1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/codeCacheExtensions.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/gcId.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "gc/shared/referencePendingListLocker.hpp"
  39 #include "gc/shared/workgroup.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/linkResolver.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jvmtifiles/jvmtiEnv.hpp"
  44 #include "logging/log.hpp"
  45 #include "logging/logConfiguration.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.inline.hpp"
  50 #include "oops/instanceKlass.hpp"
  51 #include "oops/objArrayOop.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "oops/symbol.hpp"
  54 #include "oops/verifyOopClosure.hpp"
  55 #include "prims/jvm_misc.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "prims/jvmtiThreadState.hpp"
  58 #include "prims/privilegedStack.hpp"
  59 #include "runtime/arguments.hpp"
  60 #include "runtime/atomic.inline.hpp"
  61 #include "runtime/biasedLocking.hpp"
  62 #include "runtime/commandLineFlagConstraintList.hpp"
  63 #include "runtime/commandLineFlagWriteableList.hpp"
  64 #include "runtime/commandLineFlagRangeList.hpp"
  65 #include "runtime/deoptimization.hpp"
  66 #include "runtime/fprofiler.hpp"
  67 #include "runtime/frame.inline.hpp"
  68 #include "runtime/globals.hpp"
  69 #include "runtime/init.hpp"
  70 #include "runtime/interfaceSupport.hpp"
  71 #include "runtime/java.hpp"
  72 #include "runtime/javaCalls.hpp"
  73 #include "runtime/jniPeriodicChecker.hpp"
  74 #include "runtime/timerTrace.hpp"
  75 #include "runtime/memprofiler.hpp"
  76 #include "runtime/mutexLocker.hpp"
  77 #include "runtime/objectMonitor.hpp"
  78 #include "runtime/orderAccess.inline.hpp"
  79 #include "runtime/osThread.hpp"
  80 #include "runtime/safepoint.hpp"
  81 #include "runtime/sharedRuntime.hpp"
  82 #include "runtime/statSampler.hpp"
  83 #include "runtime/stubRoutines.hpp"
  84 #include "runtime/sweeper.hpp"
  85 #include "runtime/task.hpp"
  86 #include "runtime/thread.inline.hpp"
  87 #include "runtime/threadCritical.hpp"
  88 #include "runtime/vframe.hpp"
  89 #include "runtime/vframeArray.hpp"
  90 #include "runtime/vframe_hp.hpp"
  91 #include "runtime/vmThread.hpp"
  92 #include "runtime/vm_operations.hpp"
  93 #include "runtime/vm_version.hpp"
  94 #include "services/attachListener.hpp"
  95 #include "services/management.hpp"
  96 #include "services/memTracker.hpp"
  97 #include "services/threadService.hpp"
  98 #include "trace/traceMacros.hpp"
  99 #include "trace/tracing.hpp"
 100 #include "utilities/defaultStream.hpp"
 101 #include "utilities/dtrace.hpp"
 102 #include "utilities/events.hpp"
 103 #include "utilities/macros.hpp"
 104 #include "utilities/preserveException.hpp"
 105 #if INCLUDE_ALL_GCS
 106 #include "gc/cms/concurrentMarkSweepThread.hpp"
 107 #include "gc/g1/concurrentMarkThread.inline.hpp"
 108 #include "gc/parallel/pcTasks.hpp"
 109 #endif // INCLUDE_ALL_GCS
 110 #if INCLUDE_JVMCI
 111 #include "jvmci/jvmciCompiler.hpp"
 112 #include "jvmci/jvmciRuntime.hpp"
 113 #endif
 114 #ifdef COMPILER1
 115 #include "c1/c1_Compiler.hpp"
 116 #endif
 117 #ifdef COMPILER2
 118 #include "opto/c2compiler.hpp"
 119 #include "opto/idealGraphPrinter.hpp"
 120 #endif
 121 #if INCLUDE_RTM_OPT
 122 #include "runtime/rtmLocking.hpp"
 123 #endif
 124 
 125 // Initialization after module runtime initialization
 126 void universe_post_module_init();  // must happen after call_initPhase2
 127 
 128 #ifdef DTRACE_ENABLED
 129 
 130 // Only bother with this argument setup if dtrace is available
 131 
 132   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 133   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 134 
 135   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 136     {                                                                      \
 137       ResourceMark rm(this);                                               \
 138       int len = 0;                                                         \
 139       const char* name = (javathread)->get_thread_name();                  \
 140       len = strlen(name);                                                  \
 141       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 142         (char *) name, len,                                                \
 143         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 144         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 145         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 146     }
 147 
 148 #else //  ndef DTRACE_ENABLED
 149 
 150   #define DTRACE_THREAD_PROBE(probe, javathread)
 151 
 152 #endif // ndef DTRACE_ENABLED
 153 
 154 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 155 // Current thread is maintained as a thread-local variable
 156 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 157 #endif
 158 // Class hierarchy
 159 // - Thread
 160 //   - VMThread
 161 //   - WatcherThread
 162 //   - ConcurrentMarkSweepThread
 163 //   - JavaThread
 164 //     - CompilerThread
 165 
 166 // ======= Thread ========
 167 // Support for forcing alignment of thread objects for biased locking
 168 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 169   if (UseBiasedLocking) {
 170     const int alignment = markOopDesc::biased_lock_alignment;
 171     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 172     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 173                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 174                                                          AllocFailStrategy::RETURN_NULL);
 175     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 176     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 177            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 178            "JavaThread alignment code overflowed allocated storage");
 179     if (aligned_addr != real_malloc_addr) {
 180       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 181                               p2i(real_malloc_addr),
 182                               p2i(aligned_addr));
 183     }
 184     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 185     return aligned_addr;
 186   } else {
 187     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 188                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 189   }
 190 }
 191 
 192 void Thread::operator delete(void* p) {
 193   if (UseBiasedLocking) {
 194     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 195     FreeHeap(real_malloc_addr);
 196   } else {
 197     FreeHeap(p);
 198   }
 199 }
 200 
 201 
 202 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 203 // JavaThread
 204 
 205 
 206 Thread::Thread() {
 207   // stack and get_thread
 208   set_stack_base(NULL);
 209   set_stack_size(0);
 210   set_self_raw_id(0);
 211   set_lgrp_id(-1);
 212   DEBUG_ONLY(clear_suspendible_thread();)
 213 
 214   // allocated data structures
 215   set_osthread(NULL);
 216   set_resource_area(new (mtThread)ResourceArea());
 217   DEBUG_ONLY(_current_resource_mark = NULL;)
 218   set_handle_area(new (mtThread) HandleArea(NULL));
 219   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 220   set_active_handles(NULL);
 221   set_free_handle_block(NULL);
 222   set_last_handle_mark(NULL);
 223 
 224   // This initial value ==> never claimed.
 225   _oops_do_parity = 0;
 226 
 227   // the handle mark links itself to last_handle_mark
 228   new HandleMark(this);
 229 
 230   // plain initialization
 231   debug_only(_owned_locks = NULL;)
 232   debug_only(_allow_allocation_count = 0;)
 233   NOT_PRODUCT(_allow_safepoint_count = 0;)
 234   NOT_PRODUCT(_skip_gcalot = false;)
 235   _jvmti_env_iteration_count = 0;
 236   set_allocated_bytes(0);
 237   _vm_operation_started_count = 0;
 238   _vm_operation_completed_count = 0;
 239   _current_pending_monitor = NULL;
 240   _current_pending_monitor_is_from_java = true;
 241   _current_waiting_monitor = NULL;
 242   _num_nested_signal = 0;
 243   omFreeList = NULL;
 244   omFreeCount = 0;
 245   omFreeProvision = 32;
 246   omInUseList = NULL;
 247   omInUseCount = 0;
 248 
 249 #ifdef ASSERT
 250   _visited_for_critical_count = false;
 251 #endif
 252 
 253   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 254                          Monitor::_safepoint_check_sometimes);
 255   _suspend_flags = 0;
 256 
 257   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 258   _hashStateX = os::random();
 259   _hashStateY = 842502087;
 260   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 261   _hashStateW = 273326509;
 262 
 263   _OnTrap   = 0;
 264   _schedctl = NULL;
 265   _Stalled  = 0;
 266   _TypeTag  = 0x2BAD;
 267 
 268   // Many of the following fields are effectively final - immutable
 269   // Note that nascent threads can't use the Native Monitor-Mutex
 270   // construct until the _MutexEvent is initialized ...
 271   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 272   // we might instead use a stack of ParkEvents that we could provision on-demand.
 273   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 274   // and ::Release()
 275   _ParkEvent   = ParkEvent::Allocate(this);
 276   _SleepEvent  = ParkEvent::Allocate(this);
 277   _MutexEvent  = ParkEvent::Allocate(this);
 278   _MuxEvent    = ParkEvent::Allocate(this);
 279 
 280 #ifdef CHECK_UNHANDLED_OOPS
 281   if (CheckUnhandledOops) {
 282     _unhandled_oops = new UnhandledOops(this);
 283   }
 284 #endif // CHECK_UNHANDLED_OOPS
 285 #ifdef ASSERT
 286   if (UseBiasedLocking) {
 287     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 288     assert(this == _real_malloc_address ||
 289            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 290            "bug in forced alignment of thread objects");
 291   }
 292 #endif // ASSERT
 293 }
 294 
 295 void Thread::initialize_thread_current() {
 296 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 297   assert(_thr_current == NULL, "Thread::current already initialized");
 298   _thr_current = this;
 299 #endif
 300   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 301   ThreadLocalStorage::set_thread(this);
 302   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 303 }
 304 
 305 void Thread::clear_thread_current() {
 306   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 307 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 308   _thr_current = NULL;
 309 #endif
 310   ThreadLocalStorage::set_thread(NULL);
 311 }
 312 
 313 void Thread::record_stack_base_and_size() {
 314   set_stack_base(os::current_stack_base());
 315   set_stack_size(os::current_stack_size());
 316   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 317   // in initialize_thread(). Without the adjustment, stack size is
 318   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 319   // So far, only Solaris has real implementation of initialize_thread().
 320   //
 321   // set up any platform-specific state.
 322   os::initialize_thread(this);
 323 
 324   // Set stack limits after thread is initialized.
 325   if (is_Java_thread()) {
 326     ((JavaThread*) this)->set_stack_overflow_limit();
 327     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 328   }
 329 #if INCLUDE_NMT
 330   // record thread's native stack, stack grows downward
 331   MemTracker::record_thread_stack(stack_end(), stack_size());
 332 #endif // INCLUDE_NMT
 333   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 334     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 335     os::current_thread_id(), p2i(stack_base() - stack_size()),
 336     p2i(stack_base()), stack_size()/1024);
 337 }
 338 
 339 
 340 Thread::~Thread() {
 341   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 342   ObjectSynchronizer::omFlush(this);
 343 
 344   EVENT_THREAD_DESTRUCT(this);
 345 
 346   // stack_base can be NULL if the thread is never started or exited before
 347   // record_stack_base_and_size called. Although, we would like to ensure
 348   // that all started threads do call record_stack_base_and_size(), there is
 349   // not proper way to enforce that.
 350 #if INCLUDE_NMT
 351   if (_stack_base != NULL) {
 352     MemTracker::release_thread_stack(stack_end(), stack_size());
 353 #ifdef ASSERT
 354     set_stack_base(NULL);
 355 #endif
 356   }
 357 #endif // INCLUDE_NMT
 358 
 359   // deallocate data structures
 360   delete resource_area();
 361   // since the handle marks are using the handle area, we have to deallocated the root
 362   // handle mark before deallocating the thread's handle area,
 363   assert(last_handle_mark() != NULL, "check we have an element");
 364   delete last_handle_mark();
 365   assert(last_handle_mark() == NULL, "check we have reached the end");
 366 
 367   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 368   // We NULL out the fields for good hygiene.
 369   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 370   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 371   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 372   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 373 
 374   delete handle_area();
 375   delete metadata_handles();
 376 
 377   // SR_handler uses this as a termination indicator -
 378   // needs to happen before os::free_thread()
 379   delete _SR_lock;
 380   _SR_lock = NULL;
 381 
 382   // osthread() can be NULL, if creation of thread failed.
 383   if (osthread() != NULL) os::free_thread(osthread());
 384 
 385   // clear Thread::current if thread is deleting itself.
 386   // Needed to ensure JNI correctly detects non-attached threads.
 387   if (this == Thread::current()) {
 388     clear_thread_current();
 389   }
 390 
 391   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 392 }
 393 
 394 // NOTE: dummy function for assertion purpose.
 395 void Thread::run() {
 396   ShouldNotReachHere();
 397 }
 398 
 399 #ifdef ASSERT
 400 // Private method to check for dangling thread pointer
 401 void check_for_dangling_thread_pointer(Thread *thread) {
 402   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 403          "possibility of dangling Thread pointer");
 404 }
 405 #endif
 406 
 407 ThreadPriority Thread::get_priority(const Thread* const thread) {
 408   ThreadPriority priority;
 409   // Can return an error!
 410   (void)os::get_priority(thread, priority);
 411   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 412   return priority;
 413 }
 414 
 415 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 416   debug_only(check_for_dangling_thread_pointer(thread);)
 417   // Can return an error!
 418   (void)os::set_priority(thread, priority);
 419 }
 420 
 421 
 422 void Thread::start(Thread* thread) {
 423   // Start is different from resume in that its safety is guaranteed by context or
 424   // being called from a Java method synchronized on the Thread object.
 425   if (!DisableStartThread) {
 426     if (thread->is_Java_thread()) {
 427       // Initialize the thread state to RUNNABLE before starting this thread.
 428       // Can not set it after the thread started because we do not know the
 429       // exact thread state at that time. It could be in MONITOR_WAIT or
 430       // in SLEEPING or some other state.
 431       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 432                                           java_lang_Thread::RUNNABLE);
 433     }
 434     os::start_thread(thread);
 435   }
 436 }
 437 
 438 // Enqueue a VM_Operation to do the job for us - sometime later
 439 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 440   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 441   VMThread::execute(vm_stop);
 442 }
 443 
 444 
 445 // Check if an external suspend request has completed (or has been
 446 // cancelled). Returns true if the thread is externally suspended and
 447 // false otherwise.
 448 //
 449 // The bits parameter returns information about the code path through
 450 // the routine. Useful for debugging:
 451 //
 452 // set in is_ext_suspend_completed():
 453 // 0x00000001 - routine was entered
 454 // 0x00000010 - routine return false at end
 455 // 0x00000100 - thread exited (return false)
 456 // 0x00000200 - suspend request cancelled (return false)
 457 // 0x00000400 - thread suspended (return true)
 458 // 0x00001000 - thread is in a suspend equivalent state (return true)
 459 // 0x00002000 - thread is native and walkable (return true)
 460 // 0x00004000 - thread is native_trans and walkable (needed retry)
 461 //
 462 // set in wait_for_ext_suspend_completion():
 463 // 0x00010000 - routine was entered
 464 // 0x00020000 - suspend request cancelled before loop (return false)
 465 // 0x00040000 - thread suspended before loop (return true)
 466 // 0x00080000 - suspend request cancelled in loop (return false)
 467 // 0x00100000 - thread suspended in loop (return true)
 468 // 0x00200000 - suspend not completed during retry loop (return false)
 469 
 470 // Helper class for tracing suspend wait debug bits.
 471 //
 472 // 0x00000100 indicates that the target thread exited before it could
 473 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 474 // 0x00080000 each indicate a cancelled suspend request so they don't
 475 // count as wait failures either.
 476 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 477 
 478 class TraceSuspendDebugBits : public StackObj {
 479  private:
 480   JavaThread * jt;
 481   bool         is_wait;
 482   bool         called_by_wait;  // meaningful when !is_wait
 483   uint32_t *   bits;
 484 
 485  public:
 486   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 487                         uint32_t *_bits) {
 488     jt             = _jt;
 489     is_wait        = _is_wait;
 490     called_by_wait = _called_by_wait;
 491     bits           = _bits;
 492   }
 493 
 494   ~TraceSuspendDebugBits() {
 495     if (!is_wait) {
 496 #if 1
 497       // By default, don't trace bits for is_ext_suspend_completed() calls.
 498       // That trace is very chatty.
 499       return;
 500 #else
 501       if (!called_by_wait) {
 502         // If tracing for is_ext_suspend_completed() is enabled, then only
 503         // trace calls to it from wait_for_ext_suspend_completion()
 504         return;
 505       }
 506 #endif
 507     }
 508 
 509     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 510       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 511         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 512         ResourceMark rm;
 513 
 514         tty->print_cr(
 515                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 516                       jt->get_thread_name(), *bits);
 517 
 518         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 519       }
 520     }
 521   }
 522 };
 523 #undef DEBUG_FALSE_BITS
 524 
 525 
 526 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 527                                           uint32_t *bits) {
 528   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 529 
 530   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 531   bool do_trans_retry;           // flag to force the retry
 532 
 533   *bits |= 0x00000001;
 534 
 535   do {
 536     do_trans_retry = false;
 537 
 538     if (is_exiting()) {
 539       // Thread is in the process of exiting. This is always checked
 540       // first to reduce the risk of dereferencing a freed JavaThread.
 541       *bits |= 0x00000100;
 542       return false;
 543     }
 544 
 545     if (!is_external_suspend()) {
 546       // Suspend request is cancelled. This is always checked before
 547       // is_ext_suspended() to reduce the risk of a rogue resume
 548       // confusing the thread that made the suspend request.
 549       *bits |= 0x00000200;
 550       return false;
 551     }
 552 
 553     if (is_ext_suspended()) {
 554       // thread is suspended
 555       *bits |= 0x00000400;
 556       return true;
 557     }
 558 
 559     // Now that we no longer do hard suspends of threads running
 560     // native code, the target thread can be changing thread state
 561     // while we are in this routine:
 562     //
 563     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 564     //
 565     // We save a copy of the thread state as observed at this moment
 566     // and make our decision about suspend completeness based on the
 567     // copy. This closes the race where the thread state is seen as
 568     // _thread_in_native_trans in the if-thread_blocked check, but is
 569     // seen as _thread_blocked in if-thread_in_native_trans check.
 570     JavaThreadState save_state = thread_state();
 571 
 572     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 573       // If the thread's state is _thread_blocked and this blocking
 574       // condition is known to be equivalent to a suspend, then we can
 575       // consider the thread to be externally suspended. This means that
 576       // the code that sets _thread_blocked has been modified to do
 577       // self-suspension if the blocking condition releases. We also
 578       // used to check for CONDVAR_WAIT here, but that is now covered by
 579       // the _thread_blocked with self-suspension check.
 580       //
 581       // Return true since we wouldn't be here unless there was still an
 582       // external suspend request.
 583       *bits |= 0x00001000;
 584       return true;
 585     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 586       // Threads running native code will self-suspend on native==>VM/Java
 587       // transitions. If its stack is walkable (should always be the case
 588       // unless this function is called before the actual java_suspend()
 589       // call), then the wait is done.
 590       *bits |= 0x00002000;
 591       return true;
 592     } else if (!called_by_wait && !did_trans_retry &&
 593                save_state == _thread_in_native_trans &&
 594                frame_anchor()->walkable()) {
 595       // The thread is transitioning from thread_in_native to another
 596       // thread state. check_safepoint_and_suspend_for_native_trans()
 597       // will force the thread to self-suspend. If it hasn't gotten
 598       // there yet we may have caught the thread in-between the native
 599       // code check above and the self-suspend. Lucky us. If we were
 600       // called by wait_for_ext_suspend_completion(), then it
 601       // will be doing the retries so we don't have to.
 602       //
 603       // Since we use the saved thread state in the if-statement above,
 604       // there is a chance that the thread has already transitioned to
 605       // _thread_blocked by the time we get here. In that case, we will
 606       // make a single unnecessary pass through the logic below. This
 607       // doesn't hurt anything since we still do the trans retry.
 608 
 609       *bits |= 0x00004000;
 610 
 611       // Once the thread leaves thread_in_native_trans for another
 612       // thread state, we break out of this retry loop. We shouldn't
 613       // need this flag to prevent us from getting back here, but
 614       // sometimes paranoia is good.
 615       did_trans_retry = true;
 616 
 617       // We wait for the thread to transition to a more usable state.
 618       for (int i = 1; i <= SuspendRetryCount; i++) {
 619         // We used to do an "os::yield_all(i)" call here with the intention
 620         // that yielding would increase on each retry. However, the parameter
 621         // is ignored on Linux which means the yield didn't scale up. Waiting
 622         // on the SR_lock below provides a much more predictable scale up for
 623         // the delay. It also provides a simple/direct point to check for any
 624         // safepoint requests from the VMThread
 625 
 626         // temporarily drops SR_lock while doing wait with safepoint check
 627         // (if we're a JavaThread - the WatcherThread can also call this)
 628         // and increase delay with each retry
 629         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 630 
 631         // check the actual thread state instead of what we saved above
 632         if (thread_state() != _thread_in_native_trans) {
 633           // the thread has transitioned to another thread state so
 634           // try all the checks (except this one) one more time.
 635           do_trans_retry = true;
 636           break;
 637         }
 638       } // end retry loop
 639 
 640 
 641     }
 642   } while (do_trans_retry);
 643 
 644   *bits |= 0x00000010;
 645   return false;
 646 }
 647 
 648 // Wait for an external suspend request to complete (or be cancelled).
 649 // Returns true if the thread is externally suspended and false otherwise.
 650 //
 651 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 652                                                  uint32_t *bits) {
 653   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 654                              false /* !called_by_wait */, bits);
 655 
 656   // local flag copies to minimize SR_lock hold time
 657   bool is_suspended;
 658   bool pending;
 659   uint32_t reset_bits;
 660 
 661   // set a marker so is_ext_suspend_completed() knows we are the caller
 662   *bits |= 0x00010000;
 663 
 664   // We use reset_bits to reinitialize the bits value at the top of
 665   // each retry loop. This allows the caller to make use of any
 666   // unused bits for their own marking purposes.
 667   reset_bits = *bits;
 668 
 669   {
 670     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 671     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 672                                             delay, bits);
 673     pending = is_external_suspend();
 674   }
 675   // must release SR_lock to allow suspension to complete
 676 
 677   if (!pending) {
 678     // A cancelled suspend request is the only false return from
 679     // is_ext_suspend_completed() that keeps us from entering the
 680     // retry loop.
 681     *bits |= 0x00020000;
 682     return false;
 683   }
 684 
 685   if (is_suspended) {
 686     *bits |= 0x00040000;
 687     return true;
 688   }
 689 
 690   for (int i = 1; i <= retries; i++) {
 691     *bits = reset_bits;  // reinit to only track last retry
 692 
 693     // We used to do an "os::yield_all(i)" call here with the intention
 694     // that yielding would increase on each retry. However, the parameter
 695     // is ignored on Linux which means the yield didn't scale up. Waiting
 696     // on the SR_lock below provides a much more predictable scale up for
 697     // the delay. It also provides a simple/direct point to check for any
 698     // safepoint requests from the VMThread
 699 
 700     {
 701       MutexLocker ml(SR_lock());
 702       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 703       // can also call this)  and increase delay with each retry
 704       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 705 
 706       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 707                                               delay, bits);
 708 
 709       // It is possible for the external suspend request to be cancelled
 710       // (by a resume) before the actual suspend operation is completed.
 711       // Refresh our local copy to see if we still need to wait.
 712       pending = is_external_suspend();
 713     }
 714 
 715     if (!pending) {
 716       // A cancelled suspend request is the only false return from
 717       // is_ext_suspend_completed() that keeps us from staying in the
 718       // retry loop.
 719       *bits |= 0x00080000;
 720       return false;
 721     }
 722 
 723     if (is_suspended) {
 724       *bits |= 0x00100000;
 725       return true;
 726     }
 727   } // end retry loop
 728 
 729   // thread did not suspend after all our retries
 730   *bits |= 0x00200000;
 731   return false;
 732 }
 733 
 734 #ifndef PRODUCT
 735 void JavaThread::record_jump(address target, address instr, const char* file,
 736                              int line) {
 737 
 738   // This should not need to be atomic as the only way for simultaneous
 739   // updates is via interrupts. Even then this should be rare or non-existent
 740   // and we don't care that much anyway.
 741 
 742   int index = _jmp_ring_index;
 743   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 744   _jmp_ring[index]._target = (intptr_t) target;
 745   _jmp_ring[index]._instruction = (intptr_t) instr;
 746   _jmp_ring[index]._file = file;
 747   _jmp_ring[index]._line = line;
 748 }
 749 #endif // PRODUCT
 750 
 751 // Called by flat profiler
 752 // Callers have already called wait_for_ext_suspend_completion
 753 // The assertion for that is currently too complex to put here:
 754 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 755   bool gotframe = false;
 756   // self suspension saves needed state.
 757   if (has_last_Java_frame() && _anchor.walkable()) {
 758     *_fr = pd_last_frame();
 759     gotframe = true;
 760   }
 761   return gotframe;
 762 }
 763 
 764 void Thread::interrupt(Thread* thread) {
 765   debug_only(check_for_dangling_thread_pointer(thread);)
 766   os::interrupt(thread);
 767 }
 768 
 769 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 770   debug_only(check_for_dangling_thread_pointer(thread);)
 771   // Note:  If clear_interrupted==false, this simply fetches and
 772   // returns the value of the field osthread()->interrupted().
 773   return os::is_interrupted(thread, clear_interrupted);
 774 }
 775 
 776 
 777 // GC Support
 778 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 779   jint thread_parity = _oops_do_parity;
 780   if (thread_parity != strong_roots_parity) {
 781     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 782     if (res == thread_parity) {
 783       return true;
 784     } else {
 785       guarantee(res == strong_roots_parity, "Or else what?");
 786       return false;
 787     }
 788   }
 789   return false;
 790 }
 791 
 792 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 793   active_handles()->oops_do(f);
 794   // Do oop for ThreadShadow
 795   f->do_oop((oop*)&_pending_exception);
 796   handle_area()->oops_do(f);
 797 }
 798 
 799 void Thread::metadata_handles_do(void f(Metadata*)) {
 800   // Only walk the Handles in Thread.
 801   if (metadata_handles() != NULL) {
 802     for (int i = 0; i< metadata_handles()->length(); i++) {
 803       f(metadata_handles()->at(i));
 804     }
 805   }
 806 }
 807 
 808 void Thread::print_on(outputStream* st) const {
 809   // get_priority assumes osthread initialized
 810   if (osthread() != NULL) {
 811     int os_prio;
 812     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 813       st->print("os_prio=%d ", os_prio);
 814     }
 815     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 816     ext().print_on(st);
 817     osthread()->print_on(st);
 818   }
 819   debug_only(if (WizardMode) print_owned_locks_on(st);)
 820 }
 821 
 822 // Thread::print_on_error() is called by fatal error handler. Don't use
 823 // any lock or allocate memory.
 824 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 825   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 826 
 827   if (is_VM_thread())                 { st->print("VMThread"); }
 828   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 829   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 830   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 831   else                                { st->print("Thread"); }
 832 
 833   if (is_Named_thread()) {
 834     st->print(" \"%s\"", name());
 835   }
 836 
 837   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 838             p2i(stack_end()), p2i(stack_base()));
 839 
 840   if (osthread()) {
 841     st->print(" [id=%d]", osthread()->thread_id());
 842   }
 843 }
 844 
 845 #ifdef ASSERT
 846 void Thread::print_owned_locks_on(outputStream* st) const {
 847   Monitor *cur = _owned_locks;
 848   if (cur == NULL) {
 849     st->print(" (no locks) ");
 850   } else {
 851     st->print_cr(" Locks owned:");
 852     while (cur) {
 853       cur->print_on(st);
 854       cur = cur->next();
 855     }
 856   }
 857 }
 858 
 859 static int ref_use_count  = 0;
 860 
 861 bool Thread::owns_locks_but_compiled_lock() const {
 862   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 863     if (cur != Compile_lock) return true;
 864   }
 865   return false;
 866 }
 867 
 868 
 869 #endif
 870 
 871 #ifndef PRODUCT
 872 
 873 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 874 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 875 // no threads which allow_vm_block's are held
 876 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 877   // Check if current thread is allowed to block at a safepoint
 878   if (!(_allow_safepoint_count == 0)) {
 879     fatal("Possible safepoint reached by thread that does not allow it");
 880   }
 881   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 882     fatal("LEAF method calling lock?");
 883   }
 884 
 885 #ifdef ASSERT
 886   if (potential_vm_operation && is_Java_thread()
 887       && !Universe::is_bootstrapping()) {
 888     // Make sure we do not hold any locks that the VM thread also uses.
 889     // This could potentially lead to deadlocks
 890     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 891       // Threads_lock is special, since the safepoint synchronization will not start before this is
 892       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 893       // since it is used to transfer control between JavaThreads and the VMThread
 894       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 895       if ((cur->allow_vm_block() &&
 896            cur != Threads_lock &&
 897            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 898            cur != VMOperationRequest_lock &&
 899            cur != VMOperationQueue_lock) ||
 900            cur->rank() == Mutex::special) {
 901         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 902       }
 903     }
 904   }
 905 
 906   if (GCALotAtAllSafepoints) {
 907     // We could enter a safepoint here and thus have a gc
 908     InterfaceSupport::check_gc_alot();
 909   }
 910 #endif
 911 }
 912 #endif
 913 
 914 bool Thread::is_in_stack(address adr) const {
 915   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 916   address end = os::current_stack_pointer();
 917   // Allow non Java threads to call this without stack_base
 918   if (_stack_base == NULL) return true;
 919   if (stack_base() >= adr && adr >= end) return true;
 920 
 921   return false;
 922 }
 923 
 924 bool Thread::is_in_usable_stack(address adr) const {
 925   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 926   size_t usable_stack_size = _stack_size - stack_guard_size;
 927 
 928   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 929 }
 930 
 931 
 932 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 933 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 934 // used for compilation in the future. If that change is made, the need for these methods
 935 // should be revisited, and they should be removed if possible.
 936 
 937 bool Thread::is_lock_owned(address adr) const {
 938   return on_local_stack(adr);
 939 }
 940 
 941 bool Thread::set_as_starting_thread() {
 942   // NOTE: this must be called inside the main thread.
 943   return os::create_main_thread((JavaThread*)this);
 944 }
 945 
 946 static void initialize_class(Symbol* class_name, TRAPS) {
 947   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 948   InstanceKlass::cast(klass)->initialize(CHECK);
 949 }
 950 
 951 
 952 // Creates the initial ThreadGroup
 953 static Handle create_initial_thread_group(TRAPS) {
 954   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 955   instanceKlassHandle klass (THREAD, k);
 956 
 957   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 958   {
 959     JavaValue result(T_VOID);
 960     JavaCalls::call_special(&result,
 961                             system_instance,
 962                             klass,
 963                             vmSymbols::object_initializer_name(),
 964                             vmSymbols::void_method_signature(),
 965                             CHECK_NH);
 966   }
 967   Universe::set_system_thread_group(system_instance());
 968 
 969   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 970   {
 971     JavaValue result(T_VOID);
 972     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 973     JavaCalls::call_special(&result,
 974                             main_instance,
 975                             klass,
 976                             vmSymbols::object_initializer_name(),
 977                             vmSymbols::threadgroup_string_void_signature(),
 978                             system_instance,
 979                             string,
 980                             CHECK_NH);
 981   }
 982   return main_instance;
 983 }
 984 
 985 // Creates the initial Thread
 986 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 987                                  TRAPS) {
 988   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 989   instanceKlassHandle klass (THREAD, k);
 990   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 991 
 992   java_lang_Thread::set_thread(thread_oop(), thread);
 993   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 994   thread->set_threadObj(thread_oop());
 995 
 996   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 997 
 998   JavaValue result(T_VOID);
 999   JavaCalls::call_special(&result, thread_oop,
1000                           klass,
1001                           vmSymbols::object_initializer_name(),
1002                           vmSymbols::threadgroup_string_void_signature(),
1003                           thread_group,
1004                           string,
1005                           CHECK_NULL);
1006   return thread_oop();
1007 }
1008 
1009 char java_runtime_name[128] = "";
1010 char java_runtime_version[128] = "";
1011 
1012 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1013 static const char* get_java_runtime_name(TRAPS) {
1014   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1015                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1016   fieldDescriptor fd;
1017   bool found = k != NULL &&
1018                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1019                                                         vmSymbols::string_signature(), &fd);
1020   if (found) {
1021     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1022     if (name_oop == NULL) {
1023       return NULL;
1024     }
1025     const char* name = java_lang_String::as_utf8_string(name_oop,
1026                                                         java_runtime_name,
1027                                                         sizeof(java_runtime_name));
1028     return name;
1029   } else {
1030     return NULL;
1031   }
1032 }
1033 
1034 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1035 static const char* get_java_runtime_version(TRAPS) {
1036   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1037                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1038   fieldDescriptor fd;
1039   bool found = k != NULL &&
1040                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1041                                                         vmSymbols::string_signature(), &fd);
1042   if (found) {
1043     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1044     if (name_oop == NULL) {
1045       return NULL;
1046     }
1047     const char* name = java_lang_String::as_utf8_string(name_oop,
1048                                                         java_runtime_version,
1049                                                         sizeof(java_runtime_version));
1050     return name;
1051   } else {
1052     return NULL;
1053   }
1054 }
1055 
1056 // General purpose hook into Java code, run once when the VM is initialized.
1057 // The Java library method itself may be changed independently from the VM.
1058 static void call_postVMInitHook(TRAPS) {
1059   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1060   instanceKlassHandle klass (THREAD, k);
1061   if (klass.not_null()) {
1062     JavaValue result(T_VOID);
1063     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1064                            vmSymbols::void_method_signature(),
1065                            CHECK);
1066   }
1067 }
1068 
1069 static void reset_vm_info_property(TRAPS) {
1070   // the vm info string
1071   ResourceMark rm(THREAD);
1072   const char *vm_info = VM_Version::vm_info_string();
1073 
1074   // java.lang.System class
1075   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1076   instanceKlassHandle klass (THREAD, k);
1077 
1078   // setProperty arguments
1079   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1080   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1081 
1082   // return value
1083   JavaValue r(T_OBJECT);
1084 
1085   // public static String setProperty(String key, String value);
1086   JavaCalls::call_static(&r,
1087                          klass,
1088                          vmSymbols::setProperty_name(),
1089                          vmSymbols::string_string_string_signature(),
1090                          key_str,
1091                          value_str,
1092                          CHECK);
1093 }
1094 
1095 
1096 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1097                                     bool daemon, TRAPS) {
1098   assert(thread_group.not_null(), "thread group should be specified");
1099   assert(threadObj() == NULL, "should only create Java thread object once");
1100 
1101   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1102   instanceKlassHandle klass (THREAD, k);
1103   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1104 
1105   java_lang_Thread::set_thread(thread_oop(), this);
1106   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1107   set_threadObj(thread_oop());
1108 
1109   JavaValue result(T_VOID);
1110   if (thread_name != NULL) {
1111     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1112     // Thread gets assigned specified name and null target
1113     JavaCalls::call_special(&result,
1114                             thread_oop,
1115                             klass,
1116                             vmSymbols::object_initializer_name(),
1117                             vmSymbols::threadgroup_string_void_signature(),
1118                             thread_group, // Argument 1
1119                             name,         // Argument 2
1120                             THREAD);
1121   } else {
1122     // Thread gets assigned name "Thread-nnn" and null target
1123     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1124     JavaCalls::call_special(&result,
1125                             thread_oop,
1126                             klass,
1127                             vmSymbols::object_initializer_name(),
1128                             vmSymbols::threadgroup_runnable_void_signature(),
1129                             thread_group, // Argument 1
1130                             Handle(),     // Argument 2
1131                             THREAD);
1132   }
1133 
1134 
1135   if (daemon) {
1136     java_lang_Thread::set_daemon(thread_oop());
1137   }
1138 
1139   if (HAS_PENDING_EXCEPTION) {
1140     return;
1141   }
1142 
1143   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1144   Handle threadObj(THREAD, this->threadObj());
1145 
1146   JavaCalls::call_special(&result,
1147                           thread_group,
1148                           group,
1149                           vmSymbols::add_method_name(),
1150                           vmSymbols::thread_void_signature(),
1151                           threadObj,          // Arg 1
1152                           THREAD);
1153 }
1154 
1155 // NamedThread --  non-JavaThread subclasses with multiple
1156 // uniquely named instances should derive from this.
1157 NamedThread::NamedThread() : Thread() {
1158   _name = NULL;
1159   _processed_thread = NULL;
1160   _gc_id = GCId::undefined();
1161 }
1162 
1163 NamedThread::~NamedThread() {
1164   if (_name != NULL) {
1165     FREE_C_HEAP_ARRAY(char, _name);
1166     _name = NULL;
1167   }
1168 }
1169 
1170 void NamedThread::set_name(const char* format, ...) {
1171   guarantee(_name == NULL, "Only get to set name once.");
1172   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1173   guarantee(_name != NULL, "alloc failure");
1174   va_list ap;
1175   va_start(ap, format);
1176   jio_vsnprintf(_name, max_name_len, format, ap);
1177   va_end(ap);
1178 }
1179 
1180 void NamedThread::initialize_named_thread() {
1181   set_native_thread_name(name());
1182 }
1183 
1184 void NamedThread::print_on(outputStream* st) const {
1185   st->print("\"%s\" ", name());
1186   Thread::print_on(st);
1187   st->cr();
1188 }
1189 
1190 
1191 // ======= WatcherThread ========
1192 
1193 // The watcher thread exists to simulate timer interrupts.  It should
1194 // be replaced by an abstraction over whatever native support for
1195 // timer interrupts exists on the platform.
1196 
1197 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1198 bool WatcherThread::_startable = false;
1199 volatile bool  WatcherThread::_should_terminate = false;
1200 
1201 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1202   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1203   if (os::create_thread(this, os::watcher_thread)) {
1204     _watcher_thread = this;
1205 
1206     // Set the watcher thread to the highest OS priority which should not be
1207     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1208     // is created. The only normal thread using this priority is the reference
1209     // handler thread, which runs for very short intervals only.
1210     // If the VMThread's priority is not lower than the WatcherThread profiling
1211     // will be inaccurate.
1212     os::set_priority(this, MaxPriority);
1213     if (!DisableStartThread) {
1214       os::start_thread(this);
1215     }
1216   }
1217 }
1218 
1219 int WatcherThread::sleep() const {
1220   // The WatcherThread does not participate in the safepoint protocol
1221   // for the PeriodicTask_lock because it is not a JavaThread.
1222   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1223 
1224   if (_should_terminate) {
1225     // check for termination before we do any housekeeping or wait
1226     return 0;  // we did not sleep.
1227   }
1228 
1229   // remaining will be zero if there are no tasks,
1230   // causing the WatcherThread to sleep until a task is
1231   // enrolled
1232   int remaining = PeriodicTask::time_to_wait();
1233   int time_slept = 0;
1234 
1235   // we expect this to timeout - we only ever get unparked when
1236   // we should terminate or when a new task has been enrolled
1237   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1238 
1239   jlong time_before_loop = os::javaTimeNanos();
1240 
1241   while (true) {
1242     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1243                                             remaining);
1244     jlong now = os::javaTimeNanos();
1245 
1246     if (remaining == 0) {
1247       // if we didn't have any tasks we could have waited for a long time
1248       // consider the time_slept zero and reset time_before_loop
1249       time_slept = 0;
1250       time_before_loop = now;
1251     } else {
1252       // need to recalculate since we might have new tasks in _tasks
1253       time_slept = (int) ((now - time_before_loop) / 1000000);
1254     }
1255 
1256     // Change to task list or spurious wakeup of some kind
1257     if (timedout || _should_terminate) {
1258       break;
1259     }
1260 
1261     remaining = PeriodicTask::time_to_wait();
1262     if (remaining == 0) {
1263       // Last task was just disenrolled so loop around and wait until
1264       // another task gets enrolled
1265       continue;
1266     }
1267 
1268     remaining -= time_slept;
1269     if (remaining <= 0) {
1270       break;
1271     }
1272   }
1273 
1274   return time_slept;
1275 }
1276 
1277 void WatcherThread::run() {
1278   assert(this == watcher_thread(), "just checking");
1279 
1280   this->record_stack_base_and_size();
1281   this->set_native_thread_name(this->name());
1282   this->set_active_handles(JNIHandleBlock::allocate_block());
1283   while (true) {
1284     assert(watcher_thread() == Thread::current(), "thread consistency check");
1285     assert(watcher_thread() == this, "thread consistency check");
1286 
1287     // Calculate how long it'll be until the next PeriodicTask work
1288     // should be done, and sleep that amount of time.
1289     int time_waited = sleep();
1290 
1291     if (is_error_reported()) {
1292       // A fatal error has happened, the error handler(VMError::report_and_die)
1293       // should abort JVM after creating an error log file. However in some
1294       // rare cases, the error handler itself might deadlock. Here we try to
1295       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1296       //
1297       // This code is in WatcherThread because WatcherThread wakes up
1298       // periodically so the fatal error handler doesn't need to do anything;
1299       // also because the WatcherThread is less likely to crash than other
1300       // threads.
1301 
1302       for (;;) {
1303         if (!ShowMessageBoxOnError
1304             && (OnError == NULL || OnError[0] == '\0')
1305             && Arguments::abort_hook() == NULL) {
1306           os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1307           fdStream err(defaultStream::output_fd());
1308           err.print_raw_cr("# [ timer expired, abort... ]");
1309           // skip atexit/vm_exit/vm_abort hooks
1310           os::die();
1311         }
1312 
1313         // Wake up 5 seconds later, the fatal handler may reset OnError or
1314         // ShowMessageBoxOnError when it is ready to abort.
1315         os::sleep(this, 5 * 1000, false);
1316       }
1317     }
1318 
1319     if (_should_terminate) {
1320       // check for termination before posting the next tick
1321       break;
1322     }
1323 
1324     PeriodicTask::real_time_tick(time_waited);
1325   }
1326 
1327   // Signal that it is terminated
1328   {
1329     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1330     _watcher_thread = NULL;
1331     Terminator_lock->notify();
1332   }
1333 }
1334 
1335 void WatcherThread::start() {
1336   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1337 
1338   if (watcher_thread() == NULL && _startable) {
1339     _should_terminate = false;
1340     // Create the single instance of WatcherThread
1341     new WatcherThread();
1342   }
1343 }
1344 
1345 void WatcherThread::make_startable() {
1346   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1347   _startable = true;
1348 }
1349 
1350 void WatcherThread::stop() {
1351   {
1352     // Follow normal safepoint aware lock enter protocol since the
1353     // WatcherThread is stopped by another JavaThread.
1354     MutexLocker ml(PeriodicTask_lock);
1355     _should_terminate = true;
1356 
1357     WatcherThread* watcher = watcher_thread();
1358     if (watcher != NULL) {
1359       // unpark the WatcherThread so it can see that it should terminate
1360       watcher->unpark();
1361     }
1362   }
1363 
1364   MutexLocker mu(Terminator_lock);
1365 
1366   while (watcher_thread() != NULL) {
1367     // This wait should make safepoint checks, wait without a timeout,
1368     // and wait as a suspend-equivalent condition.
1369     //
1370     // Note: If the FlatProfiler is running, then this thread is waiting
1371     // for the WatcherThread to terminate and the WatcherThread, via the
1372     // FlatProfiler task, is waiting for the external suspend request on
1373     // this thread to complete. wait_for_ext_suspend_completion() will
1374     // eventually timeout, but that takes time. Making this wait a
1375     // suspend-equivalent condition solves that timeout problem.
1376     //
1377     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1378                           Mutex::_as_suspend_equivalent_flag);
1379   }
1380 }
1381 
1382 void WatcherThread::unpark() {
1383   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1384   PeriodicTask_lock->notify();
1385 }
1386 
1387 void WatcherThread::print_on(outputStream* st) const {
1388   st->print("\"%s\" ", name());
1389   Thread::print_on(st);
1390   st->cr();
1391 }
1392 
1393 // ======= JavaThread ========
1394 
1395 #if INCLUDE_JVMCI
1396 
1397 jlong* JavaThread::_jvmci_old_thread_counters;
1398 
1399 bool jvmci_counters_include(JavaThread* thread) {
1400   oop threadObj = thread->threadObj();
1401   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1402 }
1403 
1404 void JavaThread::collect_counters(typeArrayOop array) {
1405   if (JVMCICounterSize > 0) {
1406     MutexLocker tl(Threads_lock);
1407     for (int i = 0; i < array->length(); i++) {
1408       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1409     }
1410     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1411       if (jvmci_counters_include(tp)) {
1412         for (int i = 0; i < array->length(); i++) {
1413           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1414         }
1415       }
1416     }
1417   }
1418 }
1419 
1420 #endif // INCLUDE_JVMCI
1421 
1422 // A JavaThread is a normal Java thread
1423 
1424 void JavaThread::initialize() {
1425   // Initialize fields
1426 
1427   set_saved_exception_pc(NULL);
1428   set_threadObj(NULL);
1429   _anchor.clear();
1430   set_entry_point(NULL);
1431   set_jni_functions(jni_functions());
1432   set_callee_target(NULL);
1433   set_vm_result(NULL);
1434   set_vm_result_2(NULL);
1435   set_vframe_array_head(NULL);
1436   set_vframe_array_last(NULL);
1437   set_deferred_locals(NULL);
1438   set_deopt_mark(NULL);
1439   set_deopt_compiled_method(NULL);
1440   clear_must_deopt_id();
1441   set_monitor_chunks(NULL);
1442   set_next(NULL);
1443   set_thread_state(_thread_new);
1444   _terminated = _not_terminated;
1445   _privileged_stack_top = NULL;
1446   _array_for_gc = NULL;
1447   _suspend_equivalent = false;
1448   _in_deopt_handler = 0;
1449   _doing_unsafe_access = false;
1450   _stack_guard_state = stack_guard_unused;
1451 #if INCLUDE_JVMCI
1452   _pending_monitorenter = false;
1453   _pending_deoptimization = -1;
1454   _pending_failed_speculation = NULL;
1455   _pending_transfer_to_interpreter = false;
1456   _adjusting_comp_level = false;
1457   _jvmci._alternate_call_target = NULL;
1458   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1459   if (JVMCICounterSize > 0) {
1460     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1461     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1462   } else {
1463     _jvmci_counters = NULL;
1464   }
1465 #endif // INCLUDE_JVMCI
1466   _reserved_stack_activation = NULL;  // stack base not known yet
1467   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1468   _exception_pc  = 0;
1469   _exception_handler_pc = 0;
1470   _is_method_handle_return = 0;
1471   _jvmti_thread_state= NULL;
1472   _should_post_on_exceptions_flag = JNI_FALSE;
1473   _jvmti_get_loaded_classes_closure = NULL;
1474   _interp_only_mode    = 0;
1475   _special_runtime_exit_condition = _no_async_condition;
1476   _pending_async_exception = NULL;
1477   _thread_stat = NULL;
1478   _thread_stat = new ThreadStatistics();
1479   _blocked_on_compilation = false;
1480   _jni_active_critical = 0;
1481   _pending_jni_exception_check_fn = NULL;
1482   _do_not_unlock_if_synchronized = false;
1483   _cached_monitor_info = NULL;
1484   _parker = Parker::Allocate(this);
1485 
1486 #ifndef PRODUCT
1487   _jmp_ring_index = 0;
1488   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1489     record_jump(NULL, NULL, NULL, 0);
1490   }
1491 #endif // PRODUCT
1492 
1493   set_thread_profiler(NULL);
1494   if (FlatProfiler::is_active()) {
1495     // This is where we would decide to either give each thread it's own profiler
1496     // or use one global one from FlatProfiler,
1497     // or up to some count of the number of profiled threads, etc.
1498     ThreadProfiler* pp = new ThreadProfiler();
1499     pp->engage();
1500     set_thread_profiler(pp);
1501   }
1502 
1503   // Setup safepoint state info for this thread
1504   ThreadSafepointState::create(this);
1505 
1506   debug_only(_java_call_counter = 0);
1507 
1508   // JVMTI PopFrame support
1509   _popframe_condition = popframe_inactive;
1510   _popframe_preserved_args = NULL;
1511   _popframe_preserved_args_size = 0;
1512   _frames_to_pop_failed_realloc = 0;
1513 
1514   pd_initialize();
1515 }
1516 
1517 #if INCLUDE_ALL_GCS
1518 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1519 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1520 #endif // INCLUDE_ALL_GCS
1521 
1522 JavaThread::JavaThread(bool is_attaching_via_jni) :
1523                        Thread()
1524 #if INCLUDE_ALL_GCS
1525                        , _satb_mark_queue(&_satb_mark_queue_set),
1526                        _dirty_card_queue(&_dirty_card_queue_set)
1527 #endif // INCLUDE_ALL_GCS
1528 {
1529   initialize();
1530   if (is_attaching_via_jni) {
1531     _jni_attach_state = _attaching_via_jni;
1532   } else {
1533     _jni_attach_state = _not_attaching_via_jni;
1534   }
1535   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1536 }
1537 
1538 bool JavaThread::reguard_stack(address cur_sp) {
1539   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1540       && _stack_guard_state != stack_guard_reserved_disabled) {
1541     return true; // Stack already guarded or guard pages not needed.
1542   }
1543 
1544   if (register_stack_overflow()) {
1545     // For those architectures which have separate register and
1546     // memory stacks, we must check the register stack to see if
1547     // it has overflowed.
1548     return false;
1549   }
1550 
1551   // Java code never executes within the yellow zone: the latter is only
1552   // there to provoke an exception during stack banging.  If java code
1553   // is executing there, either StackShadowPages should be larger, or
1554   // some exception code in c1, c2 or the interpreter isn't unwinding
1555   // when it should.
1556   guarantee(cur_sp > stack_reserved_zone_base(),
1557             "not enough space to reguard - increase StackShadowPages");
1558   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1559     enable_stack_yellow_reserved_zone();
1560     if (reserved_stack_activation() != stack_base()) {
1561       set_reserved_stack_activation(stack_base());
1562     }
1563   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1564     set_reserved_stack_activation(stack_base());
1565     enable_stack_reserved_zone();
1566   }
1567   return true;
1568 }
1569 
1570 bool JavaThread::reguard_stack(void) {
1571   return reguard_stack(os::current_stack_pointer());
1572 }
1573 
1574 
1575 void JavaThread::block_if_vm_exited() {
1576   if (_terminated == _vm_exited) {
1577     // _vm_exited is set at safepoint, and Threads_lock is never released
1578     // we will block here forever
1579     Threads_lock->lock_without_safepoint_check();
1580     ShouldNotReachHere();
1581   }
1582 }
1583 
1584 
1585 // Remove this ifdef when C1 is ported to the compiler interface.
1586 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1587 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1588 
1589 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1590                        Thread()
1591 #if INCLUDE_ALL_GCS
1592                        , _satb_mark_queue(&_satb_mark_queue_set),
1593                        _dirty_card_queue(&_dirty_card_queue_set)
1594 #endif // INCLUDE_ALL_GCS
1595 {
1596   initialize();
1597   _jni_attach_state = _not_attaching_via_jni;
1598   set_entry_point(entry_point);
1599   // Create the native thread itself.
1600   // %note runtime_23
1601   os::ThreadType thr_type = os::java_thread;
1602   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1603                                                      os::java_thread;
1604   os::create_thread(this, thr_type, stack_sz);
1605   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1606   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1607   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1608   // the exception consists of creating the exception object & initializing it, initialization
1609   // will leave the VM via a JavaCall and then all locks must be unlocked).
1610   //
1611   // The thread is still suspended when we reach here. Thread must be explicit started
1612   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1613   // by calling Threads:add. The reason why this is not done here, is because the thread
1614   // object must be fully initialized (take a look at JVM_Start)
1615 }
1616 
1617 JavaThread::~JavaThread() {
1618 
1619   // JSR166 -- return the parker to the free list
1620   Parker::Release(_parker);
1621   _parker = NULL;
1622 
1623   // Free any remaining  previous UnrollBlock
1624   vframeArray* old_array = vframe_array_last();
1625 
1626   if (old_array != NULL) {
1627     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1628     old_array->set_unroll_block(NULL);
1629     delete old_info;
1630     delete old_array;
1631   }
1632 
1633   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1634   if (deferred != NULL) {
1635     // This can only happen if thread is destroyed before deoptimization occurs.
1636     assert(deferred->length() != 0, "empty array!");
1637     do {
1638       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1639       deferred->remove_at(0);
1640       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1641       delete dlv;
1642     } while (deferred->length() != 0);
1643     delete deferred;
1644   }
1645 
1646   // All Java related clean up happens in exit
1647   ThreadSafepointState::destroy(this);
1648   if (_thread_profiler != NULL) delete _thread_profiler;
1649   if (_thread_stat != NULL) delete _thread_stat;
1650 
1651 #if INCLUDE_JVMCI
1652   if (JVMCICounterSize > 0) {
1653     if (jvmci_counters_include(this)) {
1654       for (int i = 0; i < JVMCICounterSize; i++) {
1655         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1656       }
1657     }
1658     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1659   }
1660 #endif // INCLUDE_JVMCI
1661 }
1662 
1663 
1664 // The first routine called by a new Java thread
1665 void JavaThread::run() {
1666   // initialize thread-local alloc buffer related fields
1667   this->initialize_tlab();
1668 
1669   // used to test validity of stack trace backs
1670   this->record_base_of_stack_pointer();
1671 
1672   // Record real stack base and size.
1673   this->record_stack_base_and_size();
1674 
1675   this->create_stack_guard_pages();
1676 
1677   this->cache_global_variables();
1678 
1679   // Thread is now sufficient initialized to be handled by the safepoint code as being
1680   // in the VM. Change thread state from _thread_new to _thread_in_vm
1681   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1682 
1683   assert(JavaThread::current() == this, "sanity check");
1684   assert(!Thread::current()->owns_locks(), "sanity check");
1685 
1686   DTRACE_THREAD_PROBE(start, this);
1687 
1688   // This operation might block. We call that after all safepoint checks for a new thread has
1689   // been completed.
1690   this->set_active_handles(JNIHandleBlock::allocate_block());
1691 
1692   if (JvmtiExport::should_post_thread_life()) {
1693     JvmtiExport::post_thread_start(this);
1694   }
1695 
1696   EventThreadStart event;
1697   if (event.should_commit()) {
1698     event.set_thread(THREAD_TRACE_ID(this));
1699     event.commit();
1700   }
1701 
1702   // We call another function to do the rest so we are sure that the stack addresses used
1703   // from there will be lower than the stack base just computed
1704   thread_main_inner();
1705 
1706   // Note, thread is no longer valid at this point!
1707 }
1708 
1709 
1710 void JavaThread::thread_main_inner() {
1711   assert(JavaThread::current() == this, "sanity check");
1712   assert(this->threadObj() != NULL, "just checking");
1713 
1714   // Execute thread entry point unless this thread has a pending exception
1715   // or has been stopped before starting.
1716   // Note: Due to JVM_StopThread we can have pending exceptions already!
1717   if (!this->has_pending_exception() &&
1718       !java_lang_Thread::is_stillborn(this->threadObj())) {
1719     {
1720       ResourceMark rm(this);
1721       this->set_native_thread_name(this->get_thread_name());
1722     }
1723     HandleMark hm(this);
1724     this->entry_point()(this, this);
1725   }
1726 
1727   DTRACE_THREAD_PROBE(stop, this);
1728 
1729   this->exit(false);
1730   delete this;
1731 }
1732 
1733 
1734 static void ensure_join(JavaThread* thread) {
1735   // We do not need to grap the Threads_lock, since we are operating on ourself.
1736   Handle threadObj(thread, thread->threadObj());
1737   assert(threadObj.not_null(), "java thread object must exist");
1738   ObjectLocker lock(threadObj, thread);
1739   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1740   thread->clear_pending_exception();
1741   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1742   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1743   // Clear the native thread instance - this makes isAlive return false and allows the join()
1744   // to complete once we've done the notify_all below
1745   java_lang_Thread::set_thread(threadObj(), NULL);
1746   lock.notify_all(thread);
1747   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1748   thread->clear_pending_exception();
1749 }
1750 
1751 
1752 // For any new cleanup additions, please check to see if they need to be applied to
1753 // cleanup_failed_attach_current_thread as well.
1754 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1755   assert(this == JavaThread::current(), "thread consistency check");
1756 
1757   HandleMark hm(this);
1758   Handle uncaught_exception(this, this->pending_exception());
1759   this->clear_pending_exception();
1760   Handle threadObj(this, this->threadObj());
1761   assert(threadObj.not_null(), "Java thread object should be created");
1762 
1763   if (get_thread_profiler() != NULL) {
1764     get_thread_profiler()->disengage();
1765     ResourceMark rm;
1766     get_thread_profiler()->print(get_thread_name());
1767   }
1768 
1769 
1770   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1771   {
1772     EXCEPTION_MARK;
1773 
1774     CLEAR_PENDING_EXCEPTION;
1775   }
1776   if (!destroy_vm) {
1777     if (uncaught_exception.not_null()) {
1778       EXCEPTION_MARK;
1779       // Call method Thread.dispatchUncaughtException().
1780       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1781       JavaValue result(T_VOID);
1782       JavaCalls::call_virtual(&result,
1783                               threadObj, thread_klass,
1784                               vmSymbols::dispatchUncaughtException_name(),
1785                               vmSymbols::throwable_void_signature(),
1786                               uncaught_exception,
1787                               THREAD);
1788       if (HAS_PENDING_EXCEPTION) {
1789         ResourceMark rm(this);
1790         jio_fprintf(defaultStream::error_stream(),
1791                     "\nException: %s thrown from the UncaughtExceptionHandler"
1792                     " in thread \"%s\"\n",
1793                     pending_exception()->klass()->external_name(),
1794                     get_thread_name());
1795         CLEAR_PENDING_EXCEPTION;
1796       }
1797     }
1798 
1799     // Called before the java thread exit since we want to read info
1800     // from java_lang_Thread object
1801     EventThreadEnd event;
1802     if (event.should_commit()) {
1803       event.set_thread(THREAD_TRACE_ID(this));
1804       event.commit();
1805     }
1806 
1807     // Call after last event on thread
1808     EVENT_THREAD_EXIT(this);
1809 
1810     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1811     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1812     // is deprecated anyhow.
1813     if (!is_Compiler_thread()) {
1814       int count = 3;
1815       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1816         EXCEPTION_MARK;
1817         JavaValue result(T_VOID);
1818         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1819         JavaCalls::call_virtual(&result,
1820                                 threadObj, thread_klass,
1821                                 vmSymbols::exit_method_name(),
1822                                 vmSymbols::void_method_signature(),
1823                                 THREAD);
1824         CLEAR_PENDING_EXCEPTION;
1825       }
1826     }
1827     // notify JVMTI
1828     if (JvmtiExport::should_post_thread_life()) {
1829       JvmtiExport::post_thread_end(this);
1830     }
1831 
1832     // We have notified the agents that we are exiting, before we go on,
1833     // we must check for a pending external suspend request and honor it
1834     // in order to not surprise the thread that made the suspend request.
1835     while (true) {
1836       {
1837         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1838         if (!is_external_suspend()) {
1839           set_terminated(_thread_exiting);
1840           ThreadService::current_thread_exiting(this);
1841           break;
1842         }
1843         // Implied else:
1844         // Things get a little tricky here. We have a pending external
1845         // suspend request, but we are holding the SR_lock so we
1846         // can't just self-suspend. So we temporarily drop the lock
1847         // and then self-suspend.
1848       }
1849 
1850       ThreadBlockInVM tbivm(this);
1851       java_suspend_self();
1852 
1853       // We're done with this suspend request, but we have to loop around
1854       // and check again. Eventually we will get SR_lock without a pending
1855       // external suspend request and will be able to mark ourselves as
1856       // exiting.
1857     }
1858     // no more external suspends are allowed at this point
1859   } else {
1860     // before_exit() has already posted JVMTI THREAD_END events
1861   }
1862 
1863   // Notify waiters on thread object. This has to be done after exit() is called
1864   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1865   // group should have the destroyed bit set before waiters are notified).
1866   ensure_join(this);
1867   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1868 
1869   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1870   // held by this thread must be released. The spec does not distinguish
1871   // between JNI-acquired and regular Java monitors. We can only see
1872   // regular Java monitors here if monitor enter-exit matching is broken.
1873   //
1874   // Optionally release any monitors for regular JavaThread exits. This
1875   // is provided as a work around for any bugs in monitor enter-exit
1876   // matching. This can be expensive so it is not enabled by default.
1877   //
1878   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1879   // ObjectSynchronizer::release_monitors_owned_by_thread().
1880   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1881     // Sanity check even though JNI DetachCurrentThread() would have
1882     // returned JNI_ERR if there was a Java frame. JavaThread exit
1883     // should be done executing Java code by the time we get here.
1884     assert(!this->has_last_Java_frame(),
1885            "should not have a Java frame when detaching or exiting");
1886     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1887     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1888   }
1889 
1890   // These things needs to be done while we are still a Java Thread. Make sure that thread
1891   // is in a consistent state, in case GC happens
1892   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1893 
1894   if (active_handles() != NULL) {
1895     JNIHandleBlock* block = active_handles();
1896     set_active_handles(NULL);
1897     JNIHandleBlock::release_block(block);
1898   }
1899 
1900   if (free_handle_block() != NULL) {
1901     JNIHandleBlock* block = free_handle_block();
1902     set_free_handle_block(NULL);
1903     JNIHandleBlock::release_block(block);
1904   }
1905 
1906   // These have to be removed while this is still a valid thread.
1907   remove_stack_guard_pages();
1908 
1909   if (UseTLAB) {
1910     tlab().make_parsable(true);  // retire TLAB
1911   }
1912 
1913   if (JvmtiEnv::environments_might_exist()) {
1914     JvmtiExport::cleanup_thread(this);
1915   }
1916 
1917   // We must flush any deferred card marks before removing a thread from
1918   // the list of active threads.
1919   Universe::heap()->flush_deferred_store_barrier(this);
1920   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1921 
1922 #if INCLUDE_ALL_GCS
1923   // We must flush the G1-related buffers before removing a thread
1924   // from the list of active threads. We must do this after any deferred
1925   // card marks have been flushed (above) so that any entries that are
1926   // added to the thread's dirty card queue as a result are not lost.
1927   if (UseG1GC) {
1928     flush_barrier_queues();
1929   }
1930 #endif // INCLUDE_ALL_GCS
1931 
1932   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1933     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1934     os::current_thread_id());
1935 
1936   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1937   Threads::remove(this);
1938 }
1939 
1940 #if INCLUDE_ALL_GCS
1941 // Flush G1-related queues.
1942 void JavaThread::flush_barrier_queues() {
1943   satb_mark_queue().flush();
1944   dirty_card_queue().flush();
1945 }
1946 
1947 void JavaThread::initialize_queues() {
1948   assert(!SafepointSynchronize::is_at_safepoint(),
1949          "we should not be at a safepoint");
1950 
1951   SATBMarkQueue& satb_queue = satb_mark_queue();
1952   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1953   // The SATB queue should have been constructed with its active
1954   // field set to false.
1955   assert(!satb_queue.is_active(), "SATB queue should not be active");
1956   assert(satb_queue.is_empty(), "SATB queue should be empty");
1957   // If we are creating the thread during a marking cycle, we should
1958   // set the active field of the SATB queue to true.
1959   if (satb_queue_set.is_active()) {
1960     satb_queue.set_active(true);
1961   }
1962 
1963   DirtyCardQueue& dirty_queue = dirty_card_queue();
1964   // The dirty card queue should have been constructed with its
1965   // active field set to true.
1966   assert(dirty_queue.is_active(), "dirty card queue should be active");
1967 }
1968 #endif // INCLUDE_ALL_GCS
1969 
1970 void JavaThread::cleanup_failed_attach_current_thread() {
1971   if (get_thread_profiler() != NULL) {
1972     get_thread_profiler()->disengage();
1973     ResourceMark rm;
1974     get_thread_profiler()->print(get_thread_name());
1975   }
1976 
1977   if (active_handles() != NULL) {
1978     JNIHandleBlock* block = active_handles();
1979     set_active_handles(NULL);
1980     JNIHandleBlock::release_block(block);
1981   }
1982 
1983   if (free_handle_block() != NULL) {
1984     JNIHandleBlock* block = free_handle_block();
1985     set_free_handle_block(NULL);
1986     JNIHandleBlock::release_block(block);
1987   }
1988 
1989   // These have to be removed while this is still a valid thread.
1990   remove_stack_guard_pages();
1991 
1992   if (UseTLAB) {
1993     tlab().make_parsable(true);  // retire TLAB, if any
1994   }
1995 
1996 #if INCLUDE_ALL_GCS
1997   if (UseG1GC) {
1998     flush_barrier_queues();
1999   }
2000 #endif // INCLUDE_ALL_GCS
2001 
2002   Threads::remove(this);
2003   delete this;
2004 }
2005 
2006 
2007 
2008 
2009 JavaThread* JavaThread::active() {
2010   Thread* thread = Thread::current();
2011   if (thread->is_Java_thread()) {
2012     return (JavaThread*) thread;
2013   } else {
2014     assert(thread->is_VM_thread(), "this must be a vm thread");
2015     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2016     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2017     assert(ret->is_Java_thread(), "must be a Java thread");
2018     return ret;
2019   }
2020 }
2021 
2022 bool JavaThread::is_lock_owned(address adr) const {
2023   if (Thread::is_lock_owned(adr)) return true;
2024 
2025   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2026     if (chunk->contains(adr)) return true;
2027   }
2028 
2029   return false;
2030 }
2031 
2032 
2033 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2034   chunk->set_next(monitor_chunks());
2035   set_monitor_chunks(chunk);
2036 }
2037 
2038 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2039   guarantee(monitor_chunks() != NULL, "must be non empty");
2040   if (monitor_chunks() == chunk) {
2041     set_monitor_chunks(chunk->next());
2042   } else {
2043     MonitorChunk* prev = monitor_chunks();
2044     while (prev->next() != chunk) prev = prev->next();
2045     prev->set_next(chunk->next());
2046   }
2047 }
2048 
2049 // JVM support.
2050 
2051 // Note: this function shouldn't block if it's called in
2052 // _thread_in_native_trans state (such as from
2053 // check_special_condition_for_native_trans()).
2054 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2055 
2056   if (has_last_Java_frame() && has_async_condition()) {
2057     // If we are at a polling page safepoint (not a poll return)
2058     // then we must defer async exception because live registers
2059     // will be clobbered by the exception path. Poll return is
2060     // ok because the call we a returning from already collides
2061     // with exception handling registers and so there is no issue.
2062     // (The exception handling path kills call result registers but
2063     //  this is ok since the exception kills the result anyway).
2064 
2065     if (is_at_poll_safepoint()) {
2066       // if the code we are returning to has deoptimized we must defer
2067       // the exception otherwise live registers get clobbered on the
2068       // exception path before deoptimization is able to retrieve them.
2069       //
2070       RegisterMap map(this, false);
2071       frame caller_fr = last_frame().sender(&map);
2072       assert(caller_fr.is_compiled_frame(), "what?");
2073       if (caller_fr.is_deoptimized_frame()) {
2074         log_info(exceptions)("deferred async exception at compiled safepoint");
2075         return;
2076       }
2077     }
2078   }
2079 
2080   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2081   if (condition == _no_async_condition) {
2082     // Conditions have changed since has_special_runtime_exit_condition()
2083     // was called:
2084     // - if we were here only because of an external suspend request,
2085     //   then that was taken care of above (or cancelled) so we are done
2086     // - if we were here because of another async request, then it has
2087     //   been cleared between the has_special_runtime_exit_condition()
2088     //   and now so again we are done
2089     return;
2090   }
2091 
2092   // Check for pending async. exception
2093   if (_pending_async_exception != NULL) {
2094     // Only overwrite an already pending exception, if it is not a threadDeath.
2095     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2096 
2097       // We cannot call Exceptions::_throw(...) here because we cannot block
2098       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2099 
2100       if (log_is_enabled(Info, exceptions)) {
2101         ResourceMark rm;
2102         outputStream* logstream = Log(exceptions)::info_stream();
2103         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2104           if (has_last_Java_frame()) {
2105             frame f = last_frame();
2106            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2107           }
2108         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2109       }
2110       _pending_async_exception = NULL;
2111       clear_has_async_exception();
2112     }
2113   }
2114 
2115   if (check_unsafe_error &&
2116       condition == _async_unsafe_access_error && !has_pending_exception()) {
2117     condition = _no_async_condition;  // done
2118     switch (thread_state()) {
2119     case _thread_in_vm: {
2120       JavaThread* THREAD = this;
2121       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2122     }
2123     case _thread_in_native: {
2124       ThreadInVMfromNative tiv(this);
2125       JavaThread* THREAD = this;
2126       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2127     }
2128     case _thread_in_Java: {
2129       ThreadInVMfromJava tiv(this);
2130       JavaThread* THREAD = this;
2131       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2132     }
2133     default:
2134       ShouldNotReachHere();
2135     }
2136   }
2137 
2138   assert(condition == _no_async_condition || has_pending_exception() ||
2139          (!check_unsafe_error && condition == _async_unsafe_access_error),
2140          "must have handled the async condition, if no exception");
2141 }
2142 
2143 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2144   //
2145   // Check for pending external suspend. Internal suspend requests do
2146   // not use handle_special_runtime_exit_condition().
2147   // If JNIEnv proxies are allowed, don't self-suspend if the target
2148   // thread is not the current thread. In older versions of jdbx, jdbx
2149   // threads could call into the VM with another thread's JNIEnv so we
2150   // can be here operating on behalf of a suspended thread (4432884).
2151   bool do_self_suspend = is_external_suspend_with_lock();
2152   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2153     //
2154     // Because thread is external suspended the safepoint code will count
2155     // thread as at a safepoint. This can be odd because we can be here
2156     // as _thread_in_Java which would normally transition to _thread_blocked
2157     // at a safepoint. We would like to mark the thread as _thread_blocked
2158     // before calling java_suspend_self like all other callers of it but
2159     // we must then observe proper safepoint protocol. (We can't leave
2160     // _thread_blocked with a safepoint in progress). However we can be
2161     // here as _thread_in_native_trans so we can't use a normal transition
2162     // constructor/destructor pair because they assert on that type of
2163     // transition. We could do something like:
2164     //
2165     // JavaThreadState state = thread_state();
2166     // set_thread_state(_thread_in_vm);
2167     // {
2168     //   ThreadBlockInVM tbivm(this);
2169     //   java_suspend_self()
2170     // }
2171     // set_thread_state(_thread_in_vm_trans);
2172     // if (safepoint) block;
2173     // set_thread_state(state);
2174     //
2175     // but that is pretty messy. Instead we just go with the way the
2176     // code has worked before and note that this is the only path to
2177     // java_suspend_self that doesn't put the thread in _thread_blocked
2178     // mode.
2179 
2180     frame_anchor()->make_walkable(this);
2181     java_suspend_self();
2182 
2183     // We might be here for reasons in addition to the self-suspend request
2184     // so check for other async requests.
2185   }
2186 
2187   if (check_asyncs) {
2188     check_and_handle_async_exceptions();
2189   }
2190 }
2191 
2192 void JavaThread::send_thread_stop(oop java_throwable)  {
2193   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2194   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2195   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2196 
2197   // Do not throw asynchronous exceptions against the compiler thread
2198   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2199   if (!can_call_java()) return;
2200 
2201   {
2202     // Actually throw the Throwable against the target Thread - however
2203     // only if there is no thread death exception installed already.
2204     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2205       // If the topmost frame is a runtime stub, then we are calling into
2206       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2207       // must deoptimize the caller before continuing, as the compiled  exception handler table
2208       // may not be valid
2209       if (has_last_Java_frame()) {
2210         frame f = last_frame();
2211         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2212           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2213           RegisterMap reg_map(this, UseBiasedLocking);
2214           frame compiled_frame = f.sender(&reg_map);
2215           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2216             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2217           }
2218         }
2219       }
2220 
2221       // Set async. pending exception in thread.
2222       set_pending_async_exception(java_throwable);
2223 
2224       if (log_is_enabled(Info, exceptions)) {
2225          ResourceMark rm;
2226         log_info(exceptions)("Pending Async. exception installed of type: %s",
2227                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2228       }
2229       // for AbortVMOnException flag
2230       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2231     }
2232   }
2233 
2234 
2235   // Interrupt thread so it will wake up from a potential wait()
2236   Thread::interrupt(this);
2237 }
2238 
2239 // External suspension mechanism.
2240 //
2241 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2242 // to any VM_locks and it is at a transition
2243 // Self-suspension will happen on the transition out of the vm.
2244 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2245 //
2246 // Guarantees on return:
2247 //   + Target thread will not execute any new bytecode (that's why we need to
2248 //     force a safepoint)
2249 //   + Target thread will not enter any new monitors
2250 //
2251 void JavaThread::java_suspend() {
2252   { MutexLocker mu(Threads_lock);
2253     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2254       return;
2255     }
2256   }
2257 
2258   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2259     if (!is_external_suspend()) {
2260       // a racing resume has cancelled us; bail out now
2261       return;
2262     }
2263 
2264     // suspend is done
2265     uint32_t debug_bits = 0;
2266     // Warning: is_ext_suspend_completed() may temporarily drop the
2267     // SR_lock to allow the thread to reach a stable thread state if
2268     // it is currently in a transient thread state.
2269     if (is_ext_suspend_completed(false /* !called_by_wait */,
2270                                  SuspendRetryDelay, &debug_bits)) {
2271       return;
2272     }
2273   }
2274 
2275   VM_ForceSafepoint vm_suspend;
2276   VMThread::execute(&vm_suspend);
2277 }
2278 
2279 // Part II of external suspension.
2280 // A JavaThread self suspends when it detects a pending external suspend
2281 // request. This is usually on transitions. It is also done in places
2282 // where continuing to the next transition would surprise the caller,
2283 // e.g., monitor entry.
2284 //
2285 // Returns the number of times that the thread self-suspended.
2286 //
2287 // Note: DO NOT call java_suspend_self() when you just want to block current
2288 //       thread. java_suspend_self() is the second stage of cooperative
2289 //       suspension for external suspend requests and should only be used
2290 //       to complete an external suspend request.
2291 //
2292 int JavaThread::java_suspend_self() {
2293   int ret = 0;
2294 
2295   // we are in the process of exiting so don't suspend
2296   if (is_exiting()) {
2297     clear_external_suspend();
2298     return ret;
2299   }
2300 
2301   assert(_anchor.walkable() ||
2302          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2303          "must have walkable stack");
2304 
2305   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2306 
2307   assert(!this->is_ext_suspended(),
2308          "a thread trying to self-suspend should not already be suspended");
2309 
2310   if (this->is_suspend_equivalent()) {
2311     // If we are self-suspending as a result of the lifting of a
2312     // suspend equivalent condition, then the suspend_equivalent
2313     // flag is not cleared until we set the ext_suspended flag so
2314     // that wait_for_ext_suspend_completion() returns consistent
2315     // results.
2316     this->clear_suspend_equivalent();
2317   }
2318 
2319   // A racing resume may have cancelled us before we grabbed SR_lock
2320   // above. Or another external suspend request could be waiting for us
2321   // by the time we return from SR_lock()->wait(). The thread
2322   // that requested the suspension may already be trying to walk our
2323   // stack and if we return now, we can change the stack out from under
2324   // it. This would be a "bad thing (TM)" and cause the stack walker
2325   // to crash. We stay self-suspended until there are no more pending
2326   // external suspend requests.
2327   while (is_external_suspend()) {
2328     ret++;
2329     this->set_ext_suspended();
2330 
2331     // _ext_suspended flag is cleared by java_resume()
2332     while (is_ext_suspended()) {
2333       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2334     }
2335   }
2336 
2337   return ret;
2338 }
2339 
2340 #ifdef ASSERT
2341 // verify the JavaThread has not yet been published in the Threads::list, and
2342 // hence doesn't need protection from concurrent access at this stage
2343 void JavaThread::verify_not_published() {
2344   if (!Threads_lock->owned_by_self()) {
2345     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2346     assert(!Threads::includes(this),
2347            "java thread shouldn't have been published yet!");
2348   } else {
2349     assert(!Threads::includes(this),
2350            "java thread shouldn't have been published yet!");
2351   }
2352 }
2353 #endif
2354 
2355 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2356 // progress or when _suspend_flags is non-zero.
2357 // Current thread needs to self-suspend if there is a suspend request and/or
2358 // block if a safepoint is in progress.
2359 // Async exception ISN'T checked.
2360 // Note only the ThreadInVMfromNative transition can call this function
2361 // directly and when thread state is _thread_in_native_trans
2362 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2363   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2364 
2365   JavaThread *curJT = JavaThread::current();
2366   bool do_self_suspend = thread->is_external_suspend();
2367 
2368   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2369 
2370   // If JNIEnv proxies are allowed, don't self-suspend if the target
2371   // thread is not the current thread. In older versions of jdbx, jdbx
2372   // threads could call into the VM with another thread's JNIEnv so we
2373   // can be here operating on behalf of a suspended thread (4432884).
2374   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2375     JavaThreadState state = thread->thread_state();
2376 
2377     // We mark this thread_blocked state as a suspend-equivalent so
2378     // that a caller to is_ext_suspend_completed() won't be confused.
2379     // The suspend-equivalent state is cleared by java_suspend_self().
2380     thread->set_suspend_equivalent();
2381 
2382     // If the safepoint code sees the _thread_in_native_trans state, it will
2383     // wait until the thread changes to other thread state. There is no
2384     // guarantee on how soon we can obtain the SR_lock and complete the
2385     // self-suspend request. It would be a bad idea to let safepoint wait for
2386     // too long. Temporarily change the state to _thread_blocked to
2387     // let the VM thread know that this thread is ready for GC. The problem
2388     // of changing thread state is that safepoint could happen just after
2389     // java_suspend_self() returns after being resumed, and VM thread will
2390     // see the _thread_blocked state. We must check for safepoint
2391     // after restoring the state and make sure we won't leave while a safepoint
2392     // is in progress.
2393     thread->set_thread_state(_thread_blocked);
2394     thread->java_suspend_self();
2395     thread->set_thread_state(state);
2396     // Make sure new state is seen by VM thread
2397     if (os::is_MP()) {
2398       if (UseMembar) {
2399         // Force a fence between the write above and read below
2400         OrderAccess::fence();
2401       } else {
2402         // Must use this rather than serialization page in particular on Windows
2403         InterfaceSupport::serialize_memory(thread);
2404       }
2405     }
2406   }
2407 
2408   if (SafepointSynchronize::do_call_back()) {
2409     // If we are safepointing, then block the caller which may not be
2410     // the same as the target thread (see above).
2411     SafepointSynchronize::block(curJT);
2412   }
2413 
2414   if (thread->is_deopt_suspend()) {
2415     thread->clear_deopt_suspend();
2416     RegisterMap map(thread, false);
2417     frame f = thread->last_frame();
2418     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2419       f = f.sender(&map);
2420     }
2421     if (f.id() == thread->must_deopt_id()) {
2422       thread->clear_must_deopt_id();
2423       f.deoptimize(thread);
2424     } else {
2425       fatal("missed deoptimization!");
2426     }
2427   }
2428 }
2429 
2430 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2431 // progress or when _suspend_flags is non-zero.
2432 // Current thread needs to self-suspend if there is a suspend request and/or
2433 // block if a safepoint is in progress.
2434 // Also check for pending async exception (not including unsafe access error).
2435 // Note only the native==>VM/Java barriers can call this function and when
2436 // thread state is _thread_in_native_trans.
2437 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2438   check_safepoint_and_suspend_for_native_trans(thread);
2439 
2440   if (thread->has_async_exception()) {
2441     // We are in _thread_in_native_trans state, don't handle unsafe
2442     // access error since that may block.
2443     thread->check_and_handle_async_exceptions(false);
2444   }
2445 }
2446 
2447 // This is a variant of the normal
2448 // check_special_condition_for_native_trans with slightly different
2449 // semantics for use by critical native wrappers.  It does all the
2450 // normal checks but also performs the transition back into
2451 // thread_in_Java state.  This is required so that critical natives
2452 // can potentially block and perform a GC if they are the last thread
2453 // exiting the GCLocker.
2454 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2455   check_special_condition_for_native_trans(thread);
2456 
2457   // Finish the transition
2458   thread->set_thread_state(_thread_in_Java);
2459 
2460   if (thread->do_critical_native_unlock()) {
2461     ThreadInVMfromJavaNoAsyncException tiv(thread);
2462     GCLocker::unlock_critical(thread);
2463     thread->clear_critical_native_unlock();
2464   }
2465 }
2466 
2467 // We need to guarantee the Threads_lock here, since resumes are not
2468 // allowed during safepoint synchronization
2469 // Can only resume from an external suspension
2470 void JavaThread::java_resume() {
2471   assert_locked_or_safepoint(Threads_lock);
2472 
2473   // Sanity check: thread is gone, has started exiting or the thread
2474   // was not externally suspended.
2475   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2476     return;
2477   }
2478 
2479   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2480 
2481   clear_external_suspend();
2482 
2483   if (is_ext_suspended()) {
2484     clear_ext_suspended();
2485     SR_lock()->notify_all();
2486   }
2487 }
2488 
2489 size_t JavaThread::_stack_red_zone_size = 0;
2490 size_t JavaThread::_stack_yellow_zone_size = 0;
2491 size_t JavaThread::_stack_reserved_zone_size = 0;
2492 size_t JavaThread::_stack_shadow_zone_size = 0;
2493 
2494 void JavaThread::create_stack_guard_pages() {
2495   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2496   address low_addr = stack_end();
2497   size_t len = stack_guard_zone_size();
2498 
2499   int must_commit = os::must_commit_stack_guard_pages();
2500   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2501 
2502   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2503     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2504     return;
2505   }
2506 
2507   if (os::guard_memory((char *) low_addr, len)) {
2508     _stack_guard_state = stack_guard_enabled;
2509   } else {
2510     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2511       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2512     if (os::uncommit_memory((char *) low_addr, len)) {
2513       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2514     }
2515     return;
2516   }
2517 
2518   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2519     PTR_FORMAT "-" PTR_FORMAT ".",
2520     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2521 }
2522 
2523 void JavaThread::remove_stack_guard_pages() {
2524   assert(Thread::current() == this, "from different thread");
2525   if (_stack_guard_state == stack_guard_unused) return;
2526   address low_addr = stack_end();
2527   size_t len = stack_guard_zone_size();
2528 
2529   if (os::must_commit_stack_guard_pages()) {
2530     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2531       _stack_guard_state = stack_guard_unused;
2532     } else {
2533       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2534         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2535       return;
2536     }
2537   } else {
2538     if (_stack_guard_state == stack_guard_unused) return;
2539     if (os::unguard_memory((char *) low_addr, len)) {
2540       _stack_guard_state = stack_guard_unused;
2541     } else {
2542       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2543         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2544       return;
2545     }
2546   }
2547 
2548   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2549     PTR_FORMAT "-" PTR_FORMAT ".",
2550     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2551 }
2552 
2553 void JavaThread::enable_stack_reserved_zone() {
2554   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2555   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2556 
2557   // The base notation is from the stack's point of view, growing downward.
2558   // We need to adjust it to work correctly with guard_memory()
2559   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2560 
2561   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2562   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2563 
2564   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2565     _stack_guard_state = stack_guard_enabled;
2566   } else {
2567     warning("Attempt to guard stack reserved zone failed.");
2568   }
2569   enable_register_stack_guard();
2570 }
2571 
2572 void JavaThread::disable_stack_reserved_zone() {
2573   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2574   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2575 
2576   // Simply return if called for a thread that does not use guard pages.
2577   if (_stack_guard_state == stack_guard_unused) return;
2578 
2579   // The base notation is from the stack's point of view, growing downward.
2580   // We need to adjust it to work correctly with guard_memory()
2581   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2582 
2583   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2584     _stack_guard_state = stack_guard_reserved_disabled;
2585   } else {
2586     warning("Attempt to unguard stack reserved zone failed.");
2587   }
2588   disable_register_stack_guard();
2589 }
2590 
2591 void JavaThread::enable_stack_yellow_reserved_zone() {
2592   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2593   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2594 
2595   // The base notation is from the stacks point of view, growing downward.
2596   // We need to adjust it to work correctly with guard_memory()
2597   address base = stack_red_zone_base();
2598 
2599   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2600   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2601 
2602   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2603     _stack_guard_state = stack_guard_enabled;
2604   } else {
2605     warning("Attempt to guard stack yellow zone failed.");
2606   }
2607   enable_register_stack_guard();
2608 }
2609 
2610 void JavaThread::disable_stack_yellow_reserved_zone() {
2611   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2612   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2613 
2614   // Simply return if called for a thread that does not use guard pages.
2615   if (_stack_guard_state == stack_guard_unused) return;
2616 
2617   // The base notation is from the stacks point of view, growing downward.
2618   // We need to adjust it to work correctly with guard_memory()
2619   address base = stack_red_zone_base();
2620 
2621   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2622     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2623   } else {
2624     warning("Attempt to unguard stack yellow zone failed.");
2625   }
2626   disable_register_stack_guard();
2627 }
2628 
2629 void JavaThread::enable_stack_red_zone() {
2630   // The base notation is from the stacks point of view, growing downward.
2631   // We need to adjust it to work correctly with guard_memory()
2632   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2633   address base = stack_red_zone_base() - stack_red_zone_size();
2634 
2635   guarantee(base < stack_base(), "Error calculating stack red zone");
2636   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2637 
2638   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2639     warning("Attempt to guard stack red zone failed.");
2640   }
2641 }
2642 
2643 void JavaThread::disable_stack_red_zone() {
2644   // The base notation is from the stacks point of view, growing downward.
2645   // We need to adjust it to work correctly with guard_memory()
2646   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2647   address base = stack_red_zone_base() - stack_red_zone_size();
2648   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2649     warning("Attempt to unguard stack red zone failed.");
2650   }
2651 }
2652 
2653 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2654   // ignore is there is no stack
2655   if (!has_last_Java_frame()) return;
2656   // traverse the stack frames. Starts from top frame.
2657   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2658     frame* fr = fst.current();
2659     f(fr, fst.register_map());
2660   }
2661 }
2662 
2663 
2664 #ifndef PRODUCT
2665 // Deoptimization
2666 // Function for testing deoptimization
2667 void JavaThread::deoptimize() {
2668   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2669   StackFrameStream fst(this, UseBiasedLocking);
2670   bool deopt = false;           // Dump stack only if a deopt actually happens.
2671   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2672   // Iterate over all frames in the thread and deoptimize
2673   for (; !fst.is_done(); fst.next()) {
2674     if (fst.current()->can_be_deoptimized()) {
2675 
2676       if (only_at) {
2677         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2678         // consists of comma or carriage return separated numbers so
2679         // search for the current bci in that string.
2680         address pc = fst.current()->pc();
2681         nmethod* nm =  (nmethod*) fst.current()->cb();
2682         ScopeDesc* sd = nm->scope_desc_at(pc);
2683         char buffer[8];
2684         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2685         size_t len = strlen(buffer);
2686         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2687         while (found != NULL) {
2688           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2689               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2690             // Check that the bci found is bracketed by terminators.
2691             break;
2692           }
2693           found = strstr(found + 1, buffer);
2694         }
2695         if (!found) {
2696           continue;
2697         }
2698       }
2699 
2700       if (DebugDeoptimization && !deopt) {
2701         deopt = true; // One-time only print before deopt
2702         tty->print_cr("[BEFORE Deoptimization]");
2703         trace_frames();
2704         trace_stack();
2705       }
2706       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2707     }
2708   }
2709 
2710   if (DebugDeoptimization && deopt) {
2711     tty->print_cr("[AFTER Deoptimization]");
2712     trace_frames();
2713   }
2714 }
2715 
2716 
2717 // Make zombies
2718 void JavaThread::make_zombies() {
2719   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2720     if (fst.current()->can_be_deoptimized()) {
2721       // it is a Java nmethod
2722       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2723       nm->make_not_entrant();
2724     }
2725   }
2726 }
2727 #endif // PRODUCT
2728 
2729 
2730 void JavaThread::deoptimized_wrt_marked_nmethods() {
2731   if (!has_last_Java_frame()) return;
2732   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2733   StackFrameStream fst(this, UseBiasedLocking);
2734   for (; !fst.is_done(); fst.next()) {
2735     if (fst.current()->should_be_deoptimized()) {
2736       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2737     }
2738   }
2739 }
2740 
2741 
2742 // If the caller is a NamedThread, then remember, in the current scope,
2743 // the given JavaThread in its _processed_thread field.
2744 class RememberProcessedThread: public StackObj {
2745   NamedThread* _cur_thr;
2746  public:
2747   RememberProcessedThread(JavaThread* jthr) {
2748     Thread* thread = Thread::current();
2749     if (thread->is_Named_thread()) {
2750       _cur_thr = (NamedThread *)thread;
2751       _cur_thr->set_processed_thread(jthr);
2752     } else {
2753       _cur_thr = NULL;
2754     }
2755   }
2756 
2757   ~RememberProcessedThread() {
2758     if (_cur_thr) {
2759       _cur_thr->set_processed_thread(NULL);
2760     }
2761   }
2762 };
2763 
2764 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2765   // Verify that the deferred card marks have been flushed.
2766   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2767 
2768   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2769   // since there may be more than one thread using each ThreadProfiler.
2770 
2771   // Traverse the GCHandles
2772   Thread::oops_do(f, cf);
2773 
2774   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2775 
2776   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2777          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2778 
2779   if (has_last_Java_frame()) {
2780     // Record JavaThread to GC thread
2781     RememberProcessedThread rpt(this);
2782 
2783     // Traverse the privileged stack
2784     if (_privileged_stack_top != NULL) {
2785       _privileged_stack_top->oops_do(f);
2786     }
2787 
2788     // traverse the registered growable array
2789     if (_array_for_gc != NULL) {
2790       for (int index = 0; index < _array_for_gc->length(); index++) {
2791         f->do_oop(_array_for_gc->adr_at(index));
2792       }
2793     }
2794 
2795     // Traverse the monitor chunks
2796     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2797       chunk->oops_do(f);
2798     }
2799 
2800     // Traverse the execution stack
2801     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2802       fst.current()->oops_do(f, cf, fst.register_map());
2803     }
2804   }
2805 
2806   // callee_target is never live across a gc point so NULL it here should
2807   // it still contain a methdOop.
2808 
2809   set_callee_target(NULL);
2810 
2811   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2812   // If we have deferred set_locals there might be oops waiting to be
2813   // written
2814   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2815   if (list != NULL) {
2816     for (int i = 0; i < list->length(); i++) {
2817       list->at(i)->oops_do(f);
2818     }
2819   }
2820 
2821   // Traverse instance variables at the end since the GC may be moving things
2822   // around using this function
2823   f->do_oop((oop*) &_threadObj);
2824   f->do_oop((oop*) &_vm_result);
2825   f->do_oop((oop*) &_exception_oop);
2826   f->do_oop((oop*) &_pending_async_exception);
2827 
2828   if (jvmti_thread_state() != NULL) {
2829     jvmti_thread_state()->oops_do(f);
2830   }
2831 }
2832 
2833 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2834   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2835          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2836 
2837   if (has_last_Java_frame()) {
2838     // Traverse the execution stack
2839     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2840       fst.current()->nmethods_do(cf);
2841     }
2842   }
2843 }
2844 
2845 void JavaThread::metadata_do(void f(Metadata*)) {
2846   if (has_last_Java_frame()) {
2847     // Traverse the execution stack to call f() on the methods in the stack
2848     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2849       fst.current()->metadata_do(f);
2850     }
2851   } else if (is_Compiler_thread()) {
2852     // need to walk ciMetadata in current compile tasks to keep alive.
2853     CompilerThread* ct = (CompilerThread*)this;
2854     if (ct->env() != NULL) {
2855       ct->env()->metadata_do(f);
2856     }
2857     if (ct->task() != NULL) {
2858       ct->task()->metadata_do(f);
2859     }
2860   }
2861 }
2862 
2863 // Printing
2864 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2865   switch (_thread_state) {
2866   case _thread_uninitialized:     return "_thread_uninitialized";
2867   case _thread_new:               return "_thread_new";
2868   case _thread_new_trans:         return "_thread_new_trans";
2869   case _thread_in_native:         return "_thread_in_native";
2870   case _thread_in_native_trans:   return "_thread_in_native_trans";
2871   case _thread_in_vm:             return "_thread_in_vm";
2872   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2873   case _thread_in_Java:           return "_thread_in_Java";
2874   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2875   case _thread_blocked:           return "_thread_blocked";
2876   case _thread_blocked_trans:     return "_thread_blocked_trans";
2877   default:                        return "unknown thread state";
2878   }
2879 }
2880 
2881 #ifndef PRODUCT
2882 void JavaThread::print_thread_state_on(outputStream *st) const {
2883   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2884 };
2885 void JavaThread::print_thread_state() const {
2886   print_thread_state_on(tty);
2887 }
2888 #endif // PRODUCT
2889 
2890 // Called by Threads::print() for VM_PrintThreads operation
2891 void JavaThread::print_on(outputStream *st) const {
2892   st->print_raw("\"");
2893   st->print_raw(get_thread_name());
2894   st->print_raw("\" ");
2895   oop thread_oop = threadObj();
2896   if (thread_oop != NULL) {
2897     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2898     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2899     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2900   }
2901   Thread::print_on(st);
2902   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2903   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2904   if (thread_oop != NULL) {
2905     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2906   }
2907 #ifndef PRODUCT
2908   print_thread_state_on(st);
2909   _safepoint_state->print_on(st);
2910 #endif // PRODUCT
2911   if (is_Compiler_thread()) {
2912     CompilerThread* ct = (CompilerThread*)this;
2913     if (ct->task() != NULL) {
2914       st->print("   Compiling: ");
2915       ct->task()->print(st, NULL, true, false);
2916     } else {
2917       st->print("   No compile task");
2918     }
2919     st->cr();
2920   }
2921 }
2922 
2923 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2924   st->print("%s", get_thread_name_string(buf, buflen));
2925 }
2926 
2927 // Called by fatal error handler. The difference between this and
2928 // JavaThread::print() is that we can't grab lock or allocate memory.
2929 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2930   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2931   oop thread_obj = threadObj();
2932   if (thread_obj != NULL) {
2933     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2934   }
2935   st->print(" [");
2936   st->print("%s", _get_thread_state_name(_thread_state));
2937   if (osthread()) {
2938     st->print(", id=%d", osthread()->thread_id());
2939   }
2940   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2941             p2i(stack_end()), p2i(stack_base()));
2942   st->print("]");
2943   return;
2944 }
2945 
2946 // Verification
2947 
2948 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2949 
2950 void JavaThread::verify() {
2951   // Verify oops in the thread.
2952   oops_do(&VerifyOopClosure::verify_oop, NULL);
2953 
2954   // Verify the stack frames.
2955   frames_do(frame_verify);
2956 }
2957 
2958 // CR 6300358 (sub-CR 2137150)
2959 // Most callers of this method assume that it can't return NULL but a
2960 // thread may not have a name whilst it is in the process of attaching to
2961 // the VM - see CR 6412693, and there are places where a JavaThread can be
2962 // seen prior to having it's threadObj set (eg JNI attaching threads and
2963 // if vm exit occurs during initialization). These cases can all be accounted
2964 // for such that this method never returns NULL.
2965 const char* JavaThread::get_thread_name() const {
2966 #ifdef ASSERT
2967   // early safepoints can hit while current thread does not yet have TLS
2968   if (!SafepointSynchronize::is_at_safepoint()) {
2969     Thread *cur = Thread::current();
2970     if (!(cur->is_Java_thread() && cur == this)) {
2971       // Current JavaThreads are allowed to get their own name without
2972       // the Threads_lock.
2973       assert_locked_or_safepoint(Threads_lock);
2974     }
2975   }
2976 #endif // ASSERT
2977   return get_thread_name_string();
2978 }
2979 
2980 // Returns a non-NULL representation of this thread's name, or a suitable
2981 // descriptive string if there is no set name
2982 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2983   const char* name_str;
2984   oop thread_obj = threadObj();
2985   if (thread_obj != NULL) {
2986     oop name = java_lang_Thread::name(thread_obj);
2987     if (name != NULL) {
2988       if (buf == NULL) {
2989         name_str = java_lang_String::as_utf8_string(name);
2990       } else {
2991         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2992       }
2993     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2994       name_str = "<no-name - thread is attaching>";
2995     } else {
2996       name_str = Thread::name();
2997     }
2998   } else {
2999     name_str = Thread::name();
3000   }
3001   assert(name_str != NULL, "unexpected NULL thread name");
3002   return name_str;
3003 }
3004 
3005 
3006 const char* JavaThread::get_threadgroup_name() const {
3007   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3008   oop thread_obj = threadObj();
3009   if (thread_obj != NULL) {
3010     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3011     if (thread_group != NULL) {
3012       // ThreadGroup.name can be null
3013       return java_lang_ThreadGroup::name(thread_group);
3014     }
3015   }
3016   return NULL;
3017 }
3018 
3019 const char* JavaThread::get_parent_name() const {
3020   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3021   oop thread_obj = threadObj();
3022   if (thread_obj != NULL) {
3023     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3024     if (thread_group != NULL) {
3025       oop parent = java_lang_ThreadGroup::parent(thread_group);
3026       if (parent != NULL) {
3027         // ThreadGroup.name can be null
3028         return java_lang_ThreadGroup::name(parent);
3029       }
3030     }
3031   }
3032   return NULL;
3033 }
3034 
3035 ThreadPriority JavaThread::java_priority() const {
3036   oop thr_oop = threadObj();
3037   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3038   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3039   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3040   return priority;
3041 }
3042 
3043 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3044 
3045   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3046   // Link Java Thread object <-> C++ Thread
3047 
3048   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3049   // and put it into a new Handle.  The Handle "thread_oop" can then
3050   // be used to pass the C++ thread object to other methods.
3051 
3052   // Set the Java level thread object (jthread) field of the
3053   // new thread (a JavaThread *) to C++ thread object using the
3054   // "thread_oop" handle.
3055 
3056   // Set the thread field (a JavaThread *) of the
3057   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3058 
3059   Handle thread_oop(Thread::current(),
3060                     JNIHandles::resolve_non_null(jni_thread));
3061   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3062          "must be initialized");
3063   set_threadObj(thread_oop());
3064   java_lang_Thread::set_thread(thread_oop(), this);
3065 
3066   if (prio == NoPriority) {
3067     prio = java_lang_Thread::priority(thread_oop());
3068     assert(prio != NoPriority, "A valid priority should be present");
3069   }
3070 
3071   // Push the Java priority down to the native thread; needs Threads_lock
3072   Thread::set_priority(this, prio);
3073 
3074   prepare_ext();
3075 
3076   // Add the new thread to the Threads list and set it in motion.
3077   // We must have threads lock in order to call Threads::add.
3078   // It is crucial that we do not block before the thread is
3079   // added to the Threads list for if a GC happens, then the java_thread oop
3080   // will not be visited by GC.
3081   Threads::add(this);
3082 }
3083 
3084 oop JavaThread::current_park_blocker() {
3085   // Support for JSR-166 locks
3086   oop thread_oop = threadObj();
3087   if (thread_oop != NULL &&
3088       JDK_Version::current().supports_thread_park_blocker()) {
3089     return java_lang_Thread::park_blocker(thread_oop);
3090   }
3091   return NULL;
3092 }
3093 
3094 
3095 void JavaThread::print_stack_on(outputStream* st) {
3096   if (!has_last_Java_frame()) return;
3097   ResourceMark rm;
3098   HandleMark   hm;
3099 
3100   RegisterMap reg_map(this);
3101   vframe* start_vf = last_java_vframe(&reg_map);
3102   int count = 0;
3103   for (vframe* f = start_vf; f; f = f->sender()) {
3104     if (f->is_java_frame()) {
3105       javaVFrame* jvf = javaVFrame::cast(f);
3106       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3107 
3108       // Print out lock information
3109       if (JavaMonitorsInStackTrace) {
3110         jvf->print_lock_info_on(st, count);
3111       }
3112     } else {
3113       // Ignore non-Java frames
3114     }
3115 
3116     // Bail-out case for too deep stacks
3117     count++;
3118     if (MaxJavaStackTraceDepth == count) return;
3119   }
3120 }
3121 
3122 
3123 // JVMTI PopFrame support
3124 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3125   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3126   if (in_bytes(size_in_bytes) != 0) {
3127     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3128     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3129     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3130   }
3131 }
3132 
3133 void* JavaThread::popframe_preserved_args() {
3134   return _popframe_preserved_args;
3135 }
3136 
3137 ByteSize JavaThread::popframe_preserved_args_size() {
3138   return in_ByteSize(_popframe_preserved_args_size);
3139 }
3140 
3141 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3142   int sz = in_bytes(popframe_preserved_args_size());
3143   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3144   return in_WordSize(sz / wordSize);
3145 }
3146 
3147 void JavaThread::popframe_free_preserved_args() {
3148   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3149   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3150   _popframe_preserved_args = NULL;
3151   _popframe_preserved_args_size = 0;
3152 }
3153 
3154 #ifndef PRODUCT
3155 
3156 void JavaThread::trace_frames() {
3157   tty->print_cr("[Describe stack]");
3158   int frame_no = 1;
3159   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3160     tty->print("  %d. ", frame_no++);
3161     fst.current()->print_value_on(tty, this);
3162     tty->cr();
3163   }
3164 }
3165 
3166 class PrintAndVerifyOopClosure: public OopClosure {
3167  protected:
3168   template <class T> inline void do_oop_work(T* p) {
3169     oop obj = oopDesc::load_decode_heap_oop(p);
3170     if (obj == NULL) return;
3171     tty->print(INTPTR_FORMAT ": ", p2i(p));
3172     if (obj->is_oop_or_null()) {
3173       if (obj->is_objArray()) {
3174         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3175       } else {
3176         obj->print();
3177       }
3178     } else {
3179       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3180     }
3181     tty->cr();
3182   }
3183  public:
3184   virtual void do_oop(oop* p) { do_oop_work(p); }
3185   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3186 };
3187 
3188 
3189 static void oops_print(frame* f, const RegisterMap *map) {
3190   PrintAndVerifyOopClosure print;
3191   f->print_value();
3192   f->oops_do(&print, NULL, (RegisterMap*)map);
3193 }
3194 
3195 // Print our all the locations that contain oops and whether they are
3196 // valid or not.  This useful when trying to find the oldest frame
3197 // where an oop has gone bad since the frame walk is from youngest to
3198 // oldest.
3199 void JavaThread::trace_oops() {
3200   tty->print_cr("[Trace oops]");
3201   frames_do(oops_print);
3202 }
3203 
3204 
3205 #ifdef ASSERT
3206 // Print or validate the layout of stack frames
3207 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3208   ResourceMark rm;
3209   PRESERVE_EXCEPTION_MARK;
3210   FrameValues values;
3211   int frame_no = 0;
3212   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3213     fst.current()->describe(values, ++frame_no);
3214     if (depth == frame_no) break;
3215   }
3216   if (validate_only) {
3217     values.validate();
3218   } else {
3219     tty->print_cr("[Describe stack layout]");
3220     values.print(this);
3221   }
3222 }
3223 #endif
3224 
3225 void JavaThread::trace_stack_from(vframe* start_vf) {
3226   ResourceMark rm;
3227   int vframe_no = 1;
3228   for (vframe* f = start_vf; f; f = f->sender()) {
3229     if (f->is_java_frame()) {
3230       javaVFrame::cast(f)->print_activation(vframe_no++);
3231     } else {
3232       f->print();
3233     }
3234     if (vframe_no > StackPrintLimit) {
3235       tty->print_cr("...<more frames>...");
3236       return;
3237     }
3238   }
3239 }
3240 
3241 
3242 void JavaThread::trace_stack() {
3243   if (!has_last_Java_frame()) return;
3244   ResourceMark rm;
3245   HandleMark   hm;
3246   RegisterMap reg_map(this);
3247   trace_stack_from(last_java_vframe(&reg_map));
3248 }
3249 
3250 
3251 #endif // PRODUCT
3252 
3253 
3254 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3255   assert(reg_map != NULL, "a map must be given");
3256   frame f = last_frame();
3257   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3258     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3259   }
3260   return NULL;
3261 }
3262 
3263 
3264 Klass* JavaThread::security_get_caller_class(int depth) {
3265   vframeStream vfst(this);
3266   vfst.security_get_caller_frame(depth);
3267   if (!vfst.at_end()) {
3268     return vfst.method()->method_holder();
3269   }
3270   return NULL;
3271 }
3272 
3273 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3274   assert(thread->is_Compiler_thread(), "must be compiler thread");
3275   CompileBroker::compiler_thread_loop();
3276 }
3277 
3278 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3279   NMethodSweeper::sweeper_loop();
3280 }
3281 
3282 // Create a CompilerThread
3283 CompilerThread::CompilerThread(CompileQueue* queue,
3284                                CompilerCounters* counters)
3285                                : JavaThread(&compiler_thread_entry) {
3286   _env   = NULL;
3287   _log   = NULL;
3288   _task  = NULL;
3289   _queue = queue;
3290   _counters = counters;
3291   _buffer_blob = NULL;
3292   _compiler = NULL;
3293 
3294 #ifndef PRODUCT
3295   _ideal_graph_printer = NULL;
3296 #endif
3297 }
3298 
3299 bool CompilerThread::can_call_java() const {
3300   return _compiler != NULL && _compiler->is_jvmci();
3301 }
3302 
3303 // Create sweeper thread
3304 CodeCacheSweeperThread::CodeCacheSweeperThread()
3305 : JavaThread(&sweeper_thread_entry) {
3306   _scanned_compiled_method = NULL;
3307 }
3308 
3309 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3310   JavaThread::oops_do(f, cf);
3311   if (_scanned_compiled_method != NULL && cf != NULL) {
3312     // Safepoints can occur when the sweeper is scanning an nmethod so
3313     // process it here to make sure it isn't unloaded in the middle of
3314     // a scan.
3315     cf->do_code_blob(_scanned_compiled_method);
3316   }
3317 }
3318 
3319 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3320   JavaThread::nmethods_do(cf);
3321   if (_scanned_compiled_method != NULL && cf != NULL) {
3322     // Safepoints can occur when the sweeper is scanning an nmethod so
3323     // process it here to make sure it isn't unloaded in the middle of
3324     // a scan.
3325     cf->do_code_blob(_scanned_compiled_method);
3326   }
3327 }
3328 
3329 
3330 // ======= Threads ========
3331 
3332 // The Threads class links together all active threads, and provides
3333 // operations over all threads.  It is protected by its own Mutex
3334 // lock, which is also used in other contexts to protect thread
3335 // operations from having the thread being operated on from exiting
3336 // and going away unexpectedly (e.g., safepoint synchronization)
3337 
3338 JavaThread* Threads::_thread_list = NULL;
3339 int         Threads::_number_of_threads = 0;
3340 int         Threads::_number_of_non_daemon_threads = 0;
3341 int         Threads::_return_code = 0;
3342 int         Threads::_thread_claim_parity = 0;
3343 size_t      JavaThread::_stack_size_at_create = 0;
3344 #ifdef ASSERT
3345 bool        Threads::_vm_complete = false;
3346 #endif
3347 
3348 // All JavaThreads
3349 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3350 
3351 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3352 void Threads::threads_do(ThreadClosure* tc) {
3353   assert_locked_or_safepoint(Threads_lock);
3354   // ALL_JAVA_THREADS iterates through all JavaThreads
3355   ALL_JAVA_THREADS(p) {
3356     tc->do_thread(p);
3357   }
3358   // Someday we could have a table or list of all non-JavaThreads.
3359   // For now, just manually iterate through them.
3360   tc->do_thread(VMThread::vm_thread());
3361   Universe::heap()->gc_threads_do(tc);
3362   WatcherThread *wt = WatcherThread::watcher_thread();
3363   // Strictly speaking, the following NULL check isn't sufficient to make sure
3364   // the data for WatcherThread is still valid upon being examined. However,
3365   // considering that WatchThread terminates when the VM is on the way to
3366   // exit at safepoint, the chance of the above is extremely small. The right
3367   // way to prevent termination of WatcherThread would be to acquire
3368   // Terminator_lock, but we can't do that without violating the lock rank
3369   // checking in some cases.
3370   if (wt != NULL) {
3371     tc->do_thread(wt);
3372   }
3373 
3374   // If CompilerThreads ever become non-JavaThreads, add them here
3375 }
3376 
3377 // The system initialization in the library has three phases.
3378 //
3379 // Phase 1: java.lang.System class initialization
3380 //     java.lang.System is a primordial class loaded and initialized
3381 //     by the VM early during startup.  java.lang.System.<clinit>
3382 //     only does registerNatives and keeps the rest of the class
3383 //     initialization work later until thread initialization completes.
3384 //
3385 //     System.initPhase1 initializes the system properties, the static
3386 //     fields in, out, and err. Set up java signal handlers, OS-specific
3387 //     system settings, and thread group of the main thread.
3388 static void call_initPhase1(TRAPS) {
3389   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3390   instanceKlassHandle klass (THREAD, k);
3391 
3392   JavaValue result(T_VOID);
3393   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3394                                          vmSymbols::void_method_signature(), CHECK);
3395 }
3396 
3397 // Phase 2. Module system initialization
3398 //     This will initialize the module system.  Only java.base classes
3399 //     can be loaded until phase 2 completes.
3400 //
3401 //     Call System.initPhase2 after the compiler initialization and jsr292
3402 //     classes get initialized because module initialization runs a lot of java
3403 //     code, that for performance reasons, should be compiled.  Also, this will
3404 //     enable the startup code to use lambda and other language features in this
3405 //     phase and onward.
3406 //
3407 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3408 static void call_initPhase2(TRAPS) {
3409   TraceTime timer("Phase2 initialization", TRACETIME_LOG(Info, modules, startuptime));
3410 
3411   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3412   instanceKlassHandle klass (THREAD, k);
3413 
3414   JavaValue result(T_VOID);
3415   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3416                                          vmSymbols::void_method_signature(), CHECK);
3417   universe_post_module_init();
3418 }
3419 
3420 // Phase 3. final setup - set security manager, system class loader and TCCL
3421 //
3422 //     This will instantiate and set the security manager, set the system class
3423 //     loader as well as the thread context class loader.  The security manager
3424 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3425 //     other modules or the application's classpath.
3426 static void call_initPhase3(TRAPS) {
3427   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3428   instanceKlassHandle klass (THREAD, k);
3429 
3430   JavaValue result(T_VOID);
3431   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3432                                          vmSymbols::void_method_signature(), CHECK);
3433 }
3434 
3435 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3436   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3437 
3438   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3439     create_vm_init_libraries();
3440   }
3441 
3442   initialize_class(vmSymbols::java_lang_String(), CHECK);
3443 
3444   // Inject CompactStrings value after the static initializers for String ran.
3445   java_lang_String::set_compact_strings(CompactStrings);
3446 
3447   // Initialize java_lang.System (needed before creating the thread)
3448   initialize_class(vmSymbols::java_lang_System(), CHECK);
3449   // The VM creates & returns objects of this class. Make sure it's initialized.
3450   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3451   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3452   Handle thread_group = create_initial_thread_group(CHECK);
3453   Universe::set_main_thread_group(thread_group());
3454   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3455   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3456   main_thread->set_threadObj(thread_object);
3457   // Set thread status to running since main thread has
3458   // been started and running.
3459   java_lang_Thread::set_thread_status(thread_object,
3460                                       java_lang_Thread::RUNNABLE);
3461 
3462   // The VM creates objects of this class.
3463   initialize_class(vmSymbols::java_lang_reflect_Module(), CHECK);
3464 
3465   // The VM preresolves methods to these classes. Make sure that they get initialized
3466   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3467   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3468 
3469   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3470   call_initPhase1(CHECK);
3471 
3472   // get the Java runtime name after java.lang.System is initialized
3473   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3474   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3475 
3476   // an instance of OutOfMemory exception has been allocated earlier
3477   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3478   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3479   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3480   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3481   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3482   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3483   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3484   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3485 }
3486 
3487 void Threads::initialize_jsr292_core_classes(TRAPS) {
3488   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3489 
3490   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3491   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3492   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3493 }
3494 
3495 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3496   extern void JDK_Version_init();
3497 
3498   // Preinitialize version info.
3499   VM_Version::early_initialize();
3500 
3501   // Check version
3502   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3503 
3504   // Initialize library-based TLS
3505   ThreadLocalStorage::init();
3506 
3507   // Initialize the output stream module
3508   ostream_init();
3509 
3510   // Process java launcher properties.
3511   Arguments::process_sun_java_launcher_properties(args);
3512 
3513   // Initialize the os module
3514   os::init();
3515 
3516   // Record VM creation timing statistics
3517   TraceVmCreationTime create_vm_timer;
3518   create_vm_timer.start();
3519 
3520   // Initialize system properties.
3521   Arguments::init_system_properties();
3522 
3523   // So that JDK version can be used as a discriminator when parsing arguments
3524   JDK_Version_init();
3525 
3526   // Update/Initialize System properties after JDK version number is known
3527   Arguments::init_version_specific_system_properties();
3528 
3529   // Make sure to initialize log configuration *before* parsing arguments
3530   LogConfiguration::initialize(create_vm_timer.begin_time());
3531 
3532   // Parse arguments
3533   jint parse_result = Arguments::parse(args);
3534   if (parse_result != JNI_OK) return parse_result;
3535 
3536   os::init_before_ergo();
3537 
3538   jint ergo_result = Arguments::apply_ergo();
3539   if (ergo_result != JNI_OK) return ergo_result;
3540 
3541   // Final check of all ranges after ergonomics which may change values.
3542   if (!CommandLineFlagRangeList::check_ranges()) {
3543     return JNI_EINVAL;
3544   }
3545 
3546   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3547   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3548   if (!constraint_result) {
3549     return JNI_EINVAL;
3550   }
3551 
3552   CommandLineFlagWriteableList::mark_startup();
3553 
3554   if (PauseAtStartup) {
3555     os::pause();
3556   }
3557 
3558   HOTSPOT_VM_INIT_BEGIN();
3559 
3560   // Timing (must come after argument parsing)
3561   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3562 
3563   // Initialize the os module after parsing the args
3564   jint os_init_2_result = os::init_2();
3565   if (os_init_2_result != JNI_OK) return os_init_2_result;
3566 
3567   jint adjust_after_os_result = Arguments::adjust_after_os();
3568   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3569 
3570   // Initialize output stream logging
3571   ostream_init_log();
3572 
3573   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3574   // Must be before create_vm_init_agents()
3575   if (Arguments::init_libraries_at_startup()) {
3576     convert_vm_init_libraries_to_agents();
3577   }
3578 
3579   // Launch -agentlib/-agentpath and converted -Xrun agents
3580   if (Arguments::init_agents_at_startup()) {
3581     create_vm_init_agents();
3582   }
3583 
3584   // Initialize Threads state
3585   _thread_list = NULL;
3586   _number_of_threads = 0;
3587   _number_of_non_daemon_threads = 0;
3588 
3589   // Initialize global data structures and create system classes in heap
3590   vm_init_globals();
3591 
3592 #if INCLUDE_JVMCI
3593   if (JVMCICounterSize > 0) {
3594     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3595     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3596   } else {
3597     JavaThread::_jvmci_old_thread_counters = NULL;
3598   }
3599 #endif // INCLUDE_JVMCI
3600 
3601   // Attach the main thread to this os thread
3602   JavaThread* main_thread = new JavaThread();
3603   main_thread->set_thread_state(_thread_in_vm);
3604   main_thread->initialize_thread_current();
3605   // must do this before set_active_handles
3606   main_thread->record_stack_base_and_size();
3607   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3608 
3609   if (!main_thread->set_as_starting_thread()) {
3610     vm_shutdown_during_initialization(
3611                                       "Failed necessary internal allocation. Out of swap space");
3612     delete main_thread;
3613     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3614     return JNI_ENOMEM;
3615   }
3616 
3617   // Enable guard page *after* os::create_main_thread(), otherwise it would
3618   // crash Linux VM, see notes in os_linux.cpp.
3619   main_thread->create_stack_guard_pages();
3620 
3621   // Initialize Java-Level synchronization subsystem
3622   ObjectMonitor::Initialize();
3623 
3624   // Initialize global modules
3625   jint status = init_globals();
3626   if (status != JNI_OK) {
3627     delete main_thread;
3628     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3629     return status;
3630   }
3631 
3632   if (TRACE_INITIALIZE() != JNI_OK) {
3633     vm_exit_during_initialization("Failed to initialize tracing backend");
3634   }
3635 
3636   // Should be done after the heap is fully created
3637   main_thread->cache_global_variables();
3638 
3639   HandleMark hm;
3640 
3641   { MutexLocker mu(Threads_lock);
3642     Threads::add(main_thread);
3643   }
3644 
3645   // Any JVMTI raw monitors entered in onload will transition into
3646   // real raw monitor. VM is setup enough here for raw monitor enter.
3647   JvmtiExport::transition_pending_onload_raw_monitors();
3648 
3649   // Create the VMThread
3650   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3651 
3652   VMThread::create();
3653     Thread* vmthread = VMThread::vm_thread();
3654 
3655     if (!os::create_thread(vmthread, os::vm_thread)) {
3656       vm_exit_during_initialization("Cannot create VM thread. "
3657                                     "Out of system resources.");
3658     }
3659 
3660     // Wait for the VM thread to become ready, and VMThread::run to initialize
3661     // Monitors can have spurious returns, must always check another state flag
3662     {
3663       MutexLocker ml(Notify_lock);
3664       os::start_thread(vmthread);
3665       while (vmthread->active_handles() == NULL) {
3666         Notify_lock->wait();
3667       }
3668     }
3669   }
3670 
3671   assert(Universe::is_fully_initialized(), "not initialized");
3672   if (VerifyDuringStartup) {
3673     // Make sure we're starting with a clean slate.
3674     VM_Verify verify_op;
3675     VMThread::execute(&verify_op);
3676   }
3677 
3678   Thread* THREAD = Thread::current();
3679 
3680   // At this point, the Universe is initialized, but we have not executed
3681   // any byte code.  Now is a good time (the only time) to dump out the
3682   // internal state of the JVM for sharing.
3683   if (DumpSharedSpaces) {
3684     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3685     ShouldNotReachHere();
3686   }
3687 
3688   // Always call even when there are not JVMTI environments yet, since environments
3689   // may be attached late and JVMTI must track phases of VM execution
3690   JvmtiExport::enter_early_start_phase();
3691 
3692   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3693   JvmtiExport::post_early_vm_start();
3694 
3695   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3696 
3697   // We need this for ClassDataSharing - the initial vm.info property is set
3698   // with the default value of CDS "sharing" which may be reset through
3699   // command line options.
3700   reset_vm_info_property(CHECK_JNI_ERR);
3701 
3702   quicken_jni_functions();
3703 
3704   // No more stub generation allowed after that point.
3705   StubCodeDesc::freeze();
3706 
3707   // Set flag that basic initialization has completed. Used by exceptions and various
3708   // debug stuff, that does not work until all basic classes have been initialized.
3709   set_init_completed();
3710 
3711   LogConfiguration::post_initialize();
3712   Metaspace::post_initialize();
3713 
3714   HOTSPOT_VM_INIT_END();
3715 
3716   // record VM initialization completion time
3717 #if INCLUDE_MANAGEMENT
3718   Management::record_vm_init_completed();
3719 #endif // INCLUDE_MANAGEMENT
3720 
3721   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3722   // set_init_completed has just been called, causing exceptions not to be shortcut
3723   // anymore. We call vm_exit_during_initialization directly instead.
3724 
3725   // Initialize reference pending list locker
3726   bool needs_locker_thread = Universe::heap()->needs_reference_pending_list_locker_thread();
3727   ReferencePendingListLocker::initialize(needs_locker_thread, CHECK_JNI_ERR);
3728 
3729   // Signal Dispatcher needs to be started before VMInit event is posted
3730   os::signal_init();
3731 
3732   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3733   if (!DisableAttachMechanism) {
3734     AttachListener::vm_start();
3735     if (StartAttachListener || AttachListener::init_at_startup()) {
3736       AttachListener::init();
3737     }
3738   }
3739 
3740   // Launch -Xrun agents
3741   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3742   // back-end can launch with -Xdebug -Xrunjdwp.
3743   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3744     create_vm_init_libraries();
3745   }
3746 
3747   if (CleanChunkPoolAsync) {
3748     Chunk::start_chunk_pool_cleaner_task();
3749   }
3750 
3751   // initialize compiler(s)
3752 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3753   CompileBroker::compilation_init(CHECK_JNI_ERR);
3754 #endif
3755 
3756   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3757   // It is done after compilers are initialized, because otherwise compilations of
3758   // signature polymorphic MH intrinsics can be missed
3759   // (see SystemDictionary::find_method_handle_intrinsic).
3760   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3761 
3762   // This will initialize the module system.  Only java.base classes can be
3763   // loaded until phase 2 completes
3764   call_initPhase2(CHECK_JNI_ERR);
3765 
3766   // Always call even when there are not JVMTI environments yet, since environments
3767   // may be attached late and JVMTI must track phases of VM execution
3768   JvmtiExport::enter_start_phase();
3769 
3770   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3771   JvmtiExport::post_vm_start();
3772 
3773   // Final system initialization including security manager and system class loader
3774   call_initPhase3(CHECK_JNI_ERR);
3775 
3776   // cache the system class loader
3777   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3778 
3779 #if INCLUDE_JVMCI
3780   if (EnableJVMCI && UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation)) {
3781     // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3782     // compilations via JVMCI will not actually block until JVMCI is initialized.
3783     JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3784   }
3785 #endif
3786 
3787   // Always call even when there are not JVMTI environments yet, since environments
3788   // may be attached late and JVMTI must track phases of VM execution
3789   JvmtiExport::enter_live_phase();
3790 
3791   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3792   JvmtiExport::post_vm_initialized();
3793 
3794   if (TRACE_START() != JNI_OK) {
3795     vm_exit_during_initialization("Failed to start tracing backend.");
3796   }
3797 
3798 #if INCLUDE_MANAGEMENT
3799   Management::initialize(THREAD);
3800 
3801   if (HAS_PENDING_EXCEPTION) {
3802     // management agent fails to start possibly due to
3803     // configuration problem and is responsible for printing
3804     // stack trace if appropriate. Simply exit VM.
3805     vm_exit(1);
3806   }
3807 #endif // INCLUDE_MANAGEMENT
3808 
3809   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3810   if (MemProfiling)                   MemProfiler::engage();
3811   StatSampler::engage();
3812   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3813 
3814   BiasedLocking::init();
3815 
3816 #if INCLUDE_RTM_OPT
3817   RTMLockingCounters::init();
3818 #endif
3819 
3820   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3821     call_postVMInitHook(THREAD);
3822     // The Java side of PostVMInitHook.run must deal with all
3823     // exceptions and provide means of diagnosis.
3824     if (HAS_PENDING_EXCEPTION) {
3825       CLEAR_PENDING_EXCEPTION;
3826     }
3827   }
3828 
3829   {
3830     MutexLocker ml(PeriodicTask_lock);
3831     // Make sure the WatcherThread can be started by WatcherThread::start()
3832     // or by dynamic enrollment.
3833     WatcherThread::make_startable();
3834     // Start up the WatcherThread if there are any periodic tasks
3835     // NOTE:  All PeriodicTasks should be registered by now. If they
3836     //   aren't, late joiners might appear to start slowly (we might
3837     //   take a while to process their first tick).
3838     if (PeriodicTask::num_tasks() > 0) {
3839       WatcherThread::start();
3840     }
3841   }
3842 
3843   CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3844 
3845   create_vm_timer.end();
3846 #ifdef ASSERT
3847   _vm_complete = true;
3848 #endif
3849   return JNI_OK;
3850 }
3851 
3852 // type for the Agent_OnLoad and JVM_OnLoad entry points
3853 extern "C" {
3854   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3855 }
3856 // Find a command line agent library and return its entry point for
3857 //         -agentlib:  -agentpath:   -Xrun
3858 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3859 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3860                                     const char *on_load_symbols[],
3861                                     size_t num_symbol_entries) {
3862   OnLoadEntry_t on_load_entry = NULL;
3863   void *library = NULL;
3864 
3865   if (!agent->valid()) {
3866     char buffer[JVM_MAXPATHLEN];
3867     char ebuf[1024] = "";
3868     const char *name = agent->name();
3869     const char *msg = "Could not find agent library ";
3870 
3871     // First check to see if agent is statically linked into executable
3872     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3873       library = agent->os_lib();
3874     } else if (agent->is_absolute_path()) {
3875       library = os::dll_load(name, ebuf, sizeof ebuf);
3876       if (library == NULL) {
3877         const char *sub_msg = " in absolute path, with error: ";
3878         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3879         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3880         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3881         // If we can't find the agent, exit.
3882         vm_exit_during_initialization(buf, NULL);
3883         FREE_C_HEAP_ARRAY(char, buf);
3884       }
3885     } else {
3886       // Try to load the agent from the standard dll directory
3887       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3888                              name)) {
3889         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3890       }
3891       if (library == NULL) { // Try the local directory
3892         char ns[1] = {0};
3893         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3894           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3895         }
3896         if (library == NULL) {
3897           const char *sub_msg = " on the library path, with error: ";
3898           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3899           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3900           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3901           // If we can't find the agent, exit.
3902           vm_exit_during_initialization(buf, NULL);
3903           FREE_C_HEAP_ARRAY(char, buf);
3904         }
3905       }
3906     }
3907     agent->set_os_lib(library);
3908     agent->set_valid();
3909   }
3910 
3911   // Find the OnLoad function.
3912   on_load_entry =
3913     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3914                                                           false,
3915                                                           on_load_symbols,
3916                                                           num_symbol_entries));
3917   return on_load_entry;
3918 }
3919 
3920 // Find the JVM_OnLoad entry point
3921 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3922   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3923   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3924 }
3925 
3926 // Find the Agent_OnLoad entry point
3927 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3928   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3929   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3930 }
3931 
3932 // For backwards compatibility with -Xrun
3933 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3934 // treated like -agentpath:
3935 // Must be called before agent libraries are created
3936 void Threads::convert_vm_init_libraries_to_agents() {
3937   AgentLibrary* agent;
3938   AgentLibrary* next;
3939 
3940   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3941     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3942     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3943 
3944     // If there is an JVM_OnLoad function it will get called later,
3945     // otherwise see if there is an Agent_OnLoad
3946     if (on_load_entry == NULL) {
3947       on_load_entry = lookup_agent_on_load(agent);
3948       if (on_load_entry != NULL) {
3949         // switch it to the agent list -- so that Agent_OnLoad will be called,
3950         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3951         Arguments::convert_library_to_agent(agent);
3952       } else {
3953         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3954       }
3955     }
3956   }
3957 }
3958 
3959 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3960 // Invokes Agent_OnLoad
3961 // Called very early -- before JavaThreads exist
3962 void Threads::create_vm_init_agents() {
3963   extern struct JavaVM_ main_vm;
3964   AgentLibrary* agent;
3965 
3966   JvmtiExport::enter_onload_phase();
3967 
3968   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3969     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3970 
3971     if (on_load_entry != NULL) {
3972       // Invoke the Agent_OnLoad function
3973       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3974       if (err != JNI_OK) {
3975         vm_exit_during_initialization("agent library failed to init", agent->name());
3976       }
3977     } else {
3978       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3979     }
3980   }
3981   JvmtiExport::enter_primordial_phase();
3982 }
3983 
3984 extern "C" {
3985   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3986 }
3987 
3988 void Threads::shutdown_vm_agents() {
3989   // Send any Agent_OnUnload notifications
3990   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3991   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3992   extern struct JavaVM_ main_vm;
3993   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3994 
3995     // Find the Agent_OnUnload function.
3996     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3997                                                    os::find_agent_function(agent,
3998                                                    false,
3999                                                    on_unload_symbols,
4000                                                    num_symbol_entries));
4001 
4002     // Invoke the Agent_OnUnload function
4003     if (unload_entry != NULL) {
4004       JavaThread* thread = JavaThread::current();
4005       ThreadToNativeFromVM ttn(thread);
4006       HandleMark hm(thread);
4007       (*unload_entry)(&main_vm);
4008     }
4009   }
4010 }
4011 
4012 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4013 // Invokes JVM_OnLoad
4014 void Threads::create_vm_init_libraries() {
4015   extern struct JavaVM_ main_vm;
4016   AgentLibrary* agent;
4017 
4018   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4019     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4020 
4021     if (on_load_entry != NULL) {
4022       // Invoke the JVM_OnLoad function
4023       JavaThread* thread = JavaThread::current();
4024       ThreadToNativeFromVM ttn(thread);
4025       HandleMark hm(thread);
4026       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4027       if (err != JNI_OK) {
4028         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4029       }
4030     } else {
4031       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4032     }
4033   }
4034 }
4035 
4036 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4037   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4038 
4039   JavaThread* java_thread = NULL;
4040   // Sequential search for now.  Need to do better optimization later.
4041   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4042     oop tobj = thread->threadObj();
4043     if (!thread->is_exiting() &&
4044         tobj != NULL &&
4045         java_tid == java_lang_Thread::thread_id(tobj)) {
4046       java_thread = thread;
4047       break;
4048     }
4049   }
4050   return java_thread;
4051 }
4052 
4053 
4054 // Last thread running calls java.lang.Shutdown.shutdown()
4055 void JavaThread::invoke_shutdown_hooks() {
4056   HandleMark hm(this);
4057 
4058   // We could get here with a pending exception, if so clear it now.
4059   if (this->has_pending_exception()) {
4060     this->clear_pending_exception();
4061   }
4062 
4063   EXCEPTION_MARK;
4064   Klass* k =
4065     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4066                                       THREAD);
4067   if (k != NULL) {
4068     // SystemDictionary::resolve_or_null will return null if there was
4069     // an exception.  If we cannot load the Shutdown class, just don't
4070     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4071     // and finalizers (if runFinalizersOnExit is set) won't be run.
4072     // Note that if a shutdown hook was registered or runFinalizersOnExit
4073     // was called, the Shutdown class would have already been loaded
4074     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4075     instanceKlassHandle shutdown_klass (THREAD, k);
4076     JavaValue result(T_VOID);
4077     JavaCalls::call_static(&result,
4078                            shutdown_klass,
4079                            vmSymbols::shutdown_method_name(),
4080                            vmSymbols::void_method_signature(),
4081                            THREAD);
4082   }
4083   CLEAR_PENDING_EXCEPTION;
4084 }
4085 
4086 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4087 // the program falls off the end of main(). Another VM exit path is through
4088 // vm_exit() when the program calls System.exit() to return a value or when
4089 // there is a serious error in VM. The two shutdown paths are not exactly
4090 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4091 // and VM_Exit op at VM level.
4092 //
4093 // Shutdown sequence:
4094 //   + Shutdown native memory tracking if it is on
4095 //   + Wait until we are the last non-daemon thread to execute
4096 //     <-- every thing is still working at this moment -->
4097 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4098 //        shutdown hooks, run finalizers if finalization-on-exit
4099 //   + Call before_exit(), prepare for VM exit
4100 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4101 //        currently the only user of this mechanism is File.deleteOnExit())
4102 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4103 //        post thread end and vm death events to JVMTI,
4104 //        stop signal thread
4105 //   + Call JavaThread::exit(), it will:
4106 //      > release JNI handle blocks, remove stack guard pages
4107 //      > remove this thread from Threads list
4108 //     <-- no more Java code from this thread after this point -->
4109 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4110 //     the compiler threads at safepoint
4111 //     <-- do not use anything that could get blocked by Safepoint -->
4112 //   + Disable tracing at JNI/JVM barriers
4113 //   + Set _vm_exited flag for threads that are still running native code
4114 //   + Delete this thread
4115 //   + Call exit_globals()
4116 //      > deletes tty
4117 //      > deletes PerfMemory resources
4118 //   + Return to caller
4119 
4120 bool Threads::destroy_vm() {
4121   JavaThread* thread = JavaThread::current();
4122 
4123 #ifdef ASSERT
4124   _vm_complete = false;
4125 #endif
4126   // Wait until we are the last non-daemon thread to execute
4127   { MutexLocker nu(Threads_lock);
4128     while (Threads::number_of_non_daemon_threads() > 1)
4129       // This wait should make safepoint checks, wait without a timeout,
4130       // and wait as a suspend-equivalent condition.
4131       //
4132       // Note: If the FlatProfiler is running and this thread is waiting
4133       // for another non-daemon thread to finish, then the FlatProfiler
4134       // is waiting for the external suspend request on this thread to
4135       // complete. wait_for_ext_suspend_completion() will eventually
4136       // timeout, but that takes time. Making this wait a suspend-
4137       // equivalent condition solves that timeout problem.
4138       //
4139       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4140                          Mutex::_as_suspend_equivalent_flag);
4141   }
4142 
4143   // Hang forever on exit if we are reporting an error.
4144   if (ShowMessageBoxOnError && is_error_reported()) {
4145     os::infinite_sleep();
4146   }
4147   os::wait_for_keypress_at_exit();
4148 
4149   // run Java level shutdown hooks
4150   thread->invoke_shutdown_hooks();
4151 
4152   before_exit(thread);
4153 
4154   thread->exit(true);
4155 
4156   // Stop VM thread.
4157   {
4158     // 4945125 The vm thread comes to a safepoint during exit.
4159     // GC vm_operations can get caught at the safepoint, and the
4160     // heap is unparseable if they are caught. Grab the Heap_lock
4161     // to prevent this. The GC vm_operations will not be able to
4162     // queue until after the vm thread is dead. After this point,
4163     // we'll never emerge out of the safepoint before the VM exits.
4164 
4165     MutexLocker ml(Heap_lock);
4166 
4167     VMThread::wait_for_vm_thread_exit();
4168     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4169     VMThread::destroy();
4170   }
4171 
4172   // clean up ideal graph printers
4173 #if defined(COMPILER2) && !defined(PRODUCT)
4174   IdealGraphPrinter::clean_up();
4175 #endif
4176 
4177   // Now, all Java threads are gone except daemon threads. Daemon threads
4178   // running Java code or in VM are stopped by the Safepoint. However,
4179   // daemon threads executing native code are still running.  But they
4180   // will be stopped at native=>Java/VM barriers. Note that we can't
4181   // simply kill or suspend them, as it is inherently deadlock-prone.
4182 
4183   VM_Exit::set_vm_exited();
4184 
4185   notify_vm_shutdown();
4186 
4187   delete thread;
4188 
4189 #if INCLUDE_JVMCI
4190   if (JVMCICounterSize > 0) {
4191     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4192   }
4193 #endif
4194 
4195   // exit_globals() will delete tty
4196   exit_globals();
4197 
4198   LogConfiguration::finalize();
4199 
4200   return true;
4201 }
4202 
4203 
4204 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4205   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4206   return is_supported_jni_version(version);
4207 }
4208 
4209 
4210 jboolean Threads::is_supported_jni_version(jint version) {
4211   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4212   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4213   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4214   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4215   if (version == JNI_VERSION_9) return JNI_TRUE;
4216   return JNI_FALSE;
4217 }
4218 
4219 
4220 void Threads::add(JavaThread* p, bool force_daemon) {
4221   // The threads lock must be owned at this point
4222   assert_locked_or_safepoint(Threads_lock);
4223 
4224   // See the comment for this method in thread.hpp for its purpose and
4225   // why it is called here.
4226   p->initialize_queues();
4227   p->set_next(_thread_list);
4228   _thread_list = p;
4229   _number_of_threads++;
4230   oop threadObj = p->threadObj();
4231   bool daemon = true;
4232   // Bootstrapping problem: threadObj can be null for initial
4233   // JavaThread (or for threads attached via JNI)
4234   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4235     _number_of_non_daemon_threads++;
4236     daemon = false;
4237   }
4238 
4239   ThreadService::add_thread(p, daemon);
4240 
4241   // Possible GC point.
4242   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4243 }
4244 
4245 void Threads::remove(JavaThread* p) {
4246   // Extra scope needed for Thread_lock, so we can check
4247   // that we do not remove thread without safepoint code notice
4248   { MutexLocker ml(Threads_lock);
4249 
4250     assert(includes(p), "p must be present");
4251 
4252     JavaThread* current = _thread_list;
4253     JavaThread* prev    = NULL;
4254 
4255     while (current != p) {
4256       prev    = current;
4257       current = current->next();
4258     }
4259 
4260     if (prev) {
4261       prev->set_next(current->next());
4262     } else {
4263       _thread_list = p->next();
4264     }
4265     _number_of_threads--;
4266     oop threadObj = p->threadObj();
4267     bool daemon = true;
4268     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4269       _number_of_non_daemon_threads--;
4270       daemon = false;
4271 
4272       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4273       // on destroy_vm will wake up.
4274       if (number_of_non_daemon_threads() == 1) {
4275         Threads_lock->notify_all();
4276       }
4277     }
4278     ThreadService::remove_thread(p, daemon);
4279 
4280     // Make sure that safepoint code disregard this thread. This is needed since
4281     // the thread might mess around with locks after this point. This can cause it
4282     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4283     // of this thread since it is removed from the queue.
4284     p->set_terminated_value();
4285   } // unlock Threads_lock
4286 
4287   // Since Events::log uses a lock, we grab it outside the Threads_lock
4288   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4289 }
4290 
4291 // Threads_lock must be held when this is called (or must be called during a safepoint)
4292 bool Threads::includes(JavaThread* p) {
4293   assert(Threads_lock->is_locked(), "sanity check");
4294   ALL_JAVA_THREADS(q) {
4295     if (q == p) {
4296       return true;
4297     }
4298   }
4299   return false;
4300 }
4301 
4302 // Operations on the Threads list for GC.  These are not explicitly locked,
4303 // but the garbage collector must provide a safe context for them to run.
4304 // In particular, these things should never be called when the Threads_lock
4305 // is held by some other thread. (Note: the Safepoint abstraction also
4306 // uses the Threads_lock to guarantee this property. It also makes sure that
4307 // all threads gets blocked when exiting or starting).
4308 
4309 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4310   ALL_JAVA_THREADS(p) {
4311     p->oops_do(f, cf);
4312   }
4313   VMThread::vm_thread()->oops_do(f, cf);
4314 }
4315 
4316 void Threads::change_thread_claim_parity() {
4317   // Set the new claim parity.
4318   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4319          "Not in range.");
4320   _thread_claim_parity++;
4321   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4322   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4323          "Not in range.");
4324 }
4325 
4326 #ifdef ASSERT
4327 void Threads::assert_all_threads_claimed() {
4328   ALL_JAVA_THREADS(p) {
4329     const int thread_parity = p->oops_do_parity();
4330     assert((thread_parity == _thread_claim_parity),
4331            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4332   }
4333 }
4334 #endif // ASSERT
4335 
4336 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4337   int cp = Threads::thread_claim_parity();
4338   ALL_JAVA_THREADS(p) {
4339     if (p->claim_oops_do(is_par, cp)) {
4340       p->oops_do(f, cf);
4341     }
4342   }
4343   VMThread* vmt = VMThread::vm_thread();
4344   if (vmt->claim_oops_do(is_par, cp)) {
4345     vmt->oops_do(f, cf);
4346   }
4347 }
4348 
4349 #if INCLUDE_ALL_GCS
4350 // Used by ParallelScavenge
4351 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4352   ALL_JAVA_THREADS(p) {
4353     q->enqueue(new ThreadRootsTask(p));
4354   }
4355   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4356 }
4357 
4358 // Used by Parallel Old
4359 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4360   ALL_JAVA_THREADS(p) {
4361     q->enqueue(new ThreadRootsMarkingTask(p));
4362   }
4363   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4364 }
4365 #endif // INCLUDE_ALL_GCS
4366 
4367 void Threads::nmethods_do(CodeBlobClosure* cf) {
4368   ALL_JAVA_THREADS(p) {
4369     // This is used by the code cache sweeper to mark nmethods that are active
4370     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4371     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4372     if(!p->is_Code_cache_sweeper_thread()) {
4373       p->nmethods_do(cf);
4374     }
4375   }
4376 }
4377 
4378 void Threads::metadata_do(void f(Metadata*)) {
4379   ALL_JAVA_THREADS(p) {
4380     p->metadata_do(f);
4381   }
4382 }
4383 
4384 class ThreadHandlesClosure : public ThreadClosure {
4385   void (*_f)(Metadata*);
4386  public:
4387   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4388   virtual void do_thread(Thread* thread) {
4389     thread->metadata_handles_do(_f);
4390   }
4391 };
4392 
4393 void Threads::metadata_handles_do(void f(Metadata*)) {
4394   // Only walk the Handles in Thread.
4395   ThreadHandlesClosure handles_closure(f);
4396   threads_do(&handles_closure);
4397 }
4398 
4399 void Threads::deoptimized_wrt_marked_nmethods() {
4400   ALL_JAVA_THREADS(p) {
4401     p->deoptimized_wrt_marked_nmethods();
4402   }
4403 }
4404 
4405 
4406 // Get count Java threads that are waiting to enter the specified monitor.
4407 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4408                                                          address monitor,
4409                                                          bool doLock) {
4410   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4411          "must grab Threads_lock or be at safepoint");
4412   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4413 
4414   int i = 0;
4415   {
4416     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4417     ALL_JAVA_THREADS(p) {
4418       if (!p->can_call_java()) continue;
4419 
4420       address pending = (address)p->current_pending_monitor();
4421       if (pending == monitor) {             // found a match
4422         if (i < count) result->append(p);   // save the first count matches
4423         i++;
4424       }
4425     }
4426   }
4427   return result;
4428 }
4429 
4430 
4431 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4432                                                       bool doLock) {
4433   assert(doLock ||
4434          Threads_lock->owned_by_self() ||
4435          SafepointSynchronize::is_at_safepoint(),
4436          "must grab Threads_lock or be at safepoint");
4437 
4438   // NULL owner means not locked so we can skip the search
4439   if (owner == NULL) return NULL;
4440 
4441   {
4442     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4443     ALL_JAVA_THREADS(p) {
4444       // first, see if owner is the address of a Java thread
4445       if (owner == (address)p) return p;
4446     }
4447   }
4448   // Cannot assert on lack of success here since this function may be
4449   // used by code that is trying to report useful problem information
4450   // like deadlock detection.
4451   if (UseHeavyMonitors) return NULL;
4452 
4453   // If we didn't find a matching Java thread and we didn't force use of
4454   // heavyweight monitors, then the owner is the stack address of the
4455   // Lock Word in the owning Java thread's stack.
4456   //
4457   JavaThread* the_owner = NULL;
4458   {
4459     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4460     ALL_JAVA_THREADS(q) {
4461       if (q->is_lock_owned(owner)) {
4462         the_owner = q;
4463         break;
4464       }
4465     }
4466   }
4467   // cannot assert on lack of success here; see above comment
4468   return the_owner;
4469 }
4470 
4471 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4472 void Threads::print_on(outputStream* st, bool print_stacks,
4473                        bool internal_format, bool print_concurrent_locks) {
4474   char buf[32];
4475   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4476 
4477   st->print_cr("Full thread dump %s (%s %s):",
4478                Abstract_VM_Version::vm_name(),
4479                Abstract_VM_Version::vm_release(),
4480                Abstract_VM_Version::vm_info_string());
4481   st->cr();
4482 
4483 #if INCLUDE_SERVICES
4484   // Dump concurrent locks
4485   ConcurrentLocksDump concurrent_locks;
4486   if (print_concurrent_locks) {
4487     concurrent_locks.dump_at_safepoint();
4488   }
4489 #endif // INCLUDE_SERVICES
4490 
4491   ALL_JAVA_THREADS(p) {
4492     ResourceMark rm;
4493     p->print_on(st);
4494     if (print_stacks) {
4495       if (internal_format) {
4496         p->trace_stack();
4497       } else {
4498         p->print_stack_on(st);
4499       }
4500     }
4501     st->cr();
4502 #if INCLUDE_SERVICES
4503     if (print_concurrent_locks) {
4504       concurrent_locks.print_locks_on(p, st);
4505     }
4506 #endif // INCLUDE_SERVICES
4507   }
4508 
4509   VMThread::vm_thread()->print_on(st);
4510   st->cr();
4511   Universe::heap()->print_gc_threads_on(st);
4512   WatcherThread* wt = WatcherThread::watcher_thread();
4513   if (wt != NULL) {
4514     wt->print_on(st);
4515     st->cr();
4516   }
4517   st->flush();
4518 }
4519 
4520 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4521                              int buflen, bool* found_current) {
4522   if (this_thread != NULL) {
4523     bool is_current = (current == this_thread);
4524     *found_current = *found_current || is_current;
4525     st->print("%s", is_current ? "=>" : "  ");
4526 
4527     st->print(PTR_FORMAT, p2i(this_thread));
4528     st->print(" ");
4529     this_thread->print_on_error(st, buf, buflen);
4530     st->cr();
4531   }
4532 }
4533 
4534 class PrintOnErrorClosure : public ThreadClosure {
4535   outputStream* _st;
4536   Thread* _current;
4537   char* _buf;
4538   int _buflen;
4539   bool* _found_current;
4540  public:
4541   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4542                       int buflen, bool* found_current) :
4543    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4544 
4545   virtual void do_thread(Thread* thread) {
4546     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4547   }
4548 };
4549 
4550 // Threads::print_on_error() is called by fatal error handler. It's possible
4551 // that VM is not at safepoint and/or current thread is inside signal handler.
4552 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4553 // memory (even in resource area), it might deadlock the error handler.
4554 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4555                              int buflen) {
4556   bool found_current = false;
4557   st->print_cr("Java Threads: ( => current thread )");
4558   ALL_JAVA_THREADS(thread) {
4559     print_on_error(thread, st, current, buf, buflen, &found_current);
4560   }
4561   st->cr();
4562 
4563   st->print_cr("Other Threads:");
4564   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4565   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4566 
4567   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4568   Universe::heap()->gc_threads_do(&print_closure);
4569 
4570   if (!found_current) {
4571     st->cr();
4572     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4573     current->print_on_error(st, buf, buflen);
4574     st->cr();
4575   }
4576   st->cr();
4577   st->print_cr("Threads with active compile tasks:");
4578   print_threads_compiling(st, buf, buflen);
4579 }
4580 
4581 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4582   ALL_JAVA_THREADS(thread) {
4583     if (thread->is_Compiler_thread()) {
4584       CompilerThread* ct = (CompilerThread*) thread;
4585       if (ct->task() != NULL) {
4586         thread->print_name_on_error(st, buf, buflen);
4587         ct->task()->print(st, NULL, true, true);
4588       }
4589     }
4590   }
4591 }
4592 
4593 
4594 // Internal SpinLock and Mutex
4595 // Based on ParkEvent
4596 
4597 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4598 //
4599 // We employ SpinLocks _only for low-contention, fixed-length
4600 // short-duration critical sections where we're concerned
4601 // about native mutex_t or HotSpot Mutex:: latency.
4602 // The mux construct provides a spin-then-block mutual exclusion
4603 // mechanism.
4604 //
4605 // Testing has shown that contention on the ListLock guarding gFreeList
4606 // is common.  If we implement ListLock as a simple SpinLock it's common
4607 // for the JVM to devolve to yielding with little progress.  This is true
4608 // despite the fact that the critical sections protected by ListLock are
4609 // extremely short.
4610 //
4611 // TODO-FIXME: ListLock should be of type SpinLock.
4612 // We should make this a 1st-class type, integrated into the lock
4613 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4614 // should have sufficient padding to avoid false-sharing and excessive
4615 // cache-coherency traffic.
4616 
4617 
4618 typedef volatile int SpinLockT;
4619 
4620 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4621   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4622     return;   // normal fast-path return
4623   }
4624 
4625   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4626   TEVENT(SpinAcquire - ctx);
4627   int ctr = 0;
4628   int Yields = 0;
4629   for (;;) {
4630     while (*adr != 0) {
4631       ++ctr;
4632       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4633         if (Yields > 5) {
4634           os::naked_short_sleep(1);
4635         } else {
4636           os::naked_yield();
4637           ++Yields;
4638         }
4639       } else {
4640         SpinPause();
4641       }
4642     }
4643     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4644   }
4645 }
4646 
4647 void Thread::SpinRelease(volatile int * adr) {
4648   assert(*adr != 0, "invariant");
4649   OrderAccess::fence();      // guarantee at least release consistency.
4650   // Roach-motel semantics.
4651   // It's safe if subsequent LDs and STs float "up" into the critical section,
4652   // but prior LDs and STs within the critical section can't be allowed
4653   // to reorder or float past the ST that releases the lock.
4654   // Loads and stores in the critical section - which appear in program
4655   // order before the store that releases the lock - must also appear
4656   // before the store that releases the lock in memory visibility order.
4657   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4658   // the ST of 0 into the lock-word which releases the lock, so fence
4659   // more than covers this on all platforms.
4660   *adr = 0;
4661 }
4662 
4663 // muxAcquire and muxRelease:
4664 //
4665 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4666 //    The LSB of the word is set IFF the lock is held.
4667 //    The remainder of the word points to the head of a singly-linked list
4668 //    of threads blocked on the lock.
4669 //
4670 // *  The current implementation of muxAcquire-muxRelease uses its own
4671 //    dedicated Thread._MuxEvent instance.  If we're interested in
4672 //    minimizing the peak number of extant ParkEvent instances then
4673 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4674 //    as certain invariants were satisfied.  Specifically, care would need
4675 //    to be taken with regards to consuming unpark() "permits".
4676 //    A safe rule of thumb is that a thread would never call muxAcquire()
4677 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4678 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4679 //    consume an unpark() permit intended for monitorenter, for instance.
4680 //    One way around this would be to widen the restricted-range semaphore
4681 //    implemented in park().  Another alternative would be to provide
4682 //    multiple instances of the PlatformEvent() for each thread.  One
4683 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4684 //
4685 // *  Usage:
4686 //    -- Only as leaf locks
4687 //    -- for short-term locking only as muxAcquire does not perform
4688 //       thread state transitions.
4689 //
4690 // Alternatives:
4691 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4692 //    but with parking or spin-then-park instead of pure spinning.
4693 // *  Use Taura-Oyama-Yonenzawa locks.
4694 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4695 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4696 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4697 //    acquiring threads use timers (ParkTimed) to detect and recover from
4698 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4699 //    boundaries by using placement-new.
4700 // *  Augment MCS with advisory back-link fields maintained with CAS().
4701 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4702 //    The validity of the backlinks must be ratified before we trust the value.
4703 //    If the backlinks are invalid the exiting thread must back-track through the
4704 //    the forward links, which are always trustworthy.
4705 // *  Add a successor indication.  The LockWord is currently encoded as
4706 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4707 //    to provide the usual futile-wakeup optimization.
4708 //    See RTStt for details.
4709 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4710 //
4711 
4712 
4713 typedef volatile intptr_t MutexT;      // Mux Lock-word
4714 enum MuxBits { LOCKBIT = 1 };
4715 
4716 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4717   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4718   if (w == 0) return;
4719   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4720     return;
4721   }
4722 
4723   TEVENT(muxAcquire - Contention);
4724   ParkEvent * const Self = Thread::current()->_MuxEvent;
4725   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4726   for (;;) {
4727     int its = (os::is_MP() ? 100 : 0) + 1;
4728 
4729     // Optional spin phase: spin-then-park strategy
4730     while (--its >= 0) {
4731       w = *Lock;
4732       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4733         return;
4734       }
4735     }
4736 
4737     Self->reset();
4738     Self->OnList = intptr_t(Lock);
4739     // The following fence() isn't _strictly necessary as the subsequent
4740     // CAS() both serializes execution and ratifies the fetched *Lock value.
4741     OrderAccess::fence();
4742     for (;;) {
4743       w = *Lock;
4744       if ((w & LOCKBIT) == 0) {
4745         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4746           Self->OnList = 0;   // hygiene - allows stronger asserts
4747           return;
4748         }
4749         continue;      // Interference -- *Lock changed -- Just retry
4750       }
4751       assert(w & LOCKBIT, "invariant");
4752       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4753       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4754     }
4755 
4756     while (Self->OnList != 0) {
4757       Self->park();
4758     }
4759   }
4760 }
4761 
4762 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4763   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4764   if (w == 0) return;
4765   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4766     return;
4767   }
4768 
4769   TEVENT(muxAcquire - Contention);
4770   ParkEvent * ReleaseAfter = NULL;
4771   if (ev == NULL) {
4772     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4773   }
4774   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4775   for (;;) {
4776     guarantee(ev->OnList == 0, "invariant");
4777     int its = (os::is_MP() ? 100 : 0) + 1;
4778 
4779     // Optional spin phase: spin-then-park strategy
4780     while (--its >= 0) {
4781       w = *Lock;
4782       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4783         if (ReleaseAfter != NULL) {
4784           ParkEvent::Release(ReleaseAfter);
4785         }
4786         return;
4787       }
4788     }
4789 
4790     ev->reset();
4791     ev->OnList = intptr_t(Lock);
4792     // The following fence() isn't _strictly necessary as the subsequent
4793     // CAS() both serializes execution and ratifies the fetched *Lock value.
4794     OrderAccess::fence();
4795     for (;;) {
4796       w = *Lock;
4797       if ((w & LOCKBIT) == 0) {
4798         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4799           ev->OnList = 0;
4800           // We call ::Release while holding the outer lock, thus
4801           // artificially lengthening the critical section.
4802           // Consider deferring the ::Release() until the subsequent unlock(),
4803           // after we've dropped the outer lock.
4804           if (ReleaseAfter != NULL) {
4805             ParkEvent::Release(ReleaseAfter);
4806           }
4807           return;
4808         }
4809         continue;      // Interference -- *Lock changed -- Just retry
4810       }
4811       assert(w & LOCKBIT, "invariant");
4812       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4813       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4814     }
4815 
4816     while (ev->OnList != 0) {
4817       ev->park();
4818     }
4819   }
4820 }
4821 
4822 // Release() must extract a successor from the list and then wake that thread.
4823 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4824 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4825 // Release() would :
4826 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4827 // (B) Extract a successor from the private list "in-hand"
4828 // (C) attempt to CAS() the residual back into *Lock over null.
4829 //     If there were any newly arrived threads and the CAS() would fail.
4830 //     In that case Release() would detach the RATs, re-merge the list in-hand
4831 //     with the RATs and repeat as needed.  Alternately, Release() might
4832 //     detach and extract a successor, but then pass the residual list to the wakee.
4833 //     The wakee would be responsible for reattaching and remerging before it
4834 //     competed for the lock.
4835 //
4836 // Both "pop" and DMR are immune from ABA corruption -- there can be
4837 // multiple concurrent pushers, but only one popper or detacher.
4838 // This implementation pops from the head of the list.  This is unfair,
4839 // but tends to provide excellent throughput as hot threads remain hot.
4840 // (We wake recently run threads first).
4841 //
4842 // All paths through muxRelease() will execute a CAS.
4843 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4844 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4845 // executed within the critical section are complete and globally visible before the
4846 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4847 void Thread::muxRelease(volatile intptr_t * Lock)  {
4848   for (;;) {
4849     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4850     assert(w & LOCKBIT, "invariant");
4851     if (w == LOCKBIT) return;
4852     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4853     assert(List != NULL, "invariant");
4854     assert(List->OnList == intptr_t(Lock), "invariant");
4855     ParkEvent * const nxt = List->ListNext;
4856     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4857 
4858     // The following CAS() releases the lock and pops the head element.
4859     // The CAS() also ratifies the previously fetched lock-word value.
4860     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4861       continue;
4862     }
4863     List->OnList = 0;
4864     OrderAccess::fence();
4865     List->unpark();
4866     return;
4867   }
4868 }
4869 
4870 
4871 void Threads::verify() {
4872   ALL_JAVA_THREADS(p) {
4873     p->verify();
4874   }
4875   VMThread* thread = VMThread::vm_thread();
4876   if (thread != NULL) thread->verify();
4877 }