1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_bsd.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_bsd.inline.hpp"
  40 #include "os_share_bsd.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/objectMonitor.hpp"
  53 #include "runtime/orderAccess.inline.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "semaphore_bsd.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/decoder.hpp"
  67 #include "utilities/defaultStream.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/growableArray.hpp"
  70 #include "utilities/vmError.hpp"
  71 
  72 // put OS-includes here
  73 # include <sys/types.h>
  74 # include <sys/mman.h>
  75 # include <sys/stat.h>
  76 # include <sys/select.h>
  77 # include <pthread.h>
  78 # include <signal.h>
  79 # include <errno.h>
  80 # include <dlfcn.h>
  81 # include <stdio.h>
  82 # include <unistd.h>
  83 # include <sys/resource.h>
  84 # include <pthread.h>
  85 # include <sys/stat.h>
  86 # include <sys/time.h>
  87 # include <sys/times.h>
  88 # include <sys/utsname.h>
  89 # include <sys/socket.h>
  90 # include <sys/wait.h>
  91 # include <time.h>
  92 # include <pwd.h>
  93 # include <poll.h>
  94 # include <semaphore.h>
  95 # include <fcntl.h>
  96 # include <string.h>
  97 # include <sys/param.h>
  98 # include <sys/sysctl.h>
  99 # include <sys/ipc.h>
 100 # include <sys/shm.h>
 101 #ifndef __APPLE__
 102 # include <link.h>
 103 #endif
 104 # include <stdint.h>
 105 # include <inttypes.h>
 106 # include <sys/ioctl.h>
 107 # include <sys/syscall.h>
 108 
 109 #if defined(__FreeBSD__) || defined(__NetBSD__)
 110   #include <elf.h>
 111 #endif
 112 
 113 #ifdef __APPLE__
 114   #include <mach/mach.h> // semaphore_* API
 115   #include <mach-o/dyld.h>
 116   #include <sys/proc_info.h>
 117   #include <objc/objc-auto.h>
 118 #endif
 119 
 120 #ifndef MAP_ANONYMOUS
 121   #define MAP_ANONYMOUS MAP_ANON
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 // for timer info max values which include all bits
 127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 128 
 129 #define LARGEPAGES_BIT (1 << 6)
 130 
 131 ////////////////////////////////////////////////////////////////////////////////
 132 // global variables
 133 julong os::Bsd::_physical_memory = 0;
 134 
 135 #ifdef __APPLE__
 136 mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
 137 volatile uint64_t         os::Bsd::_max_abstime   = 0;
 138 #else
 139 int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 140 #endif
 141 pthread_t os::Bsd::_main_thread;
 142 int os::Bsd::_page_size = -1;
 143 
 144 static jlong initial_time_count=0;
 145 
 146 static int clock_tics_per_sec = 100;
 147 
 148 // For diagnostics to print a message once. see run_periodic_checks
 149 static sigset_t check_signal_done;
 150 static bool check_signals = true;
 151 
 152 static pid_t _initial_pid = 0;
 153 
 154 // Signal number used to suspend/resume a thread
 155 
 156 // do not use any signal number less than SIGSEGV, see 4355769
 157 static int SR_signum = SIGUSR2;
 158 sigset_t SR_sigset;
 159 
 160 
 161 ////////////////////////////////////////////////////////////////////////////////
 162 // utility functions
 163 
 164 static int SR_initialize();
 165 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 166 
 167 julong os::available_memory() {
 168   return Bsd::available_memory();
 169 }
 170 
 171 // available here means free
 172 julong os::Bsd::available_memory() {
 173   uint64_t available = physical_memory() >> 2;
 174 #ifdef __APPLE__
 175   mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
 176   vm_statistics64_data_t vmstat;
 177   kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
 178                                          (host_info64_t)&vmstat, &count);
 179   assert(kerr == KERN_SUCCESS,
 180          "host_statistics64 failed - check mach_host_self() and count");
 181   if (kerr == KERN_SUCCESS) {
 182     available = vmstat.free_count * os::vm_page_size();
 183   }
 184 #endif
 185   return available;
 186 }
 187 
 188 julong os::physical_memory() {
 189   return Bsd::physical_memory();
 190 }
 191 
 192 // Return true if user is running as root.
 193 
 194 bool os::have_special_privileges() {
 195   static bool init = false;
 196   static bool privileges = false;
 197   if (!init) {
 198     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 199     init = true;
 200   }
 201   return privileges;
 202 }
 203 
 204 
 205 
 206 // Cpu architecture string
 207 #if   defined(ZERO)
 208 static char cpu_arch[] = ZERO_LIBARCH;
 209 #elif defined(IA64)
 210 static char cpu_arch[] = "ia64";
 211 #elif defined(IA32)
 212 static char cpu_arch[] = "i386";
 213 #elif defined(AMD64)
 214 static char cpu_arch[] = "amd64";
 215 #elif defined(ARM)
 216 static char cpu_arch[] = "arm";
 217 #elif defined(PPC32)
 218 static char cpu_arch[] = "ppc";
 219 #elif defined(SPARC)
 220   #ifdef _LP64
 221 static char cpu_arch[] = "sparcv9";
 222   #else
 223 static char cpu_arch[] = "sparc";
 224   #endif
 225 #else
 226   #error Add appropriate cpu_arch setting
 227 #endif
 228 
 229 // Compiler variant
 230 #ifdef COMPILER2
 231   #define COMPILER_VARIANT "server"
 232 #else
 233   #define COMPILER_VARIANT "client"
 234 #endif
 235 
 236 
 237 void os::Bsd::initialize_system_info() {
 238   int mib[2];
 239   size_t len;
 240   int cpu_val;
 241   julong mem_val;
 242 
 243   // get processors count via hw.ncpus sysctl
 244   mib[0] = CTL_HW;
 245   mib[1] = HW_NCPU;
 246   len = sizeof(cpu_val);
 247   if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
 248     assert(len == sizeof(cpu_val), "unexpected data size");
 249     set_processor_count(cpu_val);
 250   } else {
 251     set_processor_count(1);   // fallback
 252   }
 253 
 254   // get physical memory via hw.memsize sysctl (hw.memsize is used
 255   // since it returns a 64 bit value)
 256   mib[0] = CTL_HW;
 257 
 258 #if defined (HW_MEMSIZE) // Apple
 259   mib[1] = HW_MEMSIZE;
 260 #elif defined(HW_PHYSMEM) // Most of BSD
 261   mib[1] = HW_PHYSMEM;
 262 #elif defined(HW_REALMEM) // Old FreeBSD
 263   mib[1] = HW_REALMEM;
 264 #else
 265   #error No ways to get physmem
 266 #endif
 267 
 268   len = sizeof(mem_val);
 269   if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
 270     assert(len == sizeof(mem_val), "unexpected data size");
 271     _physical_memory = mem_val;
 272   } else {
 273     _physical_memory = 256 * 1024 * 1024;       // fallback (XXXBSD?)
 274   }
 275 
 276 #ifdef __OpenBSD__
 277   {
 278     // limit _physical_memory memory view on OpenBSD since
 279     // datasize rlimit restricts us anyway.
 280     struct rlimit limits;
 281     getrlimit(RLIMIT_DATA, &limits);
 282     _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
 283   }
 284 #endif
 285 }
 286 
 287 #ifdef __APPLE__
 288 static const char *get_home() {
 289   const char *home_dir = ::getenv("HOME");
 290   if ((home_dir == NULL) || (*home_dir == '\0')) {
 291     struct passwd *passwd_info = getpwuid(geteuid());
 292     if (passwd_info != NULL) {
 293       home_dir = passwd_info->pw_dir;
 294     }
 295   }
 296 
 297   return home_dir;
 298 }
 299 #endif
 300 
 301 void os::init_system_properties_values() {
 302   // The next steps are taken in the product version:
 303   //
 304   // Obtain the JAVA_HOME value from the location of libjvm.so.
 305   // This library should be located at:
 306   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 307   //
 308   // If "/jre/lib/" appears at the right place in the path, then we
 309   // assume libjvm.so is installed in a JDK and we use this path.
 310   //
 311   // Otherwise exit with message: "Could not create the Java virtual machine."
 312   //
 313   // The following extra steps are taken in the debugging version:
 314   //
 315   // If "/jre/lib/" does NOT appear at the right place in the path
 316   // instead of exit check for $JAVA_HOME environment variable.
 317   //
 318   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 319   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 320   // it looks like libjvm.so is installed there
 321   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 322   //
 323   // Otherwise exit.
 324   //
 325   // Important note: if the location of libjvm.so changes this
 326   // code needs to be changed accordingly.
 327 
 328   // See ld(1):
 329   //      The linker uses the following search paths to locate required
 330   //      shared libraries:
 331   //        1: ...
 332   //        ...
 333   //        7: The default directories, normally /lib and /usr/lib.
 334 #ifndef DEFAULT_LIBPATH
 335   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 336 #endif
 337 
 338 // Base path of extensions installed on the system.
 339 #define SYS_EXT_DIR     "/usr/java/packages"
 340 #define EXTENSIONS_DIR  "/lib/ext"
 341 
 342 #ifndef __APPLE__
 343 
 344   // Buffer that fits several sprintfs.
 345   // Note that the space for the colon and the trailing null are provided
 346   // by the nulls included by the sizeof operator.
 347   const size_t bufsize =
 348     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 349          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 350   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 351 
 352   // sysclasspath, java_home, dll_dir
 353   {
 354     char *pslash;
 355     os::jvm_path(buf, bufsize);
 356 
 357     // Found the full path to libjvm.so.
 358     // Now cut the path to <java_home>/jre if we can.
 359     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 360     pslash = strrchr(buf, '/');
 361     if (pslash != NULL) {
 362       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 363     }
 364     Arguments::set_dll_dir(buf);
 365 
 366     if (pslash != NULL) {
 367       pslash = strrchr(buf, '/');
 368       if (pslash != NULL) {
 369         *pslash = '\0';          // Get rid of /<arch>.
 370         pslash = strrchr(buf, '/');
 371         if (pslash != NULL) {
 372           *pslash = '\0';        // Get rid of /lib.
 373         }
 374       }
 375     }
 376     Arguments::set_java_home(buf);
 377     set_boot_path('/', ':');
 378   }
 379 
 380   // Where to look for native libraries.
 381   //
 382   // Note: Due to a legacy implementation, most of the library path
 383   // is set in the launcher. This was to accomodate linking restrictions
 384   // on legacy Bsd implementations (which are no longer supported).
 385   // Eventually, all the library path setting will be done here.
 386   //
 387   // However, to prevent the proliferation of improperly built native
 388   // libraries, the new path component /usr/java/packages is added here.
 389   // Eventually, all the library path setting will be done here.
 390   {
 391     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 392     // should always exist (until the legacy problem cited above is
 393     // addressed).
 394     const char *v = ::getenv("LD_LIBRARY_PATH");
 395     const char *v_colon = ":";
 396     if (v == NULL) { v = ""; v_colon = ""; }
 397     // That's +1 for the colon and +1 for the trailing '\0'.
 398     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 399                                                      strlen(v) + 1 +
 400                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 401                                                      mtInternal);
 402     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 403     Arguments::set_library_path(ld_library_path);
 404     FREE_C_HEAP_ARRAY(char, ld_library_path);
 405   }
 406 
 407   // Extensions directories.
 408   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 409   Arguments::set_ext_dirs(buf);
 410 
 411   FREE_C_HEAP_ARRAY(char, buf);
 412 
 413 #else // __APPLE__
 414 
 415   #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
 416   #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
 417 
 418   const char *user_home_dir = get_home();
 419   // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
 420   size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
 421     sizeof(SYS_EXTENSIONS_DIRS);
 422 
 423   // Buffer that fits several sprintfs.
 424   // Note that the space for the colon and the trailing null are provided
 425   // by the nulls included by the sizeof operator.
 426   const size_t bufsize =
 427     MAX2((size_t)MAXPATHLEN,  // for dll_dir & friends.
 428          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size); // extensions dir
 429   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 430 
 431   // sysclasspath, java_home, dll_dir
 432   {
 433     char *pslash;
 434     os::jvm_path(buf, bufsize);
 435 
 436     // Found the full path to libjvm.so.
 437     // Now cut the path to <java_home>/jre if we can.
 438     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 439     pslash = strrchr(buf, '/');
 440     if (pslash != NULL) {
 441       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 442     }
 443 #ifdef STATIC_BUILD
 444     strcat(buf, "/lib");
 445 #endif
 446 
 447     Arguments::set_dll_dir(buf);
 448 
 449     if (pslash != NULL) {
 450       pslash = strrchr(buf, '/');
 451       if (pslash != NULL) {
 452         *pslash = '\0';          // Get rid of /lib.
 453       }
 454     }
 455     Arguments::set_java_home(buf);
 456     set_boot_path('/', ':');
 457   }
 458 
 459   // Where to look for native libraries.
 460   //
 461   // Note: Due to a legacy implementation, most of the library path
 462   // is set in the launcher. This was to accomodate linking restrictions
 463   // on legacy Bsd implementations (which are no longer supported).
 464   // Eventually, all the library path setting will be done here.
 465   //
 466   // However, to prevent the proliferation of improperly built native
 467   // libraries, the new path component /usr/java/packages is added here.
 468   // Eventually, all the library path setting will be done here.
 469   {
 470     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 471     // should always exist (until the legacy problem cited above is
 472     // addressed).
 473     // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
 474     // can specify a directory inside an app wrapper
 475     const char *l = ::getenv("JAVA_LIBRARY_PATH");
 476     const char *l_colon = ":";
 477     if (l == NULL) { l = ""; l_colon = ""; }
 478 
 479     const char *v = ::getenv("DYLD_LIBRARY_PATH");
 480     const char *v_colon = ":";
 481     if (v == NULL) { v = ""; v_colon = ""; }
 482 
 483     // Apple's Java6 has "." at the beginning of java.library.path.
 484     // OpenJDK on Windows has "." at the end of java.library.path.
 485     // OpenJDK on Linux and Solaris don't have "." in java.library.path
 486     // at all. To ease the transition from Apple's Java6 to OpenJDK7,
 487     // "." is appended to the end of java.library.path. Yes, this
 488     // could cause a change in behavior, but Apple's Java6 behavior
 489     // can be achieved by putting "." at the beginning of the
 490     // JAVA_LIBRARY_PATH environment variable.
 491     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 492                                                      strlen(v) + 1 + strlen(l) + 1 +
 493                                                      system_ext_size + 3,
 494                                                      mtInternal);
 495     sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
 496             v, v_colon, l, l_colon, user_home_dir);
 497     Arguments::set_library_path(ld_library_path);
 498     FREE_C_HEAP_ARRAY(char, ld_library_path);
 499   }
 500 
 501   // Extensions directories.
 502   //
 503   // Note that the space for the colon and the trailing null are provided
 504   // by the nulls included by the sizeof operator (so actually one byte more
 505   // than necessary is allocated).
 506   sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
 507           user_home_dir, Arguments::get_java_home());
 508   Arguments::set_ext_dirs(buf);
 509 
 510   FREE_C_HEAP_ARRAY(char, buf);
 511 
 512 #undef SYS_EXTENSIONS_DIR
 513 #undef SYS_EXTENSIONS_DIRS
 514 
 515 #endif // __APPLE__
 516 
 517 #undef SYS_EXT_DIR
 518 #undef EXTENSIONS_DIR
 519 }
 520 
 521 ////////////////////////////////////////////////////////////////////////////////
 522 // breakpoint support
 523 
 524 void os::breakpoint() {
 525   BREAKPOINT;
 526 }
 527 
 528 extern "C" void breakpoint() {
 529   // use debugger to set breakpoint here
 530 }
 531 
 532 ////////////////////////////////////////////////////////////////////////////////
 533 // signal support
 534 
 535 debug_only(static bool signal_sets_initialized = false);
 536 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 537 
 538 bool os::Bsd::is_sig_ignored(int sig) {
 539   struct sigaction oact;
 540   sigaction(sig, (struct sigaction*)NULL, &oact);
 541   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 542                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 543   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 544     return true;
 545   } else {
 546     return false;
 547   }
 548 }
 549 
 550 void os::Bsd::signal_sets_init() {
 551   // Should also have an assertion stating we are still single-threaded.
 552   assert(!signal_sets_initialized, "Already initialized");
 553   // Fill in signals that are necessarily unblocked for all threads in
 554   // the VM. Currently, we unblock the following signals:
 555   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 556   //                         by -Xrs (=ReduceSignalUsage));
 557   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 558   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 559   // the dispositions or masks wrt these signals.
 560   // Programs embedding the VM that want to use the above signals for their
 561   // own purposes must, at this time, use the "-Xrs" option to prevent
 562   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 563   // (See bug 4345157, and other related bugs).
 564   // In reality, though, unblocking these signals is really a nop, since
 565   // these signals are not blocked by default.
 566   sigemptyset(&unblocked_sigs);
 567   sigemptyset(&allowdebug_blocked_sigs);
 568   sigaddset(&unblocked_sigs, SIGILL);
 569   sigaddset(&unblocked_sigs, SIGSEGV);
 570   sigaddset(&unblocked_sigs, SIGBUS);
 571   sigaddset(&unblocked_sigs, SIGFPE);
 572   sigaddset(&unblocked_sigs, SR_signum);
 573 
 574   if (!ReduceSignalUsage) {
 575     if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 576       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 577       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 578     }
 579     if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 580       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 581       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 582     }
 583     if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 584       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 585       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 586     }
 587   }
 588   // Fill in signals that are blocked by all but the VM thread.
 589   sigemptyset(&vm_sigs);
 590   if (!ReduceSignalUsage) {
 591     sigaddset(&vm_sigs, BREAK_SIGNAL);
 592   }
 593   debug_only(signal_sets_initialized = true);
 594 
 595 }
 596 
 597 // These are signals that are unblocked while a thread is running Java.
 598 // (For some reason, they get blocked by default.)
 599 sigset_t* os::Bsd::unblocked_signals() {
 600   assert(signal_sets_initialized, "Not initialized");
 601   return &unblocked_sigs;
 602 }
 603 
 604 // These are the signals that are blocked while a (non-VM) thread is
 605 // running Java. Only the VM thread handles these signals.
 606 sigset_t* os::Bsd::vm_signals() {
 607   assert(signal_sets_initialized, "Not initialized");
 608   return &vm_sigs;
 609 }
 610 
 611 // These are signals that are blocked during cond_wait to allow debugger in
 612 sigset_t* os::Bsd::allowdebug_blocked_signals() {
 613   assert(signal_sets_initialized, "Not initialized");
 614   return &allowdebug_blocked_sigs;
 615 }
 616 
 617 void os::Bsd::hotspot_sigmask(Thread* thread) {
 618 
 619   //Save caller's signal mask before setting VM signal mask
 620   sigset_t caller_sigmask;
 621   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 622 
 623   OSThread* osthread = thread->osthread();
 624   osthread->set_caller_sigmask(caller_sigmask);
 625 
 626   pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
 627 
 628   if (!ReduceSignalUsage) {
 629     if (thread->is_VM_thread()) {
 630       // Only the VM thread handles BREAK_SIGNAL ...
 631       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 632     } else {
 633       // ... all other threads block BREAK_SIGNAL
 634       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 635     }
 636   }
 637 }
 638 
 639 
 640 //////////////////////////////////////////////////////////////////////////////
 641 // create new thread
 642 
 643 #ifdef __APPLE__
 644 // library handle for calling objc_registerThreadWithCollector()
 645 // without static linking to the libobjc library
 646   #define OBJC_LIB "/usr/lib/libobjc.dylib"
 647   #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
 648 typedef void (*objc_registerThreadWithCollector_t)();
 649 extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
 650 objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
 651 #endif
 652 
 653 #ifdef __APPLE__
 654 static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
 655   // Additional thread_id used to correlate threads in SA
 656   thread_identifier_info_data_t     m_ident_info;
 657   mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
 658 
 659   thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
 660               (thread_info_t) &m_ident_info, &count);
 661 
 662   return m_ident_info.thread_id;
 663 }
 664 #endif
 665 
 666 // Thread start routine for all newly created threads
 667 static void *thread_native_entry(Thread *thread) {
 668   // Try to randomize the cache line index of hot stack frames.
 669   // This helps when threads of the same stack traces evict each other's
 670   // cache lines. The threads can be either from the same JVM instance, or
 671   // from different JVM instances. The benefit is especially true for
 672   // processors with hyperthreading technology.
 673   static int counter = 0;
 674   int pid = os::current_process_id();
 675   alloca(((pid ^ counter++) & 7) * 128);
 676 
 677   thread->initialize_thread_current();
 678 
 679   OSThread* osthread = thread->osthread();
 680   Monitor* sync = osthread->startThread_lock();
 681 
 682   osthread->set_thread_id(os::Bsd::gettid());
 683 
 684   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 685     os::current_thread_id(), (uintx) pthread_self());
 686 
 687 #ifdef __APPLE__
 688   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 689   guarantee(unique_thread_id != 0, "unique thread id was not found");
 690   osthread->set_unique_thread_id(unique_thread_id);
 691 #endif
 692   // initialize signal mask for this thread
 693   os::Bsd::hotspot_sigmask(thread);
 694 
 695   // initialize floating point control register
 696   os::Bsd::init_thread_fpu_state();
 697 
 698 #ifdef __APPLE__
 699   // register thread with objc gc
 700   if (objc_registerThreadWithCollectorFunction != NULL) {
 701     objc_registerThreadWithCollectorFunction();
 702   }
 703 #endif
 704 
 705   // handshaking with parent thread
 706   {
 707     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 708 
 709     // notify parent thread
 710     osthread->set_state(INITIALIZED);
 711     sync->notify_all();
 712 
 713     // wait until os::start_thread()
 714     while (osthread->get_state() == INITIALIZED) {
 715       sync->wait(Mutex::_no_safepoint_check_flag);
 716     }
 717   }
 718 
 719   // call one more level start routine
 720   thread->run();
 721 
 722   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 723     os::current_thread_id(), (uintx) pthread_self());
 724 
 725   // If a thread has not deleted itself ("delete this") as part of its
 726   // termination sequence, we have to ensure thread-local-storage is
 727   // cleared before we actually terminate. No threads should ever be
 728   // deleted asynchronously with respect to their termination.
 729   if (Thread::current_or_null_safe() != NULL) {
 730     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 731     thread->clear_thread_current();
 732   }
 733 
 734   return 0;
 735 }
 736 
 737 bool os::create_thread(Thread* thread, ThreadType thr_type,
 738                        size_t req_stack_size) {
 739   assert(thread->osthread() == NULL, "caller responsible");
 740 
 741   // Allocate the OSThread object
 742   OSThread* osthread = new OSThread(NULL, NULL);
 743   if (osthread == NULL) {
 744     return false;
 745   }
 746 
 747   // set the correct thread state
 748   osthread->set_thread_type(thr_type);
 749 
 750   // Initial state is ALLOCATED but not INITIALIZED
 751   osthread->set_state(ALLOCATED);
 752 
 753   thread->set_osthread(osthread);
 754 
 755   // init thread attributes
 756   pthread_attr_t attr;
 757   pthread_attr_init(&attr);
 758   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 759 
 760   // calculate stack size if it's not specified by caller
 761   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 762   int status = pthread_attr_setstacksize(&attr, stack_size);
 763   assert_status(status == 0, status, "pthread_attr_setstacksize");
 764 
 765   ThreadState state;
 766 
 767   {
 768     pthread_t tid;
 769     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 770 
 771     char buf[64];
 772     if (ret == 0) {
 773       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 774         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 775     } else {
 776       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 777         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 778     }
 779 
 780     pthread_attr_destroy(&attr);
 781 
 782     if (ret != 0) {
 783       // Need to clean up stuff we've allocated so far
 784       thread->set_osthread(NULL);
 785       delete osthread;
 786       return false;
 787     }
 788 
 789     // Store pthread info into the OSThread
 790     osthread->set_pthread_id(tid);
 791 
 792     // Wait until child thread is either initialized or aborted
 793     {
 794       Monitor* sync_with_child = osthread->startThread_lock();
 795       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 796       while ((state = osthread->get_state()) == ALLOCATED) {
 797         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 798       }
 799     }
 800 
 801   }
 802 
 803   // Aborted due to thread limit being reached
 804   if (state == ZOMBIE) {
 805     thread->set_osthread(NULL);
 806     delete osthread;
 807     return false;
 808   }
 809 
 810   // The thread is returned suspended (in state INITIALIZED),
 811   // and is started higher up in the call chain
 812   assert(state == INITIALIZED, "race condition");
 813   return true;
 814 }
 815 
 816 /////////////////////////////////////////////////////////////////////////////
 817 // attach existing thread
 818 
 819 // bootstrap the main thread
 820 bool os::create_main_thread(JavaThread* thread) {
 821   assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
 822   return create_attached_thread(thread);
 823 }
 824 
 825 bool os::create_attached_thread(JavaThread* thread) {
 826 #ifdef ASSERT
 827   thread->verify_not_published();
 828 #endif
 829 
 830   // Allocate the OSThread object
 831   OSThread* osthread = new OSThread(NULL, NULL);
 832 
 833   if (osthread == NULL) {
 834     return false;
 835   }
 836 
 837   osthread->set_thread_id(os::Bsd::gettid());
 838 
 839   // Store pthread info into the OSThread
 840 #ifdef __APPLE__
 841   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 842   guarantee(unique_thread_id != 0, "just checking");
 843   osthread->set_unique_thread_id(unique_thread_id);
 844 #endif
 845   osthread->set_pthread_id(::pthread_self());
 846 
 847   // initialize floating point control register
 848   os::Bsd::init_thread_fpu_state();
 849 
 850   // Initial thread state is RUNNABLE
 851   osthread->set_state(RUNNABLE);
 852 
 853   thread->set_osthread(osthread);
 854 
 855   // initialize signal mask for this thread
 856   // and save the caller's signal mask
 857   os::Bsd::hotspot_sigmask(thread);
 858 
 859   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 860     os::current_thread_id(), (uintx) pthread_self());
 861 
 862   return true;
 863 }
 864 
 865 void os::pd_start_thread(Thread* thread) {
 866   OSThread * osthread = thread->osthread();
 867   assert(osthread->get_state() != INITIALIZED, "just checking");
 868   Monitor* sync_with_child = osthread->startThread_lock();
 869   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 870   sync_with_child->notify();
 871 }
 872 
 873 // Free Bsd resources related to the OSThread
 874 void os::free_thread(OSThread* osthread) {
 875   assert(osthread != NULL, "osthread not set");
 876 
 877   // We are told to free resources of the argument thread,
 878   // but we can only really operate on the current thread.
 879   assert(Thread::current()->osthread() == osthread,
 880          "os::free_thread but not current thread");
 881 
 882   // Restore caller's signal mask
 883   sigset_t sigmask = osthread->caller_sigmask();
 884   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 885 
 886   delete osthread;
 887 }
 888 
 889 ////////////////////////////////////////////////////////////////////////////////
 890 // time support
 891 
 892 // Time since start-up in seconds to a fine granularity.
 893 // Used by VMSelfDestructTimer and the MemProfiler.
 894 double os::elapsedTime() {
 895 
 896   return ((double)os::elapsed_counter()) / os::elapsed_frequency();
 897 }
 898 
 899 jlong os::elapsed_counter() {
 900   return javaTimeNanos() - initial_time_count;
 901 }
 902 
 903 jlong os::elapsed_frequency() {
 904   return NANOSECS_PER_SEC; // nanosecond resolution
 905 }
 906 
 907 bool os::supports_vtime() { return true; }
 908 bool os::enable_vtime()   { return false; }
 909 bool os::vtime_enabled()  { return false; }
 910 
 911 double os::elapsedVTime() {
 912   // better than nothing, but not much
 913   return elapsedTime();
 914 }
 915 
 916 jlong os::javaTimeMillis() {
 917   timeval time;
 918   int status = gettimeofday(&time, NULL);
 919   assert(status != -1, "bsd error");
 920   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
 921 }
 922 
 923 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 924   timeval time;
 925   int status = gettimeofday(&time, NULL);
 926   assert(status != -1, "bsd error");
 927   seconds = jlong(time.tv_sec);
 928   nanos = jlong(time.tv_usec) * 1000;
 929 }
 930 
 931 #ifndef __APPLE__
 932   #ifndef CLOCK_MONOTONIC
 933     #define CLOCK_MONOTONIC (1)
 934   #endif
 935 #endif
 936 
 937 #ifdef __APPLE__
 938 void os::Bsd::clock_init() {
 939   mach_timebase_info(&_timebase_info);
 940 }
 941 #else
 942 void os::Bsd::clock_init() {
 943   struct timespec res;
 944   struct timespec tp;
 945   if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
 946       ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
 947     // yes, monotonic clock is supported
 948     _clock_gettime = ::clock_gettime;
 949   }
 950 }
 951 #endif
 952 
 953 
 954 
 955 #ifdef __APPLE__
 956 
 957 jlong os::javaTimeNanos() {
 958   const uint64_t tm = mach_absolute_time();
 959   const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
 960   const uint64_t prev = Bsd::_max_abstime;
 961   if (now <= prev) {
 962     return prev;   // same or retrograde time;
 963   }
 964   const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
 965   assert(obsv >= prev, "invariant");   // Monotonicity
 966   // If the CAS succeeded then we're done and return "now".
 967   // If the CAS failed and the observed value "obsv" is >= now then
 968   // we should return "obsv".  If the CAS failed and now > obsv > prv then
 969   // some other thread raced this thread and installed a new value, in which case
 970   // we could either (a) retry the entire operation, (b) retry trying to install now
 971   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
 972   // we might discard a higher "now" value in deference to a slightly lower but freshly
 973   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
 974   // to (a) or (b) -- and greatly reduces coherence traffic.
 975   // We might also condition (c) on the magnitude of the delta between obsv and now.
 976   // Avoiding excessive CAS operations to hot RW locations is critical.
 977   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
 978   return (prev == obsv) ? now : obsv;
 979 }
 980 
 981 #else // __APPLE__
 982 
 983 jlong os::javaTimeNanos() {
 984   if (os::supports_monotonic_clock()) {
 985     struct timespec tp;
 986     int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
 987     assert(status == 0, "gettime error");
 988     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
 989     return result;
 990   } else {
 991     timeval time;
 992     int status = gettimeofday(&time, NULL);
 993     assert(status != -1, "bsd error");
 994     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
 995     return 1000 * usecs;
 996   }
 997 }
 998 
 999 #endif // __APPLE__
1000 
1001 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1002   if (os::supports_monotonic_clock()) {
1003     info_ptr->max_value = ALL_64_BITS;
1004 
1005     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1006     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1007     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1008   } else {
1009     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1010     info_ptr->max_value = ALL_64_BITS;
1011 
1012     // gettimeofday is a real time clock so it skips
1013     info_ptr->may_skip_backward = true;
1014     info_ptr->may_skip_forward = true;
1015   }
1016 
1017   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1018 }
1019 
1020 // Return the real, user, and system times in seconds from an
1021 // arbitrary fixed point in the past.
1022 bool os::getTimesSecs(double* process_real_time,
1023                       double* process_user_time,
1024                       double* process_system_time) {
1025   struct tms ticks;
1026   clock_t real_ticks = times(&ticks);
1027 
1028   if (real_ticks == (clock_t) (-1)) {
1029     return false;
1030   } else {
1031     double ticks_per_second = (double) clock_tics_per_sec;
1032     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1033     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1034     *process_real_time = ((double) real_ticks) / ticks_per_second;
1035 
1036     return true;
1037   }
1038 }
1039 
1040 
1041 char * os::local_time_string(char *buf, size_t buflen) {
1042   struct tm t;
1043   time_t long_time;
1044   time(&long_time);
1045   localtime_r(&long_time, &t);
1046   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1047                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1048                t.tm_hour, t.tm_min, t.tm_sec);
1049   return buf;
1050 }
1051 
1052 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1053   return localtime_r(clock, res);
1054 }
1055 
1056 ////////////////////////////////////////////////////////////////////////////////
1057 // runtime exit support
1058 
1059 // Note: os::shutdown() might be called very early during initialization, or
1060 // called from signal handler. Before adding something to os::shutdown(), make
1061 // sure it is async-safe and can handle partially initialized VM.
1062 void os::shutdown() {
1063 
1064   // allow PerfMemory to attempt cleanup of any persistent resources
1065   perfMemory_exit();
1066 
1067   // needs to remove object in file system
1068   AttachListener::abort();
1069 
1070   // flush buffered output, finish log files
1071   ostream_abort();
1072 
1073   // Check for abort hook
1074   abort_hook_t abort_hook = Arguments::abort_hook();
1075   if (abort_hook != NULL) {
1076     abort_hook();
1077   }
1078 
1079 }
1080 
1081 // Note: os::abort() might be called very early during initialization, or
1082 // called from signal handler. Before adding something to os::abort(), make
1083 // sure it is async-safe and can handle partially initialized VM.
1084 void os::abort(bool dump_core, void* siginfo, const void* context) {
1085   os::shutdown();
1086   if (dump_core) {
1087 #ifndef PRODUCT
1088     fdStream out(defaultStream::output_fd());
1089     out.print_raw("Current thread is ");
1090     char buf[16];
1091     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1092     out.print_raw_cr(buf);
1093     out.print_raw_cr("Dumping core ...");
1094 #endif
1095     ::abort(); // dump core
1096   }
1097 
1098   ::exit(1);
1099 }
1100 
1101 // Die immediately, no exit hook, no abort hook, no cleanup.
1102 void os::die() {
1103   // _exit() on BsdThreads only kills current thread
1104   ::abort();
1105 }
1106 
1107 // This method is a copy of JDK's sysGetLastErrorString
1108 // from src/solaris/hpi/src/system_md.c
1109 
1110 size_t os::lasterror(char *buf, size_t len) {
1111   if (errno == 0)  return 0;
1112 
1113   const char *s = os::strerror(errno);
1114   size_t n = ::strlen(s);
1115   if (n >= len) {
1116     n = len - 1;
1117   }
1118   ::strncpy(buf, s, n);
1119   buf[n] = '\0';
1120   return n;
1121 }
1122 
1123 // Information of current thread in variety of formats
1124 pid_t os::Bsd::gettid() {
1125   int retval = -1;
1126 
1127 #ifdef __APPLE__ //XNU kernel
1128   // despite the fact mach port is actually not a thread id use it
1129   // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1130   retval = ::pthread_mach_thread_np(::pthread_self());
1131   guarantee(retval != 0, "just checking");
1132   return retval;
1133 
1134 #else
1135   #ifdef __FreeBSD__
1136   retval = syscall(SYS_thr_self);
1137   #else
1138     #ifdef __OpenBSD__
1139   retval = syscall(SYS_getthrid);
1140     #else
1141       #ifdef __NetBSD__
1142   retval = (pid_t) syscall(SYS__lwp_self);
1143       #endif
1144     #endif
1145   #endif
1146 #endif
1147 
1148   if (retval == -1) {
1149     return getpid();
1150   }
1151 }
1152 
1153 intx os::current_thread_id() {
1154 #ifdef __APPLE__
1155   return (intx)::pthread_mach_thread_np(::pthread_self());
1156 #else
1157   return (intx)::pthread_self();
1158 #endif
1159 }
1160 
1161 int os::current_process_id() {
1162 
1163   // Under the old bsd thread library, bsd gives each thread
1164   // its own process id. Because of this each thread will return
1165   // a different pid if this method were to return the result
1166   // of getpid(2). Bsd provides no api that returns the pid
1167   // of the launcher thread for the vm. This implementation
1168   // returns a unique pid, the pid of the launcher thread
1169   // that starts the vm 'process'.
1170 
1171   // Under the NPTL, getpid() returns the same pid as the
1172   // launcher thread rather than a unique pid per thread.
1173   // Use gettid() if you want the old pre NPTL behaviour.
1174 
1175   // if you are looking for the result of a call to getpid() that
1176   // returns a unique pid for the calling thread, then look at the
1177   // OSThread::thread_id() method in osThread_bsd.hpp file
1178 
1179   return (int)(_initial_pid ? _initial_pid : getpid());
1180 }
1181 
1182 // DLL functions
1183 
1184 #define JNI_LIB_PREFIX "lib"
1185 #ifdef __APPLE__
1186   #define JNI_LIB_SUFFIX ".dylib"
1187 #else
1188   #define JNI_LIB_SUFFIX ".so"
1189 #endif
1190 
1191 const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1192 
1193 // This must be hard coded because it's the system's temporary
1194 // directory not the java application's temp directory, ala java.io.tmpdir.
1195 #ifdef __APPLE__
1196 // macosx has a secure per-user temporary directory
1197 char temp_path_storage[PATH_MAX];
1198 const char* os::get_temp_directory() {
1199   static char *temp_path = NULL;
1200   if (temp_path == NULL) {
1201     int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1202     if (pathSize == 0 || pathSize > PATH_MAX) {
1203       strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1204     }
1205     temp_path = temp_path_storage;
1206   }
1207   return temp_path;
1208 }
1209 #else // __APPLE__
1210 const char* os::get_temp_directory() { return "/tmp"; }
1211 #endif // __APPLE__
1212 
1213 static bool file_exists(const char* filename) {
1214   struct stat statbuf;
1215   if (filename == NULL || strlen(filename) == 0) {
1216     return false;
1217   }
1218   return os::stat(filename, &statbuf) == 0;
1219 }
1220 
1221 bool os::dll_build_name(char* buffer, size_t buflen,
1222                         const char* pname, const char* fname) {
1223   bool retval = false;
1224   // Copied from libhpi
1225   const size_t pnamelen = pname ? strlen(pname) : 0;
1226 
1227   // Return error on buffer overflow.
1228   if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1229     return retval;
1230   }
1231 
1232   if (pnamelen == 0) {
1233     snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1234     retval = true;
1235   } else if (strchr(pname, *os::path_separator()) != NULL) {
1236     int n;
1237     char** pelements = split_path(pname, &n);
1238     if (pelements == NULL) {
1239       return false;
1240     }
1241     for (int i = 0; i < n; i++) {
1242       // Really shouldn't be NULL, but check can't hurt
1243       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1244         continue; // skip the empty path values
1245       }
1246       snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1247                pelements[i], fname);
1248       if (file_exists(buffer)) {
1249         retval = true;
1250         break;
1251       }
1252     }
1253     // release the storage
1254     for (int i = 0; i < n; i++) {
1255       if (pelements[i] != NULL) {
1256         FREE_C_HEAP_ARRAY(char, pelements[i]);
1257       }
1258     }
1259     if (pelements != NULL) {
1260       FREE_C_HEAP_ARRAY(char*, pelements);
1261     }
1262   } else {
1263     snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1264     retval = true;
1265   }
1266   return retval;
1267 }
1268 
1269 // check if addr is inside libjvm.so
1270 bool os::address_is_in_vm(address addr) {
1271   static address libjvm_base_addr;
1272   Dl_info dlinfo;
1273 
1274   if (libjvm_base_addr == NULL) {
1275     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1276       libjvm_base_addr = (address)dlinfo.dli_fbase;
1277     }
1278     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1279   }
1280 
1281   if (dladdr((void *)addr, &dlinfo) != 0) {
1282     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1283   }
1284 
1285   return false;
1286 }
1287 
1288 
1289 #define MACH_MAXSYMLEN 256
1290 
1291 bool os::dll_address_to_function_name(address addr, char *buf,
1292                                       int buflen, int *offset,
1293                                       bool demangle) {
1294   // buf is not optional, but offset is optional
1295   assert(buf != NULL, "sanity check");
1296 
1297   Dl_info dlinfo;
1298   char localbuf[MACH_MAXSYMLEN];
1299 
1300   if (dladdr((void*)addr, &dlinfo) != 0) {
1301     // see if we have a matching symbol
1302     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1303       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1304         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1305       }
1306       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1307       return true;
1308     }
1309     // no matching symbol so try for just file info
1310     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1311       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1312                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1313         return true;
1314       }
1315     }
1316 
1317     // Handle non-dynamic manually:
1318     if (dlinfo.dli_fbase != NULL &&
1319         Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1320                         dlinfo.dli_fbase)) {
1321       if (!(demangle && Decoder::demangle(localbuf, buf, buflen))) {
1322         jio_snprintf(buf, buflen, "%s", localbuf);
1323       }
1324       return true;
1325     }
1326   }
1327   buf[0] = '\0';
1328   if (offset != NULL) *offset = -1;
1329   return false;
1330 }
1331 
1332 // ported from solaris version
1333 bool os::dll_address_to_library_name(address addr, char* buf,
1334                                      int buflen, int* offset) {
1335   // buf is not optional, but offset is optional
1336   assert(buf != NULL, "sanity check");
1337 
1338   Dl_info dlinfo;
1339 
1340   if (dladdr((void*)addr, &dlinfo) != 0) {
1341     if (dlinfo.dli_fname != NULL) {
1342       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1343     }
1344     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1345       *offset = addr - (address)dlinfo.dli_fbase;
1346     }
1347     return true;
1348   }
1349 
1350   buf[0] = '\0';
1351   if (offset) *offset = -1;
1352   return false;
1353 }
1354 
1355 // Loads .dll/.so and
1356 // in case of error it checks if .dll/.so was built for the
1357 // same architecture as Hotspot is running on
1358 
1359 #ifdef __APPLE__
1360 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1361 #ifdef STATIC_BUILD
1362   return os::get_default_process_handle();
1363 #else
1364   void * result= ::dlopen(filename, RTLD_LAZY);
1365   if (result != NULL) {
1366     // Successful loading
1367     return result;
1368   }
1369 
1370   // Read system error message into ebuf
1371   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1372   ebuf[ebuflen-1]='\0';
1373 
1374   return NULL;
1375 #endif // STATIC_BUILD
1376 }
1377 #else
1378 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1379 #ifdef STATIC_BUILD
1380   return os::get_default_process_handle();
1381 #else
1382   void * result= ::dlopen(filename, RTLD_LAZY);
1383   if (result != NULL) {
1384     // Successful loading
1385     return result;
1386   }
1387 
1388   Elf32_Ehdr elf_head;
1389 
1390   // Read system error message into ebuf
1391   // It may or may not be overwritten below
1392   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1393   ebuf[ebuflen-1]='\0';
1394   int diag_msg_max_length=ebuflen-strlen(ebuf);
1395   char* diag_msg_buf=ebuf+strlen(ebuf);
1396 
1397   if (diag_msg_max_length==0) {
1398     // No more space in ebuf for additional diagnostics message
1399     return NULL;
1400   }
1401 
1402 
1403   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1404 
1405   if (file_descriptor < 0) {
1406     // Can't open library, report dlerror() message
1407     return NULL;
1408   }
1409 
1410   bool failed_to_read_elf_head=
1411     (sizeof(elf_head)!=
1412      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1413 
1414   ::close(file_descriptor);
1415   if (failed_to_read_elf_head) {
1416     // file i/o error - report dlerror() msg
1417     return NULL;
1418   }
1419 
1420   typedef struct {
1421     Elf32_Half  code;         // Actual value as defined in elf.h
1422     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1423     char        elf_class;    // 32 or 64 bit
1424     char        endianess;    // MSB or LSB
1425     char*       name;         // String representation
1426   } arch_t;
1427 
1428   #ifndef EM_486
1429     #define EM_486          6               /* Intel 80486 */
1430   #endif
1431 
1432   #ifndef EM_MIPS_RS3_LE
1433     #define EM_MIPS_RS3_LE  10              /* MIPS */
1434   #endif
1435 
1436   #ifndef EM_PPC64
1437     #define EM_PPC64        21              /* PowerPC64 */
1438   #endif
1439 
1440   #ifndef EM_S390
1441     #define EM_S390         22              /* IBM System/390 */
1442   #endif
1443 
1444   #ifndef EM_IA_64
1445     #define EM_IA_64        50              /* HP/Intel IA-64 */
1446   #endif
1447 
1448   #ifndef EM_X86_64
1449     #define EM_X86_64       62              /* AMD x86-64 */
1450   #endif
1451 
1452   static const arch_t arch_array[]={
1453     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1454     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1455     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1456     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1457     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1458     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1459     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1460     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1461     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1462     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1463     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1464     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1465     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1466     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1467     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1468     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1469   };
1470 
1471   #if  (defined IA32)
1472   static  Elf32_Half running_arch_code=EM_386;
1473   #elif   (defined AMD64)
1474   static  Elf32_Half running_arch_code=EM_X86_64;
1475   #elif  (defined IA64)
1476   static  Elf32_Half running_arch_code=EM_IA_64;
1477   #elif  (defined __sparc) && (defined _LP64)
1478   static  Elf32_Half running_arch_code=EM_SPARCV9;
1479   #elif  (defined __sparc) && (!defined _LP64)
1480   static  Elf32_Half running_arch_code=EM_SPARC;
1481   #elif  (defined __powerpc64__)
1482   static  Elf32_Half running_arch_code=EM_PPC64;
1483   #elif  (defined __powerpc__)
1484   static  Elf32_Half running_arch_code=EM_PPC;
1485   #elif  (defined ARM)
1486   static  Elf32_Half running_arch_code=EM_ARM;
1487   #elif  (defined S390)
1488   static  Elf32_Half running_arch_code=EM_S390;
1489   #elif  (defined ALPHA)
1490   static  Elf32_Half running_arch_code=EM_ALPHA;
1491   #elif  (defined MIPSEL)
1492   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1493   #elif  (defined PARISC)
1494   static  Elf32_Half running_arch_code=EM_PARISC;
1495   #elif  (defined MIPS)
1496   static  Elf32_Half running_arch_code=EM_MIPS;
1497   #elif  (defined M68K)
1498   static  Elf32_Half running_arch_code=EM_68K;
1499   #else
1500     #error Method os::dll_load requires that one of following is defined:\
1501          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1502   #endif
1503 
1504   // Identify compatability class for VM's architecture and library's architecture
1505   // Obtain string descriptions for architectures
1506 
1507   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1508   int running_arch_index=-1;
1509 
1510   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1511     if (running_arch_code == arch_array[i].code) {
1512       running_arch_index    = i;
1513     }
1514     if (lib_arch.code == arch_array[i].code) {
1515       lib_arch.compat_class = arch_array[i].compat_class;
1516       lib_arch.name         = arch_array[i].name;
1517     }
1518   }
1519 
1520   assert(running_arch_index != -1,
1521          "Didn't find running architecture code (running_arch_code) in arch_array");
1522   if (running_arch_index == -1) {
1523     // Even though running architecture detection failed
1524     // we may still continue with reporting dlerror() message
1525     return NULL;
1526   }
1527 
1528   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1529     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1530     return NULL;
1531   }
1532 
1533 #ifndef S390
1534   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1535     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1536     return NULL;
1537   }
1538 #endif // !S390
1539 
1540   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1541     if (lib_arch.name!=NULL) {
1542       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1543                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1544                  lib_arch.name, arch_array[running_arch_index].name);
1545     } else {
1546       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1547                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1548                  lib_arch.code,
1549                  arch_array[running_arch_index].name);
1550     }
1551   }
1552 
1553   return NULL;
1554 #endif // STATIC_BUILD
1555 }
1556 #endif // !__APPLE__
1557 
1558 void* os::get_default_process_handle() {
1559 #ifdef __APPLE__
1560   // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1561   // to avoid finding unexpected symbols on second (or later)
1562   // loads of a library.
1563   return (void*)::dlopen(NULL, RTLD_FIRST);
1564 #else
1565   return (void*)::dlopen(NULL, RTLD_LAZY);
1566 #endif
1567 }
1568 
1569 // XXX: Do we need a lock around this as per Linux?
1570 void* os::dll_lookup(void* handle, const char* name) {
1571   return dlsym(handle, name);
1572 }
1573 
1574 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1575   outputStream * out = (outputStream *) param;
1576   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1577   return 0;
1578 }
1579 
1580 void os::print_dll_info(outputStream *st) {
1581   st->print_cr("Dynamic libraries:");
1582   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1583     st->print_cr("Error: Cannot print dynamic libraries.");
1584   }
1585 }
1586 
1587 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1588 #ifdef RTLD_DI_LINKMAP
1589   Dl_info dli;
1590   void *handle;
1591   Link_map *map;
1592   Link_map *p;
1593 
1594   if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1595       dli.dli_fname == NULL) {
1596     return 1;
1597   }
1598   handle = dlopen(dli.dli_fname, RTLD_LAZY);
1599   if (handle == NULL) {
1600     return 1;
1601   }
1602   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1603   if (map == NULL) {
1604     dlclose(handle);
1605     return 1;
1606   }
1607 
1608   while (map->l_prev != NULL)
1609     map = map->l_prev;
1610 
1611   while (map != NULL) {
1612     // Value for top_address is returned as 0 since we don't have any information about module size
1613     if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1614       dlclose(handle);
1615       return 1;
1616     }
1617     map = map->l_next;
1618   }
1619 
1620   dlclose(handle);
1621 #elif defined(__APPLE__)
1622   for (uint32_t i = 1; i < _dyld_image_count(); i++) {
1623     // Value for top_address is returned as 0 since we don't have any information about module size
1624     if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
1625       return 1;
1626     }
1627   }
1628   return 0;
1629 #else
1630   return 1;
1631 #endif
1632 }
1633 
1634 void os::get_summary_os_info(char* buf, size_t buflen) {
1635   // These buffers are small because we want this to be brief
1636   // and not use a lot of stack while generating the hs_err file.
1637   char os[100];
1638   size_t size = sizeof(os);
1639   int mib_kern[] = { CTL_KERN, KERN_OSTYPE };
1640   if (sysctl(mib_kern, 2, os, &size, NULL, 0) < 0) {
1641 #ifdef __APPLE__
1642       strncpy(os, "Darwin", sizeof(os));
1643 #elif __OpenBSD__
1644       strncpy(os, "OpenBSD", sizeof(os));
1645 #else
1646       strncpy(os, "BSD", sizeof(os));
1647 #endif
1648   }
1649 
1650   char release[100];
1651   size = sizeof(release);
1652   int mib_release[] = { CTL_KERN, KERN_OSRELEASE };
1653   if (sysctl(mib_release, 2, release, &size, NULL, 0) < 0) {
1654       // if error, leave blank
1655       strncpy(release, "", sizeof(release));
1656   }
1657   snprintf(buf, buflen, "%s %s", os, release);
1658 }
1659 
1660 void os::print_os_info_brief(outputStream* st) {
1661   os::Posix::print_uname_info(st);
1662 }
1663 
1664 void os::print_os_info(outputStream* st) {
1665   st->print("OS:");
1666 
1667   os::Posix::print_uname_info(st);
1668 
1669   os::Posix::print_rlimit_info(st);
1670 
1671   os::Posix::print_load_average(st);
1672 }
1673 
1674 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1675   // Nothing to do for now.
1676 }
1677 
1678 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1679   unsigned int mhz;
1680   size_t size = sizeof(mhz);
1681   int mib[] = { CTL_HW, HW_CPU_FREQ };
1682   if (sysctl(mib, 2, &mhz, &size, NULL, 0) < 0) {
1683     mhz = 1;  // looks like an error but can be divided by
1684   } else {
1685     mhz /= 1000000;  // reported in millions
1686   }
1687 
1688   char model[100];
1689   size = sizeof(model);
1690   int mib_model[] = { CTL_HW, HW_MODEL };
1691   if (sysctl(mib_model, 2, model, &size, NULL, 0) < 0) {
1692     strncpy(model, cpu_arch, sizeof(model));
1693   }
1694 
1695   char machine[100];
1696   size = sizeof(machine);
1697   int mib_machine[] = { CTL_HW, HW_MACHINE };
1698   if (sysctl(mib_machine, 2, machine, &size, NULL, 0) < 0) {
1699       strncpy(machine, "", sizeof(machine));
1700   }
1701 
1702   snprintf(buf, buflen, "%s %s %d MHz", model, machine, mhz);
1703 }
1704 
1705 void os::print_memory_info(outputStream* st) {
1706 
1707   st->print("Memory:");
1708   st->print(" %dk page", os::vm_page_size()>>10);
1709 
1710   st->print(", physical " UINT64_FORMAT "k",
1711             os::physical_memory() >> 10);
1712   st->print("(" UINT64_FORMAT "k free)",
1713             os::available_memory() >> 10);
1714   st->cr();
1715 }
1716 
1717 static void print_signal_handler(outputStream* st, int sig,
1718                                  char* buf, size_t buflen);
1719 
1720 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1721   st->print_cr("Signal Handlers:");
1722   print_signal_handler(st, SIGSEGV, buf, buflen);
1723   print_signal_handler(st, SIGBUS , buf, buflen);
1724   print_signal_handler(st, SIGFPE , buf, buflen);
1725   print_signal_handler(st, SIGPIPE, buf, buflen);
1726   print_signal_handler(st, SIGXFSZ, buf, buflen);
1727   print_signal_handler(st, SIGILL , buf, buflen);
1728   print_signal_handler(st, SR_signum, buf, buflen);
1729   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1730   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1731   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1732   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1733 }
1734 
1735 static char saved_jvm_path[MAXPATHLEN] = {0};
1736 
1737 // Find the full path to the current module, libjvm
1738 void os::jvm_path(char *buf, jint buflen) {
1739   // Error checking.
1740   if (buflen < MAXPATHLEN) {
1741     assert(false, "must use a large-enough buffer");
1742     buf[0] = '\0';
1743     return;
1744   }
1745   // Lazy resolve the path to current module.
1746   if (saved_jvm_path[0] != 0) {
1747     strcpy(buf, saved_jvm_path);
1748     return;
1749   }
1750 
1751   char dli_fname[MAXPATHLEN];
1752   bool ret = dll_address_to_library_name(
1753                                          CAST_FROM_FN_PTR(address, os::jvm_path),
1754                                          dli_fname, sizeof(dli_fname), NULL);
1755   assert(ret, "cannot locate libjvm");
1756   char *rp = NULL;
1757   if (ret && dli_fname[0] != '\0') {
1758     rp = os::Posix::realpath(dli_fname, buf, buflen);
1759   }
1760   if (rp == NULL) {
1761     return;
1762   }
1763 
1764   if (Arguments::sun_java_launcher_is_altjvm()) {
1765     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1766     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1767     // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1768     // appears at the right place in the string, then assume we are
1769     // installed in a JDK and we're done. Otherwise, check for a
1770     // JAVA_HOME environment variable and construct a path to the JVM
1771     // being overridden.
1772 
1773     const char *p = buf + strlen(buf) - 1;
1774     for (int count = 0; p > buf && count < 5; ++count) {
1775       for (--p; p > buf && *p != '/'; --p)
1776         /* empty */ ;
1777     }
1778 
1779     if (strncmp(p, "/jre/lib/", 9) != 0) {
1780       // Look for JAVA_HOME in the environment.
1781       char* java_home_var = ::getenv("JAVA_HOME");
1782       if (java_home_var != NULL && java_home_var[0] != 0) {
1783         char* jrelib_p;
1784         int len;
1785 
1786         // Check the current module name "libjvm"
1787         p = strrchr(buf, '/');
1788         assert(strstr(p, "/libjvm") == p, "invalid library name");
1789 
1790         rp = os::Posix::realpath(java_home_var, buf, buflen);
1791         if (rp == NULL) {
1792           return;
1793         }
1794 
1795         // determine if this is a legacy image or modules image
1796         // modules image doesn't have "jre" subdirectory
1797         len = strlen(buf);
1798         assert(len < buflen, "Ran out of buffer space");
1799         jrelib_p = buf + len;
1800 
1801         // Add the appropriate library subdir
1802         snprintf(jrelib_p, buflen-len, "/jre/lib");
1803         if (0 != access(buf, F_OK)) {
1804           snprintf(jrelib_p, buflen-len, "/lib");
1805         }
1806 
1807         // Add the appropriate client or server subdir
1808         len = strlen(buf);
1809         jrelib_p = buf + len;
1810         snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1811         if (0 != access(buf, F_OK)) {
1812           snprintf(jrelib_p, buflen-len, "%s", "");
1813         }
1814 
1815         // If the path exists within JAVA_HOME, add the JVM library name
1816         // to complete the path to JVM being overridden.  Otherwise fallback
1817         // to the path to the current library.
1818         if (0 == access(buf, F_OK)) {
1819           // Use current module name "libjvm"
1820           len = strlen(buf);
1821           snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1822         } else {
1823           // Fall back to path of current library
1824           rp = os::Posix::realpath(dli_fname, buf, buflen);
1825           if (rp == NULL) {
1826             return;
1827           }
1828         }
1829       }
1830     }
1831   }
1832 
1833   strncpy(saved_jvm_path, buf, MAXPATHLEN);
1834   saved_jvm_path[MAXPATHLEN - 1] = '\0';
1835 }
1836 
1837 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1838   // no prefix required, not even "_"
1839 }
1840 
1841 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1842   // no suffix required
1843 }
1844 
1845 ////////////////////////////////////////////////////////////////////////////////
1846 // sun.misc.Signal support
1847 
1848 static volatile jint sigint_count = 0;
1849 
1850 static void UserHandler(int sig, void *siginfo, void *context) {
1851   // 4511530 - sem_post is serialized and handled by the manager thread. When
1852   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1853   // don't want to flood the manager thread with sem_post requests.
1854   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
1855     return;
1856   }
1857 
1858   // Ctrl-C is pressed during error reporting, likely because the error
1859   // handler fails to abort. Let VM die immediately.
1860   if (sig == SIGINT && is_error_reported()) {
1861     os::die();
1862   }
1863 
1864   os::signal_notify(sig);
1865 }
1866 
1867 void* os::user_handler() {
1868   return CAST_FROM_FN_PTR(void*, UserHandler);
1869 }
1870 
1871 extern "C" {
1872   typedef void (*sa_handler_t)(int);
1873   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1874 }
1875 
1876 void* os::signal(int signal_number, void* handler) {
1877   struct sigaction sigAct, oldSigAct;
1878 
1879   sigfillset(&(sigAct.sa_mask));
1880   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1881   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1882 
1883   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1884     // -1 means registration failed
1885     return (void *)-1;
1886   }
1887 
1888   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1889 }
1890 
1891 void os::signal_raise(int signal_number) {
1892   ::raise(signal_number);
1893 }
1894 
1895 // The following code is moved from os.cpp for making this
1896 // code platform specific, which it is by its very nature.
1897 
1898 // Will be modified when max signal is changed to be dynamic
1899 int os::sigexitnum_pd() {
1900   return NSIG;
1901 }
1902 
1903 // a counter for each possible signal value
1904 static volatile jint pending_signals[NSIG+1] = { 0 };
1905 
1906 // Bsd(POSIX) specific hand shaking semaphore.
1907 #ifdef __APPLE__
1908 typedef semaphore_t os_semaphore_t;
1909 
1910   #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1911   #define SEM_WAIT(sem)           semaphore_wait(sem)
1912   #define SEM_POST(sem)           semaphore_signal(sem)
1913   #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1914 #else
1915 typedef sem_t os_semaphore_t;
1916 
1917   #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1918   #define SEM_WAIT(sem)           sem_wait(&sem)
1919   #define SEM_POST(sem)           sem_post(&sem)
1920   #define SEM_DESTROY(sem)        sem_destroy(&sem)
1921 #endif
1922 
1923 #ifdef __APPLE__
1924 // OS X doesn't support unamed POSIX semaphores, so the implementation in os_posix.cpp can't be used.
1925 
1926 static const char* sem_init_strerror(kern_return_t value) {
1927   switch (value) {
1928     case KERN_INVALID_ARGUMENT:  return "Invalid argument";
1929     case KERN_RESOURCE_SHORTAGE: return "Resource shortage";
1930     default:                     return "Unknown";
1931   }
1932 }
1933 
1934 OSXSemaphore::OSXSemaphore(uint value) {
1935   kern_return_t ret = SEM_INIT(_semaphore, value);
1936 
1937   guarantee(ret == KERN_SUCCESS, "Failed to create semaphore: %s", sem_init_strerror(ret));
1938 }
1939 
1940 OSXSemaphore::~OSXSemaphore() {
1941   SEM_DESTROY(_semaphore);
1942 }
1943 
1944 void OSXSemaphore::signal(uint count) {
1945   for (uint i = 0; i < count; i++) {
1946     kern_return_t ret = SEM_POST(_semaphore);
1947 
1948     assert(ret == KERN_SUCCESS, "Failed to signal semaphore");
1949   }
1950 }
1951 
1952 void OSXSemaphore::wait() {
1953   kern_return_t ret;
1954   while ((ret = SEM_WAIT(_semaphore)) == KERN_ABORTED) {
1955     // Semaphore was interrupted. Retry.
1956   }
1957   assert(ret == KERN_SUCCESS, "Failed to wait on semaphore");
1958 }
1959 
1960 jlong OSXSemaphore::currenttime() {
1961   struct timeval tv;
1962   gettimeofday(&tv, NULL);
1963   return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1964 }
1965 
1966 bool OSXSemaphore::trywait() {
1967   return timedwait(0, 0);
1968 }
1969 
1970 bool OSXSemaphore::timedwait(unsigned int sec, int nsec) {
1971   kern_return_t kr = KERN_ABORTED;
1972   mach_timespec_t waitspec;
1973   waitspec.tv_sec = sec;
1974   waitspec.tv_nsec = nsec;
1975 
1976   jlong starttime = currenttime();
1977 
1978   kr = semaphore_timedwait(_semaphore, waitspec);
1979   while (kr == KERN_ABORTED) {
1980     jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
1981 
1982     jlong current = currenttime();
1983     jlong passedtime = current - starttime;
1984 
1985     if (passedtime >= totalwait) {
1986       waitspec.tv_sec = 0;
1987       waitspec.tv_nsec = 0;
1988     } else {
1989       jlong waittime = totalwait - (current - starttime);
1990       waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
1991       waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
1992     }
1993 
1994     kr = semaphore_timedwait(_semaphore, waitspec);
1995   }
1996 
1997   return kr == KERN_SUCCESS;
1998 }
1999 
2000 #else
2001 // Use POSIX implementation of semaphores.
2002 
2003 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2004   struct timespec ts;
2005   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2006 
2007   return ts;
2008 }
2009 
2010 #endif // __APPLE__
2011 
2012 static os_semaphore_t sig_sem;
2013 
2014 #ifdef __APPLE__
2015 static OSXSemaphore sr_semaphore;
2016 #else
2017 static PosixSemaphore sr_semaphore;
2018 #endif
2019 
2020 void os::signal_init_pd() {
2021   // Initialize signal structures
2022   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2023 
2024   // Initialize signal semaphore
2025   ::SEM_INIT(sig_sem, 0);
2026 }
2027 
2028 void os::signal_notify(int sig) {
2029   Atomic::inc(&pending_signals[sig]);
2030   ::SEM_POST(sig_sem);
2031 }
2032 
2033 static int check_pending_signals(bool wait) {
2034   Atomic::store(0, &sigint_count);
2035   for (;;) {
2036     for (int i = 0; i < NSIG + 1; i++) {
2037       jint n = pending_signals[i];
2038       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2039         return i;
2040       }
2041     }
2042     if (!wait) {
2043       return -1;
2044     }
2045     JavaThread *thread = JavaThread::current();
2046     ThreadBlockInVM tbivm(thread);
2047 
2048     bool threadIsSuspended;
2049     do {
2050       thread->set_suspend_equivalent();
2051       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2052       ::SEM_WAIT(sig_sem);
2053 
2054       // were we externally suspended while we were waiting?
2055       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2056       if (threadIsSuspended) {
2057         // The semaphore has been incremented, but while we were waiting
2058         // another thread suspended us. We don't want to continue running
2059         // while suspended because that would surprise the thread that
2060         // suspended us.
2061         ::SEM_POST(sig_sem);
2062 
2063         thread->java_suspend_self();
2064       }
2065     } while (threadIsSuspended);
2066   }
2067 }
2068 
2069 int os::signal_lookup() {
2070   return check_pending_signals(false);
2071 }
2072 
2073 int os::signal_wait() {
2074   return check_pending_signals(true);
2075 }
2076 
2077 ////////////////////////////////////////////////////////////////////////////////
2078 // Virtual Memory
2079 
2080 int os::vm_page_size() {
2081   // Seems redundant as all get out
2082   assert(os::Bsd::page_size() != -1, "must call os::init");
2083   return os::Bsd::page_size();
2084 }
2085 
2086 // Solaris allocates memory by pages.
2087 int os::vm_allocation_granularity() {
2088   assert(os::Bsd::page_size() != -1, "must call os::init");
2089   return os::Bsd::page_size();
2090 }
2091 
2092 // Rationale behind this function:
2093 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2094 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2095 //  samples for JITted code. Here we create private executable mapping over the code cache
2096 //  and then we can use standard (well, almost, as mapping can change) way to provide
2097 //  info for the reporting script by storing timestamp and location of symbol
2098 void bsd_wrap_code(char* base, size_t size) {
2099   static volatile jint cnt = 0;
2100 
2101   if (!UseOprofile) {
2102     return;
2103   }
2104 
2105   char buf[PATH_MAX + 1];
2106   int num = Atomic::add(1, &cnt);
2107 
2108   snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2109            os::get_temp_directory(), os::current_process_id(), num);
2110   unlink(buf);
2111 
2112   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2113 
2114   if (fd != -1) {
2115     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2116     if (rv != (off_t)-1) {
2117       if (::write(fd, "", 1) == 1) {
2118         mmap(base, size,
2119              PROT_READ|PROT_WRITE|PROT_EXEC,
2120              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2121       }
2122     }
2123     ::close(fd);
2124     unlink(buf);
2125   }
2126 }
2127 
2128 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2129                                     int err) {
2130   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2131           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2132           os::errno_name(err), err);
2133 }
2134 
2135 // NOTE: Bsd kernel does not really reserve the pages for us.
2136 //       All it does is to check if there are enough free pages
2137 //       left at the time of mmap(). This could be a potential
2138 //       problem.
2139 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2140   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2141 #ifdef __OpenBSD__
2142   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2143   if (::mprotect(addr, size, prot) == 0) {
2144     return true;
2145   }
2146 #else
2147   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2148                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2149   if (res != (uintptr_t) MAP_FAILED) {
2150     return true;
2151   }
2152 #endif
2153 
2154   // Warn about any commit errors we see in non-product builds just
2155   // in case mmap() doesn't work as described on the man page.
2156   NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2157 
2158   return false;
2159 }
2160 
2161 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2162                           bool exec) {
2163   // alignment_hint is ignored on this OS
2164   return pd_commit_memory(addr, size, exec);
2165 }
2166 
2167 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2168                                   const char* mesg) {
2169   assert(mesg != NULL, "mesg must be specified");
2170   if (!pd_commit_memory(addr, size, exec)) {
2171     // add extra info in product mode for vm_exit_out_of_memory():
2172     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2173     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2174   }
2175 }
2176 
2177 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2178                                   size_t alignment_hint, bool exec,
2179                                   const char* mesg) {
2180   // alignment_hint is ignored on this OS
2181   pd_commit_memory_or_exit(addr, size, exec, mesg);
2182 }
2183 
2184 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2185 }
2186 
2187 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2188   ::madvise(addr, bytes, MADV_DONTNEED);
2189 }
2190 
2191 void os::numa_make_global(char *addr, size_t bytes) {
2192 }
2193 
2194 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2195 }
2196 
2197 bool os::numa_topology_changed()   { return false; }
2198 
2199 size_t os::numa_get_groups_num() {
2200   return 1;
2201 }
2202 
2203 int os::numa_get_group_id() {
2204   return 0;
2205 }
2206 
2207 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2208   if (size > 0) {
2209     ids[0] = 0;
2210     return 1;
2211   }
2212   return 0;
2213 }
2214 
2215 bool os::get_page_info(char *start, page_info* info) {
2216   return false;
2217 }
2218 
2219 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2220   return end;
2221 }
2222 
2223 
2224 bool os::pd_uncommit_memory(char* addr, size_t size) {
2225 #ifdef __OpenBSD__
2226   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2227   return ::mprotect(addr, size, PROT_NONE) == 0;
2228 #else
2229   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2230                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2231   return res  != (uintptr_t) MAP_FAILED;
2232 #endif
2233 }
2234 
2235 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2236   return os::commit_memory(addr, size, !ExecMem);
2237 }
2238 
2239 // If this is a growable mapping, remove the guard pages entirely by
2240 // munmap()ping them.  If not, just call uncommit_memory().
2241 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2242   return os::uncommit_memory(addr, size);
2243 }
2244 
2245 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2246 // at 'requested_addr'. If there are existing memory mappings at the same
2247 // location, however, they will be overwritten. If 'fixed' is false,
2248 // 'requested_addr' is only treated as a hint, the return value may or
2249 // may not start from the requested address. Unlike Bsd mmap(), this
2250 // function returns NULL to indicate failure.
2251 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2252   char * addr;
2253   int flags;
2254 
2255   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2256   if (fixed) {
2257     assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2258     flags |= MAP_FIXED;
2259   }
2260 
2261   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2262   // touch an uncommitted page. Otherwise, the read/write might
2263   // succeed if we have enough swap space to back the physical page.
2264   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2265                        flags, -1, 0);
2266 
2267   return addr == MAP_FAILED ? NULL : addr;
2268 }
2269 
2270 static int anon_munmap(char * addr, size_t size) {
2271   return ::munmap(addr, size) == 0;
2272 }
2273 
2274 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2275                             size_t alignment_hint) {
2276   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2277 }
2278 
2279 bool os::pd_release_memory(char* addr, size_t size) {
2280   return anon_munmap(addr, size);
2281 }
2282 
2283 static bool bsd_mprotect(char* addr, size_t size, int prot) {
2284   // Bsd wants the mprotect address argument to be page aligned.
2285   char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2286 
2287   // According to SUSv3, mprotect() should only be used with mappings
2288   // established by mmap(), and mmap() always maps whole pages. Unaligned
2289   // 'addr' likely indicates problem in the VM (e.g. trying to change
2290   // protection of malloc'ed or statically allocated memory). Check the
2291   // caller if you hit this assert.
2292   assert(addr == bottom, "sanity check");
2293 
2294   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2295   return ::mprotect(bottom, size, prot) == 0;
2296 }
2297 
2298 // Set protections specified
2299 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2300                         bool is_committed) {
2301   unsigned int p = 0;
2302   switch (prot) {
2303   case MEM_PROT_NONE: p = PROT_NONE; break;
2304   case MEM_PROT_READ: p = PROT_READ; break;
2305   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2306   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2307   default:
2308     ShouldNotReachHere();
2309   }
2310   // is_committed is unused.
2311   return bsd_mprotect(addr, bytes, p);
2312 }
2313 
2314 bool os::guard_memory(char* addr, size_t size) {
2315   return bsd_mprotect(addr, size, PROT_NONE);
2316 }
2317 
2318 bool os::unguard_memory(char* addr, size_t size) {
2319   return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2320 }
2321 
2322 bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2323   return false;
2324 }
2325 
2326 // Large page support
2327 
2328 static size_t _large_page_size = 0;
2329 
2330 void os::large_page_init() {
2331 }
2332 
2333 
2334 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2335   fatal("This code is not used or maintained.");
2336 
2337   // "exec" is passed in but not used.  Creating the shared image for
2338   // the code cache doesn't have an SHM_X executable permission to check.
2339   assert(UseLargePages && UseSHM, "only for SHM large pages");
2340 
2341   key_t key = IPC_PRIVATE;
2342   char *addr;
2343 
2344   bool warn_on_failure = UseLargePages &&
2345                          (!FLAG_IS_DEFAULT(UseLargePages) ||
2346                           !FLAG_IS_DEFAULT(LargePageSizeInBytes));
2347 
2348   // Create a large shared memory region to attach to based on size.
2349   // Currently, size is the total size of the heap
2350   int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2351   if (shmid == -1) {
2352     // Possible reasons for shmget failure:
2353     // 1. shmmax is too small for Java heap.
2354     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2355     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2356     // 2. not enough large page memory.
2357     //    > check available large pages: cat /proc/meminfo
2358     //    > increase amount of large pages:
2359     //          echo new_value > /proc/sys/vm/nr_hugepages
2360     //      Note 1: different Bsd may use different name for this property,
2361     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2362     //      Note 2: it's possible there's enough physical memory available but
2363     //            they are so fragmented after a long run that they can't
2364     //            coalesce into large pages. Try to reserve large pages when
2365     //            the system is still "fresh".
2366     if (warn_on_failure) {
2367       warning("Failed to reserve shared memory (errno = %d).", errno);
2368     }
2369     return NULL;
2370   }
2371 
2372   // attach to the region
2373   addr = (char*)shmat(shmid, req_addr, 0);
2374   int err = errno;
2375 
2376   // Remove shmid. If shmat() is successful, the actual shared memory segment
2377   // will be deleted when it's detached by shmdt() or when the process
2378   // terminates. If shmat() is not successful this will remove the shared
2379   // segment immediately.
2380   shmctl(shmid, IPC_RMID, NULL);
2381 
2382   if ((intptr_t)addr == -1) {
2383     if (warn_on_failure) {
2384       warning("Failed to attach shared memory (errno = %d).", err);
2385     }
2386     return NULL;
2387   }
2388 
2389   // The memory is committed
2390   MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2391 
2392   return addr;
2393 }
2394 
2395 bool os::release_memory_special(char* base, size_t bytes) {
2396   if (MemTracker::tracking_level() > NMT_minimal) {
2397     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2398     // detaching the SHM segment will also delete it, see reserve_memory_special()
2399     int rslt = shmdt(base);
2400     if (rslt == 0) {
2401       tkr.record((address)base, bytes);
2402       return true;
2403     } else {
2404       return false;
2405     }
2406   } else {
2407     return shmdt(base) == 0;
2408   }
2409 }
2410 
2411 size_t os::large_page_size() {
2412   return _large_page_size;
2413 }
2414 
2415 // HugeTLBFS allows application to commit large page memory on demand;
2416 // with SysV SHM the entire memory region must be allocated as shared
2417 // memory.
2418 bool os::can_commit_large_page_memory() {
2419   return UseHugeTLBFS;
2420 }
2421 
2422 bool os::can_execute_large_page_memory() {
2423   return UseHugeTLBFS;
2424 }
2425 
2426 // Reserve memory at an arbitrary address, only if that area is
2427 // available (and not reserved for something else).
2428 
2429 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2430   const int max_tries = 10;
2431   char* base[max_tries];
2432   size_t size[max_tries];
2433   const size_t gap = 0x000000;
2434 
2435   // Assert only that the size is a multiple of the page size, since
2436   // that's all that mmap requires, and since that's all we really know
2437   // about at this low abstraction level.  If we need higher alignment,
2438   // we can either pass an alignment to this method or verify alignment
2439   // in one of the methods further up the call chain.  See bug 5044738.
2440   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2441 
2442   // Repeatedly allocate blocks until the block is allocated at the
2443   // right spot.
2444 
2445   // Bsd mmap allows caller to pass an address as hint; give it a try first,
2446   // if kernel honors the hint then we can return immediately.
2447   char * addr = anon_mmap(requested_addr, bytes, false);
2448   if (addr == requested_addr) {
2449     return requested_addr;
2450   }
2451 
2452   if (addr != NULL) {
2453     // mmap() is successful but it fails to reserve at the requested address
2454     anon_munmap(addr, bytes);
2455   }
2456 
2457   int i;
2458   for (i = 0; i < max_tries; ++i) {
2459     base[i] = reserve_memory(bytes);
2460 
2461     if (base[i] != NULL) {
2462       // Is this the block we wanted?
2463       if (base[i] == requested_addr) {
2464         size[i] = bytes;
2465         break;
2466       }
2467 
2468       // Does this overlap the block we wanted? Give back the overlapped
2469       // parts and try again.
2470 
2471       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2472       if (top_overlap >= 0 && top_overlap < bytes) {
2473         unmap_memory(base[i], top_overlap);
2474         base[i] += top_overlap;
2475         size[i] = bytes - top_overlap;
2476       } else {
2477         size_t bottom_overlap = base[i] + bytes - requested_addr;
2478         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2479           unmap_memory(requested_addr, bottom_overlap);
2480           size[i] = bytes - bottom_overlap;
2481         } else {
2482           size[i] = bytes;
2483         }
2484       }
2485     }
2486   }
2487 
2488   // Give back the unused reserved pieces.
2489 
2490   for (int j = 0; j < i; ++j) {
2491     if (base[j] != NULL) {
2492       unmap_memory(base[j], size[j]);
2493     }
2494   }
2495 
2496   if (i < max_tries) {
2497     return requested_addr;
2498   } else {
2499     return NULL;
2500   }
2501 }
2502 
2503 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2504   RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2505 }
2506 
2507 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2508   RESTARTABLE_RETURN_INT(::pread(fd, buf, nBytes, offset));
2509 }
2510 
2511 void os::naked_short_sleep(jlong ms) {
2512   struct timespec req;
2513 
2514   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2515   req.tv_sec = 0;
2516   if (ms > 0) {
2517     req.tv_nsec = (ms % 1000) * 1000000;
2518   } else {
2519     req.tv_nsec = 1;
2520   }
2521 
2522   nanosleep(&req, NULL);
2523 
2524   return;
2525 }
2526 
2527 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2528 void os::infinite_sleep() {
2529   while (true) {    // sleep forever ...
2530     ::sleep(100);   // ... 100 seconds at a time
2531   }
2532 }
2533 
2534 // Used to convert frequent JVM_Yield() to nops
2535 bool os::dont_yield() {
2536   return DontYieldALot;
2537 }
2538 
2539 void os::naked_yield() {
2540   sched_yield();
2541 }
2542 
2543 ////////////////////////////////////////////////////////////////////////////////
2544 // thread priority support
2545 
2546 // Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2547 // only supports dynamic priority, static priority must be zero. For real-time
2548 // applications, Bsd supports SCHED_RR which allows static priority (1-99).
2549 // However, for large multi-threaded applications, SCHED_RR is not only slower
2550 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2551 // of 5 runs - Sep 2005).
2552 //
2553 // The following code actually changes the niceness of kernel-thread/LWP. It
2554 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
2555 // not the entire user process, and user level threads are 1:1 mapped to kernel
2556 // threads. It has always been the case, but could change in the future. For
2557 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2558 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2559 
2560 #if !defined(__APPLE__)
2561 int os::java_to_os_priority[CriticalPriority + 1] = {
2562   19,              // 0 Entry should never be used
2563 
2564    0,              // 1 MinPriority
2565    3,              // 2
2566    6,              // 3
2567 
2568   10,              // 4
2569   15,              // 5 NormPriority
2570   18,              // 6
2571 
2572   21,              // 7
2573   25,              // 8
2574   28,              // 9 NearMaxPriority
2575 
2576   31,              // 10 MaxPriority
2577 
2578   31               // 11 CriticalPriority
2579 };
2580 #else
2581 // Using Mach high-level priority assignments
2582 int os::java_to_os_priority[CriticalPriority + 1] = {
2583    0,              // 0 Entry should never be used (MINPRI_USER)
2584 
2585   27,              // 1 MinPriority
2586   28,              // 2
2587   29,              // 3
2588 
2589   30,              // 4
2590   31,              // 5 NormPriority (BASEPRI_DEFAULT)
2591   32,              // 6
2592 
2593   33,              // 7
2594   34,              // 8
2595   35,              // 9 NearMaxPriority
2596 
2597   36,              // 10 MaxPriority
2598 
2599   36               // 11 CriticalPriority
2600 };
2601 #endif
2602 
2603 static int prio_init() {
2604   if (ThreadPriorityPolicy == 1) {
2605     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2606     // if effective uid is not root. Perhaps, a more elegant way of doing
2607     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2608     if (geteuid() != 0) {
2609       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2610         warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2611       }
2612       ThreadPriorityPolicy = 0;
2613     }
2614   }
2615   if (UseCriticalJavaThreadPriority) {
2616     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2617   }
2618   return 0;
2619 }
2620 
2621 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2622   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2623 
2624 #ifdef __OpenBSD__
2625   // OpenBSD pthread_setprio starves low priority threads
2626   return OS_OK;
2627 #elif defined(__FreeBSD__)
2628   int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2629 #elif defined(__APPLE__) || defined(__NetBSD__)
2630   struct sched_param sp;
2631   int policy;
2632   pthread_t self = pthread_self();
2633 
2634   if (pthread_getschedparam(self, &policy, &sp) != 0) {
2635     return OS_ERR;
2636   }
2637 
2638   sp.sched_priority = newpri;
2639   if (pthread_setschedparam(self, policy, &sp) != 0) {
2640     return OS_ERR;
2641   }
2642 
2643   return OS_OK;
2644 #else
2645   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2646   return (ret == 0) ? OS_OK : OS_ERR;
2647 #endif
2648 }
2649 
2650 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2651   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2652     *priority_ptr = java_to_os_priority[NormPriority];
2653     return OS_OK;
2654   }
2655 
2656   errno = 0;
2657 #if defined(__OpenBSD__) || defined(__FreeBSD__)
2658   *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2659 #elif defined(__APPLE__) || defined(__NetBSD__)
2660   int policy;
2661   struct sched_param sp;
2662 
2663   pthread_getschedparam(pthread_self(), &policy, &sp);
2664   *priority_ptr = sp.sched_priority;
2665 #else
2666   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2667 #endif
2668   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2669 }
2670 
2671 // Hint to the underlying OS that a task switch would not be good.
2672 // Void return because it's a hint and can fail.
2673 void os::hint_no_preempt() {}
2674 
2675 ////////////////////////////////////////////////////////////////////////////////
2676 // suspend/resume support
2677 
2678 //  the low-level signal-based suspend/resume support is a remnant from the
2679 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2680 //  within hotspot. Now there is a single use-case for this:
2681 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
2682 //      that runs in the watcher thread.
2683 //  The remaining code is greatly simplified from the more general suspension
2684 //  code that used to be used.
2685 //
2686 //  The protocol is quite simple:
2687 //  - suspend:
2688 //      - sends a signal to the target thread
2689 //      - polls the suspend state of the osthread using a yield loop
2690 //      - target thread signal handler (SR_handler) sets suspend state
2691 //        and blocks in sigsuspend until continued
2692 //  - resume:
2693 //      - sets target osthread state to continue
2694 //      - sends signal to end the sigsuspend loop in the SR_handler
2695 //
2696 //  Note that the SR_lock plays no role in this suspend/resume protocol,
2697 //  but is checked for NULL in SR_handler as a thread termination indicator.
2698 
2699 static void resume_clear_context(OSThread *osthread) {
2700   osthread->set_ucontext(NULL);
2701   osthread->set_siginfo(NULL);
2702 }
2703 
2704 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2705   osthread->set_ucontext(context);
2706   osthread->set_siginfo(siginfo);
2707 }
2708 
2709 // Handler function invoked when a thread's execution is suspended or
2710 // resumed. We have to be careful that only async-safe functions are
2711 // called here (Note: most pthread functions are not async safe and
2712 // should be avoided.)
2713 //
2714 // Note: sigwait() is a more natural fit than sigsuspend() from an
2715 // interface point of view, but sigwait() prevents the signal hander
2716 // from being run. libpthread would get very confused by not having
2717 // its signal handlers run and prevents sigwait()'s use with the
2718 // mutex granting granting signal.
2719 //
2720 // Currently only ever called on the VMThread or JavaThread
2721 //
2722 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2723   // Save and restore errno to avoid confusing native code with EINTR
2724   // after sigsuspend.
2725   int old_errno = errno;
2726 
2727   Thread* thread = Thread::current_or_null_safe();
2728   assert(thread != NULL, "Missing current thread in SR_handler");
2729 
2730   // On some systems we have seen signal delivery get "stuck" until the signal
2731   // mask is changed as part of thread termination. Check that the current thread
2732   // has not already terminated (via SR_lock()) - else the following assertion
2733   // will fail because the thread is no longer a JavaThread as the ~JavaThread
2734   // destructor has completed.
2735 
2736   if (thread->SR_lock() == NULL) {
2737     return;
2738   }
2739 
2740   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2741 
2742   OSThread* osthread = thread->osthread();
2743 
2744   os::SuspendResume::State current = osthread->sr.state();
2745   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2746     suspend_save_context(osthread, siginfo, context);
2747 
2748     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2749     os::SuspendResume::State state = osthread->sr.suspended();
2750     if (state == os::SuspendResume::SR_SUSPENDED) {
2751       sigset_t suspend_set;  // signals for sigsuspend()
2752 
2753       // get current set of blocked signals and unblock resume signal
2754       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2755       sigdelset(&suspend_set, SR_signum);
2756 
2757       sr_semaphore.signal();
2758       // wait here until we are resumed
2759       while (1) {
2760         sigsuspend(&suspend_set);
2761 
2762         os::SuspendResume::State result = osthread->sr.running();
2763         if (result == os::SuspendResume::SR_RUNNING) {
2764           sr_semaphore.signal();
2765           break;
2766         } else if (result != os::SuspendResume::SR_SUSPENDED) {
2767           ShouldNotReachHere();
2768         }
2769       }
2770 
2771     } else if (state == os::SuspendResume::SR_RUNNING) {
2772       // request was cancelled, continue
2773     } else {
2774       ShouldNotReachHere();
2775     }
2776 
2777     resume_clear_context(osthread);
2778   } else if (current == os::SuspendResume::SR_RUNNING) {
2779     // request was cancelled, continue
2780   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2781     // ignore
2782   } else {
2783     // ignore
2784   }
2785 
2786   errno = old_errno;
2787 }
2788 
2789 
2790 static int SR_initialize() {
2791   struct sigaction act;
2792   char *s;
2793   // Get signal number to use for suspend/resume
2794   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2795     int sig = ::strtol(s, 0, 10);
2796     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2797         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2798       SR_signum = sig;
2799     } else {
2800       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2801               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2802     }
2803   }
2804 
2805   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2806          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2807 
2808   sigemptyset(&SR_sigset);
2809   sigaddset(&SR_sigset, SR_signum);
2810 
2811   // Set up signal handler for suspend/resume
2812   act.sa_flags = SA_RESTART|SA_SIGINFO;
2813   act.sa_handler = (void (*)(int)) SR_handler;
2814 
2815   // SR_signum is blocked by default.
2816   // 4528190 - We also need to block pthread restart signal (32 on all
2817   // supported Bsd platforms). Note that BsdThreads need to block
2818   // this signal for all threads to work properly. So we don't have
2819   // to use hard-coded signal number when setting up the mask.
2820   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2821 
2822   if (sigaction(SR_signum, &act, 0) == -1) {
2823     return -1;
2824   }
2825 
2826   // Save signal flag
2827   os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2828   return 0;
2829 }
2830 
2831 static int sr_notify(OSThread* osthread) {
2832   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2833   assert_status(status == 0, status, "pthread_kill");
2834   return status;
2835 }
2836 
2837 // "Randomly" selected value for how long we want to spin
2838 // before bailing out on suspending a thread, also how often
2839 // we send a signal to a thread we want to resume
2840 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2841 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2842 
2843 // returns true on success and false on error - really an error is fatal
2844 // but this seems the normal response to library errors
2845 static bool do_suspend(OSThread* osthread) {
2846   assert(osthread->sr.is_running(), "thread should be running");
2847   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2848 
2849   // mark as suspended and send signal
2850   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2851     // failed to switch, state wasn't running?
2852     ShouldNotReachHere();
2853     return false;
2854   }
2855 
2856   if (sr_notify(osthread) != 0) {
2857     ShouldNotReachHere();
2858   }
2859 
2860   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2861   while (true) {
2862     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2863       break;
2864     } else {
2865       // timeout
2866       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2867       if (cancelled == os::SuspendResume::SR_RUNNING) {
2868         return false;
2869       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2870         // make sure that we consume the signal on the semaphore as well
2871         sr_semaphore.wait();
2872         break;
2873       } else {
2874         ShouldNotReachHere();
2875         return false;
2876       }
2877     }
2878   }
2879 
2880   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2881   return true;
2882 }
2883 
2884 static void do_resume(OSThread* osthread) {
2885   assert(osthread->sr.is_suspended(), "thread should be suspended");
2886   assert(!sr_semaphore.trywait(), "invalid semaphore state");
2887 
2888   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2889     // failed to switch to WAKEUP_REQUEST
2890     ShouldNotReachHere();
2891     return;
2892   }
2893 
2894   while (true) {
2895     if (sr_notify(osthread) == 0) {
2896       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2897         if (osthread->sr.is_running()) {
2898           return;
2899         }
2900       }
2901     } else {
2902       ShouldNotReachHere();
2903     }
2904   }
2905 
2906   guarantee(osthread->sr.is_running(), "Must be running!");
2907 }
2908 
2909 ///////////////////////////////////////////////////////////////////////////////////
2910 // signal handling (except suspend/resume)
2911 
2912 // This routine may be used by user applications as a "hook" to catch signals.
2913 // The user-defined signal handler must pass unrecognized signals to this
2914 // routine, and if it returns true (non-zero), then the signal handler must
2915 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
2916 // routine will never retun false (zero), but instead will execute a VM panic
2917 // routine kill the process.
2918 //
2919 // If this routine returns false, it is OK to call it again.  This allows
2920 // the user-defined signal handler to perform checks either before or after
2921 // the VM performs its own checks.  Naturally, the user code would be making
2922 // a serious error if it tried to handle an exception (such as a null check
2923 // or breakpoint) that the VM was generating for its own correct operation.
2924 //
2925 // This routine may recognize any of the following kinds of signals:
2926 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2927 // It should be consulted by handlers for any of those signals.
2928 //
2929 // The caller of this routine must pass in the three arguments supplied
2930 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2931 // field of the structure passed to sigaction().  This routine assumes that
2932 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2933 //
2934 // Note that the VM will print warnings if it detects conflicting signal
2935 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2936 //
2937 extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2938                                                void* ucontext,
2939                                                int abort_if_unrecognized);
2940 
2941 void signalHandler(int sig, siginfo_t* info, void* uc) {
2942   assert(info != NULL && uc != NULL, "it must be old kernel");
2943   int orig_errno = errno;  // Preserve errno value over signal handler.
2944   JVM_handle_bsd_signal(sig, info, uc, true);
2945   errno = orig_errno;
2946 }
2947 
2948 
2949 // This boolean allows users to forward their own non-matching signals
2950 // to JVM_handle_bsd_signal, harmlessly.
2951 bool os::Bsd::signal_handlers_are_installed = false;
2952 
2953 // For signal-chaining
2954 struct sigaction sigact[NSIG];
2955 uint32_t sigs = 0;
2956 #if (32 < NSIG-1)
2957 #error "Not all signals can be encoded in sigs. Adapt its type!"
2958 #endif
2959 bool os::Bsd::libjsig_is_loaded = false;
2960 typedef struct sigaction *(*get_signal_t)(int);
2961 get_signal_t os::Bsd::get_signal_action = NULL;
2962 
2963 struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
2964   struct sigaction *actp = NULL;
2965 
2966   if (libjsig_is_loaded) {
2967     // Retrieve the old signal handler from libjsig
2968     actp = (*get_signal_action)(sig);
2969   }
2970   if (actp == NULL) {
2971     // Retrieve the preinstalled signal handler from jvm
2972     actp = get_preinstalled_handler(sig);
2973   }
2974 
2975   return actp;
2976 }
2977 
2978 static bool call_chained_handler(struct sigaction *actp, int sig,
2979                                  siginfo_t *siginfo, void *context) {
2980   // Call the old signal handler
2981   if (actp->sa_handler == SIG_DFL) {
2982     // It's more reasonable to let jvm treat it as an unexpected exception
2983     // instead of taking the default action.
2984     return false;
2985   } else if (actp->sa_handler != SIG_IGN) {
2986     if ((actp->sa_flags & SA_NODEFER) == 0) {
2987       // automaticlly block the signal
2988       sigaddset(&(actp->sa_mask), sig);
2989     }
2990 
2991     sa_handler_t hand;
2992     sa_sigaction_t sa;
2993     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
2994     // retrieve the chained handler
2995     if (siginfo_flag_set) {
2996       sa = actp->sa_sigaction;
2997     } else {
2998       hand = actp->sa_handler;
2999     }
3000 
3001     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3002       actp->sa_handler = SIG_DFL;
3003     }
3004 
3005     // try to honor the signal mask
3006     sigset_t oset;
3007     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3008 
3009     // call into the chained handler
3010     if (siginfo_flag_set) {
3011       (*sa)(sig, siginfo, context);
3012     } else {
3013       (*hand)(sig);
3014     }
3015 
3016     // restore the signal mask
3017     pthread_sigmask(SIG_SETMASK, &oset, 0);
3018   }
3019   // Tell jvm's signal handler the signal is taken care of.
3020   return true;
3021 }
3022 
3023 bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3024   bool chained = false;
3025   // signal-chaining
3026   if (UseSignalChaining) {
3027     struct sigaction *actp = get_chained_signal_action(sig);
3028     if (actp != NULL) {
3029       chained = call_chained_handler(actp, sig, siginfo, context);
3030     }
3031   }
3032   return chained;
3033 }
3034 
3035 struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3036   if ((((uint32_t)1 << (sig-1)) & sigs) != 0) {
3037     return &sigact[sig];
3038   }
3039   return NULL;
3040 }
3041 
3042 void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3043   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3044   sigact[sig] = oldAct;
3045   sigs |= (uint32_t)1 << (sig-1);
3046 }
3047 
3048 // for diagnostic
3049 int sigflags[NSIG];
3050 
3051 int os::Bsd::get_our_sigflags(int sig) {
3052   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3053   return sigflags[sig];
3054 }
3055 
3056 void os::Bsd::set_our_sigflags(int sig, int flags) {
3057   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3058   if (sig > 0 && sig < NSIG) {
3059     sigflags[sig] = flags;
3060   }
3061 }
3062 
3063 void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3064   // Check for overwrite.
3065   struct sigaction oldAct;
3066   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3067 
3068   void* oldhand = oldAct.sa_sigaction
3069                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3070                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3071   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3072       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3073       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3074     if (AllowUserSignalHandlers || !set_installed) {
3075       // Do not overwrite; user takes responsibility to forward to us.
3076       return;
3077     } else if (UseSignalChaining) {
3078       // save the old handler in jvm
3079       save_preinstalled_handler(sig, oldAct);
3080       // libjsig also interposes the sigaction() call below and saves the
3081       // old sigaction on it own.
3082     } else {
3083       fatal("Encountered unexpected pre-existing sigaction handler "
3084             "%#lx for signal %d.", (long)oldhand, sig);
3085     }
3086   }
3087 
3088   struct sigaction sigAct;
3089   sigfillset(&(sigAct.sa_mask));
3090   sigAct.sa_handler = SIG_DFL;
3091   if (!set_installed) {
3092     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3093   } else {
3094     sigAct.sa_sigaction = signalHandler;
3095     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3096   }
3097 #ifdef __APPLE__
3098   // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3099   // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3100   // if the signal handler declares it will handle it on alternate stack.
3101   // Notice we only declare we will handle it on alt stack, but we are not
3102   // actually going to use real alt stack - this is just a workaround.
3103   // Please see ux_exception.c, method catch_mach_exception_raise for details
3104   // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3105   if (sig == SIGSEGV) {
3106     sigAct.sa_flags |= SA_ONSTACK;
3107   }
3108 #endif
3109 
3110   // Save flags, which are set by ours
3111   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3112   sigflags[sig] = sigAct.sa_flags;
3113 
3114   int ret = sigaction(sig, &sigAct, &oldAct);
3115   assert(ret == 0, "check");
3116 
3117   void* oldhand2  = oldAct.sa_sigaction
3118                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3119                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3120   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3121 }
3122 
3123 // install signal handlers for signals that HotSpot needs to
3124 // handle in order to support Java-level exception handling.
3125 
3126 void os::Bsd::install_signal_handlers() {
3127   if (!signal_handlers_are_installed) {
3128     signal_handlers_are_installed = true;
3129 
3130     // signal-chaining
3131     typedef void (*signal_setting_t)();
3132     signal_setting_t begin_signal_setting = NULL;
3133     signal_setting_t end_signal_setting = NULL;
3134     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3135                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3136     if (begin_signal_setting != NULL) {
3137       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3138                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3139       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3140                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3141       libjsig_is_loaded = true;
3142       assert(UseSignalChaining, "should enable signal-chaining");
3143     }
3144     if (libjsig_is_loaded) {
3145       // Tell libjsig jvm is setting signal handlers
3146       (*begin_signal_setting)();
3147     }
3148 
3149     set_signal_handler(SIGSEGV, true);
3150     set_signal_handler(SIGPIPE, true);
3151     set_signal_handler(SIGBUS, true);
3152     set_signal_handler(SIGILL, true);
3153     set_signal_handler(SIGFPE, true);
3154     set_signal_handler(SIGXFSZ, true);
3155 
3156 #if defined(__APPLE__)
3157     // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3158     // signals caught and handled by the JVM. To work around this, we reset the mach task
3159     // signal handler that's placed on our process by CrashReporter. This disables
3160     // CrashReporter-based reporting.
3161     //
3162     // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3163     // on caught fatal signals.
3164     //
3165     // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3166     // handlers. By replacing the existing task exception handler, we disable gdb's mach
3167     // exception handling, while leaving the standard BSD signal handlers functional.
3168     kern_return_t kr;
3169     kr = task_set_exception_ports(mach_task_self(),
3170                                   EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3171                                   MACH_PORT_NULL,
3172                                   EXCEPTION_STATE_IDENTITY,
3173                                   MACHINE_THREAD_STATE);
3174 
3175     assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3176 #endif
3177 
3178     if (libjsig_is_loaded) {
3179       // Tell libjsig jvm finishes setting signal handlers
3180       (*end_signal_setting)();
3181     }
3182 
3183     // We don't activate signal checker if libjsig is in place, we trust ourselves
3184     // and if UserSignalHandler is installed all bets are off
3185     if (CheckJNICalls) {
3186       if (libjsig_is_loaded) {
3187         if (PrintJNIResolving) {
3188           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3189         }
3190         check_signals = false;
3191       }
3192       if (AllowUserSignalHandlers) {
3193         if (PrintJNIResolving) {
3194           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3195         }
3196         check_signals = false;
3197       }
3198     }
3199   }
3200 }
3201 
3202 
3203 /////
3204 // glibc on Bsd platform uses non-documented flag
3205 // to indicate, that some special sort of signal
3206 // trampoline is used.
3207 // We will never set this flag, and we should
3208 // ignore this flag in our diagnostic
3209 #ifdef SIGNIFICANT_SIGNAL_MASK
3210   #undef SIGNIFICANT_SIGNAL_MASK
3211 #endif
3212 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3213 
3214 static const char* get_signal_handler_name(address handler,
3215                                            char* buf, int buflen) {
3216   int offset;
3217   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3218   if (found) {
3219     // skip directory names
3220     const char *p1, *p2;
3221     p1 = buf;
3222     size_t len = strlen(os::file_separator());
3223     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3224     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3225   } else {
3226     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3227   }
3228   return buf;
3229 }
3230 
3231 static void print_signal_handler(outputStream* st, int sig,
3232                                  char* buf, size_t buflen) {
3233   struct sigaction sa;
3234 
3235   sigaction(sig, NULL, &sa);
3236 
3237   // See comment for SIGNIFICANT_SIGNAL_MASK define
3238   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3239 
3240   st->print("%s: ", os::exception_name(sig, buf, buflen));
3241 
3242   address handler = (sa.sa_flags & SA_SIGINFO)
3243     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3244     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3245 
3246   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3247     st->print("SIG_DFL");
3248   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3249     st->print("SIG_IGN");
3250   } else {
3251     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3252   }
3253 
3254   st->print(", sa_mask[0]=");
3255   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3256 
3257   address rh = VMError::get_resetted_sighandler(sig);
3258   // May be, handler was resetted by VMError?
3259   if (rh != NULL) {
3260     handler = rh;
3261     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3262   }
3263 
3264   st->print(", sa_flags=");
3265   os::Posix::print_sa_flags(st, sa.sa_flags);
3266 
3267   // Check: is it our handler?
3268   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3269       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3270     // It is our signal handler
3271     // check for flags, reset system-used one!
3272     if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3273       st->print(
3274                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3275                 os::Bsd::get_our_sigflags(sig));
3276     }
3277   }
3278   st->cr();
3279 }
3280 
3281 
3282 #define DO_SIGNAL_CHECK(sig)                      \
3283   do {                                            \
3284     if (!sigismember(&check_signal_done, sig)) {  \
3285       os::Bsd::check_signal_handler(sig);         \
3286     }                                             \
3287   } while (0)
3288 
3289 // This method is a periodic task to check for misbehaving JNI applications
3290 // under CheckJNI, we can add any periodic checks here
3291 
3292 void os::run_periodic_checks() {
3293 
3294   if (check_signals == false) return;
3295 
3296   // SEGV and BUS if overridden could potentially prevent
3297   // generation of hs*.log in the event of a crash, debugging
3298   // such a case can be very challenging, so we absolutely
3299   // check the following for a good measure:
3300   DO_SIGNAL_CHECK(SIGSEGV);
3301   DO_SIGNAL_CHECK(SIGILL);
3302   DO_SIGNAL_CHECK(SIGFPE);
3303   DO_SIGNAL_CHECK(SIGBUS);
3304   DO_SIGNAL_CHECK(SIGPIPE);
3305   DO_SIGNAL_CHECK(SIGXFSZ);
3306 
3307 
3308   // ReduceSignalUsage allows the user to override these handlers
3309   // see comments at the very top and jvm_solaris.h
3310   if (!ReduceSignalUsage) {
3311     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3312     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3313     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3314     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3315   }
3316 
3317   DO_SIGNAL_CHECK(SR_signum);
3318 }
3319 
3320 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3321 
3322 static os_sigaction_t os_sigaction = NULL;
3323 
3324 void os::Bsd::check_signal_handler(int sig) {
3325   char buf[O_BUFLEN];
3326   address jvmHandler = NULL;
3327 
3328 
3329   struct sigaction act;
3330   if (os_sigaction == NULL) {
3331     // only trust the default sigaction, in case it has been interposed
3332     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3333     if (os_sigaction == NULL) return;
3334   }
3335 
3336   os_sigaction(sig, (struct sigaction*)NULL, &act);
3337 
3338 
3339   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3340 
3341   address thisHandler = (act.sa_flags & SA_SIGINFO)
3342     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3343     : CAST_FROM_FN_PTR(address, act.sa_handler);
3344 
3345 
3346   switch (sig) {
3347   case SIGSEGV:
3348   case SIGBUS:
3349   case SIGFPE:
3350   case SIGPIPE:
3351   case SIGILL:
3352   case SIGXFSZ:
3353     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3354     break;
3355 
3356   case SHUTDOWN1_SIGNAL:
3357   case SHUTDOWN2_SIGNAL:
3358   case SHUTDOWN3_SIGNAL:
3359   case BREAK_SIGNAL:
3360     jvmHandler = (address)user_handler();
3361     break;
3362 
3363   default:
3364     if (sig == SR_signum) {
3365       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3366     } else {
3367       return;
3368     }
3369     break;
3370   }
3371 
3372   if (thisHandler != jvmHandler) {
3373     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3374     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3375     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3376     // No need to check this sig any longer
3377     sigaddset(&check_signal_done, sig);
3378     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3379     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3380       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3381                     exception_name(sig, buf, O_BUFLEN));
3382     }
3383   } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3384     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3385     tty->print("expected:");
3386     os::Posix::print_sa_flags(tty, os::Bsd::get_our_sigflags(sig));
3387     tty->cr();
3388     tty->print("  found:");
3389     os::Posix::print_sa_flags(tty, act.sa_flags);
3390     tty->cr();
3391     // No need to check this sig any longer
3392     sigaddset(&check_signal_done, sig);
3393   }
3394 
3395   // Dump all the signal
3396   if (sigismember(&check_signal_done, sig)) {
3397     print_signal_handlers(tty, buf, O_BUFLEN);
3398   }
3399 }
3400 
3401 extern void report_error(char* file_name, int line_no, char* title,
3402                          char* format, ...);
3403 
3404 // this is called _before_ the most of global arguments have been parsed
3405 void os::init(void) {
3406   char dummy;   // used to get a guess on initial stack address
3407 //  first_hrtime = gethrtime();
3408 
3409   // With BsdThreads the JavaMain thread pid (primordial thread)
3410   // is different than the pid of the java launcher thread.
3411   // So, on Bsd, the launcher thread pid is passed to the VM
3412   // via the sun.java.launcher.pid property.
3413   // Use this property instead of getpid() if it was correctly passed.
3414   // See bug 6351349.
3415   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3416 
3417   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3418 
3419   clock_tics_per_sec = CLK_TCK;
3420 
3421   init_random(1234567);
3422 
3423   ThreadCritical::initialize();
3424 
3425   Bsd::set_page_size(getpagesize());
3426   if (Bsd::page_size() == -1) {
3427     fatal("os_bsd.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
3428   }
3429   init_page_sizes((size_t) Bsd::page_size());
3430 
3431   Bsd::initialize_system_info();
3432 
3433   // main_thread points to the aboriginal thread
3434   Bsd::_main_thread = pthread_self();
3435 
3436   Bsd::clock_init();
3437   initial_time_count = javaTimeNanos();
3438 
3439 #ifdef __APPLE__
3440   // XXXDARWIN
3441   // Work around the unaligned VM callbacks in hotspot's
3442   // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3443   // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3444   // alignment when doing symbol lookup. To work around this, we force early
3445   // binding of all symbols now, thus binding when alignment is known-good.
3446   _dyld_bind_fully_image_containing_address((const void *) &os::init);
3447 #endif
3448 }
3449 
3450 // To install functions for atexit system call
3451 extern "C" {
3452   static void perfMemory_exit_helper() {
3453     perfMemory_exit();
3454   }
3455 }
3456 
3457 // this is called _after_ the global arguments have been parsed
3458 jint os::init_2(void) {
3459   // Allocate a single page and mark it as readable for safepoint polling
3460   address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3461   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3462 
3463   os::set_polling_page(polling_page);
3464   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
3465 
3466   if (!UseMembar) {
3467     address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3468     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3469     os::set_memory_serialize_page(mem_serialize_page);
3470     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
3471   }
3472 
3473   // initialize suspend/resume support - must do this before signal_sets_init()
3474   if (SR_initialize() != 0) {
3475     perror("SR_initialize failed");
3476     return JNI_ERR;
3477   }
3478 
3479   Bsd::signal_sets_init();
3480   Bsd::install_signal_handlers();
3481 
3482   // Check and sets minimum stack sizes against command line options
3483   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
3484     return JNI_ERR;
3485   }
3486 
3487   if (MaxFDLimit) {
3488     // set the number of file descriptors to max. print out error
3489     // if getrlimit/setrlimit fails but continue regardless.
3490     struct rlimit nbr_files;
3491     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3492     if (status != 0) {
3493       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
3494     } else {
3495       nbr_files.rlim_cur = nbr_files.rlim_max;
3496 
3497 #ifdef __APPLE__
3498       // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3499       // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3500       // be used instead
3501       nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3502 #endif
3503 
3504       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3505       if (status != 0) {
3506         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
3507       }
3508     }
3509   }
3510 
3511   // at-exit methods are called in the reverse order of their registration.
3512   // atexit functions are called on return from main or as a result of a
3513   // call to exit(3C). There can be only 32 of these functions registered
3514   // and atexit() does not set errno.
3515 
3516   if (PerfAllowAtExitRegistration) {
3517     // only register atexit functions if PerfAllowAtExitRegistration is set.
3518     // atexit functions can be delayed until process exit time, which
3519     // can be problematic for embedded VM situations. Embedded VMs should
3520     // call DestroyJavaVM() to assure that VM resources are released.
3521 
3522     // note: perfMemory_exit_helper atexit function may be removed in
3523     // the future if the appropriate cleanup code can be added to the
3524     // VM_Exit VMOperation's doit method.
3525     if (atexit(perfMemory_exit_helper) != 0) {
3526       warning("os::init2 atexit(perfMemory_exit_helper) failed");
3527     }
3528   }
3529 
3530   // initialize thread priority policy
3531   prio_init();
3532 
3533 #ifdef __APPLE__
3534   // dynamically link to objective c gc registration
3535   void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3536   if (handleLibObjc != NULL) {
3537     objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3538   }
3539 #endif
3540 
3541   return JNI_OK;
3542 }
3543 
3544 // Mark the polling page as unreadable
3545 void os::make_polling_page_unreadable(void) {
3546   if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
3547     fatal("Could not disable polling page");
3548   }
3549 }
3550 
3551 // Mark the polling page as readable
3552 void os::make_polling_page_readable(void) {
3553   if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3554     fatal("Could not enable polling page");
3555   }
3556 }
3557 
3558 int os::active_processor_count() {
3559   return _processor_count;
3560 }
3561 
3562 void os::set_native_thread_name(const char *name) {
3563 #if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3564   // This is only supported in Snow Leopard and beyond
3565   if (name != NULL) {
3566     // Add a "Java: " prefix to the name
3567     char buf[MAXTHREADNAMESIZE];
3568     snprintf(buf, sizeof(buf), "Java: %s", name);
3569     pthread_setname_np(buf);
3570   }
3571 #endif
3572 }
3573 
3574 bool os::distribute_processes(uint length, uint* distribution) {
3575   // Not yet implemented.
3576   return false;
3577 }
3578 
3579 bool os::bind_to_processor(uint processor_id) {
3580   // Not yet implemented.
3581   return false;
3582 }
3583 
3584 void os::SuspendedThreadTask::internal_do_task() {
3585   if (do_suspend(_thread->osthread())) {
3586     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3587     do_task(context);
3588     do_resume(_thread->osthread());
3589   }
3590 }
3591 
3592 ///
3593 class PcFetcher : public os::SuspendedThreadTask {
3594  public:
3595   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3596   ExtendedPC result();
3597  protected:
3598   void do_task(const os::SuspendedThreadTaskContext& context);
3599  private:
3600   ExtendedPC _epc;
3601 };
3602 
3603 ExtendedPC PcFetcher::result() {
3604   guarantee(is_done(), "task is not done yet.");
3605   return _epc;
3606 }
3607 
3608 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3609   Thread* thread = context.thread();
3610   OSThread* osthread = thread->osthread();
3611   if (osthread->ucontext() != NULL) {
3612     _epc = os::Bsd::ucontext_get_pc((const ucontext_t *) context.ucontext());
3613   } else {
3614     // NULL context is unexpected, double-check this is the VMThread
3615     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3616   }
3617 }
3618 
3619 // Suspends the target using the signal mechanism and then grabs the PC before
3620 // resuming the target. Used by the flat-profiler only
3621 ExtendedPC os::get_thread_pc(Thread* thread) {
3622   // Make sure that it is called by the watcher for the VMThread
3623   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3624   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3625 
3626   PcFetcher fetcher(thread);
3627   fetcher.run();
3628   return fetcher.result();
3629 }
3630 
3631 ////////////////////////////////////////////////////////////////////////////////
3632 // debug support
3633 
3634 bool os::find(address addr, outputStream* st) {
3635   Dl_info dlinfo;
3636   memset(&dlinfo, 0, sizeof(dlinfo));
3637   if (dladdr(addr, &dlinfo) != 0) {
3638     st->print(PTR_FORMAT ": ", addr);
3639     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3640       st->print("%s+%#x", dlinfo.dli_sname,
3641                 addr - (intptr_t)dlinfo.dli_saddr);
3642     } else if (dlinfo.dli_fbase != NULL) {
3643       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3644     } else {
3645       st->print("<absolute address>");
3646     }
3647     if (dlinfo.dli_fname != NULL) {
3648       st->print(" in %s", dlinfo.dli_fname);
3649     }
3650     if (dlinfo.dli_fbase != NULL) {
3651       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3652     }
3653     st->cr();
3654 
3655     if (Verbose) {
3656       // decode some bytes around the PC
3657       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3658       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3659       address       lowest = (address) dlinfo.dli_sname;
3660       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3661       if (begin < lowest)  begin = lowest;
3662       Dl_info dlinfo2;
3663       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3664           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
3665         end = (address) dlinfo2.dli_saddr;
3666       }
3667       Disassembler::decode(begin, end, st);
3668     }
3669     return true;
3670   }
3671   return false;
3672 }
3673 
3674 ////////////////////////////////////////////////////////////////////////////////
3675 // misc
3676 
3677 // This does not do anything on Bsd. This is basically a hook for being
3678 // able to use structured exception handling (thread-local exception filters)
3679 // on, e.g., Win32.
3680 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3681                               const methodHandle& method, JavaCallArguments* args,
3682                               Thread* thread) {
3683   f(value, method, args, thread);
3684 }
3685 
3686 void os::print_statistics() {
3687 }
3688 
3689 bool os::message_box(const char* title, const char* message) {
3690   int i;
3691   fdStream err(defaultStream::error_fd());
3692   for (i = 0; i < 78; i++) err.print_raw("=");
3693   err.cr();
3694   err.print_raw_cr(title);
3695   for (i = 0; i < 78; i++) err.print_raw("-");
3696   err.cr();
3697   err.print_raw_cr(message);
3698   for (i = 0; i < 78; i++) err.print_raw("=");
3699   err.cr();
3700 
3701   char buf[16];
3702   // Prevent process from exiting upon "read error" without consuming all CPU
3703   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3704 
3705   return buf[0] == 'y' || buf[0] == 'Y';
3706 }
3707 
3708 int os::stat(const char *path, struct stat *sbuf) {
3709   char pathbuf[MAX_PATH];
3710   if (strlen(path) > MAX_PATH - 1) {
3711     errno = ENAMETOOLONG;
3712     return -1;
3713   }
3714   os::native_path(strcpy(pathbuf, path));
3715   return ::stat(pathbuf, sbuf);
3716 }
3717 
3718 static inline struct timespec get_mtime(const char* filename) {
3719   struct stat st;
3720   int ret = os::stat(filename, &st);
3721   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
3722 #ifdef __APPLE__
3723   return st.st_mtimespec;
3724 #else
3725   return st.st_mtim;
3726 #endif
3727 }
3728 
3729 int os::compare_file_modified_times(const char* file1, const char* file2) {
3730   struct timespec filetime1 = get_mtime(file1);
3731   struct timespec filetime2 = get_mtime(file2);
3732   int diff = filetime1.tv_sec - filetime2.tv_sec;
3733   if (diff == 0) {
3734     return filetime1.tv_nsec - filetime2.tv_nsec;
3735   }
3736   return diff;
3737 }
3738 
3739 // Is a (classpath) directory empty?
3740 bool os::dir_is_empty(const char* path) {
3741   DIR *dir = NULL;
3742   struct dirent *ptr;
3743 
3744   dir = opendir(path);
3745   if (dir == NULL) return true;
3746 
3747   // Scan the directory
3748   bool result = true;
3749   char buf[sizeof(struct dirent) + MAX_PATH];
3750   while (result && (ptr = ::readdir(dir)) != NULL) {
3751     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3752       result = false;
3753     }
3754   }
3755   closedir(dir);
3756   return result;
3757 }
3758 
3759 // This code originates from JDK's sysOpen and open64_w
3760 // from src/solaris/hpi/src/system_md.c
3761 
3762 int os::open(const char *path, int oflag, int mode) {
3763   if (strlen(path) > MAX_PATH - 1) {
3764     errno = ENAMETOOLONG;
3765     return -1;
3766   }
3767   int fd;
3768 
3769   fd = ::open(path, oflag, mode);
3770   if (fd == -1) return -1;
3771 
3772   // If the open succeeded, the file might still be a directory
3773   {
3774     struct stat buf;
3775     int ret = ::fstat(fd, &buf);
3776     int st_mode = buf.st_mode;
3777 
3778     if (ret != -1) {
3779       if ((st_mode & S_IFMT) == S_IFDIR) {
3780         errno = EISDIR;
3781         ::close(fd);
3782         return -1;
3783       }
3784     } else {
3785       ::close(fd);
3786       return -1;
3787     }
3788   }
3789 
3790   // All file descriptors that are opened in the JVM and not
3791   // specifically destined for a subprocess should have the
3792   // close-on-exec flag set.  If we don't set it, then careless 3rd
3793   // party native code might fork and exec without closing all
3794   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3795   // UNIXProcess.c), and this in turn might:
3796   //
3797   // - cause end-of-file to fail to be detected on some file
3798   //   descriptors, resulting in mysterious hangs, or
3799   //
3800   // - might cause an fopen in the subprocess to fail on a system
3801   //   suffering from bug 1085341.
3802   //
3803   // (Yes, the default setting of the close-on-exec flag is a Unix
3804   // design flaw)
3805   //
3806   // See:
3807   // 1085341: 32-bit stdio routines should support file descriptors >255
3808   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3809   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3810   //
3811 #ifdef FD_CLOEXEC
3812   {
3813     int flags = ::fcntl(fd, F_GETFD);
3814     if (flags != -1) {
3815       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3816     }
3817   }
3818 #endif
3819 
3820   return fd;
3821 }
3822 
3823 
3824 // create binary file, rewriting existing file if required
3825 int os::create_binary_file(const char* path, bool rewrite_existing) {
3826   int oflags = O_WRONLY | O_CREAT;
3827   if (!rewrite_existing) {
3828     oflags |= O_EXCL;
3829   }
3830   return ::open(path, oflags, S_IREAD | S_IWRITE);
3831 }
3832 
3833 // return current position of file pointer
3834 jlong os::current_file_offset(int fd) {
3835   return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3836 }
3837 
3838 // move file pointer to the specified offset
3839 jlong os::seek_to_file_offset(int fd, jlong offset) {
3840   return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3841 }
3842 
3843 // This code originates from JDK's sysAvailable
3844 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3845 
3846 int os::available(int fd, jlong *bytes) {
3847   jlong cur, end;
3848   int mode;
3849   struct stat buf;
3850 
3851   if (::fstat(fd, &buf) >= 0) {
3852     mode = buf.st_mode;
3853     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3854       int n;
3855       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3856         *bytes = n;
3857         return 1;
3858       }
3859     }
3860   }
3861   if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3862     return 0;
3863   } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3864     return 0;
3865   } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3866     return 0;
3867   }
3868   *bytes = end - cur;
3869   return 1;
3870 }
3871 
3872 // Map a block of memory.
3873 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3874                         char *addr, size_t bytes, bool read_only,
3875                         bool allow_exec) {
3876   int prot;
3877   int flags;
3878 
3879   if (read_only) {
3880     prot = PROT_READ;
3881     flags = MAP_SHARED;
3882   } else {
3883     prot = PROT_READ | PROT_WRITE;
3884     flags = MAP_PRIVATE;
3885   }
3886 
3887   if (allow_exec) {
3888     prot |= PROT_EXEC;
3889   }
3890 
3891   if (addr != NULL) {
3892     flags |= MAP_FIXED;
3893   }
3894 
3895   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3896                                      fd, file_offset);
3897   if (mapped_address == MAP_FAILED) {
3898     return NULL;
3899   }
3900   return mapped_address;
3901 }
3902 
3903 
3904 // Remap a block of memory.
3905 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3906                           char *addr, size_t bytes, bool read_only,
3907                           bool allow_exec) {
3908   // same as map_memory() on this OS
3909   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3910                         allow_exec);
3911 }
3912 
3913 
3914 // Unmap a block of memory.
3915 bool os::pd_unmap_memory(char* addr, size_t bytes) {
3916   return munmap(addr, bytes) == 0;
3917 }
3918 
3919 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3920 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3921 // of a thread.
3922 //
3923 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3924 // the fast estimate available on the platform.
3925 
3926 jlong os::current_thread_cpu_time() {
3927 #ifdef __APPLE__
3928   return os::thread_cpu_time(Thread::current(), true /* user + sys */);
3929 #else
3930   Unimplemented();
3931   return 0;
3932 #endif
3933 }
3934 
3935 jlong os::thread_cpu_time(Thread* thread) {
3936 #ifdef __APPLE__
3937   return os::thread_cpu_time(thread, true /* user + sys */);
3938 #else
3939   Unimplemented();
3940   return 0;
3941 #endif
3942 }
3943 
3944 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3945 #ifdef __APPLE__
3946   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3947 #else
3948   Unimplemented();
3949   return 0;
3950 #endif
3951 }
3952 
3953 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3954 #ifdef __APPLE__
3955   struct thread_basic_info tinfo;
3956   mach_msg_type_number_t tcount = THREAD_INFO_MAX;
3957   kern_return_t kr;
3958   thread_t mach_thread;
3959 
3960   mach_thread = thread->osthread()->thread_id();
3961   kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
3962   if (kr != KERN_SUCCESS) {
3963     return -1;
3964   }
3965 
3966   if (user_sys_cpu_time) {
3967     jlong nanos;
3968     nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
3969     nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
3970     return nanos;
3971   } else {
3972     return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
3973   }
3974 #else
3975   Unimplemented();
3976   return 0;
3977 #endif
3978 }
3979 
3980 
3981 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3982   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3983   info_ptr->may_skip_backward = false;     // elapsed time not wall time
3984   info_ptr->may_skip_forward = false;      // elapsed time not wall time
3985   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3986 }
3987 
3988 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3989   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3990   info_ptr->may_skip_backward = false;     // elapsed time not wall time
3991   info_ptr->may_skip_forward = false;      // elapsed time not wall time
3992   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3993 }
3994 
3995 bool os::is_thread_cpu_time_supported() {
3996 #ifdef __APPLE__
3997   return true;
3998 #else
3999   return false;
4000 #endif
4001 }
4002 
4003 // System loadavg support.  Returns -1 if load average cannot be obtained.
4004 // Bsd doesn't yet have a (official) notion of processor sets,
4005 // so just return the system wide load average.
4006 int os::loadavg(double loadavg[], int nelem) {
4007   return ::getloadavg(loadavg, nelem);
4008 }
4009 
4010 void os::pause() {
4011   char filename[MAX_PATH];
4012   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4013     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4014   } else {
4015     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4016   }
4017 
4018   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4019   if (fd != -1) {
4020     struct stat buf;
4021     ::close(fd);
4022     while (::stat(filename, &buf) == 0) {
4023       (void)::poll(NULL, 0, 100);
4024     }
4025   } else {
4026     jio_fprintf(stderr,
4027                 "Could not open pause file '%s', continuing immediately.\n", filename);
4028   }
4029 }
4030 
4031 
4032 // Refer to the comments in os_solaris.cpp park-unpark. The next two
4033 // comment paragraphs are worth repeating here:
4034 //
4035 // Assumption:
4036 //    Only one parker can exist on an event, which is why we allocate
4037 //    them per-thread. Multiple unparkers can coexist.
4038 //
4039 // _Event serves as a restricted-range semaphore.
4040 //   -1 : thread is blocked, i.e. there is a waiter
4041 //    0 : neutral: thread is running or ready,
4042 //        could have been signaled after a wait started
4043 //    1 : signaled - thread is running or ready
4044 //
4045 
4046 // utility to compute the abstime argument to timedwait:
4047 // millis is the relative timeout time
4048 // abstime will be the absolute timeout time
4049 // TODO: replace compute_abstime() with unpackTime()
4050 
4051 static struct timespec* compute_abstime(struct timespec* abstime,
4052                                         jlong millis) {
4053   if (millis < 0)  millis = 0;
4054   struct timeval now;
4055   int status = gettimeofday(&now, NULL);
4056   assert(status == 0, "gettimeofday");
4057   jlong seconds = millis / 1000;
4058   millis %= 1000;
4059   if (seconds > 50000000) { // see man cond_timedwait(3T)
4060     seconds = 50000000;
4061   }
4062   abstime->tv_sec = now.tv_sec  + seconds;
4063   long       usec = now.tv_usec + millis * 1000;
4064   if (usec >= 1000000) {
4065     abstime->tv_sec += 1;
4066     usec -= 1000000;
4067   }
4068   abstime->tv_nsec = usec * 1000;
4069   return abstime;
4070 }
4071 
4072 void os::PlatformEvent::park() {       // AKA "down()"
4073   // Transitions for _Event:
4074   //   -1 => -1 : illegal
4075   //    1 =>  0 : pass - return immediately
4076   //    0 => -1 : block; then set _Event to 0 before returning
4077 
4078   // Invariant: Only the thread associated with the Event/PlatformEvent
4079   // may call park().
4080   // TODO: assert that _Assoc != NULL or _Assoc == Self
4081   assert(_nParked == 0, "invariant");
4082 
4083   int v;
4084   for (;;) {
4085     v = _Event;
4086     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4087   }
4088   guarantee(v >= 0, "invariant");
4089   if (v == 0) {
4090     // Do this the hard way by blocking ...
4091     int status = pthread_mutex_lock(_mutex);
4092     assert_status(status == 0, status, "mutex_lock");
4093     guarantee(_nParked == 0, "invariant");
4094     ++_nParked;
4095     while (_Event < 0) {
4096       status = pthread_cond_wait(_cond, _mutex);
4097       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4098       // Treat this the same as if the wait was interrupted
4099       if (status == ETIMEDOUT) { status = EINTR; }
4100       assert_status(status == 0 || status == EINTR, status, "cond_wait");
4101     }
4102     --_nParked;
4103 
4104     _Event = 0;
4105     status = pthread_mutex_unlock(_mutex);
4106     assert_status(status == 0, status, "mutex_unlock");
4107     // Paranoia to ensure our locked and lock-free paths interact
4108     // correctly with each other.
4109     OrderAccess::fence();
4110   }
4111   guarantee(_Event >= 0, "invariant");
4112 }
4113 
4114 int os::PlatformEvent::park(jlong millis) {
4115   // Transitions for _Event:
4116   //   -1 => -1 : illegal
4117   //    1 =>  0 : pass - return immediately
4118   //    0 => -1 : block; then set _Event to 0 before returning
4119 
4120   guarantee(_nParked == 0, "invariant");
4121 
4122   int v;
4123   for (;;) {
4124     v = _Event;
4125     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4126   }
4127   guarantee(v >= 0, "invariant");
4128   if (v != 0) return OS_OK;
4129 
4130   // We do this the hard way, by blocking the thread.
4131   // Consider enforcing a minimum timeout value.
4132   struct timespec abst;
4133   compute_abstime(&abst, millis);
4134 
4135   int ret = OS_TIMEOUT;
4136   int status = pthread_mutex_lock(_mutex);
4137   assert_status(status == 0, status, "mutex_lock");
4138   guarantee(_nParked == 0, "invariant");
4139   ++_nParked;
4140 
4141   // Object.wait(timo) will return because of
4142   // (a) notification
4143   // (b) timeout
4144   // (c) thread.interrupt
4145   //
4146   // Thread.interrupt and object.notify{All} both call Event::set.
4147   // That is, we treat thread.interrupt as a special case of notification.
4148   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4149   // We assume all ETIME returns are valid.
4150   //
4151   // TODO: properly differentiate simultaneous notify+interrupt.
4152   // In that case, we should propagate the notify to another waiter.
4153 
4154   while (_Event < 0) {
4155     status = pthread_cond_timedwait(_cond, _mutex, &abst);
4156     assert_status(status == 0 || status == EINTR ||
4157                   status == ETIMEDOUT,
4158                   status, "cond_timedwait");
4159     if (!FilterSpuriousWakeups) break;                 // previous semantics
4160     if (status == ETIMEDOUT) break;
4161     // We consume and ignore EINTR and spurious wakeups.
4162   }
4163   --_nParked;
4164   if (_Event >= 0) {
4165     ret = OS_OK;
4166   }
4167   _Event = 0;
4168   status = pthread_mutex_unlock(_mutex);
4169   assert_status(status == 0, status, "mutex_unlock");
4170   assert(_nParked == 0, "invariant");
4171   // Paranoia to ensure our locked and lock-free paths interact
4172   // correctly with each other.
4173   OrderAccess::fence();
4174   return ret;
4175 }
4176 
4177 void os::PlatformEvent::unpark() {
4178   // Transitions for _Event:
4179   //    0 => 1 : just return
4180   //    1 => 1 : just return
4181   //   -1 => either 0 or 1; must signal target thread
4182   //         That is, we can safely transition _Event from -1 to either
4183   //         0 or 1.
4184   // See also: "Semaphores in Plan 9" by Mullender & Cox
4185   //
4186   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4187   // that it will take two back-to-back park() calls for the owning
4188   // thread to block. This has the benefit of forcing a spurious return
4189   // from the first park() call after an unpark() call which will help
4190   // shake out uses of park() and unpark() without condition variables.
4191 
4192   if (Atomic::xchg(1, &_Event) >= 0) return;
4193 
4194   // Wait for the thread associated with the event to vacate
4195   int status = pthread_mutex_lock(_mutex);
4196   assert_status(status == 0, status, "mutex_lock");
4197   int AnyWaiters = _nParked;
4198   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4199   status = pthread_mutex_unlock(_mutex);
4200   assert_status(status == 0, status, "mutex_unlock");
4201   if (AnyWaiters != 0) {
4202     // Note that we signal() *after* dropping the lock for "immortal" Events.
4203     // This is safe and avoids a common class of  futile wakeups.  In rare
4204     // circumstances this can cause a thread to return prematurely from
4205     // cond_{timed}wait() but the spurious wakeup is benign and the victim
4206     // will simply re-test the condition and re-park itself.
4207     // This provides particular benefit if the underlying platform does not
4208     // provide wait morphing.
4209     status = pthread_cond_signal(_cond);
4210     assert_status(status == 0, status, "cond_signal");
4211   }
4212 }
4213 
4214 
4215 // JSR166
4216 // -------------------------------------------------------
4217 
4218 // The solaris and bsd implementations of park/unpark are fairly
4219 // conservative for now, but can be improved. They currently use a
4220 // mutex/condvar pair, plus a a count.
4221 // Park decrements count if > 0, else does a condvar wait.  Unpark
4222 // sets count to 1 and signals condvar.  Only one thread ever waits
4223 // on the condvar. Contention seen when trying to park implies that someone
4224 // is unparking you, so don't wait. And spurious returns are fine, so there
4225 // is no need to track notifications.
4226 
4227 #define MAX_SECS 100000000
4228 
4229 // This code is common to bsd and solaris and will be moved to a
4230 // common place in dolphin.
4231 //
4232 // The passed in time value is either a relative time in nanoseconds
4233 // or an absolute time in milliseconds. Either way it has to be unpacked
4234 // into suitable seconds and nanoseconds components and stored in the
4235 // given timespec structure.
4236 // Given time is a 64-bit value and the time_t used in the timespec is only
4237 // a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4238 // overflow if times way in the future are given. Further on Solaris versions
4239 // prior to 10 there is a restriction (see cond_timedwait) that the specified
4240 // number of seconds, in abstime, is less than current_time  + 100,000,000.
4241 // As it will be 28 years before "now + 100000000" will overflow we can
4242 // ignore overflow and just impose a hard-limit on seconds using the value
4243 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
4244 // years from "now".
4245 
4246 static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4247   assert(time > 0, "convertTime");
4248 
4249   struct timeval now;
4250   int status = gettimeofday(&now, NULL);
4251   assert(status == 0, "gettimeofday");
4252 
4253   time_t max_secs = now.tv_sec + MAX_SECS;
4254 
4255   if (isAbsolute) {
4256     jlong secs = time / 1000;
4257     if (secs > max_secs) {
4258       absTime->tv_sec = max_secs;
4259     } else {
4260       absTime->tv_sec = secs;
4261     }
4262     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4263   } else {
4264     jlong secs = time / NANOSECS_PER_SEC;
4265     if (secs >= MAX_SECS) {
4266       absTime->tv_sec = max_secs;
4267       absTime->tv_nsec = 0;
4268     } else {
4269       absTime->tv_sec = now.tv_sec + secs;
4270       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4271       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4272         absTime->tv_nsec -= NANOSECS_PER_SEC;
4273         ++absTime->tv_sec; // note: this must be <= max_secs
4274       }
4275     }
4276   }
4277   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4278   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4279   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4280   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4281 }
4282 
4283 void Parker::park(bool isAbsolute, jlong time) {
4284   // Ideally we'd do something useful while spinning, such
4285   // as calling unpackTime().
4286 
4287   // Optional fast-path check:
4288   // Return immediately if a permit is available.
4289   // We depend on Atomic::xchg() having full barrier semantics
4290   // since we are doing a lock-free update to _counter.
4291   if (Atomic::xchg(0, &_counter) > 0) return;
4292 
4293   Thread* thread = Thread::current();
4294   assert(thread->is_Java_thread(), "Must be JavaThread");
4295   JavaThread *jt = (JavaThread *)thread;
4296 
4297   // Optional optimization -- avoid state transitions if there's an interrupt pending.
4298   // Check interrupt before trying to wait
4299   if (Thread::is_interrupted(thread, false)) {
4300     return;
4301   }
4302 
4303   // Next, demultiplex/decode time arguments
4304   struct timespec absTime;
4305   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4306     return;
4307   }
4308   if (time > 0) {
4309     unpackTime(&absTime, isAbsolute, time);
4310   }
4311 
4312 
4313   // Enter safepoint region
4314   // Beware of deadlocks such as 6317397.
4315   // The per-thread Parker:: mutex is a classic leaf-lock.
4316   // In particular a thread must never block on the Threads_lock while
4317   // holding the Parker:: mutex.  If safepoints are pending both the
4318   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4319   ThreadBlockInVM tbivm(jt);
4320 
4321   // Don't wait if cannot get lock since interference arises from
4322   // unblocking.  Also. check interrupt before trying wait
4323   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4324     return;
4325   }
4326 
4327   int status;
4328   if (_counter > 0)  { // no wait needed
4329     _counter = 0;
4330     status = pthread_mutex_unlock(_mutex);
4331     assert_status(status == 0, status, "invariant");
4332     // Paranoia to ensure our locked and lock-free paths interact
4333     // correctly with each other and Java-level accesses.
4334     OrderAccess::fence();
4335     return;
4336   }
4337 
4338 #ifdef ASSERT
4339   // Don't catch signals while blocked; let the running threads have the signals.
4340   // (This allows a debugger to break into the running thread.)
4341   sigset_t oldsigs;
4342   sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4343   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4344 #endif
4345 
4346   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4347   jt->set_suspend_equivalent();
4348   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4349 
4350   if (time == 0) {
4351     status = pthread_cond_wait(_cond, _mutex);
4352   } else {
4353     status = pthread_cond_timedwait(_cond, _mutex, &absTime);
4354   }
4355   assert_status(status == 0 || status == EINTR ||
4356                 status == ETIMEDOUT,
4357                 status, "cond_timedwait");
4358 
4359 #ifdef ASSERT
4360   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4361 #endif
4362 
4363   _counter = 0;
4364   status = pthread_mutex_unlock(_mutex);
4365   assert_status(status == 0, status, "invariant");
4366   // Paranoia to ensure our locked and lock-free paths interact
4367   // correctly with each other and Java-level accesses.
4368   OrderAccess::fence();
4369 
4370   // If externally suspended while waiting, re-suspend
4371   if (jt->handle_special_suspend_equivalent_condition()) {
4372     jt->java_suspend_self();
4373   }
4374 }
4375 
4376 void Parker::unpark() {
4377   int status = pthread_mutex_lock(_mutex);
4378   assert_status(status == 0, status, "invariant");
4379   const int s = _counter;
4380   _counter = 1;
4381   status = pthread_mutex_unlock(_mutex);
4382   assert_status(status == 0, status, "invariant");
4383   if (s < 1) {
4384     status = pthread_cond_signal(_cond);
4385     assert_status(status == 0, status, "invariant");
4386   }
4387 }
4388 
4389 
4390 // Darwin has no "environ" in a dynamic library.
4391 #ifdef __APPLE__
4392   #include <crt_externs.h>
4393   #define environ (*_NSGetEnviron())
4394 #else
4395 extern char** environ;
4396 #endif
4397 
4398 // Run the specified command in a separate process. Return its exit value,
4399 // or -1 on failure (e.g. can't fork a new process).
4400 // Unlike system(), this function can be called from signal handler. It
4401 // doesn't block SIGINT et al.
4402 int os::fork_and_exec(char* cmd) {
4403   const char * argv[4] = {"sh", "-c", cmd, NULL};
4404 
4405   // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4406   // pthread_atfork handlers and reset pthread library. All we need is a
4407   // separate process to execve. Make a direct syscall to fork process.
4408   // On IA64 there's no fork syscall, we have to use fork() and hope for
4409   // the best...
4410   pid_t pid = fork();
4411 
4412   if (pid < 0) {
4413     // fork failed
4414     return -1;
4415 
4416   } else if (pid == 0) {
4417     // child process
4418 
4419     // execve() in BsdThreads will call pthread_kill_other_threads_np()
4420     // first to kill every thread on the thread list. Because this list is
4421     // not reset by fork() (see notes above), execve() will instead kill
4422     // every thread in the parent process. We know this is the only thread
4423     // in the new process, so make a system call directly.
4424     // IA64 should use normal execve() from glibc to match the glibc fork()
4425     // above.
4426     execve("/bin/sh", (char* const*)argv, environ);
4427 
4428     // execve failed
4429     _exit(-1);
4430 
4431   } else  {
4432     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4433     // care about the actual exit code, for now.
4434 
4435     int status;
4436 
4437     // Wait for the child process to exit.  This returns immediately if
4438     // the child has already exited. */
4439     while (waitpid(pid, &status, 0) < 0) {
4440       switch (errno) {
4441       case ECHILD: return 0;
4442       case EINTR: break;
4443       default: return -1;
4444       }
4445     }
4446 
4447     if (WIFEXITED(status)) {
4448       // The child exited normally; get its exit code.
4449       return WEXITSTATUS(status);
4450     } else if (WIFSIGNALED(status)) {
4451       // The child exited because of a signal
4452       // The best value to return is 0x80 + signal number,
4453       // because that is what all Unix shells do, and because
4454       // it allows callers to distinguish between process exit and
4455       // process death by signal.
4456       return 0x80 + WTERMSIG(status);
4457     } else {
4458       // Unknown exit code; pass it through
4459       return status;
4460     }
4461   }
4462 }
4463 
4464 // is_headless_jre()
4465 //
4466 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
4467 // in order to report if we are running in a headless jre
4468 //
4469 // Since JDK8 xawt/libmawt.so was moved into the same directory
4470 // as libawt.so, and renamed libawt_xawt.so
4471 //
4472 bool os::is_headless_jre() {
4473 #ifdef __APPLE__
4474   // We no longer build headless-only on Mac OS X
4475   return false;
4476 #else
4477   struct stat statbuf;
4478   char buf[MAXPATHLEN];
4479   char libmawtpath[MAXPATHLEN];
4480   const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4481   const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4482   char *p;
4483 
4484   // Get path to libjvm.so
4485   os::jvm_path(buf, sizeof(buf));
4486 
4487   // Get rid of libjvm.so
4488   p = strrchr(buf, '/');
4489   if (p == NULL) {
4490     return false;
4491   } else {
4492     *p = '\0';
4493   }
4494 
4495   // Get rid of client or server
4496   p = strrchr(buf, '/');
4497   if (p == NULL) {
4498     return false;
4499   } else {
4500     *p = '\0';
4501   }
4502 
4503   // check xawt/libmawt.so
4504   strcpy(libmawtpath, buf);
4505   strcat(libmawtpath, xawtstr);
4506   if (::stat(libmawtpath, &statbuf) == 0) return false;
4507 
4508   // check libawt_xawt.so
4509   strcpy(libmawtpath, buf);
4510   strcat(libmawtpath, new_xawtstr);
4511   if (::stat(libmawtpath, &statbuf) == 0) return false;
4512 
4513   return true;
4514 #endif
4515 }
4516 
4517 // Get the default path to the core file
4518 // Returns the length of the string
4519 int os::get_core_path(char* buffer, size_t bufferSize) {
4520   int n = jio_snprintf(buffer, bufferSize, "/cores/core.%d", current_process_id());
4521 
4522   // Truncate if theoretical string was longer than bufferSize
4523   n = MIN2(n, (int)bufferSize);
4524 
4525   return n;
4526 }
4527 
4528 #ifndef PRODUCT
4529 void TestReserveMemorySpecial_test() {
4530   // No tests available for this platform
4531 }
4532 #endif
4533 
4534 bool os::start_debugging(char *buf, int buflen) {
4535   int len = (int)strlen(buf);
4536   char *p = &buf[len];
4537 
4538   jio_snprintf(p, buflen-len,
4539              "\n\n"
4540              "Do you want to debug the problem?\n\n"
4541              "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " INTX_FORMAT " (" INTPTR_FORMAT ")\n"
4542              "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
4543              "Otherwise, press RETURN to abort...",
4544              os::current_process_id(), os::current_process_id(),
4545              os::current_thread_id(), os::current_thread_id());
4546 
4547   bool yes = os::message_box("Unexpected Error", buf);
4548 
4549   if (yes) {
4550     // yes, user asked VM to launch debugger
4551     jio_snprintf(buf, sizeof(buf), "gdb /proc/%d/exe %d",
4552                      os::current_process_id(), os::current_process_id());
4553 
4554     os::fork_and_exec(buf);
4555     yes = false;
4556   }
4557   return yes;
4558 }