1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "classfile/moduleEntry.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compileTask.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/gcId.hpp"
  39 #include "gc/shared/gcLocker.inline.hpp"
  40 #include "gc/shared/workgroup.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "interpreter/oopMapCache.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "jvmtifiles/jvmtiEnv.hpp"
  46 #include "logging/log.hpp"
  47 #include "logging/logConfiguration.hpp"
  48 #include "logging/logStream.hpp"
  49 #include "memory/allocation.inline.hpp"
  50 #include "memory/metaspaceShared.hpp"
  51 #include "memory/oopFactory.hpp"
  52 #include "memory/resourceArea.hpp"
  53 #include "memory/universe.hpp"
  54 #include "oops/access.inline.hpp"
  55 #include "oops/instanceKlass.hpp"
  56 #include "oops/objArrayOop.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/symbol.hpp"
  59 #include "oops/typeArrayOop.inline.hpp"
  60 #include "oops/verifyOopClosure.hpp"
  61 #include "prims/jvm_misc.hpp"
  62 #include "prims/jvmtiExport.hpp"
  63 #include "prims/jvmtiThreadState.hpp"
  64 #include "runtime/arguments.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/biasedLocking.hpp"
  67 #include "runtime/fieldDescriptor.inline.hpp"
  68 #include "runtime/flags/jvmFlagConstraintList.hpp"
  69 #include "runtime/flags/jvmFlagRangeList.hpp"
  70 #include "runtime/flags/jvmFlagWriteableList.hpp"
  71 #include "runtime/deoptimization.hpp"
  72 #include "runtime/frame.inline.hpp"
  73 #include "runtime/handles.inline.hpp"
  74 #include "runtime/handshake.hpp"
  75 #include "runtime/init.hpp"
  76 #include "runtime/interfaceSupport.inline.hpp"
  77 #include "runtime/java.hpp"
  78 #include "runtime/javaCalls.hpp"
  79 #include "runtime/jniHandles.inline.hpp"
  80 #include "runtime/jniPeriodicChecker.hpp"
  81 #include "runtime/memprofiler.hpp"
  82 #include "runtime/mutexLocker.hpp"
  83 #include "runtime/objectMonitor.hpp"
  84 #include "runtime/orderAccess.hpp"
  85 #include "runtime/osThread.hpp"
  86 #include "runtime/prefetch.inline.hpp"
  87 #include "runtime/safepoint.hpp"
  88 #include "runtime/safepointMechanism.inline.hpp"
  89 #include "runtime/safepointVerifiers.hpp"
  90 #include "runtime/sharedRuntime.hpp"
  91 #include "runtime/statSampler.hpp"
  92 #include "runtime/stubRoutines.hpp"
  93 #include "runtime/sweeper.hpp"
  94 #include "runtime/task.hpp"
  95 #include "runtime/thread.inline.hpp"
  96 #include "runtime/threadCritical.hpp"
  97 #include "runtime/threadSMR.inline.hpp"
  98 #include "runtime/threadStatisticalInfo.hpp"
  99 #include "runtime/timer.hpp"
 100 #include "runtime/timerTrace.hpp"
 101 #include "runtime/vframe.inline.hpp"
 102 #include "runtime/vframeArray.hpp"
 103 #include "runtime/vframe_hp.hpp"
 104 #include "runtime/vmThread.hpp"
 105 #include "runtime/vmOperations.hpp"
 106 #include "runtime/vm_version.hpp"
 107 #include "services/attachListener.hpp"
 108 #include "services/management.hpp"
 109 #include "services/memTracker.hpp"
 110 #include "services/threadService.hpp"
 111 #include "utilities/align.hpp"
 112 #include "utilities/copy.hpp"
 113 #include "utilities/defaultStream.hpp"
 114 #include "utilities/dtrace.hpp"
 115 #include "utilities/events.hpp"
 116 #include "utilities/macros.hpp"
 117 #include "utilities/preserveException.hpp"
 118 #include "utilities/singleWriterSynchronizer.hpp"
 119 #include "utilities/vmError.hpp"
 120 #if INCLUDE_JVMCI
 121 #include "jvmci/jvmci.hpp"
 122 #include "jvmci/jvmciEnv.hpp"
 123 #endif
 124 #ifdef COMPILER1
 125 #include "c1/c1_Compiler.hpp"
 126 #endif
 127 #ifdef COMPILER2
 128 #include "opto/c2compiler.hpp"
 129 #include "opto/idealGraphPrinter.hpp"
 130 #endif
 131 #if INCLUDE_RTM_OPT
 132 #include "runtime/rtmLocking.hpp"
 133 #endif
 134 #if INCLUDE_JFR
 135 #include "jfr/jfr.hpp"
 136 #endif
 137 
 138 // Initialization after module runtime initialization
 139 void universe_post_module_init();  // must happen after call_initPhase2
 140 
 141 #ifdef DTRACE_ENABLED
 142 
 143 // Only bother with this argument setup if dtrace is available
 144 
 145   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 146   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 147 
 148   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 149     {                                                                      \
 150       ResourceMark rm(this);                                               \
 151       int len = 0;                                                         \
 152       const char* name = (javathread)->get_thread_name();                  \
 153       len = strlen(name);                                                  \
 154       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 155         (char *) name, len,                                                \
 156         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 157         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 158         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 159     }
 160 
 161 #else //  ndef DTRACE_ENABLED
 162 
 163   #define DTRACE_THREAD_PROBE(probe, javathread)
 164 
 165 #endif // ndef DTRACE_ENABLED
 166 
 167 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 168 // Current thread is maintained as a thread-local variable
 169 THREAD_LOCAL Thread* Thread::_thr_current = NULL;
 170 #endif
 171 
 172 // ======= Thread ========
 173 // Support for forcing alignment of thread objects for biased locking
 174 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 175   if (UseBiasedLocking) {
 176     const size_t alignment = markWord::biased_lock_alignment;
 177     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 178     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 179                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 180                                                          AllocFailStrategy::RETURN_NULL);
 181     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 182     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 183            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 184            "JavaThread alignment code overflowed allocated storage");
 185     if (aligned_addr != real_malloc_addr) {
 186       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 187                               p2i(real_malloc_addr),
 188                               p2i(aligned_addr));
 189     }
 190     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 191     return aligned_addr;
 192   } else {
 193     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 194                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 195   }
 196 }
 197 
 198 void Thread::operator delete(void* p) {
 199   if (UseBiasedLocking) {
 200     FreeHeap(((Thread*) p)->_real_malloc_address);
 201   } else {
 202     FreeHeap(p);
 203   }
 204 }
 205 
 206 void JavaThread::smr_delete() {
 207   if (_on_thread_list) {
 208     ThreadsSMRSupport::smr_delete(this);
 209   } else {
 210     delete this;
 211   }
 212 }
 213 
 214 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 215 // JavaThread
 216 
 217 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 218 
 219 Thread::Thread() {
 220 
 221   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 222 
 223   // stack and get_thread
 224   set_stack_base(NULL);
 225   set_stack_size(0);
 226   set_lgrp_id(-1);
 227   DEBUG_ONLY(clear_suspendible_thread();)
 228 
 229   // allocated data structures
 230   set_osthread(NULL);
 231   set_resource_area(new (mtThread)ResourceArea());
 232   DEBUG_ONLY(_current_resource_mark = NULL;)
 233   set_handle_area(new (mtThread) HandleArea(NULL));
 234   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 235   set_active_handles(NULL);
 236   set_free_handle_block(NULL);
 237   set_last_handle_mark(NULL);
 238   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 239 
 240   // Initial value of zero ==> never claimed.
 241   _threads_do_token = 0;
 242   _threads_hazard_ptr = NULL;
 243   _threads_list_ptr = NULL;
 244   _nested_threads_hazard_ptr_cnt = 0;
 245   _rcu_counter = 0;
 246 
 247   // the handle mark links itself to last_handle_mark
 248   new HandleMark(this);
 249 
 250   // plain initialization
 251   debug_only(_owned_locks = NULL;)
 252   NOT_PRODUCT(_no_safepoint_count = 0;)
 253   NOT_PRODUCT(_skip_gcalot = false;)
 254   _jvmti_env_iteration_count = 0;
 255   set_allocated_bytes(0);
 256   _vm_operation_started_count = 0;
 257   _vm_operation_completed_count = 0;
 258   _current_pending_monitor = NULL;
 259   _current_pending_monitor_is_from_java = true;
 260   _current_waiting_monitor = NULL;
 261   _current_pending_raw_monitor = NULL;
 262   _num_nested_signal = 0;
 263   om_free_list = NULL;
 264   om_free_count = 0;
 265   om_free_provision = 32;
 266   om_in_use_list = NULL;
 267   om_in_use_count = 0;
 268 
 269 #ifdef ASSERT
 270   _visited_for_critical_count = false;
 271 #endif
 272 
 273   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 274                          Monitor::_safepoint_check_sometimes);
 275   _suspend_flags = 0;
 276 
 277   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 278   _hashStateX = os::random();
 279   _hashStateY = 842502087;
 280   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 281   _hashStateW = 273326509;
 282 
 283   _OnTrap   = 0;
 284   _Stalled  = 0;
 285   _TypeTag  = 0x2BAD;
 286 
 287   // Many of the following fields are effectively final - immutable
 288   // Note that nascent threads can't use the Native Monitor-Mutex
 289   // construct until the _MutexEvent is initialized ...
 290   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 291   // we might instead use a stack of ParkEvents that we could provision on-demand.
 292   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 293   // and ::Release()
 294   _ParkEvent   = ParkEvent::Allocate(this);
 295   _MuxEvent    = ParkEvent::Allocate(this);
 296 
 297 #ifdef CHECK_UNHANDLED_OOPS
 298   if (CheckUnhandledOops) {
 299     _unhandled_oops = new UnhandledOops(this);
 300   }
 301 #endif // CHECK_UNHANDLED_OOPS
 302 #ifdef ASSERT
 303   if (UseBiasedLocking) {
 304     assert(is_aligned(this, markWord::biased_lock_alignment), "forced alignment of thread object failed");
 305     assert(this == _real_malloc_address ||
 306            this == align_up(_real_malloc_address, markWord::biased_lock_alignment),
 307            "bug in forced alignment of thread objects");
 308   }
 309 #endif // ASSERT
 310 
 311   // Notify the barrier set that a thread is being created. The initial
 312   // thread is created before the barrier set is available.  The call to
 313   // BarrierSet::on_thread_create() for this thread is therefore deferred
 314   // to BarrierSet::set_barrier_set().
 315   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 316   if (barrier_set != NULL) {
 317     barrier_set->on_thread_create(this);
 318   } else {
 319     // Only the main thread should be created before the barrier set
 320     // and that happens just before Thread::current is set. No other thread
 321     // can attach as the VM is not created yet, so they can't execute this code.
 322     // If the main thread creates other threads before the barrier set that is an error.
 323     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 324   }
 325 }
 326 
 327 void Thread::initialize_thread_current() {
 328 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 329   assert(_thr_current == NULL, "Thread::current already initialized");
 330   _thr_current = this;
 331 #endif
 332   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 333   ThreadLocalStorage::set_thread(this);
 334   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 335 }
 336 
 337 void Thread::clear_thread_current() {
 338   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 339 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 340   _thr_current = NULL;
 341 #endif
 342   ThreadLocalStorage::set_thread(NULL);
 343 }
 344 
 345 void Thread::record_stack_base_and_size() {
 346   // Note: at this point, Thread object is not yet initialized. Do not rely on
 347   // any members being initialized. Do not rely on Thread::current() being set.
 348   // If possible, refrain from doing anything which may crash or assert since
 349   // quite probably those crash dumps will be useless.
 350   set_stack_base(os::current_stack_base());
 351   set_stack_size(os::current_stack_size());
 352 
 353 #ifdef SOLARIS
 354   if (os::is_primordial_thread()) {
 355     os::Solaris::correct_stack_boundaries_for_primordial_thread(this);
 356   }
 357 #endif
 358 
 359   // Set stack limits after thread is initialized.
 360   if (is_Java_thread()) {
 361     ((JavaThread*) this)->set_stack_overflow_limit();
 362     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 363   }
 364 }
 365 
 366 #if INCLUDE_NMT
 367 void Thread::register_thread_stack_with_NMT() {
 368   MemTracker::record_thread_stack(stack_end(), stack_size());
 369 }
 370 #endif // INCLUDE_NMT
 371 
 372 void Thread::call_run() {
 373   DEBUG_ONLY(_run_state = CALL_RUN;)
 374 
 375   // At this point, Thread object should be fully initialized and
 376   // Thread::current() should be set.
 377 
 378   assert(Thread::current_or_null() != NULL, "current thread is unset");
 379   assert(Thread::current_or_null() == this, "current thread is wrong");
 380 
 381   // Perform common initialization actions
 382 
 383   register_thread_stack_with_NMT();
 384 
 385   JFR_ONLY(Jfr::on_thread_start(this);)
 386 
 387   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 388     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 389     os::current_thread_id(), p2i(stack_base() - stack_size()),
 390     p2i(stack_base()), stack_size()/1024);
 391 
 392   // Perform <ChildClass> initialization actions
 393   DEBUG_ONLY(_run_state = PRE_RUN;)
 394   this->pre_run();
 395 
 396   // Invoke <ChildClass>::run()
 397   DEBUG_ONLY(_run_state = RUN;)
 398   this->run();
 399   // Returned from <ChildClass>::run(). Thread finished.
 400 
 401   // Perform common tear-down actions
 402 
 403   assert(Thread::current_or_null() != NULL, "current thread is unset");
 404   assert(Thread::current_or_null() == this, "current thread is wrong");
 405 
 406   // Perform <ChildClass> tear-down actions
 407   DEBUG_ONLY(_run_state = POST_RUN;)
 408   this->post_run();
 409 
 410   // Note: at this point the thread object may already have deleted itself,
 411   // so from here on do not dereference *this*. Not all thread types currently
 412   // delete themselves when they terminate. But no thread should ever be deleted
 413   // asynchronously with respect to its termination - that is what _run_state can
 414   // be used to check.
 415 
 416   assert(Thread::current_or_null() == NULL, "current thread still present");
 417 }
 418 
 419 Thread::~Thread() {
 420 
 421   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 422   // get started due to errors etc. Any active thread should at least reach post_run
 423   // before it is deleted (usually in post_run()).
 424   assert(_run_state == PRE_CALL_RUN ||
 425          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 426          "_run_state=%d", (int)_run_state);
 427 
 428   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 429   // set might not be available if we encountered errors during bootstrapping.
 430   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 431   if (barrier_set != NULL) {
 432     barrier_set->on_thread_destroy(this);
 433   }
 434 
 435   // stack_base can be NULL if the thread is never started or exited before
 436   // record_stack_base_and_size called. Although, we would like to ensure
 437   // that all started threads do call record_stack_base_and_size(), there is
 438   // not proper way to enforce that.
 439 #if INCLUDE_NMT
 440   if (_stack_base != NULL) {
 441     MemTracker::release_thread_stack(stack_end(), stack_size());
 442 #ifdef ASSERT
 443     set_stack_base(NULL);
 444 #endif
 445   }
 446 #endif // INCLUDE_NMT
 447 
 448   // deallocate data structures
 449   delete resource_area();
 450   // since the handle marks are using the handle area, we have to deallocated the root
 451   // handle mark before deallocating the thread's handle area,
 452   assert(last_handle_mark() != NULL, "check we have an element");
 453   delete last_handle_mark();
 454   assert(last_handle_mark() == NULL, "check we have reached the end");
 455 
 456   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 457   // We NULL out the fields for good hygiene.
 458   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 459   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 460 
 461   delete handle_area();
 462   delete metadata_handles();
 463 
 464   // SR_handler uses this as a termination indicator -
 465   // needs to happen before os::free_thread()
 466   delete _SR_lock;
 467   _SR_lock = NULL;
 468 
 469   // osthread() can be NULL, if creation of thread failed.
 470   if (osthread() != NULL) os::free_thread(osthread());
 471 
 472   // Clear Thread::current if thread is deleting itself and it has not
 473   // already been done. This must be done before the memory is deallocated.
 474   // Needed to ensure JNI correctly detects non-attached threads.
 475   if (this == Thread::current_or_null()) {
 476     Thread::clear_thread_current();
 477   }
 478 
 479   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 480 }
 481 
 482 #ifdef ASSERT
 483 // A JavaThread is considered "dangling" if it is not the current
 484 // thread, has been added the Threads list, the system is not at a
 485 // safepoint and the Thread is not "protected".
 486 //
 487 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 488   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 489          !((JavaThread *) thread)->on_thread_list() ||
 490          SafepointSynchronize::is_at_safepoint() ||
 491          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 492          "possibility of dangling Thread pointer");
 493 }
 494 #endif
 495 
 496 ThreadPriority Thread::get_priority(const Thread* const thread) {
 497   ThreadPriority priority;
 498   // Can return an error!
 499   (void)os::get_priority(thread, priority);
 500   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 501   return priority;
 502 }
 503 
 504 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 505   debug_only(check_for_dangling_thread_pointer(thread);)
 506   // Can return an error!
 507   (void)os::set_priority(thread, priority);
 508 }
 509 
 510 
 511 void Thread::start(Thread* thread) {
 512   // Start is different from resume in that its safety is guaranteed by context or
 513   // being called from a Java method synchronized on the Thread object.
 514   if (!DisableStartThread) {
 515     if (thread->is_Java_thread()) {
 516       // Initialize the thread state to RUNNABLE before starting this thread.
 517       // Can not set it after the thread started because we do not know the
 518       // exact thread state at that time. It could be in MONITOR_WAIT or
 519       // in SLEEPING or some other state.
 520       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 521                                           java_lang_Thread::RUNNABLE);
 522     }
 523     os::start_thread(thread);
 524   }
 525 }
 526 
 527 // Enqueue a VM_Operation to do the job for us - sometime later
 528 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 529   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 530   VMThread::execute(vm_stop);
 531 }
 532 
 533 
 534 // Check if an external suspend request has completed (or has been
 535 // cancelled). Returns true if the thread is externally suspended and
 536 // false otherwise.
 537 //
 538 // The bits parameter returns information about the code path through
 539 // the routine. Useful for debugging:
 540 //
 541 // set in is_ext_suspend_completed():
 542 // 0x00000001 - routine was entered
 543 // 0x00000010 - routine return false at end
 544 // 0x00000100 - thread exited (return false)
 545 // 0x00000200 - suspend request cancelled (return false)
 546 // 0x00000400 - thread suspended (return true)
 547 // 0x00001000 - thread is in a suspend equivalent state (return true)
 548 // 0x00002000 - thread is native and walkable (return true)
 549 // 0x00004000 - thread is native_trans and walkable (needed retry)
 550 //
 551 // set in wait_for_ext_suspend_completion():
 552 // 0x00010000 - routine was entered
 553 // 0x00020000 - suspend request cancelled before loop (return false)
 554 // 0x00040000 - thread suspended before loop (return true)
 555 // 0x00080000 - suspend request cancelled in loop (return false)
 556 // 0x00100000 - thread suspended in loop (return true)
 557 // 0x00200000 - suspend not completed during retry loop (return false)
 558 
 559 // Helper class for tracing suspend wait debug bits.
 560 //
 561 // 0x00000100 indicates that the target thread exited before it could
 562 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 563 // 0x00080000 each indicate a cancelled suspend request so they don't
 564 // count as wait failures either.
 565 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 566 
 567 class TraceSuspendDebugBits : public StackObj {
 568  private:
 569   JavaThread * jt;
 570   bool         is_wait;
 571   bool         called_by_wait;  // meaningful when !is_wait
 572   uint32_t *   bits;
 573 
 574  public:
 575   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 576                         uint32_t *_bits) {
 577     jt             = _jt;
 578     is_wait        = _is_wait;
 579     called_by_wait = _called_by_wait;
 580     bits           = _bits;
 581   }
 582 
 583   ~TraceSuspendDebugBits() {
 584     if (!is_wait) {
 585 #if 1
 586       // By default, don't trace bits for is_ext_suspend_completed() calls.
 587       // That trace is very chatty.
 588       return;
 589 #else
 590       if (!called_by_wait) {
 591         // If tracing for is_ext_suspend_completed() is enabled, then only
 592         // trace calls to it from wait_for_ext_suspend_completion()
 593         return;
 594       }
 595 #endif
 596     }
 597 
 598     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 599       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 600         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 601         ResourceMark rm;
 602 
 603         tty->print_cr(
 604                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 605                       jt->get_thread_name(), *bits);
 606 
 607         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 608       }
 609     }
 610   }
 611 };
 612 #undef DEBUG_FALSE_BITS
 613 
 614 
 615 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 616                                           uint32_t *bits) {
 617   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 618 
 619   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 620   bool do_trans_retry;           // flag to force the retry
 621 
 622   *bits |= 0x00000001;
 623 
 624   do {
 625     do_trans_retry = false;
 626 
 627     if (is_exiting()) {
 628       // Thread is in the process of exiting. This is always checked
 629       // first to reduce the risk of dereferencing a freed JavaThread.
 630       *bits |= 0x00000100;
 631       return false;
 632     }
 633 
 634     if (!is_external_suspend()) {
 635       // Suspend request is cancelled. This is always checked before
 636       // is_ext_suspended() to reduce the risk of a rogue resume
 637       // confusing the thread that made the suspend request.
 638       *bits |= 0x00000200;
 639       return false;
 640     }
 641 
 642     if (is_ext_suspended()) {
 643       // thread is suspended
 644       *bits |= 0x00000400;
 645       return true;
 646     }
 647 
 648     // Now that we no longer do hard suspends of threads running
 649     // native code, the target thread can be changing thread state
 650     // while we are in this routine:
 651     //
 652     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 653     //
 654     // We save a copy of the thread state as observed at this moment
 655     // and make our decision about suspend completeness based on the
 656     // copy. This closes the race where the thread state is seen as
 657     // _thread_in_native_trans in the if-thread_blocked check, but is
 658     // seen as _thread_blocked in if-thread_in_native_trans check.
 659     JavaThreadState save_state = thread_state();
 660 
 661     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 662       // If the thread's state is _thread_blocked and this blocking
 663       // condition is known to be equivalent to a suspend, then we can
 664       // consider the thread to be externally suspended. This means that
 665       // the code that sets _thread_blocked has been modified to do
 666       // self-suspension if the blocking condition releases. We also
 667       // used to check for CONDVAR_WAIT here, but that is now covered by
 668       // the _thread_blocked with self-suspension check.
 669       //
 670       // Return true since we wouldn't be here unless there was still an
 671       // external suspend request.
 672       *bits |= 0x00001000;
 673       return true;
 674     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 675       // Threads running native code will self-suspend on native==>VM/Java
 676       // transitions. If its stack is walkable (should always be the case
 677       // unless this function is called before the actual java_suspend()
 678       // call), then the wait is done.
 679       *bits |= 0x00002000;
 680       return true;
 681     } else if (!called_by_wait && !did_trans_retry &&
 682                save_state == _thread_in_native_trans &&
 683                frame_anchor()->walkable()) {
 684       // The thread is transitioning from thread_in_native to another
 685       // thread state. check_safepoint_and_suspend_for_native_trans()
 686       // will force the thread to self-suspend. If it hasn't gotten
 687       // there yet we may have caught the thread in-between the native
 688       // code check above and the self-suspend. Lucky us. If we were
 689       // called by wait_for_ext_suspend_completion(), then it
 690       // will be doing the retries so we don't have to.
 691       //
 692       // Since we use the saved thread state in the if-statement above,
 693       // there is a chance that the thread has already transitioned to
 694       // _thread_blocked by the time we get here. In that case, we will
 695       // make a single unnecessary pass through the logic below. This
 696       // doesn't hurt anything since we still do the trans retry.
 697 
 698       *bits |= 0x00004000;
 699 
 700       // Once the thread leaves thread_in_native_trans for another
 701       // thread state, we break out of this retry loop. We shouldn't
 702       // need this flag to prevent us from getting back here, but
 703       // sometimes paranoia is good.
 704       did_trans_retry = true;
 705 
 706       // We wait for the thread to transition to a more usable state.
 707       for (int i = 1; i <= SuspendRetryCount; i++) {
 708         // We used to do an "os::yield_all(i)" call here with the intention
 709         // that yielding would increase on each retry. However, the parameter
 710         // is ignored on Linux which means the yield didn't scale up. Waiting
 711         // on the SR_lock below provides a much more predictable scale up for
 712         // the delay. It also provides a simple/direct point to check for any
 713         // safepoint requests from the VMThread
 714 
 715         // temporarily drops SR_lock while doing wait with safepoint check
 716         // (if we're a JavaThread - the WatcherThread can also call this)
 717         // and increase delay with each retry
 718         if (Thread::current()->is_Java_thread()) {
 719           SR_lock()->wait(i * delay);
 720         } else {
 721           SR_lock()->wait_without_safepoint_check(i * delay);
 722         }
 723 
 724         // check the actual thread state instead of what we saved above
 725         if (thread_state() != _thread_in_native_trans) {
 726           // the thread has transitioned to another thread state so
 727           // try all the checks (except this one) one more time.
 728           do_trans_retry = true;
 729           break;
 730         }
 731       } // end retry loop
 732 
 733 
 734     }
 735   } while (do_trans_retry);
 736 
 737   *bits |= 0x00000010;
 738   return false;
 739 }
 740 
 741 // Wait for an external suspend request to complete (or be cancelled).
 742 // Returns true if the thread is externally suspended and false otherwise.
 743 //
 744 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 745                                                  uint32_t *bits) {
 746   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 747                              false /* !called_by_wait */, bits);
 748 
 749   // local flag copies to minimize SR_lock hold time
 750   bool is_suspended;
 751   bool pending;
 752   uint32_t reset_bits;
 753 
 754   // set a marker so is_ext_suspend_completed() knows we are the caller
 755   *bits |= 0x00010000;
 756 
 757   // We use reset_bits to reinitialize the bits value at the top of
 758   // each retry loop. This allows the caller to make use of any
 759   // unused bits for their own marking purposes.
 760   reset_bits = *bits;
 761 
 762   {
 763     MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 764     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 765                                             delay, bits);
 766     pending = is_external_suspend();
 767   }
 768   // must release SR_lock to allow suspension to complete
 769 
 770   if (!pending) {
 771     // A cancelled suspend request is the only false return from
 772     // is_ext_suspend_completed() that keeps us from entering the
 773     // retry loop.
 774     *bits |= 0x00020000;
 775     return false;
 776   }
 777 
 778   if (is_suspended) {
 779     *bits |= 0x00040000;
 780     return true;
 781   }
 782 
 783   for (int i = 1; i <= retries; i++) {
 784     *bits = reset_bits;  // reinit to only track last retry
 785 
 786     // We used to do an "os::yield_all(i)" call here with the intention
 787     // that yielding would increase on each retry. However, the parameter
 788     // is ignored on Linux which means the yield didn't scale up. Waiting
 789     // on the SR_lock below provides a much more predictable scale up for
 790     // the delay. It also provides a simple/direct point to check for any
 791     // safepoint requests from the VMThread
 792 
 793     {
 794       Thread* t = Thread::current();
 795       MonitorLocker ml(SR_lock(),
 796                        t->is_Java_thread() ? Mutex::_safepoint_check_flag : Mutex::_no_safepoint_check_flag);
 797       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 798       // can also call this)  and increase delay with each retry
 799       ml.wait(i * delay);
 800 
 801       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 802                                               delay, bits);
 803 
 804       // It is possible for the external suspend request to be cancelled
 805       // (by a resume) before the actual suspend operation is completed.
 806       // Refresh our local copy to see if we still need to wait.
 807       pending = is_external_suspend();
 808     }
 809 
 810     if (!pending) {
 811       // A cancelled suspend request is the only false return from
 812       // is_ext_suspend_completed() that keeps us from staying in the
 813       // retry loop.
 814       *bits |= 0x00080000;
 815       return false;
 816     }
 817 
 818     if (is_suspended) {
 819       *bits |= 0x00100000;
 820       return true;
 821     }
 822   } // end retry loop
 823 
 824   // thread did not suspend after all our retries
 825   *bits |= 0x00200000;
 826   return false;
 827 }
 828 
 829 // Called from API entry points which perform stack walking. If the
 830 // associated JavaThread is the current thread, then wait_for_suspend
 831 // is not used. Otherwise, it determines if we should wait for the
 832 // "other" thread to complete external suspension. (NOTE: in future
 833 // releases the suspension mechanism should be reimplemented so this
 834 // is not necessary.)
 835 //
 836 bool
 837 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 838   if (this != JavaThread::current()) {
 839     // "other" threads require special handling.
 840     if (wait_for_suspend) {
 841       // We are allowed to wait for the external suspend to complete
 842       // so give the other thread a chance to get suspended.
 843       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 844                                            SuspendRetryDelay, bits)) {
 845         // Didn't make it so let the caller know.
 846         return false;
 847       }
 848     }
 849     // We aren't allowed to wait for the external suspend to complete
 850     // so if the other thread isn't externally suspended we need to
 851     // let the caller know.
 852     else if (!is_ext_suspend_completed_with_lock(bits)) {
 853       return false;
 854     }
 855   }
 856 
 857   return true;
 858 }
 859 
 860 // GC Support
 861 bool Thread::claim_par_threads_do(uintx claim_token) {
 862   uintx token = _threads_do_token;
 863   if (token != claim_token) {
 864     uintx res = Atomic::cmpxchg(claim_token, &_threads_do_token, token);
 865     if (res == token) {
 866       return true;
 867     }
 868     guarantee(res == claim_token, "invariant");
 869   }
 870   return false;
 871 }
 872 
 873 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 874   active_handles()->oops_do(f);
 875   // Do oop for ThreadShadow
 876   f->do_oop((oop*)&_pending_exception);
 877   handle_area()->oops_do(f);
 878 
 879   // We scan thread local monitor lists here, and the remaining global
 880   // monitors in ObjectSynchronizer::oops_do().
 881   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 882 }
 883 
 884 void Thread::metadata_handles_do(void f(Metadata*)) {
 885   // Only walk the Handles in Thread.
 886   if (metadata_handles() != NULL) {
 887     for (int i = 0; i< metadata_handles()->length(); i++) {
 888       f(metadata_handles()->at(i));
 889     }
 890   }
 891 }
 892 
 893 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 894   // get_priority assumes osthread initialized
 895   if (osthread() != NULL) {
 896     int os_prio;
 897     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 898       st->print("os_prio=%d ", os_prio);
 899     }
 900 
 901     st->print("cpu=%.2fms ",
 902               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 903               );
 904     st->print("elapsed=%.2fs ",
 905               _statistical_info.getElapsedTime() / 1000.0
 906               );
 907     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 908       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 909       st->print("allocated=" SIZE_FORMAT "%s ",
 910                 byte_size_in_proper_unit(allocated_bytes),
 911                 proper_unit_for_byte_size(allocated_bytes)
 912                 );
 913       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 914     }
 915 
 916     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 917     osthread()->print_on(st);
 918   }
 919   ThreadsSMRSupport::print_info_on(this, st);
 920   st->print(" ");
 921   debug_only(if (WizardMode) print_owned_locks_on(st);)
 922 }
 923 
 924 void Thread::print() const { print_on(tty); }
 925 
 926 // Thread::print_on_error() is called by fatal error handler. Don't use
 927 // any lock or allocate memory.
 928 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 929   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 930 
 931   if (is_VM_thread())                 { st->print("VMThread"); }
 932   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 933   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 934   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 935   else                                { st->print("Thread"); }
 936 
 937   if (is_Named_thread()) {
 938     st->print(" \"%s\"", name());
 939   }
 940 
 941   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 942             p2i(stack_end()), p2i(stack_base()));
 943 
 944   if (osthread()) {
 945     st->print(" [id=%d]", osthread()->thread_id());
 946   }
 947 
 948   ThreadsSMRSupport::print_info_on(this, st);
 949 }
 950 
 951 void Thread::print_value_on(outputStream* st) const {
 952   if (is_Named_thread()) {
 953     st->print(" \"%s\" ", name());
 954   }
 955   st->print(INTPTR_FORMAT, p2i(this));   // print address
 956 }
 957 
 958 #ifdef ASSERT
 959 void Thread::print_owned_locks_on(outputStream* st) const {
 960   Mutex* cur = _owned_locks;
 961   if (cur == NULL) {
 962     st->print(" (no locks) ");
 963   } else {
 964     st->print_cr(" Locks owned:");
 965     while (cur) {
 966       cur->print_on(st);
 967       cur = cur->next();
 968     }
 969   }
 970 }
 971 
 972 // Checks safepoint allowed and clears unhandled oops at potential safepoints.
 973 void Thread::check_possible_safepoint() {
 974   if (!is_Java_thread()) return;
 975 
 976   if (_no_safepoint_count > 0) {
 977     print_owned_locks();
 978     fatal("Possible safepoint reached by thread that does not allow it");
 979   }
 980 #ifdef CHECK_UNHANDLED_OOPS
 981   // Clear unhandled oops in JavaThreads so we get a crash right away.
 982   clear_unhandled_oops();
 983 #endif // CHECK_UNHANDLED_OOPS
 984 }
 985 
 986 void Thread::check_for_valid_safepoint_state() {
 987   if (!is_Java_thread()) return;
 988 
 989   // Check NoSafepointVerifier, which is implied by locks taken that can be
 990   // shared with the VM thread.  This makes sure that no locks with allow_vm_block
 991   // are held.
 992   check_possible_safepoint();
 993 
 994   if (((JavaThread*)this)->thread_state() != _thread_in_vm) {
 995     fatal("LEAF method calling lock?");
 996   }
 997 
 998   if (GCALotAtAllSafepoints) {
 999     // We could enter a safepoint here and thus have a gc
1000     InterfaceSupport::check_gc_alot();
1001   }
1002 }
1003 #endif // ASSERT
1004 
1005 bool Thread::is_in_stack(address adr) const {
1006   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1007   address end = os::current_stack_pointer();
1008   // Allow non Java threads to call this without stack_base
1009   if (_stack_base == NULL) return true;
1010   if (stack_base() >= adr && adr >= end) return true;
1011 
1012   return false;
1013 }
1014 
1015 bool Thread::is_in_usable_stack(address adr) const {
1016   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1017   size_t usable_stack_size = _stack_size - stack_guard_size;
1018 
1019   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1020 }
1021 
1022 
1023 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1024 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1025 // used for compilation in the future. If that change is made, the need for these methods
1026 // should be revisited, and they should be removed if possible.
1027 
1028 bool Thread::is_lock_owned(address adr) const {
1029   return on_local_stack(adr);
1030 }
1031 
1032 bool Thread::set_as_starting_thread() {
1033   assert(_starting_thread == NULL, "already initialized: "
1034          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1035   // NOTE: this must be called inside the main thread.
1036   DEBUG_ONLY(_starting_thread = this;)
1037   return os::create_main_thread((JavaThread*)this);
1038 }
1039 
1040 static void initialize_class(Symbol* class_name, TRAPS) {
1041   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1042   InstanceKlass::cast(klass)->initialize(CHECK);
1043 }
1044 
1045 
1046 // Creates the initial ThreadGroup
1047 static Handle create_initial_thread_group(TRAPS) {
1048   Handle system_instance = JavaCalls::construct_new_instance(
1049                             SystemDictionary::ThreadGroup_klass(),
1050                             vmSymbols::void_method_signature(),
1051                             CHECK_NH);
1052   Universe::set_system_thread_group(system_instance());
1053 
1054   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1055   Handle main_instance = JavaCalls::construct_new_instance(
1056                             SystemDictionary::ThreadGroup_klass(),
1057                             vmSymbols::threadgroup_string_void_signature(),
1058                             system_instance,
1059                             string,
1060                             CHECK_NH);
1061   return main_instance;
1062 }
1063 
1064 // Creates the initial Thread
1065 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1066                                  TRAPS) {
1067   InstanceKlass* ik = SystemDictionary::Thread_klass();
1068   assert(ik->is_initialized(), "must be");
1069   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1070 
1071   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1072   // constructor calls Thread.current(), which must be set here for the
1073   // initial thread.
1074   java_lang_Thread::set_thread(thread_oop(), thread);
1075   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1076   thread->set_threadObj(thread_oop());
1077 
1078   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1079 
1080   JavaValue result(T_VOID);
1081   JavaCalls::call_special(&result, thread_oop,
1082                           ik,
1083                           vmSymbols::object_initializer_name(),
1084                           vmSymbols::threadgroup_string_void_signature(),
1085                           thread_group,
1086                           string,
1087                           CHECK_NULL);
1088   return thread_oop();
1089 }
1090 
1091 char java_runtime_name[128] = "";
1092 char java_runtime_version[128] = "";
1093 
1094 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1095 static const char* get_java_runtime_name(TRAPS) {
1096   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1097                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1098   fieldDescriptor fd;
1099   bool found = k != NULL &&
1100                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1101                                                         vmSymbols::string_signature(), &fd);
1102   if (found) {
1103     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1104     if (name_oop == NULL) {
1105       return NULL;
1106     }
1107     const char* name = java_lang_String::as_utf8_string(name_oop,
1108                                                         java_runtime_name,
1109                                                         sizeof(java_runtime_name));
1110     return name;
1111   } else {
1112     return NULL;
1113   }
1114 }
1115 
1116 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1117 static const char* get_java_runtime_version(TRAPS) {
1118   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1119                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1120   fieldDescriptor fd;
1121   bool found = k != NULL &&
1122                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1123                                                         vmSymbols::string_signature(), &fd);
1124   if (found) {
1125     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1126     if (name_oop == NULL) {
1127       return NULL;
1128     }
1129     const char* name = java_lang_String::as_utf8_string(name_oop,
1130                                                         java_runtime_version,
1131                                                         sizeof(java_runtime_version));
1132     return name;
1133   } else {
1134     return NULL;
1135   }
1136 }
1137 
1138 // General purpose hook into Java code, run once when the VM is initialized.
1139 // The Java library method itself may be changed independently from the VM.
1140 static void call_postVMInitHook(TRAPS) {
1141   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1142   if (klass != NULL) {
1143     JavaValue result(T_VOID);
1144     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1145                            vmSymbols::void_method_signature(),
1146                            CHECK);
1147   }
1148 }
1149 
1150 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1151                                     bool daemon, TRAPS) {
1152   assert(thread_group.not_null(), "thread group should be specified");
1153   assert(threadObj() == NULL, "should only create Java thread object once");
1154 
1155   InstanceKlass* ik = SystemDictionary::Thread_klass();
1156   assert(ik->is_initialized(), "must be");
1157   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1158 
1159   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1160   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1161   // constructor calls Thread.current(), which must be set here.
1162   java_lang_Thread::set_thread(thread_oop(), this);
1163   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1164   set_threadObj(thread_oop());
1165 
1166   JavaValue result(T_VOID);
1167   if (thread_name != NULL) {
1168     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1169     // Thread gets assigned specified name and null target
1170     JavaCalls::call_special(&result,
1171                             thread_oop,
1172                             ik,
1173                             vmSymbols::object_initializer_name(),
1174                             vmSymbols::threadgroup_string_void_signature(),
1175                             thread_group,
1176                             name,
1177                             THREAD);
1178   } else {
1179     // Thread gets assigned name "Thread-nnn" and null target
1180     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1181     JavaCalls::call_special(&result,
1182                             thread_oop,
1183                             ik,
1184                             vmSymbols::object_initializer_name(),
1185                             vmSymbols::threadgroup_runnable_void_signature(),
1186                             thread_group,
1187                             Handle(),
1188                             THREAD);
1189   }
1190 
1191 
1192   if (daemon) {
1193     java_lang_Thread::set_daemon(thread_oop());
1194   }
1195 
1196   if (HAS_PENDING_EXCEPTION) {
1197     return;
1198   }
1199 
1200   Klass* group =  SystemDictionary::ThreadGroup_klass();
1201   Handle threadObj(THREAD, this->threadObj());
1202 
1203   JavaCalls::call_special(&result,
1204                           thread_group,
1205                           group,
1206                           vmSymbols::add_method_name(),
1207                           vmSymbols::thread_void_signature(),
1208                           threadObj,          // Arg 1
1209                           THREAD);
1210 }
1211 
1212 // List of all NonJavaThreads and safe iteration over that list.
1213 
1214 class NonJavaThread::List {
1215 public:
1216   NonJavaThread* volatile _head;
1217   SingleWriterSynchronizer _protect;
1218 
1219   List() : _head(NULL), _protect() {}
1220 };
1221 
1222 NonJavaThread::List NonJavaThread::_the_list;
1223 
1224 NonJavaThread::Iterator::Iterator() :
1225   _protect_enter(_the_list._protect.enter()),
1226   _current(OrderAccess::load_acquire(&_the_list._head))
1227 {}
1228 
1229 NonJavaThread::Iterator::~Iterator() {
1230   _the_list._protect.exit(_protect_enter);
1231 }
1232 
1233 void NonJavaThread::Iterator::step() {
1234   assert(!end(), "precondition");
1235   _current = OrderAccess::load_acquire(&_current->_next);
1236 }
1237 
1238 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1239   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1240 }
1241 
1242 NonJavaThread::~NonJavaThread() { }
1243 
1244 void NonJavaThread::add_to_the_list() {
1245   MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1246   // Initialize BarrierSet-related data before adding to list.
1247   BarrierSet::barrier_set()->on_thread_attach(this);
1248   OrderAccess::release_store(&_next, _the_list._head);
1249   OrderAccess::release_store(&_the_list._head, this);
1250 }
1251 
1252 void NonJavaThread::remove_from_the_list() {
1253   {
1254     MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1255     // Cleanup BarrierSet-related data before removing from list.
1256     BarrierSet::barrier_set()->on_thread_detach(this);
1257     NonJavaThread* volatile* p = &_the_list._head;
1258     for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1259       if (t == this) {
1260         *p = _next;
1261         break;
1262       }
1263     }
1264   }
1265   // Wait for any in-progress iterators.  Concurrent synchronize is not
1266   // allowed, so do it while holding a dedicated lock.  Outside and distinct
1267   // from NJTList_lock in case an iteration attempts to lock it.
1268   MutexLocker ml(NonJavaThreadsListSync_lock, Mutex::_no_safepoint_check_flag);
1269   _the_list._protect.synchronize();
1270   _next = NULL;                 // Safe to drop the link now.
1271 }
1272 
1273 void NonJavaThread::pre_run() {
1274   add_to_the_list();
1275 
1276   // This is slightly odd in that NamedThread is a subclass, but
1277   // in fact name() is defined in Thread
1278   assert(this->name() != NULL, "thread name was not set before it was started");
1279   this->set_native_thread_name(this->name());
1280 }
1281 
1282 void NonJavaThread::post_run() {
1283   JFR_ONLY(Jfr::on_thread_exit(this);)
1284   remove_from_the_list();
1285   // Ensure thread-local-storage is cleared before termination.
1286   Thread::clear_thread_current();
1287 }
1288 
1289 // NamedThread --  non-JavaThread subclasses with multiple
1290 // uniquely named instances should derive from this.
1291 NamedThread::NamedThread() :
1292   NonJavaThread(),
1293   _name(NULL),
1294   _processed_thread(NULL),
1295   _gc_id(GCId::undefined())
1296 {}
1297 
1298 NamedThread::~NamedThread() {
1299   FREE_C_HEAP_ARRAY(char, _name);
1300 }
1301 
1302 void NamedThread::set_name(const char* format, ...) {
1303   guarantee(_name == NULL, "Only get to set name once.");
1304   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1305   va_list ap;
1306   va_start(ap, format);
1307   jio_vsnprintf(_name, max_name_len, format, ap);
1308   va_end(ap);
1309 }
1310 
1311 void NamedThread::print_on(outputStream* st) const {
1312   st->print("\"%s\" ", name());
1313   Thread::print_on(st);
1314   st->cr();
1315 }
1316 
1317 
1318 // ======= WatcherThread ========
1319 
1320 // The watcher thread exists to simulate timer interrupts.  It should
1321 // be replaced by an abstraction over whatever native support for
1322 // timer interrupts exists on the platform.
1323 
1324 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1325 bool WatcherThread::_startable = false;
1326 volatile bool  WatcherThread::_should_terminate = false;
1327 
1328 WatcherThread::WatcherThread() : NonJavaThread() {
1329   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1330   if (os::create_thread(this, os::watcher_thread)) {
1331     _watcher_thread = this;
1332 
1333     // Set the watcher thread to the highest OS priority which should not be
1334     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1335     // is created. The only normal thread using this priority is the reference
1336     // handler thread, which runs for very short intervals only.
1337     // If the VMThread's priority is not lower than the WatcherThread profiling
1338     // will be inaccurate.
1339     os::set_priority(this, MaxPriority);
1340     if (!DisableStartThread) {
1341       os::start_thread(this);
1342     }
1343   }
1344 }
1345 
1346 int WatcherThread::sleep() const {
1347   // The WatcherThread does not participate in the safepoint protocol
1348   // for the PeriodicTask_lock because it is not a JavaThread.
1349   MonitorLocker ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1350 
1351   if (_should_terminate) {
1352     // check for termination before we do any housekeeping or wait
1353     return 0;  // we did not sleep.
1354   }
1355 
1356   // remaining will be zero if there are no tasks,
1357   // causing the WatcherThread to sleep until a task is
1358   // enrolled
1359   int remaining = PeriodicTask::time_to_wait();
1360   int time_slept = 0;
1361 
1362   // we expect this to timeout - we only ever get unparked when
1363   // we should terminate or when a new task has been enrolled
1364   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1365 
1366   jlong time_before_loop = os::javaTimeNanos();
1367 
1368   while (true) {
1369     bool timedout = ml.wait(remaining);
1370     jlong now = os::javaTimeNanos();
1371 
1372     if (remaining == 0) {
1373       // if we didn't have any tasks we could have waited for a long time
1374       // consider the time_slept zero and reset time_before_loop
1375       time_slept = 0;
1376       time_before_loop = now;
1377     } else {
1378       // need to recalculate since we might have new tasks in _tasks
1379       time_slept = (int) ((now - time_before_loop) / 1000000);
1380     }
1381 
1382     // Change to task list or spurious wakeup of some kind
1383     if (timedout || _should_terminate) {
1384       break;
1385     }
1386 
1387     remaining = PeriodicTask::time_to_wait();
1388     if (remaining == 0) {
1389       // Last task was just disenrolled so loop around and wait until
1390       // another task gets enrolled
1391       continue;
1392     }
1393 
1394     remaining -= time_slept;
1395     if (remaining <= 0) {
1396       break;
1397     }
1398   }
1399 
1400   return time_slept;
1401 }
1402 
1403 void WatcherThread::run() {
1404   assert(this == watcher_thread(), "just checking");
1405 
1406   this->set_active_handles(JNIHandleBlock::allocate_block());
1407   while (true) {
1408     assert(watcher_thread() == Thread::current(), "thread consistency check");
1409     assert(watcher_thread() == this, "thread consistency check");
1410 
1411     // Calculate how long it'll be until the next PeriodicTask work
1412     // should be done, and sleep that amount of time.
1413     int time_waited = sleep();
1414 
1415     if (VMError::is_error_reported()) {
1416       // A fatal error has happened, the error handler(VMError::report_and_die)
1417       // should abort JVM after creating an error log file. However in some
1418       // rare cases, the error handler itself might deadlock. Here periodically
1419       // check for error reporting timeouts, and if it happens, just proceed to
1420       // abort the VM.
1421 
1422       // This code is in WatcherThread because WatcherThread wakes up
1423       // periodically so the fatal error handler doesn't need to do anything;
1424       // also because the WatcherThread is less likely to crash than other
1425       // threads.
1426 
1427       for (;;) {
1428         // Note: we use naked sleep in this loop because we want to avoid using
1429         // any kind of VM infrastructure which may be broken at this point.
1430         if (VMError::check_timeout()) {
1431           // We hit error reporting timeout. Error reporting was interrupted and
1432           // will be wrapping things up now (closing files etc). Give it some more
1433           // time, then quit the VM.
1434           os::naked_short_sleep(200);
1435           // Print a message to stderr.
1436           fdStream err(defaultStream::output_fd());
1437           err.print_raw_cr("# [ timer expired, abort... ]");
1438           // skip atexit/vm_exit/vm_abort hooks
1439           os::die();
1440         }
1441 
1442         // Wait a second, then recheck for timeout.
1443         os::naked_short_sleep(999);
1444       }
1445     }
1446 
1447     if (_should_terminate) {
1448       // check for termination before posting the next tick
1449       break;
1450     }
1451 
1452     PeriodicTask::real_time_tick(time_waited);
1453   }
1454 
1455   // Signal that it is terminated
1456   {
1457     MutexLocker mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1458     _watcher_thread = NULL;
1459     Terminator_lock->notify_all();
1460   }
1461 }
1462 
1463 void WatcherThread::start() {
1464   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1465 
1466   if (watcher_thread() == NULL && _startable) {
1467     _should_terminate = false;
1468     // Create the single instance of WatcherThread
1469     new WatcherThread();
1470   }
1471 }
1472 
1473 void WatcherThread::make_startable() {
1474   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1475   _startable = true;
1476 }
1477 
1478 void WatcherThread::stop() {
1479   {
1480     // Follow normal safepoint aware lock enter protocol since the
1481     // WatcherThread is stopped by another JavaThread.
1482     MutexLocker ml(PeriodicTask_lock);
1483     _should_terminate = true;
1484 
1485     WatcherThread* watcher = watcher_thread();
1486     if (watcher != NULL) {
1487       // unpark the WatcherThread so it can see that it should terminate
1488       watcher->unpark();
1489     }
1490   }
1491 
1492   MonitorLocker mu(Terminator_lock);
1493 
1494   while (watcher_thread() != NULL) {
1495     // This wait should make safepoint checks, wait without a timeout,
1496     // and wait as a suspend-equivalent condition.
1497     mu.wait(0, Mutex::_as_suspend_equivalent_flag);
1498   }
1499 }
1500 
1501 void WatcherThread::unpark() {
1502   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1503   PeriodicTask_lock->notify();
1504 }
1505 
1506 void WatcherThread::print_on(outputStream* st) const {
1507   st->print("\"%s\" ", name());
1508   Thread::print_on(st);
1509   st->cr();
1510 }
1511 
1512 // ======= JavaThread ========
1513 
1514 #if INCLUDE_JVMCI
1515 
1516 jlong* JavaThread::_jvmci_old_thread_counters;
1517 
1518 bool jvmci_counters_include(JavaThread* thread) {
1519   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1520 }
1521 
1522 void JavaThread::collect_counters(jlong* array, int length) {
1523   assert(length == JVMCICounterSize, "wrong value");
1524   for (int i = 0; i < length; i++) {
1525     array[i] = _jvmci_old_thread_counters[i];
1526   }
1527   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1528     if (jvmci_counters_include(tp)) {
1529       for (int i = 0; i < length; i++) {
1530         array[i] += tp->_jvmci_counters[i];
1531       }
1532     }
1533   }
1534 }
1535 
1536 // Attempt to enlarge the array for per thread counters.
1537 jlong* resize_counters_array(jlong* old_counters, int current_size, int new_size) {
1538   jlong* new_counters = NEW_C_HEAP_ARRAY(jlong, new_size, mtJVMCI);
1539   if (old_counters == NULL) {
1540     old_counters = new_counters;
1541     memset(old_counters, 0, sizeof(jlong) * new_size);
1542   } else {
1543     for (int i = 0; i < MIN2((int) current_size, new_size); i++) {
1544       new_counters[i] = old_counters[i];
1545     }
1546     if (new_size > current_size) {
1547       memset(new_counters + current_size, 0, sizeof(jlong) * (new_size - current_size));
1548     }
1549     FREE_C_HEAP_ARRAY(jlong, old_counters);
1550   }
1551   return new_counters;
1552 }
1553 
1554 // Attempt to enlarge the array for per thread counters.
1555 void JavaThread::resize_counters(int current_size, int new_size) {
1556   _jvmci_counters = resize_counters_array(_jvmci_counters, current_size, new_size);
1557 }
1558 
1559 class VM_JVMCIResizeCounters : public VM_Operation {
1560  private:
1561   int _new_size;
1562 
1563  public:
1564   VM_JVMCIResizeCounters(int new_size) : _new_size(new_size) { }
1565   VMOp_Type type()                  const        { return VMOp_JVMCIResizeCounters; }
1566   bool allow_nested_vm_operations() const        { return true; }
1567   void doit() {
1568     // Resize the old thread counters array
1569     jlong* new_counters = resize_counters_array(JavaThread::_jvmci_old_thread_counters, JVMCICounterSize, _new_size);
1570     JavaThread::_jvmci_old_thread_counters = new_counters;
1571 
1572     // Now resize each threads array
1573     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1574       tp->resize_counters(JVMCICounterSize, _new_size);
1575     }
1576     JVMCICounterSize = _new_size;
1577   }
1578 };
1579 
1580 void JavaThread::resize_all_jvmci_counters(int new_size) {
1581   VM_JVMCIResizeCounters op(new_size);
1582   VMThread::execute(&op);
1583 }
1584 
1585 #endif // INCLUDE_JVMCI
1586 
1587 // A JavaThread is a normal Java thread
1588 
1589 void JavaThread::initialize() {
1590   // Initialize fields
1591 
1592   set_saved_exception_pc(NULL);
1593   set_threadObj(NULL);
1594   _anchor.clear();
1595   set_entry_point(NULL);
1596   set_jni_functions(jni_functions());
1597   set_callee_target(NULL);
1598   set_vm_result(NULL);
1599   set_vm_result_2(NULL);
1600   set_vframe_array_head(NULL);
1601   set_vframe_array_last(NULL);
1602   set_deferred_locals(NULL);
1603   set_deopt_mark(NULL);
1604   set_deopt_compiled_method(NULL);
1605   set_monitor_chunks(NULL);
1606   _on_thread_list = false;
1607   set_thread_state(_thread_new);
1608   _terminated = _not_terminated;
1609   _array_for_gc = NULL;
1610   _suspend_equivalent = false;
1611   _in_deopt_handler = 0;
1612   _doing_unsafe_access = false;
1613   _stack_guard_state = stack_guard_unused;
1614 #if INCLUDE_JVMCI
1615   _pending_monitorenter = false;
1616   _pending_deoptimization = -1;
1617   _pending_failed_speculation = 0;
1618   _pending_transfer_to_interpreter = false;
1619   _in_retryable_allocation = false;
1620   _jvmci._alternate_call_target = NULL;
1621   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1622   _jvmci_counters = NULL;
1623   if (JVMCICounterSize > 0) {
1624     resize_counters(0, (int) JVMCICounterSize);
1625   }
1626 #endif // INCLUDE_JVMCI
1627   _reserved_stack_activation = NULL;  // stack base not known yet
1628   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1629   _exception_pc  = 0;
1630   _exception_handler_pc = 0;
1631   _is_method_handle_return = 0;
1632   _jvmti_thread_state= NULL;
1633   _should_post_on_exceptions_flag = JNI_FALSE;
1634   _interp_only_mode    = 0;
1635   _special_runtime_exit_condition = _no_async_condition;
1636   _pending_async_exception = NULL;
1637   _thread_stat = NULL;
1638   _thread_stat = new ThreadStatistics();
1639   _jni_active_critical = 0;
1640   _pending_jni_exception_check_fn = NULL;
1641   _do_not_unlock_if_synchronized = false;
1642   _cached_monitor_info = NULL;
1643   _parker = Parker::Allocate(this);
1644   _SleepEvent = ParkEvent::Allocate(this);
1645   // Setup safepoint state info for this thread
1646   ThreadSafepointState::create(this);
1647 
1648   debug_only(_java_call_counter = 0);
1649 
1650   // JVMTI PopFrame support
1651   _popframe_condition = popframe_inactive;
1652   _popframe_preserved_args = NULL;
1653   _popframe_preserved_args_size = 0;
1654   _frames_to_pop_failed_realloc = 0;
1655 
1656   if (SafepointMechanism::uses_thread_local_poll()) {
1657     SafepointMechanism::initialize_header(this);
1658   }
1659 
1660   _class_to_be_initialized = NULL;
1661 
1662   pd_initialize();
1663 }
1664 
1665 JavaThread::JavaThread(bool is_attaching_via_jni) :
1666                        Thread() {
1667   initialize();
1668   if (is_attaching_via_jni) {
1669     _jni_attach_state = _attaching_via_jni;
1670   } else {
1671     _jni_attach_state = _not_attaching_via_jni;
1672   }
1673   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1674 }
1675 
1676 
1677 // interrupt support
1678 
1679 void JavaThread::interrupt() {
1680   debug_only(check_for_dangling_thread_pointer(this);)
1681 
1682   // For Windows _interrupt_event
1683   osthread()->set_interrupted(true);
1684 
1685   // For Thread.sleep
1686   _SleepEvent->unpark();
1687 
1688   // For JSR166 LockSupport.park
1689   parker()->unpark();
1690 
1691   // For ObjectMonitor and JvmtiRawMonitor
1692   _ParkEvent->unpark();
1693 }
1694 
1695 
1696 bool JavaThread::is_interrupted(bool clear_interrupted) {
1697   debug_only(check_for_dangling_thread_pointer(this);)
1698   bool interrupted = java_lang_Thread::interrupted(threadObj());
1699 
1700   // NOTE that since there is no "lock" around the interrupt and
1701   // is_interrupted operations, there is the possibility that the
1702   // interrupted flag will be "false" but that the
1703   // low-level events will be in the signaled state. This is
1704   // intentional. The effect of this is that Object.wait() and
1705   // LockSupport.park() will appear to have a spurious wakeup, which
1706   // is allowed and not harmful, and the possibility is so rare that
1707   // it is not worth the added complexity to add yet another lock.
1708   // For the sleep event an explicit reset is performed on entry
1709   // to JavaThread::sleep, so there is no early return. It has also been
1710   // recommended not to put the interrupted flag into the "event"
1711   // structure because it hides the issue.
1712   // Also, because there is no lock, we must only clear the interrupt
1713   // state if we are going to report that we were interrupted; otherwise
1714   // an interrupt that happens just after we read the field would be lost.
1715   if (interrupted && clear_interrupted) {
1716     java_lang_Thread::set_interrupted(threadObj(), false);
1717     osthread()->set_interrupted(false);
1718   }
1719 
1720   return interrupted;
1721 }
1722 
1723 bool JavaThread::reguard_stack(address cur_sp) {
1724   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1725       && _stack_guard_state != stack_guard_reserved_disabled) {
1726     return true; // Stack already guarded or guard pages not needed.
1727   }
1728 
1729   if (register_stack_overflow()) {
1730     // For those architectures which have separate register and
1731     // memory stacks, we must check the register stack to see if
1732     // it has overflowed.
1733     return false;
1734   }
1735 
1736   // Java code never executes within the yellow zone: the latter is only
1737   // there to provoke an exception during stack banging.  If java code
1738   // is executing there, either StackShadowPages should be larger, or
1739   // some exception code in c1, c2 or the interpreter isn't unwinding
1740   // when it should.
1741   guarantee(cur_sp > stack_reserved_zone_base(),
1742             "not enough space to reguard - increase StackShadowPages");
1743   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1744     enable_stack_yellow_reserved_zone();
1745     if (reserved_stack_activation() != stack_base()) {
1746       set_reserved_stack_activation(stack_base());
1747     }
1748   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1749     set_reserved_stack_activation(stack_base());
1750     enable_stack_reserved_zone();
1751   }
1752   return true;
1753 }
1754 
1755 bool JavaThread::reguard_stack(void) {
1756   return reguard_stack(os::current_stack_pointer());
1757 }
1758 
1759 
1760 void JavaThread::block_if_vm_exited() {
1761   if (_terminated == _vm_exited) {
1762     // _vm_exited is set at safepoint, and Threads_lock is never released
1763     // we will block here forever.
1764     // Here we can be doing a jump from a safe state to an unsafe state without
1765     // proper transition, but it happens after the final safepoint has begun.
1766     set_thread_state(_thread_in_vm);
1767     Threads_lock->lock();
1768     ShouldNotReachHere();
1769   }
1770 }
1771 
1772 
1773 // Remove this ifdef when C1 is ported to the compiler interface.
1774 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1775 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1776 
1777 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1778                        Thread() {
1779   initialize();
1780   _jni_attach_state = _not_attaching_via_jni;
1781   set_entry_point(entry_point);
1782   // Create the native thread itself.
1783   // %note runtime_23
1784   os::ThreadType thr_type = os::java_thread;
1785   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1786                                                      os::java_thread;
1787   os::create_thread(this, thr_type, stack_sz);
1788   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1789   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1790   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1791   // the exception consists of creating the exception object & initializing it, initialization
1792   // will leave the VM via a JavaCall and then all locks must be unlocked).
1793   //
1794   // The thread is still suspended when we reach here. Thread must be explicit started
1795   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1796   // by calling Threads:add. The reason why this is not done here, is because the thread
1797   // object must be fully initialized (take a look at JVM_Start)
1798 }
1799 
1800 JavaThread::~JavaThread() {
1801 
1802   // JSR166 -- return the parker to the free list
1803   Parker::Release(_parker);
1804   _parker = NULL;
1805 
1806   // Return the sleep event to the free list
1807   ParkEvent::Release(_SleepEvent);
1808   _SleepEvent = NULL;
1809 
1810   // Free any remaining  previous UnrollBlock
1811   vframeArray* old_array = vframe_array_last();
1812 
1813   if (old_array != NULL) {
1814     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1815     old_array->set_unroll_block(NULL);
1816     delete old_info;
1817     delete old_array;
1818   }
1819 
1820   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1821   if (deferred != NULL) {
1822     // This can only happen if thread is destroyed before deoptimization occurs.
1823     assert(deferred->length() != 0, "empty array!");
1824     do {
1825       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1826       deferred->remove_at(0);
1827       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1828       delete dlv;
1829     } while (deferred->length() != 0);
1830     delete deferred;
1831   }
1832 
1833   // All Java related clean up happens in exit
1834   ThreadSafepointState::destroy(this);
1835   if (_thread_stat != NULL) delete _thread_stat;
1836 
1837 #if INCLUDE_JVMCI
1838   if (JVMCICounterSize > 0) {
1839     if (jvmci_counters_include(this)) {
1840       for (int i = 0; i < JVMCICounterSize; i++) {
1841         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1842       }
1843     }
1844     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1845   }
1846 #endif // INCLUDE_JVMCI
1847 }
1848 
1849 
1850 // First JavaThread specific code executed by a new Java thread.
1851 void JavaThread::pre_run() {
1852   // empty - see comments in run()
1853 }
1854 
1855 // The main routine called by a new Java thread. This isn't overridden
1856 // by subclasses, instead different subclasses define a different "entry_point"
1857 // which defines the actual logic for that kind of thread.
1858 void JavaThread::run() {
1859   // initialize thread-local alloc buffer related fields
1860   this->initialize_tlab();
1861 
1862   // Used to test validity of stack trace backs.
1863   // This can't be moved into pre_run() else we invalidate
1864   // the requirement that thread_main_inner is lower on
1865   // the stack. Consequently all the initialization logic
1866   // stays here in run() rather than pre_run().
1867   this->record_base_of_stack_pointer();
1868 
1869   this->create_stack_guard_pages();
1870 
1871   this->cache_global_variables();
1872 
1873   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1874   // in the VM. Change thread state from _thread_new to _thread_in_vm
1875   ThreadStateTransition::transition(this, _thread_new, _thread_in_vm);
1876   // Before a thread is on the threads list it is always safe, so after leaving the
1877   // _thread_new we should emit a instruction barrier. The distance to modified code
1878   // from here is probably far enough, but this is consistent and safe.
1879   OrderAccess::cross_modify_fence();
1880 
1881   assert(JavaThread::current() == this, "sanity check");
1882   assert(!Thread::current()->owns_locks(), "sanity check");
1883 
1884   DTRACE_THREAD_PROBE(start, this);
1885 
1886   // This operation might block. We call that after all safepoint checks for a new thread has
1887   // been completed.
1888   this->set_active_handles(JNIHandleBlock::allocate_block());
1889 
1890   if (JvmtiExport::should_post_thread_life()) {
1891     JvmtiExport::post_thread_start(this);
1892 
1893   }
1894 
1895   // We call another function to do the rest so we are sure that the stack addresses used
1896   // from there will be lower than the stack base just computed.
1897   thread_main_inner();
1898 }
1899 
1900 void JavaThread::thread_main_inner() {
1901   assert(JavaThread::current() == this, "sanity check");
1902   assert(this->threadObj() != NULL, "just checking");
1903 
1904   // Execute thread entry point unless this thread has a pending exception
1905   // or has been stopped before starting.
1906   // Note: Due to JVM_StopThread we can have pending exceptions already!
1907   if (!this->has_pending_exception() &&
1908       !java_lang_Thread::is_stillborn(this->threadObj())) {
1909     {
1910       ResourceMark rm(this);
1911       this->set_native_thread_name(this->get_thread_name());
1912     }
1913     HandleMark hm(this);
1914     this->entry_point()(this, this);
1915   }
1916 
1917   DTRACE_THREAD_PROBE(stop, this);
1918 
1919   // Cleanup is handled in post_run()
1920 }
1921 
1922 // Shared teardown for all JavaThreads
1923 void JavaThread::post_run() {
1924   this->exit(false);
1925   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1926   // for any shared tear-down.
1927   this->smr_delete();
1928 }
1929 
1930 static void ensure_join(JavaThread* thread) {
1931   // We do not need to grab the Threads_lock, since we are operating on ourself.
1932   Handle threadObj(thread, thread->threadObj());
1933   assert(threadObj.not_null(), "java thread object must exist");
1934   ObjectLocker lock(threadObj, thread);
1935   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1936   thread->clear_pending_exception();
1937   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1938   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1939   // Clear the native thread instance - this makes isAlive return false and allows the join()
1940   // to complete once we've done the notify_all below
1941   java_lang_Thread::set_thread(threadObj(), NULL);
1942   lock.notify_all(thread);
1943   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1944   thread->clear_pending_exception();
1945 }
1946 
1947 static bool is_daemon(oop threadObj) {
1948   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
1949 }
1950 
1951 // For any new cleanup additions, please check to see if they need to be applied to
1952 // cleanup_failed_attach_current_thread as well.
1953 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1954   assert(this == JavaThread::current(), "thread consistency check");
1955 
1956   elapsedTimer _timer_exit_phase1;
1957   elapsedTimer _timer_exit_phase2;
1958   elapsedTimer _timer_exit_phase3;
1959   elapsedTimer _timer_exit_phase4;
1960 
1961   if (log_is_enabled(Debug, os, thread, timer)) {
1962     _timer_exit_phase1.start();
1963   }
1964 
1965   HandleMark hm(this);
1966   Handle uncaught_exception(this, this->pending_exception());
1967   this->clear_pending_exception();
1968   Handle threadObj(this, this->threadObj());
1969   assert(threadObj.not_null(), "Java thread object should be created");
1970 
1971   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1972   {
1973     EXCEPTION_MARK;
1974 
1975     CLEAR_PENDING_EXCEPTION;
1976   }
1977   if (!destroy_vm) {
1978     if (uncaught_exception.not_null()) {
1979       EXCEPTION_MARK;
1980       // Call method Thread.dispatchUncaughtException().
1981       Klass* thread_klass = SystemDictionary::Thread_klass();
1982       JavaValue result(T_VOID);
1983       JavaCalls::call_virtual(&result,
1984                               threadObj, thread_klass,
1985                               vmSymbols::dispatchUncaughtException_name(),
1986                               vmSymbols::throwable_void_signature(),
1987                               uncaught_exception,
1988                               THREAD);
1989       if (HAS_PENDING_EXCEPTION) {
1990         ResourceMark rm(this);
1991         jio_fprintf(defaultStream::error_stream(),
1992                     "\nException: %s thrown from the UncaughtExceptionHandler"
1993                     " in thread \"%s\"\n",
1994                     pending_exception()->klass()->external_name(),
1995                     get_thread_name());
1996         CLEAR_PENDING_EXCEPTION;
1997       }
1998     }
1999     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
2000 
2001     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
2002     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
2003     // is deprecated anyhow.
2004     if (!is_Compiler_thread()) {
2005       int count = 3;
2006       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
2007         EXCEPTION_MARK;
2008         JavaValue result(T_VOID);
2009         Klass* thread_klass = SystemDictionary::Thread_klass();
2010         JavaCalls::call_virtual(&result,
2011                                 threadObj, thread_klass,
2012                                 vmSymbols::exit_method_name(),
2013                                 vmSymbols::void_method_signature(),
2014                                 THREAD);
2015         CLEAR_PENDING_EXCEPTION;
2016       }
2017     }
2018     // notify JVMTI
2019     if (JvmtiExport::should_post_thread_life()) {
2020       JvmtiExport::post_thread_end(this);
2021     }
2022 
2023     // We have notified the agents that we are exiting, before we go on,
2024     // we must check for a pending external suspend request and honor it
2025     // in order to not surprise the thread that made the suspend request.
2026     while (true) {
2027       {
2028         MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2029         if (!is_external_suspend()) {
2030           set_terminated(_thread_exiting);
2031           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
2032           break;
2033         }
2034         // Implied else:
2035         // Things get a little tricky here. We have a pending external
2036         // suspend request, but we are holding the SR_lock so we
2037         // can't just self-suspend. So we temporarily drop the lock
2038         // and then self-suspend.
2039       }
2040 
2041       ThreadBlockInVM tbivm(this);
2042       java_suspend_self();
2043 
2044       // We're done with this suspend request, but we have to loop around
2045       // and check again. Eventually we will get SR_lock without a pending
2046       // external suspend request and will be able to mark ourselves as
2047       // exiting.
2048     }
2049     // no more external suspends are allowed at this point
2050   } else {
2051     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2052     // before_exit() has already posted JVMTI THREAD_END events
2053   }
2054 
2055   if (log_is_enabled(Debug, os, thread, timer)) {
2056     _timer_exit_phase1.stop();
2057     _timer_exit_phase2.start();
2058   }
2059 
2060   // Capture daemon status before the thread is marked as terminated.
2061   bool daemon = is_daemon(threadObj());
2062 
2063   // Notify waiters on thread object. This has to be done after exit() is called
2064   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2065   // group should have the destroyed bit set before waiters are notified).
2066   ensure_join(this);
2067   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2068 
2069   if (log_is_enabled(Debug, os, thread, timer)) {
2070     _timer_exit_phase2.stop();
2071     _timer_exit_phase3.start();
2072   }
2073   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2074   // held by this thread must be released. The spec does not distinguish
2075   // between JNI-acquired and regular Java monitors. We can only see
2076   // regular Java monitors here if monitor enter-exit matching is broken.
2077   //
2078   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2079   // ObjectSynchronizer::release_monitors_owned_by_thread().
2080   if (exit_type == jni_detach) {
2081     // Sanity check even though JNI DetachCurrentThread() would have
2082     // returned JNI_ERR if there was a Java frame. JavaThread exit
2083     // should be done executing Java code by the time we get here.
2084     assert(!this->has_last_Java_frame(),
2085            "should not have a Java frame when detaching or exiting");
2086     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2087     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2088   }
2089 
2090   // These things needs to be done while we are still a Java Thread. Make sure that thread
2091   // is in a consistent state, in case GC happens
2092   JFR_ONLY(Jfr::on_thread_exit(this);)
2093 
2094   if (active_handles() != NULL) {
2095     JNIHandleBlock* block = active_handles();
2096     set_active_handles(NULL);
2097     JNIHandleBlock::release_block(block);
2098   }
2099 
2100   if (free_handle_block() != NULL) {
2101     JNIHandleBlock* block = free_handle_block();
2102     set_free_handle_block(NULL);
2103     JNIHandleBlock::release_block(block);
2104   }
2105 
2106   // These have to be removed while this is still a valid thread.
2107   remove_stack_guard_pages();
2108 
2109   if (UseTLAB) {
2110     tlab().retire();
2111   }
2112 
2113   if (JvmtiEnv::environments_might_exist()) {
2114     JvmtiExport::cleanup_thread(this);
2115   }
2116 
2117   // We must flush any deferred card marks and other various GC barrier
2118   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2119   // before removing a thread from the list of active threads.
2120   BarrierSet::barrier_set()->on_thread_detach(this);
2121 
2122   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2123     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2124     os::current_thread_id());
2125 
2126   if (log_is_enabled(Debug, os, thread, timer)) {
2127     _timer_exit_phase3.stop();
2128     _timer_exit_phase4.start();
2129   }
2130   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2131   Threads::remove(this, daemon);
2132 
2133   if (log_is_enabled(Debug, os, thread, timer)) {
2134     _timer_exit_phase4.stop();
2135     ResourceMark rm(this);
2136     log_debug(os, thread, timer)("name='%s'"
2137                                  ", exit-phase1=" JLONG_FORMAT
2138                                  ", exit-phase2=" JLONG_FORMAT
2139                                  ", exit-phase3=" JLONG_FORMAT
2140                                  ", exit-phase4=" JLONG_FORMAT,
2141                                  get_thread_name(),
2142                                  _timer_exit_phase1.milliseconds(),
2143                                  _timer_exit_phase2.milliseconds(),
2144                                  _timer_exit_phase3.milliseconds(),
2145                                  _timer_exit_phase4.milliseconds());
2146   }
2147 }
2148 
2149 void JavaThread::cleanup_failed_attach_current_thread(bool is_daemon) {
2150   if (active_handles() != NULL) {
2151     JNIHandleBlock* block = active_handles();
2152     set_active_handles(NULL);
2153     JNIHandleBlock::release_block(block);
2154   }
2155 
2156   if (free_handle_block() != NULL) {
2157     JNIHandleBlock* block = free_handle_block();
2158     set_free_handle_block(NULL);
2159     JNIHandleBlock::release_block(block);
2160   }
2161 
2162   // These have to be removed while this is still a valid thread.
2163   remove_stack_guard_pages();
2164 
2165   if (UseTLAB) {
2166     tlab().retire();
2167   }
2168 
2169   BarrierSet::barrier_set()->on_thread_detach(this);
2170 
2171   Threads::remove(this, is_daemon);
2172   this->smr_delete();
2173 }
2174 
2175 JavaThread* JavaThread::active() {
2176   Thread* thread = Thread::current();
2177   if (thread->is_Java_thread()) {
2178     return (JavaThread*) thread;
2179   } else {
2180     assert(thread->is_VM_thread(), "this must be a vm thread");
2181     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2182     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2183     assert(ret->is_Java_thread(), "must be a Java thread");
2184     return ret;
2185   }
2186 }
2187 
2188 bool JavaThread::is_lock_owned(address adr) const {
2189   if (Thread::is_lock_owned(adr)) return true;
2190 
2191   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2192     if (chunk->contains(adr)) return true;
2193   }
2194 
2195   return false;
2196 }
2197 
2198 
2199 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2200   chunk->set_next(monitor_chunks());
2201   set_monitor_chunks(chunk);
2202 }
2203 
2204 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2205   guarantee(monitor_chunks() != NULL, "must be non empty");
2206   if (monitor_chunks() == chunk) {
2207     set_monitor_chunks(chunk->next());
2208   } else {
2209     MonitorChunk* prev = monitor_chunks();
2210     while (prev->next() != chunk) prev = prev->next();
2211     prev->set_next(chunk->next());
2212   }
2213 }
2214 
2215 // JVM support.
2216 
2217 // Note: this function shouldn't block if it's called in
2218 // _thread_in_native_trans state (such as from
2219 // check_special_condition_for_native_trans()).
2220 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2221 
2222   if (has_last_Java_frame() && has_async_condition()) {
2223     // If we are at a polling page safepoint (not a poll return)
2224     // then we must defer async exception because live registers
2225     // will be clobbered by the exception path. Poll return is
2226     // ok because the call we a returning from already collides
2227     // with exception handling registers and so there is no issue.
2228     // (The exception handling path kills call result registers but
2229     //  this is ok since the exception kills the result anyway).
2230 
2231     if (is_at_poll_safepoint()) {
2232       // if the code we are returning to has deoptimized we must defer
2233       // the exception otherwise live registers get clobbered on the
2234       // exception path before deoptimization is able to retrieve them.
2235       //
2236       RegisterMap map(this, false);
2237       frame caller_fr = last_frame().sender(&map);
2238       assert(caller_fr.is_compiled_frame(), "what?");
2239       if (caller_fr.is_deoptimized_frame()) {
2240         log_info(exceptions)("deferred async exception at compiled safepoint");
2241         return;
2242       }
2243     }
2244   }
2245 
2246   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2247   if (condition == _no_async_condition) {
2248     // Conditions have changed since has_special_runtime_exit_condition()
2249     // was called:
2250     // - if we were here only because of an external suspend request,
2251     //   then that was taken care of above (or cancelled) so we are done
2252     // - if we were here because of another async request, then it has
2253     //   been cleared between the has_special_runtime_exit_condition()
2254     //   and now so again we are done
2255     return;
2256   }
2257 
2258   // Check for pending async. exception
2259   if (_pending_async_exception != NULL) {
2260     // Only overwrite an already pending exception, if it is not a threadDeath.
2261     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2262 
2263       // We cannot call Exceptions::_throw(...) here because we cannot block
2264       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2265 
2266       LogTarget(Info, exceptions) lt;
2267       if (lt.is_enabled()) {
2268         ResourceMark rm;
2269         LogStream ls(lt);
2270         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2271           if (has_last_Java_frame()) {
2272             frame f = last_frame();
2273            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2274           }
2275         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2276       }
2277       _pending_async_exception = NULL;
2278       clear_has_async_exception();
2279     }
2280   }
2281 
2282   if (check_unsafe_error &&
2283       condition == _async_unsafe_access_error && !has_pending_exception()) {
2284     condition = _no_async_condition;  // done
2285     switch (thread_state()) {
2286     case _thread_in_vm: {
2287       JavaThread* THREAD = this;
2288       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2289     }
2290     case _thread_in_native: {
2291       ThreadInVMfromNative tiv(this);
2292       JavaThread* THREAD = this;
2293       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2294     }
2295     case _thread_in_Java: {
2296       ThreadInVMfromJava tiv(this);
2297       JavaThread* THREAD = this;
2298       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2299     }
2300     default:
2301       ShouldNotReachHere();
2302     }
2303   }
2304 
2305   assert(condition == _no_async_condition || has_pending_exception() ||
2306          (!check_unsafe_error && condition == _async_unsafe_access_error),
2307          "must have handled the async condition, if no exception");
2308 }
2309 
2310 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2311 
2312   // Check for pending external suspend.
2313   if (is_external_suspend_with_lock()) {
2314     frame_anchor()->make_walkable(this);
2315     java_suspend_self_with_safepoint_check();
2316   }
2317 
2318   // We might be here for reasons in addition to the self-suspend request
2319   // so check for other async requests.
2320   if (check_asyncs) {
2321     check_and_handle_async_exceptions();
2322   }
2323 
2324   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2325 }
2326 
2327 void JavaThread::send_thread_stop(oop java_throwable)  {
2328   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2329   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2330   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2331 
2332   // Do not throw asynchronous exceptions against the compiler thread
2333   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2334   if (!can_call_java()) return;
2335 
2336   {
2337     // Actually throw the Throwable against the target Thread - however
2338     // only if there is no thread death exception installed already.
2339     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2340       // If the topmost frame is a runtime stub, then we are calling into
2341       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2342       // must deoptimize the caller before continuing, as the compiled  exception handler table
2343       // may not be valid
2344       if (has_last_Java_frame()) {
2345         frame f = last_frame();
2346         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2347           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2348           RegisterMap reg_map(this, UseBiasedLocking);
2349           frame compiled_frame = f.sender(&reg_map);
2350           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2351             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2352           }
2353         }
2354       }
2355 
2356       // Set async. pending exception in thread.
2357       set_pending_async_exception(java_throwable);
2358 
2359       if (log_is_enabled(Info, exceptions)) {
2360          ResourceMark rm;
2361         log_info(exceptions)("Pending Async. exception installed of type: %s",
2362                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2363       }
2364       // for AbortVMOnException flag
2365       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2366     }
2367   }
2368 
2369 
2370   // Interrupt thread so it will wake up from a potential wait()/sleep()/park()
2371   java_lang_Thread::set_interrupted(threadObj(), true);
2372   this->interrupt();
2373 }
2374 
2375 // External suspension mechanism.
2376 //
2377 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2378 // to any VM_locks and it is at a transition
2379 // Self-suspension will happen on the transition out of the vm.
2380 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2381 //
2382 // Guarantees on return:
2383 //   + Target thread will not execute any new bytecode (that's why we need to
2384 //     force a safepoint)
2385 //   + Target thread will not enter any new monitors
2386 //
2387 void JavaThread::java_suspend() {
2388   ThreadsListHandle tlh;
2389   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2390     return;
2391   }
2392 
2393   { MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2394     if (!is_external_suspend()) {
2395       // a racing resume has cancelled us; bail out now
2396       return;
2397     }
2398 
2399     // suspend is done
2400     uint32_t debug_bits = 0;
2401     // Warning: is_ext_suspend_completed() may temporarily drop the
2402     // SR_lock to allow the thread to reach a stable thread state if
2403     // it is currently in a transient thread state.
2404     if (is_ext_suspend_completed(false /* !called_by_wait */,
2405                                  SuspendRetryDelay, &debug_bits)) {
2406       return;
2407     }
2408   }
2409 
2410   if (Thread::current() == this) {
2411     // Safely self-suspend.
2412     // If we don't do this explicitly it will implicitly happen
2413     // before we transition back to Java, and on some other thread-state
2414     // transition paths, but not as we exit a JVM TI SuspendThread call.
2415     // As SuspendThread(current) must not return (until resumed) we must
2416     // self-suspend here.
2417     ThreadBlockInVM tbivm(this);
2418     java_suspend_self();
2419   } else {
2420     VM_ThreadSuspend vm_suspend;
2421     VMThread::execute(&vm_suspend);
2422   }
2423 }
2424 
2425 // Part II of external suspension.
2426 // A JavaThread self suspends when it detects a pending external suspend
2427 // request. This is usually on transitions. It is also done in places
2428 // where continuing to the next transition would surprise the caller,
2429 // e.g., monitor entry.
2430 //
2431 // Returns the number of times that the thread self-suspended.
2432 //
2433 // Note: DO NOT call java_suspend_self() when you just want to block current
2434 //       thread. java_suspend_self() is the second stage of cooperative
2435 //       suspension for external suspend requests and should only be used
2436 //       to complete an external suspend request.
2437 //
2438 int JavaThread::java_suspend_self() {
2439   assert(thread_state() == _thread_blocked, "wrong state for java_suspend_self()");
2440   int ret = 0;
2441 
2442   // we are in the process of exiting so don't suspend
2443   if (is_exiting()) {
2444     clear_external_suspend();
2445     return ret;
2446   }
2447 
2448   assert(_anchor.walkable() ||
2449          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2450          "must have walkable stack");
2451 
2452   MonitorLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2453 
2454   assert(!this->is_ext_suspended(),
2455          "a thread trying to self-suspend should not already be suspended");
2456 
2457   if (this->is_suspend_equivalent()) {
2458     // If we are self-suspending as a result of the lifting of a
2459     // suspend equivalent condition, then the suspend_equivalent
2460     // flag is not cleared until we set the ext_suspended flag so
2461     // that wait_for_ext_suspend_completion() returns consistent
2462     // results.
2463     this->clear_suspend_equivalent();
2464   }
2465 
2466   // A racing resume may have cancelled us before we grabbed SR_lock
2467   // above. Or another external suspend request could be waiting for us
2468   // by the time we return from SR_lock()->wait(). The thread
2469   // that requested the suspension may already be trying to walk our
2470   // stack and if we return now, we can change the stack out from under
2471   // it. This would be a "bad thing (TM)" and cause the stack walker
2472   // to crash. We stay self-suspended until there are no more pending
2473   // external suspend requests.
2474   while (is_external_suspend()) {
2475     ret++;
2476     this->set_ext_suspended();
2477 
2478     // _ext_suspended flag is cleared by java_resume()
2479     while (is_ext_suspended()) {
2480       ml.wait();
2481     }
2482   }
2483   return ret;
2484 }
2485 
2486 // Helper routine to set up the correct thread state before calling java_suspend_self.
2487 // This is called when regular thread-state transition helpers can't be used because
2488 // we can be in various states, in particular _thread_in_native_trans.
2489 // Because this thread is external suspended the safepoint code will count it as at
2490 // a safepoint, regardless of what its actual current thread-state is. But
2491 // is_ext_suspend_completed() may be waiting to see a thread transition from
2492 // _thread_in_native_trans to _thread_blocked. So we set the thread state directly
2493 // to _thread_blocked. The problem with setting thread state directly is that a
2494 // safepoint could happen just after java_suspend_self() returns after being resumed,
2495 // and the VM thread will see the _thread_blocked state. So we must check for a safepoint
2496 // after restoring the state to make sure we won't leave while a safepoint is in progress.
2497 // However, not all initial-states are allowed when performing a safepoint check, as we
2498 // should never be blocking at a safepoint whilst in those states. Of these 'bad' states
2499 // only _thread_in_native is possible when executing this code (based on our two callers).
2500 // A thread that is _thread_in_native is already safepoint-safe and so it doesn't matter
2501 // whether the VMThread sees the _thread_blocked state, or the _thread_in_native state,
2502 // and so we don't need the explicit safepoint check.
2503 
2504 void JavaThread::java_suspend_self_with_safepoint_check() {
2505   assert(this == Thread::current(), "invariant");
2506   JavaThreadState state = thread_state();
2507   set_thread_state(_thread_blocked);
2508   java_suspend_self();
2509   set_thread_state_fence(state);
2510   // Since we are not using a regular thread-state transition helper here,
2511   // we must manually emit the instruction barrier after leaving a safe state.
2512   OrderAccess::cross_modify_fence();
2513   if (state != _thread_in_native) {
2514     SafepointMechanism::block_if_requested(this);
2515   }
2516 }
2517 
2518 #ifdef ASSERT
2519 // Verify the JavaThread has not yet been published in the Threads::list, and
2520 // hence doesn't need protection from concurrent access at this stage.
2521 void JavaThread::verify_not_published() {
2522   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2523   // since an unpublished JavaThread doesn't participate in the
2524   // Thread-SMR protocol for keeping a ThreadsList alive.
2525   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2526 }
2527 #endif
2528 
2529 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2530 // progress or when _suspend_flags is non-zero.
2531 // Current thread needs to self-suspend if there is a suspend request and/or
2532 // block if a safepoint is in progress.
2533 // Async exception ISN'T checked.
2534 // Note only the ThreadInVMfromNative transition can call this function
2535 // directly and when thread state is _thread_in_native_trans
2536 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2537   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2538 
2539   assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2540 
2541   if (thread->is_external_suspend()) {
2542     thread->java_suspend_self_with_safepoint_check();
2543   } else {
2544     SafepointMechanism::block_if_requested(thread);
2545   }
2546 
2547   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2548 }
2549 
2550 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2551 // progress or when _suspend_flags is non-zero.
2552 // Current thread needs to self-suspend if there is a suspend request and/or
2553 // block if a safepoint is in progress.
2554 // Also check for pending async exception (not including unsafe access error).
2555 // Note only the native==>VM/Java barriers can call this function and when
2556 // thread state is _thread_in_native_trans.
2557 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2558   check_safepoint_and_suspend_for_native_trans(thread);
2559 
2560   if (thread->has_async_exception()) {
2561     // We are in _thread_in_native_trans state, don't handle unsafe
2562     // access error since that may block.
2563     thread->check_and_handle_async_exceptions(false);
2564   }
2565 }
2566 
2567 // This is a variant of the normal
2568 // check_special_condition_for_native_trans with slightly different
2569 // semantics for use by critical native wrappers.  It does all the
2570 // normal checks but also performs the transition back into
2571 // thread_in_Java state.  This is required so that critical natives
2572 // can potentially block and perform a GC if they are the last thread
2573 // exiting the GCLocker.
2574 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2575   check_special_condition_for_native_trans(thread);
2576 
2577   // Finish the transition
2578   thread->set_thread_state(_thread_in_Java);
2579 
2580   if (thread->do_critical_native_unlock()) {
2581     ThreadInVMfromJavaNoAsyncException tiv(thread);
2582     GCLocker::unlock_critical(thread);
2583     thread->clear_critical_native_unlock();
2584   }
2585 }
2586 
2587 // We need to guarantee the Threads_lock here, since resumes are not
2588 // allowed during safepoint synchronization
2589 // Can only resume from an external suspension
2590 void JavaThread::java_resume() {
2591   assert_locked_or_safepoint(Threads_lock);
2592 
2593   // Sanity check: thread is gone, has started exiting or the thread
2594   // was not externally suspended.
2595   ThreadsListHandle tlh;
2596   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2597     return;
2598   }
2599 
2600   MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2601 
2602   clear_external_suspend();
2603 
2604   if (is_ext_suspended()) {
2605     clear_ext_suspended();
2606     SR_lock()->notify_all();
2607   }
2608 }
2609 
2610 size_t JavaThread::_stack_red_zone_size = 0;
2611 size_t JavaThread::_stack_yellow_zone_size = 0;
2612 size_t JavaThread::_stack_reserved_zone_size = 0;
2613 size_t JavaThread::_stack_shadow_zone_size = 0;
2614 
2615 void JavaThread::create_stack_guard_pages() {
2616   if (!os::uses_stack_guard_pages() ||
2617       _stack_guard_state != stack_guard_unused ||
2618       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2619       log_info(os, thread)("Stack guard page creation for thread "
2620                            UINTX_FORMAT " disabled", os::current_thread_id());
2621     return;
2622   }
2623   address low_addr = stack_end();
2624   size_t len = stack_guard_zone_size();
2625 
2626   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2627   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2628 
2629   int must_commit = os::must_commit_stack_guard_pages();
2630   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2631 
2632   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2633     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2634     return;
2635   }
2636 
2637   if (os::guard_memory((char *) low_addr, len)) {
2638     _stack_guard_state = stack_guard_enabled;
2639   } else {
2640     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2641       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2642     if (os::uncommit_memory((char *) low_addr, len)) {
2643       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2644     }
2645     return;
2646   }
2647 
2648   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2649     PTR_FORMAT "-" PTR_FORMAT ".",
2650     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2651 }
2652 
2653 void JavaThread::remove_stack_guard_pages() {
2654   assert(Thread::current() == this, "from different thread");
2655   if (_stack_guard_state == stack_guard_unused) return;
2656   address low_addr = stack_end();
2657   size_t len = stack_guard_zone_size();
2658 
2659   if (os::must_commit_stack_guard_pages()) {
2660     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2661       _stack_guard_state = stack_guard_unused;
2662     } else {
2663       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2664         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2665       return;
2666     }
2667   } else {
2668     if (_stack_guard_state == stack_guard_unused) return;
2669     if (os::unguard_memory((char *) low_addr, len)) {
2670       _stack_guard_state = stack_guard_unused;
2671     } else {
2672       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2673         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2674       return;
2675     }
2676   }
2677 
2678   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2679     PTR_FORMAT "-" PTR_FORMAT ".",
2680     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2681 }
2682 
2683 void JavaThread::enable_stack_reserved_zone() {
2684   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2685 
2686   // The base notation is from the stack's point of view, growing downward.
2687   // We need to adjust it to work correctly with guard_memory()
2688   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2689 
2690   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2691   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2692 
2693   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2694     _stack_guard_state = stack_guard_enabled;
2695   } else {
2696     warning("Attempt to guard stack reserved zone failed.");
2697   }
2698   enable_register_stack_guard();
2699 }
2700 
2701 void JavaThread::disable_stack_reserved_zone() {
2702   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2703 
2704   // Simply return if called for a thread that does not use guard pages.
2705   if (_stack_guard_state != stack_guard_enabled) return;
2706 
2707   // The base notation is from the stack's point of view, growing downward.
2708   // We need to adjust it to work correctly with guard_memory()
2709   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2710 
2711   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2712     _stack_guard_state = stack_guard_reserved_disabled;
2713   } else {
2714     warning("Attempt to unguard stack reserved zone failed.");
2715   }
2716   disable_register_stack_guard();
2717 }
2718 
2719 void JavaThread::enable_stack_yellow_reserved_zone() {
2720   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2721   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2722 
2723   // The base notation is from the stacks point of view, growing downward.
2724   // We need to adjust it to work correctly with guard_memory()
2725   address base = stack_red_zone_base();
2726 
2727   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2728   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2729 
2730   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2731     _stack_guard_state = stack_guard_enabled;
2732   } else {
2733     warning("Attempt to guard stack yellow zone failed.");
2734   }
2735   enable_register_stack_guard();
2736 }
2737 
2738 void JavaThread::disable_stack_yellow_reserved_zone() {
2739   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2740   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2741 
2742   // Simply return if called for a thread that does not use guard pages.
2743   if (_stack_guard_state == stack_guard_unused) return;
2744 
2745   // The base notation is from the stacks point of view, growing downward.
2746   // We need to adjust it to work correctly with guard_memory()
2747   address base = stack_red_zone_base();
2748 
2749   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2750     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2751   } else {
2752     warning("Attempt to unguard stack yellow zone failed.");
2753   }
2754   disable_register_stack_guard();
2755 }
2756 
2757 void JavaThread::enable_stack_red_zone() {
2758   // The base notation is from the stacks point of view, growing downward.
2759   // We need to adjust it to work correctly with guard_memory()
2760   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2761   address base = stack_red_zone_base() - stack_red_zone_size();
2762 
2763   guarantee(base < stack_base(), "Error calculating stack red zone");
2764   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2765 
2766   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2767     warning("Attempt to guard stack red zone failed.");
2768   }
2769 }
2770 
2771 void JavaThread::disable_stack_red_zone() {
2772   // The base notation is from the stacks point of view, growing downward.
2773   // We need to adjust it to work correctly with guard_memory()
2774   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2775   address base = stack_red_zone_base() - stack_red_zone_size();
2776   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2777     warning("Attempt to unguard stack red zone failed.");
2778   }
2779 }
2780 
2781 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2782   // ignore is there is no stack
2783   if (!has_last_Java_frame()) return;
2784   // traverse the stack frames. Starts from top frame.
2785   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2786     frame* fr = fst.current();
2787     f(fr, fst.register_map());
2788   }
2789 }
2790 
2791 
2792 #ifndef PRODUCT
2793 // Deoptimization
2794 // Function for testing deoptimization
2795 void JavaThread::deoptimize() {
2796   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2797   StackFrameStream fst(this, UseBiasedLocking);
2798   bool deopt = false;           // Dump stack only if a deopt actually happens.
2799   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2800   // Iterate over all frames in the thread and deoptimize
2801   for (; !fst.is_done(); fst.next()) {
2802     if (fst.current()->can_be_deoptimized()) {
2803 
2804       if (only_at) {
2805         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2806         // consists of comma or carriage return separated numbers so
2807         // search for the current bci in that string.
2808         address pc = fst.current()->pc();
2809         nmethod* nm =  (nmethod*) fst.current()->cb();
2810         ScopeDesc* sd = nm->scope_desc_at(pc);
2811         char buffer[8];
2812         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2813         size_t len = strlen(buffer);
2814         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2815         while (found != NULL) {
2816           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2817               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2818             // Check that the bci found is bracketed by terminators.
2819             break;
2820           }
2821           found = strstr(found + 1, buffer);
2822         }
2823         if (!found) {
2824           continue;
2825         }
2826       }
2827 
2828       if (DebugDeoptimization && !deopt) {
2829         deopt = true; // One-time only print before deopt
2830         tty->print_cr("[BEFORE Deoptimization]");
2831         trace_frames();
2832         trace_stack();
2833       }
2834       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2835     }
2836   }
2837 
2838   if (DebugDeoptimization && deopt) {
2839     tty->print_cr("[AFTER Deoptimization]");
2840     trace_frames();
2841   }
2842 }
2843 
2844 
2845 // Make zombies
2846 void JavaThread::make_zombies() {
2847   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2848     if (fst.current()->can_be_deoptimized()) {
2849       // it is a Java nmethod
2850       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2851       nm->make_not_entrant();
2852     }
2853   }
2854 }
2855 #endif // PRODUCT
2856 
2857 
2858 void JavaThread::deoptimize_marked_methods() {
2859   if (!has_last_Java_frame()) return;
2860   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2861   StackFrameStream fst(this, UseBiasedLocking);
2862   for (; !fst.is_done(); fst.next()) {
2863     if (fst.current()->should_be_deoptimized()) {
2864       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2865     }
2866   }
2867 }
2868 
2869 // If the caller is a NamedThread, then remember, in the current scope,
2870 // the given JavaThread in its _processed_thread field.
2871 class RememberProcessedThread: public StackObj {
2872   NamedThread* _cur_thr;
2873  public:
2874   RememberProcessedThread(JavaThread* jthr) {
2875     Thread* thread = Thread::current();
2876     if (thread->is_Named_thread()) {
2877       _cur_thr = (NamedThread *)thread;
2878       _cur_thr->set_processed_thread(jthr);
2879     } else {
2880       _cur_thr = NULL;
2881     }
2882   }
2883 
2884   ~RememberProcessedThread() {
2885     if (_cur_thr) {
2886       _cur_thr->set_processed_thread(NULL);
2887     }
2888   }
2889 };
2890 
2891 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2892   // Verify that the deferred card marks have been flushed.
2893   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2894 
2895   // Traverse the GCHandles
2896   Thread::oops_do(f, cf);
2897 
2898   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2899          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2900 
2901   if (has_last_Java_frame()) {
2902     // Record JavaThread to GC thread
2903     RememberProcessedThread rpt(this);
2904 
2905     // traverse the registered growable array
2906     if (_array_for_gc != NULL) {
2907       for (int index = 0; index < _array_for_gc->length(); index++) {
2908         f->do_oop(_array_for_gc->adr_at(index));
2909       }
2910     }
2911 
2912     // Traverse the monitor chunks
2913     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2914       chunk->oops_do(f);
2915     }
2916 
2917     // Traverse the execution stack
2918     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2919       fst.current()->oops_do(f, cf, fst.register_map());
2920     }
2921   }
2922 
2923   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2924   // If we have deferred set_locals there might be oops waiting to be
2925   // written
2926   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2927   if (list != NULL) {
2928     for (int i = 0; i < list->length(); i++) {
2929       list->at(i)->oops_do(f);
2930     }
2931   }
2932 
2933   // Traverse instance variables at the end since the GC may be moving things
2934   // around using this function
2935   f->do_oop((oop*) &_threadObj);
2936   f->do_oop((oop*) &_vm_result);
2937   f->do_oop((oop*) &_exception_oop);
2938   f->do_oop((oop*) &_pending_async_exception);
2939 
2940   if (jvmti_thread_state() != NULL) {
2941     jvmti_thread_state()->oops_do(f);
2942   }
2943 }
2944 
2945 #ifdef ASSERT
2946 void JavaThread::verify_states_for_handshake() {
2947   // This checks that the thread has a correct frame state during a handshake.
2948   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2949          (has_last_Java_frame() && java_call_counter() > 0),
2950          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2951          has_last_Java_frame(), java_call_counter());
2952 }
2953 #endif
2954 
2955 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2956   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2957          (has_last_Java_frame() && java_call_counter() > 0),
2958          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2959          has_last_Java_frame(), java_call_counter());
2960 
2961   if (has_last_Java_frame()) {
2962     // Traverse the execution stack
2963     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2964       fst.current()->nmethods_do(cf);
2965     }
2966   }
2967 }
2968 
2969 void JavaThread::metadata_do(MetadataClosure* f) {
2970   if (has_last_Java_frame()) {
2971     // Traverse the execution stack to call f() on the methods in the stack
2972     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2973       fst.current()->metadata_do(f);
2974     }
2975   } else if (is_Compiler_thread()) {
2976     // need to walk ciMetadata in current compile tasks to keep alive.
2977     CompilerThread* ct = (CompilerThread*)this;
2978     if (ct->env() != NULL) {
2979       ct->env()->metadata_do(f);
2980     }
2981     CompileTask* task = ct->task();
2982     if (task != NULL) {
2983       task->metadata_do(f);
2984     }
2985   }
2986 }
2987 
2988 // Printing
2989 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2990   switch (_thread_state) {
2991   case _thread_uninitialized:     return "_thread_uninitialized";
2992   case _thread_new:               return "_thread_new";
2993   case _thread_new_trans:         return "_thread_new_trans";
2994   case _thread_in_native:         return "_thread_in_native";
2995   case _thread_in_native_trans:   return "_thread_in_native_trans";
2996   case _thread_in_vm:             return "_thread_in_vm";
2997   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2998   case _thread_in_Java:           return "_thread_in_Java";
2999   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
3000   case _thread_blocked:           return "_thread_blocked";
3001   case _thread_blocked_trans:     return "_thread_blocked_trans";
3002   default:                        return "unknown thread state";
3003   }
3004 }
3005 
3006 #ifndef PRODUCT
3007 void JavaThread::print_thread_state_on(outputStream *st) const {
3008   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
3009 };
3010 #endif // PRODUCT
3011 
3012 // Called by Threads::print() for VM_PrintThreads operation
3013 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3014   st->print_raw("\"");
3015   st->print_raw(get_thread_name());
3016   st->print_raw("\" ");
3017   oop thread_oop = threadObj();
3018   if (thread_oop != NULL) {
3019     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3020     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3021     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3022   }
3023   Thread::print_on(st, print_extended_info);
3024   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3025   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3026   if (thread_oop != NULL) {
3027     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3028   }
3029 #ifndef PRODUCT
3030   _safepoint_state->print_on(st);
3031 #endif // PRODUCT
3032   if (is_Compiler_thread()) {
3033     CompileTask *task = ((CompilerThread*)this)->task();
3034     if (task != NULL) {
3035       st->print("   Compiling: ");
3036       task->print(st, NULL, true, false);
3037     } else {
3038       st->print("   No compile task");
3039     }
3040     st->cr();
3041   }
3042 }
3043 
3044 void JavaThread::print() const { print_on(tty); }
3045 
3046 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3047   st->print("%s", get_thread_name_string(buf, buflen));
3048 }
3049 
3050 // Called by fatal error handler. The difference between this and
3051 // JavaThread::print() is that we can't grab lock or allocate memory.
3052 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3053   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3054   oop thread_obj = threadObj();
3055   if (thread_obj != NULL) {
3056     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3057   }
3058   st->print(" [");
3059   st->print("%s", _get_thread_state_name(_thread_state));
3060   if (osthread()) {
3061     st->print(", id=%d", osthread()->thread_id());
3062   }
3063   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3064             p2i(stack_end()), p2i(stack_base()));
3065   st->print("]");
3066 
3067   ThreadsSMRSupport::print_info_on(this, st);
3068   return;
3069 }
3070 
3071 // Verification
3072 
3073 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3074 
3075 void JavaThread::verify() {
3076   // Verify oops in the thread.
3077   oops_do(&VerifyOopClosure::verify_oop, NULL);
3078 
3079   // Verify the stack frames.
3080   frames_do(frame_verify);
3081 }
3082 
3083 // CR 6300358 (sub-CR 2137150)
3084 // Most callers of this method assume that it can't return NULL but a
3085 // thread may not have a name whilst it is in the process of attaching to
3086 // the VM - see CR 6412693, and there are places where a JavaThread can be
3087 // seen prior to having it's threadObj set (eg JNI attaching threads and
3088 // if vm exit occurs during initialization). These cases can all be accounted
3089 // for such that this method never returns NULL.
3090 const char* JavaThread::get_thread_name() const {
3091 #ifdef ASSERT
3092   // early safepoints can hit while current thread does not yet have TLS
3093   if (!SafepointSynchronize::is_at_safepoint()) {
3094     Thread *cur = Thread::current();
3095     if (!(cur->is_Java_thread() && cur == this)) {
3096       // Current JavaThreads are allowed to get their own name without
3097       // the Threads_lock.
3098       assert_locked_or_safepoint(Threads_lock);
3099     }
3100   }
3101 #endif // ASSERT
3102   return get_thread_name_string();
3103 }
3104 
3105 // Returns a non-NULL representation of this thread's name, or a suitable
3106 // descriptive string if there is no set name
3107 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3108   const char* name_str;
3109   oop thread_obj = threadObj();
3110   if (thread_obj != NULL) {
3111     oop name = java_lang_Thread::name(thread_obj);
3112     if (name != NULL) {
3113       if (buf == NULL) {
3114         name_str = java_lang_String::as_utf8_string(name);
3115       } else {
3116         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3117       }
3118     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3119       name_str = "<no-name - thread is attaching>";
3120     } else {
3121       name_str = Thread::name();
3122     }
3123   } else {
3124     name_str = Thread::name();
3125   }
3126   assert(name_str != NULL, "unexpected NULL thread name");
3127   return name_str;
3128 }
3129 
3130 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3131 
3132   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3133   assert(NoPriority <= prio && prio <= MaxPriority, "sanity check");
3134   // Link Java Thread object <-> C++ Thread
3135 
3136   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3137   // and put it into a new Handle.  The Handle "thread_oop" can then
3138   // be used to pass the C++ thread object to other methods.
3139 
3140   // Set the Java level thread object (jthread) field of the
3141   // new thread (a JavaThread *) to C++ thread object using the
3142   // "thread_oop" handle.
3143 
3144   // Set the thread field (a JavaThread *) of the
3145   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3146 
3147   Handle thread_oop(Thread::current(),
3148                     JNIHandles::resolve_non_null(jni_thread));
3149   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3150          "must be initialized");
3151   set_threadObj(thread_oop());
3152   java_lang_Thread::set_thread(thread_oop(), this);
3153 
3154   if (prio == NoPriority) {
3155     prio = java_lang_Thread::priority(thread_oop());
3156     assert(prio != NoPriority, "A valid priority should be present");
3157   }
3158 
3159   // Push the Java priority down to the native thread; needs Threads_lock
3160   Thread::set_priority(this, prio);
3161 
3162   // Add the new thread to the Threads list and set it in motion.
3163   // We must have threads lock in order to call Threads::add.
3164   // It is crucial that we do not block before the thread is
3165   // added to the Threads list for if a GC happens, then the java_thread oop
3166   // will not be visited by GC.
3167   Threads::add(this);
3168 }
3169 
3170 oop JavaThread::current_park_blocker() {
3171   // Support for JSR-166 locks
3172   oop thread_oop = threadObj();
3173   if (thread_oop != NULL) {
3174     return java_lang_Thread::park_blocker(thread_oop);
3175   }
3176   return NULL;
3177 }
3178 
3179 
3180 void JavaThread::print_stack_on(outputStream* st) {
3181   if (!has_last_Java_frame()) return;
3182   ResourceMark rm;
3183   HandleMark   hm;
3184 
3185   RegisterMap reg_map(this);
3186   vframe* start_vf = last_java_vframe(&reg_map);
3187   int count = 0;
3188   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3189     if (f->is_java_frame()) {
3190       javaVFrame* jvf = javaVFrame::cast(f);
3191       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3192 
3193       // Print out lock information
3194       if (JavaMonitorsInStackTrace) {
3195         jvf->print_lock_info_on(st, count);
3196       }
3197     } else {
3198       // Ignore non-Java frames
3199     }
3200 
3201     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3202     count++;
3203     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3204   }
3205 }
3206 
3207 
3208 // JVMTI PopFrame support
3209 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3210   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3211   if (in_bytes(size_in_bytes) != 0) {
3212     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3213     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3214     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3215   }
3216 }
3217 
3218 void* JavaThread::popframe_preserved_args() {
3219   return _popframe_preserved_args;
3220 }
3221 
3222 ByteSize JavaThread::popframe_preserved_args_size() {
3223   return in_ByteSize(_popframe_preserved_args_size);
3224 }
3225 
3226 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3227   int sz = in_bytes(popframe_preserved_args_size());
3228   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3229   return in_WordSize(sz / wordSize);
3230 }
3231 
3232 void JavaThread::popframe_free_preserved_args() {
3233   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3234   FREE_C_HEAP_ARRAY(char, (char*)_popframe_preserved_args);
3235   _popframe_preserved_args = NULL;
3236   _popframe_preserved_args_size = 0;
3237 }
3238 
3239 #ifndef PRODUCT
3240 
3241 void JavaThread::trace_frames() {
3242   tty->print_cr("[Describe stack]");
3243   int frame_no = 1;
3244   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3245     tty->print("  %d. ", frame_no++);
3246     fst.current()->print_value_on(tty, this);
3247     tty->cr();
3248   }
3249 }
3250 
3251 class PrintAndVerifyOopClosure: public OopClosure {
3252  protected:
3253   template <class T> inline void do_oop_work(T* p) {
3254     oop obj = RawAccess<>::oop_load(p);
3255     if (obj == NULL) return;
3256     tty->print(INTPTR_FORMAT ": ", p2i(p));
3257     if (oopDesc::is_oop_or_null(obj)) {
3258       if (obj->is_objArray()) {
3259         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3260       } else {
3261         obj->print();
3262       }
3263     } else {
3264       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3265     }
3266     tty->cr();
3267   }
3268  public:
3269   virtual void do_oop(oop* p) { do_oop_work(p); }
3270   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3271 };
3272 
3273 #ifdef ASSERT
3274 // Print or validate the layout of stack frames
3275 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3276   ResourceMark rm;
3277   PRESERVE_EXCEPTION_MARK;
3278   FrameValues values;
3279   int frame_no = 0;
3280   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3281     fst.current()->describe(values, ++frame_no);
3282     if (depth == frame_no) break;
3283   }
3284   if (validate_only) {
3285     values.validate();
3286   } else {
3287     tty->print_cr("[Describe stack layout]");
3288     values.print(this);
3289   }
3290 }
3291 #endif
3292 
3293 void JavaThread::trace_stack_from(vframe* start_vf) {
3294   ResourceMark rm;
3295   int vframe_no = 1;
3296   for (vframe* f = start_vf; f; f = f->sender()) {
3297     if (f->is_java_frame()) {
3298       javaVFrame::cast(f)->print_activation(vframe_no++);
3299     } else {
3300       f->print();
3301     }
3302     if (vframe_no > StackPrintLimit) {
3303       tty->print_cr("...<more frames>...");
3304       return;
3305     }
3306   }
3307 }
3308 
3309 
3310 void JavaThread::trace_stack() {
3311   if (!has_last_Java_frame()) return;
3312   ResourceMark rm;
3313   HandleMark   hm;
3314   RegisterMap reg_map(this);
3315   trace_stack_from(last_java_vframe(&reg_map));
3316 }
3317 
3318 
3319 #endif // PRODUCT
3320 
3321 
3322 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3323   assert(reg_map != NULL, "a map must be given");
3324   frame f = last_frame();
3325   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3326     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3327   }
3328   return NULL;
3329 }
3330 
3331 
3332 Klass* JavaThread::security_get_caller_class(int depth) {
3333   vframeStream vfst(this);
3334   vfst.security_get_caller_frame(depth);
3335   if (!vfst.at_end()) {
3336     return vfst.method()->method_holder();
3337   }
3338   return NULL;
3339 }
3340 
3341 // java.lang.Thread.sleep support
3342 // Returns true if sleep time elapsed as expected, and false
3343 // if the thread was interrupted.
3344 bool JavaThread::sleep(jlong millis) {
3345   assert(this == Thread::current(),  "thread consistency check");
3346 
3347   ParkEvent * const slp = this->_SleepEvent;
3348   // Because there can be races with thread interruption sending an unpark()
3349   // to the event, we explicitly reset it here to avoid an immediate return.
3350   // The actual interrupt state will be checked before we park().
3351   slp->reset();
3352   // Thread interruption establishes a happens-before ordering in the
3353   // Java Memory Model, so we need to ensure we synchronize with the
3354   // interrupt state.
3355   OrderAccess::fence();
3356 
3357   jlong prevtime = os::javaTimeNanos();
3358 
3359   for (;;) {
3360     // interruption has precedence over timing out
3361     if (this->is_interrupted(true)) {
3362       return false;
3363     }
3364 
3365     if (millis <= 0) {
3366       return true;
3367     }
3368 
3369     {
3370       ThreadBlockInVM tbivm(this);
3371       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
3372 
3373       this->set_suspend_equivalent();
3374       // cleared by handle_special_suspend_equivalent_condition() or
3375       // java_suspend_self() via check_and_wait_while_suspended()
3376 
3377       slp->park(millis);
3378 
3379       // were we externally suspended while we were waiting?
3380       this->check_and_wait_while_suspended();
3381     }
3382 
3383     // Update elapsed time tracking
3384     jlong newtime = os::javaTimeNanos();
3385     if (newtime - prevtime < 0) {
3386       // time moving backwards, should only happen if no monotonic clock
3387       // not a guarantee() because JVM should not abort on kernel/glibc bugs
3388       assert(!os::supports_monotonic_clock(),
3389              "unexpected time moving backwards detected in JavaThread::sleep()");
3390     } else {
3391       millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3392     }
3393     prevtime = newtime;
3394   }
3395 }
3396 
3397 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3398   assert(thread->is_Compiler_thread(), "must be compiler thread");
3399   CompileBroker::compiler_thread_loop();
3400 }
3401 
3402 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3403   NMethodSweeper::sweeper_loop();
3404 }
3405 
3406 // Create a CompilerThread
3407 CompilerThread::CompilerThread(CompileQueue* queue,
3408                                CompilerCounters* counters)
3409                                : JavaThread(&compiler_thread_entry) {
3410   _env   = NULL;
3411   _log   = NULL;
3412   _task  = NULL;
3413   _queue = queue;
3414   _counters = counters;
3415   _buffer_blob = NULL;
3416   _compiler = NULL;
3417 
3418   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3419   resource_area()->bias_to(mtCompiler);
3420 
3421 #ifndef PRODUCT
3422   _ideal_graph_printer = NULL;
3423 #endif
3424 }
3425 
3426 CompilerThread::~CompilerThread() {
3427   // Delete objects which were allocated on heap.
3428   delete _counters;
3429 }
3430 
3431 bool CompilerThread::can_call_java() const {
3432   return _compiler != NULL && _compiler->is_jvmci();
3433 }
3434 
3435 // Create sweeper thread
3436 CodeCacheSweeperThread::CodeCacheSweeperThread()
3437 : JavaThread(&sweeper_thread_entry) {
3438   _scanned_compiled_method = NULL;
3439 }
3440 
3441 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3442   JavaThread::oops_do(f, cf);
3443   if (_scanned_compiled_method != NULL && cf != NULL) {
3444     // Safepoints can occur when the sweeper is scanning an nmethod so
3445     // process it here to make sure it isn't unloaded in the middle of
3446     // a scan.
3447     cf->do_code_blob(_scanned_compiled_method);
3448   }
3449 }
3450 
3451 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3452   JavaThread::nmethods_do(cf);
3453   if (_scanned_compiled_method != NULL && cf != NULL) {
3454     // Safepoints can occur when the sweeper is scanning an nmethod so
3455     // process it here to make sure it isn't unloaded in the middle of
3456     // a scan.
3457     cf->do_code_blob(_scanned_compiled_method);
3458   }
3459 }
3460 
3461 
3462 // ======= Threads ========
3463 
3464 // The Threads class links together all active threads, and provides
3465 // operations over all threads. It is protected by the Threads_lock,
3466 // which is also used in other global contexts like safepointing.
3467 // ThreadsListHandles are used to safely perform operations on one
3468 // or more threads without the risk of the thread exiting during the
3469 // operation.
3470 //
3471 // Note: The Threads_lock is currently more widely used than we
3472 // would like. We are actively migrating Threads_lock uses to other
3473 // mechanisms in order to reduce Threads_lock contention.
3474 
3475 int         Threads::_number_of_threads = 0;
3476 int         Threads::_number_of_non_daemon_threads = 0;
3477 int         Threads::_return_code = 0;
3478 uintx       Threads::_thread_claim_token = 1; // Never zero.
3479 size_t      JavaThread::_stack_size_at_create = 0;
3480 
3481 #ifdef ASSERT
3482 bool        Threads::_vm_complete = false;
3483 #endif
3484 
3485 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3486   Prefetch::read((void*)addr, prefetch_interval);
3487   return *addr;
3488 }
3489 
3490 // Possibly the ugliest for loop the world has seen. C++ does not allow
3491 // multiple types in the declaration section of the for loop. In this case
3492 // we are only dealing with pointers and hence can cast them. It looks ugly
3493 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3494 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3495     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3496              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3497              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3498              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3499              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3500          MACRO_current_p != MACRO_end;                                                                                    \
3501          MACRO_current_p++,                                                                                               \
3502              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3503 
3504 // All JavaThreads
3505 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3506 
3507 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3508 void Threads::non_java_threads_do(ThreadClosure* tc) {
3509   NoSafepointVerifier nsv;
3510   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3511     tc->do_thread(njti.current());
3512   }
3513 }
3514 
3515 // All JavaThreads
3516 void Threads::java_threads_do(ThreadClosure* tc) {
3517   assert_locked_or_safepoint(Threads_lock);
3518   // ALL_JAVA_THREADS iterates through all JavaThreads.
3519   ALL_JAVA_THREADS(p) {
3520     tc->do_thread(p);
3521   }
3522 }
3523 
3524 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3525   assert_locked_or_safepoint(Threads_lock);
3526   java_threads_do(tc);
3527   tc->do_thread(VMThread::vm_thread());
3528 }
3529 
3530 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3531 void Threads::threads_do(ThreadClosure* tc) {
3532   assert_locked_or_safepoint(Threads_lock);
3533   java_threads_do(tc);
3534   non_java_threads_do(tc);
3535 }
3536 
3537 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3538   uintx claim_token = Threads::thread_claim_token();
3539   ALL_JAVA_THREADS(p) {
3540     if (p->claim_threads_do(is_par, claim_token)) {
3541       tc->do_thread(p);
3542     }
3543   }
3544   VMThread* vmt = VMThread::vm_thread();
3545   if (vmt->claim_threads_do(is_par, claim_token)) {
3546     tc->do_thread(vmt);
3547   }
3548 }
3549 
3550 // The system initialization in the library has three phases.
3551 //
3552 // Phase 1: java.lang.System class initialization
3553 //     java.lang.System is a primordial class loaded and initialized
3554 //     by the VM early during startup.  java.lang.System.<clinit>
3555 //     only does registerNatives and keeps the rest of the class
3556 //     initialization work later until thread initialization completes.
3557 //
3558 //     System.initPhase1 initializes the system properties, the static
3559 //     fields in, out, and err. Set up java signal handlers, OS-specific
3560 //     system settings, and thread group of the main thread.
3561 static void call_initPhase1(TRAPS) {
3562   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3563   JavaValue result(T_VOID);
3564   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3565                                          vmSymbols::void_method_signature(), CHECK);
3566 }
3567 
3568 // Phase 2. Module system initialization
3569 //     This will initialize the module system.  Only java.base classes
3570 //     can be loaded until phase 2 completes.
3571 //
3572 //     Call System.initPhase2 after the compiler initialization and jsr292
3573 //     classes get initialized because module initialization runs a lot of java
3574 //     code, that for performance reasons, should be compiled.  Also, this will
3575 //     enable the startup code to use lambda and other language features in this
3576 //     phase and onward.
3577 //
3578 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3579 static void call_initPhase2(TRAPS) {
3580   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3581 
3582   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3583 
3584   JavaValue result(T_INT);
3585   JavaCallArguments args;
3586   args.push_int(DisplayVMOutputToStderr);
3587   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3588   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3589                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3590   if (result.get_jint() != JNI_OK) {
3591     vm_exit_during_initialization(); // no message or exception
3592   }
3593 
3594   universe_post_module_init();
3595 }
3596 
3597 // Phase 3. final setup - set security manager, system class loader and TCCL
3598 //
3599 //     This will instantiate and set the security manager, set the system class
3600 //     loader as well as the thread context class loader.  The security manager
3601 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3602 //     other modules or the application's classpath.
3603 static void call_initPhase3(TRAPS) {
3604   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3605   JavaValue result(T_VOID);
3606   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3607                                          vmSymbols::void_method_signature(), CHECK);
3608 }
3609 
3610 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3611   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3612 
3613   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3614     create_vm_init_libraries();
3615   }
3616 
3617   initialize_class(vmSymbols::java_lang_String(), CHECK);
3618 
3619   // Inject CompactStrings value after the static initializers for String ran.
3620   java_lang_String::set_compact_strings(CompactStrings);
3621 
3622   // Initialize java_lang.System (needed before creating the thread)
3623   initialize_class(vmSymbols::java_lang_System(), CHECK);
3624   // The VM creates & returns objects of this class. Make sure it's initialized.
3625   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3626   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3627   Handle thread_group = create_initial_thread_group(CHECK);
3628   Universe::set_main_thread_group(thread_group());
3629   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3630   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3631   main_thread->set_threadObj(thread_object);
3632 
3633   // Set thread status to running since main thread has
3634   // been started and running.
3635   java_lang_Thread::set_thread_status(thread_object,
3636                                       java_lang_Thread::RUNNABLE);
3637 
3638   // The VM creates objects of this class.
3639   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3640 
3641 #ifdef ASSERT
3642   InstanceKlass *k = SystemDictionary::UnsafeConstants_klass();
3643   assert(k->is_not_initialized(), "UnsafeConstants should not already be initialized");
3644 #endif
3645 
3646   // initialize the hardware-specific constants needed by Unsafe
3647   initialize_class(vmSymbols::jdk_internal_misc_UnsafeConstants(), CHECK);
3648   jdk_internal_misc_UnsafeConstants::set_unsafe_constants();
3649 
3650   // The VM preresolves methods to these classes. Make sure that they get initialized
3651   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3652   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3653 
3654   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3655   call_initPhase1(CHECK);
3656 
3657   // get the Java runtime name after java.lang.System is initialized
3658   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3659   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3660 
3661   // an instance of OutOfMemory exception has been allocated earlier
3662   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3663   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3664   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3665   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3666   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3667   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3668   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3669   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3670 
3671   // Eager box cache initialization only if AOT is on and any library is loaded.
3672   AOTLoader::initialize_box_caches(CHECK);
3673 }
3674 
3675 void Threads::initialize_jsr292_core_classes(TRAPS) {
3676   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3677 
3678   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3679   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3680   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3681   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3682 }
3683 
3684 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3685   extern void JDK_Version_init();
3686 
3687   // Preinitialize version info.
3688   VM_Version::early_initialize();
3689 
3690   // Check version
3691   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3692 
3693   // Initialize library-based TLS
3694   ThreadLocalStorage::init();
3695 
3696   // Initialize the output stream module
3697   ostream_init();
3698 
3699   // Process java launcher properties.
3700   Arguments::process_sun_java_launcher_properties(args);
3701 
3702   // Initialize the os module
3703   os::init();
3704 
3705   // Record VM creation timing statistics
3706   TraceVmCreationTime create_vm_timer;
3707   create_vm_timer.start();
3708 
3709   // Initialize system properties.
3710   Arguments::init_system_properties();
3711 
3712   // So that JDK version can be used as a discriminator when parsing arguments
3713   JDK_Version_init();
3714 
3715   // Update/Initialize System properties after JDK version number is known
3716   Arguments::init_version_specific_system_properties();
3717 
3718   // Make sure to initialize log configuration *before* parsing arguments
3719   LogConfiguration::initialize(create_vm_timer.begin_time());
3720 
3721   // Parse arguments
3722   // Note: this internally calls os::init_container_support()
3723   jint parse_result = Arguments::parse(args);
3724   if (parse_result != JNI_OK) return parse_result;
3725 
3726   os::init_before_ergo();
3727 
3728   jint ergo_result = Arguments::apply_ergo();
3729   if (ergo_result != JNI_OK) return ergo_result;
3730 
3731   // Final check of all ranges after ergonomics which may change values.
3732   if (!JVMFlagRangeList::check_ranges()) {
3733     return JNI_EINVAL;
3734   }
3735 
3736   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3737   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3738   if (!constraint_result) {
3739     return JNI_EINVAL;
3740   }
3741 
3742   JVMFlagWriteableList::mark_startup();
3743 
3744   if (PauseAtStartup) {
3745     os::pause();
3746   }
3747 
3748   HOTSPOT_VM_INIT_BEGIN();
3749 
3750   // Timing (must come after argument parsing)
3751   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3752 
3753   // Initialize the os module after parsing the args
3754   jint os_init_2_result = os::init_2();
3755   if (os_init_2_result != JNI_OK) return os_init_2_result;
3756 
3757 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3758   // Initialize assert poison page mechanism.
3759   if (ShowRegistersOnAssert) {
3760     initialize_assert_poison();
3761   }
3762 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3763 
3764   SafepointMechanism::initialize();
3765 
3766   jint adjust_after_os_result = Arguments::adjust_after_os();
3767   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3768 
3769   // Initialize output stream logging
3770   ostream_init_log();
3771 
3772   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3773   // Must be before create_vm_init_agents()
3774   if (Arguments::init_libraries_at_startup()) {
3775     convert_vm_init_libraries_to_agents();
3776   }
3777 
3778   // Launch -agentlib/-agentpath and converted -Xrun agents
3779   if (Arguments::init_agents_at_startup()) {
3780     create_vm_init_agents();
3781   }
3782 
3783   // Initialize Threads state
3784   _number_of_threads = 0;
3785   _number_of_non_daemon_threads = 0;
3786 
3787   // Initialize global data structures and create system classes in heap
3788   vm_init_globals();
3789 
3790 #if INCLUDE_JVMCI
3791   if (JVMCICounterSize > 0) {
3792     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtJVMCI);
3793     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3794   } else {
3795     JavaThread::_jvmci_old_thread_counters = NULL;
3796   }
3797 #endif // INCLUDE_JVMCI
3798 
3799   // Attach the main thread to this os thread
3800   JavaThread* main_thread = new JavaThread();
3801   main_thread->set_thread_state(_thread_in_vm);
3802   main_thread->initialize_thread_current();
3803   // must do this before set_active_handles
3804   main_thread->record_stack_base_and_size();
3805   main_thread->register_thread_stack_with_NMT();
3806   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3807 
3808   if (!main_thread->set_as_starting_thread()) {
3809     vm_shutdown_during_initialization(
3810                                       "Failed necessary internal allocation. Out of swap space");
3811     main_thread->smr_delete();
3812     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3813     return JNI_ENOMEM;
3814   }
3815 
3816   // Enable guard page *after* os::create_main_thread(), otherwise it would
3817   // crash Linux VM, see notes in os_linux.cpp.
3818   main_thread->create_stack_guard_pages();
3819 
3820   // Initialize Java-Level synchronization subsystem
3821   ObjectMonitor::Initialize();
3822 
3823   // Initialize global modules
3824   jint status = init_globals();
3825   if (status != JNI_OK) {
3826     main_thread->smr_delete();
3827     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3828     return status;
3829   }
3830 
3831   JFR_ONLY(Jfr::on_vm_init();)
3832 
3833   // Should be done after the heap is fully created
3834   main_thread->cache_global_variables();
3835 
3836   HandleMark hm;
3837 
3838   { MutexLocker mu(Threads_lock);
3839     Threads::add(main_thread);
3840   }
3841 
3842   // Any JVMTI raw monitors entered in onload will transition into
3843   // real raw monitor. VM is setup enough here for raw monitor enter.
3844   JvmtiExport::transition_pending_onload_raw_monitors();
3845 
3846   // Create the VMThread
3847   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3848 
3849     VMThread::create();
3850     Thread* vmthread = VMThread::vm_thread();
3851 
3852     if (!os::create_thread(vmthread, os::vm_thread)) {
3853       vm_exit_during_initialization("Cannot create VM thread. "
3854                                     "Out of system resources.");
3855     }
3856 
3857     // Wait for the VM thread to become ready, and VMThread::run to initialize
3858     // Monitors can have spurious returns, must always check another state flag
3859     {
3860       MonitorLocker ml(Notify_lock);
3861       os::start_thread(vmthread);
3862       while (vmthread->active_handles() == NULL) {
3863         ml.wait();
3864       }
3865     }
3866   }
3867 
3868   assert(Universe::is_fully_initialized(), "not initialized");
3869   if (VerifyDuringStartup) {
3870     // Make sure we're starting with a clean slate.
3871     VM_Verify verify_op;
3872     VMThread::execute(&verify_op);
3873   }
3874 
3875   // We need this to update the java.vm.info property in case any flags used
3876   // to initially define it have been changed. This is needed for both CDS and
3877   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3878   // is initially computed. See Abstract_VM_Version::vm_info_string().
3879   // This update must happen before we initialize the java classes, but
3880   // after any initialization logic that might modify the flags.
3881   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3882 
3883   Thread* THREAD = Thread::current();
3884 
3885   // Always call even when there are not JVMTI environments yet, since environments
3886   // may be attached late and JVMTI must track phases of VM execution
3887   JvmtiExport::enter_early_start_phase();
3888 
3889   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3890   JvmtiExport::post_early_vm_start();
3891 
3892   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3893 
3894   quicken_jni_functions();
3895 
3896   // No more stub generation allowed after that point.
3897   StubCodeDesc::freeze();
3898 
3899   // Set flag that basic initialization has completed. Used by exceptions and various
3900   // debug stuff, that does not work until all basic classes have been initialized.
3901   set_init_completed();
3902 
3903   LogConfiguration::post_initialize();
3904   Metaspace::post_initialize();
3905 
3906   HOTSPOT_VM_INIT_END();
3907 
3908   // record VM initialization completion time
3909 #if INCLUDE_MANAGEMENT
3910   Management::record_vm_init_completed();
3911 #endif // INCLUDE_MANAGEMENT
3912 
3913   // Signal Dispatcher needs to be started before VMInit event is posted
3914   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3915 
3916   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3917   if (!DisableAttachMechanism) {
3918     AttachListener::vm_start();
3919     if (StartAttachListener || AttachListener::init_at_startup()) {
3920       AttachListener::init();
3921     }
3922   }
3923 
3924   // Launch -Xrun agents
3925   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3926   // back-end can launch with -Xdebug -Xrunjdwp.
3927   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3928     create_vm_init_libraries();
3929   }
3930 
3931   if (CleanChunkPoolAsync) {
3932     Chunk::start_chunk_pool_cleaner_task();
3933   }
3934 
3935 
3936   // initialize compiler(s)
3937 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3938 #if INCLUDE_JVMCI
3939   bool force_JVMCI_intialization = false;
3940   if (EnableJVMCI) {
3941     // Initialize JVMCI eagerly when it is explicitly requested.
3942     // Or when JVMCILibDumpJNIConfig or JVMCIPrintProperties is enabled.
3943     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties || JVMCILibDumpJNIConfig;
3944 
3945     if (!force_JVMCI_intialization) {
3946       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3947       // compilations via JVMCI will not actually block until JVMCI is initialized.
3948       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3949     }
3950   }
3951 #endif
3952   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
3953   // Postpone completion of compiler initialization to after JVMCI
3954   // is initialized to avoid timeouts of blocking compilations.
3955   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
3956     CompileBroker::compilation_init_phase2();
3957   }
3958 #endif
3959 
3960   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3961   // It is done after compilers are initialized, because otherwise compilations of
3962   // signature polymorphic MH intrinsics can be missed
3963   // (see SystemDictionary::find_method_handle_intrinsic).
3964   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3965 
3966   // This will initialize the module system.  Only java.base classes can be
3967   // loaded until phase 2 completes
3968   call_initPhase2(CHECK_JNI_ERR);
3969 
3970   // Always call even when there are not JVMTI environments yet, since environments
3971   // may be attached late and JVMTI must track phases of VM execution
3972   JvmtiExport::enter_start_phase();
3973 
3974   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3975   JvmtiExport::post_vm_start();
3976 
3977   // Final system initialization including security manager and system class loader
3978   call_initPhase3(CHECK_JNI_ERR);
3979 
3980   // cache the system and platform class loaders
3981   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3982 
3983 #if INCLUDE_CDS
3984   // capture the module path info from the ModuleEntryTable
3985   ClassLoader::initialize_module_path(THREAD);
3986 #endif
3987 
3988 #if INCLUDE_JVMCI
3989   if (force_JVMCI_intialization) {
3990     JVMCI::initialize_compiler(CHECK_JNI_ERR);
3991     CompileBroker::compilation_init_phase2();
3992   }
3993 #endif
3994 
3995   // Always call even when there are not JVMTI environments yet, since environments
3996   // may be attached late and JVMTI must track phases of VM execution
3997   JvmtiExport::enter_live_phase();
3998 
3999   // Make perfmemory accessible
4000   PerfMemory::set_accessible(true);
4001 
4002   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
4003   JvmtiExport::post_vm_initialized();
4004 
4005   JFR_ONLY(Jfr::on_vm_start();)
4006 
4007 #if INCLUDE_MANAGEMENT
4008   Management::initialize(THREAD);
4009 
4010   if (HAS_PENDING_EXCEPTION) {
4011     // management agent fails to start possibly due to
4012     // configuration problem and is responsible for printing
4013     // stack trace if appropriate. Simply exit VM.
4014     vm_exit(1);
4015   }
4016 #endif // INCLUDE_MANAGEMENT
4017 
4018   if (MemProfiling)                   MemProfiler::engage();
4019   StatSampler::engage();
4020   if (CheckJNICalls)                  JniPeriodicChecker::engage();
4021 
4022   BiasedLocking::init();
4023 
4024 #if INCLUDE_RTM_OPT
4025   RTMLockingCounters::init();
4026 #endif
4027 
4028   call_postVMInitHook(THREAD);
4029   // The Java side of PostVMInitHook.run must deal with all
4030   // exceptions and provide means of diagnosis.
4031   if (HAS_PENDING_EXCEPTION) {
4032     CLEAR_PENDING_EXCEPTION;
4033   }
4034 
4035   {
4036     MutexLocker ml(PeriodicTask_lock);
4037     // Make sure the WatcherThread can be started by WatcherThread::start()
4038     // or by dynamic enrollment.
4039     WatcherThread::make_startable();
4040     // Start up the WatcherThread if there are any periodic tasks
4041     // NOTE:  All PeriodicTasks should be registered by now. If they
4042     //   aren't, late joiners might appear to start slowly (we might
4043     //   take a while to process their first tick).
4044     if (PeriodicTask::num_tasks() > 0) {
4045       WatcherThread::start();
4046     }
4047   }
4048 
4049   create_vm_timer.end();
4050 #ifdef ASSERT
4051   _vm_complete = true;
4052 #endif
4053 
4054   if (DumpSharedSpaces) {
4055     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4056     ShouldNotReachHere();
4057   }
4058 
4059   return JNI_OK;
4060 }
4061 
4062 // type for the Agent_OnLoad and JVM_OnLoad entry points
4063 extern "C" {
4064   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4065 }
4066 // Find a command line agent library and return its entry point for
4067 //         -agentlib:  -agentpath:   -Xrun
4068 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4069 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4070                                     const char *on_load_symbols[],
4071                                     size_t num_symbol_entries) {
4072   OnLoadEntry_t on_load_entry = NULL;
4073   void *library = NULL;
4074 
4075   if (!agent->valid()) {
4076     char buffer[JVM_MAXPATHLEN];
4077     char ebuf[1024] = "";
4078     const char *name = agent->name();
4079     const char *msg = "Could not find agent library ";
4080 
4081     // First check to see if agent is statically linked into executable
4082     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4083       library = agent->os_lib();
4084     } else if (agent->is_absolute_path()) {
4085       library = os::dll_load(name, ebuf, sizeof ebuf);
4086       if (library == NULL) {
4087         const char *sub_msg = " in absolute path, with error: ";
4088         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4089         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4090         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4091         // If we can't find the agent, exit.
4092         vm_exit_during_initialization(buf, NULL);
4093         FREE_C_HEAP_ARRAY(char, buf);
4094       }
4095     } else {
4096       // Try to load the agent from the standard dll directory
4097       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4098                              name)) {
4099         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4100       }
4101       if (library == NULL) { // Try the library path directory.
4102         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4103           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4104         }
4105         if (library == NULL) {
4106           const char *sub_msg = " on the library path, with error: ";
4107           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4108 
4109           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4110                        strlen(ebuf) + strlen(sub_msg2) + 1;
4111           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4112           if (!agent->is_instrument_lib()) {
4113             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4114           } else {
4115             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4116           }
4117           // If we can't find the agent, exit.
4118           vm_exit_during_initialization(buf, NULL);
4119           FREE_C_HEAP_ARRAY(char, buf);
4120         }
4121       }
4122     }
4123     agent->set_os_lib(library);
4124     agent->set_valid();
4125   }
4126 
4127   // Find the OnLoad function.
4128   on_load_entry =
4129     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4130                                                           false,
4131                                                           on_load_symbols,
4132                                                           num_symbol_entries));
4133   return on_load_entry;
4134 }
4135 
4136 // Find the JVM_OnLoad entry point
4137 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4138   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4139   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4140 }
4141 
4142 // Find the Agent_OnLoad entry point
4143 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4144   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4145   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4146 }
4147 
4148 // For backwards compatibility with -Xrun
4149 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4150 // treated like -agentpath:
4151 // Must be called before agent libraries are created
4152 void Threads::convert_vm_init_libraries_to_agents() {
4153   AgentLibrary* agent;
4154   AgentLibrary* next;
4155 
4156   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4157     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4158     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4159 
4160     // If there is an JVM_OnLoad function it will get called later,
4161     // otherwise see if there is an Agent_OnLoad
4162     if (on_load_entry == NULL) {
4163       on_load_entry = lookup_agent_on_load(agent);
4164       if (on_load_entry != NULL) {
4165         // switch it to the agent list -- so that Agent_OnLoad will be called,
4166         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4167         Arguments::convert_library_to_agent(agent);
4168       } else {
4169         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4170       }
4171     }
4172   }
4173 }
4174 
4175 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4176 // Invokes Agent_OnLoad
4177 // Called very early -- before JavaThreads exist
4178 void Threads::create_vm_init_agents() {
4179   extern struct JavaVM_ main_vm;
4180   AgentLibrary* agent;
4181 
4182   JvmtiExport::enter_onload_phase();
4183 
4184   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4185     // CDS dumping does not support native JVMTI agent.
4186     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4187     if (Arguments::is_dumping_archive()) {
4188       if(!agent->is_instrument_lib()) {
4189         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4190       } else if (!AllowArchivingWithJavaAgent) {
4191         vm_exit_during_cds_dumping(
4192           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4193       }
4194     }
4195 
4196     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4197 
4198     if (on_load_entry != NULL) {
4199       // Invoke the Agent_OnLoad function
4200       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4201       if (err != JNI_OK) {
4202         vm_exit_during_initialization("agent library failed to init", agent->name());
4203       }
4204     } else {
4205       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4206     }
4207   }
4208 
4209   JvmtiExport::enter_primordial_phase();
4210 }
4211 
4212 extern "C" {
4213   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4214 }
4215 
4216 void Threads::shutdown_vm_agents() {
4217   // Send any Agent_OnUnload notifications
4218   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4219   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4220   extern struct JavaVM_ main_vm;
4221   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4222 
4223     // Find the Agent_OnUnload function.
4224     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4225                                                    os::find_agent_function(agent,
4226                                                    false,
4227                                                    on_unload_symbols,
4228                                                    num_symbol_entries));
4229 
4230     // Invoke the Agent_OnUnload function
4231     if (unload_entry != NULL) {
4232       JavaThread* thread = JavaThread::current();
4233       ThreadToNativeFromVM ttn(thread);
4234       HandleMark hm(thread);
4235       (*unload_entry)(&main_vm);
4236     }
4237   }
4238 }
4239 
4240 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4241 // Invokes JVM_OnLoad
4242 void Threads::create_vm_init_libraries() {
4243   extern struct JavaVM_ main_vm;
4244   AgentLibrary* agent;
4245 
4246   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4247     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4248 
4249     if (on_load_entry != NULL) {
4250       // Invoke the JVM_OnLoad function
4251       JavaThread* thread = JavaThread::current();
4252       ThreadToNativeFromVM ttn(thread);
4253       HandleMark hm(thread);
4254       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4255       if (err != JNI_OK) {
4256         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4257       }
4258     } else {
4259       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4260     }
4261   }
4262 }
4263 
4264 
4265 // Last thread running calls java.lang.Shutdown.shutdown()
4266 void JavaThread::invoke_shutdown_hooks() {
4267   HandleMark hm(this);
4268 
4269   // We could get here with a pending exception, if so clear it now.
4270   if (this->has_pending_exception()) {
4271     this->clear_pending_exception();
4272   }
4273 
4274   EXCEPTION_MARK;
4275   Klass* shutdown_klass =
4276     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4277                                       THREAD);
4278   if (shutdown_klass != NULL) {
4279     // SystemDictionary::resolve_or_null will return null if there was
4280     // an exception.  If we cannot load the Shutdown class, just don't
4281     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4282     // won't be run.  Note that if a shutdown hook was registered,
4283     // the Shutdown class would have already been loaded
4284     // (Runtime.addShutdownHook will load it).
4285     JavaValue result(T_VOID);
4286     JavaCalls::call_static(&result,
4287                            shutdown_klass,
4288                            vmSymbols::shutdown_name(),
4289                            vmSymbols::void_method_signature(),
4290                            THREAD);
4291   }
4292   CLEAR_PENDING_EXCEPTION;
4293 }
4294 
4295 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4296 // the program falls off the end of main(). Another VM exit path is through
4297 // vm_exit() when the program calls System.exit() to return a value or when
4298 // there is a serious error in VM. The two shutdown paths are not exactly
4299 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4300 // and VM_Exit op at VM level.
4301 //
4302 // Shutdown sequence:
4303 //   + Shutdown native memory tracking if it is on
4304 //   + Wait until we are the last non-daemon thread to execute
4305 //     <-- every thing is still working at this moment -->
4306 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4307 //        shutdown hooks
4308 //   + Call before_exit(), prepare for VM exit
4309 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4310 //        currently the only user of this mechanism is File.deleteOnExit())
4311 //      > stop StatSampler, watcher thread, CMS threads,
4312 //        post thread end and vm death events to JVMTI,
4313 //        stop signal thread
4314 //   + Call JavaThread::exit(), it will:
4315 //      > release JNI handle blocks, remove stack guard pages
4316 //      > remove this thread from Threads list
4317 //     <-- no more Java code from this thread after this point -->
4318 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4319 //     the compiler threads at safepoint
4320 //     <-- do not use anything that could get blocked by Safepoint -->
4321 //   + Disable tracing at JNI/JVM barriers
4322 //   + Set _vm_exited flag for threads that are still running native code
4323 //   + Call exit_globals()
4324 //      > deletes tty
4325 //      > deletes PerfMemory resources
4326 //   + Delete this thread
4327 //   + Return to caller
4328 
4329 bool Threads::destroy_vm() {
4330   JavaThread* thread = JavaThread::current();
4331 
4332 #ifdef ASSERT
4333   _vm_complete = false;
4334 #endif
4335   // Wait until we are the last non-daemon thread to execute
4336   { MonitorLocker nu(Threads_lock);
4337     while (Threads::number_of_non_daemon_threads() > 1)
4338       // This wait should make safepoint checks, wait without a timeout,
4339       // and wait as a suspend-equivalent condition.
4340       nu.wait(0, Mutex::_as_suspend_equivalent_flag);
4341   }
4342 
4343   EventShutdown e;
4344   if (e.should_commit()) {
4345     e.set_reason("No remaining non-daemon Java threads");
4346     e.commit();
4347   }
4348 
4349   // Hang forever on exit if we are reporting an error.
4350   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4351     os::infinite_sleep();
4352   }
4353   os::wait_for_keypress_at_exit();
4354 
4355   // run Java level shutdown hooks
4356   thread->invoke_shutdown_hooks();
4357 
4358   before_exit(thread);
4359 
4360   thread->exit(true);
4361 
4362   // Stop VM thread.
4363   {
4364     // 4945125 The vm thread comes to a safepoint during exit.
4365     // GC vm_operations can get caught at the safepoint, and the
4366     // heap is unparseable if they are caught. Grab the Heap_lock
4367     // to prevent this. The GC vm_operations will not be able to
4368     // queue until after the vm thread is dead. After this point,
4369     // we'll never emerge out of the safepoint before the VM exits.
4370 
4371     MutexLocker ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4372 
4373     VMThread::wait_for_vm_thread_exit();
4374     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4375     VMThread::destroy();
4376   }
4377 
4378   // Now, all Java threads are gone except daemon threads. Daemon threads
4379   // running Java code or in VM are stopped by the Safepoint. However,
4380   // daemon threads executing native code are still running.  But they
4381   // will be stopped at native=>Java/VM barriers. Note that we can't
4382   // simply kill or suspend them, as it is inherently deadlock-prone.
4383 
4384   VM_Exit::set_vm_exited();
4385 
4386   // Clean up ideal graph printers after the VMThread has started
4387   // the final safepoint which will block all the Compiler threads.
4388   // Note that this Thread has already logically exited so the
4389   // clean_up() function's use of a JavaThreadIteratorWithHandle
4390   // would be a problem except set_vm_exited() has remembered the
4391   // shutdown thread which is granted a policy exception.
4392 #if defined(COMPILER2) && !defined(PRODUCT)
4393   IdealGraphPrinter::clean_up();
4394 #endif
4395 
4396   notify_vm_shutdown();
4397 
4398   // exit_globals() will delete tty
4399   exit_globals();
4400 
4401   // We are after VM_Exit::set_vm_exited() so we can't call
4402   // thread->smr_delete() or we will block on the Threads_lock.
4403   // Deleting the shutdown thread here is safe because another
4404   // JavaThread cannot have an active ThreadsListHandle for
4405   // this JavaThread.
4406   delete thread;
4407 
4408 #if INCLUDE_JVMCI
4409   if (JVMCICounterSize > 0) {
4410     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4411   }
4412 #endif
4413 
4414   LogConfiguration::finalize();
4415 
4416   return true;
4417 }
4418 
4419 
4420 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4421   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4422   return is_supported_jni_version(version);
4423 }
4424 
4425 
4426 jboolean Threads::is_supported_jni_version(jint version) {
4427   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4428   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4429   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4430   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4431   if (version == JNI_VERSION_9) return JNI_TRUE;
4432   if (version == JNI_VERSION_10) return JNI_TRUE;
4433   return JNI_FALSE;
4434 }
4435 
4436 
4437 void Threads::add(JavaThread* p, bool force_daemon) {
4438   // The threads lock must be owned at this point
4439   assert(Threads_lock->owned_by_self(), "must have threads lock");
4440 
4441   BarrierSet::barrier_set()->on_thread_attach(p);
4442 
4443   // Once a JavaThread is added to the Threads list, smr_delete() has
4444   // to be used to delete it. Otherwise we can just delete it directly.
4445   p->set_on_thread_list();
4446 
4447   _number_of_threads++;
4448   oop threadObj = p->threadObj();
4449   bool daemon = true;
4450   // Bootstrapping problem: threadObj can be null for initial
4451   // JavaThread (or for threads attached via JNI)
4452   if ((!force_daemon) && !is_daemon((threadObj))) {
4453     _number_of_non_daemon_threads++;
4454     daemon = false;
4455   }
4456 
4457   ThreadService::add_thread(p, daemon);
4458 
4459   // Maintain fast thread list
4460   ThreadsSMRSupport::add_thread(p);
4461 
4462   // Possible GC point.
4463   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4464 }
4465 
4466 void Threads::remove(JavaThread* p, bool is_daemon) {
4467 
4468   // Reclaim the ObjectMonitors from the om_in_use_list and om_free_list of the moribund thread.
4469   ObjectSynchronizer::om_flush(p);
4470 
4471   // Extra scope needed for Thread_lock, so we can check
4472   // that we do not remove thread without safepoint code notice
4473   { MonitorLocker ml(Threads_lock);
4474 
4475     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4476 
4477     // Maintain fast thread list
4478     ThreadsSMRSupport::remove_thread(p);
4479 
4480     _number_of_threads--;
4481     if (!is_daemon) {
4482       _number_of_non_daemon_threads--;
4483 
4484       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4485       // on destroy_vm will wake up.
4486       if (number_of_non_daemon_threads() == 1) {
4487         ml.notify_all();
4488       }
4489     }
4490     ThreadService::remove_thread(p, is_daemon);
4491 
4492     // Make sure that safepoint code disregard this thread. This is needed since
4493     // the thread might mess around with locks after this point. This can cause it
4494     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4495     // of this thread since it is removed from the queue.
4496     p->set_terminated_value();
4497   } // unlock Threads_lock
4498 
4499   // Since Events::log uses a lock, we grab it outside the Threads_lock
4500   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4501 }
4502 
4503 // Operations on the Threads list for GC.  These are not explicitly locked,
4504 // but the garbage collector must provide a safe context for them to run.
4505 // In particular, these things should never be called when the Threads_lock
4506 // is held by some other thread. (Note: the Safepoint abstraction also
4507 // uses the Threads_lock to guarantee this property. It also makes sure that
4508 // all threads gets blocked when exiting or starting).
4509 
4510 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4511   ALL_JAVA_THREADS(p) {
4512     p->oops_do(f, cf);
4513   }
4514   VMThread::vm_thread()->oops_do(f, cf);
4515 }
4516 
4517 void Threads::change_thread_claim_token() {
4518   if (++_thread_claim_token == 0) {
4519     // On overflow of the token counter, there is a risk of future
4520     // collisions between a new global token value and a stale token
4521     // for a thread, because not all iterations visit all threads.
4522     // (Though it's pretty much a theoretical concern for non-trivial
4523     // token counter sizes.)  To deal with the possibility, reset all
4524     // the thread tokens to zero on global token overflow.
4525     struct ResetClaims : public ThreadClosure {
4526       virtual void do_thread(Thread* t) {
4527         t->claim_threads_do(false, 0);
4528       }
4529     } reset_claims;
4530     Threads::threads_do(&reset_claims);
4531     // On overflow, update the global token to non-zero, to
4532     // avoid the special "never claimed" initial thread value.
4533     _thread_claim_token = 1;
4534   }
4535 }
4536 
4537 #ifdef ASSERT
4538 void assert_thread_claimed(const char* kind, Thread* t, uintx expected) {
4539   const uintx token = t->threads_do_token();
4540   assert(token == expected,
4541          "%s " PTR_FORMAT " has incorrect value " UINTX_FORMAT " != "
4542          UINTX_FORMAT, kind, p2i(t), token, expected);
4543 }
4544 
4545 void Threads::assert_all_threads_claimed() {
4546   ALL_JAVA_THREADS(p) {
4547     assert_thread_claimed("Thread", p, _thread_claim_token);
4548   }
4549   assert_thread_claimed("VMThread", VMThread::vm_thread(), _thread_claim_token);
4550 }
4551 #endif // ASSERT
4552 
4553 class ParallelOopsDoThreadClosure : public ThreadClosure {
4554 private:
4555   OopClosure* _f;
4556   CodeBlobClosure* _cf;
4557 public:
4558   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4559   void do_thread(Thread* t) {
4560     t->oops_do(_f, _cf);
4561   }
4562 };
4563 
4564 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4565   ParallelOopsDoThreadClosure tc(f, cf);
4566   possibly_parallel_threads_do(is_par, &tc);
4567 }
4568 
4569 void Threads::nmethods_do(CodeBlobClosure* cf) {
4570   ALL_JAVA_THREADS(p) {
4571     // This is used by the code cache sweeper to mark nmethods that are active
4572     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4573     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4574     if(!p->is_Code_cache_sweeper_thread()) {
4575       p->nmethods_do(cf);
4576     }
4577   }
4578 }
4579 
4580 void Threads::metadata_do(MetadataClosure* f) {
4581   ALL_JAVA_THREADS(p) {
4582     p->metadata_do(f);
4583   }
4584 }
4585 
4586 class ThreadHandlesClosure : public ThreadClosure {
4587   void (*_f)(Metadata*);
4588  public:
4589   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4590   virtual void do_thread(Thread* thread) {
4591     thread->metadata_handles_do(_f);
4592   }
4593 };
4594 
4595 void Threads::metadata_handles_do(void f(Metadata*)) {
4596   // Only walk the Handles in Thread.
4597   ThreadHandlesClosure handles_closure(f);
4598   threads_do(&handles_closure);
4599 }
4600 
4601 // Get count Java threads that are waiting to enter the specified monitor.
4602 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4603                                                          int count,
4604                                                          address monitor) {
4605   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4606 
4607   int i = 0;
4608   DO_JAVA_THREADS(t_list, p) {
4609     if (!p->can_call_java()) continue;
4610 
4611     address pending = (address)p->current_pending_monitor();
4612     if (pending == monitor) {             // found a match
4613       if (i < count) result->append(p);   // save the first count matches
4614       i++;
4615     }
4616   }
4617 
4618   return result;
4619 }
4620 
4621 
4622 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4623                                                       address owner) {
4624   // NULL owner means not locked so we can skip the search
4625   if (owner == NULL) return NULL;
4626 
4627   DO_JAVA_THREADS(t_list, p) {
4628     // first, see if owner is the address of a Java thread
4629     if (owner == (address)p) return p;
4630   }
4631 
4632   // Cannot assert on lack of success here since this function may be
4633   // used by code that is trying to report useful problem information
4634   // like deadlock detection.
4635   if (UseHeavyMonitors) return NULL;
4636 
4637   // If we didn't find a matching Java thread and we didn't force use of
4638   // heavyweight monitors, then the owner is the stack address of the
4639   // Lock Word in the owning Java thread's stack.
4640   //
4641   JavaThread* the_owner = NULL;
4642   DO_JAVA_THREADS(t_list, q) {
4643     if (q->is_lock_owned(owner)) {
4644       the_owner = q;
4645       break;
4646     }
4647   }
4648 
4649   // cannot assert on lack of success here; see above comment
4650   return the_owner;
4651 }
4652 
4653 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4654 void Threads::print_on(outputStream* st, bool print_stacks,
4655                        bool internal_format, bool print_concurrent_locks,
4656                        bool print_extended_info) {
4657   char buf[32];
4658   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4659 
4660   st->print_cr("Full thread dump %s (%s %s):",
4661                VM_Version::vm_name(),
4662                VM_Version::vm_release(),
4663                VM_Version::vm_info_string());
4664   st->cr();
4665 
4666 #if INCLUDE_SERVICES
4667   // Dump concurrent locks
4668   ConcurrentLocksDump concurrent_locks;
4669   if (print_concurrent_locks) {
4670     concurrent_locks.dump_at_safepoint();
4671   }
4672 #endif // INCLUDE_SERVICES
4673 
4674   ThreadsSMRSupport::print_info_on(st);
4675   st->cr();
4676 
4677   ALL_JAVA_THREADS(p) {
4678     ResourceMark rm;
4679     p->print_on(st, print_extended_info);
4680     if (print_stacks) {
4681       if (internal_format) {
4682         p->trace_stack();
4683       } else {
4684         p->print_stack_on(st);
4685       }
4686     }
4687     st->cr();
4688 #if INCLUDE_SERVICES
4689     if (print_concurrent_locks) {
4690       concurrent_locks.print_locks_on(p, st);
4691     }
4692 #endif // INCLUDE_SERVICES
4693   }
4694 
4695   VMThread::vm_thread()->print_on(st);
4696   st->cr();
4697   Universe::heap()->print_gc_threads_on(st);
4698   WatcherThread* wt = WatcherThread::watcher_thread();
4699   if (wt != NULL) {
4700     wt->print_on(st);
4701     st->cr();
4702   }
4703 
4704   st->flush();
4705 }
4706 
4707 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4708                              int buflen, bool* found_current) {
4709   if (this_thread != NULL) {
4710     bool is_current = (current == this_thread);
4711     *found_current = *found_current || is_current;
4712     st->print("%s", is_current ? "=>" : "  ");
4713 
4714     st->print(PTR_FORMAT, p2i(this_thread));
4715     st->print(" ");
4716     this_thread->print_on_error(st, buf, buflen);
4717     st->cr();
4718   }
4719 }
4720 
4721 class PrintOnErrorClosure : public ThreadClosure {
4722   outputStream* _st;
4723   Thread* _current;
4724   char* _buf;
4725   int _buflen;
4726   bool* _found_current;
4727  public:
4728   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4729                       int buflen, bool* found_current) :
4730    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4731 
4732   virtual void do_thread(Thread* thread) {
4733     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4734   }
4735 };
4736 
4737 // Threads::print_on_error() is called by fatal error handler. It's possible
4738 // that VM is not at safepoint and/or current thread is inside signal handler.
4739 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4740 // memory (even in resource area), it might deadlock the error handler.
4741 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4742                              int buflen) {
4743   ThreadsSMRSupport::print_info_on(st);
4744   st->cr();
4745 
4746   bool found_current = false;
4747   st->print_cr("Java Threads: ( => current thread )");
4748   ALL_JAVA_THREADS(thread) {
4749     print_on_error(thread, st, current, buf, buflen, &found_current);
4750   }
4751   st->cr();
4752 
4753   st->print_cr("Other Threads:");
4754   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4755   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4756 
4757   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4758   Universe::heap()->gc_threads_do(&print_closure);
4759 
4760   if (!found_current) {
4761     st->cr();
4762     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4763     current->print_on_error(st, buf, buflen);
4764     st->cr();
4765   }
4766   st->cr();
4767 
4768   st->print_cr("Threads with active compile tasks:");
4769   print_threads_compiling(st, buf, buflen);
4770 }
4771 
4772 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
4773   ALL_JAVA_THREADS(thread) {
4774     if (thread->is_Compiler_thread()) {
4775       CompilerThread* ct = (CompilerThread*) thread;
4776 
4777       // Keep task in local variable for NULL check.
4778       // ct->_task might be set to NULL by concurring compiler thread
4779       // because it completed the compilation. The task is never freed,
4780       // though, just returned to a free list.
4781       CompileTask* task = ct->task();
4782       if (task != NULL) {
4783         thread->print_name_on_error(st, buf, buflen);
4784         st->print("  ");
4785         task->print(st, NULL, short_form, true);
4786       }
4787     }
4788   }
4789 }
4790 
4791 
4792 // Internal SpinLock and Mutex
4793 // Based on ParkEvent
4794 
4795 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4796 //
4797 // We employ SpinLocks _only for low-contention, fixed-length
4798 // short-duration critical sections where we're concerned
4799 // about native mutex_t or HotSpot Mutex:: latency.
4800 // The mux construct provides a spin-then-block mutual exclusion
4801 // mechanism.
4802 //
4803 // Testing has shown that contention on the ListLock guarding gFreeList
4804 // is common.  If we implement ListLock as a simple SpinLock it's common
4805 // for the JVM to devolve to yielding with little progress.  This is true
4806 // despite the fact that the critical sections protected by ListLock are
4807 // extremely short.
4808 //
4809 // TODO-FIXME: ListLock should be of type SpinLock.
4810 // We should make this a 1st-class type, integrated into the lock
4811 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4812 // should have sufficient padding to avoid false-sharing and excessive
4813 // cache-coherency traffic.
4814 
4815 
4816 typedef volatile int SpinLockT;
4817 
4818 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4819   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4820     return;   // normal fast-path return
4821   }
4822 
4823   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4824   int ctr = 0;
4825   int Yields = 0;
4826   for (;;) {
4827     while (*adr != 0) {
4828       ++ctr;
4829       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4830         if (Yields > 5) {
4831           os::naked_short_sleep(1);
4832         } else {
4833           os::naked_yield();
4834           ++Yields;
4835         }
4836       } else {
4837         SpinPause();
4838       }
4839     }
4840     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4841   }
4842 }
4843 
4844 void Thread::SpinRelease(volatile int * adr) {
4845   assert(*adr != 0, "invariant");
4846   OrderAccess::fence();      // guarantee at least release consistency.
4847   // Roach-motel semantics.
4848   // It's safe if subsequent LDs and STs float "up" into the critical section,
4849   // but prior LDs and STs within the critical section can't be allowed
4850   // to reorder or float past the ST that releases the lock.
4851   // Loads and stores in the critical section - which appear in program
4852   // order before the store that releases the lock - must also appear
4853   // before the store that releases the lock in memory visibility order.
4854   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4855   // the ST of 0 into the lock-word which releases the lock, so fence
4856   // more than covers this on all platforms.
4857   *adr = 0;
4858 }
4859 
4860 // muxAcquire and muxRelease:
4861 //
4862 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4863 //    The LSB of the word is set IFF the lock is held.
4864 //    The remainder of the word points to the head of a singly-linked list
4865 //    of threads blocked on the lock.
4866 //
4867 // *  The current implementation of muxAcquire-muxRelease uses its own
4868 //    dedicated Thread._MuxEvent instance.  If we're interested in
4869 //    minimizing the peak number of extant ParkEvent instances then
4870 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4871 //    as certain invariants were satisfied.  Specifically, care would need
4872 //    to be taken with regards to consuming unpark() "permits".
4873 //    A safe rule of thumb is that a thread would never call muxAcquire()
4874 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4875 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4876 //    consume an unpark() permit intended for monitorenter, for instance.
4877 //    One way around this would be to widen the restricted-range semaphore
4878 //    implemented in park().  Another alternative would be to provide
4879 //    multiple instances of the PlatformEvent() for each thread.  One
4880 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4881 //
4882 // *  Usage:
4883 //    -- Only as leaf locks
4884 //    -- for short-term locking only as muxAcquire does not perform
4885 //       thread state transitions.
4886 //
4887 // Alternatives:
4888 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4889 //    but with parking or spin-then-park instead of pure spinning.
4890 // *  Use Taura-Oyama-Yonenzawa locks.
4891 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4892 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4893 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4894 //    acquiring threads use timers (ParkTimed) to detect and recover from
4895 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4896 //    boundaries by using placement-new.
4897 // *  Augment MCS with advisory back-link fields maintained with CAS().
4898 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4899 //    The validity of the backlinks must be ratified before we trust the value.
4900 //    If the backlinks are invalid the exiting thread must back-track through the
4901 //    the forward links, which are always trustworthy.
4902 // *  Add a successor indication.  The LockWord is currently encoded as
4903 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4904 //    to provide the usual futile-wakeup optimization.
4905 //    See RTStt for details.
4906 //
4907 
4908 
4909 const intptr_t LOCKBIT = 1;
4910 
4911 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4912   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4913   if (w == 0) return;
4914   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4915     return;
4916   }
4917 
4918   ParkEvent * const Self = Thread::current()->_MuxEvent;
4919   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4920   for (;;) {
4921     int its = (os::is_MP() ? 100 : 0) + 1;
4922 
4923     // Optional spin phase: spin-then-park strategy
4924     while (--its >= 0) {
4925       w = *Lock;
4926       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4927         return;
4928       }
4929     }
4930 
4931     Self->reset();
4932     Self->OnList = intptr_t(Lock);
4933     // The following fence() isn't _strictly necessary as the subsequent
4934     // CAS() both serializes execution and ratifies the fetched *Lock value.
4935     OrderAccess::fence();
4936     for (;;) {
4937       w = *Lock;
4938       if ((w & LOCKBIT) == 0) {
4939         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4940           Self->OnList = 0;   // hygiene - allows stronger asserts
4941           return;
4942         }
4943         continue;      // Interference -- *Lock changed -- Just retry
4944       }
4945       assert(w & LOCKBIT, "invariant");
4946       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4947       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4948     }
4949 
4950     while (Self->OnList != 0) {
4951       Self->park();
4952     }
4953   }
4954 }
4955 
4956 // Release() must extract a successor from the list and then wake that thread.
4957 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4958 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4959 // Release() would :
4960 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4961 // (B) Extract a successor from the private list "in-hand"
4962 // (C) attempt to CAS() the residual back into *Lock over null.
4963 //     If there were any newly arrived threads and the CAS() would fail.
4964 //     In that case Release() would detach the RATs, re-merge the list in-hand
4965 //     with the RATs and repeat as needed.  Alternately, Release() might
4966 //     detach and extract a successor, but then pass the residual list to the wakee.
4967 //     The wakee would be responsible for reattaching and remerging before it
4968 //     competed for the lock.
4969 //
4970 // Both "pop" and DMR are immune from ABA corruption -- there can be
4971 // multiple concurrent pushers, but only one popper or detacher.
4972 // This implementation pops from the head of the list.  This is unfair,
4973 // but tends to provide excellent throughput as hot threads remain hot.
4974 // (We wake recently run threads first).
4975 //
4976 // All paths through muxRelease() will execute a CAS.
4977 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4978 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4979 // executed within the critical section are complete and globally visible before the
4980 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4981 void Thread::muxRelease(volatile intptr_t * Lock)  {
4982   for (;;) {
4983     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
4984     assert(w & LOCKBIT, "invariant");
4985     if (w == LOCKBIT) return;
4986     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4987     assert(List != NULL, "invariant");
4988     assert(List->OnList == intptr_t(Lock), "invariant");
4989     ParkEvent * const nxt = List->ListNext;
4990     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4991 
4992     // The following CAS() releases the lock and pops the head element.
4993     // The CAS() also ratifies the previously fetched lock-word value.
4994     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
4995       continue;
4996     }
4997     List->OnList = 0;
4998     OrderAccess::fence();
4999     List->unpark();
5000     return;
5001   }
5002 }
5003 
5004 
5005 void Threads::verify() {
5006   ALL_JAVA_THREADS(p) {
5007     p->verify();
5008   }
5009   VMThread* thread = VMThread::vm_thread();
5010   if (thread != NULL) thread->verify();
5011 }