4452 //
4453 // We employ SpinLocks _only for low-contention, fixed-length
4454 // short-duration critical sections where we're concerned
4455 // about native mutex_t or HotSpot Mutex:: latency.
4456 // The mux construct provides a spin-then-block mutual exclusion
4457 // mechanism.
4458 //
4459 // Testing has shown that contention on the ListLock guarding gFreeList
4460 // is common.  If we implement ListLock as a simple SpinLock it's common
4461 // for the JVM to devolve to yielding with little progress.  This is true
4462 // despite the fact that the critical sections protected by ListLock are
4463 // extremely short.
4464 //
4465 // TODO-FIXME: ListLock should be of type SpinLock.
4466 // We should make this a 1st-class type, integrated into the lock
4467 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4468 // should have sufficient padding to avoid false-sharing and excessive
4469 // cache-coherency traffic.
4470 
4471 
4472 typedef volatile int SpinLockT;
4473 
4474 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4475   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4476     return;   // normal fast-path return
4477   }
4478 
4479   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4480   TEVENT(SpinAcquire - ctx);
4481   int ctr = 0;
4482   int Yields = 0;
4483   for (;;) {
4484     while (*adr != 0) {
4485       ++ctr;
4486       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4487         if (Yields > 5) {
4488           os::naked_short_sleep(1);
4489         } else {
4490           os::naked_yield();
4491           ++Yields;
4492         }
4493       } else {
4494         SpinPause();
4495       }
4496     }
4497     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4498   }
4499 }
4500 
4501 void Thread::SpinRelease(volatile int * adr) {
4502   assert(*adr != 0, "invariant");
4503   OrderAccess::fence();      // guarantee at least release consistency.
4504   // Roach-motel semantics.
4505   // It's safe if subsequent LDs and STs float "up" into the critical section,
4506   // but prior LDs and STs within the critical section can't be allowed
4507   // to reorder or float past the ST that releases the lock.
4508   // Loads and stores in the critical section - which appear in program
4509   // order before the store that releases the lock - must also appear
4510   // before the store that releases the lock in memory visibility order.
4511   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4512   // the ST of 0 into the lock-word which releases the lock, so fence
4513   // more than covers this on all platforms.
4514   *adr = 0;
4515 }
4516 
4517 // muxAcquire and muxRelease:
4518 //
4519 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4520 //    The LSB of the word is set IFF the lock is held.
4521 //    The remainder of the word points to the head of a singly-linked list
4522 //    of threads blocked on the lock.
4523 //
4524 // *  The current implementation of muxAcquire-muxRelease uses its own
4525 //    dedicated Thread._MuxEvent instance.  If we're interested in
4526 //    minimizing the peak number of extant ParkEvent instances then
4527 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4528 //    as certain invariants were satisfied.  Specifically, care would need
4529 //    to be taken with regards to consuming unpark() "permits".
4530 //    A safe rule of thumb is that a thread would never call muxAcquire()
4531 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4532 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4533 //    consume an unpark() permit intended for monitorenter, for instance.
4534 //    One way around this would be to widen the restricted-range semaphore
4535 //    implemented in park().  Another alternative would be to provide
4536 //    multiple instances of the PlatformEvent() for each thread.  One
4537 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4538 //
4539 // *  Usage:
4540 //    -- Only as leaf locks
4541 //    -- for short-term locking only as muxAcquire does not perform
4542 //       thread state transitions.
4543 //
4544 // Alternatives:
4545 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4546 //    but with parking or spin-then-park instead of pure spinning.
4547 // *  Use Taura-Oyama-Yonenzawa locks.
4548 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4549 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4550 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4551 //    acquiring threads use timers (ParkTimed) to detect and recover from
4552 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4553 //    boundaries by using placement-new.
4554 // *  Augment MCS with advisory back-link fields maintained with CAS().
4555 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4556 //    The validity of the backlinks must be ratified before we trust the value.
4557 //    If the backlinks are invalid the exiting thread must back-track through the
4558 //    the forward links, which are always trustworthy.
4559 // *  Add a successor indication.  The LockWord is currently encoded as
4560 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4561 //    to provide the usual futile-wakeup optimization.
4562 //    See RTStt for details.
4563 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4564 //
4565 
4566 
4567 typedef volatile intptr_t MutexT;      // Mux Lock-word
4568 enum MuxBits { LOCKBIT = 1 };
4569 
4570 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4571   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4572   if (w == 0) return;
4573   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4574     return;
4575   }
4576 
4577   TEVENT(muxAcquire - Contention);
4578   ParkEvent * const Self = Thread::current()->_MuxEvent;
4579   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4580   for (;;) {
4581     int its = (os::is_MP() ? 100 : 0) + 1;
4582 
4583     // Optional spin phase: spin-then-park strategy
4584     while (--its >= 0) {
4585       w = *Lock;
4586       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4587         return;
4588       }
4589     }
4590 
4591     Self->reset();
4592     Self->OnList = intptr_t(Lock);
4593     // The following fence() isn't _strictly necessary as the subsequent
4594     // CAS() both serializes execution and ratifies the fetched *Lock value.
4595     OrderAccess::fence();
4596     for (;;) {
4597       w = *Lock;
4598       if ((w & LOCKBIT) == 0) {
4599         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4600           Self->OnList = 0;   // hygiene - allows stronger asserts
4601           return;
4602         }
4603         continue;      // Interference -- *Lock changed -- Just retry
4604       }
4605       assert(w & LOCKBIT, "invariant");
4606       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4607       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4608     }
4609 
4610     while (Self->OnList != 0) {
4611       Self->park();
4612     }
4613   }
4614 }
4615 
4616 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4617   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4618   if (w == 0) return;
4619   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4620     return;
4621   }
4622 
4623   TEVENT(muxAcquire - Contention);
4624   ParkEvent * ReleaseAfter = NULL;
4625   if (ev == NULL) {
4626     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4627   }
4628   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4629   for (;;) {
4630     guarantee(ev->OnList == 0, "invariant");
4631     int its = (os::is_MP() ? 100 : 0) + 1;
4632 
4633     // Optional spin phase: spin-then-park strategy
4634     while (--its >= 0) {
4635       w = *Lock;
4636       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4637         if (ReleaseAfter != NULL) {
4638           ParkEvent::Release(ReleaseAfter);
4639         }
4640         return;
4641       }
4642     }
4643 
4644     ev->reset();
4645     ev->OnList = intptr_t(Lock);
4646     // The following fence() isn't _strictly necessary as the subsequent
4647     // CAS() both serializes execution and ratifies the fetched *Lock value.
4648     OrderAccess::fence();
4649     for (;;) {
4650       w = *Lock;
4651       if ((w & LOCKBIT) == 0) {
4652         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4653           ev->OnList = 0;
4654           // We call ::Release while holding the outer lock, thus
4655           // artificially lengthening the critical section.
4656           // Consider deferring the ::Release() until the subsequent unlock(),
4657           // after we've dropped the outer lock.
4658           if (ReleaseAfter != NULL) {
4659             ParkEvent::Release(ReleaseAfter);
4660           }
4661           return;
4662         }
4663         continue;      // Interference -- *Lock changed -- Just retry
4664       }
4665       assert(w & LOCKBIT, "invariant");
4666       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4667       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4668     }
4669 
4670     while (ev->OnList != 0) {
4671       ev->park();
4672     }
4673   }
4674 }
4675 
4676 // Release() must extract a successor from the list and then wake that thread.
4677 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4678 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4679 // Release() would :
4680 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4681 // (B) Extract a successor from the private list "in-hand"
4682 // (C) attempt to CAS() the residual back into *Lock over null.
4683 //     If there were any newly arrived threads and the CAS() would fail.
4684 //     In that case Release() would detach the RATs, re-merge the list in-hand
4685 //     with the RATs and repeat as needed.  Alternately, Release() might
4686 //     detach and extract a successor, but then pass the residual list to the wakee.
4687 //     The wakee would be responsible for reattaching and remerging before it
4688 //     competed for the lock.
4689 //
4690 // Both "pop" and DMR are immune from ABA corruption -- there can be
4691 // multiple concurrent pushers, but only one popper or detacher.
4692 // This implementation pops from the head of the list.  This is unfair,
4693 // but tends to provide excellent throughput as hot threads remain hot.
4694 // (We wake recently run threads first).
4695 //
4696 // All paths through muxRelease() will execute a CAS.
4697 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4698 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4699 // executed within the critical section are complete and globally visible before the
4700 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4701 void Thread::muxRelease(volatile intptr_t * Lock)  {
4702   for (;;) {
4703     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4704     assert(w & LOCKBIT, "invariant");
4705     if (w == LOCKBIT) return;
4706     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4707     assert(List != NULL, "invariant");
4708     assert(List->OnList == intptr_t(Lock), "invariant");
4709     ParkEvent * const nxt = List->ListNext;
4710     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4711 
4712     // The following CAS() releases the lock and pops the head element.
4713     // The CAS() also ratifies the previously fetched lock-word value.
4714     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4715       continue;
4716     }
4717     List->OnList = 0;
4718     OrderAccess::fence();
4719     List->unpark();
4720     return;
4721   }
4722 }
4723 
4724 
4725 void Threads::verify() {
4726   ALL_JAVA_THREADS(p) {
4727     p->verify();
4728   }
4729   VMThread* thread = VMThread::vm_thread();
4730   if (thread != NULL) thread->verify();
4731 }