1 /*
   2  * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "logging/logStream.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/filemap.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_linux.inline.hpp"
  41 #include "os_posix.inline.hpp"
  42 #include "os_share_linux.hpp"
  43 #include "osContainer_linux.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/atomic.hpp"
  48 #include "runtime/extendedPC.hpp"
  49 #include "runtime/globals.hpp"
  50 #include "runtime/interfaceSupport.inline.hpp"
  51 #include "runtime/init.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/osThread.hpp"
  57 #include "runtime/perfMemory.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/statSampler.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "runtime/thread.inline.hpp"
  62 #include "runtime/threadCritical.hpp"
  63 #include "runtime/threadSMR.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_posix.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/align.hpp"
  71 #include "utilities/decoder.hpp"
  72 #include "utilities/defaultStream.hpp"
  73 #include "utilities/events.hpp"
  74 #include "utilities/elfFile.hpp"
  75 #include "utilities/growableArray.hpp"
  76 #include "utilities/macros.hpp"
  77 #include "utilities/vmError.hpp"
  78 
  79 // put OS-includes here
  80 # include <sys/types.h>
  81 # include <sys/mman.h>
  82 # include <sys/stat.h>
  83 # include <sys/select.h>
  84 # include <pthread.h>
  85 # include <signal.h>
  86 # include <endian.h>
  87 # include <errno.h>
  88 # include <dlfcn.h>
  89 # include <stdio.h>
  90 # include <unistd.h>
  91 # include <sys/resource.h>
  92 # include <pthread.h>
  93 # include <sys/stat.h>
  94 # include <sys/time.h>
  95 # include <sys/times.h>
  96 # include <sys/utsname.h>
  97 # include <sys/socket.h>
  98 # include <sys/wait.h>
  99 # include <pwd.h>
 100 # include <poll.h>
 101 # include <fcntl.h>
 102 # include <string.h>
 103 # include <syscall.h>
 104 # include <sys/sysinfo.h>
 105 # include <gnu/libc-version.h>
 106 # include <sys/ipc.h>
 107 # include <sys/shm.h>
 108 # include <link.h>
 109 # include <stdint.h>
 110 # include <inttypes.h>
 111 # include <sys/ioctl.h>
 112 
 113 #ifndef _GNU_SOURCE
 114   #define _GNU_SOURCE
 115   #include <sched.h>
 116   #undef _GNU_SOURCE
 117 #else
 118   #include <sched.h>
 119 #endif
 120 
 121 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 122 // getrusage() is prepared to handle the associated failure.
 123 #ifndef RUSAGE_THREAD
 124   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 125 #endif
 126 
 127 #define MAX_PATH    (2 * K)
 128 
 129 #define MAX_SECS 100000000
 130 
 131 // for timer info max values which include all bits
 132 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 133 
 134 enum CoredumpFilterBit {
 135   FILE_BACKED_PVT_BIT = 1 << 2,
 136   FILE_BACKED_SHARED_BIT = 1 << 3,
 137   LARGEPAGES_BIT = 1 << 6,
 138   DAX_SHARED_BIT = 1 << 8
 139 };
 140 
 141 ////////////////////////////////////////////////////////////////////////////////
 142 // global variables
 143 julong os::Linux::_physical_memory = 0;
 144 
 145 address   os::Linux::_initial_thread_stack_bottom = NULL;
 146 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 147 
 148 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 149 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 150 pthread_t os::Linux::_main_thread;
 151 int os::Linux::_page_size = -1;
 152 bool os::Linux::_supports_fast_thread_cpu_time = false;
 153 const char * os::Linux::_glibc_version = NULL;
 154 const char * os::Linux::_libpthread_version = NULL;
 155 
 156 static jlong initial_time_count=0;
 157 
 158 static int clock_tics_per_sec = 100;
 159 
 160 // If the VM might have been created on the primordial thread, we need to resolve the
 161 // primordial thread stack bounds and check if the current thread might be the
 162 // primordial thread in places. If we know that the primordial thread is never used,
 163 // such as when the VM was created by one of the standard java launchers, we can
 164 // avoid this
 165 static bool suppress_primordial_thread_resolution = false;
 166 
 167 // For diagnostics to print a message once. see run_periodic_checks
 168 static sigset_t check_signal_done;
 169 static bool check_signals = true;
 170 
 171 // Signal number used to suspend/resume a thread
 172 
 173 // do not use any signal number less than SIGSEGV, see 4355769
 174 static int SR_signum = SIGUSR2;
 175 sigset_t SR_sigset;
 176 
 177 // utility functions
 178 
 179 static int SR_initialize();
 180 
 181 julong os::available_memory() {
 182   return Linux::available_memory();
 183 }
 184 
 185 julong os::Linux::available_memory() {
 186   // values in struct sysinfo are "unsigned long"
 187   struct sysinfo si;
 188   julong avail_mem;
 189 
 190   if (OSContainer::is_containerized()) {
 191     jlong mem_limit, mem_usage;
 192     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 193       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 194                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 195     }
 196     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 197       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 198     }
 199     if (mem_limit > 0 && mem_usage > 0 ) {
 200       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 201       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 202       return avail_mem;
 203     }
 204   }
 205 
 206   sysinfo(&si);
 207   avail_mem = (julong)si.freeram * si.mem_unit;
 208   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 209   return avail_mem;
 210 }
 211 
 212 julong os::physical_memory() {
 213   jlong phys_mem = 0;
 214   if (OSContainer::is_containerized()) {
 215     jlong mem_limit;
 216     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 217       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 218       return mem_limit;
 219     }
 220     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 221                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 222   }
 223 
 224   phys_mem = Linux::physical_memory();
 225   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 226   return phys_mem;
 227 }
 228 
 229 static uint64_t initial_total_ticks = 0;
 230 static uint64_t initial_steal_ticks = 0;
 231 static bool     has_initial_tick_info = false;
 232 
 233 static void next_line(FILE *f) {
 234   int c;
 235   do {
 236     c = fgetc(f);
 237   } while (c != '\n' && c != EOF);
 238 }
 239 
 240 bool os::Linux::get_tick_information(CPUPerfTicks* pticks, int which_logical_cpu) {
 241   FILE*         fh;
 242   uint64_t      userTicks, niceTicks, systemTicks, idleTicks;
 243   // since at least kernel 2.6 : iowait: time waiting for I/O to complete
 244   // irq: time  servicing interrupts; softirq: time servicing softirqs
 245   uint64_t      iowTicks = 0, irqTicks = 0, sirqTicks= 0;
 246   // steal (since kernel 2.6.11): time spent in other OS when running in a virtualized environment
 247   uint64_t      stealTicks = 0;
 248   // guest (since kernel 2.6.24): time spent running a virtual CPU for guest OS under the
 249   // control of the Linux kernel
 250   uint64_t      guestNiceTicks = 0;
 251   int           logical_cpu = -1;
 252   const int     required_tickinfo_count = (which_logical_cpu == -1) ? 4 : 5;
 253   int           n;
 254 
 255   memset(pticks, 0, sizeof(CPUPerfTicks));
 256 
 257   if ((fh = fopen("/proc/stat", "r")) == NULL) {
 258     return false;
 259   }
 260 
 261   if (which_logical_cpu == -1) {
 262     n = fscanf(fh, "cpu " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 263             UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 264             UINT64_FORMAT " " UINT64_FORMAT " ",
 265             &userTicks, &niceTicks, &systemTicks, &idleTicks,
 266             &iowTicks, &irqTicks, &sirqTicks,
 267             &stealTicks, &guestNiceTicks);
 268   } else {
 269     // Move to next line
 270     next_line(fh);
 271 
 272     // find the line for requested cpu faster to just iterate linefeeds?
 273     for (int i = 0; i < which_logical_cpu; i++) {
 274       next_line(fh);
 275     }
 276 
 277     n = fscanf(fh, "cpu%u " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 278                UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 279                UINT64_FORMAT " " UINT64_FORMAT " ",
 280                &logical_cpu, &userTicks, &niceTicks,
 281                &systemTicks, &idleTicks, &iowTicks, &irqTicks, &sirqTicks,
 282                &stealTicks, &guestNiceTicks);
 283   }
 284 
 285   fclose(fh);
 286   if (n < required_tickinfo_count || logical_cpu != which_logical_cpu) {
 287     return false;
 288   }
 289   pticks->used       = userTicks + niceTicks;
 290   pticks->usedKernel = systemTicks + irqTicks + sirqTicks;
 291   pticks->total      = userTicks + niceTicks + systemTicks + idleTicks +
 292                        iowTicks + irqTicks + sirqTicks + stealTicks + guestNiceTicks;
 293 
 294   if (n > required_tickinfo_count + 3) {
 295     pticks->steal = stealTicks;
 296     pticks->has_steal_ticks = true;
 297   } else {
 298     pticks->steal = 0;
 299     pticks->has_steal_ticks = false;
 300   }
 301 
 302   return true;
 303 }
 304 
 305 // Return true if user is running as root.
 306 
 307 bool os::have_special_privileges() {
 308   static bool init = false;
 309   static bool privileges = false;
 310   if (!init) {
 311     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 312     init = true;
 313   }
 314   return privileges;
 315 }
 316 
 317 
 318 #ifndef SYS_gettid
 319 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 320   #ifdef __ia64__
 321     #define SYS_gettid 1105
 322   #else
 323     #ifdef __i386__
 324       #define SYS_gettid 224
 325     #else
 326       #ifdef __amd64__
 327         #define SYS_gettid 186
 328       #else
 329         #ifdef __sparc__
 330           #define SYS_gettid 143
 331         #else
 332           #error define gettid for the arch
 333         #endif
 334       #endif
 335     #endif
 336   #endif
 337 #endif
 338 
 339 
 340 // pid_t gettid()
 341 //
 342 // Returns the kernel thread id of the currently running thread. Kernel
 343 // thread id is used to access /proc.
 344 pid_t os::Linux::gettid() {
 345   int rslt = syscall(SYS_gettid);
 346   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 347   return (pid_t)rslt;
 348 }
 349 
 350 // Most versions of linux have a bug where the number of processors are
 351 // determined by looking at the /proc file system.  In a chroot environment,
 352 // the system call returns 1.
 353 static bool unsafe_chroot_detected = false;
 354 static const char *unstable_chroot_error = "/proc file system not found.\n"
 355                      "Java may be unstable running multithreaded in a chroot "
 356                      "environment on Linux when /proc filesystem is not mounted.";
 357 
 358 void os::Linux::initialize_system_info() {
 359   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 360   if (processor_count() == 1) {
 361     pid_t pid = os::Linux::gettid();
 362     char fname[32];
 363     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 364     FILE *fp = fopen(fname, "r");
 365     if (fp == NULL) {
 366       unsafe_chroot_detected = true;
 367     } else {
 368       fclose(fp);
 369     }
 370   }
 371   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 372   assert(processor_count() > 0, "linux error");
 373 }
 374 
 375 void os::init_system_properties_values() {
 376   // The next steps are taken in the product version:
 377   //
 378   // Obtain the JAVA_HOME value from the location of libjvm.so.
 379   // This library should be located at:
 380   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 381   //
 382   // If "/jre/lib/" appears at the right place in the path, then we
 383   // assume libjvm.so is installed in a JDK and we use this path.
 384   //
 385   // Otherwise exit with message: "Could not create the Java virtual machine."
 386   //
 387   // The following extra steps are taken in the debugging version:
 388   //
 389   // If "/jre/lib/" does NOT appear at the right place in the path
 390   // instead of exit check for $JAVA_HOME environment variable.
 391   //
 392   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 393   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 394   // it looks like libjvm.so is installed there
 395   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 396   //
 397   // Otherwise exit.
 398   //
 399   // Important note: if the location of libjvm.so changes this
 400   // code needs to be changed accordingly.
 401 
 402   // See ld(1):
 403   //      The linker uses the following search paths to locate required
 404   //      shared libraries:
 405   //        1: ...
 406   //        ...
 407   //        7: The default directories, normally /lib and /usr/lib.
 408 #ifndef OVERRIDE_LIBPATH
 409   #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 410     #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 411   #else
 412     #define DEFAULT_LIBPATH "/lib:/usr/lib"
 413   #endif
 414 #else
 415   #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
 416 #endif
 417 
 418 // Base path of extensions installed on the system.
 419 #define SYS_EXT_DIR     "/usr/java/packages"
 420 #define EXTENSIONS_DIR  "/lib/ext"
 421 
 422   // Buffer that fits several sprintfs.
 423   // Note that the space for the colon and the trailing null are provided
 424   // by the nulls included by the sizeof operator.
 425   const size_t bufsize =
 426     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 427          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 428   char *buf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 429 
 430   // sysclasspath, java_home, dll_dir
 431   {
 432     char *pslash;
 433     os::jvm_path(buf, bufsize);
 434 
 435     // Found the full path to libjvm.so.
 436     // Now cut the path to <java_home>/jre if we can.
 437     pslash = strrchr(buf, '/');
 438     if (pslash != NULL) {
 439       *pslash = '\0';            // Get rid of /libjvm.so.
 440     }
 441     pslash = strrchr(buf, '/');
 442     if (pslash != NULL) {
 443       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 444     }
 445     Arguments::set_dll_dir(buf);
 446 
 447     if (pslash != NULL) {
 448       pslash = strrchr(buf, '/');
 449       if (pslash != NULL) {
 450         *pslash = '\0';        // Get rid of /lib.
 451       }
 452     }
 453     Arguments::set_java_home(buf);
 454     if (!set_boot_path('/', ':')) {
 455       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 456     }
 457   }
 458 
 459   // Where to look for native libraries.
 460   //
 461   // Note: Due to a legacy implementation, most of the library path
 462   // is set in the launcher. This was to accomodate linking restrictions
 463   // on legacy Linux implementations (which are no longer supported).
 464   // Eventually, all the library path setting will be done here.
 465   //
 466   // However, to prevent the proliferation of improperly built native
 467   // libraries, the new path component /usr/java/packages is added here.
 468   // Eventually, all the library path setting will be done here.
 469   {
 470     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 471     // should always exist (until the legacy problem cited above is
 472     // addressed).
 473     const char *v = ::getenv("LD_LIBRARY_PATH");
 474     const char *v_colon = ":";
 475     if (v == NULL) { v = ""; v_colon = ""; }
 476     // That's +1 for the colon and +1 for the trailing '\0'.
 477     char *ld_library_path = NEW_C_HEAP_ARRAY(char,
 478                                              strlen(v) + 1 +
 479                                              sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 480                                              mtInternal);
 481     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 482     Arguments::set_library_path(ld_library_path);
 483     FREE_C_HEAP_ARRAY(char, ld_library_path);
 484   }
 485 
 486   // Extensions directories.
 487   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 488   Arguments::set_ext_dirs(buf);
 489 
 490   FREE_C_HEAP_ARRAY(char, buf);
 491 
 492 #undef DEFAULT_LIBPATH
 493 #undef SYS_EXT_DIR
 494 #undef EXTENSIONS_DIR
 495 }
 496 
 497 ////////////////////////////////////////////////////////////////////////////////
 498 // breakpoint support
 499 
 500 void os::breakpoint() {
 501   BREAKPOINT;
 502 }
 503 
 504 extern "C" void breakpoint() {
 505   // use debugger to set breakpoint here
 506 }
 507 
 508 ////////////////////////////////////////////////////////////////////////////////
 509 // signal support
 510 
 511 debug_only(static bool signal_sets_initialized = false);
 512 static sigset_t unblocked_sigs, vm_sigs;
 513 
 514 void os::Linux::signal_sets_init() {
 515   // Should also have an assertion stating we are still single-threaded.
 516   assert(!signal_sets_initialized, "Already initialized");
 517   // Fill in signals that are necessarily unblocked for all threads in
 518   // the VM. Currently, we unblock the following signals:
 519   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 520   //                         by -Xrs (=ReduceSignalUsage));
 521   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 522   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 523   // the dispositions or masks wrt these signals.
 524   // Programs embedding the VM that want to use the above signals for their
 525   // own purposes must, at this time, use the "-Xrs" option to prevent
 526   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 527   // (See bug 4345157, and other related bugs).
 528   // In reality, though, unblocking these signals is really a nop, since
 529   // these signals are not blocked by default.
 530   sigemptyset(&unblocked_sigs);
 531   sigaddset(&unblocked_sigs, SIGILL);
 532   sigaddset(&unblocked_sigs, SIGSEGV);
 533   sigaddset(&unblocked_sigs, SIGBUS);
 534   sigaddset(&unblocked_sigs, SIGFPE);
 535 #if defined(PPC64)
 536   sigaddset(&unblocked_sigs, SIGTRAP);
 537 #endif
 538   sigaddset(&unblocked_sigs, SR_signum);
 539 
 540   if (!ReduceSignalUsage) {
 541     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 542       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 543     }
 544     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 545       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 546     }
 547     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 548       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 549     }
 550   }
 551   // Fill in signals that are blocked by all but the VM thread.
 552   sigemptyset(&vm_sigs);
 553   if (!ReduceSignalUsage) {
 554     sigaddset(&vm_sigs, BREAK_SIGNAL);
 555   }
 556   debug_only(signal_sets_initialized = true);
 557 
 558 }
 559 
 560 // These are signals that are unblocked while a thread is running Java.
 561 // (For some reason, they get blocked by default.)
 562 sigset_t* os::Linux::unblocked_signals() {
 563   assert(signal_sets_initialized, "Not initialized");
 564   return &unblocked_sigs;
 565 }
 566 
 567 // These are the signals that are blocked while a (non-VM) thread is
 568 // running Java. Only the VM thread handles these signals.
 569 sigset_t* os::Linux::vm_signals() {
 570   assert(signal_sets_initialized, "Not initialized");
 571   return &vm_sigs;
 572 }
 573 
 574 void os::Linux::hotspot_sigmask(Thread* thread) {
 575 
 576   //Save caller's signal mask before setting VM signal mask
 577   sigset_t caller_sigmask;
 578   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 579 
 580   OSThread* osthread = thread->osthread();
 581   osthread->set_caller_sigmask(caller_sigmask);
 582 
 583   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 584 
 585   if (!ReduceSignalUsage) {
 586     if (thread->is_VM_thread()) {
 587       // Only the VM thread handles BREAK_SIGNAL ...
 588       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 589     } else {
 590       // ... all other threads block BREAK_SIGNAL
 591       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 592     }
 593   }
 594 }
 595 
 596 //////////////////////////////////////////////////////////////////////////////
 597 // detecting pthread library
 598 
 599 void os::Linux::libpthread_init() {
 600   // Save glibc and pthread version strings.
 601 #if !defined(_CS_GNU_LIBC_VERSION) || \
 602     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 603   #error "glibc too old (< 2.3.2)"
 604 #endif
 605 
 606   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 607   assert(n > 0, "cannot retrieve glibc version");
 608   char *str = (char *)malloc(n, mtInternal);
 609   confstr(_CS_GNU_LIBC_VERSION, str, n);
 610   os::Linux::set_glibc_version(str);
 611 
 612   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 613   assert(n > 0, "cannot retrieve pthread version");
 614   str = (char *)malloc(n, mtInternal);
 615   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 616   os::Linux::set_libpthread_version(str);
 617 }
 618 
 619 /////////////////////////////////////////////////////////////////////////////
 620 // thread stack expansion
 621 
 622 // os::Linux::manually_expand_stack() takes care of expanding the thread
 623 // stack. Note that this is normally not needed: pthread stacks allocate
 624 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 625 // committed. Therefore it is not necessary to expand the stack manually.
 626 //
 627 // Manually expanding the stack was historically needed on LinuxThreads
 628 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 629 // it is kept to deal with very rare corner cases:
 630 //
 631 // For one, user may run the VM on an own implementation of threads
 632 // whose stacks are - like the old LinuxThreads - implemented using
 633 // mmap(MAP_GROWSDOWN).
 634 //
 635 // Also, this coding may be needed if the VM is running on the primordial
 636 // thread. Normally we avoid running on the primordial thread; however,
 637 // user may still invoke the VM on the primordial thread.
 638 //
 639 // The following historical comment describes the details about running
 640 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 641 
 642 
 643 // Force Linux kernel to expand current thread stack. If "bottom" is close
 644 // to the stack guard, caller should block all signals.
 645 //
 646 // MAP_GROWSDOWN:
 647 //   A special mmap() flag that is used to implement thread stacks. It tells
 648 //   kernel that the memory region should extend downwards when needed. This
 649 //   allows early versions of LinuxThreads to only mmap the first few pages
 650 //   when creating a new thread. Linux kernel will automatically expand thread
 651 //   stack as needed (on page faults).
 652 //
 653 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 654 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 655 //   region, it's hard to tell if the fault is due to a legitimate stack
 656 //   access or because of reading/writing non-exist memory (e.g. buffer
 657 //   overrun). As a rule, if the fault happens below current stack pointer,
 658 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 659 //   application (see Linux kernel fault.c).
 660 //
 661 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 662 //   stack overflow detection.
 663 //
 664 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 665 //   not use MAP_GROWSDOWN.
 666 //
 667 // To get around the problem and allow stack banging on Linux, we need to
 668 // manually expand thread stack after receiving the SIGSEGV.
 669 //
 670 // There are two ways to expand thread stack to address "bottom", we used
 671 // both of them in JVM before 1.5:
 672 //   1. adjust stack pointer first so that it is below "bottom", and then
 673 //      touch "bottom"
 674 //   2. mmap() the page in question
 675 //
 676 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 677 // if current sp is already near the lower end of page 101, and we need to
 678 // call mmap() to map page 100, it is possible that part of the mmap() frame
 679 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 680 // That will destroy the mmap() frame and cause VM to crash.
 681 //
 682 // The following code works by adjusting sp first, then accessing the "bottom"
 683 // page to force a page fault. Linux kernel will then automatically expand the
 684 // stack mapping.
 685 //
 686 // _expand_stack_to() assumes its frame size is less than page size, which
 687 // should always be true if the function is not inlined.
 688 
 689 static void NOINLINE _expand_stack_to(address bottom) {
 690   address sp;
 691   size_t size;
 692   volatile char *p;
 693 
 694   // Adjust bottom to point to the largest address within the same page, it
 695   // gives us a one-page buffer if alloca() allocates slightly more memory.
 696   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 697   bottom += os::Linux::page_size() - 1;
 698 
 699   // sp might be slightly above current stack pointer; if that's the case, we
 700   // will alloca() a little more space than necessary, which is OK. Don't use
 701   // os::current_stack_pointer(), as its result can be slightly below current
 702   // stack pointer, causing us to not alloca enough to reach "bottom".
 703   sp = (address)&sp;
 704 
 705   if (sp > bottom) {
 706     size = sp - bottom;
 707     p = (volatile char *)alloca(size);
 708     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 709     p[0] = '\0';
 710   }
 711 }
 712 
 713 void os::Linux::expand_stack_to(address bottom) {
 714   _expand_stack_to(bottom);
 715 }
 716 
 717 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 718   assert(t!=NULL, "just checking");
 719   assert(t->osthread()->expanding_stack(), "expand should be set");
 720   assert(t->stack_base() != NULL, "stack_base was not initialized");
 721 
 722   if (t->is_in_usable_stack(addr)) {
 723     sigset_t mask_all, old_sigset;
 724     sigfillset(&mask_all);
 725     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 726     _expand_stack_to(addr);
 727     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 728     return true;
 729   }
 730   return false;
 731 }
 732 
 733 //////////////////////////////////////////////////////////////////////////////
 734 // create new thread
 735 
 736 // Thread start routine for all newly created threads
 737 static void *thread_native_entry(Thread *thread) {
 738 
 739   thread->record_stack_base_and_size();
 740 
 741   // Try to randomize the cache line index of hot stack frames.
 742   // This helps when threads of the same stack traces evict each other's
 743   // cache lines. The threads can be either from the same JVM instance, or
 744   // from different JVM instances. The benefit is especially true for
 745   // processors with hyperthreading technology.
 746   static int counter = 0;
 747   int pid = os::current_process_id();
 748   alloca(((pid ^ counter++) & 7) * 128);
 749 
 750   thread->initialize_thread_current();
 751 
 752   OSThread* osthread = thread->osthread();
 753   Monitor* sync = osthread->startThread_lock();
 754 
 755   osthread->set_thread_id(os::current_thread_id());
 756 
 757   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 758     os::current_thread_id(), (uintx) pthread_self());
 759 
 760   if (UseNUMA) {
 761     int lgrp_id = os::numa_get_group_id();
 762     if (lgrp_id != -1) {
 763       thread->set_lgrp_id(lgrp_id);
 764     }
 765   }
 766   // initialize signal mask for this thread
 767   os::Linux::hotspot_sigmask(thread);
 768 
 769   // initialize floating point control register
 770   os::Linux::init_thread_fpu_state();
 771 
 772   // handshaking with parent thread
 773   {
 774     MutexLocker ml(sync, Mutex::_no_safepoint_check_flag);
 775 
 776     // notify parent thread
 777     osthread->set_state(INITIALIZED);
 778     sync->notify_all();
 779 
 780     // wait until os::start_thread()
 781     while (osthread->get_state() == INITIALIZED) {
 782       sync->wait_without_safepoint_check();
 783     }
 784   }
 785 
 786   assert(osthread->pthread_id() != 0, "pthread_id was not set as expected");
 787 
 788   // call one more level start routine
 789   thread->call_run();
 790 
 791   // Note: at this point the thread object may already have deleted itself.
 792   // Prevent dereferencing it from here on out.
 793   thread = NULL;
 794 
 795   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 796     os::current_thread_id(), (uintx) pthread_self());
 797 
 798   return 0;
 799 }
 800 
 801 // On Linux, glibc places static TLS blocks (for __thread variables) on
 802 // the thread stack. This decreases the stack size actually available
 803 // to threads.
 804 //
 805 // For large static TLS sizes, this may cause threads to malfunction due
 806 // to insufficient stack space. This is a well-known issue in glibc:
 807 // http://sourceware.org/bugzilla/show_bug.cgi?id=11787.
 808 //
 809 // As a workaround, we call a private but assumed-stable glibc function,
 810 // __pthread_get_minstack() to obtain the minstack size and derive the
 811 // static TLS size from it. We then increase the user requested stack
 812 // size by this TLS size.
 813 //
 814 // Due to compatibility concerns, this size adjustment is opt-in and
 815 // controlled via AdjustStackSizeForTLS.
 816 typedef size_t (*GetMinStack)(const pthread_attr_t *attr);
 817 
 818 GetMinStack _get_minstack_func = NULL;
 819 
 820 static void get_minstack_init() {
 821   _get_minstack_func =
 822         (GetMinStack)dlsym(RTLD_DEFAULT, "__pthread_get_minstack");
 823   log_info(os, thread)("Lookup of __pthread_get_minstack %s",
 824                        _get_minstack_func == NULL ? "failed" : "succeeded");
 825 }
 826 
 827 // Returns the size of the static TLS area glibc puts on thread stacks.
 828 // The value is cached on first use, which occurs when the first thread
 829 // is created during VM initialization.
 830 static size_t get_static_tls_area_size(const pthread_attr_t *attr) {
 831   size_t tls_size = 0;
 832   if (_get_minstack_func != NULL) {
 833     // Obtain the pthread minstack size by calling __pthread_get_minstack.
 834     size_t minstack_size = _get_minstack_func(attr);
 835 
 836     // Remove non-TLS area size included in minstack size returned
 837     // by __pthread_get_minstack() to get the static TLS size.
 838     // In glibc before 2.27, minstack size includes guard_size.
 839     // In glibc 2.27 and later, guard_size is automatically added
 840     // to the stack size by pthread_create and is no longer included
 841     // in minstack size. In both cases, the guard_size is taken into
 842     // account, so there is no need to adjust the result for that.
 843     //
 844     // Although __pthread_get_minstack() is a private glibc function,
 845     // it is expected to have a stable behavior across future glibc
 846     // versions while glibc still allocates the static TLS blocks off
 847     // the stack. Following is glibc 2.28 __pthread_get_minstack():
 848     //
 849     // size_t
 850     // __pthread_get_minstack (const pthread_attr_t *attr)
 851     // {
 852     //   return GLRO(dl_pagesize) + __static_tls_size + PTHREAD_STACK_MIN;
 853     // }
 854     //
 855     //
 856     // The following 'minstack_size > os::vm_page_size() + PTHREAD_STACK_MIN'
 857     // if check is done for precaution.
 858     if (minstack_size > (size_t)os::vm_page_size() + PTHREAD_STACK_MIN) {
 859       tls_size = minstack_size - os::vm_page_size() - PTHREAD_STACK_MIN;
 860     }
 861   }
 862 
 863   log_info(os, thread)("Stack size adjustment for TLS is " SIZE_FORMAT,
 864                        tls_size);
 865   return tls_size;
 866 }
 867 
 868 bool os::create_thread(Thread* thread, ThreadType thr_type,
 869                        size_t req_stack_size) {
 870   assert(thread->osthread() == NULL, "caller responsible");
 871 
 872   // Allocate the OSThread object
 873   OSThread* osthread = new OSThread(NULL, NULL);
 874   if (osthread == NULL) {
 875     return false;
 876   }
 877 
 878   // set the correct thread state
 879   osthread->set_thread_type(thr_type);
 880 
 881   // Initial state is ALLOCATED but not INITIALIZED
 882   osthread->set_state(ALLOCATED);
 883 
 884   thread->set_osthread(osthread);
 885 
 886   // init thread attributes
 887   pthread_attr_t attr;
 888   pthread_attr_init(&attr);
 889   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 890 
 891   // Calculate stack size if it's not specified by caller.
 892   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 893   // In glibc versions prior to 2.7 the guard size mechanism
 894   // is not implemented properly. The posix standard requires adding
 895   // the size of the guard pages to the stack size, instead Linux
 896   // takes the space out of 'stacksize'. Thus we adapt the requested
 897   // stack_size by the size of the guard pages to mimick proper
 898   // behaviour. However, be careful not to end up with a size
 899   // of zero due to overflow. Don't add the guard page in that case.
 900   size_t guard_size = os::Linux::default_guard_size(thr_type);
 901   // Configure glibc guard page. Must happen before calling
 902   // get_static_tls_area_size(), which uses the guard_size.
 903   pthread_attr_setguardsize(&attr, guard_size);
 904 
 905   size_t stack_adjust_size = 0;
 906   if (AdjustStackSizeForTLS) {
 907     // Adjust the stack_size for on-stack TLS - see get_static_tls_area_size().
 908     stack_adjust_size += get_static_tls_area_size(&attr);
 909   } else {
 910     stack_adjust_size += guard_size;
 911   }
 912 
 913   stack_adjust_size = align_up(stack_adjust_size, os::vm_page_size());
 914   if (stack_size <= SIZE_MAX - stack_adjust_size) {
 915     stack_size += stack_adjust_size;
 916   }
 917   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 918 
 919   int status = pthread_attr_setstacksize(&attr, stack_size);
 920   assert_status(status == 0, status, "pthread_attr_setstacksize");
 921 
 922   ThreadState state;
 923 
 924   {
 925     pthread_t tid;
 926     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 927 
 928     char buf[64];
 929     if (ret == 0) {
 930       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 931         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 932     } else {
 933       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 934         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 935       // Log some OS information which might explain why creating the thread failed.
 936       log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 937       LogStream st(Log(os, thread)::info());
 938       os::Posix::print_rlimit_info(&st);
 939       os::print_memory_info(&st);
 940       os::Linux::print_proc_sys_info(&st);
 941       os::Linux::print_container_info(&st);
 942     }
 943 
 944     pthread_attr_destroy(&attr);
 945 
 946     if (ret != 0) {
 947       // Need to clean up stuff we've allocated so far
 948       thread->set_osthread(NULL);
 949       delete osthread;
 950       return false;
 951     }
 952 
 953     // Store pthread info into the OSThread
 954     osthread->set_pthread_id(tid);
 955 
 956     // Wait until child thread is either initialized or aborted
 957     {
 958       Monitor* sync_with_child = osthread->startThread_lock();
 959       MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 960       while ((state = osthread->get_state()) == ALLOCATED) {
 961         sync_with_child->wait_without_safepoint_check();
 962       }
 963     }
 964   }
 965 
 966   // Aborted due to thread limit being reached
 967   if (state == ZOMBIE) {
 968     thread->set_osthread(NULL);
 969     delete osthread;
 970     return false;
 971   }
 972 
 973   // The thread is returned suspended (in state INITIALIZED),
 974   // and is started higher up in the call chain
 975   assert(state == INITIALIZED, "race condition");
 976   return true;
 977 }
 978 
 979 /////////////////////////////////////////////////////////////////////////////
 980 // attach existing thread
 981 
 982 // bootstrap the main thread
 983 bool os::create_main_thread(JavaThread* thread) {
 984   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 985   return create_attached_thread(thread);
 986 }
 987 
 988 bool os::create_attached_thread(JavaThread* thread) {
 989 #ifdef ASSERT
 990   thread->verify_not_published();
 991 #endif
 992 
 993   // Allocate the OSThread object
 994   OSThread* osthread = new OSThread(NULL, NULL);
 995 
 996   if (osthread == NULL) {
 997     return false;
 998   }
 999 
1000   // Store pthread info into the OSThread
1001   osthread->set_thread_id(os::Linux::gettid());
1002   osthread->set_pthread_id(::pthread_self());
1003 
1004   // initialize floating point control register
1005   os::Linux::init_thread_fpu_state();
1006 
1007   // Initial thread state is RUNNABLE
1008   osthread->set_state(RUNNABLE);
1009 
1010   thread->set_osthread(osthread);
1011 
1012   if (UseNUMA) {
1013     int lgrp_id = os::numa_get_group_id();
1014     if (lgrp_id != -1) {
1015       thread->set_lgrp_id(lgrp_id);
1016     }
1017   }
1018 
1019   if (os::is_primordial_thread()) {
1020     // If current thread is primordial thread, its stack is mapped on demand,
1021     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1022     // the entire stack region to avoid SEGV in stack banging.
1023     // It is also useful to get around the heap-stack-gap problem on SuSE
1024     // kernel (see 4821821 for details). We first expand stack to the top
1025     // of yellow zone, then enable stack yellow zone (order is significant,
1026     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1027     // is no gap between the last two virtual memory regions.
1028 
1029     JavaThread *jt = (JavaThread *)thread;
1030     address addr = jt->stack_reserved_zone_base();
1031     assert(addr != NULL, "initialization problem?");
1032     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1033 
1034     osthread->set_expanding_stack();
1035     os::Linux::manually_expand_stack(jt, addr);
1036     osthread->clear_expanding_stack();
1037   }
1038 
1039   // initialize signal mask for this thread
1040   // and save the caller's signal mask
1041   os::Linux::hotspot_sigmask(thread);
1042 
1043   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
1044     os::current_thread_id(), (uintx) pthread_self());
1045 
1046   return true;
1047 }
1048 
1049 void os::pd_start_thread(Thread* thread) {
1050   OSThread * osthread = thread->osthread();
1051   assert(osthread->get_state() != INITIALIZED, "just checking");
1052   Monitor* sync_with_child = osthread->startThread_lock();
1053   MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1054   sync_with_child->notify();
1055 }
1056 
1057 // Free Linux resources related to the OSThread
1058 void os::free_thread(OSThread* osthread) {
1059   assert(osthread != NULL, "osthread not set");
1060 
1061   // We are told to free resources of the argument thread,
1062   // but we can only really operate on the current thread.
1063   assert(Thread::current()->osthread() == osthread,
1064          "os::free_thread but not current thread");
1065 
1066 #ifdef ASSERT
1067   sigset_t current;
1068   sigemptyset(&current);
1069   pthread_sigmask(SIG_SETMASK, NULL, &current);
1070   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
1071 #endif
1072 
1073   // Restore caller's signal mask
1074   sigset_t sigmask = osthread->caller_sigmask();
1075   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1076 
1077   delete osthread;
1078 }
1079 
1080 //////////////////////////////////////////////////////////////////////////////
1081 // primordial thread
1082 
1083 // Check if current thread is the primordial thread, similar to Solaris thr_main.
1084 bool os::is_primordial_thread(void) {
1085   if (suppress_primordial_thread_resolution) {
1086     return false;
1087   }
1088   char dummy;
1089   // If called before init complete, thread stack bottom will be null.
1090   // Can be called if fatal error occurs before initialization.
1091   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
1092   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
1093          os::Linux::initial_thread_stack_size()   != 0,
1094          "os::init did not locate primordial thread's stack region");
1095   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
1096       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
1097                         os::Linux::initial_thread_stack_size()) {
1098     return true;
1099   } else {
1100     return false;
1101   }
1102 }
1103 
1104 // Find the virtual memory area that contains addr
1105 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1106   FILE *fp = fopen("/proc/self/maps", "r");
1107   if (fp) {
1108     address low, high;
1109     while (!feof(fp)) {
1110       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1111         if (low <= addr && addr < high) {
1112           if (vma_low)  *vma_low  = low;
1113           if (vma_high) *vma_high = high;
1114           fclose(fp);
1115           return true;
1116         }
1117       }
1118       for (;;) {
1119         int ch = fgetc(fp);
1120         if (ch == EOF || ch == (int)'\n') break;
1121       }
1122     }
1123     fclose(fp);
1124   }
1125   return false;
1126 }
1127 
1128 // Locate primordial thread stack. This special handling of primordial thread stack
1129 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1130 // bogus value for the primordial process thread. While the launcher has created
1131 // the VM in a new thread since JDK 6, we still have to allow for the use of the
1132 // JNI invocation API from a primordial thread.
1133 void os::Linux::capture_initial_stack(size_t max_size) {
1134 
1135   // max_size is either 0 (which means accept OS default for thread stacks) or
1136   // a user-specified value known to be at least the minimum needed. If we
1137   // are actually on the primordial thread we can make it appear that we have a
1138   // smaller max_size stack by inserting the guard pages at that location. But we
1139   // cannot do anything to emulate a larger stack than what has been provided by
1140   // the OS or threading library. In fact if we try to use a stack greater than
1141   // what is set by rlimit then we will crash the hosting process.
1142 
1143   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
1144   // If this is "unlimited" then it will be a huge value.
1145   struct rlimit rlim;
1146   getrlimit(RLIMIT_STACK, &rlim);
1147   size_t stack_size = rlim.rlim_cur;
1148 
1149   // 6308388: a bug in ld.so will relocate its own .data section to the
1150   //   lower end of primordial stack; reduce ulimit -s value a little bit
1151   //   so we won't install guard page on ld.so's data section.
1152   //   But ensure we don't underflow the stack size - allow 1 page spare
1153   if (stack_size >= (size_t)(3 * page_size())) {
1154     stack_size -= 2 * page_size();
1155   }
1156 
1157   // Try to figure out where the stack base (top) is. This is harder.
1158   //
1159   // When an application is started, glibc saves the initial stack pointer in
1160   // a global variable "__libc_stack_end", which is then used by system
1161   // libraries. __libc_stack_end should be pretty close to stack top. The
1162   // variable is available since the very early days. However, because it is
1163   // a private interface, it could disappear in the future.
1164   //
1165   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1166   // to __libc_stack_end, it is very close to stack top, but isn't the real
1167   // stack top. Note that /proc may not exist if VM is running as a chroot
1168   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1169   // /proc/<pid>/stat could change in the future (though unlikely).
1170   //
1171   // We try __libc_stack_end first. If that doesn't work, look for
1172   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1173   // as a hint, which should work well in most cases.
1174 
1175   uintptr_t stack_start;
1176 
1177   // try __libc_stack_end first
1178   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1179   if (p && *p) {
1180     stack_start = *p;
1181   } else {
1182     // see if we can get the start_stack field from /proc/self/stat
1183     FILE *fp;
1184     int pid;
1185     char state;
1186     int ppid;
1187     int pgrp;
1188     int session;
1189     int nr;
1190     int tpgrp;
1191     unsigned long flags;
1192     unsigned long minflt;
1193     unsigned long cminflt;
1194     unsigned long majflt;
1195     unsigned long cmajflt;
1196     unsigned long utime;
1197     unsigned long stime;
1198     long cutime;
1199     long cstime;
1200     long prio;
1201     long nice;
1202     long junk;
1203     long it_real;
1204     uintptr_t start;
1205     uintptr_t vsize;
1206     intptr_t rss;
1207     uintptr_t rsslim;
1208     uintptr_t scodes;
1209     uintptr_t ecode;
1210     int i;
1211 
1212     // Figure what the primordial thread stack base is. Code is inspired
1213     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1214     // followed by command name surrounded by parentheses, state, etc.
1215     char stat[2048];
1216     int statlen;
1217 
1218     fp = fopen("/proc/self/stat", "r");
1219     if (fp) {
1220       statlen = fread(stat, 1, 2047, fp);
1221       stat[statlen] = '\0';
1222       fclose(fp);
1223 
1224       // Skip pid and the command string. Note that we could be dealing with
1225       // weird command names, e.g. user could decide to rename java launcher
1226       // to "java 1.4.2 :)", then the stat file would look like
1227       //                1234 (java 1.4.2 :)) R ... ...
1228       // We don't really need to know the command string, just find the last
1229       // occurrence of ")" and then start parsing from there. See bug 4726580.
1230       char * s = strrchr(stat, ')');
1231 
1232       i = 0;
1233       if (s) {
1234         // Skip blank chars
1235         do { s++; } while (s && isspace(*s));
1236 
1237 #define _UFM UINTX_FORMAT
1238 #define _DFM INTX_FORMAT
1239 
1240         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1241         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1242         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1243                    &state,          // 3  %c
1244                    &ppid,           // 4  %d
1245                    &pgrp,           // 5  %d
1246                    &session,        // 6  %d
1247                    &nr,             // 7  %d
1248                    &tpgrp,          // 8  %d
1249                    &flags,          // 9  %lu
1250                    &minflt,         // 10 %lu
1251                    &cminflt,        // 11 %lu
1252                    &majflt,         // 12 %lu
1253                    &cmajflt,        // 13 %lu
1254                    &utime,          // 14 %lu
1255                    &stime,          // 15 %lu
1256                    &cutime,         // 16 %ld
1257                    &cstime,         // 17 %ld
1258                    &prio,           // 18 %ld
1259                    &nice,           // 19 %ld
1260                    &junk,           // 20 %ld
1261                    &it_real,        // 21 %ld
1262                    &start,          // 22 UINTX_FORMAT
1263                    &vsize,          // 23 UINTX_FORMAT
1264                    &rss,            // 24 INTX_FORMAT
1265                    &rsslim,         // 25 UINTX_FORMAT
1266                    &scodes,         // 26 UINTX_FORMAT
1267                    &ecode,          // 27 UINTX_FORMAT
1268                    &stack_start);   // 28 UINTX_FORMAT
1269       }
1270 
1271 #undef _UFM
1272 #undef _DFM
1273 
1274       if (i != 28 - 2) {
1275         assert(false, "Bad conversion from /proc/self/stat");
1276         // product mode - assume we are the primordial thread, good luck in the
1277         // embedded case.
1278         warning("Can't detect primordial thread stack location - bad conversion");
1279         stack_start = (uintptr_t) &rlim;
1280       }
1281     } else {
1282       // For some reason we can't open /proc/self/stat (for example, running on
1283       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1284       // most cases, so don't abort:
1285       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1286       stack_start = (uintptr_t) &rlim;
1287     }
1288   }
1289 
1290   // Now we have a pointer (stack_start) very close to the stack top, the
1291   // next thing to do is to figure out the exact location of stack top. We
1292   // can find out the virtual memory area that contains stack_start by
1293   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1294   // and its upper limit is the real stack top. (again, this would fail if
1295   // running inside chroot, because /proc may not exist.)
1296 
1297   uintptr_t stack_top;
1298   address low, high;
1299   if (find_vma((address)stack_start, &low, &high)) {
1300     // success, "high" is the true stack top. (ignore "low", because initial
1301     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1302     stack_top = (uintptr_t)high;
1303   } else {
1304     // failed, likely because /proc/self/maps does not exist
1305     warning("Can't detect primordial thread stack location - find_vma failed");
1306     // best effort: stack_start is normally within a few pages below the real
1307     // stack top, use it as stack top, and reduce stack size so we won't put
1308     // guard page outside stack.
1309     stack_top = stack_start;
1310     stack_size -= 16 * page_size();
1311   }
1312 
1313   // stack_top could be partially down the page so align it
1314   stack_top = align_up(stack_top, page_size());
1315 
1316   // Allowed stack value is minimum of max_size and what we derived from rlimit
1317   if (max_size > 0) {
1318     _initial_thread_stack_size = MIN2(max_size, stack_size);
1319   } else {
1320     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1321     // clamp it at 8MB as we do on Solaris
1322     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1323   }
1324   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1325   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1326 
1327   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1328 
1329   if (log_is_enabled(Info, os, thread)) {
1330     // See if we seem to be on primordial process thread
1331     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1332                       uintptr_t(&rlim) < stack_top;
1333 
1334     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1335                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1336                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1337                          stack_top, intptr_t(_initial_thread_stack_bottom));
1338   }
1339 }
1340 
1341 ////////////////////////////////////////////////////////////////////////////////
1342 // time support
1343 
1344 #ifndef SUPPORTS_CLOCK_MONOTONIC
1345 #error "Build platform doesn't support clock_gettime and related functionality"
1346 #endif
1347 
1348 // Time since start-up in seconds to a fine granularity.
1349 // Used by VMSelfDestructTimer and the MemProfiler.
1350 double os::elapsedTime() {
1351 
1352   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1353 }
1354 
1355 jlong os::elapsed_counter() {
1356   return javaTimeNanos() - initial_time_count;
1357 }
1358 
1359 jlong os::elapsed_frequency() {
1360   return NANOSECS_PER_SEC; // nanosecond resolution
1361 }
1362 
1363 bool os::supports_vtime() { return true; }
1364 
1365 double os::elapsedVTime() {
1366   struct rusage usage;
1367   int retval = getrusage(RUSAGE_THREAD, &usage);
1368   if (retval == 0) {
1369     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1370   } else {
1371     // better than nothing, but not much
1372     return elapsedTime();
1373   }
1374 }
1375 
1376 jlong os::javaTimeMillis() {
1377   timeval time;
1378   int status = gettimeofday(&time, NULL);
1379   assert(status != -1, "linux error");
1380   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1381 }
1382 
1383 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1384   timeval time;
1385   int status = gettimeofday(&time, NULL);
1386   assert(status != -1, "linux error");
1387   seconds = jlong(time.tv_sec);
1388   nanos = jlong(time.tv_usec) * 1000;
1389 }
1390 
1391 void os::Linux::fast_thread_clock_init() {
1392   if (!UseLinuxPosixThreadCPUClocks) {
1393     return;
1394   }
1395   clockid_t clockid;
1396   struct timespec tp;
1397   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1398       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1399 
1400   // Switch to using fast clocks for thread cpu time if
1401   // the clock_getres() returns 0 error code.
1402   // Note, that some kernels may support the current thread
1403   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1404   // returned by the pthread_getcpuclockid().
1405   // If the fast Posix clocks are supported then the clock_getres()
1406   // must return at least tp.tv_sec == 0 which means a resolution
1407   // better than 1 sec. This is extra check for reliability.
1408 
1409   if (pthread_getcpuclockid_func &&
1410       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1411       os::Posix::clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1412     _supports_fast_thread_cpu_time = true;
1413     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1414   }
1415 }
1416 
1417 jlong os::javaTimeNanos() {
1418   if (os::supports_monotonic_clock()) {
1419     struct timespec tp;
1420     int status = os::Posix::clock_gettime(CLOCK_MONOTONIC, &tp);
1421     assert(status == 0, "gettime error");
1422     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1423     return result;
1424   } else {
1425     timeval time;
1426     int status = gettimeofday(&time, NULL);
1427     assert(status != -1, "linux error");
1428     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1429     return 1000 * usecs;
1430   }
1431 }
1432 
1433 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1434   if (os::supports_monotonic_clock()) {
1435     info_ptr->max_value = ALL_64_BITS;
1436 
1437     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1438     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1439     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1440   } else {
1441     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1442     info_ptr->max_value = ALL_64_BITS;
1443 
1444     // gettimeofday is a real time clock so it skips
1445     info_ptr->may_skip_backward = true;
1446     info_ptr->may_skip_forward = true;
1447   }
1448 
1449   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1450 }
1451 
1452 // Return the real, user, and system times in seconds from an
1453 // arbitrary fixed point in the past.
1454 bool os::getTimesSecs(double* process_real_time,
1455                       double* process_user_time,
1456                       double* process_system_time) {
1457   struct tms ticks;
1458   clock_t real_ticks = times(&ticks);
1459 
1460   if (real_ticks == (clock_t) (-1)) {
1461     return false;
1462   } else {
1463     double ticks_per_second = (double) clock_tics_per_sec;
1464     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1465     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1466     *process_real_time = ((double) real_ticks) / ticks_per_second;
1467 
1468     return true;
1469   }
1470 }
1471 
1472 
1473 char * os::local_time_string(char *buf, size_t buflen) {
1474   struct tm t;
1475   time_t long_time;
1476   time(&long_time);
1477   localtime_r(&long_time, &t);
1478   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1479                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1480                t.tm_hour, t.tm_min, t.tm_sec);
1481   return buf;
1482 }
1483 
1484 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1485   return localtime_r(clock, res);
1486 }
1487 
1488 ////////////////////////////////////////////////////////////////////////////////
1489 // runtime exit support
1490 
1491 // Note: os::shutdown() might be called very early during initialization, or
1492 // called from signal handler. Before adding something to os::shutdown(), make
1493 // sure it is async-safe and can handle partially initialized VM.
1494 void os::shutdown() {
1495 
1496   // allow PerfMemory to attempt cleanup of any persistent resources
1497   perfMemory_exit();
1498 
1499   // needs to remove object in file system
1500   AttachListener::abort();
1501 
1502   // flush buffered output, finish log files
1503   ostream_abort();
1504 
1505   // Check for abort hook
1506   abort_hook_t abort_hook = Arguments::abort_hook();
1507   if (abort_hook != NULL) {
1508     abort_hook();
1509   }
1510 
1511 }
1512 
1513 // Note: os::abort() might be called very early during initialization, or
1514 // called from signal handler. Before adding something to os::abort(), make
1515 // sure it is async-safe and can handle partially initialized VM.
1516 void os::abort(bool dump_core, void* siginfo, const void* context) {
1517   os::shutdown();
1518   if (dump_core) {
1519     if (DumpPrivateMappingsInCore) {
1520       ClassLoader::close_jrt_image();
1521     }
1522 #ifndef PRODUCT
1523     fdStream out(defaultStream::output_fd());
1524     out.print_raw("Current thread is ");
1525     char buf[16];
1526     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1527     out.print_raw_cr(buf);
1528     out.print_raw_cr("Dumping core ...");
1529 #endif
1530     ::abort(); // dump core
1531   }
1532 
1533   ::exit(1);
1534 }
1535 
1536 // Die immediately, no exit hook, no abort hook, no cleanup.
1537 // Dump a core file, if possible, for debugging.
1538 void os::die() {
1539   if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) {
1540     // For TimeoutInErrorHandlingTest.java, we just kill the VM
1541     // and don't take the time to generate a core file.
1542     os::signal_raise(SIGKILL);
1543   } else {
1544     ::abort();
1545   }
1546 }
1547 
1548 // thread_id is kernel thread id (similar to Solaris LWP id)
1549 intx os::current_thread_id() { return os::Linux::gettid(); }
1550 int os::current_process_id() {
1551   return ::getpid();
1552 }
1553 
1554 // DLL functions
1555 
1556 const char* os::dll_file_extension() { return ".so"; }
1557 
1558 // This must be hard coded because it's the system's temporary
1559 // directory not the java application's temp directory, ala java.io.tmpdir.
1560 const char* os::get_temp_directory() { return "/tmp"; }
1561 
1562 static bool file_exists(const char* filename) {
1563   struct stat statbuf;
1564   if (filename == NULL || strlen(filename) == 0) {
1565     return false;
1566   }
1567   return os::stat(filename, &statbuf) == 0;
1568 }
1569 
1570 // check if addr is inside libjvm.so
1571 bool os::address_is_in_vm(address addr) {
1572   static address libjvm_base_addr;
1573   Dl_info dlinfo;
1574 
1575   if (libjvm_base_addr == NULL) {
1576     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1577       libjvm_base_addr = (address)dlinfo.dli_fbase;
1578     }
1579     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1580   }
1581 
1582   if (dladdr((void *)addr, &dlinfo) != 0) {
1583     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1584   }
1585 
1586   return false;
1587 }
1588 
1589 bool os::dll_address_to_function_name(address addr, char *buf,
1590                                       int buflen, int *offset,
1591                                       bool demangle) {
1592   // buf is not optional, but offset is optional
1593   assert(buf != NULL, "sanity check");
1594 
1595   Dl_info dlinfo;
1596 
1597   if (dladdr((void*)addr, &dlinfo) != 0) {
1598     // see if we have a matching symbol
1599     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1600       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1601         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1602       }
1603       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1604       return true;
1605     }
1606     // no matching symbol so try for just file info
1607     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1608       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1609                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1610         return true;
1611       }
1612     }
1613   }
1614 
1615   buf[0] = '\0';
1616   if (offset != NULL) *offset = -1;
1617   return false;
1618 }
1619 
1620 struct _address_to_library_name {
1621   address addr;          // input : memory address
1622   size_t  buflen;        //         size of fname
1623   char*   fname;         // output: library name
1624   address base;          //         library base addr
1625 };
1626 
1627 static int address_to_library_name_callback(struct dl_phdr_info *info,
1628                                             size_t size, void *data) {
1629   int i;
1630   bool found = false;
1631   address libbase = NULL;
1632   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1633 
1634   // iterate through all loadable segments
1635   for (i = 0; i < info->dlpi_phnum; i++) {
1636     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1637     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1638       // base address of a library is the lowest address of its loaded
1639       // segments.
1640       if (libbase == NULL || libbase > segbase) {
1641         libbase = segbase;
1642       }
1643       // see if 'addr' is within current segment
1644       if (segbase <= d->addr &&
1645           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1646         found = true;
1647       }
1648     }
1649   }
1650 
1651   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1652   // so dll_address_to_library_name() can fall through to use dladdr() which
1653   // can figure out executable name from argv[0].
1654   if (found && info->dlpi_name && info->dlpi_name[0]) {
1655     d->base = libbase;
1656     if (d->fname) {
1657       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1658     }
1659     return 1;
1660   }
1661   return 0;
1662 }
1663 
1664 bool os::dll_address_to_library_name(address addr, char* buf,
1665                                      int buflen, int* offset) {
1666   // buf is not optional, but offset is optional
1667   assert(buf != NULL, "sanity check");
1668 
1669   Dl_info dlinfo;
1670   struct _address_to_library_name data;
1671 
1672   // There is a bug in old glibc dladdr() implementation that it could resolve
1673   // to wrong library name if the .so file has a base address != NULL. Here
1674   // we iterate through the program headers of all loaded libraries to find
1675   // out which library 'addr' really belongs to. This workaround can be
1676   // removed once the minimum requirement for glibc is moved to 2.3.x.
1677   data.addr = addr;
1678   data.fname = buf;
1679   data.buflen = buflen;
1680   data.base = NULL;
1681   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1682 
1683   if (rslt) {
1684     // buf already contains library name
1685     if (offset) *offset = addr - data.base;
1686     return true;
1687   }
1688   if (dladdr((void*)addr, &dlinfo) != 0) {
1689     if (dlinfo.dli_fname != NULL) {
1690       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1691     }
1692     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1693       *offset = addr - (address)dlinfo.dli_fbase;
1694     }
1695     return true;
1696   }
1697 
1698   buf[0] = '\0';
1699   if (offset) *offset = -1;
1700   return false;
1701 }
1702 
1703 // Loads .dll/.so and
1704 // in case of error it checks if .dll/.so was built for the
1705 // same architecture as Hotspot is running on
1706 
1707 
1708 // Remember the stack's state. The Linux dynamic linker will change
1709 // the stack to 'executable' at most once, so we must safepoint only once.
1710 bool os::Linux::_stack_is_executable = false;
1711 
1712 // VM operation that loads a library.  This is necessary if stack protection
1713 // of the Java stacks can be lost during loading the library.  If we
1714 // do not stop the Java threads, they can stack overflow before the stacks
1715 // are protected again.
1716 class VM_LinuxDllLoad: public VM_Operation {
1717  private:
1718   const char *_filename;
1719   char *_ebuf;
1720   int _ebuflen;
1721   void *_lib;
1722  public:
1723   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1724     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1725   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1726   void doit() {
1727     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1728     os::Linux::_stack_is_executable = true;
1729   }
1730   void* loaded_library() { return _lib; }
1731 };
1732 
1733 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1734   void * result = NULL;
1735   bool load_attempted = false;
1736 
1737   log_info(os)("attempting shared library load of %s", filename);
1738 
1739   // Check whether the library to load might change execution rights
1740   // of the stack. If they are changed, the protection of the stack
1741   // guard pages will be lost. We need a safepoint to fix this.
1742   //
1743   // See Linux man page execstack(8) for more info.
1744   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1745     if (!ElfFile::specifies_noexecstack(filename)) {
1746       if (!is_init_completed()) {
1747         os::Linux::_stack_is_executable = true;
1748         // This is OK - No Java threads have been created yet, and hence no
1749         // stack guard pages to fix.
1750         //
1751         // Dynamic loader will make all stacks executable after
1752         // this function returns, and will not do that again.
1753         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1754       } else {
1755         warning("You have loaded library %s which might have disabled stack guard. "
1756                 "The VM will try to fix the stack guard now.\n"
1757                 "It's highly recommended that you fix the library with "
1758                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1759                 filename);
1760 
1761         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1762         JavaThread *jt = JavaThread::current();
1763         if (jt->thread_state() != _thread_in_native) {
1764           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1765           // that requires ExecStack. Cannot enter safe point. Let's give up.
1766           warning("Unable to fix stack guard. Giving up.");
1767         } else {
1768           if (!LoadExecStackDllInVMThread) {
1769             // This is for the case where the DLL has an static
1770             // constructor function that executes JNI code. We cannot
1771             // load such DLLs in the VMThread.
1772             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1773           }
1774 
1775           ThreadInVMfromNative tiv(jt);
1776           debug_only(VMNativeEntryWrapper vew;)
1777 
1778           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1779           VMThread::execute(&op);
1780           if (LoadExecStackDllInVMThread) {
1781             result = op.loaded_library();
1782           }
1783           load_attempted = true;
1784         }
1785       }
1786     }
1787   }
1788 
1789   if (!load_attempted) {
1790     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1791   }
1792 
1793   if (result != NULL) {
1794     // Successful loading
1795     return result;
1796   }
1797 
1798   Elf32_Ehdr elf_head;
1799   int diag_msg_max_length=ebuflen-strlen(ebuf);
1800   char* diag_msg_buf=ebuf+strlen(ebuf);
1801 
1802   if (diag_msg_max_length==0) {
1803     // No more space in ebuf for additional diagnostics message
1804     return NULL;
1805   }
1806 
1807 
1808   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1809 
1810   if (file_descriptor < 0) {
1811     // Can't open library, report dlerror() message
1812     return NULL;
1813   }
1814 
1815   bool failed_to_read_elf_head=
1816     (sizeof(elf_head)!=
1817      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1818 
1819   ::close(file_descriptor);
1820   if (failed_to_read_elf_head) {
1821     // file i/o error - report dlerror() msg
1822     return NULL;
1823   }
1824 
1825   if (elf_head.e_ident[EI_DATA] != LITTLE_ENDIAN_ONLY(ELFDATA2LSB) BIG_ENDIAN_ONLY(ELFDATA2MSB)) {
1826     // handle invalid/out of range endianness values
1827     if (elf_head.e_ident[EI_DATA] == 0 || elf_head.e_ident[EI_DATA] > 2) {
1828       return NULL;
1829     }
1830 
1831 #if defined(VM_LITTLE_ENDIAN)
1832     // VM is LE, shared object BE
1833     elf_head.e_machine = be16toh(elf_head.e_machine);
1834 #else
1835     // VM is BE, shared object LE
1836     elf_head.e_machine = le16toh(elf_head.e_machine);
1837 #endif
1838   }
1839 
1840   typedef struct {
1841     Elf32_Half    code;         // Actual value as defined in elf.h
1842     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1843     unsigned char elf_class;    // 32 or 64 bit
1844     unsigned char endianness;   // MSB or LSB
1845     char*         name;         // String representation
1846   } arch_t;
1847 
1848 #ifndef EM_486
1849   #define EM_486          6               /* Intel 80486 */
1850 #endif
1851 #ifndef EM_AARCH64
1852   #define EM_AARCH64    183               /* ARM AARCH64 */
1853 #endif
1854 
1855   static const arch_t arch_array[]={
1856     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1857     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1858     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1859     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1860     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1861     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1862     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1863     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1864 #if defined(VM_LITTLE_ENDIAN)
1865     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1866     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1867 #else
1868     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1869     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1870 #endif
1871     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
1872     // we only support 64 bit z architecture
1873     {EM_S390,        EM_S390,    ELFCLASS64, ELFDATA2MSB, (char*)"IBM System/390"},
1874     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1875     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1876     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1877     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1878     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1879     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1880   };
1881 
1882 #if  (defined IA32)
1883   static  Elf32_Half running_arch_code=EM_386;
1884 #elif   (defined AMD64) || (defined X32)
1885   static  Elf32_Half running_arch_code=EM_X86_64;
1886 #elif  (defined IA64)
1887   static  Elf32_Half running_arch_code=EM_IA_64;
1888 #elif  (defined __sparc) && (defined _LP64)
1889   static  Elf32_Half running_arch_code=EM_SPARCV9;
1890 #elif  (defined __sparc) && (!defined _LP64)
1891   static  Elf32_Half running_arch_code=EM_SPARC;
1892 #elif  (defined __powerpc64__)
1893   static  Elf32_Half running_arch_code=EM_PPC64;
1894 #elif  (defined __powerpc__)
1895   static  Elf32_Half running_arch_code=EM_PPC;
1896 #elif  (defined AARCH64)
1897   static  Elf32_Half running_arch_code=EM_AARCH64;
1898 #elif  (defined ARM)
1899   static  Elf32_Half running_arch_code=EM_ARM;
1900 #elif  (defined S390)
1901   static  Elf32_Half running_arch_code=EM_S390;
1902 #elif  (defined ALPHA)
1903   static  Elf32_Half running_arch_code=EM_ALPHA;
1904 #elif  (defined MIPSEL)
1905   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1906 #elif  (defined PARISC)
1907   static  Elf32_Half running_arch_code=EM_PARISC;
1908 #elif  (defined MIPS)
1909   static  Elf32_Half running_arch_code=EM_MIPS;
1910 #elif  (defined M68K)
1911   static  Elf32_Half running_arch_code=EM_68K;
1912 #elif  (defined SH)
1913   static  Elf32_Half running_arch_code=EM_SH;
1914 #else
1915     #error Method os::dll_load requires that one of following is defined:\
1916         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1917 #endif
1918 
1919   // Identify compatibility class for VM's architecture and library's architecture
1920   // Obtain string descriptions for architectures
1921 
1922   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1923   int running_arch_index=-1;
1924 
1925   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1926     if (running_arch_code == arch_array[i].code) {
1927       running_arch_index    = i;
1928     }
1929     if (lib_arch.code == arch_array[i].code) {
1930       lib_arch.compat_class = arch_array[i].compat_class;
1931       lib_arch.name         = arch_array[i].name;
1932     }
1933   }
1934 
1935   assert(running_arch_index != -1,
1936          "Didn't find running architecture code (running_arch_code) in arch_array");
1937   if (running_arch_index == -1) {
1938     // Even though running architecture detection failed
1939     // we may still continue with reporting dlerror() message
1940     return NULL;
1941   }
1942 
1943   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1944     if (lib_arch.name != NULL) {
1945       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1946                  " (Possible cause: can't load %s .so on a %s platform)",
1947                  lib_arch.name, arch_array[running_arch_index].name);
1948     } else {
1949       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1950                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s platform)",
1951                  lib_arch.code, arch_array[running_arch_index].name);
1952     }
1953     return NULL;
1954   }
1955 
1956   if (lib_arch.endianness != arch_array[running_arch_index].endianness) {
1957     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: endianness mismatch)");
1958     return NULL;
1959   }
1960 
1961   // ELF file class/capacity : 0 - invalid, 1 - 32bit, 2 - 64bit
1962   if (lib_arch.elf_class > 2 || lib_arch.elf_class < 1) {
1963     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: invalid ELF file class)");
1964     return NULL;
1965   }
1966 
1967   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1968     ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1969                " (Possible cause: architecture word width mismatch, can't load %d-bit .so on a %d-bit platform)",
1970                (int) lib_arch.elf_class * 32, arch_array[running_arch_index].elf_class * 32);
1971     return NULL;
1972   }
1973 
1974   return NULL;
1975 }
1976 
1977 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1978                                 int ebuflen) {
1979   void * result = ::dlopen(filename, RTLD_LAZY);
1980   if (result == NULL) {
1981     const char* error_report = ::dlerror();
1982     if (error_report == NULL) {
1983       error_report = "dlerror returned no error description";
1984     }
1985     if (ebuf != NULL && ebuflen > 0) {
1986       ::strncpy(ebuf, error_report, ebuflen-1);
1987       ebuf[ebuflen-1]='\0';
1988     }
1989     Events::log(NULL, "Loading shared library %s failed, %s", filename, error_report);
1990     log_info(os)("shared library load of %s failed, %s", filename, error_report);
1991   } else {
1992     Events::log(NULL, "Loaded shared library %s", filename);
1993     log_info(os)("shared library load of %s was successful", filename);
1994   }
1995   return result;
1996 }
1997 
1998 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1999                                        int ebuflen) {
2000   void * result = NULL;
2001   if (LoadExecStackDllInVMThread) {
2002     result = dlopen_helper(filename, ebuf, ebuflen);
2003   }
2004 
2005   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2006   // library that requires an executable stack, or which does not have this
2007   // stack attribute set, dlopen changes the stack attribute to executable. The
2008   // read protection of the guard pages gets lost.
2009   //
2010   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2011   // may have been queued at the same time.
2012 
2013   if (!_stack_is_executable) {
2014     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2015       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
2016           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
2017         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
2018           warning("Attempt to reguard stack yellow zone failed.");
2019         }
2020       }
2021     }
2022   }
2023 
2024   return result;
2025 }
2026 
2027 void* os::dll_lookup(void* handle, const char* name) {
2028   void* res = dlsym(handle, name);
2029   return res;
2030 }
2031 
2032 void* os::get_default_process_handle() {
2033   return (void*)::dlopen(NULL, RTLD_LAZY);
2034 }
2035 
2036 static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) {
2037   int fd = ::open(filename, O_RDONLY);
2038   if (fd == -1) {
2039     return false;
2040   }
2041 
2042   if (hdr != NULL) {
2043     st->print_cr("%s", hdr);
2044   }
2045 
2046   char buf[33];
2047   int bytes;
2048   buf[32] = '\0';
2049   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
2050     st->print_raw(buf, bytes);
2051   }
2052 
2053   ::close(fd);
2054 
2055   return true;
2056 }
2057 
2058 void os::print_dll_info(outputStream *st) {
2059   st->print_cr("Dynamic libraries:");
2060 
2061   char fname[32];
2062   pid_t pid = os::Linux::gettid();
2063 
2064   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2065 
2066   if (!_print_ascii_file(fname, st)) {
2067     st->print("Can not get library information for pid = %d\n", pid);
2068   }
2069 }
2070 
2071 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2072   FILE *procmapsFile = NULL;
2073 
2074   // Open the procfs maps file for the current process
2075   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2076     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2077     char line[PATH_MAX + 100];
2078 
2079     // Read line by line from 'file'
2080     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2081       u8 base, top, offset, inode;
2082       char permissions[5];
2083       char device[6];
2084       char name[sizeof(line)];
2085 
2086       // Parse fields from line
2087       int matches = sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
2088              &base, &top, permissions, &offset, device, &inode, name);
2089       // the last entry 'name' is empty for some entries, so we might have 6 matches instead of 7 for some lines
2090       if (matches < 6) continue;
2091       if (matches == 6) name[0] = '\0';
2092 
2093       // Filter by device id '00:00' so that we only get file system mapped files.
2094       if (strcmp(device, "00:00") != 0) {
2095 
2096         // Call callback with the fields of interest
2097         if(callback(name, (address)base, (address)top, param)) {
2098           // Oops abort, callback aborted
2099           fclose(procmapsFile);
2100           return 1;
2101         }
2102       }
2103     }
2104     fclose(procmapsFile);
2105   }
2106   return 0;
2107 }
2108 
2109 void os::print_os_info_brief(outputStream* st) {
2110   os::Linux::print_distro_info(st);
2111 
2112   os::Posix::print_uname_info(st);
2113 
2114   os::Linux::print_libversion_info(st);
2115 
2116 }
2117 
2118 void os::print_os_info(outputStream* st) {
2119   st->print("OS:");
2120 
2121   os::Linux::print_distro_info(st);
2122 
2123   os::Posix::print_uname_info(st);
2124 
2125   os::Linux::print_uptime_info(st);
2126 
2127   // Print warning if unsafe chroot environment detected
2128   if (unsafe_chroot_detected) {
2129     st->print("WARNING!! ");
2130     st->print_cr("%s", unstable_chroot_error);
2131   }
2132 
2133   os::Linux::print_libversion_info(st);
2134 
2135   os::Posix::print_rlimit_info(st);
2136 
2137   os::Posix::print_load_average(st);
2138 
2139   os::Linux::print_full_memory_info(st);
2140 
2141   os::Linux::print_proc_sys_info(st);
2142 
2143   os::Linux::print_ld_preload_file(st);
2144 
2145   os::Linux::print_container_info(st);
2146 
2147   VM_Version::print_platform_virtualization_info(st);
2148 
2149   os::Linux::print_steal_info(st);
2150 }
2151 
2152 // Try to identify popular distros.
2153 // Most Linux distributions have a /etc/XXX-release file, which contains
2154 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2155 // file that also contains the OS version string. Some have more than one
2156 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2157 // /etc/redhat-release.), so the order is important.
2158 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2159 // their own specific XXX-release file as well as a redhat-release file.
2160 // Because of this the XXX-release file needs to be searched for before the
2161 // redhat-release file.
2162 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2163 // search for redhat-release / SuSE-release needs to be before lsb-release.
2164 // Since the lsb-release file is the new standard it needs to be searched
2165 // before the older style release files.
2166 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2167 // next to last resort.  The os-release file is a new standard that contains
2168 // distribution information and the system-release file seems to be an old
2169 // standard that has been replaced by the lsb-release and os-release files.
2170 // Searching for the debian_version file is the last resort.  It contains
2171 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2172 // "Debian " is printed before the contents of the debian_version file.
2173 
2174 const char* distro_files[] = {
2175   "/etc/oracle-release",
2176   "/etc/mandriva-release",
2177   "/etc/mandrake-release",
2178   "/etc/sun-release",
2179   "/etc/redhat-release",
2180   "/etc/SuSE-release",
2181   "/etc/lsb-release",
2182   "/etc/turbolinux-release",
2183   "/etc/gentoo-release",
2184   "/etc/ltib-release",
2185   "/etc/angstrom-version",
2186   "/etc/system-release",
2187   "/etc/os-release",
2188   NULL };
2189 
2190 void os::Linux::print_distro_info(outputStream* st) {
2191   for (int i = 0;; i++) {
2192     const char* file = distro_files[i];
2193     if (file == NULL) {
2194       break;  // done
2195     }
2196     // If file prints, we found it.
2197     if (_print_ascii_file(file, st)) {
2198       return;
2199     }
2200   }
2201 
2202   if (file_exists("/etc/debian_version")) {
2203     st->print("Debian ");
2204     _print_ascii_file("/etc/debian_version", st);
2205   } else {
2206     st->print("Linux");
2207   }
2208   st->cr();
2209 }
2210 
2211 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2212   char buf[256];
2213   while (fgets(buf, sizeof(buf), fp)) {
2214     // Edit out extra stuff in expected format
2215     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2216       char* ptr = strstr(buf, "\"");  // the name is in quotes
2217       if (ptr != NULL) {
2218         ptr++; // go beyond first quote
2219         char* nl = strchr(ptr, '\"');
2220         if (nl != NULL) *nl = '\0';
2221         strncpy(distro, ptr, length);
2222       } else {
2223         ptr = strstr(buf, "=");
2224         ptr++; // go beyond equals then
2225         char* nl = strchr(ptr, '\n');
2226         if (nl != NULL) *nl = '\0';
2227         strncpy(distro, ptr, length);
2228       }
2229       return;
2230     } else if (get_first_line) {
2231       char* nl = strchr(buf, '\n');
2232       if (nl != NULL) *nl = '\0';
2233       strncpy(distro, buf, length);
2234       return;
2235     }
2236   }
2237   // print last line and close
2238   char* nl = strchr(buf, '\n');
2239   if (nl != NULL) *nl = '\0';
2240   strncpy(distro, buf, length);
2241 }
2242 
2243 static void parse_os_info(char* distro, size_t length, const char* file) {
2244   FILE* fp = fopen(file, "r");
2245   if (fp != NULL) {
2246     // if suse format, print out first line
2247     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2248     parse_os_info_helper(fp, distro, length, get_first_line);
2249     fclose(fp);
2250   }
2251 }
2252 
2253 void os::get_summary_os_info(char* buf, size_t buflen) {
2254   for (int i = 0;; i++) {
2255     const char* file = distro_files[i];
2256     if (file == NULL) {
2257       break; // ran out of distro_files
2258     }
2259     if (file_exists(file)) {
2260       parse_os_info(buf, buflen, file);
2261       return;
2262     }
2263   }
2264   // special case for debian
2265   if (file_exists("/etc/debian_version")) {
2266     strncpy(buf, "Debian ", buflen);
2267     if (buflen > 7) {
2268       parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2269     }
2270   } else {
2271     strncpy(buf, "Linux", buflen);
2272   }
2273 }
2274 
2275 void os::Linux::print_libversion_info(outputStream* st) {
2276   // libc, pthread
2277   st->print("libc:");
2278   st->print("%s ", os::Linux::glibc_version());
2279   st->print("%s ", os::Linux::libpthread_version());
2280   st->cr();
2281 }
2282 
2283 void os::Linux::print_proc_sys_info(outputStream* st) {
2284   st->cr();
2285   st->print_cr("/proc/sys/kernel/threads-max (system-wide limit on the number of threads):");
2286   _print_ascii_file("/proc/sys/kernel/threads-max", st);
2287   st->cr();
2288   st->cr();
2289 
2290   st->print_cr("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have):");
2291   _print_ascii_file("/proc/sys/vm/max_map_count", st);
2292   st->cr();
2293   st->cr();
2294 
2295   st->print_cr("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers):");
2296   _print_ascii_file("/proc/sys/kernel/pid_max", st);
2297   st->cr();
2298   st->cr();
2299 }
2300 
2301 void os::Linux::print_full_memory_info(outputStream* st) {
2302   st->print("\n/proc/meminfo:\n");
2303   _print_ascii_file("/proc/meminfo", st);
2304   st->cr();
2305 }
2306 
2307 void os::Linux::print_ld_preload_file(outputStream* st) {
2308   _print_ascii_file("/etc/ld.so.preload", st, "\n/etc/ld.so.preload:");
2309   st->cr();
2310 }
2311 
2312 void os::Linux::print_uptime_info(outputStream* st) {
2313   struct sysinfo sinfo;
2314   int ret = sysinfo(&sinfo);
2315   if (ret == 0) {
2316     os::print_dhm(st, "OS uptime:", (long) sinfo.uptime);
2317   }
2318 }
2319 
2320 
2321 void os::Linux::print_container_info(outputStream* st) {
2322   if (!OSContainer::is_containerized()) {
2323     return;
2324   }
2325 
2326   st->print("container (cgroup) information:\n");
2327 
2328   const char *p_ct = OSContainer::container_type();
2329   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "not supported");
2330 
2331   char *p = OSContainer::cpu_cpuset_cpus();
2332   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "not supported");
2333   free(p);
2334 
2335   p = OSContainer::cpu_cpuset_memory_nodes();
2336   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "not supported");
2337   free(p);
2338 
2339   int i = OSContainer::active_processor_count();
2340   st->print("active_processor_count: ");
2341   if (i > 0) {
2342     st->print("%d\n", i);
2343   } else {
2344     st->print("not supported\n");
2345   }
2346 
2347   i = OSContainer::cpu_quota();
2348   st->print("cpu_quota: ");
2349   if (i > 0) {
2350     st->print("%d\n", i);
2351   } else {
2352     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no quota");
2353   }
2354 
2355   i = OSContainer::cpu_period();
2356   st->print("cpu_period: ");
2357   if (i > 0) {
2358     st->print("%d\n", i);
2359   } else {
2360     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no period");
2361   }
2362 
2363   i = OSContainer::cpu_shares();
2364   st->print("cpu_shares: ");
2365   if (i > 0) {
2366     st->print("%d\n", i);
2367   } else {
2368     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no shares");
2369   }
2370 
2371   jlong j = OSContainer::memory_limit_in_bytes();
2372   st->print("memory_limit_in_bytes: ");
2373   if (j > 0) {
2374     st->print(JLONG_FORMAT "\n", j);
2375   } else {
2376     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2377   }
2378 
2379   j = OSContainer::memory_and_swap_limit_in_bytes();
2380   st->print("memory_and_swap_limit_in_bytes: ");
2381   if (j > 0) {
2382     st->print(JLONG_FORMAT "\n", j);
2383   } else {
2384     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2385   }
2386 
2387   j = OSContainer::memory_soft_limit_in_bytes();
2388   st->print("memory_soft_limit_in_bytes: ");
2389   if (j > 0) {
2390     st->print(JLONG_FORMAT "\n", j);
2391   } else {
2392     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2393   }
2394 
2395   j = OSContainer::OSContainer::memory_usage_in_bytes();
2396   st->print("memory_usage_in_bytes: ");
2397   if (j > 0) {
2398     st->print(JLONG_FORMAT "\n", j);
2399   } else {
2400     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2401   }
2402 
2403   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2404   st->print("memory_max_usage_in_bytes: ");
2405   if (j > 0) {
2406     st->print(JLONG_FORMAT "\n", j);
2407   } else {
2408     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2409   }
2410   st->cr();
2411 }
2412 
2413 void os::Linux::print_steal_info(outputStream* st) {
2414   if (has_initial_tick_info) {
2415     CPUPerfTicks pticks;
2416     bool res = os::Linux::get_tick_information(&pticks, -1);
2417 
2418     if (res && pticks.has_steal_ticks) {
2419       uint64_t steal_ticks_difference = pticks.steal - initial_steal_ticks;
2420       uint64_t total_ticks_difference = pticks.total - initial_total_ticks;
2421       double steal_ticks_perc = 0.0;
2422       if (total_ticks_difference != 0) {
2423         steal_ticks_perc = (double) steal_ticks_difference / total_ticks_difference;
2424       }
2425       st->print_cr("Steal ticks since vm start: " UINT64_FORMAT, steal_ticks_difference);
2426       st->print_cr("Steal ticks percentage since vm start:%7.3f", steal_ticks_perc);
2427     }
2428   }
2429 }
2430 
2431 void os::print_memory_info(outputStream* st) {
2432 
2433   st->print("Memory:");
2434   st->print(" %dk page", os::vm_page_size()>>10);
2435 
2436   // values in struct sysinfo are "unsigned long"
2437   struct sysinfo si;
2438   sysinfo(&si);
2439 
2440   st->print(", physical " UINT64_FORMAT "k",
2441             os::physical_memory() >> 10);
2442   st->print("(" UINT64_FORMAT "k free)",
2443             os::available_memory() >> 10);
2444   st->print(", swap " UINT64_FORMAT "k",
2445             ((jlong)si.totalswap * si.mem_unit) >> 10);
2446   st->print("(" UINT64_FORMAT "k free)",
2447             ((jlong)si.freeswap * si.mem_unit) >> 10);
2448   st->cr();
2449 }
2450 
2451 // Print the first "model name" line and the first "flags" line
2452 // that we find and nothing more. We assume "model name" comes
2453 // before "flags" so if we find a second "model name", then the
2454 // "flags" field is considered missing.
2455 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2456 #if defined(IA32) || defined(AMD64)
2457   // Other platforms have less repetitive cpuinfo files
2458   FILE *fp = fopen("/proc/cpuinfo", "r");
2459   if (fp) {
2460     while (!feof(fp)) {
2461       if (fgets(buf, buflen, fp)) {
2462         // Assume model name comes before flags
2463         bool model_name_printed = false;
2464         if (strstr(buf, "model name") != NULL) {
2465           if (!model_name_printed) {
2466             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2467             st->print_raw(buf);
2468             model_name_printed = true;
2469           } else {
2470             // model name printed but not flags?  Odd, just return
2471             fclose(fp);
2472             return true;
2473           }
2474         }
2475         // print the flags line too
2476         if (strstr(buf, "flags") != NULL) {
2477           st->print_raw(buf);
2478           fclose(fp);
2479           return true;
2480         }
2481       }
2482     }
2483     fclose(fp);
2484   }
2485 #endif // x86 platforms
2486   return false;
2487 }
2488 
2489 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2490   // Only print the model name if the platform provides this as a summary
2491   if (!print_model_name_and_flags(st, buf, buflen)) {
2492     st->print("\n/proc/cpuinfo:\n");
2493     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2494       st->print_cr("  <Not Available>");
2495     }
2496   }
2497 }
2498 
2499 #if defined(AMD64) || defined(IA32) || defined(X32)
2500 const char* search_string = "model name";
2501 #elif defined(M68K)
2502 const char* search_string = "CPU";
2503 #elif defined(PPC64)
2504 const char* search_string = "cpu";
2505 #elif defined(S390)
2506 const char* search_string = "machine =";
2507 #elif defined(SPARC)
2508 const char* search_string = "cpu";
2509 #else
2510 const char* search_string = "Processor";
2511 #endif
2512 
2513 // Parses the cpuinfo file for string representing the model name.
2514 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2515   FILE* fp = fopen("/proc/cpuinfo", "r");
2516   if (fp != NULL) {
2517     while (!feof(fp)) {
2518       char buf[256];
2519       if (fgets(buf, sizeof(buf), fp)) {
2520         char* start = strstr(buf, search_string);
2521         if (start != NULL) {
2522           char *ptr = start + strlen(search_string);
2523           char *end = buf + strlen(buf);
2524           while (ptr != end) {
2525              // skip whitespace and colon for the rest of the name.
2526              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2527                break;
2528              }
2529              ptr++;
2530           }
2531           if (ptr != end) {
2532             // reasonable string, get rid of newline and keep the rest
2533             char* nl = strchr(buf, '\n');
2534             if (nl != NULL) *nl = '\0';
2535             strncpy(cpuinfo, ptr, length);
2536             fclose(fp);
2537             return;
2538           }
2539         }
2540       }
2541     }
2542     fclose(fp);
2543   }
2544   // cpuinfo not found or parsing failed, just print generic string.  The entire
2545   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2546 #if   defined(AARCH64)
2547   strncpy(cpuinfo, "AArch64", length);
2548 #elif defined(AMD64)
2549   strncpy(cpuinfo, "x86_64", length);
2550 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2551   strncpy(cpuinfo, "ARM", length);
2552 #elif defined(IA32)
2553   strncpy(cpuinfo, "x86_32", length);
2554 #elif defined(IA64)
2555   strncpy(cpuinfo, "IA64", length);
2556 #elif defined(PPC)
2557   strncpy(cpuinfo, "PPC64", length);
2558 #elif defined(S390)
2559   strncpy(cpuinfo, "S390", length);
2560 #elif defined(SPARC)
2561   strncpy(cpuinfo, "sparcv9", length);
2562 #elif defined(ZERO_LIBARCH)
2563   strncpy(cpuinfo, ZERO_LIBARCH, length);
2564 #else
2565   strncpy(cpuinfo, "unknown", length);
2566 #endif
2567 }
2568 
2569 static void print_signal_handler(outputStream* st, int sig,
2570                                  char* buf, size_t buflen);
2571 
2572 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2573   st->print_cr("Signal Handlers:");
2574   print_signal_handler(st, SIGSEGV, buf, buflen);
2575   print_signal_handler(st, SIGBUS , buf, buflen);
2576   print_signal_handler(st, SIGFPE , buf, buflen);
2577   print_signal_handler(st, SIGPIPE, buf, buflen);
2578   print_signal_handler(st, SIGXFSZ, buf, buflen);
2579   print_signal_handler(st, SIGILL , buf, buflen);
2580   print_signal_handler(st, SR_signum, buf, buflen);
2581   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2582   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2583   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2584   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2585 #if defined(PPC64)
2586   print_signal_handler(st, SIGTRAP, buf, buflen);
2587 #endif
2588 }
2589 
2590 static char saved_jvm_path[MAXPATHLEN] = {0};
2591 
2592 // Find the full path to the current module, libjvm.so
2593 void os::jvm_path(char *buf, jint buflen) {
2594   // Error checking.
2595   if (buflen < MAXPATHLEN) {
2596     assert(false, "must use a large-enough buffer");
2597     buf[0] = '\0';
2598     return;
2599   }
2600   // Lazy resolve the path to current module.
2601   if (saved_jvm_path[0] != 0) {
2602     strcpy(buf, saved_jvm_path);
2603     return;
2604   }
2605 
2606   char dli_fname[MAXPATHLEN];
2607   bool ret = dll_address_to_library_name(
2608                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2609                                          dli_fname, sizeof(dli_fname), NULL);
2610   assert(ret, "cannot locate libjvm");
2611   char *rp = NULL;
2612   if (ret && dli_fname[0] != '\0') {
2613     rp = os::Posix::realpath(dli_fname, buf, buflen);
2614   }
2615   if (rp == NULL) {
2616     return;
2617   }
2618 
2619   if (Arguments::sun_java_launcher_is_altjvm()) {
2620     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2621     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2622     // If "/jre/lib/" appears at the right place in the string, then
2623     // assume we are installed in a JDK and we're done. Otherwise, check
2624     // for a JAVA_HOME environment variable and fix up the path so it
2625     // looks like libjvm.so is installed there (append a fake suffix
2626     // hotspot/libjvm.so).
2627     const char *p = buf + strlen(buf) - 1;
2628     for (int count = 0; p > buf && count < 5; ++count) {
2629       for (--p; p > buf && *p != '/'; --p)
2630         /* empty */ ;
2631     }
2632 
2633     if (strncmp(p, "/jre/lib/", 9) != 0) {
2634       // Look for JAVA_HOME in the environment.
2635       char* java_home_var = ::getenv("JAVA_HOME");
2636       if (java_home_var != NULL && java_home_var[0] != 0) {
2637         char* jrelib_p;
2638         int len;
2639 
2640         // Check the current module name "libjvm.so".
2641         p = strrchr(buf, '/');
2642         if (p == NULL) {
2643           return;
2644         }
2645         assert(strstr(p, "/libjvm") == p, "invalid library name");
2646 
2647         rp = os::Posix::realpath(java_home_var, buf, buflen);
2648         if (rp == NULL) {
2649           return;
2650         }
2651 
2652         // determine if this is a legacy image or modules image
2653         // modules image doesn't have "jre" subdirectory
2654         len = strlen(buf);
2655         assert(len < buflen, "Ran out of buffer room");
2656         jrelib_p = buf + len;
2657         snprintf(jrelib_p, buflen-len, "/jre/lib");
2658         if (0 != access(buf, F_OK)) {
2659           snprintf(jrelib_p, buflen-len, "/lib");
2660         }
2661 
2662         if (0 == access(buf, F_OK)) {
2663           // Use current module name "libjvm.so"
2664           len = strlen(buf);
2665           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2666         } else {
2667           // Go back to path of .so
2668           rp = os::Posix::realpath(dli_fname, buf, buflen);
2669           if (rp == NULL) {
2670             return;
2671           }
2672         }
2673       }
2674     }
2675   }
2676 
2677   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2678   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2679 }
2680 
2681 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2682   // no prefix required, not even "_"
2683 }
2684 
2685 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2686   // no suffix required
2687 }
2688 
2689 ////////////////////////////////////////////////////////////////////////////////
2690 // sun.misc.Signal support
2691 
2692 static void UserHandler(int sig, void *siginfo, void *context) {
2693   // Ctrl-C is pressed during error reporting, likely because the error
2694   // handler fails to abort. Let VM die immediately.
2695   if (sig == SIGINT && VMError::is_error_reported()) {
2696     os::die();
2697   }
2698 
2699   os::signal_notify(sig);
2700 }
2701 
2702 void* os::user_handler() {
2703   return CAST_FROM_FN_PTR(void*, UserHandler);
2704 }
2705 
2706 extern "C" {
2707   typedef void (*sa_handler_t)(int);
2708   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2709 }
2710 
2711 void* os::signal(int signal_number, void* handler) {
2712   struct sigaction sigAct, oldSigAct;
2713 
2714   sigfillset(&(sigAct.sa_mask));
2715   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2716   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2717 
2718   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2719     // -1 means registration failed
2720     return (void *)-1;
2721   }
2722 
2723   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2724 }
2725 
2726 void os::signal_raise(int signal_number) {
2727   ::raise(signal_number);
2728 }
2729 
2730 // The following code is moved from os.cpp for making this
2731 // code platform specific, which it is by its very nature.
2732 
2733 // Will be modified when max signal is changed to be dynamic
2734 int os::sigexitnum_pd() {
2735   return NSIG;
2736 }
2737 
2738 // a counter for each possible signal value
2739 static volatile jint pending_signals[NSIG+1] = { 0 };
2740 
2741 // Linux(POSIX) specific hand shaking semaphore.
2742 static Semaphore* sig_sem = NULL;
2743 static PosixSemaphore sr_semaphore;
2744 
2745 static void jdk_misc_signal_init() {
2746   // Initialize signal structures
2747   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2748 
2749   // Initialize signal semaphore
2750   sig_sem = new Semaphore();
2751 }
2752 
2753 void os::signal_notify(int sig) {
2754   if (sig_sem != NULL) {
2755     Atomic::inc(&pending_signals[sig]);
2756     sig_sem->signal();
2757   } else {
2758     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2759     // initialization isn't called.
2760     assert(ReduceSignalUsage, "signal semaphore should be created");
2761   }
2762 }
2763 
2764 static int check_pending_signals() {
2765   for (;;) {
2766     for (int i = 0; i < NSIG + 1; i++) {
2767       jint n = pending_signals[i];
2768       if (n > 0 && n == Atomic::cmpxchg(&pending_signals[i], n, n - 1)) {
2769         return i;
2770       }
2771     }
2772     JavaThread *thread = JavaThread::current();
2773     ThreadBlockInVM tbivm(thread);
2774 
2775     bool threadIsSuspended;
2776     do {
2777       thread->set_suspend_equivalent();
2778       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2779       sig_sem->wait();
2780 
2781       // were we externally suspended while we were waiting?
2782       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2783       if (threadIsSuspended) {
2784         // The semaphore has been incremented, but while we were waiting
2785         // another thread suspended us. We don't want to continue running
2786         // while suspended because that would surprise the thread that
2787         // suspended us.
2788         sig_sem->signal();
2789 
2790         thread->java_suspend_self();
2791       }
2792     } while (threadIsSuspended);
2793   }
2794 }
2795 
2796 int os::signal_wait() {
2797   return check_pending_signals();
2798 }
2799 
2800 ////////////////////////////////////////////////////////////////////////////////
2801 // Virtual Memory
2802 
2803 int os::vm_page_size() {
2804   // Seems redundant as all get out
2805   assert(os::Linux::page_size() != -1, "must call os::init");
2806   return os::Linux::page_size();
2807 }
2808 
2809 // Solaris allocates memory by pages.
2810 int os::vm_allocation_granularity() {
2811   assert(os::Linux::page_size() != -1, "must call os::init");
2812   return os::Linux::page_size();
2813 }
2814 
2815 // Rationale behind this function:
2816 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2817 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2818 //  samples for JITted code. Here we create private executable mapping over the code cache
2819 //  and then we can use standard (well, almost, as mapping can change) way to provide
2820 //  info for the reporting script by storing timestamp and location of symbol
2821 void linux_wrap_code(char* base, size_t size) {
2822   static volatile jint cnt = 0;
2823 
2824   if (!UseOprofile) {
2825     return;
2826   }
2827 
2828   char buf[PATH_MAX+1];
2829   int num = Atomic::add(&cnt, 1);
2830 
2831   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2832            os::get_temp_directory(), os::current_process_id(), num);
2833   unlink(buf);
2834 
2835   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2836 
2837   if (fd != -1) {
2838     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2839     if (rv != (off_t)-1) {
2840       if (::write(fd, "", 1) == 1) {
2841         mmap(base, size,
2842              PROT_READ|PROT_WRITE|PROT_EXEC,
2843              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2844       }
2845     }
2846     ::close(fd);
2847     unlink(buf);
2848   }
2849 }
2850 
2851 static bool recoverable_mmap_error(int err) {
2852   // See if the error is one we can let the caller handle. This
2853   // list of errno values comes from JBS-6843484. I can't find a
2854   // Linux man page that documents this specific set of errno
2855   // values so while this list currently matches Solaris, it may
2856   // change as we gain experience with this failure mode.
2857   switch (err) {
2858   case EBADF:
2859   case EINVAL:
2860   case ENOTSUP:
2861     // let the caller deal with these errors
2862     return true;
2863 
2864   default:
2865     // Any remaining errors on this OS can cause our reserved mapping
2866     // to be lost. That can cause confusion where different data
2867     // structures think they have the same memory mapped. The worst
2868     // scenario is if both the VM and a library think they have the
2869     // same memory mapped.
2870     return false;
2871   }
2872 }
2873 
2874 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2875                                     int err) {
2876   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2877           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2878           os::strerror(err), err);
2879 }
2880 
2881 static void warn_fail_commit_memory(char* addr, size_t size,
2882                                     size_t alignment_hint, bool exec,
2883                                     int err) {
2884   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2885           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2886           alignment_hint, exec, os::strerror(err), err);
2887 }
2888 
2889 // NOTE: Linux kernel does not really reserve the pages for us.
2890 //       All it does is to check if there are enough free pages
2891 //       left at the time of mmap(). This could be a potential
2892 //       problem.
2893 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2894   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2895   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2896                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2897   if (res != (uintptr_t) MAP_FAILED) {
2898     if (UseNUMAInterleaving) {
2899       numa_make_global(addr, size);
2900     }
2901     return 0;
2902   }
2903 
2904   int err = errno;  // save errno from mmap() call above
2905 
2906   if (!recoverable_mmap_error(err)) {
2907     warn_fail_commit_memory(addr, size, exec, err);
2908     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2909   }
2910 
2911   return err;
2912 }
2913 
2914 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2915   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2916 }
2917 
2918 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2919                                   const char* mesg) {
2920   assert(mesg != NULL, "mesg must be specified");
2921   int err = os::Linux::commit_memory_impl(addr, size, exec);
2922   if (err != 0) {
2923     // the caller wants all commit errors to exit with the specified mesg:
2924     warn_fail_commit_memory(addr, size, exec, err);
2925     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2926   }
2927 }
2928 
2929 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2930 #ifndef MAP_HUGETLB
2931   #define MAP_HUGETLB 0x40000
2932 #endif
2933 
2934 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2935 #ifndef MADV_HUGEPAGE
2936   #define MADV_HUGEPAGE 14
2937 #endif
2938 
2939 int os::Linux::commit_memory_impl(char* addr, size_t size,
2940                                   size_t alignment_hint, bool exec) {
2941   int err = os::Linux::commit_memory_impl(addr, size, exec);
2942   if (err == 0) {
2943     realign_memory(addr, size, alignment_hint);
2944   }
2945   return err;
2946 }
2947 
2948 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2949                           bool exec) {
2950   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2951 }
2952 
2953 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2954                                   size_t alignment_hint, bool exec,
2955                                   const char* mesg) {
2956   assert(mesg != NULL, "mesg must be specified");
2957   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2958   if (err != 0) {
2959     // the caller wants all commit errors to exit with the specified mesg:
2960     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2961     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2962   }
2963 }
2964 
2965 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2966   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2967     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2968     // be supported or the memory may already be backed by huge pages.
2969     ::madvise(addr, bytes, MADV_HUGEPAGE);
2970   }
2971 }
2972 
2973 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2974   // This method works by doing an mmap over an existing mmaping and effectively discarding
2975   // the existing pages. However it won't work for SHM-based large pages that cannot be
2976   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2977   // small pages on top of the SHM segment. This method always works for small pages, so we
2978   // allow that in any case.
2979   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2980     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2981   }
2982 }
2983 
2984 void os::numa_make_global(char *addr, size_t bytes) {
2985   Linux::numa_interleave_memory(addr, bytes);
2986 }
2987 
2988 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2989 // bind policy to MPOL_PREFERRED for the current thread.
2990 #define USE_MPOL_PREFERRED 0
2991 
2992 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2993   // To make NUMA and large pages more robust when both enabled, we need to ease
2994   // the requirements on where the memory should be allocated. MPOL_BIND is the
2995   // default policy and it will force memory to be allocated on the specified
2996   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2997   // the specified node, but will not force it. Using this policy will prevent
2998   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2999   // free large pages.
3000   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
3001   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
3002 }
3003 
3004 bool os::numa_topology_changed() { return false; }
3005 
3006 size_t os::numa_get_groups_num() {
3007   // Return just the number of nodes in which it's possible to allocate memory
3008   // (in numa terminology, configured nodes).
3009   return Linux::numa_num_configured_nodes();
3010 }
3011 
3012 int os::numa_get_group_id() {
3013   int cpu_id = Linux::sched_getcpu();
3014   if (cpu_id != -1) {
3015     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
3016     if (lgrp_id != -1) {
3017       return lgrp_id;
3018     }
3019   }
3020   return 0;
3021 }
3022 
3023 int os::numa_get_group_id_for_address(const void* address) {
3024   void** pages = const_cast<void**>(&address);
3025   int id = -1;
3026 
3027   if (os::Linux::numa_move_pages(0, 1, pages, NULL, &id, 0) == -1) {
3028     return -1;
3029   }
3030   if (id < 0) {
3031     return -1;
3032   }
3033   return id;
3034 }
3035 
3036 int os::Linux::get_existing_num_nodes() {
3037   int node;
3038   int highest_node_number = Linux::numa_max_node();
3039   int num_nodes = 0;
3040 
3041   // Get the total number of nodes in the system including nodes without memory.
3042   for (node = 0; node <= highest_node_number; node++) {
3043     if (is_node_in_existing_nodes(node)) {
3044       num_nodes++;
3045     }
3046   }
3047   return num_nodes;
3048 }
3049 
3050 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3051   int highest_node_number = Linux::numa_max_node();
3052   size_t i = 0;
3053 
3054   // Map all node ids in which it is possible to allocate memory. Also nodes are
3055   // not always consecutively available, i.e. available from 0 to the highest
3056   // node number. If the nodes have been bound explicitly using numactl membind,
3057   // then allocate memory from those nodes only.
3058   for (int node = 0; node <= highest_node_number; node++) {
3059     if (Linux::is_node_in_bound_nodes((unsigned int)node)) {
3060       ids[i++] = node;
3061     }
3062   }
3063   return i;
3064 }
3065 
3066 bool os::get_page_info(char *start, page_info* info) {
3067   return false;
3068 }
3069 
3070 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3071                      page_info* page_found) {
3072   return end;
3073 }
3074 
3075 
3076 int os::Linux::sched_getcpu_syscall(void) {
3077   unsigned int cpu = 0;
3078   int retval = -1;
3079 
3080 #if defined(IA32)
3081   #ifndef SYS_getcpu
3082     #define SYS_getcpu 318
3083   #endif
3084   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
3085 #elif defined(AMD64)
3086 // Unfortunately we have to bring all these macros here from vsyscall.h
3087 // to be able to compile on old linuxes.
3088   #define __NR_vgetcpu 2
3089   #define VSYSCALL_START (-10UL << 20)
3090   #define VSYSCALL_SIZE 1024
3091   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
3092   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
3093   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
3094   retval = vgetcpu(&cpu, NULL, NULL);
3095 #endif
3096 
3097   return (retval == -1) ? retval : cpu;
3098 }
3099 
3100 void os::Linux::sched_getcpu_init() {
3101   // sched_getcpu() should be in libc.
3102   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3103                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
3104 
3105   // If it's not, try a direct syscall.
3106   if (sched_getcpu() == -1) {
3107     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3108                                     (void*)&sched_getcpu_syscall));
3109   }
3110 
3111   if (sched_getcpu() == -1) {
3112     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
3113   }
3114 }
3115 
3116 // Something to do with the numa-aware allocator needs these symbols
3117 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
3118 extern "C" JNIEXPORT void numa_error(char *where) { }
3119 
3120 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
3121 // load symbol from base version instead.
3122 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
3123   void *f = dlvsym(handle, name, "libnuma_1.1");
3124   if (f == NULL) {
3125     f = dlsym(handle, name);
3126   }
3127   return f;
3128 }
3129 
3130 // Handle request to load libnuma symbol version 1.2 (API v2) only.
3131 // Return NULL if the symbol is not defined in this particular version.
3132 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
3133   return dlvsym(handle, name, "libnuma_1.2");
3134 }
3135 
3136 bool os::Linux::libnuma_init() {
3137   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
3138     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
3139     if (handle != NULL) {
3140       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
3141                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
3142       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
3143                                        libnuma_dlsym(handle, "numa_max_node")));
3144       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
3145                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
3146       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
3147                                         libnuma_dlsym(handle, "numa_available")));
3148       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
3149                                             libnuma_dlsym(handle, "numa_tonode_memory")));
3150       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
3151                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
3152       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
3153                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
3154       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
3155                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
3156       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
3157                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
3158       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
3159                                        libnuma_dlsym(handle, "numa_distance")));
3160       set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
3161                                           libnuma_v2_dlsym(handle, "numa_get_membind")));
3162       set_numa_get_interleave_mask(CAST_TO_FN_PTR(numa_get_interleave_mask_func_t,
3163                                                   libnuma_v2_dlsym(handle, "numa_get_interleave_mask")));
3164       set_numa_move_pages(CAST_TO_FN_PTR(numa_move_pages_func_t,
3165                                          libnuma_dlsym(handle, "numa_move_pages")));
3166       set_numa_set_preferred(CAST_TO_FN_PTR(numa_set_preferred_func_t,
3167                                             libnuma_dlsym(handle, "numa_set_preferred")));
3168 
3169       if (numa_available() != -1) {
3170         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
3171         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
3172         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
3173         set_numa_interleave_bitmask(_numa_get_interleave_mask());
3174         set_numa_membind_bitmask(_numa_get_membind());
3175         // Create an index -> node mapping, since nodes are not always consecutive
3176         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3177         rebuild_nindex_to_node_map();
3178         // Create a cpu -> node mapping
3179         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3180         rebuild_cpu_to_node_map();
3181         return true;
3182       }
3183     }
3184   }
3185   return false;
3186 }
3187 
3188 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
3189   // Creating guard page is very expensive. Java thread has HotSpot
3190   // guard pages, only enable glibc guard page for non-Java threads.
3191   // (Remember: compiler thread is a Java thread, too!)
3192   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
3193 }
3194 
3195 void os::Linux::rebuild_nindex_to_node_map() {
3196   int highest_node_number = Linux::numa_max_node();
3197 
3198   nindex_to_node()->clear();
3199   for (int node = 0; node <= highest_node_number; node++) {
3200     if (Linux::is_node_in_existing_nodes(node)) {
3201       nindex_to_node()->append(node);
3202     }
3203   }
3204 }
3205 
3206 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
3207 // The table is later used in get_node_by_cpu().
3208 void os::Linux::rebuild_cpu_to_node_map() {
3209   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
3210                               // in libnuma (possible values are starting from 16,
3211                               // and continuing up with every other power of 2, but less
3212                               // than the maximum number of CPUs supported by kernel), and
3213                               // is a subject to change (in libnuma version 2 the requirements
3214                               // are more reasonable) we'll just hardcode the number they use
3215                               // in the library.
3216   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
3217 
3218   size_t cpu_num = processor_count();
3219   size_t cpu_map_size = NCPUS / BitsPerCLong;
3220   size_t cpu_map_valid_size =
3221     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
3222 
3223   cpu_to_node()->clear();
3224   cpu_to_node()->at_grow(cpu_num - 1);
3225 
3226   size_t node_num = get_existing_num_nodes();
3227 
3228   int distance = 0;
3229   int closest_distance = INT_MAX;
3230   int closest_node = 0;
3231   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
3232   for (size_t i = 0; i < node_num; i++) {
3233     // Check if node is configured (not a memory-less node). If it is not, find
3234     // the closest configured node. Check also if node is bound, i.e. it's allowed
3235     // to allocate memory from the node. If it's not allowed, map cpus in that node
3236     // to the closest node from which memory allocation is allowed.
3237     if (!is_node_in_configured_nodes(nindex_to_node()->at(i)) ||
3238         !is_node_in_bound_nodes(nindex_to_node()->at(i))) {
3239       closest_distance = INT_MAX;
3240       // Check distance from all remaining nodes in the system. Ignore distance
3241       // from itself, from another non-configured node, and from another non-bound
3242       // node.
3243       for (size_t m = 0; m < node_num; m++) {
3244         if (m != i &&
3245             is_node_in_configured_nodes(nindex_to_node()->at(m)) &&
3246             is_node_in_bound_nodes(nindex_to_node()->at(m))) {
3247           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3248           // If a closest node is found, update. There is always at least one
3249           // configured and bound node in the system so there is always at least
3250           // one node close.
3251           if (distance != 0 && distance < closest_distance) {
3252             closest_distance = distance;
3253             closest_node = nindex_to_node()->at(m);
3254           }
3255         }
3256       }
3257      } else {
3258        // Current node is already a configured node.
3259        closest_node = nindex_to_node()->at(i);
3260      }
3261 
3262     // Get cpus from the original node and map them to the closest node. If node
3263     // is a configured node (not a memory-less node), then original node and
3264     // closest node are the same.
3265     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3266       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3267         if (cpu_map[j] != 0) {
3268           for (size_t k = 0; k < BitsPerCLong; k++) {
3269             if (cpu_map[j] & (1UL << k)) {
3270               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3271             }
3272           }
3273         }
3274       }
3275     }
3276   }
3277   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3278 }
3279 
3280 int os::Linux::get_node_by_cpu(int cpu_id) {
3281   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3282     return cpu_to_node()->at(cpu_id);
3283   }
3284   return -1;
3285 }
3286 
3287 GrowableArray<int>* os::Linux::_cpu_to_node;
3288 GrowableArray<int>* os::Linux::_nindex_to_node;
3289 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3290 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3291 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3292 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3293 os::Linux::numa_available_func_t os::Linux::_numa_available;
3294 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3295 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3296 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3297 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3298 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3299 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3300 os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
3301 os::Linux::numa_get_interleave_mask_func_t os::Linux::_numa_get_interleave_mask;
3302 os::Linux::numa_move_pages_func_t os::Linux::_numa_move_pages;
3303 os::Linux::numa_set_preferred_func_t os::Linux::_numa_set_preferred;
3304 os::Linux::NumaAllocationPolicy os::Linux::_current_numa_policy;
3305 unsigned long* os::Linux::_numa_all_nodes;
3306 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3307 struct bitmask* os::Linux::_numa_nodes_ptr;
3308 struct bitmask* os::Linux::_numa_interleave_bitmask;
3309 struct bitmask* os::Linux::_numa_membind_bitmask;
3310 
3311 bool os::pd_uncommit_memory(char* addr, size_t size) {
3312   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3313                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3314   return res  != (uintptr_t) MAP_FAILED;
3315 }
3316 
3317 static address get_stack_commited_bottom(address bottom, size_t size) {
3318   address nbot = bottom;
3319   address ntop = bottom + size;
3320 
3321   size_t page_sz = os::vm_page_size();
3322   unsigned pages = size / page_sz;
3323 
3324   unsigned char vec[1];
3325   unsigned imin = 1, imax = pages + 1, imid;
3326   int mincore_return_value = 0;
3327 
3328   assert(imin <= imax, "Unexpected page size");
3329 
3330   while (imin < imax) {
3331     imid = (imax + imin) / 2;
3332     nbot = ntop - (imid * page_sz);
3333 
3334     // Use a trick with mincore to check whether the page is mapped or not.
3335     // mincore sets vec to 1 if page resides in memory and to 0 if page
3336     // is swapped output but if page we are asking for is unmapped
3337     // it returns -1,ENOMEM
3338     mincore_return_value = mincore(nbot, page_sz, vec);
3339 
3340     if (mincore_return_value == -1) {
3341       // Page is not mapped go up
3342       // to find first mapped page
3343       if (errno != EAGAIN) {
3344         assert(errno == ENOMEM, "Unexpected mincore errno");
3345         imax = imid;
3346       }
3347     } else {
3348       // Page is mapped go down
3349       // to find first not mapped page
3350       imin = imid + 1;
3351     }
3352   }
3353 
3354   nbot = nbot + page_sz;
3355 
3356   // Adjust stack bottom one page up if last checked page is not mapped
3357   if (mincore_return_value == -1) {
3358     nbot = nbot + page_sz;
3359   }
3360 
3361   return nbot;
3362 }
3363 
3364 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3365   int mincore_return_value;
3366   const size_t stripe = 1024;  // query this many pages each time
3367   unsigned char vec[stripe + 1];
3368   // set a guard
3369   vec[stripe] = 'X';
3370 
3371   const size_t page_sz = os::vm_page_size();
3372   size_t pages = size / page_sz;
3373 
3374   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3375   assert(is_aligned(size, page_sz), "Size must be page aligned");
3376 
3377   committed_start = NULL;
3378 
3379   int loops = (pages + stripe - 1) / stripe;
3380   int committed_pages = 0;
3381   address loop_base = start;
3382   bool found_range = false;
3383 
3384   for (int index = 0; index < loops && !found_range; index ++) {
3385     assert(pages > 0, "Nothing to do");
3386     int pages_to_query = (pages >= stripe) ? stripe : pages;
3387     pages -= pages_to_query;
3388 
3389     // Get stable read
3390     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3391 
3392     // During shutdown, some memory goes away without properly notifying NMT,
3393     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3394     // Bailout and return as not committed for now.
3395     if (mincore_return_value == -1 && errno == ENOMEM) {
3396       return false;
3397     }
3398 
3399     assert(vec[stripe] == 'X', "overflow guard");
3400     assert(mincore_return_value == 0, "Range must be valid");
3401     // Process this stripe
3402     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3403       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3404         // End of current contiguous region
3405         if (committed_start != NULL) {
3406           found_range = true;
3407           break;
3408         }
3409       } else { // committed
3410         // Start of region
3411         if (committed_start == NULL) {
3412           committed_start = loop_base + page_sz * vecIdx;
3413         }
3414         committed_pages ++;
3415       }
3416     }
3417 
3418     loop_base += pages_to_query * page_sz;
3419   }
3420 
3421   if (committed_start != NULL) {
3422     assert(committed_pages > 0, "Must have committed region");
3423     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3424     assert(committed_start >= start && committed_start < start + size, "Out of range");
3425     committed_size = page_sz * committed_pages;
3426     return true;
3427   } else {
3428     assert(committed_pages == 0, "Should not have committed region");
3429     return false;
3430   }
3431 }
3432 
3433 
3434 // Linux uses a growable mapping for the stack, and if the mapping for
3435 // the stack guard pages is not removed when we detach a thread the
3436 // stack cannot grow beyond the pages where the stack guard was
3437 // mapped.  If at some point later in the process the stack expands to
3438 // that point, the Linux kernel cannot expand the stack any further
3439 // because the guard pages are in the way, and a segfault occurs.
3440 //
3441 // However, it's essential not to split the stack region by unmapping
3442 // a region (leaving a hole) that's already part of the stack mapping,
3443 // so if the stack mapping has already grown beyond the guard pages at
3444 // the time we create them, we have to truncate the stack mapping.
3445 // So, we need to know the extent of the stack mapping when
3446 // create_stack_guard_pages() is called.
3447 
3448 // We only need this for stacks that are growable: at the time of
3449 // writing thread stacks don't use growable mappings (i.e. those
3450 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3451 // only applies to the main thread.
3452 
3453 // If the (growable) stack mapping already extends beyond the point
3454 // where we're going to put our guard pages, truncate the mapping at
3455 // that point by munmap()ping it.  This ensures that when we later
3456 // munmap() the guard pages we don't leave a hole in the stack
3457 // mapping. This only affects the main/primordial thread
3458 
3459 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3460   if (os::is_primordial_thread()) {
3461     // As we manually grow stack up to bottom inside create_attached_thread(),
3462     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3463     // we don't need to do anything special.
3464     // Check it first, before calling heavy function.
3465     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3466     unsigned char vec[1];
3467 
3468     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3469       // Fallback to slow path on all errors, including EAGAIN
3470       stack_extent = (uintptr_t) get_stack_commited_bottom(
3471                                                            os::Linux::initial_thread_stack_bottom(),
3472                                                            (size_t)addr - stack_extent);
3473     }
3474 
3475     if (stack_extent < (uintptr_t)addr) {
3476       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3477     }
3478   }
3479 
3480   return os::commit_memory(addr, size, !ExecMem);
3481 }
3482 
3483 // If this is a growable mapping, remove the guard pages entirely by
3484 // munmap()ping them.  If not, just call uncommit_memory(). This only
3485 // affects the main/primordial thread, but guard against future OS changes.
3486 // It's safe to always unmap guard pages for primordial thread because we
3487 // always place it right after end of the mapped region.
3488 
3489 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3490   uintptr_t stack_extent, stack_base;
3491 
3492   if (os::is_primordial_thread()) {
3493     return ::munmap(addr, size) == 0;
3494   }
3495 
3496   return os::uncommit_memory(addr, size);
3497 }
3498 
3499 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3500 // at 'requested_addr'. If there are existing memory mappings at the same
3501 // location, however, they will be overwritten. If 'fixed' is false,
3502 // 'requested_addr' is only treated as a hint, the return value may or
3503 // may not start from the requested address. Unlike Linux mmap(), this
3504 // function returns NULL to indicate failure.
3505 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3506   char * addr;
3507   int flags;
3508 
3509   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3510   if (fixed) {
3511     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3512     flags |= MAP_FIXED;
3513   }
3514 
3515   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3516   // touch an uncommitted page. Otherwise, the read/write might
3517   // succeed if we have enough swap space to back the physical page.
3518   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3519                        flags, -1, 0);
3520 
3521   return addr == MAP_FAILED ? NULL : addr;
3522 }
3523 
3524 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3525 //   (req_addr != NULL) or with a given alignment.
3526 //  - bytes shall be a multiple of alignment.
3527 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3528 //  - alignment sets the alignment at which memory shall be allocated.
3529 //     It must be a multiple of allocation granularity.
3530 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3531 //  req_addr or NULL.
3532 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3533 
3534   size_t extra_size = bytes;
3535   if (req_addr == NULL && alignment > 0) {
3536     extra_size += alignment;
3537   }
3538 
3539   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3540     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3541     -1, 0);
3542   if (start == MAP_FAILED) {
3543     start = NULL;
3544   } else {
3545     if (req_addr != NULL) {
3546       if (start != req_addr) {
3547         ::munmap(start, extra_size);
3548         start = NULL;
3549       }
3550     } else {
3551       char* const start_aligned = align_up(start, alignment);
3552       char* const end_aligned = start_aligned + bytes;
3553       char* const end = start + extra_size;
3554       if (start_aligned > start) {
3555         ::munmap(start, start_aligned - start);
3556       }
3557       if (end_aligned < end) {
3558         ::munmap(end_aligned, end - end_aligned);
3559       }
3560       start = start_aligned;
3561     }
3562   }
3563   return start;
3564 }
3565 
3566 static int anon_munmap(char * addr, size_t size) {
3567   return ::munmap(addr, size) == 0;
3568 }
3569 
3570 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3571                             size_t alignment_hint) {
3572   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3573 }
3574 
3575 bool os::pd_release_memory(char* addr, size_t size) {
3576   return anon_munmap(addr, size);
3577 }
3578 
3579 static bool linux_mprotect(char* addr, size_t size, int prot) {
3580   // Linux wants the mprotect address argument to be page aligned.
3581   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3582 
3583   // According to SUSv3, mprotect() should only be used with mappings
3584   // established by mmap(), and mmap() always maps whole pages. Unaligned
3585   // 'addr' likely indicates problem in the VM (e.g. trying to change
3586   // protection of malloc'ed or statically allocated memory). Check the
3587   // caller if you hit this assert.
3588   assert(addr == bottom, "sanity check");
3589 
3590   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3591   Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(bottom), p2i(bottom+size), prot);
3592   return ::mprotect(bottom, size, prot) == 0;
3593 }
3594 
3595 // Set protections specified
3596 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3597                         bool is_committed) {
3598   unsigned int p = 0;
3599   switch (prot) {
3600   case MEM_PROT_NONE: p = PROT_NONE; break;
3601   case MEM_PROT_READ: p = PROT_READ; break;
3602   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3603   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3604   default:
3605     ShouldNotReachHere();
3606   }
3607   // is_committed is unused.
3608   return linux_mprotect(addr, bytes, p);
3609 }
3610 
3611 bool os::guard_memory(char* addr, size_t size) {
3612   return linux_mprotect(addr, size, PROT_NONE);
3613 }
3614 
3615 bool os::unguard_memory(char* addr, size_t size) {
3616   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3617 }
3618 
3619 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3620                                                     size_t page_size) {
3621   bool result = false;
3622   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3623                  MAP_ANONYMOUS|MAP_PRIVATE,
3624                  -1, 0);
3625   if (p != MAP_FAILED) {
3626     void *aligned_p = align_up(p, page_size);
3627 
3628     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3629 
3630     munmap(p, page_size * 2);
3631   }
3632 
3633   if (warn && !result) {
3634     warning("TransparentHugePages is not supported by the operating system.");
3635   }
3636 
3637   return result;
3638 }
3639 
3640 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3641   bool result = false;
3642   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3643                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3644                  -1, 0);
3645 
3646   if (p != MAP_FAILED) {
3647     // We don't know if this really is a huge page or not.
3648     FILE *fp = fopen("/proc/self/maps", "r");
3649     if (fp) {
3650       while (!feof(fp)) {
3651         char chars[257];
3652         long x = 0;
3653         if (fgets(chars, sizeof(chars), fp)) {
3654           if (sscanf(chars, "%lx-%*x", &x) == 1
3655               && x == (long)p) {
3656             if (strstr (chars, "hugepage")) {
3657               result = true;
3658               break;
3659             }
3660           }
3661         }
3662       }
3663       fclose(fp);
3664     }
3665     munmap(p, page_size);
3666   }
3667 
3668   if (warn && !result) {
3669     warning("HugeTLBFS is not supported by the operating system.");
3670   }
3671 
3672   return result;
3673 }
3674 
3675 // From the coredump_filter documentation:
3676 //
3677 // - (bit 0) anonymous private memory
3678 // - (bit 1) anonymous shared memory
3679 // - (bit 2) file-backed private memory
3680 // - (bit 3) file-backed shared memory
3681 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3682 //           effective only if the bit 2 is cleared)
3683 // - (bit 5) hugetlb private memory
3684 // - (bit 6) hugetlb shared memory
3685 // - (bit 7) dax private memory
3686 // - (bit 8) dax shared memory
3687 //
3688 static void set_coredump_filter(CoredumpFilterBit bit) {
3689   FILE *f;
3690   long cdm;
3691 
3692   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3693     return;
3694   }
3695 
3696   if (fscanf(f, "%lx", &cdm) != 1) {
3697     fclose(f);
3698     return;
3699   }
3700 
3701   long saved_cdm = cdm;
3702   rewind(f);
3703   cdm |= bit;
3704 
3705   if (cdm != saved_cdm) {
3706     fprintf(f, "%#lx", cdm);
3707   }
3708 
3709   fclose(f);
3710 }
3711 
3712 // Large page support
3713 
3714 static size_t _large_page_size = 0;
3715 
3716 size_t os::Linux::find_large_page_size() {
3717   size_t large_page_size = 0;
3718 
3719   // large_page_size on Linux is used to round up heap size. x86 uses either
3720   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3721   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3722   // page as large as 256M.
3723   //
3724   // Here we try to figure out page size by parsing /proc/meminfo and looking
3725   // for a line with the following format:
3726   //    Hugepagesize:     2048 kB
3727   //
3728   // If we can't determine the value (e.g. /proc is not mounted, or the text
3729   // format has been changed), we'll use the largest page size supported by
3730   // the processor.
3731 
3732 #ifndef ZERO
3733   large_page_size =
3734     AARCH64_ONLY(2 * M)
3735     AMD64_ONLY(2 * M)
3736     ARM32_ONLY(2 * M)
3737     IA32_ONLY(4 * M)
3738     IA64_ONLY(256 * M)
3739     PPC_ONLY(4 * M)
3740     S390_ONLY(1 * M)
3741     SPARC_ONLY(4 * M);
3742 #endif // ZERO
3743 
3744   FILE *fp = fopen("/proc/meminfo", "r");
3745   if (fp) {
3746     while (!feof(fp)) {
3747       int x = 0;
3748       char buf[16];
3749       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3750         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3751           large_page_size = x * K;
3752           break;
3753         }
3754       } else {
3755         // skip to next line
3756         for (;;) {
3757           int ch = fgetc(fp);
3758           if (ch == EOF || ch == (int)'\n') break;
3759         }
3760       }
3761     }
3762     fclose(fp);
3763   }
3764 
3765   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3766     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3767             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3768             proper_unit_for_byte_size(large_page_size));
3769   }
3770 
3771   return large_page_size;
3772 }
3773 
3774 size_t os::Linux::setup_large_page_size() {
3775   _large_page_size = Linux::find_large_page_size();
3776   const size_t default_page_size = (size_t)Linux::page_size();
3777   if (_large_page_size > default_page_size) {
3778     _page_sizes[0] = _large_page_size;
3779     _page_sizes[1] = default_page_size;
3780     _page_sizes[2] = 0;
3781   }
3782 
3783   return _large_page_size;
3784 }
3785 
3786 bool os::Linux::setup_large_page_type(size_t page_size) {
3787   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3788       FLAG_IS_DEFAULT(UseSHM) &&
3789       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3790 
3791     // The type of large pages has not been specified by the user.
3792 
3793     // Try UseHugeTLBFS and then UseSHM.
3794     UseHugeTLBFS = UseSHM = true;
3795 
3796     // Don't try UseTransparentHugePages since there are known
3797     // performance issues with it turned on. This might change in the future.
3798     UseTransparentHugePages = false;
3799   }
3800 
3801   if (UseTransparentHugePages) {
3802     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3803     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3804       UseHugeTLBFS = false;
3805       UseSHM = false;
3806       return true;
3807     }
3808     UseTransparentHugePages = false;
3809   }
3810 
3811   if (UseHugeTLBFS) {
3812     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3813     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3814       UseSHM = false;
3815       return true;
3816     }
3817     UseHugeTLBFS = false;
3818   }
3819 
3820   return UseSHM;
3821 }
3822 
3823 void os::large_page_init() {
3824   if (!UseLargePages &&
3825       !UseTransparentHugePages &&
3826       !UseHugeTLBFS &&
3827       !UseSHM) {
3828     // Not using large pages.
3829     return;
3830   }
3831 
3832   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3833     // The user explicitly turned off large pages.
3834     // Ignore the rest of the large pages flags.
3835     UseTransparentHugePages = false;
3836     UseHugeTLBFS = false;
3837     UseSHM = false;
3838     return;
3839   }
3840 
3841   size_t large_page_size = Linux::setup_large_page_size();
3842   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3843 
3844   set_coredump_filter(LARGEPAGES_BIT);
3845 }
3846 
3847 #ifndef SHM_HUGETLB
3848   #define SHM_HUGETLB 04000
3849 #endif
3850 
3851 #define shm_warning_format(format, ...)              \
3852   do {                                               \
3853     if (UseLargePages &&                             \
3854         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3855          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3856          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3857       warning(format, __VA_ARGS__);                  \
3858     }                                                \
3859   } while (0)
3860 
3861 #define shm_warning(str) shm_warning_format("%s", str)
3862 
3863 #define shm_warning_with_errno(str)                \
3864   do {                                             \
3865     int err = errno;                               \
3866     shm_warning_format(str " (error = %d)", err);  \
3867   } while (0)
3868 
3869 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3870   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3871 
3872   if (!is_aligned(alignment, SHMLBA)) {
3873     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3874     return NULL;
3875   }
3876 
3877   // To ensure that we get 'alignment' aligned memory from shmat,
3878   // we pre-reserve aligned virtual memory and then attach to that.
3879 
3880   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3881   if (pre_reserved_addr == NULL) {
3882     // Couldn't pre-reserve aligned memory.
3883     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3884     return NULL;
3885   }
3886 
3887   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3888   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3889 
3890   if ((intptr_t)addr == -1) {
3891     int err = errno;
3892     shm_warning_with_errno("Failed to attach shared memory.");
3893 
3894     assert(err != EACCES, "Unexpected error");
3895     assert(err != EIDRM,  "Unexpected error");
3896     assert(err != EINVAL, "Unexpected error");
3897 
3898     // Since we don't know if the kernel unmapped the pre-reserved memory area
3899     // we can't unmap it, since that would potentially unmap memory that was
3900     // mapped from other threads.
3901     return NULL;
3902   }
3903 
3904   return addr;
3905 }
3906 
3907 static char* shmat_at_address(int shmid, char* req_addr) {
3908   if (!is_aligned(req_addr, SHMLBA)) {
3909     assert(false, "Requested address needs to be SHMLBA aligned");
3910     return NULL;
3911   }
3912 
3913   char* addr = (char*)shmat(shmid, req_addr, 0);
3914 
3915   if ((intptr_t)addr == -1) {
3916     shm_warning_with_errno("Failed to attach shared memory.");
3917     return NULL;
3918   }
3919 
3920   return addr;
3921 }
3922 
3923 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3924   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3925   if (req_addr != NULL) {
3926     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3927     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3928     return shmat_at_address(shmid, req_addr);
3929   }
3930 
3931   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3932   // return large page size aligned memory addresses when req_addr == NULL.
3933   // However, if the alignment is larger than the large page size, we have
3934   // to manually ensure that the memory returned is 'alignment' aligned.
3935   if (alignment > os::large_page_size()) {
3936     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3937     return shmat_with_alignment(shmid, bytes, alignment);
3938   } else {
3939     return shmat_at_address(shmid, NULL);
3940   }
3941 }
3942 
3943 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3944                                             char* req_addr, bool exec) {
3945   // "exec" is passed in but not used.  Creating the shared image for
3946   // the code cache doesn't have an SHM_X executable permission to check.
3947   assert(UseLargePages && UseSHM, "only for SHM large pages");
3948   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3949   assert(is_aligned(req_addr, alignment), "Unaligned address");
3950 
3951   if (!is_aligned(bytes, os::large_page_size())) {
3952     return NULL; // Fallback to small pages.
3953   }
3954 
3955   // Create a large shared memory region to attach to based on size.
3956   // Currently, size is the total size of the heap.
3957   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3958   if (shmid == -1) {
3959     // Possible reasons for shmget failure:
3960     // 1. shmmax is too small for Java heap.
3961     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3962     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3963     // 2. not enough large page memory.
3964     //    > check available large pages: cat /proc/meminfo
3965     //    > increase amount of large pages:
3966     //          echo new_value > /proc/sys/vm/nr_hugepages
3967     //      Note 1: different Linux may use different name for this property,
3968     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3969     //      Note 2: it's possible there's enough physical memory available but
3970     //            they are so fragmented after a long run that they can't
3971     //            coalesce into large pages. Try to reserve large pages when
3972     //            the system is still "fresh".
3973     shm_warning_with_errno("Failed to reserve shared memory.");
3974     return NULL;
3975   }
3976 
3977   // Attach to the region.
3978   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3979 
3980   // Remove shmid. If shmat() is successful, the actual shared memory segment
3981   // will be deleted when it's detached by shmdt() or when the process
3982   // terminates. If shmat() is not successful this will remove the shared
3983   // segment immediately.
3984   shmctl(shmid, IPC_RMID, NULL);
3985 
3986   return addr;
3987 }
3988 
3989 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3990                                         int error) {
3991   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3992 
3993   bool warn_on_failure = UseLargePages &&
3994       (!FLAG_IS_DEFAULT(UseLargePages) ||
3995        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3996        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3997 
3998   if (warn_on_failure) {
3999     char msg[128];
4000     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
4001                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
4002     warning("%s", msg);
4003   }
4004 }
4005 
4006 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
4007                                                         char* req_addr,
4008                                                         bool exec) {
4009   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4010   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
4011   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
4012 
4013   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4014   char* addr = (char*)::mmap(req_addr, bytes, prot,
4015                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
4016                              -1, 0);
4017 
4018   if (addr == MAP_FAILED) {
4019     warn_on_large_pages_failure(req_addr, bytes, errno);
4020     return NULL;
4021   }
4022 
4023   assert(is_aligned(addr, os::large_page_size()), "Must be");
4024 
4025   return addr;
4026 }
4027 
4028 // Reserve memory using mmap(MAP_HUGETLB).
4029 //  - bytes shall be a multiple of alignment.
4030 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
4031 //  - alignment sets the alignment at which memory shall be allocated.
4032 //     It must be a multiple of allocation granularity.
4033 // Returns address of memory or NULL. If req_addr was not NULL, will only return
4034 //  req_addr or NULL.
4035 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
4036                                                          size_t alignment,
4037                                                          char* req_addr,
4038                                                          bool exec) {
4039   size_t large_page_size = os::large_page_size();
4040   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
4041 
4042   assert(is_aligned(req_addr, alignment), "Must be");
4043   assert(is_aligned(bytes, alignment), "Must be");
4044 
4045   // First reserve - but not commit - the address range in small pages.
4046   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
4047 
4048   if (start == NULL) {
4049     return NULL;
4050   }
4051 
4052   assert(is_aligned(start, alignment), "Must be");
4053 
4054   char* end = start + bytes;
4055 
4056   // Find the regions of the allocated chunk that can be promoted to large pages.
4057   char* lp_start = align_up(start, large_page_size);
4058   char* lp_end   = align_down(end, large_page_size);
4059 
4060   size_t lp_bytes = lp_end - lp_start;
4061 
4062   assert(is_aligned(lp_bytes, large_page_size), "Must be");
4063 
4064   if (lp_bytes == 0) {
4065     // The mapped region doesn't even span the start and the end of a large page.
4066     // Fall back to allocate a non-special area.
4067     ::munmap(start, end - start);
4068     return NULL;
4069   }
4070 
4071   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4072 
4073   void* result;
4074 
4075   // Commit small-paged leading area.
4076   if (start != lp_start) {
4077     result = ::mmap(start, lp_start - start, prot,
4078                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4079                     -1, 0);
4080     if (result == MAP_FAILED) {
4081       ::munmap(lp_start, end - lp_start);
4082       return NULL;
4083     }
4084   }
4085 
4086   // Commit large-paged area.
4087   result = ::mmap(lp_start, lp_bytes, prot,
4088                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
4089                   -1, 0);
4090   if (result == MAP_FAILED) {
4091     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
4092     // If the mmap above fails, the large pages region will be unmapped and we
4093     // have regions before and after with small pages. Release these regions.
4094     //
4095     // |  mapped  |  unmapped  |  mapped  |
4096     // ^          ^            ^          ^
4097     // start      lp_start     lp_end     end
4098     //
4099     ::munmap(start, lp_start - start);
4100     ::munmap(lp_end, end - lp_end);
4101     return NULL;
4102   }
4103 
4104   // Commit small-paged trailing area.
4105   if (lp_end != end) {
4106     result = ::mmap(lp_end, end - lp_end, prot,
4107                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4108                     -1, 0);
4109     if (result == MAP_FAILED) {
4110       ::munmap(start, lp_end - start);
4111       return NULL;
4112     }
4113   }
4114 
4115   return start;
4116 }
4117 
4118 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
4119                                                    size_t alignment,
4120                                                    char* req_addr,
4121                                                    bool exec) {
4122   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4123   assert(is_aligned(req_addr, alignment), "Must be");
4124   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
4125   assert(is_power_of_2(os::large_page_size()), "Must be");
4126   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
4127 
4128   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
4129     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
4130   } else {
4131     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
4132   }
4133 }
4134 
4135 char* os::reserve_memory_special(size_t bytes, size_t alignment,
4136                                  char* req_addr, bool exec) {
4137   assert(UseLargePages, "only for large pages");
4138 
4139   char* addr;
4140   if (UseSHM) {
4141     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
4142   } else {
4143     assert(UseHugeTLBFS, "must be");
4144     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
4145   }
4146 
4147   if (addr != NULL) {
4148     if (UseNUMAInterleaving) {
4149       numa_make_global(addr, bytes);
4150     }
4151 
4152     // The memory is committed
4153     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
4154   }
4155 
4156   return addr;
4157 }
4158 
4159 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
4160   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
4161   return shmdt(base) == 0;
4162 }
4163 
4164 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
4165   return pd_release_memory(base, bytes);
4166 }
4167 
4168 bool os::release_memory_special(char* base, size_t bytes) {
4169   bool res;
4170   if (MemTracker::tracking_level() > NMT_minimal) {
4171     Tracker tkr(Tracker::release);
4172     res = os::Linux::release_memory_special_impl(base, bytes);
4173     if (res) {
4174       tkr.record((address)base, bytes);
4175     }
4176 
4177   } else {
4178     res = os::Linux::release_memory_special_impl(base, bytes);
4179   }
4180   return res;
4181 }
4182 
4183 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
4184   assert(UseLargePages, "only for large pages");
4185   bool res;
4186 
4187   if (UseSHM) {
4188     res = os::Linux::release_memory_special_shm(base, bytes);
4189   } else {
4190     assert(UseHugeTLBFS, "must be");
4191     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
4192   }
4193   return res;
4194 }
4195 
4196 size_t os::large_page_size() {
4197   return _large_page_size;
4198 }
4199 
4200 // With SysV SHM the entire memory region must be allocated as shared
4201 // memory.
4202 // HugeTLBFS allows application to commit large page memory on demand.
4203 // However, when committing memory with HugeTLBFS fails, the region
4204 // that was supposed to be committed will lose the old reservation
4205 // and allow other threads to steal that memory region. Because of this
4206 // behavior we can't commit HugeTLBFS memory.
4207 bool os::can_commit_large_page_memory() {
4208   return UseTransparentHugePages;
4209 }
4210 
4211 bool os::can_execute_large_page_memory() {
4212   return UseTransparentHugePages || UseHugeTLBFS;
4213 }
4214 
4215 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
4216   assert(file_desc >= 0, "file_desc is not valid");
4217   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
4218   if (result != NULL) {
4219     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
4220       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
4221     }
4222   }
4223   return result;
4224 }
4225 
4226 // Reserve memory at an arbitrary address, only if that area is
4227 // available (and not reserved for something else).
4228 
4229 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
4230   // Assert only that the size is a multiple of the page size, since
4231   // that's all that mmap requires, and since that's all we really know
4232   // about at this low abstraction level.  If we need higher alignment,
4233   // we can either pass an alignment to this method or verify alignment
4234   // in one of the methods further up the call chain.  See bug 5044738.
4235   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
4236 
4237   // Repeatedly allocate blocks until the block is allocated at the
4238   // right spot.
4239 
4240   // Linux mmap allows caller to pass an address as hint; give it a try first,
4241   // if kernel honors the hint then we can return immediately.
4242   char * addr = anon_mmap(requested_addr, bytes, false);
4243   if (addr == requested_addr) {
4244     return requested_addr;
4245   }
4246 
4247   if (addr != NULL) {
4248     // mmap() is successful but it fails to reserve at the requested address
4249     anon_munmap(addr, bytes);
4250   }
4251 
4252   return NULL;
4253 }
4254 
4255 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4256 void os::infinite_sleep() {
4257   while (true) {    // sleep forever ...
4258     ::sleep(100);   // ... 100 seconds at a time
4259   }
4260 }
4261 
4262 // Used to convert frequent JVM_Yield() to nops
4263 bool os::dont_yield() {
4264   return DontYieldALot;
4265 }
4266 
4267 // Linux CFS scheduler (since 2.6.23) does not guarantee sched_yield(2) will
4268 // actually give up the CPU. Since skip buddy (v2.6.28):
4269 //
4270 // * Sets the yielding task as skip buddy for current CPU's run queue.
4271 // * Picks next from run queue, if empty, picks a skip buddy (can be the yielding task).
4272 // * Clears skip buddies for this run queue (yielding task no longer a skip buddy).
4273 //
4274 // An alternative is calling os::naked_short_nanosleep with a small number to avoid
4275 // getting re-scheduled immediately.
4276 //
4277 void os::naked_yield() {
4278   sched_yield();
4279 }
4280 
4281 ////////////////////////////////////////////////////////////////////////////////
4282 // thread priority support
4283 
4284 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4285 // only supports dynamic priority, static priority must be zero. For real-time
4286 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4287 // However, for large multi-threaded applications, SCHED_RR is not only slower
4288 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4289 // of 5 runs - Sep 2005).
4290 //
4291 // The following code actually changes the niceness of kernel-thread/LWP. It
4292 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4293 // not the entire user process, and user level threads are 1:1 mapped to kernel
4294 // threads. It has always been the case, but could change in the future. For
4295 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4296 // It is only used when ThreadPriorityPolicy=1 and may require system level permission
4297 // (e.g., root privilege or CAP_SYS_NICE capability).
4298 
4299 int os::java_to_os_priority[CriticalPriority + 1] = {
4300   19,              // 0 Entry should never be used
4301 
4302    4,              // 1 MinPriority
4303    3,              // 2
4304    2,              // 3
4305 
4306    1,              // 4
4307    0,              // 5 NormPriority
4308   -1,              // 6
4309 
4310   -2,              // 7
4311   -3,              // 8
4312   -4,              // 9 NearMaxPriority
4313 
4314   -5,              // 10 MaxPriority
4315 
4316   -5               // 11 CriticalPriority
4317 };
4318 
4319 static int prio_init() {
4320   if (ThreadPriorityPolicy == 1) {
4321     if (geteuid() != 0) {
4322       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4323         warning("-XX:ThreadPriorityPolicy=1 may require system level permission, " \
4324                 "e.g., being the root user. If the necessary permission is not " \
4325                 "possessed, changes to priority will be silently ignored.");
4326       }
4327     }
4328   }
4329   if (UseCriticalJavaThreadPriority) {
4330     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4331   }
4332   return 0;
4333 }
4334 
4335 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4336   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4337 
4338   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4339   return (ret == 0) ? OS_OK : OS_ERR;
4340 }
4341 
4342 OSReturn os::get_native_priority(const Thread* const thread,
4343                                  int *priority_ptr) {
4344   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4345     *priority_ptr = java_to_os_priority[NormPriority];
4346     return OS_OK;
4347   }
4348 
4349   errno = 0;
4350   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4351   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4352 }
4353 
4354 ////////////////////////////////////////////////////////////////////////////////
4355 // suspend/resume support
4356 
4357 //  The low-level signal-based suspend/resume support is a remnant from the
4358 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4359 //  within hotspot. Currently used by JFR's OSThreadSampler
4360 //
4361 //  The remaining code is greatly simplified from the more general suspension
4362 //  code that used to be used.
4363 //
4364 //  The protocol is quite simple:
4365 //  - suspend:
4366 //      - sends a signal to the target thread
4367 //      - polls the suspend state of the osthread using a yield loop
4368 //      - target thread signal handler (SR_handler) sets suspend state
4369 //        and blocks in sigsuspend until continued
4370 //  - resume:
4371 //      - sets target osthread state to continue
4372 //      - sends signal to end the sigsuspend loop in the SR_handler
4373 //
4374 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4375 //  but is checked for NULL in SR_handler as a thread termination indicator.
4376 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4377 //
4378 //  Note that resume_clear_context() and suspend_save_context() are needed
4379 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4380 //  which in part is used by:
4381 //    - Forte Analyzer: AsyncGetCallTrace()
4382 //    - StackBanging: get_frame_at_stack_banging_point()
4383 
4384 static void resume_clear_context(OSThread *osthread) {
4385   osthread->set_ucontext(NULL);
4386   osthread->set_siginfo(NULL);
4387 }
4388 
4389 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4390                                  ucontext_t* context) {
4391   osthread->set_ucontext(context);
4392   osthread->set_siginfo(siginfo);
4393 }
4394 
4395 // Handler function invoked when a thread's execution is suspended or
4396 // resumed. We have to be careful that only async-safe functions are
4397 // called here (Note: most pthread functions are not async safe and
4398 // should be avoided.)
4399 //
4400 // Note: sigwait() is a more natural fit than sigsuspend() from an
4401 // interface point of view, but sigwait() prevents the signal hander
4402 // from being run. libpthread would get very confused by not having
4403 // its signal handlers run and prevents sigwait()'s use with the
4404 // mutex granting granting signal.
4405 //
4406 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4407 //
4408 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4409   // Save and restore errno to avoid confusing native code with EINTR
4410   // after sigsuspend.
4411   int old_errno = errno;
4412 
4413   Thread* thread = Thread::current_or_null_safe();
4414   assert(thread != NULL, "Missing current thread in SR_handler");
4415 
4416   // On some systems we have seen signal delivery get "stuck" until the signal
4417   // mask is changed as part of thread termination. Check that the current thread
4418   // has not already terminated (via SR_lock()) - else the following assertion
4419   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4420   // destructor has completed.
4421 
4422   if (thread->SR_lock() == NULL) {
4423     return;
4424   }
4425 
4426   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4427 
4428   OSThread* osthread = thread->osthread();
4429 
4430   os::SuspendResume::State current = osthread->sr.state();
4431   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4432     suspend_save_context(osthread, siginfo, context);
4433 
4434     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4435     os::SuspendResume::State state = osthread->sr.suspended();
4436     if (state == os::SuspendResume::SR_SUSPENDED) {
4437       sigset_t suspend_set;  // signals for sigsuspend()
4438       sigemptyset(&suspend_set);
4439       // get current set of blocked signals and unblock resume signal
4440       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4441       sigdelset(&suspend_set, SR_signum);
4442 
4443       sr_semaphore.signal();
4444       // wait here until we are resumed
4445       while (1) {
4446         sigsuspend(&suspend_set);
4447 
4448         os::SuspendResume::State result = osthread->sr.running();
4449         if (result == os::SuspendResume::SR_RUNNING) {
4450           sr_semaphore.signal();
4451           break;
4452         }
4453       }
4454 
4455     } else if (state == os::SuspendResume::SR_RUNNING) {
4456       // request was cancelled, continue
4457     } else {
4458       ShouldNotReachHere();
4459     }
4460 
4461     resume_clear_context(osthread);
4462   } else if (current == os::SuspendResume::SR_RUNNING) {
4463     // request was cancelled, continue
4464   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4465     // ignore
4466   } else {
4467     // ignore
4468   }
4469 
4470   errno = old_errno;
4471 }
4472 
4473 static int SR_initialize() {
4474   struct sigaction act;
4475   char *s;
4476 
4477   // Get signal number to use for suspend/resume
4478   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4479     int sig = ::strtol(s, 0, 10);
4480     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4481         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4482       SR_signum = sig;
4483     } else {
4484       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4485               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4486     }
4487   }
4488 
4489   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4490          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4491 
4492   sigemptyset(&SR_sigset);
4493   sigaddset(&SR_sigset, SR_signum);
4494 
4495   // Set up signal handler for suspend/resume
4496   act.sa_flags = SA_RESTART|SA_SIGINFO;
4497   act.sa_handler = (void (*)(int)) SR_handler;
4498 
4499   // SR_signum is blocked by default.
4500   // 4528190 - We also need to block pthread restart signal (32 on all
4501   // supported Linux platforms). Note that LinuxThreads need to block
4502   // this signal for all threads to work properly. So we don't have
4503   // to use hard-coded signal number when setting up the mask.
4504   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4505 
4506   if (sigaction(SR_signum, &act, 0) == -1) {
4507     return -1;
4508   }
4509 
4510   // Save signal flag
4511   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4512   return 0;
4513 }
4514 
4515 static int sr_notify(OSThread* osthread) {
4516   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4517   assert_status(status == 0, status, "pthread_kill");
4518   return status;
4519 }
4520 
4521 // "Randomly" selected value for how long we want to spin
4522 // before bailing out on suspending a thread, also how often
4523 // we send a signal to a thread we want to resume
4524 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4525 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4526 
4527 // returns true on success and false on error - really an error is fatal
4528 // but this seems the normal response to library errors
4529 static bool do_suspend(OSThread* osthread) {
4530   assert(osthread->sr.is_running(), "thread should be running");
4531   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4532 
4533   // mark as suspended and send signal
4534   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4535     // failed to switch, state wasn't running?
4536     ShouldNotReachHere();
4537     return false;
4538   }
4539 
4540   if (sr_notify(osthread) != 0) {
4541     ShouldNotReachHere();
4542   }
4543 
4544   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4545   while (true) {
4546     if (sr_semaphore.timedwait(2)) {
4547       break;
4548     } else {
4549       // timeout
4550       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4551       if (cancelled == os::SuspendResume::SR_RUNNING) {
4552         return false;
4553       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4554         // make sure that we consume the signal on the semaphore as well
4555         sr_semaphore.wait();
4556         break;
4557       } else {
4558         ShouldNotReachHere();
4559         return false;
4560       }
4561     }
4562   }
4563 
4564   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4565   return true;
4566 }
4567 
4568 static void do_resume(OSThread* osthread) {
4569   assert(osthread->sr.is_suspended(), "thread should be suspended");
4570   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4571 
4572   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4573     // failed to switch to WAKEUP_REQUEST
4574     ShouldNotReachHere();
4575     return;
4576   }
4577 
4578   while (true) {
4579     if (sr_notify(osthread) == 0) {
4580       if (sr_semaphore.timedwait(2)) {
4581         if (osthread->sr.is_running()) {
4582           return;
4583         }
4584       }
4585     } else {
4586       ShouldNotReachHere();
4587     }
4588   }
4589 
4590   guarantee(osthread->sr.is_running(), "Must be running!");
4591 }
4592 
4593 ///////////////////////////////////////////////////////////////////////////////////
4594 // signal handling (except suspend/resume)
4595 
4596 // This routine may be used by user applications as a "hook" to catch signals.
4597 // The user-defined signal handler must pass unrecognized signals to this
4598 // routine, and if it returns true (non-zero), then the signal handler must
4599 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4600 // routine will never retun false (zero), but instead will execute a VM panic
4601 // routine kill the process.
4602 //
4603 // If this routine returns false, it is OK to call it again.  This allows
4604 // the user-defined signal handler to perform checks either before or after
4605 // the VM performs its own checks.  Naturally, the user code would be making
4606 // a serious error if it tried to handle an exception (such as a null check
4607 // or breakpoint) that the VM was generating for its own correct operation.
4608 //
4609 // This routine may recognize any of the following kinds of signals:
4610 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4611 // It should be consulted by handlers for any of those signals.
4612 //
4613 // The caller of this routine must pass in the three arguments supplied
4614 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4615 // field of the structure passed to sigaction().  This routine assumes that
4616 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4617 //
4618 // Note that the VM will print warnings if it detects conflicting signal
4619 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4620 //
4621 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4622                                                  siginfo_t* siginfo,
4623                                                  void* ucontext,
4624                                                  int abort_if_unrecognized);
4625 
4626 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4627   assert(info != NULL && uc != NULL, "it must be old kernel");
4628   int orig_errno = errno;  // Preserve errno value over signal handler.
4629   JVM_handle_linux_signal(sig, info, uc, true);
4630   errno = orig_errno;
4631 }
4632 
4633 
4634 // This boolean allows users to forward their own non-matching signals
4635 // to JVM_handle_linux_signal, harmlessly.
4636 bool os::Linux::signal_handlers_are_installed = false;
4637 
4638 // For signal-chaining
4639 bool os::Linux::libjsig_is_loaded = false;
4640 typedef struct sigaction *(*get_signal_t)(int);
4641 get_signal_t os::Linux::get_signal_action = NULL;
4642 
4643 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4644   struct sigaction *actp = NULL;
4645 
4646   if (libjsig_is_loaded) {
4647     // Retrieve the old signal handler from libjsig
4648     actp = (*get_signal_action)(sig);
4649   }
4650   if (actp == NULL) {
4651     // Retrieve the preinstalled signal handler from jvm
4652     actp = os::Posix::get_preinstalled_handler(sig);
4653   }
4654 
4655   return actp;
4656 }
4657 
4658 static bool call_chained_handler(struct sigaction *actp, int sig,
4659                                  siginfo_t *siginfo, void *context) {
4660   // Call the old signal handler
4661   if (actp->sa_handler == SIG_DFL) {
4662     // It's more reasonable to let jvm treat it as an unexpected exception
4663     // instead of taking the default action.
4664     return false;
4665   } else if (actp->sa_handler != SIG_IGN) {
4666     if ((actp->sa_flags & SA_NODEFER) == 0) {
4667       // automaticlly block the signal
4668       sigaddset(&(actp->sa_mask), sig);
4669     }
4670 
4671     sa_handler_t hand = NULL;
4672     sa_sigaction_t sa = NULL;
4673     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4674     // retrieve the chained handler
4675     if (siginfo_flag_set) {
4676       sa = actp->sa_sigaction;
4677     } else {
4678       hand = actp->sa_handler;
4679     }
4680 
4681     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4682       actp->sa_handler = SIG_DFL;
4683     }
4684 
4685     // try to honor the signal mask
4686     sigset_t oset;
4687     sigemptyset(&oset);
4688     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4689 
4690     // call into the chained handler
4691     if (siginfo_flag_set) {
4692       (*sa)(sig, siginfo, context);
4693     } else {
4694       (*hand)(sig);
4695     }
4696 
4697     // restore the signal mask
4698     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4699   }
4700   // Tell jvm's signal handler the signal is taken care of.
4701   return true;
4702 }
4703 
4704 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4705   bool chained = false;
4706   // signal-chaining
4707   if (UseSignalChaining) {
4708     struct sigaction *actp = get_chained_signal_action(sig);
4709     if (actp != NULL) {
4710       chained = call_chained_handler(actp, sig, siginfo, context);
4711     }
4712   }
4713   return chained;
4714 }
4715 
4716 // for diagnostic
4717 int sigflags[NSIG];
4718 
4719 int os::Linux::get_our_sigflags(int sig) {
4720   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4721   return sigflags[sig];
4722 }
4723 
4724 void os::Linux::set_our_sigflags(int sig, int flags) {
4725   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4726   if (sig > 0 && sig < NSIG) {
4727     sigflags[sig] = flags;
4728   }
4729 }
4730 
4731 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4732   // Check for overwrite.
4733   struct sigaction oldAct;
4734   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4735 
4736   void* oldhand = oldAct.sa_sigaction
4737                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4738                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4739   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4740       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4741       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4742     if (AllowUserSignalHandlers || !set_installed) {
4743       // Do not overwrite; user takes responsibility to forward to us.
4744       return;
4745     } else if (UseSignalChaining) {
4746       // save the old handler in jvm
4747       os::Posix::save_preinstalled_handler(sig, oldAct);
4748       // libjsig also interposes the sigaction() call below and saves the
4749       // old sigaction on it own.
4750     } else {
4751       fatal("Encountered unexpected pre-existing sigaction handler "
4752             "%#lx for signal %d.", (long)oldhand, sig);
4753     }
4754   }
4755 
4756   struct sigaction sigAct;
4757   sigfillset(&(sigAct.sa_mask));
4758   sigAct.sa_handler = SIG_DFL;
4759   if (!set_installed) {
4760     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4761   } else {
4762     sigAct.sa_sigaction = signalHandler;
4763     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4764   }
4765   // Save flags, which are set by ours
4766   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4767   sigflags[sig] = sigAct.sa_flags;
4768 
4769   int ret = sigaction(sig, &sigAct, &oldAct);
4770   assert(ret == 0, "check");
4771 
4772   void* oldhand2  = oldAct.sa_sigaction
4773                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4774                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4775   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4776 }
4777 
4778 // install signal handlers for signals that HotSpot needs to
4779 // handle in order to support Java-level exception handling.
4780 
4781 void os::Linux::install_signal_handlers() {
4782   if (!signal_handlers_are_installed) {
4783     signal_handlers_are_installed = true;
4784 
4785     // signal-chaining
4786     typedef void (*signal_setting_t)();
4787     signal_setting_t begin_signal_setting = NULL;
4788     signal_setting_t end_signal_setting = NULL;
4789     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4790                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4791     if (begin_signal_setting != NULL) {
4792       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4793                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4794       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4795                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4796       libjsig_is_loaded = true;
4797       assert(UseSignalChaining, "should enable signal-chaining");
4798     }
4799     if (libjsig_is_loaded) {
4800       // Tell libjsig jvm is setting signal handlers
4801       (*begin_signal_setting)();
4802     }
4803 
4804     set_signal_handler(SIGSEGV, true);
4805     set_signal_handler(SIGPIPE, true);
4806     set_signal_handler(SIGBUS, true);
4807     set_signal_handler(SIGILL, true);
4808     set_signal_handler(SIGFPE, true);
4809 #if defined(PPC64)
4810     set_signal_handler(SIGTRAP, true);
4811 #endif
4812     set_signal_handler(SIGXFSZ, true);
4813 
4814     if (libjsig_is_loaded) {
4815       // Tell libjsig jvm finishes setting signal handlers
4816       (*end_signal_setting)();
4817     }
4818 
4819     // We don't activate signal checker if libjsig is in place, we trust ourselves
4820     // and if UserSignalHandler is installed all bets are off.
4821     // Log that signal checking is off only if -verbose:jni is specified.
4822     if (CheckJNICalls) {
4823       if (libjsig_is_loaded) {
4824         log_debug(jni, resolve)("Info: libjsig is activated, all active signal checking is disabled");
4825         check_signals = false;
4826       }
4827       if (AllowUserSignalHandlers) {
4828         log_debug(jni, resolve)("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4829         check_signals = false;
4830       }
4831     }
4832   }
4833 }
4834 
4835 // This is the fastest way to get thread cpu time on Linux.
4836 // Returns cpu time (user+sys) for any thread, not only for current.
4837 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4838 // It might work on 2.6.10+ with a special kernel/glibc patch.
4839 // For reference, please, see IEEE Std 1003.1-2004:
4840 //   http://www.unix.org/single_unix_specification
4841 
4842 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4843   struct timespec tp;
4844   int rc = os::Posix::clock_gettime(clockid, &tp);
4845   assert(rc == 0, "clock_gettime is expected to return 0 code");
4846 
4847   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4848 }
4849 
4850 /////
4851 // glibc on Linux platform uses non-documented flag
4852 // to indicate, that some special sort of signal
4853 // trampoline is used.
4854 // We will never set this flag, and we should
4855 // ignore this flag in our diagnostic
4856 #ifdef SIGNIFICANT_SIGNAL_MASK
4857   #undef SIGNIFICANT_SIGNAL_MASK
4858 #endif
4859 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4860 
4861 static const char* get_signal_handler_name(address handler,
4862                                            char* buf, int buflen) {
4863   int offset = 0;
4864   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4865   if (found) {
4866     // skip directory names
4867     const char *p1, *p2;
4868     p1 = buf;
4869     size_t len = strlen(os::file_separator());
4870     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4871     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4872   } else {
4873     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4874   }
4875   return buf;
4876 }
4877 
4878 static void print_signal_handler(outputStream* st, int sig,
4879                                  char* buf, size_t buflen) {
4880   struct sigaction sa;
4881 
4882   sigaction(sig, NULL, &sa);
4883 
4884   // See comment for SIGNIFICANT_SIGNAL_MASK define
4885   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4886 
4887   st->print("%s: ", os::exception_name(sig, buf, buflen));
4888 
4889   address handler = (sa.sa_flags & SA_SIGINFO)
4890     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4891     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4892 
4893   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4894     st->print("SIG_DFL");
4895   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4896     st->print("SIG_IGN");
4897   } else {
4898     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4899   }
4900 
4901   st->print(", sa_mask[0]=");
4902   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4903 
4904   address rh = VMError::get_resetted_sighandler(sig);
4905   // May be, handler was resetted by VMError?
4906   if (rh != NULL) {
4907     handler = rh;
4908     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4909   }
4910 
4911   st->print(", sa_flags=");
4912   os::Posix::print_sa_flags(st, sa.sa_flags);
4913 
4914   // Check: is it our handler?
4915   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4916       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4917     // It is our signal handler
4918     // check for flags, reset system-used one!
4919     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4920       st->print(
4921                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4922                 os::Linux::get_our_sigflags(sig));
4923     }
4924   }
4925   st->cr();
4926 }
4927 
4928 
4929 #define DO_SIGNAL_CHECK(sig)                      \
4930   do {                                            \
4931     if (!sigismember(&check_signal_done, sig)) {  \
4932       os::Linux::check_signal_handler(sig);       \
4933     }                                             \
4934   } while (0)
4935 
4936 // This method is a periodic task to check for misbehaving JNI applications
4937 // under CheckJNI, we can add any periodic checks here
4938 
4939 void os::run_periodic_checks() {
4940   if (check_signals == false) return;
4941 
4942   // SEGV and BUS if overridden could potentially prevent
4943   // generation of hs*.log in the event of a crash, debugging
4944   // such a case can be very challenging, so we absolutely
4945   // check the following for a good measure:
4946   DO_SIGNAL_CHECK(SIGSEGV);
4947   DO_SIGNAL_CHECK(SIGILL);
4948   DO_SIGNAL_CHECK(SIGFPE);
4949   DO_SIGNAL_CHECK(SIGBUS);
4950   DO_SIGNAL_CHECK(SIGPIPE);
4951   DO_SIGNAL_CHECK(SIGXFSZ);
4952 #if defined(PPC64)
4953   DO_SIGNAL_CHECK(SIGTRAP);
4954 #endif
4955 
4956   // ReduceSignalUsage allows the user to override these handlers
4957   // see comments at the very top and jvm_md.h
4958   if (!ReduceSignalUsage) {
4959     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4960     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4961     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4962     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4963   }
4964 
4965   DO_SIGNAL_CHECK(SR_signum);
4966 }
4967 
4968 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4969 
4970 static os_sigaction_t os_sigaction = NULL;
4971 
4972 void os::Linux::check_signal_handler(int sig) {
4973   char buf[O_BUFLEN];
4974   address jvmHandler = NULL;
4975 
4976 
4977   struct sigaction act;
4978   if (os_sigaction == NULL) {
4979     // only trust the default sigaction, in case it has been interposed
4980     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4981     if (os_sigaction == NULL) return;
4982   }
4983 
4984   os_sigaction(sig, (struct sigaction*)NULL, &act);
4985 
4986 
4987   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4988 
4989   address thisHandler = (act.sa_flags & SA_SIGINFO)
4990     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4991     : CAST_FROM_FN_PTR(address, act.sa_handler);
4992 
4993 
4994   switch (sig) {
4995   case SIGSEGV:
4996   case SIGBUS:
4997   case SIGFPE:
4998   case SIGPIPE:
4999   case SIGILL:
5000   case SIGXFSZ:
5001     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
5002     break;
5003 
5004   case SHUTDOWN1_SIGNAL:
5005   case SHUTDOWN2_SIGNAL:
5006   case SHUTDOWN3_SIGNAL:
5007   case BREAK_SIGNAL:
5008     jvmHandler = (address)user_handler();
5009     break;
5010 
5011   default:
5012     if (sig == SR_signum) {
5013       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
5014     } else {
5015       return;
5016     }
5017     break;
5018   }
5019 
5020   if (thisHandler != jvmHandler) {
5021     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
5022     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
5023     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
5024     // No need to check this sig any longer
5025     sigaddset(&check_signal_done, sig);
5026     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
5027     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
5028       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
5029                     exception_name(sig, buf, O_BUFLEN));
5030     }
5031   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
5032     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
5033     tty->print("expected:");
5034     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
5035     tty->cr();
5036     tty->print("  found:");
5037     os::Posix::print_sa_flags(tty, act.sa_flags);
5038     tty->cr();
5039     // No need to check this sig any longer
5040     sigaddset(&check_signal_done, sig);
5041   }
5042 
5043   // Dump all the signal
5044   if (sigismember(&check_signal_done, sig)) {
5045     print_signal_handlers(tty, buf, O_BUFLEN);
5046   }
5047 }
5048 
5049 extern void report_error(char* file_name, int line_no, char* title,
5050                          char* format, ...);
5051 
5052 // this is called _before_ most of the global arguments have been parsed
5053 void os::init(void) {
5054   char dummy;   // used to get a guess on initial stack address
5055 
5056   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
5057 
5058   init_random(1234567);
5059 
5060   Linux::set_page_size(sysconf(_SC_PAGESIZE));
5061   if (Linux::page_size() == -1) {
5062     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
5063           os::strerror(errno));
5064   }
5065   init_page_sizes((size_t) Linux::page_size());
5066 
5067   Linux::initialize_system_info();
5068 
5069   os::Linux::CPUPerfTicks pticks;
5070   bool res = os::Linux::get_tick_information(&pticks, -1);
5071 
5072   if (res && pticks.has_steal_ticks) {
5073     has_initial_tick_info = true;
5074     initial_total_ticks = pticks.total;
5075     initial_steal_ticks = pticks.steal;
5076   }
5077 
5078   // _main_thread points to the thread that created/loaded the JVM.
5079   Linux::_main_thread = pthread_self();
5080 
5081   // retrieve entry point for pthread_setname_np
5082   Linux::_pthread_setname_np =
5083     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
5084 
5085   os::Posix::init();
5086 
5087   initial_time_count = javaTimeNanos();
5088 
5089   // Always warn if no monotonic clock available
5090   if (!os::Posix::supports_monotonic_clock()) {
5091     warning("No monotonic clock was available - timed services may "    \
5092             "be adversely affected if the time-of-day clock changes");
5093   }
5094 }
5095 
5096 // To install functions for atexit system call
5097 extern "C" {
5098   static void perfMemory_exit_helper() {
5099     perfMemory_exit();
5100   }
5101 }
5102 
5103 void os::pd_init_container_support() {
5104   OSContainer::init();
5105 }
5106 
5107 void os::Linux::numa_init() {
5108 
5109   // Java can be invoked as
5110   // 1. Without numactl and heap will be allocated/configured on all nodes as
5111   //    per the system policy.
5112   // 2. With numactl --interleave:
5113   //      Use numa_get_interleave_mask(v2) API to get nodes bitmask. The same
5114   //      API for membind case bitmask is reset.
5115   //      Interleave is only hint and Kernel can fallback to other nodes if
5116   //      no memory is available on the target nodes.
5117   // 3. With numactl --membind:
5118   //      Use numa_get_membind(v2) API to get nodes bitmask. The same API for
5119   //      interleave case returns bitmask of all nodes.
5120   // numa_all_nodes_ptr holds bitmask of all nodes.
5121   // numa_get_interleave_mask(v2) and numa_get_membind(v2) APIs returns correct
5122   // bitmask when externally configured to run on all or fewer nodes.
5123 
5124   if (!Linux::libnuma_init()) {
5125     UseNUMA = false;
5126   } else {
5127     if ((Linux::numa_max_node() < 1) || Linux::is_bound_to_single_node()) {
5128       // If there's only one node (they start from 0) or if the process
5129       // is bound explicitly to a single node using membind, disable NUMA.
5130       UseNUMA = false;
5131     } else {
5132 
5133       LogTarget(Info,os) log;
5134       LogStream ls(log);
5135 
5136       Linux::set_configured_numa_policy(Linux::identify_numa_policy());
5137 
5138       struct bitmask* bmp = Linux::_numa_membind_bitmask;
5139       const char* numa_mode = "membind";
5140 
5141       if (Linux::is_running_in_interleave_mode()) {
5142         bmp = Linux::_numa_interleave_bitmask;
5143         numa_mode = "interleave";
5144       }
5145 
5146       ls.print("UseNUMA is enabled and invoked in '%s' mode."
5147                " Heap will be configured using NUMA memory nodes:", numa_mode);
5148 
5149       for (int node = 0; node <= Linux::numa_max_node(); node++) {
5150         if (Linux::_numa_bitmask_isbitset(bmp, node)) {
5151           ls.print(" %d", node);
5152         }
5153       }
5154     }
5155   }
5156 
5157   if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5158     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5159     // we can make the adaptive lgrp chunk resizing work. If the user specified both
5160     // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5161     // and disable adaptive resizing.
5162     if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5163       warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5164               "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5165       UseAdaptiveSizePolicy = false;
5166       UseAdaptiveNUMAChunkSizing = false;
5167     }
5168   }
5169 
5170   if (!UseNUMA && ForceNUMA) {
5171     UseNUMA = true;
5172   }
5173 }
5174 
5175 // this is called _after_ the global arguments have been parsed
5176 jint os::init_2(void) {
5177 
5178   // This could be set after os::Posix::init() but all platforms
5179   // have to set it the same so we have to mirror Solaris.
5180   DEBUG_ONLY(os::set_mutex_init_done();)
5181 
5182   os::Posix::init_2();
5183 
5184   Linux::fast_thread_clock_init();
5185 
5186   // initialize suspend/resume support - must do this before signal_sets_init()
5187   if (SR_initialize() != 0) {
5188     perror("SR_initialize failed");
5189     return JNI_ERR;
5190   }
5191 
5192   Linux::signal_sets_init();
5193   Linux::install_signal_handlers();
5194   // Initialize data for jdk.internal.misc.Signal
5195   if (!ReduceSignalUsage) {
5196     jdk_misc_signal_init();
5197   }
5198 
5199   if (AdjustStackSizeForTLS) {
5200     get_minstack_init();
5201   }
5202 
5203   // Check and sets minimum stack sizes against command line options
5204   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
5205     return JNI_ERR;
5206   }
5207 
5208 #if defined(IA32)
5209   // Need to ensure we've determined the process's initial stack to
5210   // perform the workaround
5211   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5212   workaround_expand_exec_shield_cs_limit();
5213 #else
5214   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
5215   if (!suppress_primordial_thread_resolution) {
5216     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5217   }
5218 #endif
5219 
5220   Linux::libpthread_init();
5221   Linux::sched_getcpu_init();
5222   log_info(os)("HotSpot is running with %s, %s",
5223                Linux::glibc_version(), Linux::libpthread_version());
5224 
5225   if (UseNUMA) {
5226     Linux::numa_init();
5227   }
5228 
5229   if (MaxFDLimit) {
5230     // set the number of file descriptors to max. print out error
5231     // if getrlimit/setrlimit fails but continue regardless.
5232     struct rlimit nbr_files;
5233     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5234     if (status != 0) {
5235       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5236     } else {
5237       nbr_files.rlim_cur = nbr_files.rlim_max;
5238       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5239       if (status != 0) {
5240         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5241       }
5242     }
5243   }
5244 
5245   // at-exit methods are called in the reverse order of their registration.
5246   // atexit functions are called on return from main or as a result of a
5247   // call to exit(3C). There can be only 32 of these functions registered
5248   // and atexit() does not set errno.
5249 
5250   if (PerfAllowAtExitRegistration) {
5251     // only register atexit functions if PerfAllowAtExitRegistration is set.
5252     // atexit functions can be delayed until process exit time, which
5253     // can be problematic for embedded VM situations. Embedded VMs should
5254     // call DestroyJavaVM() to assure that VM resources are released.
5255 
5256     // note: perfMemory_exit_helper atexit function may be removed in
5257     // the future if the appropriate cleanup code can be added to the
5258     // VM_Exit VMOperation's doit method.
5259     if (atexit(perfMemory_exit_helper) != 0) {
5260       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5261     }
5262   }
5263 
5264   // initialize thread priority policy
5265   prio_init();
5266 
5267   if (!FLAG_IS_DEFAULT(AllocateHeapAt) || !FLAG_IS_DEFAULT(AllocateOldGenAt)) {
5268     set_coredump_filter(DAX_SHARED_BIT);
5269   }
5270 
5271   if (DumpPrivateMappingsInCore) {
5272     set_coredump_filter(FILE_BACKED_PVT_BIT);
5273   }
5274 
5275   if (DumpSharedMappingsInCore) {
5276     set_coredump_filter(FILE_BACKED_SHARED_BIT);
5277   }
5278 
5279   return JNI_OK;
5280 }
5281 
5282 // Mark the polling page as unreadable
5283 void os::make_polling_page_unreadable(void) {
5284   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5285     fatal("Could not disable polling page");
5286   }
5287 }
5288 
5289 // Mark the polling page as readable
5290 void os::make_polling_page_readable(void) {
5291   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5292     fatal("Could not enable polling page");
5293   }
5294 }
5295 
5296 // older glibc versions don't have this macro (which expands to
5297 // an optimized bit-counting function) so we have to roll our own
5298 #ifndef CPU_COUNT
5299 
5300 static int _cpu_count(const cpu_set_t* cpus) {
5301   int count = 0;
5302   // only look up to the number of configured processors
5303   for (int i = 0; i < os::processor_count(); i++) {
5304     if (CPU_ISSET(i, cpus)) {
5305       count++;
5306     }
5307   }
5308   return count;
5309 }
5310 
5311 #define CPU_COUNT(cpus) _cpu_count(cpus)
5312 
5313 #endif // CPU_COUNT
5314 
5315 // Get the current number of available processors for this process.
5316 // This value can change at any time during a process's lifetime.
5317 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5318 // If it appears there may be more than 1024 processors then we do a
5319 // dynamic check - see 6515172 for details.
5320 // If anything goes wrong we fallback to returning the number of online
5321 // processors - which can be greater than the number available to the process.
5322 int os::Linux::active_processor_count() {
5323   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5324   cpu_set_t* cpus_p = &cpus;
5325   int cpus_size = sizeof(cpu_set_t);
5326 
5327   int configured_cpus = os::processor_count();  // upper bound on available cpus
5328   int cpu_count = 0;
5329 
5330 // old build platforms may not support dynamic cpu sets
5331 #ifdef CPU_ALLOC
5332 
5333   // To enable easy testing of the dynamic path on different platforms we
5334   // introduce a diagnostic flag: UseCpuAllocPath
5335   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5336     // kernel may use a mask bigger than cpu_set_t
5337     log_trace(os)("active_processor_count: using dynamic path %s"
5338                   "- configured processors: %d",
5339                   UseCpuAllocPath ? "(forced) " : "",
5340                   configured_cpus);
5341     cpus_p = CPU_ALLOC(configured_cpus);
5342     if (cpus_p != NULL) {
5343       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5344       // zero it just to be safe
5345       CPU_ZERO_S(cpus_size, cpus_p);
5346     }
5347     else {
5348        // failed to allocate so fallback to online cpus
5349        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5350        log_trace(os)("active_processor_count: "
5351                      "CPU_ALLOC failed (%s) - using "
5352                      "online processor count: %d",
5353                      os::strerror(errno), online_cpus);
5354        return online_cpus;
5355     }
5356   }
5357   else {
5358     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5359                   configured_cpus);
5360   }
5361 #else // CPU_ALLOC
5362 // these stubs won't be executed
5363 #define CPU_COUNT_S(size, cpus) -1
5364 #define CPU_FREE(cpus)
5365 
5366   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5367                 configured_cpus);
5368 #endif // CPU_ALLOC
5369 
5370   // pid 0 means the current thread - which we have to assume represents the process
5371   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5372     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5373       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5374     }
5375     else {
5376       cpu_count = CPU_COUNT(cpus_p);
5377     }
5378     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5379   }
5380   else {
5381     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5382     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5383             "which may exceed available processors", os::strerror(errno), cpu_count);
5384   }
5385 
5386   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5387     CPU_FREE(cpus_p);
5388   }
5389 
5390   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5391   return cpu_count;
5392 }
5393 
5394 // Determine the active processor count from one of
5395 // three different sources:
5396 //
5397 // 1. User option -XX:ActiveProcessorCount
5398 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5399 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5400 //
5401 // Option 1, if specified, will always override.
5402 // If the cgroup subsystem is active and configured, we
5403 // will return the min of the cgroup and option 2 results.
5404 // This is required since tools, such as numactl, that
5405 // alter cpu affinity do not update cgroup subsystem
5406 // cpuset configuration files.
5407 int os::active_processor_count() {
5408   // User has overridden the number of active processors
5409   if (ActiveProcessorCount > 0) {
5410     log_trace(os)("active_processor_count: "
5411                   "active processor count set by user : %d",
5412                   ActiveProcessorCount);
5413     return ActiveProcessorCount;
5414   }
5415 
5416   int active_cpus;
5417   if (OSContainer::is_containerized()) {
5418     active_cpus = OSContainer::active_processor_count();
5419     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5420                    active_cpus);
5421   } else {
5422     active_cpus = os::Linux::active_processor_count();
5423   }
5424 
5425   return active_cpus;
5426 }
5427 
5428 uint os::processor_id() {
5429   const int id = Linux::sched_getcpu();
5430   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5431   return (uint)id;
5432 }
5433 
5434 void os::set_native_thread_name(const char *name) {
5435   if (Linux::_pthread_setname_np) {
5436     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5437     snprintf(buf, sizeof(buf), "%s", name);
5438     buf[sizeof(buf) - 1] = '\0';
5439     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5440     // ERANGE should not happen; all other errors should just be ignored.
5441     assert(rc != ERANGE, "pthread_setname_np failed");
5442   }
5443 }
5444 
5445 bool os::bind_to_processor(uint processor_id) {
5446   // Not yet implemented.
5447   return false;
5448 }
5449 
5450 ///
5451 
5452 void os::SuspendedThreadTask::internal_do_task() {
5453   if (do_suspend(_thread->osthread())) {
5454     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5455     do_task(context);
5456     do_resume(_thread->osthread());
5457   }
5458 }
5459 
5460 ////////////////////////////////////////////////////////////////////////////////
5461 // debug support
5462 
5463 bool os::find(address addr, outputStream* st) {
5464   Dl_info dlinfo;
5465   memset(&dlinfo, 0, sizeof(dlinfo));
5466   if (dladdr(addr, &dlinfo) != 0) {
5467     st->print(PTR_FORMAT ": ", p2i(addr));
5468     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5469       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5470                 p2i(addr) - p2i(dlinfo.dli_saddr));
5471     } else if (dlinfo.dli_fbase != NULL) {
5472       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5473     } else {
5474       st->print("<absolute address>");
5475     }
5476     if (dlinfo.dli_fname != NULL) {
5477       st->print(" in %s", dlinfo.dli_fname);
5478     }
5479     if (dlinfo.dli_fbase != NULL) {
5480       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5481     }
5482     st->cr();
5483 
5484     if (Verbose) {
5485       // decode some bytes around the PC
5486       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5487       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5488       address       lowest = (address) dlinfo.dli_sname;
5489       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5490       if (begin < lowest)  begin = lowest;
5491       Dl_info dlinfo2;
5492       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5493           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5494         end = (address) dlinfo2.dli_saddr;
5495       }
5496       Disassembler::decode(begin, end, st);
5497     }
5498     return true;
5499   }
5500   return false;
5501 }
5502 
5503 ////////////////////////////////////////////////////////////////////////////////
5504 // misc
5505 
5506 // This does not do anything on Linux. This is basically a hook for being
5507 // able to use structured exception handling (thread-local exception filters)
5508 // on, e.g., Win32.
5509 void
5510 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5511                          JavaCallArguments* args, Thread* thread) {
5512   f(value, method, args, thread);
5513 }
5514 
5515 void os::print_statistics() {
5516 }
5517 
5518 bool os::message_box(const char* title, const char* message) {
5519   int i;
5520   fdStream err(defaultStream::error_fd());
5521   for (i = 0; i < 78; i++) err.print_raw("=");
5522   err.cr();
5523   err.print_raw_cr(title);
5524   for (i = 0; i < 78; i++) err.print_raw("-");
5525   err.cr();
5526   err.print_raw_cr(message);
5527   for (i = 0; i < 78; i++) err.print_raw("=");
5528   err.cr();
5529 
5530   char buf[16];
5531   // Prevent process from exiting upon "read error" without consuming all CPU
5532   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5533 
5534   return buf[0] == 'y' || buf[0] == 'Y';
5535 }
5536 
5537 // Is a (classpath) directory empty?
5538 bool os::dir_is_empty(const char* path) {
5539   DIR *dir = NULL;
5540   struct dirent *ptr;
5541 
5542   dir = opendir(path);
5543   if (dir == NULL) return true;
5544 
5545   // Scan the directory
5546   bool result = true;
5547   while (result && (ptr = readdir(dir)) != NULL) {
5548     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5549       result = false;
5550     }
5551   }
5552   closedir(dir);
5553   return result;
5554 }
5555 
5556 // This code originates from JDK's sysOpen and open64_w
5557 // from src/solaris/hpi/src/system_md.c
5558 
5559 int os::open(const char *path, int oflag, int mode) {
5560   if (strlen(path) > MAX_PATH - 1) {
5561     errno = ENAMETOOLONG;
5562     return -1;
5563   }
5564 
5565   // All file descriptors that are opened in the Java process and not
5566   // specifically destined for a subprocess should have the close-on-exec
5567   // flag set.  If we don't set it, then careless 3rd party native code
5568   // might fork and exec without closing all appropriate file descriptors
5569   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5570   // turn might:
5571   //
5572   // - cause end-of-file to fail to be detected on some file
5573   //   descriptors, resulting in mysterious hangs, or
5574   //
5575   // - might cause an fopen in the subprocess to fail on a system
5576   //   suffering from bug 1085341.
5577   //
5578   // (Yes, the default setting of the close-on-exec flag is a Unix
5579   // design flaw)
5580   //
5581   // See:
5582   // 1085341: 32-bit stdio routines should support file descriptors >255
5583   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5584   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5585   //
5586   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5587   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5588   // because it saves a system call and removes a small window where the flag
5589   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5590   // and we fall back to using FD_CLOEXEC (see below).
5591 #ifdef O_CLOEXEC
5592   oflag |= O_CLOEXEC;
5593 #endif
5594 
5595   int fd = ::open64(path, oflag, mode);
5596   if (fd == -1) return -1;
5597 
5598   //If the open succeeded, the file might still be a directory
5599   {
5600     struct stat64 buf64;
5601     int ret = ::fstat64(fd, &buf64);
5602     int st_mode = buf64.st_mode;
5603 
5604     if (ret != -1) {
5605       if ((st_mode & S_IFMT) == S_IFDIR) {
5606         errno = EISDIR;
5607         ::close(fd);
5608         return -1;
5609       }
5610     } else {
5611       ::close(fd);
5612       return -1;
5613     }
5614   }
5615 
5616 #ifdef FD_CLOEXEC
5617   // Validate that the use of the O_CLOEXEC flag on open above worked.
5618   // With recent kernels, we will perform this check exactly once.
5619   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5620   if (!O_CLOEXEC_is_known_to_work) {
5621     int flags = ::fcntl(fd, F_GETFD);
5622     if (flags != -1) {
5623       if ((flags & FD_CLOEXEC) != 0)
5624         O_CLOEXEC_is_known_to_work = 1;
5625       else
5626         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5627     }
5628   }
5629 #endif
5630 
5631   return fd;
5632 }
5633 
5634 
5635 // create binary file, rewriting existing file if required
5636 int os::create_binary_file(const char* path, bool rewrite_existing) {
5637   int oflags = O_WRONLY | O_CREAT;
5638   if (!rewrite_existing) {
5639     oflags |= O_EXCL;
5640   }
5641   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5642 }
5643 
5644 // return current position of file pointer
5645 jlong os::current_file_offset(int fd) {
5646   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5647 }
5648 
5649 // move file pointer to the specified offset
5650 jlong os::seek_to_file_offset(int fd, jlong offset) {
5651   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5652 }
5653 
5654 // This code originates from JDK's sysAvailable
5655 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5656 
5657 int os::available(int fd, jlong *bytes) {
5658   jlong cur, end;
5659   int mode;
5660   struct stat64 buf64;
5661 
5662   if (::fstat64(fd, &buf64) >= 0) {
5663     mode = buf64.st_mode;
5664     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5665       int n;
5666       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5667         *bytes = n;
5668         return 1;
5669       }
5670     }
5671   }
5672   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5673     return 0;
5674   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5675     return 0;
5676   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5677     return 0;
5678   }
5679   *bytes = end - cur;
5680   return 1;
5681 }
5682 
5683 // Map a block of memory.
5684 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5685                         char *addr, size_t bytes, bool read_only,
5686                         bool allow_exec) {
5687   int prot;
5688   int flags = MAP_PRIVATE;
5689 
5690   if (read_only) {
5691     prot = PROT_READ;
5692   } else {
5693     prot = PROT_READ | PROT_WRITE;
5694   }
5695 
5696   if (allow_exec) {
5697     prot |= PROT_EXEC;
5698   }
5699 
5700   if (addr != NULL) {
5701     flags |= MAP_FIXED;
5702   }
5703 
5704   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5705                                      fd, file_offset);
5706   if (mapped_address == MAP_FAILED) {
5707     return NULL;
5708   }
5709   return mapped_address;
5710 }
5711 
5712 
5713 // Remap a block of memory.
5714 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5715                           char *addr, size_t bytes, bool read_only,
5716                           bool allow_exec) {
5717   // same as map_memory() on this OS
5718   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5719                         allow_exec);
5720 }
5721 
5722 
5723 // Unmap a block of memory.
5724 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5725   return munmap(addr, bytes) == 0;
5726 }
5727 
5728 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5729 
5730 static jlong fast_cpu_time(Thread *thread) {
5731     clockid_t clockid;
5732     int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
5733                                               &clockid);
5734     if (rc == 0) {
5735       return os::Linux::fast_thread_cpu_time(clockid);
5736     } else {
5737       // It's possible to encounter a terminated native thread that failed
5738       // to detach itself from the VM - which should result in ESRCH.
5739       assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
5740       return -1;
5741     }
5742 }
5743 
5744 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5745 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5746 // of a thread.
5747 //
5748 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5749 // the fast estimate available on the platform.
5750 
5751 jlong os::current_thread_cpu_time() {
5752   if (os::Linux::supports_fast_thread_cpu_time()) {
5753     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5754   } else {
5755     // return user + sys since the cost is the same
5756     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5757   }
5758 }
5759 
5760 jlong os::thread_cpu_time(Thread* thread) {
5761   // consistent with what current_thread_cpu_time() returns
5762   if (os::Linux::supports_fast_thread_cpu_time()) {
5763     return fast_cpu_time(thread);
5764   } else {
5765     return slow_thread_cpu_time(thread, true /* user + sys */);
5766   }
5767 }
5768 
5769 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5770   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5771     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5772   } else {
5773     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5774   }
5775 }
5776 
5777 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5778   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5779     return fast_cpu_time(thread);
5780   } else {
5781     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5782   }
5783 }
5784 
5785 //  -1 on error.
5786 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5787   pid_t  tid = thread->osthread()->thread_id();
5788   char *s;
5789   char stat[2048];
5790   int statlen;
5791   char proc_name[64];
5792   int count;
5793   long sys_time, user_time;
5794   char cdummy;
5795   int idummy;
5796   long ldummy;
5797   FILE *fp;
5798 
5799   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5800   fp = fopen(proc_name, "r");
5801   if (fp == NULL) return -1;
5802   statlen = fread(stat, 1, 2047, fp);
5803   stat[statlen] = '\0';
5804   fclose(fp);
5805 
5806   // Skip pid and the command string. Note that we could be dealing with
5807   // weird command names, e.g. user could decide to rename java launcher
5808   // to "java 1.4.2 :)", then the stat file would look like
5809   //                1234 (java 1.4.2 :)) R ... ...
5810   // We don't really need to know the command string, just find the last
5811   // occurrence of ")" and then start parsing from there. See bug 4726580.
5812   s = strrchr(stat, ')');
5813   if (s == NULL) return -1;
5814 
5815   // Skip blank chars
5816   do { s++; } while (s && isspace(*s));
5817 
5818   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5819                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5820                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5821                  &user_time, &sys_time);
5822   if (count != 13) return -1;
5823   if (user_sys_cpu_time) {
5824     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5825   } else {
5826     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5827   }
5828 }
5829 
5830 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5831   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5832   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5833   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5834   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5835 }
5836 
5837 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5838   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5839   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5840   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5841   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5842 }
5843 
5844 bool os::is_thread_cpu_time_supported() {
5845   return true;
5846 }
5847 
5848 // System loadavg support.  Returns -1 if load average cannot be obtained.
5849 // Linux doesn't yet have a (official) notion of processor sets,
5850 // so just return the system wide load average.
5851 int os::loadavg(double loadavg[], int nelem) {
5852   return ::getloadavg(loadavg, nelem);
5853 }
5854 
5855 void os::pause() {
5856   char filename[MAX_PATH];
5857   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5858     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5859   } else {
5860     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5861   }
5862 
5863   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5864   if (fd != -1) {
5865     struct stat buf;
5866     ::close(fd);
5867     while (::stat(filename, &buf) == 0) {
5868       (void)::poll(NULL, 0, 100);
5869     }
5870   } else {
5871     jio_fprintf(stderr,
5872                 "Could not open pause file '%s', continuing immediately.\n", filename);
5873   }
5874 }
5875 
5876 extern char** environ;
5877 
5878 // Run the specified command in a separate process. Return its exit value,
5879 // or -1 on failure (e.g. can't fork a new process).
5880 // Unlike system(), this function can be called from signal handler. It
5881 // doesn't block SIGINT et al.
5882 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5883   const char * argv[4] = {"sh", "-c", cmd, NULL};
5884 
5885   pid_t pid ;
5886 
5887   if (use_vfork_if_available) {
5888     pid = vfork();
5889   } else {
5890     pid = fork();
5891   }
5892 
5893   if (pid < 0) {
5894     // fork failed
5895     return -1;
5896 
5897   } else if (pid == 0) {
5898     // child process
5899 
5900     execve("/bin/sh", (char* const*)argv, environ);
5901 
5902     // execve failed
5903     _exit(-1);
5904 
5905   } else  {
5906     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5907     // care about the actual exit code, for now.
5908 
5909     int status;
5910 
5911     // Wait for the child process to exit.  This returns immediately if
5912     // the child has already exited. */
5913     while (waitpid(pid, &status, 0) < 0) {
5914       switch (errno) {
5915       case ECHILD: return 0;
5916       case EINTR: break;
5917       default: return -1;
5918       }
5919     }
5920 
5921     if (WIFEXITED(status)) {
5922       // The child exited normally; get its exit code.
5923       return WEXITSTATUS(status);
5924     } else if (WIFSIGNALED(status)) {
5925       // The child exited because of a signal
5926       // The best value to return is 0x80 + signal number,
5927       // because that is what all Unix shells do, and because
5928       // it allows callers to distinguish between process exit and
5929       // process death by signal.
5930       return 0x80 + WTERMSIG(status);
5931     } else {
5932       // Unknown exit code; pass it through
5933       return status;
5934     }
5935   }
5936 }
5937 
5938 // Get the default path to the core file
5939 // Returns the length of the string
5940 int os::get_core_path(char* buffer, size_t bufferSize) {
5941   /*
5942    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5943    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5944    */
5945   const int core_pattern_len = 129;
5946   char core_pattern[core_pattern_len] = {0};
5947 
5948   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5949   if (core_pattern_file == -1) {
5950     return -1;
5951   }
5952 
5953   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5954   ::close(core_pattern_file);
5955   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5956     return -1;
5957   }
5958   if (core_pattern[ret-1] == '\n') {
5959     core_pattern[ret-1] = '\0';
5960   } else {
5961     core_pattern[ret] = '\0';
5962   }
5963 
5964   // Replace the %p in the core pattern with the process id. NOTE: we do this
5965   // only if the pattern doesn't start with "|", and we support only one %p in
5966   // the pattern.
5967   char *pid_pos = strstr(core_pattern, "%p");
5968   const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "";  // skip over the "%p"
5969   int written;
5970 
5971   if (core_pattern[0] == '/') {
5972     if (pid_pos != NULL) {
5973       *pid_pos = '\0';
5974       written = jio_snprintf(buffer, bufferSize, "%s%d%s", core_pattern,
5975                              current_process_id(), tail);
5976     } else {
5977       written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5978     }
5979   } else {
5980     char cwd[PATH_MAX];
5981 
5982     const char* p = get_current_directory(cwd, PATH_MAX);
5983     if (p == NULL) {
5984       return -1;
5985     }
5986 
5987     if (core_pattern[0] == '|') {
5988       written = jio_snprintf(buffer, bufferSize,
5989                              "\"%s\" (or dumping to %s/core.%d)",
5990                              &core_pattern[1], p, current_process_id());
5991     } else if (pid_pos != NULL) {
5992       *pid_pos = '\0';
5993       written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s", p, core_pattern,
5994                              current_process_id(), tail);
5995     } else {
5996       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5997     }
5998   }
5999 
6000   if (written < 0) {
6001     return -1;
6002   }
6003 
6004   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6005     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6006 
6007     if (core_uses_pid_file != -1) {
6008       char core_uses_pid = 0;
6009       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6010       ::close(core_uses_pid_file);
6011 
6012       if (core_uses_pid == '1') {
6013         jio_snprintf(buffer + written, bufferSize - written,
6014                                           ".%d", current_process_id());
6015       }
6016     }
6017   }
6018 
6019   return strlen(buffer);
6020 }
6021 
6022 bool os::start_debugging(char *buf, int buflen) {
6023   int len = (int)strlen(buf);
6024   char *p = &buf[len];
6025 
6026   jio_snprintf(p, buflen-len,
6027                "\n\n"
6028                "Do you want to debug the problem?\n\n"
6029                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6030                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6031                "Otherwise, press RETURN to abort...",
6032                os::current_process_id(), os::current_process_id(),
6033                os::current_thread_id(), os::current_thread_id());
6034 
6035   bool yes = os::message_box("Unexpected Error", buf);
6036 
6037   if (yes) {
6038     // yes, user asked VM to launch debugger
6039     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
6040                  os::current_process_id(), os::current_process_id());
6041 
6042     os::fork_and_exec(buf);
6043     yes = false;
6044   }
6045   return yes;
6046 }
6047 
6048 
6049 // Java/Compiler thread:
6050 //
6051 //   Low memory addresses
6052 // P0 +------------------------+
6053 //    |                        |\  Java thread created by VM does not have glibc
6054 //    |    glibc guard page    | - guard page, attached Java thread usually has
6055 //    |                        |/  1 glibc guard page.
6056 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6057 //    |                        |\
6058 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
6059 //    |                        |/
6060 //    +------------------------+ JavaThread::stack_reserved_zone_base()
6061 //    |                        |\
6062 //    |      Normal Stack      | -
6063 //    |                        |/
6064 // P2 +------------------------+ Thread::stack_base()
6065 //
6066 // Non-Java thread:
6067 //
6068 //   Low memory addresses
6069 // P0 +------------------------+
6070 //    |                        |\
6071 //    |  glibc guard page      | - usually 1 page
6072 //    |                        |/
6073 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6074 //    |                        |\
6075 //    |      Normal Stack      | -
6076 //    |                        |/
6077 // P2 +------------------------+ Thread::stack_base()
6078 //
6079 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
6080 //    returned from pthread_attr_getstack().
6081 // ** Due to NPTL implementation error, linux takes the glibc guard page out
6082 //    of the stack size given in pthread_attr. We work around this for
6083 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
6084 //
6085 #ifndef ZERO
6086 static void current_stack_region(address * bottom, size_t * size) {
6087   if (os::is_primordial_thread()) {
6088     // primordial thread needs special handling because pthread_getattr_np()
6089     // may return bogus value.
6090     *bottom = os::Linux::initial_thread_stack_bottom();
6091     *size   = os::Linux::initial_thread_stack_size();
6092   } else {
6093     pthread_attr_t attr;
6094 
6095     int rslt = pthread_getattr_np(pthread_self(), &attr);
6096 
6097     // JVM needs to know exact stack location, abort if it fails
6098     if (rslt != 0) {
6099       if (rslt == ENOMEM) {
6100         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
6101       } else {
6102         fatal("pthread_getattr_np failed with error = %d", rslt);
6103       }
6104     }
6105 
6106     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
6107       fatal("Cannot locate current stack attributes!");
6108     }
6109 
6110     // Work around NPTL stack guard error.
6111     size_t guard_size = 0;
6112     rslt = pthread_attr_getguardsize(&attr, &guard_size);
6113     if (rslt != 0) {
6114       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
6115     }
6116     *bottom += guard_size;
6117     *size   -= guard_size;
6118 
6119     pthread_attr_destroy(&attr);
6120 
6121   }
6122   assert(os::current_stack_pointer() >= *bottom &&
6123          os::current_stack_pointer() < *bottom + *size, "just checking");
6124 }
6125 
6126 address os::current_stack_base() {
6127   address bottom;
6128   size_t size;
6129   current_stack_region(&bottom, &size);
6130   return (bottom + size);
6131 }
6132 
6133 size_t os::current_stack_size() {
6134   // This stack size includes the usable stack and HotSpot guard pages
6135   // (for the threads that have Hotspot guard pages).
6136   address bottom;
6137   size_t size;
6138   current_stack_region(&bottom, &size);
6139   return size;
6140 }
6141 #endif
6142 
6143 static inline struct timespec get_mtime(const char* filename) {
6144   struct stat st;
6145   int ret = os::stat(filename, &st);
6146   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
6147   return st.st_mtim;
6148 }
6149 
6150 int os::compare_file_modified_times(const char* file1, const char* file2) {
6151   struct timespec filetime1 = get_mtime(file1);
6152   struct timespec filetime2 = get_mtime(file2);
6153   int diff = filetime1.tv_sec - filetime2.tv_sec;
6154   if (diff == 0) {
6155     return filetime1.tv_nsec - filetime2.tv_nsec;
6156   }
6157   return diff;
6158 }
6159 
6160 bool os::supports_map_sync() {
6161   return true;
6162 }
6163 
6164 /////////////// Unit tests ///////////////
6165 
6166 #ifndef PRODUCT
6167 
6168 class TestReserveMemorySpecial : AllStatic {
6169  public:
6170   static void small_page_write(void* addr, size_t size) {
6171     size_t page_size = os::vm_page_size();
6172 
6173     char* end = (char*)addr + size;
6174     for (char* p = (char*)addr; p < end; p += page_size) {
6175       *p = 1;
6176     }
6177   }
6178 
6179   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6180     if (!UseHugeTLBFS) {
6181       return;
6182     }
6183 
6184     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6185 
6186     if (addr != NULL) {
6187       small_page_write(addr, size);
6188 
6189       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6190     }
6191   }
6192 
6193   static void test_reserve_memory_special_huge_tlbfs_only() {
6194     if (!UseHugeTLBFS) {
6195       return;
6196     }
6197 
6198     size_t lp = os::large_page_size();
6199 
6200     for (size_t size = lp; size <= lp * 10; size += lp) {
6201       test_reserve_memory_special_huge_tlbfs_only(size);
6202     }
6203   }
6204 
6205   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6206     size_t lp = os::large_page_size();
6207     size_t ag = os::vm_allocation_granularity();
6208 
6209     // sizes to test
6210     const size_t sizes[] = {
6211       lp, lp + ag, lp + lp / 2, lp * 2,
6212       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6213       lp * 10, lp * 10 + lp / 2
6214     };
6215     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6216 
6217     // For each size/alignment combination, we test three scenarios:
6218     // 1) with req_addr == NULL
6219     // 2) with a non-null req_addr at which we expect to successfully allocate
6220     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6221     //    expect the allocation to either fail or to ignore req_addr
6222 
6223     // Pre-allocate two areas; they shall be as large as the largest allocation
6224     //  and aligned to the largest alignment we will be testing.
6225     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6226     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6227       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6228       -1, 0);
6229     assert(mapping1 != MAP_FAILED, "should work");
6230 
6231     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6232       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6233       -1, 0);
6234     assert(mapping2 != MAP_FAILED, "should work");
6235 
6236     // Unmap the first mapping, but leave the second mapping intact: the first
6237     // mapping will serve as a value for a "good" req_addr (case 2). The second
6238     // mapping, still intact, as "bad" req_addr (case 3).
6239     ::munmap(mapping1, mapping_size);
6240 
6241     // Case 1
6242     for (int i = 0; i < num_sizes; i++) {
6243       const size_t size = sizes[i];
6244       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6245         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6246         if (p != NULL) {
6247           assert(is_aligned(p, alignment), "must be");
6248           small_page_write(p, size);
6249           os::Linux::release_memory_special_huge_tlbfs(p, size);
6250         }
6251       }
6252     }
6253 
6254     // Case 2
6255     for (int i = 0; i < num_sizes; i++) {
6256       const size_t size = sizes[i];
6257       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6258         char* const req_addr = align_up(mapping1, alignment);
6259         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6260         if (p != NULL) {
6261           assert(p == req_addr, "must be");
6262           small_page_write(p, size);
6263           os::Linux::release_memory_special_huge_tlbfs(p, size);
6264         }
6265       }
6266     }
6267 
6268     // Case 3
6269     for (int i = 0; i < num_sizes; i++) {
6270       const size_t size = sizes[i];
6271       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6272         char* const req_addr = align_up(mapping2, alignment);
6273         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6274         // as the area around req_addr contains already existing mappings, the API should always
6275         // return NULL (as per contract, it cannot return another address)
6276         assert(p == NULL, "must be");
6277       }
6278     }
6279 
6280     ::munmap(mapping2, mapping_size);
6281 
6282   }
6283 
6284   static void test_reserve_memory_special_huge_tlbfs() {
6285     if (!UseHugeTLBFS) {
6286       return;
6287     }
6288 
6289     test_reserve_memory_special_huge_tlbfs_only();
6290     test_reserve_memory_special_huge_tlbfs_mixed();
6291   }
6292 
6293   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6294     if (!UseSHM) {
6295       return;
6296     }
6297 
6298     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6299 
6300     if (addr != NULL) {
6301       assert(is_aligned(addr, alignment), "Check");
6302       assert(is_aligned(addr, os::large_page_size()), "Check");
6303 
6304       small_page_write(addr, size);
6305 
6306       os::Linux::release_memory_special_shm(addr, size);
6307     }
6308   }
6309 
6310   static void test_reserve_memory_special_shm() {
6311     size_t lp = os::large_page_size();
6312     size_t ag = os::vm_allocation_granularity();
6313 
6314     for (size_t size = ag; size < lp * 3; size += ag) {
6315       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6316         test_reserve_memory_special_shm(size, alignment);
6317       }
6318     }
6319   }
6320 
6321   static void test() {
6322     test_reserve_memory_special_huge_tlbfs();
6323     test_reserve_memory_special_shm();
6324   }
6325 };
6326 
6327 void TestReserveMemorySpecial_test() {
6328   TestReserveMemorySpecial::test();
6329 }
6330 
6331 #endif