1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/parallel/objectStartArray.inline.hpp"
  27 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  28 #include "gc/parallel/psCardTable.hpp"
  29 #include "gc/parallel/psPromotionManager.inline.hpp"
  30 #include "gc/parallel/psScavenge.inline.hpp"
  31 #include "gc/parallel/psYoungGen.hpp"
  32 #include "memory/iterator.inline.hpp"
  33 #include "oops/access.inline.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "runtime/prefetch.inline.hpp"
  36 #include "utilities/align.hpp"
  37 
  38 // Checks an individual oop for missing precise marks. Mark
  39 // may be either dirty or newgen.
  40 class CheckForUnmarkedOops : public BasicOopIterateClosure {
  41  private:
  42   PSYoungGen*  _young_gen;
  43   PSCardTable* _card_table;
  44   HeapWord*    _unmarked_addr;
  45 
  46  protected:
  47   template <class T> void do_oop_work(T* p) {
  48     oop obj = RawAccess<>::oop_load(p);
  49     if (_young_gen->is_in_reserved(obj) &&
  50         !_card_table->addr_is_marked_imprecise(p)) {
  51       // Don't overwrite the first missing card mark
  52       if (_unmarked_addr == NULL) {
  53         _unmarked_addr = (HeapWord*)p;
  54       }
  55     }
  56   }
  57 
  58  public:
  59   CheckForUnmarkedOops(PSYoungGen* young_gen, PSCardTable* card_table) :
  60     _young_gen(young_gen), _card_table(card_table), _unmarked_addr(NULL) { }
  61 
  62   virtual void do_oop(oop* p)       { CheckForUnmarkedOops::do_oop_work(p); }
  63   virtual void do_oop(narrowOop* p) { CheckForUnmarkedOops::do_oop_work(p); }
  64 
  65   bool has_unmarked_oop() {
  66     return _unmarked_addr != NULL;
  67   }
  68 };
  69 
  70 // Checks all objects for the existence of some type of mark,
  71 // precise or imprecise, dirty or newgen.
  72 class CheckForUnmarkedObjects : public ObjectClosure {
  73  private:
  74   PSYoungGen*  _young_gen;
  75   PSCardTable* _card_table;
  76 
  77  public:
  78   CheckForUnmarkedObjects() {
  79     ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
  80     _young_gen = heap->young_gen();
  81     _card_table = heap->card_table();
  82   }
  83 
  84   // Card marks are not precise. The current system can leave us with
  85   // a mismatch of precise marks and beginning of object marks. This means
  86   // we test for missing precise marks first. If any are found, we don't
  87   // fail unless the object head is also unmarked.
  88   virtual void do_object(oop obj) {
  89     CheckForUnmarkedOops object_check(_young_gen, _card_table);
  90     obj->oop_iterate(&object_check);
  91     if (object_check.has_unmarked_oop()) {
  92       guarantee(_card_table->addr_is_marked_imprecise(obj), "Found unmarked young_gen object");
  93     }
  94   }
  95 };
  96 
  97 // Checks for precise marking of oops as newgen.
  98 class CheckForPreciseMarks : public BasicOopIterateClosure {
  99  private:
 100   PSYoungGen*  _young_gen;
 101   PSCardTable* _card_table;
 102 
 103  protected:
 104   template <class T> void do_oop_work(T* p) {
 105     oop obj = RawAccess<IS_NOT_NULL>::oop_load(p);
 106     if (_young_gen->is_in_reserved(obj)) {
 107       assert(_card_table->addr_is_marked_precise(p), "Found unmarked precise oop");
 108       _card_table->set_card_newgen(p);
 109     }
 110   }
 111 
 112  public:
 113   CheckForPreciseMarks(PSYoungGen* young_gen, PSCardTable* card_table) :
 114     _young_gen(young_gen), _card_table(card_table) { }
 115 
 116   virtual void do_oop(oop* p)       { CheckForPreciseMarks::do_oop_work(p); }
 117   virtual void do_oop(narrowOop* p) { CheckForPreciseMarks::do_oop_work(p); }
 118 };
 119 
 120 // We get passed the space_top value to prevent us from traversing into
 121 // the old_gen promotion labs, which cannot be safely parsed.
 122 
 123 // Do not call this method if the space is empty.
 124 // It is a waste to start tasks and get here only to
 125 // do no work.  If this method needs to be called
 126 // when the space is empty, fix the calculation of
 127 // end_card to allow sp_top == sp->bottom().
 128 
 129 // The generation (old gen) is divided into slices, which are further
 130 // subdivided into stripes, with one stripe per GC thread. The size of
 131 // a stripe is a constant, ssize.
 132 //
 133 //      +===============+        slice 0
 134 //      |  stripe 0     |
 135 //      +---------------+
 136 //      |  stripe 1     |
 137 //      +---------------+
 138 //      |  stripe 2     |
 139 //      +---------------+
 140 //      |  stripe 3     |
 141 //      +===============+        slice 1
 142 //      |  stripe 0     |
 143 //      +---------------+
 144 //      |  stripe 1     |
 145 //      +---------------+
 146 //      |  stripe 2     |
 147 //      +---------------+
 148 //      |  stripe 3     |
 149 //      +===============+        slice 2
 150 //      ...
 151 //
 152 // In this case there are 4 threads, so 4 stripes.  A GC thread first works on
 153 // its stripe within slice 0 and then moves to its stripe in the next slice
 154 // until it has exceeded the top of the generation.  The distance to stripe in
 155 // the next slice is calculated based on the number of stripes.  The next
 156 // stripe is at ssize * number_of_stripes (= slice_stride)..  So after
 157 // finishing stripe 0 in slice 0, the thread finds the stripe 0 in slice1 by
 158 // adding slice_stride to the start of stripe 0 in slice 0 to get to the start
 159 // of stride 0 in slice 1.
 160 
 161 void PSCardTable::scavenge_contents_parallel(ObjectStartArray* start_array,
 162                                              MutableSpace* sp,
 163                                              HeapWord* space_top,
 164                                              PSPromotionManager* pm,
 165                                              uint stripe_number,
 166                                              uint stripe_total) {
 167   int ssize = 128; // Naked constant!  Work unit = 64k.
 168   int dirty_card_count = 0;
 169 
 170   // It is a waste to get here if empty.
 171   assert(sp->bottom() < sp->top(), "Should not be called if empty");
 172   oop* sp_top = (oop*)space_top;
 173   CardValue* start_card = byte_for(sp->bottom());
 174   CardValue* end_card   = byte_for(sp_top - 1) + 1;
 175   oop* last_scanned = NULL; // Prevent scanning objects more than once
 176   // The width of the stripe ssize*stripe_total must be
 177   // consistent with the number of stripes so that the complete slice
 178   // is covered.
 179   size_t slice_width = ssize * stripe_total;
 180   for (CardValue* slice = start_card; slice < end_card; slice += slice_width) {
 181     CardValue* worker_start_card = slice + stripe_number * ssize;
 182     if (worker_start_card >= end_card)
 183       return; // We're done.
 184 
 185     CardValue* worker_end_card = worker_start_card + ssize;
 186     if (worker_end_card > end_card)
 187       worker_end_card = end_card;
 188 
 189     // We do not want to scan objects more than once. In order to accomplish
 190     // this, we assert that any object with an object head inside our 'slice'
 191     // belongs to us. We may need to extend the range of scanned cards if the
 192     // last object continues into the next 'slice'.
 193     //
 194     // Note! ending cards are exclusive!
 195     HeapWord* slice_start = addr_for(worker_start_card);
 196     HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card));
 197 
 198 #ifdef ASSERT
 199     if (GCWorkerDelayMillis > 0) {
 200       // Delay 1 worker so that it proceeds after all the work
 201       // has been completed.
 202       if (stripe_number < 2) {
 203         os::sleep(Thread::current(), GCWorkerDelayMillis, false);
 204       }
 205     }
 206 #endif
 207 
 208     // If there are not objects starting within the chunk, skip it.
 209     if (!start_array->object_starts_in_range(slice_start, slice_end)) {
 210       continue;
 211     }
 212     // Update our beginning addr
 213     HeapWord* first_object = start_array->object_start(slice_start);
 214     debug_only(oop* first_object_within_slice = (oop*) first_object;)
 215     if (first_object < slice_start) {
 216       last_scanned = (oop*)(first_object + oop(first_object)->size());
 217       debug_only(first_object_within_slice = last_scanned;)
 218       worker_start_card = byte_for(last_scanned);
 219     }
 220 
 221     // Update the ending addr
 222     if (slice_end < (HeapWord*)sp_top) {
 223       // The subtraction is important! An object may start precisely at slice_end.
 224       HeapWord* last_object = start_array->object_start(slice_end - 1);
 225       slice_end = last_object + oop(last_object)->size();
 226       // worker_end_card is exclusive, so bump it one past the end of last_object's
 227       // covered span.
 228       worker_end_card = byte_for(slice_end) + 1;
 229 
 230       if (worker_end_card > end_card)
 231         worker_end_card = end_card;
 232     }
 233 
 234     assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary");
 235     assert(is_valid_card_address(worker_start_card), "Invalid worker start card");
 236     assert(is_valid_card_address(worker_end_card), "Invalid worker end card");
 237     // Note that worker_start_card >= worker_end_card is legal, and happens when
 238     // an object spans an entire slice.
 239     assert(worker_start_card <= end_card, "worker start card beyond end card");
 240     assert(worker_end_card <= end_card, "worker end card beyond end card");
 241 
 242     CardValue* current_card = worker_start_card;
 243     while (current_card < worker_end_card) {
 244       // Find an unclean card.
 245       while (current_card < worker_end_card && card_is_clean(*current_card)) {
 246         current_card++;
 247       }
 248       CardValue* first_unclean_card = current_card;
 249 
 250       // Find the end of a run of contiguous unclean cards
 251       while (current_card < worker_end_card && !card_is_clean(*current_card)) {
 252         while (current_card < worker_end_card && !card_is_clean(*current_card)) {
 253           current_card++;
 254         }
 255 
 256         if (current_card < worker_end_card) {
 257           // Some objects may be large enough to span several cards. If such
 258           // an object has more than one dirty card, separated by a clean card,
 259           // we will attempt to scan it twice. The test against "last_scanned"
 260           // prevents the redundant object scan, but it does not prevent newly
 261           // marked cards from being cleaned.
 262           HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1);
 263           size_t size_of_last_object = oop(last_object_in_dirty_region)->size();
 264           HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object;
 265           CardValue* ending_card_of_last_object = byte_for(end_of_last_object);
 266           assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card");
 267           if (ending_card_of_last_object > current_card) {
 268             // This means the object spans the next complete card.
 269             // We need to bump the current_card to ending_card_of_last_object
 270             current_card = ending_card_of_last_object;
 271           }
 272         }
 273       }
 274       CardValue* following_clean_card = current_card;
 275 
 276       if (first_unclean_card < worker_end_card) {
 277         oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card));
 278         assert((HeapWord*)p <= addr_for(first_unclean_card), "checking");
 279         // "p" should always be >= "last_scanned" because newly GC dirtied
 280         // cards are no longer scanned again (see comment at end
 281         // of loop on the increment of "current_card").  Test that
 282         // hypothesis before removing this code.
 283         // If this code is removed, deal with the first time through
 284         // the loop when the last_scanned is the object starting in
 285         // the previous slice.
 286         assert((p >= last_scanned) ||
 287                (last_scanned == first_object_within_slice),
 288                "Should no longer be possible");
 289         if (p < last_scanned) {
 290           // Avoid scanning more than once; this can happen because
 291           // newgen cards set by GC may a different set than the
 292           // originally dirty set
 293           p = last_scanned;
 294         }
 295         oop* to = (oop*)addr_for(following_clean_card);
 296 
 297         // Test slice_end first!
 298         if ((HeapWord*)to > slice_end) {
 299           to = (oop*)slice_end;
 300         } else if (to > sp_top) {
 301           to = sp_top;
 302         }
 303 
 304         // we know which cards to scan, now clear them
 305         if (first_unclean_card <= worker_start_card+1)
 306           first_unclean_card = worker_start_card+1;
 307         if (following_clean_card >= worker_end_card-1)
 308           following_clean_card = worker_end_card-1;
 309 
 310         while (first_unclean_card < following_clean_card) {
 311           *first_unclean_card++ = clean_card;
 312         }
 313 
 314         const int interval = PrefetchScanIntervalInBytes;
 315         // scan all objects in the range
 316         if (interval != 0) {
 317           while (p < to) {
 318             Prefetch::write(p, interval);
 319             oop m = oop(p);
 320             assert(oopDesc::is_oop_or_null(m), "Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m));
 321             pm->push_contents(m);
 322             p += m->size();
 323           }
 324           pm->drain_stacks_cond_depth();
 325         } else {
 326           while (p < to) {
 327             oop m = oop(p);
 328             assert(oopDesc::is_oop_or_null(m), "Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m));
 329             pm->push_contents(m);
 330             p += m->size();
 331           }
 332           pm->drain_stacks_cond_depth();
 333         }
 334         last_scanned = p;
 335       }
 336       // "current_card" is still the "following_clean_card" or
 337       // the current_card is >= the worker_end_card so the
 338       // loop will not execute again.
 339       assert((current_card == following_clean_card) ||
 340              (current_card >= worker_end_card),
 341         "current_card should only be incremented if it still equals "
 342         "following_clean_card");
 343       // Increment current_card so that it is not processed again.
 344       // It may now be dirty because a old-to-young pointer was
 345       // found on it an updated.  If it is now dirty, it cannot be
 346       // be safely cleaned in the next iteration.
 347       current_card++;
 348     }
 349   }
 350 }
 351 
 352 // This should be called before a scavenge.
 353 void PSCardTable::verify_all_young_refs_imprecise() {
 354   CheckForUnmarkedObjects check;
 355 
 356   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 357   PSOldGen* old_gen = heap->old_gen();
 358 
 359   old_gen->object_iterate(&check);
 360 }
 361 
 362 // This should be called immediately after a scavenge, before mutators resume.
 363 void PSCardTable::verify_all_young_refs_precise() {
 364   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 365   PSOldGen* old_gen = heap->old_gen();
 366 
 367   CheckForPreciseMarks check(heap->young_gen(), this);
 368 
 369   old_gen->oop_iterate(&check);
 370 
 371   verify_all_young_refs_precise_helper(old_gen->object_space()->used_region());
 372 }
 373 
 374 void PSCardTable::verify_all_young_refs_precise_helper(MemRegion mr) {
 375   CardValue* bot = byte_for(mr.start());
 376   CardValue* top = byte_for(mr.end());
 377   while (bot <= top) {
 378     assert(*bot == clean_card || *bot == verify_card, "Found unwanted or unknown card mark");
 379     if (*bot == verify_card)
 380       *bot = youngergen_card;
 381     bot++;
 382   }
 383 }
 384 
 385 bool PSCardTable::addr_is_marked_imprecise(void *addr) {
 386   CardValue* p = byte_for(addr);
 387   CardValue val = *p;
 388 
 389   if (card_is_dirty(val))
 390     return true;
 391 
 392   if (card_is_newgen(val))
 393     return true;
 394 
 395   if (card_is_clean(val))
 396     return false;
 397 
 398   assert(false, "Found unhandled card mark type");
 399 
 400   return false;
 401 }
 402 
 403 // Also includes verify_card
 404 bool PSCardTable::addr_is_marked_precise(void *addr) {
 405   CardValue* p = byte_for(addr);
 406   CardValue val = *p;
 407 
 408   if (card_is_newgen(val))
 409     return true;
 410 
 411   if (card_is_verify(val))
 412     return true;
 413 
 414   if (card_is_clean(val))
 415     return false;
 416 
 417   if (card_is_dirty(val))
 418     return false;
 419 
 420   assert(false, "Found unhandled card mark type");
 421 
 422   return false;
 423 }
 424 
 425 // Assumes that only the base or the end changes.  This allows indentification
 426 // of the region that is being resized.  The
 427 // CardTable::resize_covered_region() is used for the normal case
 428 // where the covered regions are growing or shrinking at the high end.
 429 // The method resize_covered_region_by_end() is analogous to
 430 // CardTable::resize_covered_region() but
 431 // for regions that grow or shrink at the low end.
 432 void PSCardTable::resize_covered_region(MemRegion new_region) {
 433   for (int i = 0; i < _cur_covered_regions; i++) {
 434     if (_covered[i].start() == new_region.start()) {
 435       // Found a covered region with the same start as the
 436       // new region.  The region is growing or shrinking
 437       // from the start of the region.
 438       resize_covered_region_by_start(new_region);
 439       return;
 440     }
 441     if (_covered[i].start() > new_region.start()) {
 442       break;
 443     }
 444   }
 445 
 446   int changed_region = -1;
 447   for (int j = 0; j < _cur_covered_regions; j++) {
 448     if (_covered[j].end() == new_region.end()) {
 449       changed_region = j;
 450       // This is a case where the covered region is growing or shrinking
 451       // at the start of the region.
 452       assert(changed_region != -1, "Don't expect to add a covered region");
 453       assert(_covered[changed_region].byte_size() != new_region.byte_size(),
 454         "The sizes should be different here");
 455       resize_covered_region_by_end(changed_region, new_region);
 456       return;
 457     }
 458   }
 459   // This should only be a new covered region (where no existing
 460   // covered region matches at the start or the end).
 461   assert(_cur_covered_regions < _max_covered_regions,
 462     "An existing region should have been found");
 463   resize_covered_region_by_start(new_region);
 464 }
 465 
 466 void PSCardTable::resize_covered_region_by_start(MemRegion new_region) {
 467   CardTable::resize_covered_region(new_region);
 468   debug_only(verify_guard();)
 469 }
 470 
 471 void PSCardTable::resize_covered_region_by_end(int changed_region,
 472                                                MemRegion new_region) {
 473   assert(SafepointSynchronize::is_at_safepoint(),
 474     "Only expect an expansion at the low end at a GC");
 475   debug_only(verify_guard();)
 476 #ifdef ASSERT
 477   for (int k = 0; k < _cur_covered_regions; k++) {
 478     if (_covered[k].end() == new_region.end()) {
 479       assert(changed_region == k, "Changed region is incorrect");
 480       break;
 481     }
 482   }
 483 #endif
 484 
 485   // Commit new or uncommit old pages, if necessary.
 486   if (resize_commit_uncommit(changed_region, new_region)) {
 487     // Set the new start of the committed region
 488     resize_update_committed_table(changed_region, new_region);
 489   }
 490 
 491   // Update card table entries
 492   resize_update_card_table_entries(changed_region, new_region);
 493 
 494   // Update the covered region
 495   resize_update_covered_table(changed_region, new_region);
 496 
 497   int ind = changed_region;
 498   log_trace(gc, barrier)("CardTable::resize_covered_region: ");
 499   log_trace(gc, barrier)("    _covered[%d].start(): " INTPTR_FORMAT "  _covered[%d].last(): " INTPTR_FORMAT,
 500                 ind, p2i(_covered[ind].start()), ind, p2i(_covered[ind].last()));
 501   log_trace(gc, barrier)("    _committed[%d].start(): " INTPTR_FORMAT "  _committed[%d].last(): " INTPTR_FORMAT,
 502                 ind, p2i(_committed[ind].start()), ind, p2i(_committed[ind].last()));
 503   log_trace(gc, barrier)("    byte_for(start): " INTPTR_FORMAT "  byte_for(last): " INTPTR_FORMAT,
 504                 p2i(byte_for(_covered[ind].start())),  p2i(byte_for(_covered[ind].last())));
 505   log_trace(gc, barrier)("    addr_for(start): " INTPTR_FORMAT "  addr_for(last): " INTPTR_FORMAT,
 506                 p2i(addr_for((CardValue*) _committed[ind].start())), p2i(addr_for((CardValue*) _committed[ind].last())));
 507 
 508   debug_only(verify_guard();)
 509 }
 510 
 511 bool PSCardTable::resize_commit_uncommit(int changed_region,
 512                                          MemRegion new_region) {
 513   bool result = false;
 514   // Commit new or uncommit old pages, if necessary.
 515   MemRegion cur_committed = _committed[changed_region];
 516   assert(_covered[changed_region].end() == new_region.end(),
 517     "The ends of the regions are expected to match");
 518   // Extend the start of this _committed region to
 519   // to cover the start of any previous _committed region.
 520   // This forms overlapping regions, but never interior regions.
 521   HeapWord* min_prev_start = lowest_prev_committed_start(changed_region);
 522   if (min_prev_start < cur_committed.start()) {
 523     // Only really need to set start of "cur_committed" to
 524     // the new start (min_prev_start) but assertion checking code
 525     // below use cur_committed.end() so make it correct.
 526     MemRegion new_committed =
 527         MemRegion(min_prev_start, cur_committed.end());
 528     cur_committed = new_committed;
 529   }
 530 #ifdef ASSERT
 531   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 532   assert(cur_committed.start() == align_up(cur_committed.start(), os::vm_page_size()),
 533          "Starts should have proper alignment");
 534 #endif
 535 
 536   CardValue* new_start = byte_for(new_region.start());
 537   // Round down because this is for the start address
 538   HeapWord* new_start_aligned = align_down((HeapWord*)new_start, os::vm_page_size());
 539   // The guard page is always committed and should not be committed over.
 540   // This method is used in cases where the generation is growing toward
 541   // lower addresses but the guard region is still at the end of the
 542   // card table.  That still makes sense when looking for writes
 543   // off the end of the card table.
 544   if (new_start_aligned < cur_committed.start()) {
 545     // Expand the committed region
 546     //
 547     // Case A
 548     //                                          |+ guard +|
 549     //                          |+ cur committed +++++++++|
 550     //                  |+ new committed +++++++++++++++++|
 551     //
 552     // Case B
 553     //                                          |+ guard +|
 554     //                        |+ cur committed +|
 555     //                  |+ new committed +++++++|
 556     //
 557     // These are not expected because the calculation of the
 558     // cur committed region and the new committed region
 559     // share the same end for the covered region.
 560     // Case C
 561     //                                          |+ guard +|
 562     //                        |+ cur committed +|
 563     //                  |+ new committed +++++++++++++++++|
 564     // Case D
 565     //                                          |+ guard +|
 566     //                        |+ cur committed +++++++++++|
 567     //                  |+ new committed +++++++|
 568 
 569     HeapWord* new_end_for_commit =
 570       MIN2(cur_committed.end(), _guard_region.start());
 571     if(new_start_aligned < new_end_for_commit) {
 572       MemRegion new_committed =
 573         MemRegion(new_start_aligned, new_end_for_commit);
 574       os::commit_memory_or_exit((char*)new_committed.start(),
 575                                 new_committed.byte_size(), !ExecMem,
 576                                 "card table expansion");
 577     }
 578     result = true;
 579   } else if (new_start_aligned > cur_committed.start()) {
 580     // Shrink the committed region
 581 #if 0 // uncommitting space is currently unsafe because of the interactions
 582       // of growing and shrinking regions.  One region A can uncommit space
 583       // that it owns but which is being used by another region B (maybe).
 584       // Region B has not committed the space because it was already
 585       // committed by region A.
 586     MemRegion uncommit_region = committed_unique_to_self(changed_region,
 587       MemRegion(cur_committed.start(), new_start_aligned));
 588     if (!uncommit_region.is_empty()) {
 589       if (!os::uncommit_memory((char*)uncommit_region.start(),
 590                                uncommit_region.byte_size())) {
 591         // If the uncommit fails, ignore it.  Let the
 592         // committed table resizing go even though the committed
 593         // table will over state the committed space.
 594       }
 595     }
 596 #else
 597     assert(!result, "Should be false with current workaround");
 598 #endif
 599   }
 600   assert(_committed[changed_region].end() == cur_committed.end(),
 601     "end should not change");
 602   return result;
 603 }
 604 
 605 void PSCardTable::resize_update_committed_table(int changed_region,
 606                                                 MemRegion new_region) {
 607 
 608   CardValue* new_start = byte_for(new_region.start());
 609   // Set the new start of the committed region
 610   HeapWord* new_start_aligned = align_down((HeapWord*)new_start, os::vm_page_size());
 611   MemRegion new_committed = MemRegion(new_start_aligned,
 612                                       _committed[changed_region].end());
 613   _committed[changed_region] = new_committed;
 614   _committed[changed_region].set_start(new_start_aligned);
 615 }
 616 
 617 void PSCardTable::resize_update_card_table_entries(int changed_region,
 618                                                    MemRegion new_region) {
 619   debug_only(verify_guard();)
 620   MemRegion original_covered = _covered[changed_region];
 621   // Initialize the card entries.  Only consider the
 622   // region covered by the card table (_whole_heap)
 623   CardValue* entry;
 624   if (new_region.start() < _whole_heap.start()) {
 625     entry = byte_for(_whole_heap.start());
 626   } else {
 627     entry = byte_for(new_region.start());
 628   }
 629   CardValue* end = byte_for(original_covered.start());
 630   // If _whole_heap starts at the original covered regions start,
 631   // this loop will not execute.
 632   while (entry < end) { *entry++ = clean_card; }
 633 }
 634 
 635 void PSCardTable::resize_update_covered_table(int changed_region,
 636                                               MemRegion new_region) {
 637   // Update the covered region
 638   _covered[changed_region].set_start(new_region.start());
 639   _covered[changed_region].set_word_size(new_region.word_size());
 640 
 641   // reorder regions.  There should only be at most 1 out
 642   // of order.
 643   for (int i = _cur_covered_regions-1 ; i > 0; i--) {
 644     if (_covered[i].start() < _covered[i-1].start()) {
 645         MemRegion covered_mr = _covered[i-1];
 646         _covered[i-1] = _covered[i];
 647         _covered[i] = covered_mr;
 648         MemRegion committed_mr = _committed[i-1];
 649       _committed[i-1] = _committed[i];
 650       _committed[i] = committed_mr;
 651       break;
 652     }
 653   }
 654 #ifdef ASSERT
 655   for (int m = 0; m < _cur_covered_regions-1; m++) {
 656     assert(_covered[m].start() <= _covered[m+1].start(),
 657       "Covered regions out of order");
 658     assert(_committed[m].start() <= _committed[m+1].start(),
 659       "Committed regions out of order");
 660   }
 661 #endif
 662 }
 663 
 664 // Returns the start of any committed region that is lower than
 665 // the target committed region (index ind) and that intersects the
 666 // target region.  If none, return start of target region.
 667 //
 668 //      -------------
 669 //      |           |
 670 //      -------------
 671 //              ------------
 672 //              | target   |
 673 //              ------------
 674 //                               -------------
 675 //                               |           |
 676 //                               -------------
 677 //      ^ returns this
 678 //
 679 //      -------------
 680 //      |           |
 681 //      -------------
 682 //                      ------------
 683 //                      | target   |
 684 //                      ------------
 685 //                               -------------
 686 //                               |           |
 687 //                               -------------
 688 //                      ^ returns this
 689 
 690 HeapWord* PSCardTable::lowest_prev_committed_start(int ind) const {
 691   assert(_cur_covered_regions >= 0, "Expecting at least on region");
 692   HeapWord* min_start = _committed[ind].start();
 693   for (int j = 0; j < ind; j++) {
 694     HeapWord* this_start = _committed[j].start();
 695     if ((this_start < min_start) &&
 696         !(_committed[j].intersection(_committed[ind])).is_empty()) {
 697        min_start = this_start;
 698     }
 699   }
 700   return min_start;
 701 }
 702 
 703 bool PSCardTable::is_in_young(oop obj) const {
 704   return ParallelScavengeHeap::heap()->is_in_young(obj);
 705 }