1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "memory/universe.hpp"
  29 #include "oops/markWord.hpp"
  30 #include "oops/method.hpp"
  31 #include "oops/oop.inline.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/frame.inline.hpp"
  34 #include "runtime/handles.inline.hpp"
  35 #include "runtime/javaCalls.hpp"
  36 #include "runtime/monitorChunk.hpp"
  37 #include "runtime/os.inline.hpp"
  38 #include "runtime/signature.hpp"
  39 #include "runtime/stubCodeGenerator.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "vmreg_x86.inline.hpp"
  42 #ifdef COMPILER1
  43 #include "c1/c1_Runtime1.hpp"
  44 #include "runtime/vframeArray.hpp"
  45 #endif
  46 
  47 #ifdef ASSERT
  48 void RegisterMap::check_location_valid() {
  49 }
  50 #endif
  51 
  52 // Profiling/safepoint support
  53 
  54 bool frame::safe_for_sender(JavaThread *thread) {
  55   address   sp = (address)_sp;
  56   address   fp = (address)_fp;
  57   address   unextended_sp = (address)_unextended_sp;
  58 
  59   // consider stack guards when trying to determine "safe" stack pointers
  60   // sp must be within the usable part of the stack (not in guards)
  61   if (!thread->is_in_usable_stack(sp)) {
  62     return false;
  63   }
  64 
  65   // unextended sp must be within the stack and above or equal sp
  66   bool unextended_sp_safe = (unextended_sp < thread->stack_base()) &&
  67                             (unextended_sp >= sp);
  68 
  69   if (!unextended_sp_safe) {
  70     return false;
  71   }
  72 
  73   // an fp must be within the stack and above (but not equal) sp
  74   // second evaluation on fp+ is added to handle situation where fp is -1
  75   bool fp_safe = (fp < thread->stack_base() && (fp > sp) && (((fp + (return_addr_offset * sizeof(void*))) < thread->stack_base())));
  76 
  77   // We know sp/unextended_sp are safe only fp is questionable here
  78 
  79   // If the current frame is known to the code cache then we can attempt to
  80   // to construct the sender and do some validation of it. This goes a long way
  81   // toward eliminating issues when we get in frame construction code
  82 
  83   if (_cb != NULL ) {
  84 
  85     // First check if frame is complete and tester is reliable
  86     // Unfortunately we can only check frame complete for runtime stubs and nmethod
  87     // other generic buffer blobs are more problematic so we just assume they are
  88     // ok. adapter blobs never have a frame complete and are never ok.
  89 
  90     if (!_cb->is_frame_complete_at(_pc)) {
  91       if (_cb->is_compiled() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
  92         return false;
  93       }
  94     }
  95 
  96     // Could just be some random pointer within the codeBlob
  97     if (!_cb->code_contains(_pc)) {
  98       return false;
  99     }
 100 
 101     // Entry frame checks
 102     if (is_entry_frame()) {
 103       // an entry frame must have a valid fp.
 104       return fp_safe && is_entry_frame_valid(thread);
 105     }
 106 
 107     intptr_t* sender_sp = NULL;
 108     intptr_t* sender_unextended_sp = NULL;
 109     address   sender_pc = NULL;
 110     intptr_t* saved_fp =  NULL;
 111 
 112     if (is_interpreted_frame()) {
 113       // fp must be safe
 114       if (!fp_safe) {
 115         return false;
 116       }
 117 
 118       sender_pc = (address) this->fp()[return_addr_offset];
 119       // for interpreted frames, the value below is the sender "raw" sp,
 120       // which can be different from the sender unextended sp (the sp seen
 121       // by the sender) because of current frame local variables
 122       sender_sp = (intptr_t*) addr_at(sender_sp_offset);
 123       sender_unextended_sp = (intptr_t*) this->fp()[interpreter_frame_sender_sp_offset];
 124       saved_fp = (intptr_t*) this->fp()[link_offset];
 125 
 126     } else {
 127       // must be some sort of compiled/runtime frame
 128       // fp does not have to be safe (although it could be check for c1?)
 129 
 130       // check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc
 131       if (_cb->frame_size() <= 0) {
 132         return false;
 133       }
 134 
 135       sender_sp = _unextended_sp + _cb->frame_size();
 136       // Is sender_sp safe?
 137       if ((address)sender_sp >= thread->stack_base()) {
 138         return false;
 139       }
 140       sender_unextended_sp = sender_sp;
 141       // On Intel the return_address is always the word on the stack
 142       sender_pc = (address) *(sender_sp-1);
 143       // Note: frame::sender_sp_offset is only valid for compiled frame
 144       saved_fp = (intptr_t*) *(sender_sp - frame::sender_sp_offset);
 145     }
 146 
 147 
 148     // If the potential sender is the interpreter then we can do some more checking
 149     if (Interpreter::contains(sender_pc)) {
 150 
 151       // ebp is always saved in a recognizable place in any code we generate. However
 152       // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved ebp
 153       // is really a frame pointer.
 154 
 155       bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp);
 156 
 157       if (!saved_fp_safe) {
 158         return false;
 159       }
 160 
 161       // construct the potential sender
 162 
 163       frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc);
 164 
 165       return sender.is_interpreted_frame_valid(thread);
 166 
 167     }
 168 
 169     // We must always be able to find a recognizable pc
 170     CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc);
 171     if (sender_pc == NULL ||  sender_blob == NULL) {
 172       return false;
 173     }
 174 
 175     // Could be a zombie method
 176     if (sender_blob->is_zombie() || sender_blob->is_unloaded()) {
 177       return false;
 178     }
 179 
 180     // Could just be some random pointer within the codeBlob
 181     if (!sender_blob->code_contains(sender_pc)) {
 182       return false;
 183     }
 184 
 185     // We should never be able to see an adapter if the current frame is something from code cache
 186     if (sender_blob->is_adapter_blob()) {
 187       return false;
 188     }
 189 
 190     // Could be the call_stub
 191     if (StubRoutines::returns_to_call_stub(sender_pc)) {
 192       bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp);
 193 
 194       if (!saved_fp_safe) {
 195         return false;
 196       }
 197 
 198       // construct the potential sender
 199 
 200       frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc);
 201 
 202       // Validate the JavaCallWrapper an entry frame must have
 203       address jcw = (address)sender.entry_frame_call_wrapper();
 204 
 205       bool jcw_safe = (jcw < thread->stack_base()) && (jcw > (address)sender.fp());
 206 
 207       return jcw_safe;
 208     }
 209 
 210     CompiledMethod* nm = sender_blob->as_compiled_method_or_null();
 211     if (nm != NULL) {
 212         if (nm->is_deopt_mh_entry(sender_pc) || nm->is_deopt_entry(sender_pc) ||
 213             nm->method()->is_method_handle_intrinsic()) {
 214             return false;
 215         }
 216     }
 217 
 218     // If the frame size is 0 something (or less) is bad because every nmethod has a non-zero frame size
 219     // because the return address counts against the callee's frame.
 220 
 221     if (sender_blob->frame_size() <= 0) {
 222       assert(!sender_blob->is_compiled(), "should count return address at least");
 223       return false;
 224     }
 225 
 226     // We should never be able to see anything here except an nmethod. If something in the
 227     // code cache (current frame) is called by an entity within the code cache that entity
 228     // should not be anything but the call stub (already covered), the interpreter (already covered)
 229     // or an nmethod.
 230 
 231     if (!sender_blob->is_compiled()) {
 232         return false;
 233     }
 234 
 235     // Could put some more validation for the potential non-interpreted sender
 236     // frame we'd create by calling sender if I could think of any. Wait for next crash in forte...
 237 
 238     // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb
 239 
 240     // We've validated the potential sender that would be created
 241     return true;
 242   }
 243 
 244   // Must be native-compiled frame. Since sender will try and use fp to find
 245   // linkages it must be safe
 246 
 247   if (!fp_safe) {
 248     return false;
 249   }
 250 
 251   // Will the pc we fetch be non-zero (which we'll find at the oldest frame)
 252 
 253   if ( (address) this->fp()[return_addr_offset] == NULL) return false;
 254 
 255 
 256   // could try and do some more potential verification of native frame if we could think of some...
 257 
 258   return true;
 259 
 260 }
 261 
 262 
 263 void frame::patch_pc(Thread* thread, address pc) {
 264   address* pc_addr = &(((address*) sp())[-1]);
 265   if (TracePcPatching) {
 266     tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]",
 267                   p2i(pc_addr), p2i(*pc_addr), p2i(pc));
 268   }
 269   // Either the return address is the original one or we are going to
 270   // patch in the same address that's already there.
 271   assert(_pc == *pc_addr || pc == *pc_addr, "must be");
 272   *pc_addr = pc;
 273   _cb = CodeCache::find_blob(pc);
 274   address original_pc = CompiledMethod::get_deopt_original_pc(this);
 275   if (original_pc != NULL) {
 276     assert(original_pc == _pc, "expected original PC to be stored before patching");
 277     _deopt_state = is_deoptimized;
 278     // leave _pc as is
 279   } else {
 280     _deopt_state = not_deoptimized;
 281     _pc = pc;
 282   }
 283 }
 284 
 285 bool frame::is_interpreted_frame() const  {
 286   return Interpreter::contains(pc());
 287 }
 288 
 289 int frame::frame_size(RegisterMap* map) const {
 290   frame sender = this->sender(map);
 291   return sender.sp() - sp();
 292 }
 293 
 294 intptr_t* frame::entry_frame_argument_at(int offset) const {
 295   // convert offset to index to deal with tsi
 296   int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
 297   // Entry frame's arguments are always in relation to unextended_sp()
 298   return &unextended_sp()[index];
 299 }
 300 
 301 // sender_sp
 302 
 303 intptr_t* frame::interpreter_frame_sender_sp() const {
 304   assert(is_interpreted_frame(), "interpreted frame expected");
 305   return (intptr_t*) at(interpreter_frame_sender_sp_offset);
 306 }
 307 
 308 void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
 309   assert(is_interpreted_frame(), "interpreted frame expected");
 310   ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp);
 311 }
 312 
 313 
 314 // monitor elements
 315 
 316 BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
 317   return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset);
 318 }
 319 
 320 BasicObjectLock* frame::interpreter_frame_monitor_end() const {
 321   BasicObjectLock* result = (BasicObjectLock*) *addr_at(interpreter_frame_monitor_block_top_offset);
 322   // make sure the pointer points inside the frame
 323   assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer");
 324   assert((intptr_t*) result < fp(),  "monitor end should be strictly below the frame pointer");
 325   return result;
 326 }
 327 
 328 void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) {
 329   *((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value;
 330 }
 331 
 332 // Used by template based interpreter deoptimization
 333 void frame::interpreter_frame_set_last_sp(intptr_t* sp) {
 334     *((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = sp;
 335 }
 336 
 337 frame frame::sender_for_entry_frame(RegisterMap* map) const {
 338   assert(map != NULL, "map must be set");
 339   // Java frame called from C; skip all C frames and return top C
 340   // frame of that chunk as the sender
 341   JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
 342   assert(!entry_frame_is_first(), "next Java fp must be non zero");
 343   assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
 344   // Since we are walking the stack now this nested anchor is obviously walkable
 345   // even if it wasn't when it was stacked.
 346   if (!jfa->walkable()) {
 347     // Capture _last_Java_pc (if needed) and mark anchor walkable.
 348     jfa->capture_last_Java_pc();
 349   }
 350   map->clear();
 351   assert(map->include_argument_oops(), "should be set by clear");
 352   vmassert(jfa->last_Java_pc() != NULL, "not walkable");
 353   frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
 354   return fr;
 355 }
 356 
 357 //------------------------------------------------------------------------------
 358 // frame::verify_deopt_original_pc
 359 //
 360 // Verifies the calculated original PC of a deoptimization PC for the
 361 // given unextended SP.
 362 #ifdef ASSERT
 363 void frame::verify_deopt_original_pc(CompiledMethod* nm, intptr_t* unextended_sp) {
 364   frame fr;
 365 
 366   // This is ugly but it's better than to change {get,set}_original_pc
 367   // to take an SP value as argument.  And it's only a debugging
 368   // method anyway.
 369   fr._unextended_sp = unextended_sp;
 370 
 371   address original_pc = nm->get_original_pc(&fr);
 372   assert(nm->insts_contains_inclusive(original_pc),
 373          "original PC must be in the main code section of the the compiled method (or must be immediately following it)");
 374 }
 375 #endif
 376 
 377 //------------------------------------------------------------------------------
 378 // frame::adjust_unextended_sp
 379 #ifdef ASSERT
 380 void frame::adjust_unextended_sp() {
 381   // On x86, sites calling method handle intrinsics and lambda forms are treated
 382   // as any other call site. Therefore, no special action is needed when we are
 383   // returning to any of these call sites.
 384 
 385   if (_cb != NULL) {
 386     CompiledMethod* sender_cm = _cb->as_compiled_method_or_null();
 387     if (sender_cm != NULL) {
 388       // If the sender PC is a deoptimization point, get the original PC.
 389       if (sender_cm->is_deopt_entry(_pc) ||
 390           sender_cm->is_deopt_mh_entry(_pc)) {
 391         verify_deopt_original_pc(sender_cm, _unextended_sp);
 392       }
 393     }
 394   }
 395 }
 396 #endif
 397 
 398 //------------------------------------------------------------------------------
 399 // frame::update_map_with_saved_link
 400 void frame::update_map_with_saved_link(RegisterMap* map, intptr_t** link_addr) {
 401   // The interpreter and compiler(s) always save EBP/RBP in a known
 402   // location on entry. We must record where that location is
 403   // so this if EBP/RBP was live on callout from c2 we can find
 404   // the saved copy no matter what it called.
 405 
 406   // Since the interpreter always saves EBP/RBP if we record where it is then
 407   // we don't have to always save EBP/RBP on entry and exit to c2 compiled
 408   // code, on entry will be enough.
 409   map->set_location(rbp->as_VMReg(), (address) link_addr);
 410 #ifdef AMD64
 411   // this is weird "H" ought to be at a higher address however the
 412   // oopMaps seems to have the "H" regs at the same address and the
 413   // vanilla register.
 414   // XXXX make this go away
 415   if (true) {
 416     map->set_location(rbp->as_VMReg()->next(), (address) link_addr);
 417   }
 418 #endif // AMD64
 419 }
 420 
 421 
 422 //------------------------------------------------------------------------------
 423 // frame::sender_for_interpreter_frame
 424 frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
 425   // SP is the raw SP from the sender after adapter or interpreter
 426   // extension.
 427   intptr_t* sender_sp = this->sender_sp();
 428 
 429   // This is the sp before any possible extension (adapter/locals).
 430   intptr_t* unextended_sp = interpreter_frame_sender_sp();
 431 
 432 #if COMPILER2_OR_JVMCI
 433   if (map->update_map()) {
 434     update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset));
 435   }
 436 #endif // COMPILER2_OR_JVMCI
 437 
 438   return frame(sender_sp, unextended_sp, link(), sender_pc());
 439 }
 440 
 441 
 442 //------------------------------------------------------------------------------
 443 // frame::sender_for_compiled_frame
 444 frame frame::sender_for_compiled_frame(RegisterMap* map) const {
 445   assert(map != NULL, "map must be set");
 446 
 447   // frame owned by optimizing compiler
 448   assert(_cb->frame_size() >= 0, "must have non-zero frame size");
 449   intptr_t* sender_sp = unextended_sp() + _cb->frame_size();
 450   intptr_t* unextended_sp = sender_sp;
 451 
 452   // On Intel the return_address is always the word on the stack
 453   address sender_pc = (address) *(sender_sp-1);
 454 
 455   // This is the saved value of EBP which may or may not really be an FP.
 456   // It is only an FP if the sender is an interpreter frame (or C1?).
 457   intptr_t** saved_fp_addr = (intptr_t**) (sender_sp - frame::sender_sp_offset);
 458 
 459   if (map->update_map()) {
 460     // Tell GC to use argument oopmaps for some runtime stubs that need it.
 461     // For C1, the runtime stub might not have oop maps, so set this flag
 462     // outside of update_register_map.
 463     map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
 464     if (_cb->oop_maps() != NULL) {
 465       OopMapSet::update_register_map(this, map);
 466     }
 467 
 468     // Since the prolog does the save and restore of EBP there is no oopmap
 469     // for it so we must fill in its location as if there was an oopmap entry
 470     // since if our caller was compiled code there could be live jvm state in it.
 471     update_map_with_saved_link(map, saved_fp_addr);
 472   }
 473 
 474   assert(sender_sp != sp(), "must have changed");
 475   return frame(sender_sp, unextended_sp, *saved_fp_addr, sender_pc);
 476 }
 477 
 478 
 479 //------------------------------------------------------------------------------
 480 // frame::sender
 481 frame frame::sender(RegisterMap* map) const {
 482   // Default is we done have to follow them. The sender_for_xxx will
 483   // update it accordingly
 484   map->set_include_argument_oops(false);
 485 
 486   if (is_entry_frame())       return sender_for_entry_frame(map);
 487   if (is_interpreted_frame()) return sender_for_interpreter_frame(map);
 488   assert(_cb == CodeCache::find_blob(pc()),"Must be the same");
 489 
 490   if (_cb != NULL) {
 491     return sender_for_compiled_frame(map);
 492   }
 493   // Must be native-compiled frame, i.e. the marshaling code for native
 494   // methods that exists in the core system.
 495   return frame(sender_sp(), link(), sender_pc());
 496 }
 497 
 498 bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
 499   assert(is_interpreted_frame(), "Not an interpreted frame");
 500   // These are reasonable sanity checks
 501   if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) {
 502     return false;
 503   }
 504   if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) {
 505     return false;
 506   }
 507   if (fp() + interpreter_frame_initial_sp_offset < sp()) {
 508     return false;
 509   }
 510   // These are hacks to keep us out of trouble.
 511   // The problem with these is that they mask other problems
 512   if (fp() <= sp()) {        // this attempts to deal with unsigned comparison above
 513     return false;
 514   }
 515 
 516   // do some validation of frame elements
 517   // first the method
 518 
 519   Method* m = *interpreter_frame_method_addr();
 520 
 521   // validate the method we'd find in this potential sender
 522   if (!Method::is_valid_method(m)) return false;
 523 
 524   // stack frames shouldn't be much larger than max_stack elements
 525   // this test requires the use the unextended_sp which is the sp as seen by
 526   // the current frame, and not sp which is the "raw" pc which could point
 527   // further because of local variables of the callee method inserted after
 528   // method arguments
 529   if (fp() - unextended_sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) {
 530     return false;
 531   }
 532 
 533   // validate bci/bcp
 534 
 535   address bcp = interpreter_frame_bcp();
 536   if (m->validate_bci_from_bcp(bcp) < 0) {
 537     return false;
 538   }
 539 
 540   // validate ConstantPoolCache*
 541   ConstantPoolCache* cp = *interpreter_frame_cache_addr();
 542   if (MetaspaceObj::is_valid(cp) == false) return false;
 543 
 544   // validate locals
 545 
 546   address locals =  (address) *interpreter_frame_locals_addr();
 547 
 548   if (locals >= thread->stack_base() || locals < (address) fp()) return false;
 549 
 550   // We'd have to be pretty unlucky to be mislead at this point
 551   return true;
 552 }
 553 
 554 BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
 555   assert(is_interpreted_frame(), "interpreted frame expected");
 556   Method* method = interpreter_frame_method();
 557   BasicType type = method->result_type();
 558 
 559   intptr_t* tos_addr;
 560   if (method->is_native()) {
 561     // Prior to calling into the runtime to report the method_exit the possible
 562     // return value is pushed to the native stack. If the result is a jfloat/jdouble
 563     // then ST0 is saved before EAX/EDX. See the note in generate_native_result
 564     tos_addr = (intptr_t*)sp();
 565     if (type == T_FLOAT || type == T_DOUBLE) {
 566     // QQQ seems like this code is equivalent on the two platforms
 567 #ifdef AMD64
 568       // This is times two because we do a push(ltos) after pushing XMM0
 569       // and that takes two interpreter stack slots.
 570       tos_addr += 2 * Interpreter::stackElementWords;
 571 #else
 572       tos_addr += 2;
 573 #endif // AMD64
 574     }
 575   } else {
 576     tos_addr = (intptr_t*)interpreter_frame_tos_address();
 577   }
 578 
 579   switch (type) {
 580     case T_OBJECT  :
 581     case T_ARRAY   : {
 582       oop obj;
 583       if (method->is_native()) {
 584         obj = cast_to_oop(at(interpreter_frame_oop_temp_offset));
 585       } else {
 586         oop* obj_p = (oop*)tos_addr;
 587         obj = (obj_p == NULL) ? (oop)NULL : *obj_p;
 588       }
 589       assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
 590       *oop_result = obj;
 591       break;
 592     }
 593     case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break;
 594     case T_BYTE    : value_result->b = *(jbyte*)tos_addr; break;
 595     case T_CHAR    : value_result->c = *(jchar*)tos_addr; break;
 596     case T_SHORT   : value_result->s = *(jshort*)tos_addr; break;
 597     case T_INT     : value_result->i = *(jint*)tos_addr; break;
 598     case T_LONG    : value_result->j = *(jlong*)tos_addr; break;
 599     case T_FLOAT   : {
 600 #ifdef AMD64
 601         value_result->f = *(jfloat*)tos_addr;
 602 #else
 603       if (method->is_native()) {
 604         jdouble d = *(jdouble*)tos_addr;  // Result was in ST0 so need to convert to jfloat
 605         value_result->f = (jfloat)d;
 606       } else {
 607         value_result->f = *(jfloat*)tos_addr;
 608       }
 609 #endif // AMD64
 610       break;
 611     }
 612     case T_DOUBLE  : value_result->d = *(jdouble*)tos_addr; break;
 613     case T_VOID    : /* Nothing to do */ break;
 614     default        : ShouldNotReachHere();
 615   }
 616 
 617   return type;
 618 }
 619 
 620 
 621 intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
 622   int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
 623   return &interpreter_frame_tos_address()[index];
 624 }
 625 
 626 #ifndef PRODUCT
 627 
 628 #define DESCRIBE_FP_OFFSET(name) \
 629   values.describe(frame_no, fp() + frame::name##_offset, #name)
 630 
 631 void frame::describe_pd(FrameValues& values, int frame_no) {
 632   if (is_interpreted_frame()) {
 633     DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
 634     DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
 635     DESCRIBE_FP_OFFSET(interpreter_frame_method);
 636     DESCRIBE_FP_OFFSET(interpreter_frame_mirror);
 637     DESCRIBE_FP_OFFSET(interpreter_frame_mdp);
 638     DESCRIBE_FP_OFFSET(interpreter_frame_cache);
 639     DESCRIBE_FP_OFFSET(interpreter_frame_locals);
 640     DESCRIBE_FP_OFFSET(interpreter_frame_bcp);
 641     DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
 642 #ifdef AMD64
 643   } else if (is_entry_frame()) {
 644     // This could be more descriptive if we use the enum in
 645     // stubGenerator to map to real names but it's most important to
 646     // claim these frame slots so the error checking works.
 647     for (int i = 0; i < entry_frame_after_call_words; i++) {
 648       values.describe(frame_no, fp() - i, err_msg("call_stub word fp - %d", i));
 649     }
 650 #endif // AMD64
 651   }
 652 }
 653 #endif // !PRODUCT
 654 
 655 intptr_t *frame::initial_deoptimization_info() {
 656   // used to reset the saved FP
 657   return fp();
 658 }
 659 
 660 intptr_t* frame::real_fp() const {
 661   if (_cb != NULL) {
 662     // use the frame size if valid
 663     int size = _cb->frame_size();
 664     if (size > 0) {
 665       return unextended_sp() + size;
 666     }
 667   }
 668   // else rely on fp()
 669   assert(! is_compiled_frame(), "unknown compiled frame size");
 670   return fp();
 671 }
 672 
 673 #ifndef PRODUCT
 674 // This is a generic constructor which is only used by pns() in debug.cpp.
 675 frame::frame(void* sp, void* fp, void* pc) {
 676   init((intptr_t*)sp, (intptr_t*)fp, (address)pc);
 677 }
 678 
 679 void frame::pd_ps() {}
 680 #endif
 681 
 682 void JavaFrameAnchor::make_walkable(JavaThread* thread) {
 683   // last frame set?
 684   if (last_Java_sp() == NULL) return;
 685   // already walkable?
 686   if (walkable()) return;
 687   vmassert(Thread::current() == (Thread*)thread, "not current thread");
 688   vmassert(last_Java_sp() != NULL, "not called from Java code?");
 689   vmassert(last_Java_pc() == NULL, "already walkable");
 690   capture_last_Java_pc();
 691   vmassert(walkable(), "something went wrong");
 692 }
 693 
 694 void JavaFrameAnchor::capture_last_Java_pc() {
 695   vmassert(_last_Java_sp != NULL, "no last frame set");
 696   vmassert(_last_Java_pc == NULL, "already walkable");
 697   _last_Java_pc = (address)_last_Java_sp[-1];
 698 }