1 /*
   2  * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "logging/logStream.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/filemap.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_linux.inline.hpp"
  41 #include "os_posix.inline.hpp"
  42 #include "os_share_linux.hpp"
  43 #include "osContainer_linux.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/atomic.hpp"
  48 #include "runtime/extendedPC.hpp"
  49 #include "runtime/globals.hpp"
  50 #include "runtime/interfaceSupport.inline.hpp"
  51 #include "runtime/init.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/osThread.hpp"
  57 #include "runtime/perfMemory.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/statSampler.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "runtime/thread.inline.hpp"
  62 #include "runtime/threadCritical.hpp"
  63 #include "runtime/threadSMR.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_posix.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/align.hpp"
  71 #include "utilities/decoder.hpp"
  72 #include "utilities/defaultStream.hpp"
  73 #include "utilities/events.hpp"
  74 #include "utilities/elfFile.hpp"
  75 #include "utilities/growableArray.hpp"
  76 #include "utilities/macros.hpp"
  77 #include "utilities/vmError.hpp"
  78 
  79 // put OS-includes here
  80 # include <sys/types.h>
  81 # include <sys/mman.h>
  82 # include <sys/stat.h>
  83 # include <sys/select.h>
  84 # include <pthread.h>
  85 # include <signal.h>
  86 # include <endian.h>
  87 # include <errno.h>
  88 # include <dlfcn.h>
  89 # include <stdio.h>
  90 # include <unistd.h>
  91 # include <sys/resource.h>
  92 # include <pthread.h>
  93 # include <sys/stat.h>
  94 # include <sys/time.h>
  95 # include <sys/times.h>
  96 # include <sys/utsname.h>
  97 # include <sys/socket.h>
  98 # include <sys/wait.h>
  99 # include <pwd.h>
 100 # include <poll.h>
 101 # include <fcntl.h>
 102 # include <string.h>
 103 # include <syscall.h>
 104 # include <sys/sysinfo.h>
 105 # include <gnu/libc-version.h>
 106 # include <sys/ipc.h>
 107 # include <sys/shm.h>
 108 # include <link.h>
 109 # include <stdint.h>
 110 # include <inttypes.h>
 111 # include <sys/ioctl.h>
 112 
 113 #ifndef _GNU_SOURCE
 114   #define _GNU_SOURCE
 115   #include <sched.h>
 116   #undef _GNU_SOURCE
 117 #else
 118   #include <sched.h>
 119 #endif
 120 
 121 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 122 // getrusage() is prepared to handle the associated failure.
 123 #ifndef RUSAGE_THREAD
 124   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 125 #endif
 126 
 127 #define MAX_PATH    (2 * K)
 128 
 129 #define MAX_SECS 100000000
 130 
 131 // for timer info max values which include all bits
 132 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 133 
 134 enum CoredumpFilterBit {
 135   FILE_BACKED_PVT_BIT = 1 << 2,
 136   FILE_BACKED_SHARED_BIT = 1 << 3,
 137   LARGEPAGES_BIT = 1 << 6,
 138   DAX_SHARED_BIT = 1 << 8
 139 };
 140 
 141 ////////////////////////////////////////////////////////////////////////////////
 142 // global variables
 143 julong os::Linux::_physical_memory = 0;
 144 
 145 address   os::Linux::_initial_thread_stack_bottom = NULL;
 146 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 147 
 148 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 149 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 150 pthread_t os::Linux::_main_thread;
 151 int os::Linux::_page_size = -1;
 152 bool os::Linux::_supports_fast_thread_cpu_time = false;
 153 const char * os::Linux::_glibc_version = NULL;
 154 const char * os::Linux::_libpthread_version = NULL;
 155 
 156 static jlong initial_time_count=0;
 157 
 158 static int clock_tics_per_sec = 100;
 159 
 160 // If the VM might have been created on the primordial thread, we need to resolve the
 161 // primordial thread stack bounds and check if the current thread might be the
 162 // primordial thread in places. If we know that the primordial thread is never used,
 163 // such as when the VM was created by one of the standard java launchers, we can
 164 // avoid this
 165 static bool suppress_primordial_thread_resolution = false;
 166 
 167 // For diagnostics to print a message once. see run_periodic_checks
 168 static sigset_t check_signal_done;
 169 static bool check_signals = true;
 170 
 171 // Signal number used to suspend/resume a thread
 172 
 173 // do not use any signal number less than SIGSEGV, see 4355769
 174 static int SR_signum = SIGUSR2;
 175 sigset_t SR_sigset;
 176 
 177 // utility functions
 178 
 179 static int SR_initialize();
 180 
 181 julong os::available_memory() {
 182   return Linux::available_memory();
 183 }
 184 
 185 julong os::Linux::available_memory() {
 186   // values in struct sysinfo are "unsigned long"
 187   struct sysinfo si;
 188   julong avail_mem;
 189 
 190   if (OSContainer::is_containerized()) {
 191     jlong mem_limit, mem_usage;
 192     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 193       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 194                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 195     }
 196     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 197       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 198     }
 199     if (mem_limit > 0 && mem_usage > 0 ) {
 200       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 201       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 202       return avail_mem;
 203     }
 204   }
 205 
 206   sysinfo(&si);
 207   avail_mem = (julong)si.freeram * si.mem_unit;
 208   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 209   return avail_mem;
 210 }
 211 
 212 julong os::physical_memory() {
 213   jlong phys_mem = 0;
 214   if (OSContainer::is_containerized()) {
 215     jlong mem_limit;
 216     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 217       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 218       return mem_limit;
 219     }
 220     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 221                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 222   }
 223 
 224   phys_mem = Linux::physical_memory();
 225   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 226   return phys_mem;
 227 }
 228 
 229 static uint64_t initial_total_ticks = 0;
 230 static uint64_t initial_steal_ticks = 0;
 231 static bool     has_initial_tick_info = false;
 232 
 233 static void next_line(FILE *f) {
 234   int c;
 235   do {
 236     c = fgetc(f);
 237   } while (c != '\n' && c != EOF);
 238 }
 239 
 240 bool os::Linux::get_tick_information(CPUPerfTicks* pticks, int which_logical_cpu) {
 241   FILE*         fh;
 242   uint64_t      userTicks, niceTicks, systemTicks, idleTicks;
 243   // since at least kernel 2.6 : iowait: time waiting for I/O to complete
 244   // irq: time  servicing interrupts; softirq: time servicing softirqs
 245   uint64_t      iowTicks = 0, irqTicks = 0, sirqTicks= 0;
 246   // steal (since kernel 2.6.11): time spent in other OS when running in a virtualized environment
 247   uint64_t      stealTicks = 0;
 248   // guest (since kernel 2.6.24): time spent running a virtual CPU for guest OS under the
 249   // control of the Linux kernel
 250   uint64_t      guestNiceTicks = 0;
 251   int           logical_cpu = -1;
 252   const int     required_tickinfo_count = (which_logical_cpu == -1) ? 4 : 5;
 253   int           n;
 254 
 255   memset(pticks, 0, sizeof(CPUPerfTicks));
 256 
 257   if ((fh = fopen("/proc/stat", "r")) == NULL) {
 258     return false;
 259   }
 260 
 261   if (which_logical_cpu == -1) {
 262     n = fscanf(fh, "cpu " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 263             UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 264             UINT64_FORMAT " " UINT64_FORMAT " ",
 265             &userTicks, &niceTicks, &systemTicks, &idleTicks,
 266             &iowTicks, &irqTicks, &sirqTicks,
 267             &stealTicks, &guestNiceTicks);
 268   } else {
 269     // Move to next line
 270     next_line(fh);
 271 
 272     // find the line for requested cpu faster to just iterate linefeeds?
 273     for (int i = 0; i < which_logical_cpu; i++) {
 274       next_line(fh);
 275     }
 276 
 277     n = fscanf(fh, "cpu%u " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 278                UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 279                UINT64_FORMAT " " UINT64_FORMAT " ",
 280                &logical_cpu, &userTicks, &niceTicks,
 281                &systemTicks, &idleTicks, &iowTicks, &irqTicks, &sirqTicks,
 282                &stealTicks, &guestNiceTicks);
 283   }
 284 
 285   fclose(fh);
 286   if (n < required_tickinfo_count || logical_cpu != which_logical_cpu) {
 287     return false;
 288   }
 289   pticks->used       = userTicks + niceTicks;
 290   pticks->usedKernel = systemTicks + irqTicks + sirqTicks;
 291   pticks->total      = userTicks + niceTicks + systemTicks + idleTicks +
 292                        iowTicks + irqTicks + sirqTicks + stealTicks + guestNiceTicks;
 293 
 294   if (n > required_tickinfo_count + 3) {
 295     pticks->steal = stealTicks;
 296     pticks->has_steal_ticks = true;
 297   } else {
 298     pticks->steal = 0;
 299     pticks->has_steal_ticks = false;
 300   }
 301 
 302   return true;
 303 }
 304 
 305 // Return true if user is running as root.
 306 
 307 bool os::have_special_privileges() {
 308   static bool init = false;
 309   static bool privileges = false;
 310   if (!init) {
 311     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 312     init = true;
 313   }
 314   return privileges;
 315 }
 316 
 317 
 318 #ifndef SYS_gettid
 319 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 320   #ifdef __ia64__
 321     #define SYS_gettid 1105
 322   #else
 323     #ifdef __i386__
 324       #define SYS_gettid 224
 325     #else
 326       #ifdef __amd64__
 327         #define SYS_gettid 186
 328       #else
 329         #ifdef __sparc__
 330           #define SYS_gettid 143
 331         #else
 332           #error define gettid for the arch
 333         #endif
 334       #endif
 335     #endif
 336   #endif
 337 #endif
 338 
 339 
 340 // pid_t gettid()
 341 //
 342 // Returns the kernel thread id of the currently running thread. Kernel
 343 // thread id is used to access /proc.
 344 pid_t os::Linux::gettid() {
 345   int rslt = syscall(SYS_gettid);
 346   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 347   return (pid_t)rslt;
 348 }
 349 
 350 // Most versions of linux have a bug where the number of processors are
 351 // determined by looking at the /proc file system.  In a chroot environment,
 352 // the system call returns 1.
 353 static bool unsafe_chroot_detected = false;
 354 static const char *unstable_chroot_error = "/proc file system not found.\n"
 355                      "Java may be unstable running multithreaded in a chroot "
 356                      "environment on Linux when /proc filesystem is not mounted.";
 357 
 358 void os::Linux::initialize_system_info() {
 359   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 360   if (processor_count() == 1) {
 361     pid_t pid = os::Linux::gettid();
 362     char fname[32];
 363     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 364     FILE *fp = fopen(fname, "r");
 365     if (fp == NULL) {
 366       unsafe_chroot_detected = true;
 367     } else {
 368       fclose(fp);
 369     }
 370   }
 371   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 372   assert(processor_count() > 0, "linux error");
 373 }
 374 
 375 void os::init_system_properties_values() {
 376   // The next steps are taken in the product version:
 377   //
 378   // Obtain the JAVA_HOME value from the location of libjvm.so.
 379   // This library should be located at:
 380   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 381   //
 382   // If "/jre/lib/" appears at the right place in the path, then we
 383   // assume libjvm.so is installed in a JDK and we use this path.
 384   //
 385   // Otherwise exit with message: "Could not create the Java virtual machine."
 386   //
 387   // The following extra steps are taken in the debugging version:
 388   //
 389   // If "/jre/lib/" does NOT appear at the right place in the path
 390   // instead of exit check for $JAVA_HOME environment variable.
 391   //
 392   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 393   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 394   // it looks like libjvm.so is installed there
 395   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 396   //
 397   // Otherwise exit.
 398   //
 399   // Important note: if the location of libjvm.so changes this
 400   // code needs to be changed accordingly.
 401 
 402   // See ld(1):
 403   //      The linker uses the following search paths to locate required
 404   //      shared libraries:
 405   //        1: ...
 406   //        ...
 407   //        7: The default directories, normally /lib and /usr/lib.
 408 #ifndef OVERRIDE_LIBPATH
 409   #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 410     #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 411   #else
 412     #define DEFAULT_LIBPATH "/lib:/usr/lib"
 413   #endif
 414 #else
 415   #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
 416 #endif
 417 
 418 // Base path of extensions installed on the system.
 419 #define SYS_EXT_DIR     "/usr/java/packages"
 420 #define EXTENSIONS_DIR  "/lib/ext"
 421 
 422   // Buffer that fits several sprintfs.
 423   // Note that the space for the colon and the trailing null are provided
 424   // by the nulls included by the sizeof operator.
 425   const size_t bufsize =
 426     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 427          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 428   char *buf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 429 
 430   // sysclasspath, java_home, dll_dir
 431   {
 432     char *pslash;
 433     os::jvm_path(buf, bufsize);
 434 
 435     // Found the full path to libjvm.so.
 436     // Now cut the path to <java_home>/jre if we can.
 437     pslash = strrchr(buf, '/');
 438     if (pslash != NULL) {
 439       *pslash = '\0';            // Get rid of /libjvm.so.
 440     }
 441     pslash = strrchr(buf, '/');
 442     if (pslash != NULL) {
 443       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 444     }
 445     Arguments::set_dll_dir(buf);
 446 
 447     if (pslash != NULL) {
 448       pslash = strrchr(buf, '/');
 449       if (pslash != NULL) {
 450         *pslash = '\0';        // Get rid of /lib.
 451       }
 452     }
 453     Arguments::set_java_home(buf);
 454     if (!set_boot_path('/', ':')) {
 455       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 456     }
 457   }
 458 
 459   // Where to look for native libraries.
 460   //
 461   // Note: Due to a legacy implementation, most of the library path
 462   // is set in the launcher. This was to accomodate linking restrictions
 463   // on legacy Linux implementations (which are no longer supported).
 464   // Eventually, all the library path setting will be done here.
 465   //
 466   // However, to prevent the proliferation of improperly built native
 467   // libraries, the new path component /usr/java/packages is added here.
 468   // Eventually, all the library path setting will be done here.
 469   {
 470     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 471     // should always exist (until the legacy problem cited above is
 472     // addressed).
 473     const char *v = ::getenv("LD_LIBRARY_PATH");
 474     const char *v_colon = ":";
 475     if (v == NULL) { v = ""; v_colon = ""; }
 476     // That's +1 for the colon and +1 for the trailing '\0'.
 477     char *ld_library_path = NEW_C_HEAP_ARRAY(char,
 478                                              strlen(v) + 1 +
 479                                              sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 480                                              mtInternal);
 481     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 482     Arguments::set_library_path(ld_library_path);
 483     FREE_C_HEAP_ARRAY(char, ld_library_path);
 484   }
 485 
 486   // Extensions directories.
 487   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 488   Arguments::set_ext_dirs(buf);
 489 
 490   FREE_C_HEAP_ARRAY(char, buf);
 491 
 492 #undef DEFAULT_LIBPATH
 493 #undef SYS_EXT_DIR
 494 #undef EXTENSIONS_DIR
 495 }
 496 
 497 ////////////////////////////////////////////////////////////////////////////////
 498 // breakpoint support
 499 
 500 void os::breakpoint() {
 501   BREAKPOINT;
 502 }
 503 
 504 extern "C" void breakpoint() {
 505   // use debugger to set breakpoint here
 506 }
 507 
 508 ////////////////////////////////////////////////////////////////////////////////
 509 // signal support
 510 
 511 debug_only(static bool signal_sets_initialized = false);
 512 static sigset_t unblocked_sigs, vm_sigs;
 513 
 514 void os::Linux::signal_sets_init() {
 515   // Should also have an assertion stating we are still single-threaded.
 516   assert(!signal_sets_initialized, "Already initialized");
 517   // Fill in signals that are necessarily unblocked for all threads in
 518   // the VM. Currently, we unblock the following signals:
 519   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 520   //                         by -Xrs (=ReduceSignalUsage));
 521   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 522   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 523   // the dispositions or masks wrt these signals.
 524   // Programs embedding the VM that want to use the above signals for their
 525   // own purposes must, at this time, use the "-Xrs" option to prevent
 526   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 527   // (See bug 4345157, and other related bugs).
 528   // In reality, though, unblocking these signals is really a nop, since
 529   // these signals are not blocked by default.
 530   sigemptyset(&unblocked_sigs);
 531   sigaddset(&unblocked_sigs, SIGILL);
 532   sigaddset(&unblocked_sigs, SIGSEGV);
 533   sigaddset(&unblocked_sigs, SIGBUS);
 534   sigaddset(&unblocked_sigs, SIGFPE);
 535 #if defined(PPC64)
 536   sigaddset(&unblocked_sigs, SIGTRAP);
 537 #endif
 538   sigaddset(&unblocked_sigs, SR_signum);
 539 
 540   if (!ReduceSignalUsage) {
 541     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 542       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 543     }
 544     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 545       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 546     }
 547     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 548       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 549     }
 550   }
 551   // Fill in signals that are blocked by all but the VM thread.
 552   sigemptyset(&vm_sigs);
 553   if (!ReduceSignalUsage) {
 554     sigaddset(&vm_sigs, BREAK_SIGNAL);
 555   }
 556   debug_only(signal_sets_initialized = true);
 557 
 558 }
 559 
 560 // These are signals that are unblocked while a thread is running Java.
 561 // (For some reason, they get blocked by default.)
 562 sigset_t* os::Linux::unblocked_signals() {
 563   assert(signal_sets_initialized, "Not initialized");
 564   return &unblocked_sigs;
 565 }
 566 
 567 // These are the signals that are blocked while a (non-VM) thread is
 568 // running Java. Only the VM thread handles these signals.
 569 sigset_t* os::Linux::vm_signals() {
 570   assert(signal_sets_initialized, "Not initialized");
 571   return &vm_sigs;
 572 }
 573 
 574 void os::Linux::hotspot_sigmask(Thread* thread) {
 575 
 576   //Save caller's signal mask before setting VM signal mask
 577   sigset_t caller_sigmask;
 578   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 579 
 580   OSThread* osthread = thread->osthread();
 581   osthread->set_caller_sigmask(caller_sigmask);
 582 
 583   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 584 
 585   if (!ReduceSignalUsage) {
 586     if (thread->is_VM_thread()) {
 587       // Only the VM thread handles BREAK_SIGNAL ...
 588       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 589     } else {
 590       // ... all other threads block BREAK_SIGNAL
 591       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 592     }
 593   }
 594 }
 595 
 596 //////////////////////////////////////////////////////////////////////////////
 597 // detecting pthread library
 598 
 599 void os::Linux::libpthread_init() {
 600   // Save glibc and pthread version strings.
 601 #if !defined(_CS_GNU_LIBC_VERSION) || \
 602     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 603   #error "glibc too old (< 2.3.2)"
 604 #endif
 605 
 606   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 607   assert(n > 0, "cannot retrieve glibc version");
 608   char *str = (char *)malloc(n, mtInternal);
 609   confstr(_CS_GNU_LIBC_VERSION, str, n);
 610   os::Linux::set_glibc_version(str);
 611 
 612   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 613   assert(n > 0, "cannot retrieve pthread version");
 614   str = (char *)malloc(n, mtInternal);
 615   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 616   os::Linux::set_libpthread_version(str);
 617 }
 618 
 619 /////////////////////////////////////////////////////////////////////////////
 620 // thread stack expansion
 621 
 622 // os::Linux::manually_expand_stack() takes care of expanding the thread
 623 // stack. Note that this is normally not needed: pthread stacks allocate
 624 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 625 // committed. Therefore it is not necessary to expand the stack manually.
 626 //
 627 // Manually expanding the stack was historically needed on LinuxThreads
 628 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 629 // it is kept to deal with very rare corner cases:
 630 //
 631 // For one, user may run the VM on an own implementation of threads
 632 // whose stacks are - like the old LinuxThreads - implemented using
 633 // mmap(MAP_GROWSDOWN).
 634 //
 635 // Also, this coding may be needed if the VM is running on the primordial
 636 // thread. Normally we avoid running on the primordial thread; however,
 637 // user may still invoke the VM on the primordial thread.
 638 //
 639 // The following historical comment describes the details about running
 640 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 641 
 642 
 643 // Force Linux kernel to expand current thread stack. If "bottom" is close
 644 // to the stack guard, caller should block all signals.
 645 //
 646 // MAP_GROWSDOWN:
 647 //   A special mmap() flag that is used to implement thread stacks. It tells
 648 //   kernel that the memory region should extend downwards when needed. This
 649 //   allows early versions of LinuxThreads to only mmap the first few pages
 650 //   when creating a new thread. Linux kernel will automatically expand thread
 651 //   stack as needed (on page faults).
 652 //
 653 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 654 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 655 //   region, it's hard to tell if the fault is due to a legitimate stack
 656 //   access or because of reading/writing non-exist memory (e.g. buffer
 657 //   overrun). As a rule, if the fault happens below current stack pointer,
 658 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 659 //   application (see Linux kernel fault.c).
 660 //
 661 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 662 //   stack overflow detection.
 663 //
 664 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 665 //   not use MAP_GROWSDOWN.
 666 //
 667 // To get around the problem and allow stack banging on Linux, we need to
 668 // manually expand thread stack after receiving the SIGSEGV.
 669 //
 670 // There are two ways to expand thread stack to address "bottom", we used
 671 // both of them in JVM before 1.5:
 672 //   1. adjust stack pointer first so that it is below "bottom", and then
 673 //      touch "bottom"
 674 //   2. mmap() the page in question
 675 //
 676 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 677 // if current sp is already near the lower end of page 101, and we need to
 678 // call mmap() to map page 100, it is possible that part of the mmap() frame
 679 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 680 // That will destroy the mmap() frame and cause VM to crash.
 681 //
 682 // The following code works by adjusting sp first, then accessing the "bottom"
 683 // page to force a page fault. Linux kernel will then automatically expand the
 684 // stack mapping.
 685 //
 686 // _expand_stack_to() assumes its frame size is less than page size, which
 687 // should always be true if the function is not inlined.
 688 
 689 static void NOINLINE _expand_stack_to(address bottom) {
 690   address sp;
 691   size_t size;
 692   volatile char *p;
 693 
 694   // Adjust bottom to point to the largest address within the same page, it
 695   // gives us a one-page buffer if alloca() allocates slightly more memory.
 696   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 697   bottom += os::Linux::page_size() - 1;
 698 
 699   // sp might be slightly above current stack pointer; if that's the case, we
 700   // will alloca() a little more space than necessary, which is OK. Don't use
 701   // os::current_stack_pointer(), as its result can be slightly below current
 702   // stack pointer, causing us to not alloca enough to reach "bottom".
 703   sp = (address)&sp;
 704 
 705   if (sp > bottom) {
 706     size = sp - bottom;
 707     p = (volatile char *)alloca(size);
 708     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 709     p[0] = '\0';
 710   }
 711 }
 712 
 713 void os::Linux::expand_stack_to(address bottom) {
 714   _expand_stack_to(bottom);
 715 }
 716 
 717 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 718   assert(t!=NULL, "just checking");
 719   assert(t->osthread()->expanding_stack(), "expand should be set");
 720 
 721   if (t->is_in_usable_stack(addr)) {
 722     sigset_t mask_all, old_sigset;
 723     sigfillset(&mask_all);
 724     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 725     _expand_stack_to(addr);
 726     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 727     return true;
 728   }
 729   return false;
 730 }
 731 
 732 //////////////////////////////////////////////////////////////////////////////
 733 // create new thread
 734 
 735 // Thread start routine for all newly created threads
 736 static void *thread_native_entry(Thread *thread) {
 737 
 738   thread->record_stack_base_and_size();
 739 
 740   // Try to randomize the cache line index of hot stack frames.
 741   // This helps when threads of the same stack traces evict each other's
 742   // cache lines. The threads can be either from the same JVM instance, or
 743   // from different JVM instances. The benefit is especially true for
 744   // processors with hyperthreading technology.
 745   static int counter = 0;
 746   int pid = os::current_process_id();
 747   alloca(((pid ^ counter++) & 7) * 128);
 748 
 749   thread->initialize_thread_current();
 750 
 751   OSThread* osthread = thread->osthread();
 752   Monitor* sync = osthread->startThread_lock();
 753 
 754   osthread->set_thread_id(os::current_thread_id());
 755 
 756   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 757     os::current_thread_id(), (uintx) pthread_self());
 758 
 759   if (UseNUMA) {
 760     int lgrp_id = os::numa_get_group_id();
 761     if (lgrp_id != -1) {
 762       thread->set_lgrp_id(lgrp_id);
 763     }
 764   }
 765   // initialize signal mask for this thread
 766   os::Linux::hotspot_sigmask(thread);
 767 
 768   // initialize floating point control register
 769   os::Linux::init_thread_fpu_state();
 770 
 771   // handshaking with parent thread
 772   {
 773     MutexLocker ml(sync, Mutex::_no_safepoint_check_flag);
 774 
 775     // notify parent thread
 776     osthread->set_state(INITIALIZED);
 777     sync->notify_all();
 778 
 779     // wait until os::start_thread()
 780     while (osthread->get_state() == INITIALIZED) {
 781       sync->wait_without_safepoint_check();
 782     }
 783   }
 784 
 785   assert(osthread->pthread_id() != 0, "pthread_id was not set as expected");
 786 
 787   // call one more level start routine
 788   thread->call_run();
 789 
 790   // Note: at this point the thread object may already have deleted itself.
 791   // Prevent dereferencing it from here on out.
 792   thread = NULL;
 793 
 794   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 795     os::current_thread_id(), (uintx) pthread_self());
 796 
 797   return 0;
 798 }
 799 
 800 // On Linux, glibc places static TLS blocks (for __thread variables) on
 801 // the thread stack. This decreases the stack size actually available
 802 // to threads.
 803 //
 804 // For large static TLS sizes, this may cause threads to malfunction due
 805 // to insufficient stack space. This is a well-known issue in glibc:
 806 // http://sourceware.org/bugzilla/show_bug.cgi?id=11787.
 807 //
 808 // As a workaround, we call a private but assumed-stable glibc function,
 809 // __pthread_get_minstack() to obtain the minstack size and derive the
 810 // static TLS size from it. We then increase the user requested stack
 811 // size by this TLS size.
 812 //
 813 // Due to compatibility concerns, this size adjustment is opt-in and
 814 // controlled via AdjustStackSizeForTLS.
 815 typedef size_t (*GetMinStack)(const pthread_attr_t *attr);
 816 
 817 GetMinStack _get_minstack_func = NULL;
 818 
 819 static void get_minstack_init() {
 820   _get_minstack_func =
 821         (GetMinStack)dlsym(RTLD_DEFAULT, "__pthread_get_minstack");
 822   log_info(os, thread)("Lookup of __pthread_get_minstack %s",
 823                        _get_minstack_func == NULL ? "failed" : "succeeded");
 824 }
 825 
 826 // Returns the size of the static TLS area glibc puts on thread stacks.
 827 // The value is cached on first use, which occurs when the first thread
 828 // is created during VM initialization.
 829 static size_t get_static_tls_area_size(const pthread_attr_t *attr) {
 830   size_t tls_size = 0;
 831   if (_get_minstack_func != NULL) {
 832     // Obtain the pthread minstack size by calling __pthread_get_minstack.
 833     size_t minstack_size = _get_minstack_func(attr);
 834 
 835     // Remove non-TLS area size included in minstack size returned
 836     // by __pthread_get_minstack() to get the static TLS size.
 837     // In glibc before 2.27, minstack size includes guard_size.
 838     // In glibc 2.27 and later, guard_size is automatically added
 839     // to the stack size by pthread_create and is no longer included
 840     // in minstack size. In both cases, the guard_size is taken into
 841     // account, so there is no need to adjust the result for that.
 842     //
 843     // Although __pthread_get_minstack() is a private glibc function,
 844     // it is expected to have a stable behavior across future glibc
 845     // versions while glibc still allocates the static TLS blocks off
 846     // the stack. Following is glibc 2.28 __pthread_get_minstack():
 847     //
 848     // size_t
 849     // __pthread_get_minstack (const pthread_attr_t *attr)
 850     // {
 851     //   return GLRO(dl_pagesize) + __static_tls_size + PTHREAD_STACK_MIN;
 852     // }
 853     //
 854     //
 855     // The following 'minstack_size > os::vm_page_size() + PTHREAD_STACK_MIN'
 856     // if check is done for precaution.
 857     if (minstack_size > (size_t)os::vm_page_size() + PTHREAD_STACK_MIN) {
 858       tls_size = minstack_size - os::vm_page_size() - PTHREAD_STACK_MIN;
 859     }
 860   }
 861 
 862   log_info(os, thread)("Stack size adjustment for TLS is " SIZE_FORMAT,
 863                        tls_size);
 864   return tls_size;
 865 }
 866 
 867 bool os::create_thread(Thread* thread, ThreadType thr_type,
 868                        size_t req_stack_size) {
 869   assert(thread->osthread() == NULL, "caller responsible");
 870 
 871   // Allocate the OSThread object
 872   OSThread* osthread = new OSThread(NULL, NULL);
 873   if (osthread == NULL) {
 874     return false;
 875   }
 876 
 877   // set the correct thread state
 878   osthread->set_thread_type(thr_type);
 879 
 880   // Initial state is ALLOCATED but not INITIALIZED
 881   osthread->set_state(ALLOCATED);
 882 
 883   thread->set_osthread(osthread);
 884 
 885   // init thread attributes
 886   pthread_attr_t attr;
 887   pthread_attr_init(&attr);
 888   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 889 
 890   // Calculate stack size if it's not specified by caller.
 891   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 892   // In glibc versions prior to 2.7 the guard size mechanism
 893   // is not implemented properly. The posix standard requires adding
 894   // the size of the guard pages to the stack size, instead Linux
 895   // takes the space out of 'stacksize'. Thus we adapt the requested
 896   // stack_size by the size of the guard pages to mimick proper
 897   // behaviour. However, be careful not to end up with a size
 898   // of zero due to overflow. Don't add the guard page in that case.
 899   size_t guard_size = os::Linux::default_guard_size(thr_type);
 900   // Configure glibc guard page. Must happen before calling
 901   // get_static_tls_area_size(), which uses the guard_size.
 902   pthread_attr_setguardsize(&attr, guard_size);
 903 
 904   size_t stack_adjust_size = 0;
 905   if (AdjustStackSizeForTLS) {
 906     // Adjust the stack_size for on-stack TLS - see get_static_tls_area_size().
 907     stack_adjust_size += get_static_tls_area_size(&attr);
 908   } else {
 909     stack_adjust_size += guard_size;
 910   }
 911 
 912   stack_adjust_size = align_up(stack_adjust_size, os::vm_page_size());
 913   if (stack_size <= SIZE_MAX - stack_adjust_size) {
 914     stack_size += stack_adjust_size;
 915   }
 916   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 917 
 918   int status = pthread_attr_setstacksize(&attr, stack_size);
 919   assert_status(status == 0, status, "pthread_attr_setstacksize");
 920 
 921   ThreadState state;
 922 
 923   {
 924     pthread_t tid;
 925     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 926 
 927     char buf[64];
 928     if (ret == 0) {
 929       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 930         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 931     } else {
 932       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 933         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 934       // Log some OS information which might explain why creating the thread failed.
 935       log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 936       LogStream st(Log(os, thread)::info());
 937       os::Posix::print_rlimit_info(&st);
 938       os::print_memory_info(&st);
 939       os::Linux::print_proc_sys_info(&st);
 940       os::Linux::print_container_info(&st);
 941     }
 942 
 943     pthread_attr_destroy(&attr);
 944 
 945     if (ret != 0) {
 946       // Need to clean up stuff we've allocated so far
 947       thread->set_osthread(NULL);
 948       delete osthread;
 949       return false;
 950     }
 951 
 952     // Store pthread info into the OSThread
 953     osthread->set_pthread_id(tid);
 954 
 955     // Wait until child thread is either initialized or aborted
 956     {
 957       Monitor* sync_with_child = osthread->startThread_lock();
 958       MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 959       while ((state = osthread->get_state()) == ALLOCATED) {
 960         sync_with_child->wait_without_safepoint_check();
 961       }
 962     }
 963   }
 964 
 965   // Aborted due to thread limit being reached
 966   if (state == ZOMBIE) {
 967     thread->set_osthread(NULL);
 968     delete osthread;
 969     return false;
 970   }
 971 
 972   // The thread is returned suspended (in state INITIALIZED),
 973   // and is started higher up in the call chain
 974   assert(state == INITIALIZED, "race condition");
 975   return true;
 976 }
 977 
 978 /////////////////////////////////////////////////////////////////////////////
 979 // attach existing thread
 980 
 981 // bootstrap the main thread
 982 bool os::create_main_thread(JavaThread* thread) {
 983   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 984   return create_attached_thread(thread);
 985 }
 986 
 987 bool os::create_attached_thread(JavaThread* thread) {
 988 #ifdef ASSERT
 989   thread->verify_not_published();
 990 #endif
 991 
 992   // Allocate the OSThread object
 993   OSThread* osthread = new OSThread(NULL, NULL);
 994 
 995   if (osthread == NULL) {
 996     return false;
 997   }
 998 
 999   // Store pthread info into the OSThread
1000   osthread->set_thread_id(os::Linux::gettid());
1001   osthread->set_pthread_id(::pthread_self());
1002 
1003   // initialize floating point control register
1004   os::Linux::init_thread_fpu_state();
1005 
1006   // Initial thread state is RUNNABLE
1007   osthread->set_state(RUNNABLE);
1008 
1009   thread->set_osthread(osthread);
1010 
1011   if (UseNUMA) {
1012     int lgrp_id = os::numa_get_group_id();
1013     if (lgrp_id != -1) {
1014       thread->set_lgrp_id(lgrp_id);
1015     }
1016   }
1017 
1018   if (os::is_primordial_thread()) {
1019     // If current thread is primordial thread, its stack is mapped on demand,
1020     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1021     // the entire stack region to avoid SEGV in stack banging.
1022     // It is also useful to get around the heap-stack-gap problem on SuSE
1023     // kernel (see 4821821 for details). We first expand stack to the top
1024     // of yellow zone, then enable stack yellow zone (order is significant,
1025     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1026     // is no gap between the last two virtual memory regions.
1027 
1028     JavaThread *jt = (JavaThread *)thread;
1029     address addr = jt->stack_reserved_zone_base();
1030     assert(addr != NULL, "initialization problem?");
1031     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1032 
1033     osthread->set_expanding_stack();
1034     os::Linux::manually_expand_stack(jt, addr);
1035     osthread->clear_expanding_stack();
1036   }
1037 
1038   // initialize signal mask for this thread
1039   // and save the caller's signal mask
1040   os::Linux::hotspot_sigmask(thread);
1041 
1042   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
1043     os::current_thread_id(), (uintx) pthread_self());
1044 
1045   return true;
1046 }
1047 
1048 void os::pd_start_thread(Thread* thread) {
1049   OSThread * osthread = thread->osthread();
1050   assert(osthread->get_state() != INITIALIZED, "just checking");
1051   Monitor* sync_with_child = osthread->startThread_lock();
1052   MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1053   sync_with_child->notify();
1054 }
1055 
1056 // Free Linux resources related to the OSThread
1057 void os::free_thread(OSThread* osthread) {
1058   assert(osthread != NULL, "osthread not set");
1059 
1060   // We are told to free resources of the argument thread,
1061   // but we can only really operate on the current thread.
1062   assert(Thread::current()->osthread() == osthread,
1063          "os::free_thread but not current thread");
1064 
1065 #ifdef ASSERT
1066   sigset_t current;
1067   sigemptyset(&current);
1068   pthread_sigmask(SIG_SETMASK, NULL, &current);
1069   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
1070 #endif
1071 
1072   // Restore caller's signal mask
1073   sigset_t sigmask = osthread->caller_sigmask();
1074   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1075 
1076   delete osthread;
1077 }
1078 
1079 //////////////////////////////////////////////////////////////////////////////
1080 // primordial thread
1081 
1082 // Check if current thread is the primordial thread, similar to Solaris thr_main.
1083 bool os::is_primordial_thread(void) {
1084   if (suppress_primordial_thread_resolution) {
1085     return false;
1086   }
1087   char dummy;
1088   // If called before init complete, thread stack bottom will be null.
1089   // Can be called if fatal error occurs before initialization.
1090   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
1091   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
1092          os::Linux::initial_thread_stack_size()   != 0,
1093          "os::init did not locate primordial thread's stack region");
1094   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
1095       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
1096                         os::Linux::initial_thread_stack_size()) {
1097     return true;
1098   } else {
1099     return false;
1100   }
1101 }
1102 
1103 // Find the virtual memory area that contains addr
1104 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1105   FILE *fp = fopen("/proc/self/maps", "r");
1106   if (fp) {
1107     address low, high;
1108     while (!feof(fp)) {
1109       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1110         if (low <= addr && addr < high) {
1111           if (vma_low)  *vma_low  = low;
1112           if (vma_high) *vma_high = high;
1113           fclose(fp);
1114           return true;
1115         }
1116       }
1117       for (;;) {
1118         int ch = fgetc(fp);
1119         if (ch == EOF || ch == (int)'\n') break;
1120       }
1121     }
1122     fclose(fp);
1123   }
1124   return false;
1125 }
1126 
1127 // Locate primordial thread stack. This special handling of primordial thread stack
1128 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1129 // bogus value for the primordial process thread. While the launcher has created
1130 // the VM in a new thread since JDK 6, we still have to allow for the use of the
1131 // JNI invocation API from a primordial thread.
1132 void os::Linux::capture_initial_stack(size_t max_size) {
1133 
1134   // max_size is either 0 (which means accept OS default for thread stacks) or
1135   // a user-specified value known to be at least the minimum needed. If we
1136   // are actually on the primordial thread we can make it appear that we have a
1137   // smaller max_size stack by inserting the guard pages at that location. But we
1138   // cannot do anything to emulate a larger stack than what has been provided by
1139   // the OS or threading library. In fact if we try to use a stack greater than
1140   // what is set by rlimit then we will crash the hosting process.
1141 
1142   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
1143   // If this is "unlimited" then it will be a huge value.
1144   struct rlimit rlim;
1145   getrlimit(RLIMIT_STACK, &rlim);
1146   size_t stack_size = rlim.rlim_cur;
1147 
1148   // 6308388: a bug in ld.so will relocate its own .data section to the
1149   //   lower end of primordial stack; reduce ulimit -s value a little bit
1150   //   so we won't install guard page on ld.so's data section.
1151   //   But ensure we don't underflow the stack size - allow 1 page spare
1152   if (stack_size >= (size_t)(3 * page_size())) {
1153     stack_size -= 2 * page_size();
1154   }
1155 
1156   // Try to figure out where the stack base (top) is. This is harder.
1157   //
1158   // When an application is started, glibc saves the initial stack pointer in
1159   // a global variable "__libc_stack_end", which is then used by system
1160   // libraries. __libc_stack_end should be pretty close to stack top. The
1161   // variable is available since the very early days. However, because it is
1162   // a private interface, it could disappear in the future.
1163   //
1164   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1165   // to __libc_stack_end, it is very close to stack top, but isn't the real
1166   // stack top. Note that /proc may not exist if VM is running as a chroot
1167   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1168   // /proc/<pid>/stat could change in the future (though unlikely).
1169   //
1170   // We try __libc_stack_end first. If that doesn't work, look for
1171   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1172   // as a hint, which should work well in most cases.
1173 
1174   uintptr_t stack_start;
1175 
1176   // try __libc_stack_end first
1177   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1178   if (p && *p) {
1179     stack_start = *p;
1180   } else {
1181     // see if we can get the start_stack field from /proc/self/stat
1182     FILE *fp;
1183     int pid;
1184     char state;
1185     int ppid;
1186     int pgrp;
1187     int session;
1188     int nr;
1189     int tpgrp;
1190     unsigned long flags;
1191     unsigned long minflt;
1192     unsigned long cminflt;
1193     unsigned long majflt;
1194     unsigned long cmajflt;
1195     unsigned long utime;
1196     unsigned long stime;
1197     long cutime;
1198     long cstime;
1199     long prio;
1200     long nice;
1201     long junk;
1202     long it_real;
1203     uintptr_t start;
1204     uintptr_t vsize;
1205     intptr_t rss;
1206     uintptr_t rsslim;
1207     uintptr_t scodes;
1208     uintptr_t ecode;
1209     int i;
1210 
1211     // Figure what the primordial thread stack base is. Code is inspired
1212     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1213     // followed by command name surrounded by parentheses, state, etc.
1214     char stat[2048];
1215     int statlen;
1216 
1217     fp = fopen("/proc/self/stat", "r");
1218     if (fp) {
1219       statlen = fread(stat, 1, 2047, fp);
1220       stat[statlen] = '\0';
1221       fclose(fp);
1222 
1223       // Skip pid and the command string. Note that we could be dealing with
1224       // weird command names, e.g. user could decide to rename java launcher
1225       // to "java 1.4.2 :)", then the stat file would look like
1226       //                1234 (java 1.4.2 :)) R ... ...
1227       // We don't really need to know the command string, just find the last
1228       // occurrence of ")" and then start parsing from there. See bug 4726580.
1229       char * s = strrchr(stat, ')');
1230 
1231       i = 0;
1232       if (s) {
1233         // Skip blank chars
1234         do { s++; } while (s && isspace(*s));
1235 
1236 #define _UFM UINTX_FORMAT
1237 #define _DFM INTX_FORMAT
1238 
1239         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1240         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1241         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1242                    &state,          // 3  %c
1243                    &ppid,           // 4  %d
1244                    &pgrp,           // 5  %d
1245                    &session,        // 6  %d
1246                    &nr,             // 7  %d
1247                    &tpgrp,          // 8  %d
1248                    &flags,          // 9  %lu
1249                    &minflt,         // 10 %lu
1250                    &cminflt,        // 11 %lu
1251                    &majflt,         // 12 %lu
1252                    &cmajflt,        // 13 %lu
1253                    &utime,          // 14 %lu
1254                    &stime,          // 15 %lu
1255                    &cutime,         // 16 %ld
1256                    &cstime,         // 17 %ld
1257                    &prio,           // 18 %ld
1258                    &nice,           // 19 %ld
1259                    &junk,           // 20 %ld
1260                    &it_real,        // 21 %ld
1261                    &start,          // 22 UINTX_FORMAT
1262                    &vsize,          // 23 UINTX_FORMAT
1263                    &rss,            // 24 INTX_FORMAT
1264                    &rsslim,         // 25 UINTX_FORMAT
1265                    &scodes,         // 26 UINTX_FORMAT
1266                    &ecode,          // 27 UINTX_FORMAT
1267                    &stack_start);   // 28 UINTX_FORMAT
1268       }
1269 
1270 #undef _UFM
1271 #undef _DFM
1272 
1273       if (i != 28 - 2) {
1274         assert(false, "Bad conversion from /proc/self/stat");
1275         // product mode - assume we are the primordial thread, good luck in the
1276         // embedded case.
1277         warning("Can't detect primordial thread stack location - bad conversion");
1278         stack_start = (uintptr_t) &rlim;
1279       }
1280     } else {
1281       // For some reason we can't open /proc/self/stat (for example, running on
1282       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1283       // most cases, so don't abort:
1284       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1285       stack_start = (uintptr_t) &rlim;
1286     }
1287   }
1288 
1289   // Now we have a pointer (stack_start) very close to the stack top, the
1290   // next thing to do is to figure out the exact location of stack top. We
1291   // can find out the virtual memory area that contains stack_start by
1292   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1293   // and its upper limit is the real stack top. (again, this would fail if
1294   // running inside chroot, because /proc may not exist.)
1295 
1296   uintptr_t stack_top;
1297   address low, high;
1298   if (find_vma((address)stack_start, &low, &high)) {
1299     // success, "high" is the true stack top. (ignore "low", because initial
1300     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1301     stack_top = (uintptr_t)high;
1302   } else {
1303     // failed, likely because /proc/self/maps does not exist
1304     warning("Can't detect primordial thread stack location - find_vma failed");
1305     // best effort: stack_start is normally within a few pages below the real
1306     // stack top, use it as stack top, and reduce stack size so we won't put
1307     // guard page outside stack.
1308     stack_top = stack_start;
1309     stack_size -= 16 * page_size();
1310   }
1311 
1312   // stack_top could be partially down the page so align it
1313   stack_top = align_up(stack_top, page_size());
1314 
1315   // Allowed stack value is minimum of max_size and what we derived from rlimit
1316   if (max_size > 0) {
1317     _initial_thread_stack_size = MIN2(max_size, stack_size);
1318   } else {
1319     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1320     // clamp it at 8MB as we do on Solaris
1321     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1322   }
1323   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1324   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1325 
1326   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1327 
1328   if (log_is_enabled(Info, os, thread)) {
1329     // See if we seem to be on primordial process thread
1330     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1331                       uintptr_t(&rlim) < stack_top;
1332 
1333     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1334                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1335                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1336                          stack_top, intptr_t(_initial_thread_stack_bottom));
1337   }
1338 }
1339 
1340 ////////////////////////////////////////////////////////////////////////////////
1341 // time support
1342 
1343 #ifndef SUPPORTS_CLOCK_MONOTONIC
1344 #error "Build platform doesn't support clock_gettime and related functionality"
1345 #endif
1346 
1347 // Time since start-up in seconds to a fine granularity.
1348 // Used by VMSelfDestructTimer and the MemProfiler.
1349 double os::elapsedTime() {
1350 
1351   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1352 }
1353 
1354 jlong os::elapsed_counter() {
1355   return javaTimeNanos() - initial_time_count;
1356 }
1357 
1358 jlong os::elapsed_frequency() {
1359   return NANOSECS_PER_SEC; // nanosecond resolution
1360 }
1361 
1362 bool os::supports_vtime() { return true; }
1363 
1364 double os::elapsedVTime() {
1365   struct rusage usage;
1366   int retval = getrusage(RUSAGE_THREAD, &usage);
1367   if (retval == 0) {
1368     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1369   } else {
1370     // better than nothing, but not much
1371     return elapsedTime();
1372   }
1373 }
1374 
1375 jlong os::javaTimeMillis() {
1376   timeval time;
1377   int status = gettimeofday(&time, NULL);
1378   assert(status != -1, "linux error");
1379   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1380 }
1381 
1382 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1383   timeval time;
1384   int status = gettimeofday(&time, NULL);
1385   assert(status != -1, "linux error");
1386   seconds = jlong(time.tv_sec);
1387   nanos = jlong(time.tv_usec) * 1000;
1388 }
1389 
1390 void os::Linux::fast_thread_clock_init() {
1391   if (!UseLinuxPosixThreadCPUClocks) {
1392     return;
1393   }
1394   clockid_t clockid;
1395   struct timespec tp;
1396   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1397       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1398 
1399   // Switch to using fast clocks for thread cpu time if
1400   // the clock_getres() returns 0 error code.
1401   // Note, that some kernels may support the current thread
1402   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1403   // returned by the pthread_getcpuclockid().
1404   // If the fast Posix clocks are supported then the clock_getres()
1405   // must return at least tp.tv_sec == 0 which means a resolution
1406   // better than 1 sec. This is extra check for reliability.
1407 
1408   if (pthread_getcpuclockid_func &&
1409       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1410       os::Posix::clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1411     _supports_fast_thread_cpu_time = true;
1412     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1413   }
1414 }
1415 
1416 jlong os::javaTimeNanos() {
1417   if (os::supports_monotonic_clock()) {
1418     struct timespec tp;
1419     int status = os::Posix::clock_gettime(CLOCK_MONOTONIC, &tp);
1420     assert(status == 0, "gettime error");
1421     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1422     return result;
1423   } else {
1424     timeval time;
1425     int status = gettimeofday(&time, NULL);
1426     assert(status != -1, "linux error");
1427     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1428     return 1000 * usecs;
1429   }
1430 }
1431 
1432 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1433   if (os::supports_monotonic_clock()) {
1434     info_ptr->max_value = ALL_64_BITS;
1435 
1436     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1437     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1438     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1439   } else {
1440     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1441     info_ptr->max_value = ALL_64_BITS;
1442 
1443     // gettimeofday is a real time clock so it skips
1444     info_ptr->may_skip_backward = true;
1445     info_ptr->may_skip_forward = true;
1446   }
1447 
1448   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1449 }
1450 
1451 // Return the real, user, and system times in seconds from an
1452 // arbitrary fixed point in the past.
1453 bool os::getTimesSecs(double* process_real_time,
1454                       double* process_user_time,
1455                       double* process_system_time) {
1456   struct tms ticks;
1457   clock_t real_ticks = times(&ticks);
1458 
1459   if (real_ticks == (clock_t) (-1)) {
1460     return false;
1461   } else {
1462     double ticks_per_second = (double) clock_tics_per_sec;
1463     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1464     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1465     *process_real_time = ((double) real_ticks) / ticks_per_second;
1466 
1467     return true;
1468   }
1469 }
1470 
1471 
1472 char * os::local_time_string(char *buf, size_t buflen) {
1473   struct tm t;
1474   time_t long_time;
1475   time(&long_time);
1476   localtime_r(&long_time, &t);
1477   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1478                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1479                t.tm_hour, t.tm_min, t.tm_sec);
1480   return buf;
1481 }
1482 
1483 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1484   return localtime_r(clock, res);
1485 }
1486 
1487 ////////////////////////////////////////////////////////////////////////////////
1488 // runtime exit support
1489 
1490 // Note: os::shutdown() might be called very early during initialization, or
1491 // called from signal handler. Before adding something to os::shutdown(), make
1492 // sure it is async-safe and can handle partially initialized VM.
1493 void os::shutdown() {
1494 
1495   // allow PerfMemory to attempt cleanup of any persistent resources
1496   perfMemory_exit();
1497 
1498   // needs to remove object in file system
1499   AttachListener::abort();
1500 
1501   // flush buffered output, finish log files
1502   ostream_abort();
1503 
1504   // Check for abort hook
1505   abort_hook_t abort_hook = Arguments::abort_hook();
1506   if (abort_hook != NULL) {
1507     abort_hook();
1508   }
1509 
1510 }
1511 
1512 // Note: os::abort() might be called very early during initialization, or
1513 // called from signal handler. Before adding something to os::abort(), make
1514 // sure it is async-safe and can handle partially initialized VM.
1515 void os::abort(bool dump_core, void* siginfo, const void* context) {
1516   os::shutdown();
1517   if (dump_core) {
1518     if (DumpPrivateMappingsInCore) {
1519       ClassLoader::close_jrt_image();
1520     }
1521 #ifndef PRODUCT
1522     fdStream out(defaultStream::output_fd());
1523     out.print_raw("Current thread is ");
1524     char buf[16];
1525     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1526     out.print_raw_cr(buf);
1527     out.print_raw_cr("Dumping core ...");
1528 #endif
1529     ::abort(); // dump core
1530   }
1531 
1532   ::exit(1);
1533 }
1534 
1535 // Die immediately, no exit hook, no abort hook, no cleanup.
1536 // Dump a core file, if possible, for debugging.
1537 void os::die() {
1538   if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) {
1539     // For TimeoutInErrorHandlingTest.java, we just kill the VM
1540     // and don't take the time to generate a core file.
1541     os::signal_raise(SIGKILL);
1542   } else {
1543     ::abort();
1544   }
1545 }
1546 
1547 // thread_id is kernel thread id (similar to Solaris LWP id)
1548 intx os::current_thread_id() { return os::Linux::gettid(); }
1549 int os::current_process_id() {
1550   return ::getpid();
1551 }
1552 
1553 // DLL functions
1554 
1555 const char* os::dll_file_extension() { return ".so"; }
1556 
1557 // This must be hard coded because it's the system's temporary
1558 // directory not the java application's temp directory, ala java.io.tmpdir.
1559 const char* os::get_temp_directory() { return "/tmp"; }
1560 
1561 static bool file_exists(const char* filename) {
1562   struct stat statbuf;
1563   if (filename == NULL || strlen(filename) == 0) {
1564     return false;
1565   }
1566   return os::stat(filename, &statbuf) == 0;
1567 }
1568 
1569 // check if addr is inside libjvm.so
1570 bool os::address_is_in_vm(address addr) {
1571   static address libjvm_base_addr;
1572   Dl_info dlinfo;
1573 
1574   if (libjvm_base_addr == NULL) {
1575     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1576       libjvm_base_addr = (address)dlinfo.dli_fbase;
1577     }
1578     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1579   }
1580 
1581   if (dladdr((void *)addr, &dlinfo) != 0) {
1582     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1583   }
1584 
1585   return false;
1586 }
1587 
1588 bool os::dll_address_to_function_name(address addr, char *buf,
1589                                       int buflen, int *offset,
1590                                       bool demangle) {
1591   // buf is not optional, but offset is optional
1592   assert(buf != NULL, "sanity check");
1593 
1594   Dl_info dlinfo;
1595 
1596   if (dladdr((void*)addr, &dlinfo) != 0) {
1597     // see if we have a matching symbol
1598     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1599       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1600         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1601       }
1602       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1603       return true;
1604     }
1605     // no matching symbol so try for just file info
1606     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1607       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1608                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1609         return true;
1610       }
1611     }
1612   }
1613 
1614   buf[0] = '\0';
1615   if (offset != NULL) *offset = -1;
1616   return false;
1617 }
1618 
1619 struct _address_to_library_name {
1620   address addr;          // input : memory address
1621   size_t  buflen;        //         size of fname
1622   char*   fname;         // output: library name
1623   address base;          //         library base addr
1624 };
1625 
1626 static int address_to_library_name_callback(struct dl_phdr_info *info,
1627                                             size_t size, void *data) {
1628   int i;
1629   bool found = false;
1630   address libbase = NULL;
1631   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1632 
1633   // iterate through all loadable segments
1634   for (i = 0; i < info->dlpi_phnum; i++) {
1635     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1636     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1637       // base address of a library is the lowest address of its loaded
1638       // segments.
1639       if (libbase == NULL || libbase > segbase) {
1640         libbase = segbase;
1641       }
1642       // see if 'addr' is within current segment
1643       if (segbase <= d->addr &&
1644           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1645         found = true;
1646       }
1647     }
1648   }
1649 
1650   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1651   // so dll_address_to_library_name() can fall through to use dladdr() which
1652   // can figure out executable name from argv[0].
1653   if (found && info->dlpi_name && info->dlpi_name[0]) {
1654     d->base = libbase;
1655     if (d->fname) {
1656       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1657     }
1658     return 1;
1659   }
1660   return 0;
1661 }
1662 
1663 bool os::dll_address_to_library_name(address addr, char* buf,
1664                                      int buflen, int* offset) {
1665   // buf is not optional, but offset is optional
1666   assert(buf != NULL, "sanity check");
1667 
1668   Dl_info dlinfo;
1669   struct _address_to_library_name data;
1670 
1671   // There is a bug in old glibc dladdr() implementation that it could resolve
1672   // to wrong library name if the .so file has a base address != NULL. Here
1673   // we iterate through the program headers of all loaded libraries to find
1674   // out which library 'addr' really belongs to. This workaround can be
1675   // removed once the minimum requirement for glibc is moved to 2.3.x.
1676   data.addr = addr;
1677   data.fname = buf;
1678   data.buflen = buflen;
1679   data.base = NULL;
1680   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1681 
1682   if (rslt) {
1683     // buf already contains library name
1684     if (offset) *offset = addr - data.base;
1685     return true;
1686   }
1687   if (dladdr((void*)addr, &dlinfo) != 0) {
1688     if (dlinfo.dli_fname != NULL) {
1689       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1690     }
1691     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1692       *offset = addr - (address)dlinfo.dli_fbase;
1693     }
1694     return true;
1695   }
1696 
1697   buf[0] = '\0';
1698   if (offset) *offset = -1;
1699   return false;
1700 }
1701 
1702 // Loads .dll/.so and
1703 // in case of error it checks if .dll/.so was built for the
1704 // same architecture as Hotspot is running on
1705 
1706 
1707 // Remember the stack's state. The Linux dynamic linker will change
1708 // the stack to 'executable' at most once, so we must safepoint only once.
1709 bool os::Linux::_stack_is_executable = false;
1710 
1711 // VM operation that loads a library.  This is necessary if stack protection
1712 // of the Java stacks can be lost during loading the library.  If we
1713 // do not stop the Java threads, they can stack overflow before the stacks
1714 // are protected again.
1715 class VM_LinuxDllLoad: public VM_Operation {
1716  private:
1717   const char *_filename;
1718   char *_ebuf;
1719   int _ebuflen;
1720   void *_lib;
1721  public:
1722   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1723     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1724   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1725   void doit() {
1726     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1727     os::Linux::_stack_is_executable = true;
1728   }
1729   void* loaded_library() { return _lib; }
1730 };
1731 
1732 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1733   void * result = NULL;
1734   bool load_attempted = false;
1735 
1736   log_info(os)("attempting shared library load of %s", filename);
1737 
1738   // Check whether the library to load might change execution rights
1739   // of the stack. If they are changed, the protection of the stack
1740   // guard pages will be lost. We need a safepoint to fix this.
1741   //
1742   // See Linux man page execstack(8) for more info.
1743   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1744     if (!ElfFile::specifies_noexecstack(filename)) {
1745       if (!is_init_completed()) {
1746         os::Linux::_stack_is_executable = true;
1747         // This is OK - No Java threads have been created yet, and hence no
1748         // stack guard pages to fix.
1749         //
1750         // Dynamic loader will make all stacks executable after
1751         // this function returns, and will not do that again.
1752         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1753       } else {
1754         warning("You have loaded library %s which might have disabled stack guard. "
1755                 "The VM will try to fix the stack guard now.\n"
1756                 "It's highly recommended that you fix the library with "
1757                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1758                 filename);
1759 
1760         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1761         JavaThread *jt = JavaThread::current();
1762         if (jt->thread_state() != _thread_in_native) {
1763           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1764           // that requires ExecStack. Cannot enter safe point. Let's give up.
1765           warning("Unable to fix stack guard. Giving up.");
1766         } else {
1767           if (!LoadExecStackDllInVMThread) {
1768             // This is for the case where the DLL has an static
1769             // constructor function that executes JNI code. We cannot
1770             // load such DLLs in the VMThread.
1771             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1772           }
1773 
1774           ThreadInVMfromNative tiv(jt);
1775           debug_only(VMNativeEntryWrapper vew;)
1776 
1777           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1778           VMThread::execute(&op);
1779           if (LoadExecStackDllInVMThread) {
1780             result = op.loaded_library();
1781           }
1782           load_attempted = true;
1783         }
1784       }
1785     }
1786   }
1787 
1788   if (!load_attempted) {
1789     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1790   }
1791 
1792   if (result != NULL) {
1793     // Successful loading
1794     return result;
1795   }
1796 
1797   Elf32_Ehdr elf_head;
1798   int diag_msg_max_length=ebuflen-strlen(ebuf);
1799   char* diag_msg_buf=ebuf+strlen(ebuf);
1800 
1801   if (diag_msg_max_length==0) {
1802     // No more space in ebuf for additional diagnostics message
1803     return NULL;
1804   }
1805 
1806 
1807   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1808 
1809   if (file_descriptor < 0) {
1810     // Can't open library, report dlerror() message
1811     return NULL;
1812   }
1813 
1814   bool failed_to_read_elf_head=
1815     (sizeof(elf_head)!=
1816      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1817 
1818   ::close(file_descriptor);
1819   if (failed_to_read_elf_head) {
1820     // file i/o error - report dlerror() msg
1821     return NULL;
1822   }
1823 
1824   if (elf_head.e_ident[EI_DATA] != LITTLE_ENDIAN_ONLY(ELFDATA2LSB) BIG_ENDIAN_ONLY(ELFDATA2MSB)) {
1825     // handle invalid/out of range endianness values
1826     if (elf_head.e_ident[EI_DATA] == 0 || elf_head.e_ident[EI_DATA] > 2) {
1827       return NULL;
1828     }
1829 
1830 #if defined(VM_LITTLE_ENDIAN)
1831     // VM is LE, shared object BE
1832     elf_head.e_machine = be16toh(elf_head.e_machine);
1833 #else
1834     // VM is BE, shared object LE
1835     elf_head.e_machine = le16toh(elf_head.e_machine);
1836 #endif
1837   }
1838 
1839   typedef struct {
1840     Elf32_Half    code;         // Actual value as defined in elf.h
1841     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1842     unsigned char elf_class;    // 32 or 64 bit
1843     unsigned char endianness;   // MSB or LSB
1844     char*         name;         // String representation
1845   } arch_t;
1846 
1847 #ifndef EM_486
1848   #define EM_486          6               /* Intel 80486 */
1849 #endif
1850 #ifndef EM_AARCH64
1851   #define EM_AARCH64    183               /* ARM AARCH64 */
1852 #endif
1853 
1854   static const arch_t arch_array[]={
1855     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1856     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1857     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1858     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1859     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1860     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1861     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1862     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1863 #if defined(VM_LITTLE_ENDIAN)
1864     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1865     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1866 #else
1867     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1868     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1869 #endif
1870     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
1871     // we only support 64 bit z architecture
1872     {EM_S390,        EM_S390,    ELFCLASS64, ELFDATA2MSB, (char*)"IBM System/390"},
1873     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1874     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1875     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1876     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1877     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1878     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1879   };
1880 
1881 #if  (defined IA32)
1882   static  Elf32_Half running_arch_code=EM_386;
1883 #elif   (defined AMD64) || (defined X32)
1884   static  Elf32_Half running_arch_code=EM_X86_64;
1885 #elif  (defined IA64)
1886   static  Elf32_Half running_arch_code=EM_IA_64;
1887 #elif  (defined __sparc) && (defined _LP64)
1888   static  Elf32_Half running_arch_code=EM_SPARCV9;
1889 #elif  (defined __sparc) && (!defined _LP64)
1890   static  Elf32_Half running_arch_code=EM_SPARC;
1891 #elif  (defined __powerpc64__)
1892   static  Elf32_Half running_arch_code=EM_PPC64;
1893 #elif  (defined __powerpc__)
1894   static  Elf32_Half running_arch_code=EM_PPC;
1895 #elif  (defined AARCH64)
1896   static  Elf32_Half running_arch_code=EM_AARCH64;
1897 #elif  (defined ARM)
1898   static  Elf32_Half running_arch_code=EM_ARM;
1899 #elif  (defined S390)
1900   static  Elf32_Half running_arch_code=EM_S390;
1901 #elif  (defined ALPHA)
1902   static  Elf32_Half running_arch_code=EM_ALPHA;
1903 #elif  (defined MIPSEL)
1904   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1905 #elif  (defined PARISC)
1906   static  Elf32_Half running_arch_code=EM_PARISC;
1907 #elif  (defined MIPS)
1908   static  Elf32_Half running_arch_code=EM_MIPS;
1909 #elif  (defined M68K)
1910   static  Elf32_Half running_arch_code=EM_68K;
1911 #elif  (defined SH)
1912   static  Elf32_Half running_arch_code=EM_SH;
1913 #else
1914     #error Method os::dll_load requires that one of following is defined:\
1915         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1916 #endif
1917 
1918   // Identify compatibility class for VM's architecture and library's architecture
1919   // Obtain string descriptions for architectures
1920 
1921   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1922   int running_arch_index=-1;
1923 
1924   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1925     if (running_arch_code == arch_array[i].code) {
1926       running_arch_index    = i;
1927     }
1928     if (lib_arch.code == arch_array[i].code) {
1929       lib_arch.compat_class = arch_array[i].compat_class;
1930       lib_arch.name         = arch_array[i].name;
1931     }
1932   }
1933 
1934   assert(running_arch_index != -1,
1935          "Didn't find running architecture code (running_arch_code) in arch_array");
1936   if (running_arch_index == -1) {
1937     // Even though running architecture detection failed
1938     // we may still continue with reporting dlerror() message
1939     return NULL;
1940   }
1941 
1942   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1943     if (lib_arch.name != NULL) {
1944       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1945                  " (Possible cause: can't load %s .so on a %s platform)",
1946                  lib_arch.name, arch_array[running_arch_index].name);
1947     } else {
1948       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1949                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s platform)",
1950                  lib_arch.code, arch_array[running_arch_index].name);
1951     }
1952     return NULL;
1953   }
1954 
1955   if (lib_arch.endianness != arch_array[running_arch_index].endianness) {
1956     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: endianness mismatch)");
1957     return NULL;
1958   }
1959 
1960   // ELF file class/capacity : 0 - invalid, 1 - 32bit, 2 - 64bit
1961   if (lib_arch.elf_class > 2 || lib_arch.elf_class < 1) {
1962     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: invalid ELF file class)");
1963     return NULL;
1964   }
1965 
1966   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1967     ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1968                " (Possible cause: architecture word width mismatch, can't load %d-bit .so on a %d-bit platform)",
1969                (int) lib_arch.elf_class * 32, arch_array[running_arch_index].elf_class * 32);
1970     return NULL;
1971   }
1972 
1973   return NULL;
1974 }
1975 
1976 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1977                                 int ebuflen) {
1978   void * result = ::dlopen(filename, RTLD_LAZY);
1979   if (result == NULL) {
1980     const char* error_report = ::dlerror();
1981     if (error_report == NULL) {
1982       error_report = "dlerror returned no error description";
1983     }
1984     if (ebuf != NULL && ebuflen > 0) {
1985       ::strncpy(ebuf, error_report, ebuflen-1);
1986       ebuf[ebuflen-1]='\0';
1987     }
1988     Events::log(NULL, "Loading shared library %s failed, %s", filename, error_report);
1989     log_info(os)("shared library load of %s failed, %s", filename, error_report);
1990   } else {
1991     Events::log(NULL, "Loaded shared library %s", filename);
1992     log_info(os)("shared library load of %s was successful", filename);
1993   }
1994   return result;
1995 }
1996 
1997 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1998                                        int ebuflen) {
1999   void * result = NULL;
2000   if (LoadExecStackDllInVMThread) {
2001     result = dlopen_helper(filename, ebuf, ebuflen);
2002   }
2003 
2004   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2005   // library that requires an executable stack, or which does not have this
2006   // stack attribute set, dlopen changes the stack attribute to executable. The
2007   // read protection of the guard pages gets lost.
2008   //
2009   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2010   // may have been queued at the same time.
2011 
2012   if (!_stack_is_executable) {
2013     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2014       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
2015           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
2016         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
2017           warning("Attempt to reguard stack yellow zone failed.");
2018         }
2019       }
2020     }
2021   }
2022 
2023   return result;
2024 }
2025 
2026 void* os::dll_lookup(void* handle, const char* name) {
2027   void* res = dlsym(handle, name);
2028   return res;
2029 }
2030 
2031 void* os::get_default_process_handle() {
2032   return (void*)::dlopen(NULL, RTLD_LAZY);
2033 }
2034 
2035 static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) {
2036   int fd = ::open(filename, O_RDONLY);
2037   if (fd == -1) {
2038     return false;
2039   }
2040 
2041   if (hdr != NULL) {
2042     st->print_cr("%s", hdr);
2043   }
2044 
2045   char buf[33];
2046   int bytes;
2047   buf[32] = '\0';
2048   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
2049     st->print_raw(buf, bytes);
2050   }
2051 
2052   ::close(fd);
2053 
2054   return true;
2055 }
2056 
2057 void os::print_dll_info(outputStream *st) {
2058   st->print_cr("Dynamic libraries:");
2059 
2060   char fname[32];
2061   pid_t pid = os::Linux::gettid();
2062 
2063   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2064 
2065   if (!_print_ascii_file(fname, st)) {
2066     st->print("Can not get library information for pid = %d\n", pid);
2067   }
2068 }
2069 
2070 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2071   FILE *procmapsFile = NULL;
2072 
2073   // Open the procfs maps file for the current process
2074   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2075     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2076     char line[PATH_MAX + 100];
2077 
2078     // Read line by line from 'file'
2079     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2080       u8 base, top, offset, inode;
2081       char permissions[5];
2082       char device[6];
2083       char name[sizeof(line)];
2084 
2085       // Parse fields from line
2086       int matches = sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
2087              &base, &top, permissions, &offset, device, &inode, name);
2088       // the last entry 'name' is empty for some entries, so we might have 6 matches instead of 7 for some lines
2089       if (matches < 6) continue;
2090       if (matches == 6) name[0] = '\0';
2091 
2092       // Filter by device id '00:00' so that we only get file system mapped files.
2093       if (strcmp(device, "00:00") != 0) {
2094 
2095         // Call callback with the fields of interest
2096         if(callback(name, (address)base, (address)top, param)) {
2097           // Oops abort, callback aborted
2098           fclose(procmapsFile);
2099           return 1;
2100         }
2101       }
2102     }
2103     fclose(procmapsFile);
2104   }
2105   return 0;
2106 }
2107 
2108 void os::print_os_info_brief(outputStream* st) {
2109   os::Linux::print_distro_info(st);
2110 
2111   os::Posix::print_uname_info(st);
2112 
2113   os::Linux::print_libversion_info(st);
2114 
2115 }
2116 
2117 void os::print_os_info(outputStream* st) {
2118   st->print("OS:");
2119 
2120   os::Linux::print_distro_info(st);
2121 
2122   os::Posix::print_uname_info(st);
2123 
2124   os::Linux::print_uptime_info(st);
2125 
2126   // Print warning if unsafe chroot environment detected
2127   if (unsafe_chroot_detected) {
2128     st->print("WARNING!! ");
2129     st->print_cr("%s", unstable_chroot_error);
2130   }
2131 
2132   os::Linux::print_libversion_info(st);
2133 
2134   os::Posix::print_rlimit_info(st);
2135 
2136   os::Posix::print_load_average(st);
2137 
2138   os::Linux::print_full_memory_info(st);
2139 
2140   os::Linux::print_proc_sys_info(st);
2141 
2142   os::Linux::print_ld_preload_file(st);
2143 
2144   os::Linux::print_container_info(st);
2145 
2146   VM_Version::print_platform_virtualization_info(st);
2147 
2148   os::Linux::print_steal_info(st);
2149 }
2150 
2151 // Try to identify popular distros.
2152 // Most Linux distributions have a /etc/XXX-release file, which contains
2153 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2154 // file that also contains the OS version string. Some have more than one
2155 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2156 // /etc/redhat-release.), so the order is important.
2157 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2158 // their own specific XXX-release file as well as a redhat-release file.
2159 // Because of this the XXX-release file needs to be searched for before the
2160 // redhat-release file.
2161 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2162 // search for redhat-release / SuSE-release needs to be before lsb-release.
2163 // Since the lsb-release file is the new standard it needs to be searched
2164 // before the older style release files.
2165 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2166 // next to last resort.  The os-release file is a new standard that contains
2167 // distribution information and the system-release file seems to be an old
2168 // standard that has been replaced by the lsb-release and os-release files.
2169 // Searching for the debian_version file is the last resort.  It contains
2170 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2171 // "Debian " is printed before the contents of the debian_version file.
2172 
2173 const char* distro_files[] = {
2174   "/etc/oracle-release",
2175   "/etc/mandriva-release",
2176   "/etc/mandrake-release",
2177   "/etc/sun-release",
2178   "/etc/redhat-release",
2179   "/etc/SuSE-release",
2180   "/etc/lsb-release",
2181   "/etc/turbolinux-release",
2182   "/etc/gentoo-release",
2183   "/etc/ltib-release",
2184   "/etc/angstrom-version",
2185   "/etc/system-release",
2186   "/etc/os-release",
2187   NULL };
2188 
2189 void os::Linux::print_distro_info(outputStream* st) {
2190   for (int i = 0;; i++) {
2191     const char* file = distro_files[i];
2192     if (file == NULL) {
2193       break;  // done
2194     }
2195     // If file prints, we found it.
2196     if (_print_ascii_file(file, st)) {
2197       return;
2198     }
2199   }
2200 
2201   if (file_exists("/etc/debian_version")) {
2202     st->print("Debian ");
2203     _print_ascii_file("/etc/debian_version", st);
2204   } else {
2205     st->print("Linux");
2206   }
2207   st->cr();
2208 }
2209 
2210 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2211   char buf[256];
2212   while (fgets(buf, sizeof(buf), fp)) {
2213     // Edit out extra stuff in expected format
2214     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2215       char* ptr = strstr(buf, "\"");  // the name is in quotes
2216       if (ptr != NULL) {
2217         ptr++; // go beyond first quote
2218         char* nl = strchr(ptr, '\"');
2219         if (nl != NULL) *nl = '\0';
2220         strncpy(distro, ptr, length);
2221       } else {
2222         ptr = strstr(buf, "=");
2223         ptr++; // go beyond equals then
2224         char* nl = strchr(ptr, '\n');
2225         if (nl != NULL) *nl = '\0';
2226         strncpy(distro, ptr, length);
2227       }
2228       return;
2229     } else if (get_first_line) {
2230       char* nl = strchr(buf, '\n');
2231       if (nl != NULL) *nl = '\0';
2232       strncpy(distro, buf, length);
2233       return;
2234     }
2235   }
2236   // print last line and close
2237   char* nl = strchr(buf, '\n');
2238   if (nl != NULL) *nl = '\0';
2239   strncpy(distro, buf, length);
2240 }
2241 
2242 static void parse_os_info(char* distro, size_t length, const char* file) {
2243   FILE* fp = fopen(file, "r");
2244   if (fp != NULL) {
2245     // if suse format, print out first line
2246     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2247     parse_os_info_helper(fp, distro, length, get_first_line);
2248     fclose(fp);
2249   }
2250 }
2251 
2252 void os::get_summary_os_info(char* buf, size_t buflen) {
2253   for (int i = 0;; i++) {
2254     const char* file = distro_files[i];
2255     if (file == NULL) {
2256       break; // ran out of distro_files
2257     }
2258     if (file_exists(file)) {
2259       parse_os_info(buf, buflen, file);
2260       return;
2261     }
2262   }
2263   // special case for debian
2264   if (file_exists("/etc/debian_version")) {
2265     strncpy(buf, "Debian ", buflen);
2266     if (buflen > 7) {
2267       parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2268     }
2269   } else {
2270     strncpy(buf, "Linux", buflen);
2271   }
2272 }
2273 
2274 void os::Linux::print_libversion_info(outputStream* st) {
2275   // libc, pthread
2276   st->print("libc:");
2277   st->print("%s ", os::Linux::glibc_version());
2278   st->print("%s ", os::Linux::libpthread_version());
2279   st->cr();
2280 }
2281 
2282 void os::Linux::print_proc_sys_info(outputStream* st) {
2283   st->cr();
2284   st->print_cr("/proc/sys/kernel/threads-max (system-wide limit on the number of threads):");
2285   _print_ascii_file("/proc/sys/kernel/threads-max", st);
2286   st->cr();
2287   st->cr();
2288 
2289   st->print_cr("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have):");
2290   _print_ascii_file("/proc/sys/vm/max_map_count", st);
2291   st->cr();
2292   st->cr();
2293 
2294   st->print_cr("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers):");
2295   _print_ascii_file("/proc/sys/kernel/pid_max", st);
2296   st->cr();
2297   st->cr();
2298 }
2299 
2300 void os::Linux::print_full_memory_info(outputStream* st) {
2301   st->print("\n/proc/meminfo:\n");
2302   _print_ascii_file("/proc/meminfo", st);
2303   st->cr();
2304 }
2305 
2306 void os::Linux::print_ld_preload_file(outputStream* st) {
2307   _print_ascii_file("/etc/ld.so.preload", st, "\n/etc/ld.so.preload:");
2308   st->cr();
2309 }
2310 
2311 void os::Linux::print_uptime_info(outputStream* st) {
2312   struct sysinfo sinfo;
2313   int ret = sysinfo(&sinfo);
2314   if (ret == 0) {
2315     os::print_dhm(st, "OS uptime:", (long) sinfo.uptime);
2316   }
2317 }
2318 
2319 
2320 void os::Linux::print_container_info(outputStream* st) {
2321   if (!OSContainer::is_containerized()) {
2322     return;
2323   }
2324 
2325   st->print("container (cgroup) information:\n");
2326 
2327   const char *p_ct = OSContainer::container_type();
2328   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "not supported");
2329 
2330   char *p = OSContainer::cpu_cpuset_cpus();
2331   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "not supported");
2332   free(p);
2333 
2334   p = OSContainer::cpu_cpuset_memory_nodes();
2335   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "not supported");
2336   free(p);
2337 
2338   int i = OSContainer::active_processor_count();
2339   st->print("active_processor_count: ");
2340   if (i > 0) {
2341     st->print("%d\n", i);
2342   } else {
2343     st->print("not supported\n");
2344   }
2345 
2346   i = OSContainer::cpu_quota();
2347   st->print("cpu_quota: ");
2348   if (i > 0) {
2349     st->print("%d\n", i);
2350   } else {
2351     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no quota");
2352   }
2353 
2354   i = OSContainer::cpu_period();
2355   st->print("cpu_period: ");
2356   if (i > 0) {
2357     st->print("%d\n", i);
2358   } else {
2359     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no period");
2360   }
2361 
2362   i = OSContainer::cpu_shares();
2363   st->print("cpu_shares: ");
2364   if (i > 0) {
2365     st->print("%d\n", i);
2366   } else {
2367     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no shares");
2368   }
2369 
2370   jlong j = OSContainer::memory_limit_in_bytes();
2371   st->print("memory_limit_in_bytes: ");
2372   if (j > 0) {
2373     st->print(JLONG_FORMAT "\n", j);
2374   } else {
2375     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2376   }
2377 
2378   j = OSContainer::memory_and_swap_limit_in_bytes();
2379   st->print("memory_and_swap_limit_in_bytes: ");
2380   if (j > 0) {
2381     st->print(JLONG_FORMAT "\n", j);
2382   } else {
2383     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2384   }
2385 
2386   j = OSContainer::memory_soft_limit_in_bytes();
2387   st->print("memory_soft_limit_in_bytes: ");
2388   if (j > 0) {
2389     st->print(JLONG_FORMAT "\n", j);
2390   } else {
2391     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2392   }
2393 
2394   j = OSContainer::OSContainer::memory_usage_in_bytes();
2395   st->print("memory_usage_in_bytes: ");
2396   if (j > 0) {
2397     st->print(JLONG_FORMAT "\n", j);
2398   } else {
2399     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2400   }
2401 
2402   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2403   st->print("memory_max_usage_in_bytes: ");
2404   if (j > 0) {
2405     st->print(JLONG_FORMAT "\n", j);
2406   } else {
2407     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2408   }
2409   st->cr();
2410 }
2411 
2412 void os::Linux::print_steal_info(outputStream* st) {
2413   if (has_initial_tick_info) {
2414     CPUPerfTicks pticks;
2415     bool res = os::Linux::get_tick_information(&pticks, -1);
2416 
2417     if (res && pticks.has_steal_ticks) {
2418       uint64_t steal_ticks_difference = pticks.steal - initial_steal_ticks;
2419       uint64_t total_ticks_difference = pticks.total - initial_total_ticks;
2420       double steal_ticks_perc = 0.0;
2421       if (total_ticks_difference != 0) {
2422         steal_ticks_perc = (double) steal_ticks_difference / total_ticks_difference;
2423       }
2424       st->print_cr("Steal ticks since vm start: " UINT64_FORMAT, steal_ticks_difference);
2425       st->print_cr("Steal ticks percentage since vm start:%7.3f", steal_ticks_perc);
2426     }
2427   }
2428 }
2429 
2430 void os::print_memory_info(outputStream* st) {
2431 
2432   st->print("Memory:");
2433   st->print(" %dk page", os::vm_page_size()>>10);
2434 
2435   // values in struct sysinfo are "unsigned long"
2436   struct sysinfo si;
2437   sysinfo(&si);
2438 
2439   st->print(", physical " UINT64_FORMAT "k",
2440             os::physical_memory() >> 10);
2441   st->print("(" UINT64_FORMAT "k free)",
2442             os::available_memory() >> 10);
2443   st->print(", swap " UINT64_FORMAT "k",
2444             ((jlong)si.totalswap * si.mem_unit) >> 10);
2445   st->print("(" UINT64_FORMAT "k free)",
2446             ((jlong)si.freeswap * si.mem_unit) >> 10);
2447   st->cr();
2448 }
2449 
2450 // Print the first "model name" line and the first "flags" line
2451 // that we find and nothing more. We assume "model name" comes
2452 // before "flags" so if we find a second "model name", then the
2453 // "flags" field is considered missing.
2454 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2455 #if defined(IA32) || defined(AMD64)
2456   // Other platforms have less repetitive cpuinfo files
2457   FILE *fp = fopen("/proc/cpuinfo", "r");
2458   if (fp) {
2459     while (!feof(fp)) {
2460       if (fgets(buf, buflen, fp)) {
2461         // Assume model name comes before flags
2462         bool model_name_printed = false;
2463         if (strstr(buf, "model name") != NULL) {
2464           if (!model_name_printed) {
2465             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2466             st->print_raw(buf);
2467             model_name_printed = true;
2468           } else {
2469             // model name printed but not flags?  Odd, just return
2470             fclose(fp);
2471             return true;
2472           }
2473         }
2474         // print the flags line too
2475         if (strstr(buf, "flags") != NULL) {
2476           st->print_raw(buf);
2477           fclose(fp);
2478           return true;
2479         }
2480       }
2481     }
2482     fclose(fp);
2483   }
2484 #endif // x86 platforms
2485   return false;
2486 }
2487 
2488 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2489   // Only print the model name if the platform provides this as a summary
2490   if (!print_model_name_and_flags(st, buf, buflen)) {
2491     st->print("\n/proc/cpuinfo:\n");
2492     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2493       st->print_cr("  <Not Available>");
2494     }
2495   }
2496 }
2497 
2498 #if defined(AMD64) || defined(IA32) || defined(X32)
2499 const char* search_string = "model name";
2500 #elif defined(M68K)
2501 const char* search_string = "CPU";
2502 #elif defined(PPC64)
2503 const char* search_string = "cpu";
2504 #elif defined(S390)
2505 const char* search_string = "machine =";
2506 #elif defined(SPARC)
2507 const char* search_string = "cpu";
2508 #else
2509 const char* search_string = "Processor";
2510 #endif
2511 
2512 // Parses the cpuinfo file for string representing the model name.
2513 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2514   FILE* fp = fopen("/proc/cpuinfo", "r");
2515   if (fp != NULL) {
2516     while (!feof(fp)) {
2517       char buf[256];
2518       if (fgets(buf, sizeof(buf), fp)) {
2519         char* start = strstr(buf, search_string);
2520         if (start != NULL) {
2521           char *ptr = start + strlen(search_string);
2522           char *end = buf + strlen(buf);
2523           while (ptr != end) {
2524              // skip whitespace and colon for the rest of the name.
2525              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2526                break;
2527              }
2528              ptr++;
2529           }
2530           if (ptr != end) {
2531             // reasonable string, get rid of newline and keep the rest
2532             char* nl = strchr(buf, '\n');
2533             if (nl != NULL) *nl = '\0';
2534             strncpy(cpuinfo, ptr, length);
2535             fclose(fp);
2536             return;
2537           }
2538         }
2539       }
2540     }
2541     fclose(fp);
2542   }
2543   // cpuinfo not found or parsing failed, just print generic string.  The entire
2544   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2545 #if   defined(AARCH64)
2546   strncpy(cpuinfo, "AArch64", length);
2547 #elif defined(AMD64)
2548   strncpy(cpuinfo, "x86_64", length);
2549 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2550   strncpy(cpuinfo, "ARM", length);
2551 #elif defined(IA32)
2552   strncpy(cpuinfo, "x86_32", length);
2553 #elif defined(IA64)
2554   strncpy(cpuinfo, "IA64", length);
2555 #elif defined(PPC)
2556   strncpy(cpuinfo, "PPC64", length);
2557 #elif defined(S390)
2558   strncpy(cpuinfo, "S390", length);
2559 #elif defined(SPARC)
2560   strncpy(cpuinfo, "sparcv9", length);
2561 #elif defined(ZERO_LIBARCH)
2562   strncpy(cpuinfo, ZERO_LIBARCH, length);
2563 #else
2564   strncpy(cpuinfo, "unknown", length);
2565 #endif
2566 }
2567 
2568 static void print_signal_handler(outputStream* st, int sig,
2569                                  char* buf, size_t buflen);
2570 
2571 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2572   st->print_cr("Signal Handlers:");
2573   print_signal_handler(st, SIGSEGV, buf, buflen);
2574   print_signal_handler(st, SIGBUS , buf, buflen);
2575   print_signal_handler(st, SIGFPE , buf, buflen);
2576   print_signal_handler(st, SIGPIPE, buf, buflen);
2577   print_signal_handler(st, SIGXFSZ, buf, buflen);
2578   print_signal_handler(st, SIGILL , buf, buflen);
2579   print_signal_handler(st, SR_signum, buf, buflen);
2580   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2581   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2582   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2583   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2584 #if defined(PPC64)
2585   print_signal_handler(st, SIGTRAP, buf, buflen);
2586 #endif
2587 }
2588 
2589 static char saved_jvm_path[MAXPATHLEN] = {0};
2590 
2591 // Find the full path to the current module, libjvm.so
2592 void os::jvm_path(char *buf, jint buflen) {
2593   // Error checking.
2594   if (buflen < MAXPATHLEN) {
2595     assert(false, "must use a large-enough buffer");
2596     buf[0] = '\0';
2597     return;
2598   }
2599   // Lazy resolve the path to current module.
2600   if (saved_jvm_path[0] != 0) {
2601     strcpy(buf, saved_jvm_path);
2602     return;
2603   }
2604 
2605   char dli_fname[MAXPATHLEN];
2606   bool ret = dll_address_to_library_name(
2607                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2608                                          dli_fname, sizeof(dli_fname), NULL);
2609   assert(ret, "cannot locate libjvm");
2610   char *rp = NULL;
2611   if (ret && dli_fname[0] != '\0') {
2612     rp = os::Posix::realpath(dli_fname, buf, buflen);
2613   }
2614   if (rp == NULL) {
2615     return;
2616   }
2617 
2618   if (Arguments::sun_java_launcher_is_altjvm()) {
2619     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2620     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2621     // If "/jre/lib/" appears at the right place in the string, then
2622     // assume we are installed in a JDK and we're done. Otherwise, check
2623     // for a JAVA_HOME environment variable and fix up the path so it
2624     // looks like libjvm.so is installed there (append a fake suffix
2625     // hotspot/libjvm.so).
2626     const char *p = buf + strlen(buf) - 1;
2627     for (int count = 0; p > buf && count < 5; ++count) {
2628       for (--p; p > buf && *p != '/'; --p)
2629         /* empty */ ;
2630     }
2631 
2632     if (strncmp(p, "/jre/lib/", 9) != 0) {
2633       // Look for JAVA_HOME in the environment.
2634       char* java_home_var = ::getenv("JAVA_HOME");
2635       if (java_home_var != NULL && java_home_var[0] != 0) {
2636         char* jrelib_p;
2637         int len;
2638 
2639         // Check the current module name "libjvm.so".
2640         p = strrchr(buf, '/');
2641         if (p == NULL) {
2642           return;
2643         }
2644         assert(strstr(p, "/libjvm") == p, "invalid library name");
2645 
2646         rp = os::Posix::realpath(java_home_var, buf, buflen);
2647         if (rp == NULL) {
2648           return;
2649         }
2650 
2651         // determine if this is a legacy image or modules image
2652         // modules image doesn't have "jre" subdirectory
2653         len = strlen(buf);
2654         assert(len < buflen, "Ran out of buffer room");
2655         jrelib_p = buf + len;
2656         snprintf(jrelib_p, buflen-len, "/jre/lib");
2657         if (0 != access(buf, F_OK)) {
2658           snprintf(jrelib_p, buflen-len, "/lib");
2659         }
2660 
2661         if (0 == access(buf, F_OK)) {
2662           // Use current module name "libjvm.so"
2663           len = strlen(buf);
2664           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2665         } else {
2666           // Go back to path of .so
2667           rp = os::Posix::realpath(dli_fname, buf, buflen);
2668           if (rp == NULL) {
2669             return;
2670           }
2671         }
2672       }
2673     }
2674   }
2675 
2676   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2677   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2678 }
2679 
2680 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2681   // no prefix required, not even "_"
2682 }
2683 
2684 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2685   // no suffix required
2686 }
2687 
2688 ////////////////////////////////////////////////////////////////////////////////
2689 // sun.misc.Signal support
2690 
2691 static void UserHandler(int sig, void *siginfo, void *context) {
2692   // Ctrl-C is pressed during error reporting, likely because the error
2693   // handler fails to abort. Let VM die immediately.
2694   if (sig == SIGINT && VMError::is_error_reported()) {
2695     os::die();
2696   }
2697 
2698   os::signal_notify(sig);
2699 }
2700 
2701 void* os::user_handler() {
2702   return CAST_FROM_FN_PTR(void*, UserHandler);
2703 }
2704 
2705 extern "C" {
2706   typedef void (*sa_handler_t)(int);
2707   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2708 }
2709 
2710 void* os::signal(int signal_number, void* handler) {
2711   struct sigaction sigAct, oldSigAct;
2712 
2713   sigfillset(&(sigAct.sa_mask));
2714   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2715   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2716 
2717   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2718     // -1 means registration failed
2719     return (void *)-1;
2720   }
2721 
2722   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2723 }
2724 
2725 void os::signal_raise(int signal_number) {
2726   ::raise(signal_number);
2727 }
2728 
2729 // The following code is moved from os.cpp for making this
2730 // code platform specific, which it is by its very nature.
2731 
2732 // Will be modified when max signal is changed to be dynamic
2733 int os::sigexitnum_pd() {
2734   return NSIG;
2735 }
2736 
2737 // a counter for each possible signal value
2738 static volatile jint pending_signals[NSIG+1] = { 0 };
2739 
2740 // Linux(POSIX) specific hand shaking semaphore.
2741 static Semaphore* sig_sem = NULL;
2742 static PosixSemaphore sr_semaphore;
2743 
2744 static void jdk_misc_signal_init() {
2745   // Initialize signal structures
2746   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2747 
2748   // Initialize signal semaphore
2749   sig_sem = new Semaphore();
2750 }
2751 
2752 void os::signal_notify(int sig) {
2753   if (sig_sem != NULL) {
2754     Atomic::inc(&pending_signals[sig]);
2755     sig_sem->signal();
2756   } else {
2757     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2758     // initialization isn't called.
2759     assert(ReduceSignalUsage, "signal semaphore should be created");
2760   }
2761 }
2762 
2763 static int check_pending_signals() {
2764   for (;;) {
2765     for (int i = 0; i < NSIG + 1; i++) {
2766       jint n = pending_signals[i];
2767       if (n > 0 && n == Atomic::cmpxchg(&pending_signals[i], n, n - 1)) {
2768         return i;
2769       }
2770     }
2771     JavaThread *thread = JavaThread::current();
2772     ThreadBlockInVM tbivm(thread);
2773 
2774     bool threadIsSuspended;
2775     do {
2776       thread->set_suspend_equivalent();
2777       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2778       sig_sem->wait();
2779 
2780       // were we externally suspended while we were waiting?
2781       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2782       if (threadIsSuspended) {
2783         // The semaphore has been incremented, but while we were waiting
2784         // another thread suspended us. We don't want to continue running
2785         // while suspended because that would surprise the thread that
2786         // suspended us.
2787         sig_sem->signal();
2788 
2789         thread->java_suspend_self();
2790       }
2791     } while (threadIsSuspended);
2792   }
2793 }
2794 
2795 int os::signal_wait() {
2796   return check_pending_signals();
2797 }
2798 
2799 ////////////////////////////////////////////////////////////////////////////////
2800 // Virtual Memory
2801 
2802 int os::vm_page_size() {
2803   // Seems redundant as all get out
2804   assert(os::Linux::page_size() != -1, "must call os::init");
2805   return os::Linux::page_size();
2806 }
2807 
2808 // Solaris allocates memory by pages.
2809 int os::vm_allocation_granularity() {
2810   assert(os::Linux::page_size() != -1, "must call os::init");
2811   return os::Linux::page_size();
2812 }
2813 
2814 // Rationale behind this function:
2815 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2816 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2817 //  samples for JITted code. Here we create private executable mapping over the code cache
2818 //  and then we can use standard (well, almost, as mapping can change) way to provide
2819 //  info for the reporting script by storing timestamp and location of symbol
2820 void linux_wrap_code(char* base, size_t size) {
2821   static volatile jint cnt = 0;
2822 
2823   if (!UseOprofile) {
2824     return;
2825   }
2826 
2827   char buf[PATH_MAX+1];
2828   int num = Atomic::add(&cnt, 1);
2829 
2830   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2831            os::get_temp_directory(), os::current_process_id(), num);
2832   unlink(buf);
2833 
2834   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2835 
2836   if (fd != -1) {
2837     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2838     if (rv != (off_t)-1) {
2839       if (::write(fd, "", 1) == 1) {
2840         mmap(base, size,
2841              PROT_READ|PROT_WRITE|PROT_EXEC,
2842              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2843       }
2844     }
2845     ::close(fd);
2846     unlink(buf);
2847   }
2848 }
2849 
2850 static bool recoverable_mmap_error(int err) {
2851   // See if the error is one we can let the caller handle. This
2852   // list of errno values comes from JBS-6843484. I can't find a
2853   // Linux man page that documents this specific set of errno
2854   // values so while this list currently matches Solaris, it may
2855   // change as we gain experience with this failure mode.
2856   switch (err) {
2857   case EBADF:
2858   case EINVAL:
2859   case ENOTSUP:
2860     // let the caller deal with these errors
2861     return true;
2862 
2863   default:
2864     // Any remaining errors on this OS can cause our reserved mapping
2865     // to be lost. That can cause confusion where different data
2866     // structures think they have the same memory mapped. The worst
2867     // scenario is if both the VM and a library think they have the
2868     // same memory mapped.
2869     return false;
2870   }
2871 }
2872 
2873 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2874                                     int err) {
2875   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2876           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2877           os::strerror(err), err);
2878 }
2879 
2880 static void warn_fail_commit_memory(char* addr, size_t size,
2881                                     size_t alignment_hint, bool exec,
2882                                     int err) {
2883   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2884           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2885           alignment_hint, exec, os::strerror(err), err);
2886 }
2887 
2888 // NOTE: Linux kernel does not really reserve the pages for us.
2889 //       All it does is to check if there are enough free pages
2890 //       left at the time of mmap(). This could be a potential
2891 //       problem.
2892 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2893   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2894   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2895                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2896   if (res != (uintptr_t) MAP_FAILED) {
2897     if (UseNUMAInterleaving) {
2898       numa_make_global(addr, size);
2899     }
2900     return 0;
2901   }
2902 
2903   int err = errno;  // save errno from mmap() call above
2904 
2905   if (!recoverable_mmap_error(err)) {
2906     warn_fail_commit_memory(addr, size, exec, err);
2907     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2908   }
2909 
2910   return err;
2911 }
2912 
2913 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2914   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2915 }
2916 
2917 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2918                                   const char* mesg) {
2919   assert(mesg != NULL, "mesg must be specified");
2920   int err = os::Linux::commit_memory_impl(addr, size, exec);
2921   if (err != 0) {
2922     // the caller wants all commit errors to exit with the specified mesg:
2923     warn_fail_commit_memory(addr, size, exec, err);
2924     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2925   }
2926 }
2927 
2928 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2929 #ifndef MAP_HUGETLB
2930   #define MAP_HUGETLB 0x40000
2931 #endif
2932 
2933 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2934 #ifndef MADV_HUGEPAGE
2935   #define MADV_HUGEPAGE 14
2936 #endif
2937 
2938 int os::Linux::commit_memory_impl(char* addr, size_t size,
2939                                   size_t alignment_hint, bool exec) {
2940   int err = os::Linux::commit_memory_impl(addr, size, exec);
2941   if (err == 0) {
2942     realign_memory(addr, size, alignment_hint);
2943   }
2944   return err;
2945 }
2946 
2947 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2948                           bool exec) {
2949   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2950 }
2951 
2952 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2953                                   size_t alignment_hint, bool exec,
2954                                   const char* mesg) {
2955   assert(mesg != NULL, "mesg must be specified");
2956   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2957   if (err != 0) {
2958     // the caller wants all commit errors to exit with the specified mesg:
2959     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2960     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2961   }
2962 }
2963 
2964 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2965   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2966     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2967     // be supported or the memory may already be backed by huge pages.
2968     ::madvise(addr, bytes, MADV_HUGEPAGE);
2969   }
2970 }
2971 
2972 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2973   // This method works by doing an mmap over an existing mmaping and effectively discarding
2974   // the existing pages. However it won't work for SHM-based large pages that cannot be
2975   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2976   // small pages on top of the SHM segment. This method always works for small pages, so we
2977   // allow that in any case.
2978   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2979     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2980   }
2981 }
2982 
2983 void os::numa_make_global(char *addr, size_t bytes) {
2984   Linux::numa_interleave_memory(addr, bytes);
2985 }
2986 
2987 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2988 // bind policy to MPOL_PREFERRED for the current thread.
2989 #define USE_MPOL_PREFERRED 0
2990 
2991 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2992   // To make NUMA and large pages more robust when both enabled, we need to ease
2993   // the requirements on where the memory should be allocated. MPOL_BIND is the
2994   // default policy and it will force memory to be allocated on the specified
2995   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2996   // the specified node, but will not force it. Using this policy will prevent
2997   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2998   // free large pages.
2999   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
3000   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
3001 }
3002 
3003 bool os::numa_topology_changed() { return false; }
3004 
3005 size_t os::numa_get_groups_num() {
3006   // Return just the number of nodes in which it's possible to allocate memory
3007   // (in numa terminology, configured nodes).
3008   return Linux::numa_num_configured_nodes();
3009 }
3010 
3011 int os::numa_get_group_id() {
3012   int cpu_id = Linux::sched_getcpu();
3013   if (cpu_id != -1) {
3014     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
3015     if (lgrp_id != -1) {
3016       return lgrp_id;
3017     }
3018   }
3019   return 0;
3020 }
3021 
3022 int os::numa_get_group_id_for_address(const void* address) {
3023   void** pages = const_cast<void**>(&address);
3024   int id = -1;
3025 
3026   if (os::Linux::numa_move_pages(0, 1, pages, NULL, &id, 0) == -1) {
3027     return -1;
3028   }
3029   if (id < 0) {
3030     return -1;
3031   }
3032   return id;
3033 }
3034 
3035 int os::Linux::get_existing_num_nodes() {
3036   int node;
3037   int highest_node_number = Linux::numa_max_node();
3038   int num_nodes = 0;
3039 
3040   // Get the total number of nodes in the system including nodes without memory.
3041   for (node = 0; node <= highest_node_number; node++) {
3042     if (is_node_in_existing_nodes(node)) {
3043       num_nodes++;
3044     }
3045   }
3046   return num_nodes;
3047 }
3048 
3049 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3050   int highest_node_number = Linux::numa_max_node();
3051   size_t i = 0;
3052 
3053   // Map all node ids in which it is possible to allocate memory. Also nodes are
3054   // not always consecutively available, i.e. available from 0 to the highest
3055   // node number. If the nodes have been bound explicitly using numactl membind,
3056   // then allocate memory from those nodes only.
3057   for (int node = 0; node <= highest_node_number; node++) {
3058     if (Linux::is_node_in_bound_nodes((unsigned int)node)) {
3059       ids[i++] = node;
3060     }
3061   }
3062   return i;
3063 }
3064 
3065 bool os::get_page_info(char *start, page_info* info) {
3066   return false;
3067 }
3068 
3069 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3070                      page_info* page_found) {
3071   return end;
3072 }
3073 
3074 
3075 int os::Linux::sched_getcpu_syscall(void) {
3076   unsigned int cpu = 0;
3077   int retval = -1;
3078 
3079 #if defined(IA32)
3080   #ifndef SYS_getcpu
3081     #define SYS_getcpu 318
3082   #endif
3083   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
3084 #elif defined(AMD64)
3085 // Unfortunately we have to bring all these macros here from vsyscall.h
3086 // to be able to compile on old linuxes.
3087   #define __NR_vgetcpu 2
3088   #define VSYSCALL_START (-10UL << 20)
3089   #define VSYSCALL_SIZE 1024
3090   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
3091   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
3092   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
3093   retval = vgetcpu(&cpu, NULL, NULL);
3094 #endif
3095 
3096   return (retval == -1) ? retval : cpu;
3097 }
3098 
3099 void os::Linux::sched_getcpu_init() {
3100   // sched_getcpu() should be in libc.
3101   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3102                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
3103 
3104   // If it's not, try a direct syscall.
3105   if (sched_getcpu() == -1) {
3106     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3107                                     (void*)&sched_getcpu_syscall));
3108   }
3109 
3110   if (sched_getcpu() == -1) {
3111     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
3112   }
3113 }
3114 
3115 // Something to do with the numa-aware allocator needs these symbols
3116 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
3117 extern "C" JNIEXPORT void numa_error(char *where) { }
3118 
3119 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
3120 // load symbol from base version instead.
3121 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
3122   void *f = dlvsym(handle, name, "libnuma_1.1");
3123   if (f == NULL) {
3124     f = dlsym(handle, name);
3125   }
3126   return f;
3127 }
3128 
3129 // Handle request to load libnuma symbol version 1.2 (API v2) only.
3130 // Return NULL if the symbol is not defined in this particular version.
3131 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
3132   return dlvsym(handle, name, "libnuma_1.2");
3133 }
3134 
3135 bool os::Linux::libnuma_init() {
3136   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
3137     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
3138     if (handle != NULL) {
3139       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
3140                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
3141       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
3142                                        libnuma_dlsym(handle, "numa_max_node")));
3143       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
3144                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
3145       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
3146                                         libnuma_dlsym(handle, "numa_available")));
3147       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
3148                                             libnuma_dlsym(handle, "numa_tonode_memory")));
3149       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
3150                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
3151       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
3152                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
3153       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
3154                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
3155       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
3156                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
3157       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
3158                                        libnuma_dlsym(handle, "numa_distance")));
3159       set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
3160                                           libnuma_v2_dlsym(handle, "numa_get_membind")));
3161       set_numa_get_interleave_mask(CAST_TO_FN_PTR(numa_get_interleave_mask_func_t,
3162                                                   libnuma_v2_dlsym(handle, "numa_get_interleave_mask")));
3163       set_numa_move_pages(CAST_TO_FN_PTR(numa_move_pages_func_t,
3164                                          libnuma_dlsym(handle, "numa_move_pages")));
3165       set_numa_set_preferred(CAST_TO_FN_PTR(numa_set_preferred_func_t,
3166                                             libnuma_dlsym(handle, "numa_set_preferred")));
3167 
3168       if (numa_available() != -1) {
3169         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
3170         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
3171         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
3172         set_numa_interleave_bitmask(_numa_get_interleave_mask());
3173         set_numa_membind_bitmask(_numa_get_membind());
3174         // Create an index -> node mapping, since nodes are not always consecutive
3175         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3176         rebuild_nindex_to_node_map();
3177         // Create a cpu -> node mapping
3178         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3179         rebuild_cpu_to_node_map();
3180         return true;
3181       }
3182     }
3183   }
3184   return false;
3185 }
3186 
3187 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
3188   // Creating guard page is very expensive. Java thread has HotSpot
3189   // guard pages, only enable glibc guard page for non-Java threads.
3190   // (Remember: compiler thread is a Java thread, too!)
3191   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
3192 }
3193 
3194 void os::Linux::rebuild_nindex_to_node_map() {
3195   int highest_node_number = Linux::numa_max_node();
3196 
3197   nindex_to_node()->clear();
3198   for (int node = 0; node <= highest_node_number; node++) {
3199     if (Linux::is_node_in_existing_nodes(node)) {
3200       nindex_to_node()->append(node);
3201     }
3202   }
3203 }
3204 
3205 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
3206 // The table is later used in get_node_by_cpu().
3207 void os::Linux::rebuild_cpu_to_node_map() {
3208   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
3209                               // in libnuma (possible values are starting from 16,
3210                               // and continuing up with every other power of 2, but less
3211                               // than the maximum number of CPUs supported by kernel), and
3212                               // is a subject to change (in libnuma version 2 the requirements
3213                               // are more reasonable) we'll just hardcode the number they use
3214                               // in the library.
3215   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
3216 
3217   size_t cpu_num = processor_count();
3218   size_t cpu_map_size = NCPUS / BitsPerCLong;
3219   size_t cpu_map_valid_size =
3220     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
3221 
3222   cpu_to_node()->clear();
3223   cpu_to_node()->at_grow(cpu_num - 1);
3224 
3225   size_t node_num = get_existing_num_nodes();
3226 
3227   int distance = 0;
3228   int closest_distance = INT_MAX;
3229   int closest_node = 0;
3230   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
3231   for (size_t i = 0; i < node_num; i++) {
3232     // Check if node is configured (not a memory-less node). If it is not, find
3233     // the closest configured node. Check also if node is bound, i.e. it's allowed
3234     // to allocate memory from the node. If it's not allowed, map cpus in that node
3235     // to the closest node from which memory allocation is allowed.
3236     if (!is_node_in_configured_nodes(nindex_to_node()->at(i)) ||
3237         !is_node_in_bound_nodes(nindex_to_node()->at(i))) {
3238       closest_distance = INT_MAX;
3239       // Check distance from all remaining nodes in the system. Ignore distance
3240       // from itself, from another non-configured node, and from another non-bound
3241       // node.
3242       for (size_t m = 0; m < node_num; m++) {
3243         if (m != i &&
3244             is_node_in_configured_nodes(nindex_to_node()->at(m)) &&
3245             is_node_in_bound_nodes(nindex_to_node()->at(m))) {
3246           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3247           // If a closest node is found, update. There is always at least one
3248           // configured and bound node in the system so there is always at least
3249           // one node close.
3250           if (distance != 0 && distance < closest_distance) {
3251             closest_distance = distance;
3252             closest_node = nindex_to_node()->at(m);
3253           }
3254         }
3255       }
3256      } else {
3257        // Current node is already a configured node.
3258        closest_node = nindex_to_node()->at(i);
3259      }
3260 
3261     // Get cpus from the original node and map them to the closest node. If node
3262     // is a configured node (not a memory-less node), then original node and
3263     // closest node are the same.
3264     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3265       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3266         if (cpu_map[j] != 0) {
3267           for (size_t k = 0; k < BitsPerCLong; k++) {
3268             if (cpu_map[j] & (1UL << k)) {
3269               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3270             }
3271           }
3272         }
3273       }
3274     }
3275   }
3276   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3277 }
3278 
3279 int os::Linux::get_node_by_cpu(int cpu_id) {
3280   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3281     return cpu_to_node()->at(cpu_id);
3282   }
3283   return -1;
3284 }
3285 
3286 GrowableArray<int>* os::Linux::_cpu_to_node;
3287 GrowableArray<int>* os::Linux::_nindex_to_node;
3288 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3289 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3290 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3291 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3292 os::Linux::numa_available_func_t os::Linux::_numa_available;
3293 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3294 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3295 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3296 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3297 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3298 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3299 os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
3300 os::Linux::numa_get_interleave_mask_func_t os::Linux::_numa_get_interleave_mask;
3301 os::Linux::numa_move_pages_func_t os::Linux::_numa_move_pages;
3302 os::Linux::numa_set_preferred_func_t os::Linux::_numa_set_preferred;
3303 os::Linux::NumaAllocationPolicy os::Linux::_current_numa_policy;
3304 unsigned long* os::Linux::_numa_all_nodes;
3305 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3306 struct bitmask* os::Linux::_numa_nodes_ptr;
3307 struct bitmask* os::Linux::_numa_interleave_bitmask;
3308 struct bitmask* os::Linux::_numa_membind_bitmask;
3309 
3310 bool os::pd_uncommit_memory(char* addr, size_t size) {
3311   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3312                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3313   return res  != (uintptr_t) MAP_FAILED;
3314 }
3315 
3316 static address get_stack_commited_bottom(address bottom, size_t size) {
3317   address nbot = bottom;
3318   address ntop = bottom + size;
3319 
3320   size_t page_sz = os::vm_page_size();
3321   unsigned pages = size / page_sz;
3322 
3323   unsigned char vec[1];
3324   unsigned imin = 1, imax = pages + 1, imid;
3325   int mincore_return_value = 0;
3326 
3327   assert(imin <= imax, "Unexpected page size");
3328 
3329   while (imin < imax) {
3330     imid = (imax + imin) / 2;
3331     nbot = ntop - (imid * page_sz);
3332 
3333     // Use a trick with mincore to check whether the page is mapped or not.
3334     // mincore sets vec to 1 if page resides in memory and to 0 if page
3335     // is swapped output but if page we are asking for is unmapped
3336     // it returns -1,ENOMEM
3337     mincore_return_value = mincore(nbot, page_sz, vec);
3338 
3339     if (mincore_return_value == -1) {
3340       // Page is not mapped go up
3341       // to find first mapped page
3342       if (errno != EAGAIN) {
3343         assert(errno == ENOMEM, "Unexpected mincore errno");
3344         imax = imid;
3345       }
3346     } else {
3347       // Page is mapped go down
3348       // to find first not mapped page
3349       imin = imid + 1;
3350     }
3351   }
3352 
3353   nbot = nbot + page_sz;
3354 
3355   // Adjust stack bottom one page up if last checked page is not mapped
3356   if (mincore_return_value == -1) {
3357     nbot = nbot + page_sz;
3358   }
3359 
3360   return nbot;
3361 }
3362 
3363 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3364   int mincore_return_value;
3365   const size_t stripe = 1024;  // query this many pages each time
3366   unsigned char vec[stripe + 1];
3367   // set a guard
3368   vec[stripe] = 'X';
3369 
3370   const size_t page_sz = os::vm_page_size();
3371   size_t pages = size / page_sz;
3372 
3373   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3374   assert(is_aligned(size, page_sz), "Size must be page aligned");
3375 
3376   committed_start = NULL;
3377 
3378   int loops = (pages + stripe - 1) / stripe;
3379   int committed_pages = 0;
3380   address loop_base = start;
3381   bool found_range = false;
3382 
3383   for (int index = 0; index < loops && !found_range; index ++) {
3384     assert(pages > 0, "Nothing to do");
3385     int pages_to_query = (pages >= stripe) ? stripe : pages;
3386     pages -= pages_to_query;
3387 
3388     // Get stable read
3389     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3390 
3391     // During shutdown, some memory goes away without properly notifying NMT,
3392     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3393     // Bailout and return as not committed for now.
3394     if (mincore_return_value == -1 && errno == ENOMEM) {
3395       return false;
3396     }
3397 
3398     assert(vec[stripe] == 'X', "overflow guard");
3399     assert(mincore_return_value == 0, "Range must be valid");
3400     // Process this stripe
3401     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3402       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3403         // End of current contiguous region
3404         if (committed_start != NULL) {
3405           found_range = true;
3406           break;
3407         }
3408       } else { // committed
3409         // Start of region
3410         if (committed_start == NULL) {
3411           committed_start = loop_base + page_sz * vecIdx;
3412         }
3413         committed_pages ++;
3414       }
3415     }
3416 
3417     loop_base += pages_to_query * page_sz;
3418   }
3419 
3420   if (committed_start != NULL) {
3421     assert(committed_pages > 0, "Must have committed region");
3422     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3423     assert(committed_start >= start && committed_start < start + size, "Out of range");
3424     committed_size = page_sz * committed_pages;
3425     return true;
3426   } else {
3427     assert(committed_pages == 0, "Should not have committed region");
3428     return false;
3429   }
3430 }
3431 
3432 
3433 // Linux uses a growable mapping for the stack, and if the mapping for
3434 // the stack guard pages is not removed when we detach a thread the
3435 // stack cannot grow beyond the pages where the stack guard was
3436 // mapped.  If at some point later in the process the stack expands to
3437 // that point, the Linux kernel cannot expand the stack any further
3438 // because the guard pages are in the way, and a segfault occurs.
3439 //
3440 // However, it's essential not to split the stack region by unmapping
3441 // a region (leaving a hole) that's already part of the stack mapping,
3442 // so if the stack mapping has already grown beyond the guard pages at
3443 // the time we create them, we have to truncate the stack mapping.
3444 // So, we need to know the extent of the stack mapping when
3445 // create_stack_guard_pages() is called.
3446 
3447 // We only need this for stacks that are growable: at the time of
3448 // writing thread stacks don't use growable mappings (i.e. those
3449 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3450 // only applies to the main thread.
3451 
3452 // If the (growable) stack mapping already extends beyond the point
3453 // where we're going to put our guard pages, truncate the mapping at
3454 // that point by munmap()ping it.  This ensures that when we later
3455 // munmap() the guard pages we don't leave a hole in the stack
3456 // mapping. This only affects the main/primordial thread
3457 
3458 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3459   if (os::is_primordial_thread()) {
3460     // As we manually grow stack up to bottom inside create_attached_thread(),
3461     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3462     // we don't need to do anything special.
3463     // Check it first, before calling heavy function.
3464     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3465     unsigned char vec[1];
3466 
3467     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3468       // Fallback to slow path on all errors, including EAGAIN
3469       stack_extent = (uintptr_t) get_stack_commited_bottom(
3470                                                            os::Linux::initial_thread_stack_bottom(),
3471                                                            (size_t)addr - stack_extent);
3472     }
3473 
3474     if (stack_extent < (uintptr_t)addr) {
3475       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3476     }
3477   }
3478 
3479   return os::commit_memory(addr, size, !ExecMem);
3480 }
3481 
3482 // If this is a growable mapping, remove the guard pages entirely by
3483 // munmap()ping them.  If not, just call uncommit_memory(). This only
3484 // affects the main/primordial thread, but guard against future OS changes.
3485 // It's safe to always unmap guard pages for primordial thread because we
3486 // always place it right after end of the mapped region.
3487 
3488 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3489   uintptr_t stack_extent, stack_base;
3490 
3491   if (os::is_primordial_thread()) {
3492     return ::munmap(addr, size) == 0;
3493   }
3494 
3495   return os::uncommit_memory(addr, size);
3496 }
3497 
3498 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3499 // at 'requested_addr'. If there are existing memory mappings at the same
3500 // location, however, they will be overwritten. If 'fixed' is false,
3501 // 'requested_addr' is only treated as a hint, the return value may or
3502 // may not start from the requested address. Unlike Linux mmap(), this
3503 // function returns NULL to indicate failure.
3504 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3505   char * addr;
3506   int flags;
3507 
3508   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3509   if (fixed) {
3510     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3511     flags |= MAP_FIXED;
3512   }
3513 
3514   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3515   // touch an uncommitted page. Otherwise, the read/write might
3516   // succeed if we have enough swap space to back the physical page.
3517   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3518                        flags, -1, 0);
3519 
3520   return addr == MAP_FAILED ? NULL : addr;
3521 }
3522 
3523 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3524 //   (req_addr != NULL) or with a given alignment.
3525 //  - bytes shall be a multiple of alignment.
3526 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3527 //  - alignment sets the alignment at which memory shall be allocated.
3528 //     It must be a multiple of allocation granularity.
3529 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3530 //  req_addr or NULL.
3531 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3532 
3533   size_t extra_size = bytes;
3534   if (req_addr == NULL && alignment > 0) {
3535     extra_size += alignment;
3536   }
3537 
3538   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3539     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3540     -1, 0);
3541   if (start == MAP_FAILED) {
3542     start = NULL;
3543   } else {
3544     if (req_addr != NULL) {
3545       if (start != req_addr) {
3546         ::munmap(start, extra_size);
3547         start = NULL;
3548       }
3549     } else {
3550       char* const start_aligned = align_up(start, alignment);
3551       char* const end_aligned = start_aligned + bytes;
3552       char* const end = start + extra_size;
3553       if (start_aligned > start) {
3554         ::munmap(start, start_aligned - start);
3555       }
3556       if (end_aligned < end) {
3557         ::munmap(end_aligned, end - end_aligned);
3558       }
3559       start = start_aligned;
3560     }
3561   }
3562   return start;
3563 }
3564 
3565 static int anon_munmap(char * addr, size_t size) {
3566   return ::munmap(addr, size) == 0;
3567 }
3568 
3569 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3570                             size_t alignment_hint) {
3571   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3572 }
3573 
3574 bool os::pd_release_memory(char* addr, size_t size) {
3575   return anon_munmap(addr, size);
3576 }
3577 
3578 static bool linux_mprotect(char* addr, size_t size, int prot) {
3579   // Linux wants the mprotect address argument to be page aligned.
3580   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3581 
3582   // According to SUSv3, mprotect() should only be used with mappings
3583   // established by mmap(), and mmap() always maps whole pages. Unaligned
3584   // 'addr' likely indicates problem in the VM (e.g. trying to change
3585   // protection of malloc'ed or statically allocated memory). Check the
3586   // caller if you hit this assert.
3587   assert(addr == bottom, "sanity check");
3588 
3589   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3590   Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(bottom), p2i(bottom+size), prot);
3591   return ::mprotect(bottom, size, prot) == 0;
3592 }
3593 
3594 // Set protections specified
3595 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3596                         bool is_committed) {
3597   unsigned int p = 0;
3598   switch (prot) {
3599   case MEM_PROT_NONE: p = PROT_NONE; break;
3600   case MEM_PROT_READ: p = PROT_READ; break;
3601   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3602   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3603   default:
3604     ShouldNotReachHere();
3605   }
3606   // is_committed is unused.
3607   return linux_mprotect(addr, bytes, p);
3608 }
3609 
3610 bool os::guard_memory(char* addr, size_t size) {
3611   return linux_mprotect(addr, size, PROT_NONE);
3612 }
3613 
3614 bool os::unguard_memory(char* addr, size_t size) {
3615   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3616 }
3617 
3618 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3619                                                     size_t page_size) {
3620   bool result = false;
3621   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3622                  MAP_ANONYMOUS|MAP_PRIVATE,
3623                  -1, 0);
3624   if (p != MAP_FAILED) {
3625     void *aligned_p = align_up(p, page_size);
3626 
3627     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3628 
3629     munmap(p, page_size * 2);
3630   }
3631 
3632   if (warn && !result) {
3633     warning("TransparentHugePages is not supported by the operating system.");
3634   }
3635 
3636   return result;
3637 }
3638 
3639 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3640   bool result = false;
3641   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3642                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3643                  -1, 0);
3644 
3645   if (p != MAP_FAILED) {
3646     // We don't know if this really is a huge page or not.
3647     FILE *fp = fopen("/proc/self/maps", "r");
3648     if (fp) {
3649       while (!feof(fp)) {
3650         char chars[257];
3651         long x = 0;
3652         if (fgets(chars, sizeof(chars), fp)) {
3653           if (sscanf(chars, "%lx-%*x", &x) == 1
3654               && x == (long)p) {
3655             if (strstr (chars, "hugepage")) {
3656               result = true;
3657               break;
3658             }
3659           }
3660         }
3661       }
3662       fclose(fp);
3663     }
3664     munmap(p, page_size);
3665   }
3666 
3667   if (warn && !result) {
3668     warning("HugeTLBFS is not supported by the operating system.");
3669   }
3670 
3671   return result;
3672 }
3673 
3674 // From the coredump_filter documentation:
3675 //
3676 // - (bit 0) anonymous private memory
3677 // - (bit 1) anonymous shared memory
3678 // - (bit 2) file-backed private memory
3679 // - (bit 3) file-backed shared memory
3680 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3681 //           effective only if the bit 2 is cleared)
3682 // - (bit 5) hugetlb private memory
3683 // - (bit 6) hugetlb shared memory
3684 // - (bit 7) dax private memory
3685 // - (bit 8) dax shared memory
3686 //
3687 static void set_coredump_filter(CoredumpFilterBit bit) {
3688   FILE *f;
3689   long cdm;
3690 
3691   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3692     return;
3693   }
3694 
3695   if (fscanf(f, "%lx", &cdm) != 1) {
3696     fclose(f);
3697     return;
3698   }
3699 
3700   long saved_cdm = cdm;
3701   rewind(f);
3702   cdm |= bit;
3703 
3704   if (cdm != saved_cdm) {
3705     fprintf(f, "%#lx", cdm);
3706   }
3707 
3708   fclose(f);
3709 }
3710 
3711 // Large page support
3712 
3713 static size_t _large_page_size = 0;
3714 
3715 size_t os::Linux::find_large_page_size() {
3716   size_t large_page_size = 0;
3717 
3718   // large_page_size on Linux is used to round up heap size. x86 uses either
3719   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3720   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3721   // page as large as 256M.
3722   //
3723   // Here we try to figure out page size by parsing /proc/meminfo and looking
3724   // for a line with the following format:
3725   //    Hugepagesize:     2048 kB
3726   //
3727   // If we can't determine the value (e.g. /proc is not mounted, or the text
3728   // format has been changed), we'll use the largest page size supported by
3729   // the processor.
3730 
3731 #ifndef ZERO
3732   large_page_size =
3733     AARCH64_ONLY(2 * M)
3734     AMD64_ONLY(2 * M)
3735     ARM32_ONLY(2 * M)
3736     IA32_ONLY(4 * M)
3737     IA64_ONLY(256 * M)
3738     PPC_ONLY(4 * M)
3739     S390_ONLY(1 * M)
3740     SPARC_ONLY(4 * M);
3741 #endif // ZERO
3742 
3743   FILE *fp = fopen("/proc/meminfo", "r");
3744   if (fp) {
3745     while (!feof(fp)) {
3746       int x = 0;
3747       char buf[16];
3748       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3749         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3750           large_page_size = x * K;
3751           break;
3752         }
3753       } else {
3754         // skip to next line
3755         for (;;) {
3756           int ch = fgetc(fp);
3757           if (ch == EOF || ch == (int)'\n') break;
3758         }
3759       }
3760     }
3761     fclose(fp);
3762   }
3763 
3764   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3765     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3766             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3767             proper_unit_for_byte_size(large_page_size));
3768   }
3769 
3770   return large_page_size;
3771 }
3772 
3773 size_t os::Linux::setup_large_page_size() {
3774   _large_page_size = Linux::find_large_page_size();
3775   const size_t default_page_size = (size_t)Linux::page_size();
3776   if (_large_page_size > default_page_size) {
3777     _page_sizes[0] = _large_page_size;
3778     _page_sizes[1] = default_page_size;
3779     _page_sizes[2] = 0;
3780   }
3781 
3782   return _large_page_size;
3783 }
3784 
3785 bool os::Linux::setup_large_page_type(size_t page_size) {
3786   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3787       FLAG_IS_DEFAULT(UseSHM) &&
3788       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3789 
3790     // The type of large pages has not been specified by the user.
3791 
3792     // Try UseHugeTLBFS and then UseSHM.
3793     UseHugeTLBFS = UseSHM = true;
3794 
3795     // Don't try UseTransparentHugePages since there are known
3796     // performance issues with it turned on. This might change in the future.
3797     UseTransparentHugePages = false;
3798   }
3799 
3800   if (UseTransparentHugePages) {
3801     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3802     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3803       UseHugeTLBFS = false;
3804       UseSHM = false;
3805       return true;
3806     }
3807     UseTransparentHugePages = false;
3808   }
3809 
3810   if (UseHugeTLBFS) {
3811     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3812     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3813       UseSHM = false;
3814       return true;
3815     }
3816     UseHugeTLBFS = false;
3817   }
3818 
3819   return UseSHM;
3820 }
3821 
3822 void os::large_page_init() {
3823   if (!UseLargePages &&
3824       !UseTransparentHugePages &&
3825       !UseHugeTLBFS &&
3826       !UseSHM) {
3827     // Not using large pages.
3828     return;
3829   }
3830 
3831   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3832     // The user explicitly turned off large pages.
3833     // Ignore the rest of the large pages flags.
3834     UseTransparentHugePages = false;
3835     UseHugeTLBFS = false;
3836     UseSHM = false;
3837     return;
3838   }
3839 
3840   size_t large_page_size = Linux::setup_large_page_size();
3841   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3842 
3843   set_coredump_filter(LARGEPAGES_BIT);
3844 }
3845 
3846 #ifndef SHM_HUGETLB
3847   #define SHM_HUGETLB 04000
3848 #endif
3849 
3850 #define shm_warning_format(format, ...)              \
3851   do {                                               \
3852     if (UseLargePages &&                             \
3853         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3854          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3855          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3856       warning(format, __VA_ARGS__);                  \
3857     }                                                \
3858   } while (0)
3859 
3860 #define shm_warning(str) shm_warning_format("%s", str)
3861 
3862 #define shm_warning_with_errno(str)                \
3863   do {                                             \
3864     int err = errno;                               \
3865     shm_warning_format(str " (error = %d)", err);  \
3866   } while (0)
3867 
3868 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3869   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3870 
3871   if (!is_aligned(alignment, SHMLBA)) {
3872     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3873     return NULL;
3874   }
3875 
3876   // To ensure that we get 'alignment' aligned memory from shmat,
3877   // we pre-reserve aligned virtual memory and then attach to that.
3878 
3879   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3880   if (pre_reserved_addr == NULL) {
3881     // Couldn't pre-reserve aligned memory.
3882     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3883     return NULL;
3884   }
3885 
3886   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3887   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3888 
3889   if ((intptr_t)addr == -1) {
3890     int err = errno;
3891     shm_warning_with_errno("Failed to attach shared memory.");
3892 
3893     assert(err != EACCES, "Unexpected error");
3894     assert(err != EIDRM,  "Unexpected error");
3895     assert(err != EINVAL, "Unexpected error");
3896 
3897     // Since we don't know if the kernel unmapped the pre-reserved memory area
3898     // we can't unmap it, since that would potentially unmap memory that was
3899     // mapped from other threads.
3900     return NULL;
3901   }
3902 
3903   return addr;
3904 }
3905 
3906 static char* shmat_at_address(int shmid, char* req_addr) {
3907   if (!is_aligned(req_addr, SHMLBA)) {
3908     assert(false, "Requested address needs to be SHMLBA aligned");
3909     return NULL;
3910   }
3911 
3912   char* addr = (char*)shmat(shmid, req_addr, 0);
3913 
3914   if ((intptr_t)addr == -1) {
3915     shm_warning_with_errno("Failed to attach shared memory.");
3916     return NULL;
3917   }
3918 
3919   return addr;
3920 }
3921 
3922 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3923   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3924   if (req_addr != NULL) {
3925     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3926     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3927     return shmat_at_address(shmid, req_addr);
3928   }
3929 
3930   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3931   // return large page size aligned memory addresses when req_addr == NULL.
3932   // However, if the alignment is larger than the large page size, we have
3933   // to manually ensure that the memory returned is 'alignment' aligned.
3934   if (alignment > os::large_page_size()) {
3935     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3936     return shmat_with_alignment(shmid, bytes, alignment);
3937   } else {
3938     return shmat_at_address(shmid, NULL);
3939   }
3940 }
3941 
3942 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3943                                             char* req_addr, bool exec) {
3944   // "exec" is passed in but not used.  Creating the shared image for
3945   // the code cache doesn't have an SHM_X executable permission to check.
3946   assert(UseLargePages && UseSHM, "only for SHM large pages");
3947   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3948   assert(is_aligned(req_addr, alignment), "Unaligned address");
3949 
3950   if (!is_aligned(bytes, os::large_page_size())) {
3951     return NULL; // Fallback to small pages.
3952   }
3953 
3954   // Create a large shared memory region to attach to based on size.
3955   // Currently, size is the total size of the heap.
3956   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3957   if (shmid == -1) {
3958     // Possible reasons for shmget failure:
3959     // 1. shmmax is too small for Java heap.
3960     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3961     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3962     // 2. not enough large page memory.
3963     //    > check available large pages: cat /proc/meminfo
3964     //    > increase amount of large pages:
3965     //          echo new_value > /proc/sys/vm/nr_hugepages
3966     //      Note 1: different Linux may use different name for this property,
3967     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3968     //      Note 2: it's possible there's enough physical memory available but
3969     //            they are so fragmented after a long run that they can't
3970     //            coalesce into large pages. Try to reserve large pages when
3971     //            the system is still "fresh".
3972     shm_warning_with_errno("Failed to reserve shared memory.");
3973     return NULL;
3974   }
3975 
3976   // Attach to the region.
3977   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3978 
3979   // Remove shmid. If shmat() is successful, the actual shared memory segment
3980   // will be deleted when it's detached by shmdt() or when the process
3981   // terminates. If shmat() is not successful this will remove the shared
3982   // segment immediately.
3983   shmctl(shmid, IPC_RMID, NULL);
3984 
3985   return addr;
3986 }
3987 
3988 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3989                                         int error) {
3990   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3991 
3992   bool warn_on_failure = UseLargePages &&
3993       (!FLAG_IS_DEFAULT(UseLargePages) ||
3994        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3995        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3996 
3997   if (warn_on_failure) {
3998     char msg[128];
3999     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
4000                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
4001     warning("%s", msg);
4002   }
4003 }
4004 
4005 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
4006                                                         char* req_addr,
4007                                                         bool exec) {
4008   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4009   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
4010   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
4011 
4012   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4013   char* addr = (char*)::mmap(req_addr, bytes, prot,
4014                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
4015                              -1, 0);
4016 
4017   if (addr == MAP_FAILED) {
4018     warn_on_large_pages_failure(req_addr, bytes, errno);
4019     return NULL;
4020   }
4021 
4022   assert(is_aligned(addr, os::large_page_size()), "Must be");
4023 
4024   return addr;
4025 }
4026 
4027 // Reserve memory using mmap(MAP_HUGETLB).
4028 //  - bytes shall be a multiple of alignment.
4029 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
4030 //  - alignment sets the alignment at which memory shall be allocated.
4031 //     It must be a multiple of allocation granularity.
4032 // Returns address of memory or NULL. If req_addr was not NULL, will only return
4033 //  req_addr or NULL.
4034 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
4035                                                          size_t alignment,
4036                                                          char* req_addr,
4037                                                          bool exec) {
4038   size_t large_page_size = os::large_page_size();
4039   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
4040 
4041   assert(is_aligned(req_addr, alignment), "Must be");
4042   assert(is_aligned(bytes, alignment), "Must be");
4043 
4044   // First reserve - but not commit - the address range in small pages.
4045   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
4046 
4047   if (start == NULL) {
4048     return NULL;
4049   }
4050 
4051   assert(is_aligned(start, alignment), "Must be");
4052 
4053   char* end = start + bytes;
4054 
4055   // Find the regions of the allocated chunk that can be promoted to large pages.
4056   char* lp_start = align_up(start, large_page_size);
4057   char* lp_end   = align_down(end, large_page_size);
4058 
4059   size_t lp_bytes = lp_end - lp_start;
4060 
4061   assert(is_aligned(lp_bytes, large_page_size), "Must be");
4062 
4063   if (lp_bytes == 0) {
4064     // The mapped region doesn't even span the start and the end of a large page.
4065     // Fall back to allocate a non-special area.
4066     ::munmap(start, end - start);
4067     return NULL;
4068   }
4069 
4070   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4071 
4072   void* result;
4073 
4074   // Commit small-paged leading area.
4075   if (start != lp_start) {
4076     result = ::mmap(start, lp_start - start, prot,
4077                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4078                     -1, 0);
4079     if (result == MAP_FAILED) {
4080       ::munmap(lp_start, end - lp_start);
4081       return NULL;
4082     }
4083   }
4084 
4085   // Commit large-paged area.
4086   result = ::mmap(lp_start, lp_bytes, prot,
4087                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
4088                   -1, 0);
4089   if (result == MAP_FAILED) {
4090     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
4091     // If the mmap above fails, the large pages region will be unmapped and we
4092     // have regions before and after with small pages. Release these regions.
4093     //
4094     // |  mapped  |  unmapped  |  mapped  |
4095     // ^          ^            ^          ^
4096     // start      lp_start     lp_end     end
4097     //
4098     ::munmap(start, lp_start - start);
4099     ::munmap(lp_end, end - lp_end);
4100     return NULL;
4101   }
4102 
4103   // Commit small-paged trailing area.
4104   if (lp_end != end) {
4105     result = ::mmap(lp_end, end - lp_end, prot,
4106                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4107                     -1, 0);
4108     if (result == MAP_FAILED) {
4109       ::munmap(start, lp_end - start);
4110       return NULL;
4111     }
4112   }
4113 
4114   return start;
4115 }
4116 
4117 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
4118                                                    size_t alignment,
4119                                                    char* req_addr,
4120                                                    bool exec) {
4121   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4122   assert(is_aligned(req_addr, alignment), "Must be");
4123   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
4124   assert(is_power_of_2(os::large_page_size()), "Must be");
4125   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
4126 
4127   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
4128     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
4129   } else {
4130     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
4131   }
4132 }
4133 
4134 char* os::reserve_memory_special(size_t bytes, size_t alignment,
4135                                  char* req_addr, bool exec) {
4136   assert(UseLargePages, "only for large pages");
4137 
4138   char* addr;
4139   if (UseSHM) {
4140     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
4141   } else {
4142     assert(UseHugeTLBFS, "must be");
4143     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
4144   }
4145 
4146   if (addr != NULL) {
4147     if (UseNUMAInterleaving) {
4148       numa_make_global(addr, bytes);
4149     }
4150 
4151     // The memory is committed
4152     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
4153   }
4154 
4155   return addr;
4156 }
4157 
4158 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
4159   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
4160   return shmdt(base) == 0;
4161 }
4162 
4163 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
4164   return pd_release_memory(base, bytes);
4165 }
4166 
4167 bool os::release_memory_special(char* base, size_t bytes) {
4168   bool res;
4169   if (MemTracker::tracking_level() > NMT_minimal) {
4170     Tracker tkr(Tracker::release);
4171     res = os::Linux::release_memory_special_impl(base, bytes);
4172     if (res) {
4173       tkr.record((address)base, bytes);
4174     }
4175 
4176   } else {
4177     res = os::Linux::release_memory_special_impl(base, bytes);
4178   }
4179   return res;
4180 }
4181 
4182 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
4183   assert(UseLargePages, "only for large pages");
4184   bool res;
4185 
4186   if (UseSHM) {
4187     res = os::Linux::release_memory_special_shm(base, bytes);
4188   } else {
4189     assert(UseHugeTLBFS, "must be");
4190     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
4191   }
4192   return res;
4193 }
4194 
4195 size_t os::large_page_size() {
4196   return _large_page_size;
4197 }
4198 
4199 // With SysV SHM the entire memory region must be allocated as shared
4200 // memory.
4201 // HugeTLBFS allows application to commit large page memory on demand.
4202 // However, when committing memory with HugeTLBFS fails, the region
4203 // that was supposed to be committed will lose the old reservation
4204 // and allow other threads to steal that memory region. Because of this
4205 // behavior we can't commit HugeTLBFS memory.
4206 bool os::can_commit_large_page_memory() {
4207   return UseTransparentHugePages;
4208 }
4209 
4210 bool os::can_execute_large_page_memory() {
4211   return UseTransparentHugePages || UseHugeTLBFS;
4212 }
4213 
4214 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
4215   assert(file_desc >= 0, "file_desc is not valid");
4216   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
4217   if (result != NULL) {
4218     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
4219       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
4220     }
4221   }
4222   return result;
4223 }
4224 
4225 // Reserve memory at an arbitrary address, only if that area is
4226 // available (and not reserved for something else).
4227 
4228 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
4229   // Assert only that the size is a multiple of the page size, since
4230   // that's all that mmap requires, and since that's all we really know
4231   // about at this low abstraction level.  If we need higher alignment,
4232   // we can either pass an alignment to this method or verify alignment
4233   // in one of the methods further up the call chain.  See bug 5044738.
4234   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
4235 
4236   // Repeatedly allocate blocks until the block is allocated at the
4237   // right spot.
4238 
4239   // Linux mmap allows caller to pass an address as hint; give it a try first,
4240   // if kernel honors the hint then we can return immediately.
4241   char * addr = anon_mmap(requested_addr, bytes, false);
4242   if (addr == requested_addr) {
4243     return requested_addr;
4244   }
4245 
4246   if (addr != NULL) {
4247     // mmap() is successful but it fails to reserve at the requested address
4248     anon_munmap(addr, bytes);
4249   }
4250 
4251   return NULL;
4252 }
4253 
4254 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4255 void os::infinite_sleep() {
4256   while (true) {    // sleep forever ...
4257     ::sleep(100);   // ... 100 seconds at a time
4258   }
4259 }
4260 
4261 // Used to convert frequent JVM_Yield() to nops
4262 bool os::dont_yield() {
4263   return DontYieldALot;
4264 }
4265 
4266 // Linux CFS scheduler (since 2.6.23) does not guarantee sched_yield(2) will
4267 // actually give up the CPU. Since skip buddy (v2.6.28):
4268 //
4269 // * Sets the yielding task as skip buddy for current CPU's run queue.
4270 // * Picks next from run queue, if empty, picks a skip buddy (can be the yielding task).
4271 // * Clears skip buddies for this run queue (yielding task no longer a skip buddy).
4272 //
4273 // An alternative is calling os::naked_short_nanosleep with a small number to avoid
4274 // getting re-scheduled immediately.
4275 //
4276 void os::naked_yield() {
4277   sched_yield();
4278 }
4279 
4280 ////////////////////////////////////////////////////////////////////////////////
4281 // thread priority support
4282 
4283 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4284 // only supports dynamic priority, static priority must be zero. For real-time
4285 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4286 // However, for large multi-threaded applications, SCHED_RR is not only slower
4287 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4288 // of 5 runs - Sep 2005).
4289 //
4290 // The following code actually changes the niceness of kernel-thread/LWP. It
4291 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4292 // not the entire user process, and user level threads are 1:1 mapped to kernel
4293 // threads. It has always been the case, but could change in the future. For
4294 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4295 // It is only used when ThreadPriorityPolicy=1 and may require system level permission
4296 // (e.g., root privilege or CAP_SYS_NICE capability).
4297 
4298 int os::java_to_os_priority[CriticalPriority + 1] = {
4299   19,              // 0 Entry should never be used
4300 
4301    4,              // 1 MinPriority
4302    3,              // 2
4303    2,              // 3
4304 
4305    1,              // 4
4306    0,              // 5 NormPriority
4307   -1,              // 6
4308 
4309   -2,              // 7
4310   -3,              // 8
4311   -4,              // 9 NearMaxPriority
4312 
4313   -5,              // 10 MaxPriority
4314 
4315   -5               // 11 CriticalPriority
4316 };
4317 
4318 static int prio_init() {
4319   if (ThreadPriorityPolicy == 1) {
4320     if (geteuid() != 0) {
4321       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4322         warning("-XX:ThreadPriorityPolicy=1 may require system level permission, " \
4323                 "e.g., being the root user. If the necessary permission is not " \
4324                 "possessed, changes to priority will be silently ignored.");
4325       }
4326     }
4327   }
4328   if (UseCriticalJavaThreadPriority) {
4329     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4330   }
4331   return 0;
4332 }
4333 
4334 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4335   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4336 
4337   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4338   return (ret == 0) ? OS_OK : OS_ERR;
4339 }
4340 
4341 OSReturn os::get_native_priority(const Thread* const thread,
4342                                  int *priority_ptr) {
4343   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4344     *priority_ptr = java_to_os_priority[NormPriority];
4345     return OS_OK;
4346   }
4347 
4348   errno = 0;
4349   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4350   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4351 }
4352 
4353 ////////////////////////////////////////////////////////////////////////////////
4354 // suspend/resume support
4355 
4356 //  The low-level signal-based suspend/resume support is a remnant from the
4357 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4358 //  within hotspot. Currently used by JFR's OSThreadSampler
4359 //
4360 //  The remaining code is greatly simplified from the more general suspension
4361 //  code that used to be used.
4362 //
4363 //  The protocol is quite simple:
4364 //  - suspend:
4365 //      - sends a signal to the target thread
4366 //      - polls the suspend state of the osthread using a yield loop
4367 //      - target thread signal handler (SR_handler) sets suspend state
4368 //        and blocks in sigsuspend until continued
4369 //  - resume:
4370 //      - sets target osthread state to continue
4371 //      - sends signal to end the sigsuspend loop in the SR_handler
4372 //
4373 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4374 //  but is checked for NULL in SR_handler as a thread termination indicator.
4375 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4376 //
4377 //  Note that resume_clear_context() and suspend_save_context() are needed
4378 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4379 //  which in part is used by:
4380 //    - Forte Analyzer: AsyncGetCallTrace()
4381 //    - StackBanging: get_frame_at_stack_banging_point()
4382 
4383 static void resume_clear_context(OSThread *osthread) {
4384   osthread->set_ucontext(NULL);
4385   osthread->set_siginfo(NULL);
4386 }
4387 
4388 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4389                                  ucontext_t* context) {
4390   osthread->set_ucontext(context);
4391   osthread->set_siginfo(siginfo);
4392 }
4393 
4394 // Handler function invoked when a thread's execution is suspended or
4395 // resumed. We have to be careful that only async-safe functions are
4396 // called here (Note: most pthread functions are not async safe and
4397 // should be avoided.)
4398 //
4399 // Note: sigwait() is a more natural fit than sigsuspend() from an
4400 // interface point of view, but sigwait() prevents the signal hander
4401 // from being run. libpthread would get very confused by not having
4402 // its signal handlers run and prevents sigwait()'s use with the
4403 // mutex granting granting signal.
4404 //
4405 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4406 //
4407 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4408   // Save and restore errno to avoid confusing native code with EINTR
4409   // after sigsuspend.
4410   int old_errno = errno;
4411 
4412   Thread* thread = Thread::current_or_null_safe();
4413   assert(thread != NULL, "Missing current thread in SR_handler");
4414 
4415   // On some systems we have seen signal delivery get "stuck" until the signal
4416   // mask is changed as part of thread termination. Check that the current thread
4417   // has not already terminated (via SR_lock()) - else the following assertion
4418   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4419   // destructor has completed.
4420 
4421   if (thread->SR_lock() == NULL) {
4422     return;
4423   }
4424 
4425   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4426 
4427   OSThread* osthread = thread->osthread();
4428 
4429   os::SuspendResume::State current = osthread->sr.state();
4430   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4431     suspend_save_context(osthread, siginfo, context);
4432 
4433     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4434     os::SuspendResume::State state = osthread->sr.suspended();
4435     if (state == os::SuspendResume::SR_SUSPENDED) {
4436       sigset_t suspend_set;  // signals for sigsuspend()
4437       sigemptyset(&suspend_set);
4438       // get current set of blocked signals and unblock resume signal
4439       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4440       sigdelset(&suspend_set, SR_signum);
4441 
4442       sr_semaphore.signal();
4443       // wait here until we are resumed
4444       while (1) {
4445         sigsuspend(&suspend_set);
4446 
4447         os::SuspendResume::State result = osthread->sr.running();
4448         if (result == os::SuspendResume::SR_RUNNING) {
4449           sr_semaphore.signal();
4450           break;
4451         }
4452       }
4453 
4454     } else if (state == os::SuspendResume::SR_RUNNING) {
4455       // request was cancelled, continue
4456     } else {
4457       ShouldNotReachHere();
4458     }
4459 
4460     resume_clear_context(osthread);
4461   } else if (current == os::SuspendResume::SR_RUNNING) {
4462     // request was cancelled, continue
4463   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4464     // ignore
4465   } else {
4466     // ignore
4467   }
4468 
4469   errno = old_errno;
4470 }
4471 
4472 static int SR_initialize() {
4473   struct sigaction act;
4474   char *s;
4475 
4476   // Get signal number to use for suspend/resume
4477   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4478     int sig = ::strtol(s, 0, 10);
4479     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4480         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4481       SR_signum = sig;
4482     } else {
4483       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4484               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4485     }
4486   }
4487 
4488   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4489          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4490 
4491   sigemptyset(&SR_sigset);
4492   sigaddset(&SR_sigset, SR_signum);
4493 
4494   // Set up signal handler for suspend/resume
4495   act.sa_flags = SA_RESTART|SA_SIGINFO;
4496   act.sa_handler = (void (*)(int)) SR_handler;
4497 
4498   // SR_signum is blocked by default.
4499   // 4528190 - We also need to block pthread restart signal (32 on all
4500   // supported Linux platforms). Note that LinuxThreads need to block
4501   // this signal for all threads to work properly. So we don't have
4502   // to use hard-coded signal number when setting up the mask.
4503   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4504 
4505   if (sigaction(SR_signum, &act, 0) == -1) {
4506     return -1;
4507   }
4508 
4509   // Save signal flag
4510   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4511   return 0;
4512 }
4513 
4514 static int sr_notify(OSThread* osthread) {
4515   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4516   assert_status(status == 0, status, "pthread_kill");
4517   return status;
4518 }
4519 
4520 // "Randomly" selected value for how long we want to spin
4521 // before bailing out on suspending a thread, also how often
4522 // we send a signal to a thread we want to resume
4523 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4524 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4525 
4526 // returns true on success and false on error - really an error is fatal
4527 // but this seems the normal response to library errors
4528 static bool do_suspend(OSThread* osthread) {
4529   assert(osthread->sr.is_running(), "thread should be running");
4530   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4531 
4532   // mark as suspended and send signal
4533   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4534     // failed to switch, state wasn't running?
4535     ShouldNotReachHere();
4536     return false;
4537   }
4538 
4539   if (sr_notify(osthread) != 0) {
4540     ShouldNotReachHere();
4541   }
4542 
4543   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4544   while (true) {
4545     if (sr_semaphore.timedwait(2)) {
4546       break;
4547     } else {
4548       // timeout
4549       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4550       if (cancelled == os::SuspendResume::SR_RUNNING) {
4551         return false;
4552       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4553         // make sure that we consume the signal on the semaphore as well
4554         sr_semaphore.wait();
4555         break;
4556       } else {
4557         ShouldNotReachHere();
4558         return false;
4559       }
4560     }
4561   }
4562 
4563   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4564   return true;
4565 }
4566 
4567 static void do_resume(OSThread* osthread) {
4568   assert(osthread->sr.is_suspended(), "thread should be suspended");
4569   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4570 
4571   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4572     // failed to switch to WAKEUP_REQUEST
4573     ShouldNotReachHere();
4574     return;
4575   }
4576 
4577   while (true) {
4578     if (sr_notify(osthread) == 0) {
4579       if (sr_semaphore.timedwait(2)) {
4580         if (osthread->sr.is_running()) {
4581           return;
4582         }
4583       }
4584     } else {
4585       ShouldNotReachHere();
4586     }
4587   }
4588 
4589   guarantee(osthread->sr.is_running(), "Must be running!");
4590 }
4591 
4592 ///////////////////////////////////////////////////////////////////////////////////
4593 // signal handling (except suspend/resume)
4594 
4595 // This routine may be used by user applications as a "hook" to catch signals.
4596 // The user-defined signal handler must pass unrecognized signals to this
4597 // routine, and if it returns true (non-zero), then the signal handler must
4598 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4599 // routine will never retun false (zero), but instead will execute a VM panic
4600 // routine kill the process.
4601 //
4602 // If this routine returns false, it is OK to call it again.  This allows
4603 // the user-defined signal handler to perform checks either before or after
4604 // the VM performs its own checks.  Naturally, the user code would be making
4605 // a serious error if it tried to handle an exception (such as a null check
4606 // or breakpoint) that the VM was generating for its own correct operation.
4607 //
4608 // This routine may recognize any of the following kinds of signals:
4609 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4610 // It should be consulted by handlers for any of those signals.
4611 //
4612 // The caller of this routine must pass in the three arguments supplied
4613 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4614 // field of the structure passed to sigaction().  This routine assumes that
4615 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4616 //
4617 // Note that the VM will print warnings if it detects conflicting signal
4618 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4619 //
4620 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4621                                                  siginfo_t* siginfo,
4622                                                  void* ucontext,
4623                                                  int abort_if_unrecognized);
4624 
4625 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4626   assert(info != NULL && uc != NULL, "it must be old kernel");
4627   int orig_errno = errno;  // Preserve errno value over signal handler.
4628   JVM_handle_linux_signal(sig, info, uc, true);
4629   errno = orig_errno;
4630 }
4631 
4632 
4633 // This boolean allows users to forward their own non-matching signals
4634 // to JVM_handle_linux_signal, harmlessly.
4635 bool os::Linux::signal_handlers_are_installed = false;
4636 
4637 // For signal-chaining
4638 bool os::Linux::libjsig_is_loaded = false;
4639 typedef struct sigaction *(*get_signal_t)(int);
4640 get_signal_t os::Linux::get_signal_action = NULL;
4641 
4642 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4643   struct sigaction *actp = NULL;
4644 
4645   if (libjsig_is_loaded) {
4646     // Retrieve the old signal handler from libjsig
4647     actp = (*get_signal_action)(sig);
4648   }
4649   if (actp == NULL) {
4650     // Retrieve the preinstalled signal handler from jvm
4651     actp = os::Posix::get_preinstalled_handler(sig);
4652   }
4653 
4654   return actp;
4655 }
4656 
4657 static bool call_chained_handler(struct sigaction *actp, int sig,
4658                                  siginfo_t *siginfo, void *context) {
4659   // Call the old signal handler
4660   if (actp->sa_handler == SIG_DFL) {
4661     // It's more reasonable to let jvm treat it as an unexpected exception
4662     // instead of taking the default action.
4663     return false;
4664   } else if (actp->sa_handler != SIG_IGN) {
4665     if ((actp->sa_flags & SA_NODEFER) == 0) {
4666       // automaticlly block the signal
4667       sigaddset(&(actp->sa_mask), sig);
4668     }
4669 
4670     sa_handler_t hand = NULL;
4671     sa_sigaction_t sa = NULL;
4672     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4673     // retrieve the chained handler
4674     if (siginfo_flag_set) {
4675       sa = actp->sa_sigaction;
4676     } else {
4677       hand = actp->sa_handler;
4678     }
4679 
4680     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4681       actp->sa_handler = SIG_DFL;
4682     }
4683 
4684     // try to honor the signal mask
4685     sigset_t oset;
4686     sigemptyset(&oset);
4687     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4688 
4689     // call into the chained handler
4690     if (siginfo_flag_set) {
4691       (*sa)(sig, siginfo, context);
4692     } else {
4693       (*hand)(sig);
4694     }
4695 
4696     // restore the signal mask
4697     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4698   }
4699   // Tell jvm's signal handler the signal is taken care of.
4700   return true;
4701 }
4702 
4703 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4704   bool chained = false;
4705   // signal-chaining
4706   if (UseSignalChaining) {
4707     struct sigaction *actp = get_chained_signal_action(sig);
4708     if (actp != NULL) {
4709       chained = call_chained_handler(actp, sig, siginfo, context);
4710     }
4711   }
4712   return chained;
4713 }
4714 
4715 // for diagnostic
4716 int sigflags[NSIG];
4717 
4718 int os::Linux::get_our_sigflags(int sig) {
4719   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4720   return sigflags[sig];
4721 }
4722 
4723 void os::Linux::set_our_sigflags(int sig, int flags) {
4724   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4725   if (sig > 0 && sig < NSIG) {
4726     sigflags[sig] = flags;
4727   }
4728 }
4729 
4730 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4731   // Check for overwrite.
4732   struct sigaction oldAct;
4733   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4734 
4735   void* oldhand = oldAct.sa_sigaction
4736                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4737                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4738   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4739       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4740       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4741     if (AllowUserSignalHandlers || !set_installed) {
4742       // Do not overwrite; user takes responsibility to forward to us.
4743       return;
4744     } else if (UseSignalChaining) {
4745       // save the old handler in jvm
4746       os::Posix::save_preinstalled_handler(sig, oldAct);
4747       // libjsig also interposes the sigaction() call below and saves the
4748       // old sigaction on it own.
4749     } else {
4750       fatal("Encountered unexpected pre-existing sigaction handler "
4751             "%#lx for signal %d.", (long)oldhand, sig);
4752     }
4753   }
4754 
4755   struct sigaction sigAct;
4756   sigfillset(&(sigAct.sa_mask));
4757   sigAct.sa_handler = SIG_DFL;
4758   if (!set_installed) {
4759     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4760   } else {
4761     sigAct.sa_sigaction = signalHandler;
4762     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4763   }
4764   // Save flags, which are set by ours
4765   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4766   sigflags[sig] = sigAct.sa_flags;
4767 
4768   int ret = sigaction(sig, &sigAct, &oldAct);
4769   assert(ret == 0, "check");
4770 
4771   void* oldhand2  = oldAct.sa_sigaction
4772                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4773                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4774   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4775 }
4776 
4777 // install signal handlers for signals that HotSpot needs to
4778 // handle in order to support Java-level exception handling.
4779 
4780 void os::Linux::install_signal_handlers() {
4781   if (!signal_handlers_are_installed) {
4782     signal_handlers_are_installed = true;
4783 
4784     // signal-chaining
4785     typedef void (*signal_setting_t)();
4786     signal_setting_t begin_signal_setting = NULL;
4787     signal_setting_t end_signal_setting = NULL;
4788     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4789                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4790     if (begin_signal_setting != NULL) {
4791       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4792                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4793       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4794                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4795       libjsig_is_loaded = true;
4796       assert(UseSignalChaining, "should enable signal-chaining");
4797     }
4798     if (libjsig_is_loaded) {
4799       // Tell libjsig jvm is setting signal handlers
4800       (*begin_signal_setting)();
4801     }
4802 
4803     set_signal_handler(SIGSEGV, true);
4804     set_signal_handler(SIGPIPE, true);
4805     set_signal_handler(SIGBUS, true);
4806     set_signal_handler(SIGILL, true);
4807     set_signal_handler(SIGFPE, true);
4808 #if defined(PPC64)
4809     set_signal_handler(SIGTRAP, true);
4810 #endif
4811     set_signal_handler(SIGXFSZ, true);
4812 
4813     if (libjsig_is_loaded) {
4814       // Tell libjsig jvm finishes setting signal handlers
4815       (*end_signal_setting)();
4816     }
4817 
4818     // We don't activate signal checker if libjsig is in place, we trust ourselves
4819     // and if UserSignalHandler is installed all bets are off.
4820     // Log that signal checking is off only if -verbose:jni is specified.
4821     if (CheckJNICalls) {
4822       if (libjsig_is_loaded) {
4823         log_debug(jni, resolve)("Info: libjsig is activated, all active signal checking is disabled");
4824         check_signals = false;
4825       }
4826       if (AllowUserSignalHandlers) {
4827         log_debug(jni, resolve)("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4828         check_signals = false;
4829       }
4830     }
4831   }
4832 }
4833 
4834 // This is the fastest way to get thread cpu time on Linux.
4835 // Returns cpu time (user+sys) for any thread, not only for current.
4836 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4837 // It might work on 2.6.10+ with a special kernel/glibc patch.
4838 // For reference, please, see IEEE Std 1003.1-2004:
4839 //   http://www.unix.org/single_unix_specification
4840 
4841 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4842   struct timespec tp;
4843   int rc = os::Posix::clock_gettime(clockid, &tp);
4844   assert(rc == 0, "clock_gettime is expected to return 0 code");
4845 
4846   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4847 }
4848 
4849 /////
4850 // glibc on Linux platform uses non-documented flag
4851 // to indicate, that some special sort of signal
4852 // trampoline is used.
4853 // We will never set this flag, and we should
4854 // ignore this flag in our diagnostic
4855 #ifdef SIGNIFICANT_SIGNAL_MASK
4856   #undef SIGNIFICANT_SIGNAL_MASK
4857 #endif
4858 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4859 
4860 static const char* get_signal_handler_name(address handler,
4861                                            char* buf, int buflen) {
4862   int offset = 0;
4863   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4864   if (found) {
4865     // skip directory names
4866     const char *p1, *p2;
4867     p1 = buf;
4868     size_t len = strlen(os::file_separator());
4869     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4870     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4871   } else {
4872     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4873   }
4874   return buf;
4875 }
4876 
4877 static void print_signal_handler(outputStream* st, int sig,
4878                                  char* buf, size_t buflen) {
4879   struct sigaction sa;
4880 
4881   sigaction(sig, NULL, &sa);
4882 
4883   // See comment for SIGNIFICANT_SIGNAL_MASK define
4884   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4885 
4886   st->print("%s: ", os::exception_name(sig, buf, buflen));
4887 
4888   address handler = (sa.sa_flags & SA_SIGINFO)
4889     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4890     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4891 
4892   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4893     st->print("SIG_DFL");
4894   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4895     st->print("SIG_IGN");
4896   } else {
4897     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4898   }
4899 
4900   st->print(", sa_mask[0]=");
4901   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4902 
4903   address rh = VMError::get_resetted_sighandler(sig);
4904   // May be, handler was resetted by VMError?
4905   if (rh != NULL) {
4906     handler = rh;
4907     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4908   }
4909 
4910   st->print(", sa_flags=");
4911   os::Posix::print_sa_flags(st, sa.sa_flags);
4912 
4913   // Check: is it our handler?
4914   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4915       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4916     // It is our signal handler
4917     // check for flags, reset system-used one!
4918     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4919       st->print(
4920                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4921                 os::Linux::get_our_sigflags(sig));
4922     }
4923   }
4924   st->cr();
4925 }
4926 
4927 
4928 #define DO_SIGNAL_CHECK(sig)                      \
4929   do {                                            \
4930     if (!sigismember(&check_signal_done, sig)) {  \
4931       os::Linux::check_signal_handler(sig);       \
4932     }                                             \
4933   } while (0)
4934 
4935 // This method is a periodic task to check for misbehaving JNI applications
4936 // under CheckJNI, we can add any periodic checks here
4937 
4938 void os::run_periodic_checks() {
4939   if (check_signals == false) return;
4940 
4941   // SEGV and BUS if overridden could potentially prevent
4942   // generation of hs*.log in the event of a crash, debugging
4943   // such a case can be very challenging, so we absolutely
4944   // check the following for a good measure:
4945   DO_SIGNAL_CHECK(SIGSEGV);
4946   DO_SIGNAL_CHECK(SIGILL);
4947   DO_SIGNAL_CHECK(SIGFPE);
4948   DO_SIGNAL_CHECK(SIGBUS);
4949   DO_SIGNAL_CHECK(SIGPIPE);
4950   DO_SIGNAL_CHECK(SIGXFSZ);
4951 #if defined(PPC64)
4952   DO_SIGNAL_CHECK(SIGTRAP);
4953 #endif
4954 
4955   // ReduceSignalUsage allows the user to override these handlers
4956   // see comments at the very top and jvm_md.h
4957   if (!ReduceSignalUsage) {
4958     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4959     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4960     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4961     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4962   }
4963 
4964   DO_SIGNAL_CHECK(SR_signum);
4965 }
4966 
4967 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4968 
4969 static os_sigaction_t os_sigaction = NULL;
4970 
4971 void os::Linux::check_signal_handler(int sig) {
4972   char buf[O_BUFLEN];
4973   address jvmHandler = NULL;
4974 
4975 
4976   struct sigaction act;
4977   if (os_sigaction == NULL) {
4978     // only trust the default sigaction, in case it has been interposed
4979     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4980     if (os_sigaction == NULL) return;
4981   }
4982 
4983   os_sigaction(sig, (struct sigaction*)NULL, &act);
4984 
4985 
4986   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4987 
4988   address thisHandler = (act.sa_flags & SA_SIGINFO)
4989     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4990     : CAST_FROM_FN_PTR(address, act.sa_handler);
4991 
4992 
4993   switch (sig) {
4994   case SIGSEGV:
4995   case SIGBUS:
4996   case SIGFPE:
4997   case SIGPIPE:
4998   case SIGILL:
4999   case SIGXFSZ:
5000     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
5001     break;
5002 
5003   case SHUTDOWN1_SIGNAL:
5004   case SHUTDOWN2_SIGNAL:
5005   case SHUTDOWN3_SIGNAL:
5006   case BREAK_SIGNAL:
5007     jvmHandler = (address)user_handler();
5008     break;
5009 
5010   default:
5011     if (sig == SR_signum) {
5012       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
5013     } else {
5014       return;
5015     }
5016     break;
5017   }
5018 
5019   if (thisHandler != jvmHandler) {
5020     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
5021     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
5022     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
5023     // No need to check this sig any longer
5024     sigaddset(&check_signal_done, sig);
5025     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
5026     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
5027       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
5028                     exception_name(sig, buf, O_BUFLEN));
5029     }
5030   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
5031     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
5032     tty->print("expected:");
5033     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
5034     tty->cr();
5035     tty->print("  found:");
5036     os::Posix::print_sa_flags(tty, act.sa_flags);
5037     tty->cr();
5038     // No need to check this sig any longer
5039     sigaddset(&check_signal_done, sig);
5040   }
5041 
5042   // Dump all the signal
5043   if (sigismember(&check_signal_done, sig)) {
5044     print_signal_handlers(tty, buf, O_BUFLEN);
5045   }
5046 }
5047 
5048 extern void report_error(char* file_name, int line_no, char* title,
5049                          char* format, ...);
5050 
5051 // this is called _before_ most of the global arguments have been parsed
5052 void os::init(void) {
5053   char dummy;   // used to get a guess on initial stack address
5054 
5055   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
5056 
5057   init_random(1234567);
5058 
5059   Linux::set_page_size(sysconf(_SC_PAGESIZE));
5060   if (Linux::page_size() == -1) {
5061     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
5062           os::strerror(errno));
5063   }
5064   init_page_sizes((size_t) Linux::page_size());
5065 
5066   Linux::initialize_system_info();
5067 
5068   os::Linux::CPUPerfTicks pticks;
5069   bool res = os::Linux::get_tick_information(&pticks, -1);
5070 
5071   if (res && pticks.has_steal_ticks) {
5072     has_initial_tick_info = true;
5073     initial_total_ticks = pticks.total;
5074     initial_steal_ticks = pticks.steal;
5075   }
5076 
5077   // _main_thread points to the thread that created/loaded the JVM.
5078   Linux::_main_thread = pthread_self();
5079 
5080   // retrieve entry point for pthread_setname_np
5081   Linux::_pthread_setname_np =
5082     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
5083 
5084   os::Posix::init();
5085 
5086   initial_time_count = javaTimeNanos();
5087 
5088   // Always warn if no monotonic clock available
5089   if (!os::Posix::supports_monotonic_clock()) {
5090     warning("No monotonic clock was available - timed services may "    \
5091             "be adversely affected if the time-of-day clock changes");
5092   }
5093 }
5094 
5095 // To install functions for atexit system call
5096 extern "C" {
5097   static void perfMemory_exit_helper() {
5098     perfMemory_exit();
5099   }
5100 }
5101 
5102 void os::pd_init_container_support() {
5103   OSContainer::init();
5104 }
5105 
5106 void os::Linux::numa_init() {
5107 
5108   // Java can be invoked as
5109   // 1. Without numactl and heap will be allocated/configured on all nodes as
5110   //    per the system policy.
5111   // 2. With numactl --interleave:
5112   //      Use numa_get_interleave_mask(v2) API to get nodes bitmask. The same
5113   //      API for membind case bitmask is reset.
5114   //      Interleave is only hint and Kernel can fallback to other nodes if
5115   //      no memory is available on the target nodes.
5116   // 3. With numactl --membind:
5117   //      Use numa_get_membind(v2) API to get nodes bitmask. The same API for
5118   //      interleave case returns bitmask of all nodes.
5119   // numa_all_nodes_ptr holds bitmask of all nodes.
5120   // numa_get_interleave_mask(v2) and numa_get_membind(v2) APIs returns correct
5121   // bitmask when externally configured to run on all or fewer nodes.
5122 
5123   if (!Linux::libnuma_init()) {
5124     UseNUMA = false;
5125   } else {
5126     if ((Linux::numa_max_node() < 1) || Linux::is_bound_to_single_node()) {
5127       // If there's only one node (they start from 0) or if the process
5128       // is bound explicitly to a single node using membind, disable NUMA.
5129       UseNUMA = false;
5130     } else {
5131 
5132       LogTarget(Info,os) log;
5133       LogStream ls(log);
5134 
5135       Linux::set_configured_numa_policy(Linux::identify_numa_policy());
5136 
5137       struct bitmask* bmp = Linux::_numa_membind_bitmask;
5138       const char* numa_mode = "membind";
5139 
5140       if (Linux::is_running_in_interleave_mode()) {
5141         bmp = Linux::_numa_interleave_bitmask;
5142         numa_mode = "interleave";
5143       }
5144 
5145       ls.print("UseNUMA is enabled and invoked in '%s' mode."
5146                " Heap will be configured using NUMA memory nodes:", numa_mode);
5147 
5148       for (int node = 0; node <= Linux::numa_max_node(); node++) {
5149         if (Linux::_numa_bitmask_isbitset(bmp, node)) {
5150           ls.print(" %d", node);
5151         }
5152       }
5153     }
5154   }
5155 
5156   if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5157     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5158     // we can make the adaptive lgrp chunk resizing work. If the user specified both
5159     // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5160     // and disable adaptive resizing.
5161     if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5162       warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5163               "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5164       UseAdaptiveSizePolicy = false;
5165       UseAdaptiveNUMAChunkSizing = false;
5166     }
5167   }
5168 
5169   if (!UseNUMA && ForceNUMA) {
5170     UseNUMA = true;
5171   }
5172 }
5173 
5174 // this is called _after_ the global arguments have been parsed
5175 jint os::init_2(void) {
5176 
5177   // This could be set after os::Posix::init() but all platforms
5178   // have to set it the same so we have to mirror Solaris.
5179   DEBUG_ONLY(os::set_mutex_init_done();)
5180 
5181   os::Posix::init_2();
5182 
5183   Linux::fast_thread_clock_init();
5184 
5185   // initialize suspend/resume support - must do this before signal_sets_init()
5186   if (SR_initialize() != 0) {
5187     perror("SR_initialize failed");
5188     return JNI_ERR;
5189   }
5190 
5191   Linux::signal_sets_init();
5192   Linux::install_signal_handlers();
5193   // Initialize data for jdk.internal.misc.Signal
5194   if (!ReduceSignalUsage) {
5195     jdk_misc_signal_init();
5196   }
5197 
5198   if (AdjustStackSizeForTLS) {
5199     get_minstack_init();
5200   }
5201 
5202   // Check and sets minimum stack sizes against command line options
5203   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
5204     return JNI_ERR;
5205   }
5206 
5207 #if defined(IA32)
5208   // Need to ensure we've determined the process's initial stack to
5209   // perform the workaround
5210   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5211   workaround_expand_exec_shield_cs_limit();
5212 #else
5213   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
5214   if (!suppress_primordial_thread_resolution) {
5215     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5216   }
5217 #endif
5218 
5219   Linux::libpthread_init();
5220   Linux::sched_getcpu_init();
5221   log_info(os)("HotSpot is running with %s, %s",
5222                Linux::glibc_version(), Linux::libpthread_version());
5223 
5224   if (UseNUMA) {
5225     Linux::numa_init();
5226   }
5227 
5228   if (MaxFDLimit) {
5229     // set the number of file descriptors to max. print out error
5230     // if getrlimit/setrlimit fails but continue regardless.
5231     struct rlimit nbr_files;
5232     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5233     if (status != 0) {
5234       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5235     } else {
5236       nbr_files.rlim_cur = nbr_files.rlim_max;
5237       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5238       if (status != 0) {
5239         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5240       }
5241     }
5242   }
5243 
5244   // at-exit methods are called in the reverse order of their registration.
5245   // atexit functions are called on return from main or as a result of a
5246   // call to exit(3C). There can be only 32 of these functions registered
5247   // and atexit() does not set errno.
5248 
5249   if (PerfAllowAtExitRegistration) {
5250     // only register atexit functions if PerfAllowAtExitRegistration is set.
5251     // atexit functions can be delayed until process exit time, which
5252     // can be problematic for embedded VM situations. Embedded VMs should
5253     // call DestroyJavaVM() to assure that VM resources are released.
5254 
5255     // note: perfMemory_exit_helper atexit function may be removed in
5256     // the future if the appropriate cleanup code can be added to the
5257     // VM_Exit VMOperation's doit method.
5258     if (atexit(perfMemory_exit_helper) != 0) {
5259       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5260     }
5261   }
5262 
5263   // initialize thread priority policy
5264   prio_init();
5265 
5266   if (!FLAG_IS_DEFAULT(AllocateHeapAt) || !FLAG_IS_DEFAULT(AllocateOldGenAt)) {
5267     set_coredump_filter(DAX_SHARED_BIT);
5268   }
5269 
5270   if (DumpPrivateMappingsInCore) {
5271     set_coredump_filter(FILE_BACKED_PVT_BIT);
5272   }
5273 
5274   if (DumpSharedMappingsInCore) {
5275     set_coredump_filter(FILE_BACKED_SHARED_BIT);
5276   }
5277 
5278   return JNI_OK;
5279 }
5280 
5281 // Mark the polling page as unreadable
5282 void os::make_polling_page_unreadable(void) {
5283   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5284     fatal("Could not disable polling page");
5285   }
5286 }
5287 
5288 // Mark the polling page as readable
5289 void os::make_polling_page_readable(void) {
5290   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5291     fatal("Could not enable polling page");
5292   }
5293 }
5294 
5295 // older glibc versions don't have this macro (which expands to
5296 // an optimized bit-counting function) so we have to roll our own
5297 #ifndef CPU_COUNT
5298 
5299 static int _cpu_count(const cpu_set_t* cpus) {
5300   int count = 0;
5301   // only look up to the number of configured processors
5302   for (int i = 0; i < os::processor_count(); i++) {
5303     if (CPU_ISSET(i, cpus)) {
5304       count++;
5305     }
5306   }
5307   return count;
5308 }
5309 
5310 #define CPU_COUNT(cpus) _cpu_count(cpus)
5311 
5312 #endif // CPU_COUNT
5313 
5314 // Get the current number of available processors for this process.
5315 // This value can change at any time during a process's lifetime.
5316 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5317 // If it appears there may be more than 1024 processors then we do a
5318 // dynamic check - see 6515172 for details.
5319 // If anything goes wrong we fallback to returning the number of online
5320 // processors - which can be greater than the number available to the process.
5321 int os::Linux::active_processor_count() {
5322   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5323   cpu_set_t* cpus_p = &cpus;
5324   int cpus_size = sizeof(cpu_set_t);
5325 
5326   int configured_cpus = os::processor_count();  // upper bound on available cpus
5327   int cpu_count = 0;
5328 
5329 // old build platforms may not support dynamic cpu sets
5330 #ifdef CPU_ALLOC
5331 
5332   // To enable easy testing of the dynamic path on different platforms we
5333   // introduce a diagnostic flag: UseCpuAllocPath
5334   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5335     // kernel may use a mask bigger than cpu_set_t
5336     log_trace(os)("active_processor_count: using dynamic path %s"
5337                   "- configured processors: %d",
5338                   UseCpuAllocPath ? "(forced) " : "",
5339                   configured_cpus);
5340     cpus_p = CPU_ALLOC(configured_cpus);
5341     if (cpus_p != NULL) {
5342       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5343       // zero it just to be safe
5344       CPU_ZERO_S(cpus_size, cpus_p);
5345     }
5346     else {
5347        // failed to allocate so fallback to online cpus
5348        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5349        log_trace(os)("active_processor_count: "
5350                      "CPU_ALLOC failed (%s) - using "
5351                      "online processor count: %d",
5352                      os::strerror(errno), online_cpus);
5353        return online_cpus;
5354     }
5355   }
5356   else {
5357     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5358                   configured_cpus);
5359   }
5360 #else // CPU_ALLOC
5361 // these stubs won't be executed
5362 #define CPU_COUNT_S(size, cpus) -1
5363 #define CPU_FREE(cpus)
5364 
5365   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5366                 configured_cpus);
5367 #endif // CPU_ALLOC
5368 
5369   // pid 0 means the current thread - which we have to assume represents the process
5370   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5371     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5372       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5373     }
5374     else {
5375       cpu_count = CPU_COUNT(cpus_p);
5376     }
5377     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5378   }
5379   else {
5380     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5381     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5382             "which may exceed available processors", os::strerror(errno), cpu_count);
5383   }
5384 
5385   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5386     CPU_FREE(cpus_p);
5387   }
5388 
5389   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5390   return cpu_count;
5391 }
5392 
5393 // Determine the active processor count from one of
5394 // three different sources:
5395 //
5396 // 1. User option -XX:ActiveProcessorCount
5397 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5398 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5399 //
5400 // Option 1, if specified, will always override.
5401 // If the cgroup subsystem is active and configured, we
5402 // will return the min of the cgroup and option 2 results.
5403 // This is required since tools, such as numactl, that
5404 // alter cpu affinity do not update cgroup subsystem
5405 // cpuset configuration files.
5406 int os::active_processor_count() {
5407   // User has overridden the number of active processors
5408   if (ActiveProcessorCount > 0) {
5409     log_trace(os)("active_processor_count: "
5410                   "active processor count set by user : %d",
5411                   ActiveProcessorCount);
5412     return ActiveProcessorCount;
5413   }
5414 
5415   int active_cpus;
5416   if (OSContainer::is_containerized()) {
5417     active_cpus = OSContainer::active_processor_count();
5418     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5419                    active_cpus);
5420   } else {
5421     active_cpus = os::Linux::active_processor_count();
5422   }
5423 
5424   return active_cpus;
5425 }
5426 
5427 uint os::processor_id() {
5428   const int id = Linux::sched_getcpu();
5429   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5430   return (uint)id;
5431 }
5432 
5433 void os::set_native_thread_name(const char *name) {
5434   if (Linux::_pthread_setname_np) {
5435     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5436     snprintf(buf, sizeof(buf), "%s", name);
5437     buf[sizeof(buf) - 1] = '\0';
5438     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5439     // ERANGE should not happen; all other errors should just be ignored.
5440     assert(rc != ERANGE, "pthread_setname_np failed");
5441   }
5442 }
5443 
5444 bool os::bind_to_processor(uint processor_id) {
5445   // Not yet implemented.
5446   return false;
5447 }
5448 
5449 ///
5450 
5451 void os::SuspendedThreadTask::internal_do_task() {
5452   if (do_suspend(_thread->osthread())) {
5453     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5454     do_task(context);
5455     do_resume(_thread->osthread());
5456   }
5457 }
5458 
5459 ////////////////////////////////////////////////////////////////////////////////
5460 // debug support
5461 
5462 bool os::find(address addr, outputStream* st) {
5463   Dl_info dlinfo;
5464   memset(&dlinfo, 0, sizeof(dlinfo));
5465   if (dladdr(addr, &dlinfo) != 0) {
5466     st->print(PTR_FORMAT ": ", p2i(addr));
5467     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5468       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5469                 p2i(addr) - p2i(dlinfo.dli_saddr));
5470     } else if (dlinfo.dli_fbase != NULL) {
5471       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5472     } else {
5473       st->print("<absolute address>");
5474     }
5475     if (dlinfo.dli_fname != NULL) {
5476       st->print(" in %s", dlinfo.dli_fname);
5477     }
5478     if (dlinfo.dli_fbase != NULL) {
5479       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5480     }
5481     st->cr();
5482 
5483     if (Verbose) {
5484       // decode some bytes around the PC
5485       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5486       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5487       address       lowest = (address) dlinfo.dli_sname;
5488       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5489       if (begin < lowest)  begin = lowest;
5490       Dl_info dlinfo2;
5491       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5492           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5493         end = (address) dlinfo2.dli_saddr;
5494       }
5495       Disassembler::decode(begin, end, st);
5496     }
5497     return true;
5498   }
5499   return false;
5500 }
5501 
5502 ////////////////////////////////////////////////////////////////////////////////
5503 // misc
5504 
5505 // This does not do anything on Linux. This is basically a hook for being
5506 // able to use structured exception handling (thread-local exception filters)
5507 // on, e.g., Win32.
5508 void
5509 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5510                          JavaCallArguments* args, Thread* thread) {
5511   f(value, method, args, thread);
5512 }
5513 
5514 void os::print_statistics() {
5515 }
5516 
5517 bool os::message_box(const char* title, const char* message) {
5518   int i;
5519   fdStream err(defaultStream::error_fd());
5520   for (i = 0; i < 78; i++) err.print_raw("=");
5521   err.cr();
5522   err.print_raw_cr(title);
5523   for (i = 0; i < 78; i++) err.print_raw("-");
5524   err.cr();
5525   err.print_raw_cr(message);
5526   for (i = 0; i < 78; i++) err.print_raw("=");
5527   err.cr();
5528 
5529   char buf[16];
5530   // Prevent process from exiting upon "read error" without consuming all CPU
5531   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5532 
5533   return buf[0] == 'y' || buf[0] == 'Y';
5534 }
5535 
5536 // Is a (classpath) directory empty?
5537 bool os::dir_is_empty(const char* path) {
5538   DIR *dir = NULL;
5539   struct dirent *ptr;
5540 
5541   dir = opendir(path);
5542   if (dir == NULL) return true;
5543 
5544   // Scan the directory
5545   bool result = true;
5546   while (result && (ptr = readdir(dir)) != NULL) {
5547     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5548       result = false;
5549     }
5550   }
5551   closedir(dir);
5552   return result;
5553 }
5554 
5555 // This code originates from JDK's sysOpen and open64_w
5556 // from src/solaris/hpi/src/system_md.c
5557 
5558 int os::open(const char *path, int oflag, int mode) {
5559   if (strlen(path) > MAX_PATH - 1) {
5560     errno = ENAMETOOLONG;
5561     return -1;
5562   }
5563 
5564   // All file descriptors that are opened in the Java process and not
5565   // specifically destined for a subprocess should have the close-on-exec
5566   // flag set.  If we don't set it, then careless 3rd party native code
5567   // might fork and exec without closing all appropriate file descriptors
5568   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5569   // turn might:
5570   //
5571   // - cause end-of-file to fail to be detected on some file
5572   //   descriptors, resulting in mysterious hangs, or
5573   //
5574   // - might cause an fopen in the subprocess to fail on a system
5575   //   suffering from bug 1085341.
5576   //
5577   // (Yes, the default setting of the close-on-exec flag is a Unix
5578   // design flaw)
5579   //
5580   // See:
5581   // 1085341: 32-bit stdio routines should support file descriptors >255
5582   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5583   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5584   //
5585   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5586   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5587   // because it saves a system call and removes a small window where the flag
5588   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5589   // and we fall back to using FD_CLOEXEC (see below).
5590 #ifdef O_CLOEXEC
5591   oflag |= O_CLOEXEC;
5592 #endif
5593 
5594   int fd = ::open64(path, oflag, mode);
5595   if (fd == -1) return -1;
5596 
5597   //If the open succeeded, the file might still be a directory
5598   {
5599     struct stat64 buf64;
5600     int ret = ::fstat64(fd, &buf64);
5601     int st_mode = buf64.st_mode;
5602 
5603     if (ret != -1) {
5604       if ((st_mode & S_IFMT) == S_IFDIR) {
5605         errno = EISDIR;
5606         ::close(fd);
5607         return -1;
5608       }
5609     } else {
5610       ::close(fd);
5611       return -1;
5612     }
5613   }
5614 
5615 #ifdef FD_CLOEXEC
5616   // Validate that the use of the O_CLOEXEC flag on open above worked.
5617   // With recent kernels, we will perform this check exactly once.
5618   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5619   if (!O_CLOEXEC_is_known_to_work) {
5620     int flags = ::fcntl(fd, F_GETFD);
5621     if (flags != -1) {
5622       if ((flags & FD_CLOEXEC) != 0)
5623         O_CLOEXEC_is_known_to_work = 1;
5624       else
5625         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5626     }
5627   }
5628 #endif
5629 
5630   return fd;
5631 }
5632 
5633 
5634 // create binary file, rewriting existing file if required
5635 int os::create_binary_file(const char* path, bool rewrite_existing) {
5636   int oflags = O_WRONLY | O_CREAT;
5637   if (!rewrite_existing) {
5638     oflags |= O_EXCL;
5639   }
5640   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5641 }
5642 
5643 // return current position of file pointer
5644 jlong os::current_file_offset(int fd) {
5645   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5646 }
5647 
5648 // move file pointer to the specified offset
5649 jlong os::seek_to_file_offset(int fd, jlong offset) {
5650   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5651 }
5652 
5653 // This code originates from JDK's sysAvailable
5654 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5655 
5656 int os::available(int fd, jlong *bytes) {
5657   jlong cur, end;
5658   int mode;
5659   struct stat64 buf64;
5660 
5661   if (::fstat64(fd, &buf64) >= 0) {
5662     mode = buf64.st_mode;
5663     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5664       int n;
5665       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5666         *bytes = n;
5667         return 1;
5668       }
5669     }
5670   }
5671   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5672     return 0;
5673   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5674     return 0;
5675   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5676     return 0;
5677   }
5678   *bytes = end - cur;
5679   return 1;
5680 }
5681 
5682 // Map a block of memory.
5683 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5684                         char *addr, size_t bytes, bool read_only,
5685                         bool allow_exec) {
5686   int prot;
5687   int flags = MAP_PRIVATE;
5688 
5689   if (read_only) {
5690     prot = PROT_READ;
5691   } else {
5692     prot = PROT_READ | PROT_WRITE;
5693   }
5694 
5695   if (allow_exec) {
5696     prot |= PROT_EXEC;
5697   }
5698 
5699   if (addr != NULL) {
5700     flags |= MAP_FIXED;
5701   }
5702 
5703   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5704                                      fd, file_offset);
5705   if (mapped_address == MAP_FAILED) {
5706     return NULL;
5707   }
5708   return mapped_address;
5709 }
5710 
5711 
5712 // Remap a block of memory.
5713 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5714                           char *addr, size_t bytes, bool read_only,
5715                           bool allow_exec) {
5716   // same as map_memory() on this OS
5717   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5718                         allow_exec);
5719 }
5720 
5721 
5722 // Unmap a block of memory.
5723 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5724   return munmap(addr, bytes) == 0;
5725 }
5726 
5727 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5728 
5729 static jlong fast_cpu_time(Thread *thread) {
5730     clockid_t clockid;
5731     int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
5732                                               &clockid);
5733     if (rc == 0) {
5734       return os::Linux::fast_thread_cpu_time(clockid);
5735     } else {
5736       // It's possible to encounter a terminated native thread that failed
5737       // to detach itself from the VM - which should result in ESRCH.
5738       assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
5739       return -1;
5740     }
5741 }
5742 
5743 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5744 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5745 // of a thread.
5746 //
5747 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5748 // the fast estimate available on the platform.
5749 
5750 jlong os::current_thread_cpu_time() {
5751   if (os::Linux::supports_fast_thread_cpu_time()) {
5752     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5753   } else {
5754     // return user + sys since the cost is the same
5755     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5756   }
5757 }
5758 
5759 jlong os::thread_cpu_time(Thread* thread) {
5760   // consistent with what current_thread_cpu_time() returns
5761   if (os::Linux::supports_fast_thread_cpu_time()) {
5762     return fast_cpu_time(thread);
5763   } else {
5764     return slow_thread_cpu_time(thread, true /* user + sys */);
5765   }
5766 }
5767 
5768 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5769   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5770     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5771   } else {
5772     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5773   }
5774 }
5775 
5776 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5777   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5778     return fast_cpu_time(thread);
5779   } else {
5780     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5781   }
5782 }
5783 
5784 //  -1 on error.
5785 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5786   pid_t  tid = thread->osthread()->thread_id();
5787   char *s;
5788   char stat[2048];
5789   int statlen;
5790   char proc_name[64];
5791   int count;
5792   long sys_time, user_time;
5793   char cdummy;
5794   int idummy;
5795   long ldummy;
5796   FILE *fp;
5797 
5798   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5799   fp = fopen(proc_name, "r");
5800   if (fp == NULL) return -1;
5801   statlen = fread(stat, 1, 2047, fp);
5802   stat[statlen] = '\0';
5803   fclose(fp);
5804 
5805   // Skip pid and the command string. Note that we could be dealing with
5806   // weird command names, e.g. user could decide to rename java launcher
5807   // to "java 1.4.2 :)", then the stat file would look like
5808   //                1234 (java 1.4.2 :)) R ... ...
5809   // We don't really need to know the command string, just find the last
5810   // occurrence of ")" and then start parsing from there. See bug 4726580.
5811   s = strrchr(stat, ')');
5812   if (s == NULL) return -1;
5813 
5814   // Skip blank chars
5815   do { s++; } while (s && isspace(*s));
5816 
5817   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5818                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5819                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5820                  &user_time, &sys_time);
5821   if (count != 13) return -1;
5822   if (user_sys_cpu_time) {
5823     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5824   } else {
5825     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5826   }
5827 }
5828 
5829 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5830   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5831   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5832   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5833   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5834 }
5835 
5836 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5837   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5838   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5839   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5840   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5841 }
5842 
5843 bool os::is_thread_cpu_time_supported() {
5844   return true;
5845 }
5846 
5847 // System loadavg support.  Returns -1 if load average cannot be obtained.
5848 // Linux doesn't yet have a (official) notion of processor sets,
5849 // so just return the system wide load average.
5850 int os::loadavg(double loadavg[], int nelem) {
5851   return ::getloadavg(loadavg, nelem);
5852 }
5853 
5854 void os::pause() {
5855   char filename[MAX_PATH];
5856   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5857     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5858   } else {
5859     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5860   }
5861 
5862   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5863   if (fd != -1) {
5864     struct stat buf;
5865     ::close(fd);
5866     while (::stat(filename, &buf) == 0) {
5867       (void)::poll(NULL, 0, 100);
5868     }
5869   } else {
5870     jio_fprintf(stderr,
5871                 "Could not open pause file '%s', continuing immediately.\n", filename);
5872   }
5873 }
5874 
5875 extern char** environ;
5876 
5877 // Run the specified command in a separate process. Return its exit value,
5878 // or -1 on failure (e.g. can't fork a new process).
5879 // Unlike system(), this function can be called from signal handler. It
5880 // doesn't block SIGINT et al.
5881 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5882   const char * argv[4] = {"sh", "-c", cmd, NULL};
5883 
5884   pid_t pid ;
5885 
5886   if (use_vfork_if_available) {
5887     pid = vfork();
5888   } else {
5889     pid = fork();
5890   }
5891 
5892   if (pid < 0) {
5893     // fork failed
5894     return -1;
5895 
5896   } else if (pid == 0) {
5897     // child process
5898 
5899     execve("/bin/sh", (char* const*)argv, environ);
5900 
5901     // execve failed
5902     _exit(-1);
5903 
5904   } else  {
5905     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5906     // care about the actual exit code, for now.
5907 
5908     int status;
5909 
5910     // Wait for the child process to exit.  This returns immediately if
5911     // the child has already exited. */
5912     while (waitpid(pid, &status, 0) < 0) {
5913       switch (errno) {
5914       case ECHILD: return 0;
5915       case EINTR: break;
5916       default: return -1;
5917       }
5918     }
5919 
5920     if (WIFEXITED(status)) {
5921       // The child exited normally; get its exit code.
5922       return WEXITSTATUS(status);
5923     } else if (WIFSIGNALED(status)) {
5924       // The child exited because of a signal
5925       // The best value to return is 0x80 + signal number,
5926       // because that is what all Unix shells do, and because
5927       // it allows callers to distinguish between process exit and
5928       // process death by signal.
5929       return 0x80 + WTERMSIG(status);
5930     } else {
5931       // Unknown exit code; pass it through
5932       return status;
5933     }
5934   }
5935 }
5936 
5937 // Get the default path to the core file
5938 // Returns the length of the string
5939 int os::get_core_path(char* buffer, size_t bufferSize) {
5940   /*
5941    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5942    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5943    */
5944   const int core_pattern_len = 129;
5945   char core_pattern[core_pattern_len] = {0};
5946 
5947   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5948   if (core_pattern_file == -1) {
5949     return -1;
5950   }
5951 
5952   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5953   ::close(core_pattern_file);
5954   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5955     return -1;
5956   }
5957   if (core_pattern[ret-1] == '\n') {
5958     core_pattern[ret-1] = '\0';
5959   } else {
5960     core_pattern[ret] = '\0';
5961   }
5962 
5963   // Replace the %p in the core pattern with the process id. NOTE: we do this
5964   // only if the pattern doesn't start with "|", and we support only one %p in
5965   // the pattern.
5966   char *pid_pos = strstr(core_pattern, "%p");
5967   const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "";  // skip over the "%p"
5968   int written;
5969 
5970   if (core_pattern[0] == '/') {
5971     if (pid_pos != NULL) {
5972       *pid_pos = '\0';
5973       written = jio_snprintf(buffer, bufferSize, "%s%d%s", core_pattern,
5974                              current_process_id(), tail);
5975     } else {
5976       written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5977     }
5978   } else {
5979     char cwd[PATH_MAX];
5980 
5981     const char* p = get_current_directory(cwd, PATH_MAX);
5982     if (p == NULL) {
5983       return -1;
5984     }
5985 
5986     if (core_pattern[0] == '|') {
5987       written = jio_snprintf(buffer, bufferSize,
5988                              "\"%s\" (or dumping to %s/core.%d)",
5989                              &core_pattern[1], p, current_process_id());
5990     } else if (pid_pos != NULL) {
5991       *pid_pos = '\0';
5992       written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s", p, core_pattern,
5993                              current_process_id(), tail);
5994     } else {
5995       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5996     }
5997   }
5998 
5999   if (written < 0) {
6000     return -1;
6001   }
6002 
6003   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6004     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6005 
6006     if (core_uses_pid_file != -1) {
6007       char core_uses_pid = 0;
6008       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6009       ::close(core_uses_pid_file);
6010 
6011       if (core_uses_pid == '1') {
6012         jio_snprintf(buffer + written, bufferSize - written,
6013                                           ".%d", current_process_id());
6014       }
6015     }
6016   }
6017 
6018   return strlen(buffer);
6019 }
6020 
6021 bool os::start_debugging(char *buf, int buflen) {
6022   int len = (int)strlen(buf);
6023   char *p = &buf[len];
6024 
6025   jio_snprintf(p, buflen-len,
6026                "\n\n"
6027                "Do you want to debug the problem?\n\n"
6028                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6029                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6030                "Otherwise, press RETURN to abort...",
6031                os::current_process_id(), os::current_process_id(),
6032                os::current_thread_id(), os::current_thread_id());
6033 
6034   bool yes = os::message_box("Unexpected Error", buf);
6035 
6036   if (yes) {
6037     // yes, user asked VM to launch debugger
6038     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
6039                  os::current_process_id(), os::current_process_id());
6040 
6041     os::fork_and_exec(buf);
6042     yes = false;
6043   }
6044   return yes;
6045 }
6046 
6047 
6048 // Java/Compiler thread:
6049 //
6050 //   Low memory addresses
6051 // P0 +------------------------+
6052 //    |                        |\  Java thread created by VM does not have glibc
6053 //    |    glibc guard page    | - guard page, attached Java thread usually has
6054 //    |                        |/  1 glibc guard page.
6055 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6056 //    |                        |\
6057 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
6058 //    |                        |/
6059 //    +------------------------+ JavaThread::stack_reserved_zone_base()
6060 //    |                        |\
6061 //    |      Normal Stack      | -
6062 //    |                        |/
6063 // P2 +------------------------+ Thread::stack_base()
6064 //
6065 // Non-Java thread:
6066 //
6067 //   Low memory addresses
6068 // P0 +------------------------+
6069 //    |                        |\
6070 //    |  glibc guard page      | - usually 1 page
6071 //    |                        |/
6072 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6073 //    |                        |\
6074 //    |      Normal Stack      | -
6075 //    |                        |/
6076 // P2 +------------------------+ Thread::stack_base()
6077 //
6078 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
6079 //    returned from pthread_attr_getstack().
6080 // ** Due to NPTL implementation error, linux takes the glibc guard page out
6081 //    of the stack size given in pthread_attr. We work around this for
6082 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
6083 //
6084 #ifndef ZERO
6085 static void current_stack_region(address * bottom, size_t * size) {
6086   if (os::is_primordial_thread()) {
6087     // primordial thread needs special handling because pthread_getattr_np()
6088     // may return bogus value.
6089     *bottom = os::Linux::initial_thread_stack_bottom();
6090     *size   = os::Linux::initial_thread_stack_size();
6091   } else {
6092     pthread_attr_t attr;
6093 
6094     int rslt = pthread_getattr_np(pthread_self(), &attr);
6095 
6096     // JVM needs to know exact stack location, abort if it fails
6097     if (rslt != 0) {
6098       if (rslt == ENOMEM) {
6099         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
6100       } else {
6101         fatal("pthread_getattr_np failed with error = %d", rslt);
6102       }
6103     }
6104 
6105     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
6106       fatal("Cannot locate current stack attributes!");
6107     }
6108 
6109     // Work around NPTL stack guard error.
6110     size_t guard_size = 0;
6111     rslt = pthread_attr_getguardsize(&attr, &guard_size);
6112     if (rslt != 0) {
6113       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
6114     }
6115     *bottom += guard_size;
6116     *size   -= guard_size;
6117 
6118     pthread_attr_destroy(&attr);
6119 
6120   }
6121   assert(os::current_stack_pointer() >= *bottom &&
6122          os::current_stack_pointer() < *bottom + *size, "just checking");
6123 }
6124 
6125 address os::current_stack_base() {
6126   address bottom;
6127   size_t size;
6128   current_stack_region(&bottom, &size);
6129   return (bottom + size);
6130 }
6131 
6132 size_t os::current_stack_size() {
6133   // This stack size includes the usable stack and HotSpot guard pages
6134   // (for the threads that have Hotspot guard pages).
6135   address bottom;
6136   size_t size;
6137   current_stack_region(&bottom, &size);
6138   return size;
6139 }
6140 #endif
6141 
6142 static inline struct timespec get_mtime(const char* filename) {
6143   struct stat st;
6144   int ret = os::stat(filename, &st);
6145   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
6146   return st.st_mtim;
6147 }
6148 
6149 int os::compare_file_modified_times(const char* file1, const char* file2) {
6150   struct timespec filetime1 = get_mtime(file1);
6151   struct timespec filetime2 = get_mtime(file2);
6152   int diff = filetime1.tv_sec - filetime2.tv_sec;
6153   if (diff == 0) {
6154     return filetime1.tv_nsec - filetime2.tv_nsec;
6155   }
6156   return diff;
6157 }
6158 
6159 bool os::supports_map_sync() {
6160   return true;
6161 }
6162 
6163 /////////////// Unit tests ///////////////
6164 
6165 #ifndef PRODUCT
6166 
6167 class TestReserveMemorySpecial : AllStatic {
6168  public:
6169   static void small_page_write(void* addr, size_t size) {
6170     size_t page_size = os::vm_page_size();
6171 
6172     char* end = (char*)addr + size;
6173     for (char* p = (char*)addr; p < end; p += page_size) {
6174       *p = 1;
6175     }
6176   }
6177 
6178   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6179     if (!UseHugeTLBFS) {
6180       return;
6181     }
6182 
6183     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6184 
6185     if (addr != NULL) {
6186       small_page_write(addr, size);
6187 
6188       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6189     }
6190   }
6191 
6192   static void test_reserve_memory_special_huge_tlbfs_only() {
6193     if (!UseHugeTLBFS) {
6194       return;
6195     }
6196 
6197     size_t lp = os::large_page_size();
6198 
6199     for (size_t size = lp; size <= lp * 10; size += lp) {
6200       test_reserve_memory_special_huge_tlbfs_only(size);
6201     }
6202   }
6203 
6204   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6205     size_t lp = os::large_page_size();
6206     size_t ag = os::vm_allocation_granularity();
6207 
6208     // sizes to test
6209     const size_t sizes[] = {
6210       lp, lp + ag, lp + lp / 2, lp * 2,
6211       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6212       lp * 10, lp * 10 + lp / 2
6213     };
6214     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6215 
6216     // For each size/alignment combination, we test three scenarios:
6217     // 1) with req_addr == NULL
6218     // 2) with a non-null req_addr at which we expect to successfully allocate
6219     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6220     //    expect the allocation to either fail or to ignore req_addr
6221 
6222     // Pre-allocate two areas; they shall be as large as the largest allocation
6223     //  and aligned to the largest alignment we will be testing.
6224     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6225     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6226       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6227       -1, 0);
6228     assert(mapping1 != MAP_FAILED, "should work");
6229 
6230     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6231       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6232       -1, 0);
6233     assert(mapping2 != MAP_FAILED, "should work");
6234 
6235     // Unmap the first mapping, but leave the second mapping intact: the first
6236     // mapping will serve as a value for a "good" req_addr (case 2). The second
6237     // mapping, still intact, as "bad" req_addr (case 3).
6238     ::munmap(mapping1, mapping_size);
6239 
6240     // Case 1
6241     for (int i = 0; i < num_sizes; i++) {
6242       const size_t size = sizes[i];
6243       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6244         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6245         if (p != NULL) {
6246           assert(is_aligned(p, alignment), "must be");
6247           small_page_write(p, size);
6248           os::Linux::release_memory_special_huge_tlbfs(p, size);
6249         }
6250       }
6251     }
6252 
6253     // Case 2
6254     for (int i = 0; i < num_sizes; i++) {
6255       const size_t size = sizes[i];
6256       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6257         char* const req_addr = align_up(mapping1, alignment);
6258         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6259         if (p != NULL) {
6260           assert(p == req_addr, "must be");
6261           small_page_write(p, size);
6262           os::Linux::release_memory_special_huge_tlbfs(p, size);
6263         }
6264       }
6265     }
6266 
6267     // Case 3
6268     for (int i = 0; i < num_sizes; i++) {
6269       const size_t size = sizes[i];
6270       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6271         char* const req_addr = align_up(mapping2, alignment);
6272         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6273         // as the area around req_addr contains already existing mappings, the API should always
6274         // return NULL (as per contract, it cannot return another address)
6275         assert(p == NULL, "must be");
6276       }
6277     }
6278 
6279     ::munmap(mapping2, mapping_size);
6280 
6281   }
6282 
6283   static void test_reserve_memory_special_huge_tlbfs() {
6284     if (!UseHugeTLBFS) {
6285       return;
6286     }
6287 
6288     test_reserve_memory_special_huge_tlbfs_only();
6289     test_reserve_memory_special_huge_tlbfs_mixed();
6290   }
6291 
6292   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6293     if (!UseSHM) {
6294       return;
6295     }
6296 
6297     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6298 
6299     if (addr != NULL) {
6300       assert(is_aligned(addr, alignment), "Check");
6301       assert(is_aligned(addr, os::large_page_size()), "Check");
6302 
6303       small_page_write(addr, size);
6304 
6305       os::Linux::release_memory_special_shm(addr, size);
6306     }
6307   }
6308 
6309   static void test_reserve_memory_special_shm() {
6310     size_t lp = os::large_page_size();
6311     size_t ag = os::vm_allocation_granularity();
6312 
6313     for (size_t size = ag; size < lp * 3; size += ag) {
6314       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6315         test_reserve_memory_special_shm(size, alignment);
6316       }
6317     }
6318   }
6319 
6320   static void test() {
6321     test_reserve_memory_special_huge_tlbfs();
6322     test_reserve_memory_special_shm();
6323   }
6324 };
6325 
6326 void TestReserveMemorySpecial_test() {
6327   TestReserveMemorySpecial::test();
6328 }
6329 
6330 #endif