/* * Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2017 SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "interpreter/interpreter.hpp" #include "memory/resourceArea.hpp" #include "memory/universe.hpp" #include "oops/markWord.hpp" #include "oops/method.hpp" #include "oops/oop.inline.hpp" #include "runtime/frame.inline.hpp" #include "runtime/handles.inline.hpp" #include "runtime/javaCalls.hpp" #include "runtime/jniHandles.inline.hpp" #include "runtime/monitorChunk.hpp" #include "runtime/os.inline.hpp" #include "runtime/signature.hpp" #include "runtime/stubCodeGenerator.hpp" #include "runtime/stubRoutines.hpp" #ifdef COMPILER1 #include "c1/c1_Runtime1.hpp" #include "runtime/vframeArray.hpp" #endif #ifdef ASSERT void RegisterMap::check_location_valid() { } #endif // ASSERT bool frame::safe_for_sender(JavaThread *thread) { bool safe = false; address sp = (address)_sp; address fp = (address)_fp; address unextended_sp = (address)_unextended_sp; // consider stack guards when trying to determine "safe" stack pointers // sp must be within the usable part of the stack (not in guards) if (!thread->is_in_usable_stack(sp)) { return false; } // Unextended sp must be within the stack if (!thread->is_in_full_stack(unextended_sp)) { return false; } // An fp must be within the stack and above (but not equal) sp. bool fp_safe = thread->is_in_stack_range_excl(fp, sp); // An interpreter fp must be within the stack and above (but not equal) sp. // Moreover, it must be at least the size of the ijava_state structure. bool fp_interp_safe = fp_safe && ((fp - sp) >= ijava_state_size); // We know sp/unextended_sp are safe, only fp is questionable here // If the current frame is known to the code cache then we can attempt to // to construct the sender and do some validation of it. This goes a long way // toward eliminating issues when we get in frame construction code if (_cb != NULL ){ // Entry frame checks if (is_entry_frame()) { // An entry frame must have a valid fp. return fp_safe && is_entry_frame_valid(thread); } // Now check if the frame is complete and the test is // reliable. Unfortunately we can only check frame completeness for // runtime stubs and nmethods. Other generic buffer blobs are more // problematic so we just assume they are OK. Adapter blobs never have a // complete frame and are never OK if (!_cb->is_frame_complete_at(_pc)) { if (_cb->is_compiled() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) { return false; } } // Could just be some random pointer within the codeBlob. if (!_cb->code_contains(_pc)) { return false; } if (is_interpreted_frame() && !fp_interp_safe) { return false; } abi_minframe* sender_abi = (abi_minframe*) fp; intptr_t* sender_sp = (intptr_t*) fp; address sender_pc = (address) sender_abi->lr;; // We must always be able to find a recognizable pc. CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc); if (sender_blob == NULL) { return false; } // Could be a zombie method if (sender_blob->is_zombie() || sender_blob->is_unloaded()) { return false; } // It should be safe to construct the sender though it might not be valid. frame sender(sender_sp, sender_pc); // Do we have a valid fp? address sender_fp = (address) sender.fp(); // sender_fp must be within the stack and above (but not // equal) current frame's fp. if (!thread->is_in_stack_range_excl(sender_fp, fp)) { return false; } // If the potential sender is the interpreter then we can do some more checking. if (Interpreter::contains(sender_pc)) { return sender.is_interpreted_frame_valid(thread); } // Could just be some random pointer within the codeBlob. if (!sender.cb()->code_contains(sender_pc)) { return false; } // We should never be able to see an adapter if the current frame is something from code cache. if (sender_blob->is_adapter_blob()) { return false; } if (sender.is_entry_frame()) { return sender.is_entry_frame_valid(thread); } // Frame size is always greater than zero. If the sender frame size is zero or less, // something is really weird and we better give up. if (sender_blob->frame_size() <= 0) { return false; } return true; } // Must be native-compiled frame. Since sender will try and use fp to find // linkages it must be safe if (!fp_safe) { return false; } return true; } bool frame::is_interpreted_frame() const { return Interpreter::contains(pc()); } frame frame::sender_for_entry_frame(RegisterMap *map) const { assert(map != NULL, "map must be set"); // Java frame called from C; skip all C frames and return top C // frame of that chunk as the sender. JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor(); assert(!entry_frame_is_first(), "next Java fp must be non zero"); assert(jfa->last_Java_sp() > _sp, "must be above this frame on stack"); map->clear(); assert(map->include_argument_oops(), "should be set by clear"); if (jfa->last_Java_pc() != NULL) { frame fr(jfa->last_Java_sp(), jfa->last_Java_pc()); return fr; } // Last_java_pc is not set, if we come here from compiled code. The // constructor retrieves the PC from the stack. frame fr(jfa->last_Java_sp()); return fr; } frame frame::sender_for_interpreter_frame(RegisterMap *map) const { // Pass callers initial_caller_sp as unextended_sp. return frame(sender_sp(), sender_pc(), (intptr_t*)get_ijava_state()->sender_sp); } frame frame::sender_for_compiled_frame(RegisterMap *map) const { assert(map != NULL, "map must be set"); // Frame owned by compiler. address pc = *compiled_sender_pc_addr(_cb); frame caller(compiled_sender_sp(_cb), pc); // Now adjust the map. // Get the rest. if (map->update_map()) { // Tell GC to use argument oopmaps for some runtime stubs that need it. map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread())); if (_cb->oop_maps() != NULL) { OopMapSet::update_register_map(this, map); } } return caller; } intptr_t* frame::compiled_sender_sp(CodeBlob* cb) const { return sender_sp(); } address* frame::compiled_sender_pc_addr(CodeBlob* cb) const { return sender_pc_addr(); } frame frame::sender(RegisterMap* map) const { // Default is we do have to follow them. The sender_for_xxx will // update it accordingly. map->set_include_argument_oops(false); if (is_entry_frame()) return sender_for_entry_frame(map); if (is_interpreted_frame()) return sender_for_interpreter_frame(map); assert(_cb == CodeCache::find_blob(pc()),"Must be the same"); if (_cb != NULL) { return sender_for_compiled_frame(map); } // Must be native-compiled frame, i.e. the marshaling code for native // methods that exists in the core system. return frame(sender_sp(), sender_pc()); } void frame::patch_pc(Thread* thread, address pc) { if (TracePcPatching) { tty->print_cr("patch_pc at address " PTR_FORMAT " [" PTR_FORMAT " -> " PTR_FORMAT "]", p2i(&((address*) _sp)[-1]), p2i(((address*) _sp)[-1]), p2i(pc)); } own_abi()->lr = (uint64_t)pc; _cb = CodeCache::find_blob(pc); if (_cb != NULL && _cb->is_nmethod() && ((nmethod*)_cb)->is_deopt_pc(_pc)) { address orig = (((nmethod*)_cb)->get_original_pc(this)); assert(orig == _pc, "expected original to be stored before patching"); _deopt_state = is_deoptimized; // Leave _pc as is. } else { _deopt_state = not_deoptimized; _pc = pc; } } bool frame::is_interpreted_frame_valid(JavaThread* thread) const { // Is there anything to do? assert(is_interpreted_frame(), "Not an interpreted frame"); return true; } BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) { assert(is_interpreted_frame(), "interpreted frame expected"); Method* method = interpreter_frame_method(); BasicType type = method->result_type(); if (method->is_native()) { // Prior to calling into the runtime to notify the method exit the possible // result value is saved into the interpreter frame. address lresult = (address)&(get_ijava_state()->lresult); address fresult = (address)&(get_ijava_state()->fresult); switch (method->result_type()) { case T_OBJECT: case T_ARRAY: { *oop_result = JNIHandles::resolve(*(jobject*)lresult); break; } // We use std/stfd to store the values. case T_BOOLEAN : value_result->z = (jboolean) *(unsigned long*)lresult; break; case T_INT : value_result->i = (jint) *(long*)lresult; break; case T_CHAR : value_result->c = (jchar) *(unsigned long*)lresult; break; case T_SHORT : value_result->s = (jshort) *(long*)lresult; break; case T_BYTE : value_result->z = (jbyte) *(long*)lresult; break; case T_LONG : value_result->j = (jlong) *(long*)lresult; break; case T_FLOAT : value_result->f = (jfloat) *(double*)fresult; break; case T_DOUBLE : value_result->d = (jdouble) *(double*)fresult; break; case T_VOID : /* Nothing to do */ break; default : ShouldNotReachHere(); } } else { intptr_t* tos_addr = interpreter_frame_tos_address(); switch (method->result_type()) { case T_OBJECT: case T_ARRAY: { oop obj = *(oop*)tos_addr; assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check"); *oop_result = obj; } case T_BOOLEAN : value_result->z = (jboolean) *(jint*)tos_addr; break; case T_BYTE : value_result->b = (jbyte) *(jint*)tos_addr; break; case T_CHAR : value_result->c = (jchar) *(jint*)tos_addr; break; case T_SHORT : value_result->s = (jshort) *(jint*)tos_addr; break; case T_INT : value_result->i = *(jint*)tos_addr; break; case T_LONG : value_result->j = *(jlong*)tos_addr; break; case T_FLOAT : value_result->f = *(jfloat*)tos_addr; break; case T_DOUBLE : value_result->d = *(jdouble*)tos_addr; break; case T_VOID : /* Nothing to do */ break; default : ShouldNotReachHere(); } } return type; } #ifndef PRODUCT void frame::describe_pd(FrameValues& values, int frame_no) { if (is_interpreted_frame()) { #define DESCRIBE_ADDRESS(name) \ values.describe(frame_no, (intptr_t*)&(get_ijava_state()->name), #name); DESCRIBE_ADDRESS(method); DESCRIBE_ADDRESS(mirror); DESCRIBE_ADDRESS(locals); DESCRIBE_ADDRESS(monitors); DESCRIBE_ADDRESS(cpoolCache); DESCRIBE_ADDRESS(bcp); DESCRIBE_ADDRESS(esp); DESCRIBE_ADDRESS(mdx); DESCRIBE_ADDRESS(top_frame_sp); DESCRIBE_ADDRESS(sender_sp); DESCRIBE_ADDRESS(oop_tmp); DESCRIBE_ADDRESS(lresult); DESCRIBE_ADDRESS(fresult); } } #endif intptr_t *frame::initial_deoptimization_info() { // unused... but returns fp() to minimize changes introduced by 7087445 return fp(); } #ifndef PRODUCT // This is a generic constructor which is only used by pns() in debug.cpp. frame::frame(void* sp, void* fp, void* pc) : _sp((intptr_t*)sp), _unextended_sp((intptr_t*)sp) { find_codeblob_and_set_pc_and_deopt_state((address)pc); // also sets _fp and adjusts _unextended_sp } void frame::pd_ps() {} #endif