1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "logging/logStream.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/filemap.hpp"
  39 #include "memory/universe.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "os_share_solaris.hpp"
  42 #include "os_solaris.inline.hpp"
  43 #include "prims/jniFastGetField.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/atomic.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.inline.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "runtime/vm_version.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/align.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/growableArray.hpp"
  73 #include "utilities/macros.hpp"
  74 #include "utilities/vmError.hpp"
  75 
  76 // put OS-includes here
  77 # include <dlfcn.h>
  78 # include <errno.h>
  79 # include <exception>
  80 # include <link.h>
  81 # include <poll.h>
  82 # include <pthread.h>
  83 # include <setjmp.h>
  84 # include <signal.h>
  85 # include <stdio.h>
  86 # include <alloca.h>
  87 # include <sys/filio.h>
  88 # include <sys/ipc.h>
  89 # include <sys/lwp.h>
  90 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
  91 # include <sys/mman.h>
  92 # include <sys/processor.h>
  93 # include <sys/procset.h>
  94 # include <sys/pset.h>
  95 # include <sys/resource.h>
  96 # include <sys/shm.h>
  97 # include <sys/socket.h>
  98 # include <sys/stat.h>
  99 # include <sys/systeminfo.h>
 100 # include <sys/time.h>
 101 # include <sys/times.h>
 102 # include <sys/types.h>
 103 # include <sys/wait.h>
 104 # include <sys/utsname.h>
 105 # include <thread.h>
 106 # include <unistd.h>
 107 # include <sys/priocntl.h>
 108 # include <sys/rtpriocntl.h>
 109 # include <sys/tspriocntl.h>
 110 # include <sys/iapriocntl.h>
 111 # include <sys/fxpriocntl.h>
 112 # include <sys/loadavg.h>
 113 # include <string.h>
 114 # include <stdio.h>
 115 
 116 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
 117 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
 118 
 119 #define MAX_PATH (2 * K)
 120 
 121 // for timer info max values which include all bits
 122 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 123 
 124 
 125 // Here are some liblgrp types from sys/lgrp_user.h to be able to
 126 // compile on older systems without this header file.
 127 
 128 #ifndef MADV_ACCESS_LWP
 129   #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
 130 #endif
 131 #ifndef MADV_ACCESS_MANY
 132   #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
 133 #endif
 134 
 135 #ifndef LGRP_RSRC_CPU
 136   #define LGRP_RSRC_CPU      0       /* CPU resources */
 137 #endif
 138 #ifndef LGRP_RSRC_MEM
 139   #define LGRP_RSRC_MEM      1       /* memory resources */
 140 #endif
 141 
 142 // Values for ThreadPriorityPolicy == 1
 143 int prio_policy1[CriticalPriority+1] = {
 144   -99999,  0, 16,  32,  48,  64,
 145           80, 96, 112, 124, 127, 127 };
 146 
 147 // System parameters used internally
 148 static clock_t clock_tics_per_sec = 100;
 149 
 150 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
 151 static bool enabled_extended_FILE_stdio = false;
 152 
 153 // For diagnostics to print a message once. see run_periodic_checks
 154 static bool check_addr0_done = false;
 155 static sigset_t check_signal_done;
 156 static bool check_signals = true;
 157 
 158 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
 159 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
 160 
 161 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
 162 
 163 os::Solaris::pthread_setname_np_func_t os::Solaris::_pthread_setname_np = NULL;
 164 
 165 // "default" initializers for missing libc APIs
 166 extern "C" {
 167   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 168   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
 169 
 170   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 171   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
 172 }
 173 
 174 // "default" initializers for pthread-based synchronization
 175 extern "C" {
 176   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 177   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 178 }
 179 
 180 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 181 
 182 static inline size_t adjust_stack_size(address base, size_t size) {
 183   if ((ssize_t)size < 0) {
 184     // 4759953: Compensate for ridiculous stack size.
 185     size = max_intx;
 186   }
 187   if (size > (size_t)base) {
 188     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
 189     size = (size_t)base;
 190   }
 191   return size;
 192 }
 193 
 194 static inline stack_t get_stack_info() {
 195   stack_t st;
 196   int retval = thr_stksegment(&st);
 197   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
 198   assert(retval == 0, "incorrect return value from thr_stksegment");
 199   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
 200   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
 201   return st;
 202 }
 203 
 204 static void _handle_uncaught_cxx_exception() {
 205   VMError::report_and_die("An uncaught C++ exception");
 206 }
 207 
 208 bool os::is_primordial_thread(void) {
 209   int r = thr_main();
 210   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 211   return r == 1;
 212 }
 213 
 214 address os::current_stack_base() {
 215   bool _is_primordial_thread = is_primordial_thread();
 216 
 217   // Workaround 4352906, avoid calls to thr_stksegment by
 218   // thr_main after the first one (it looks like we trash
 219   // some data, causing the value for ss_sp to be incorrect).
 220   if (!_is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
 221     stack_t st = get_stack_info();
 222     if (_is_primordial_thread) {
 223       // cache initial value of stack base
 224       os::Solaris::_main_stack_base = (address)st.ss_sp;
 225     }
 226     return (address)st.ss_sp;
 227   } else {
 228     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
 229     return os::Solaris::_main_stack_base;
 230   }
 231 }
 232 
 233 size_t os::current_stack_size() {
 234   size_t size;
 235 
 236   if (!is_primordial_thread()) {
 237     size = get_stack_info().ss_size;
 238   } else {
 239     struct rlimit limits;
 240     getrlimit(RLIMIT_STACK, &limits);
 241     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
 242   }
 243   // base may not be page aligned
 244   address base = current_stack_base();
 245   address bottom = align_up(base - size, os::vm_page_size());;
 246   return (size_t)(base - bottom);
 247 }
 248 
 249 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
 250   return localtime_r(clock, res);
 251 }
 252 
 253 void os::Solaris::try_enable_extended_io() {
 254   typedef int (*enable_extended_FILE_stdio_t)(int, int);
 255 
 256   if (!UseExtendedFileIO) {
 257     return;
 258   }
 259 
 260   enable_extended_FILE_stdio_t enabler =
 261     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
 262                                          "enable_extended_FILE_stdio");
 263   if (enabler) {
 264     enabler(-1, -1);
 265   }
 266 }
 267 
 268 jint os::Solaris::_os_thread_limit = 0;
 269 volatile jint os::Solaris::_os_thread_count = 0;
 270 
 271 julong os::available_memory() {
 272   return Solaris::available_memory();
 273 }
 274 
 275 julong os::Solaris::available_memory() {
 276   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
 277 }
 278 
 279 julong os::Solaris::_physical_memory = 0;
 280 
 281 julong os::physical_memory() {
 282   return Solaris::physical_memory();
 283 }
 284 
 285 static hrtime_t first_hrtime = 0;
 286 static const hrtime_t hrtime_hz = 1000*1000*1000;
 287 static volatile hrtime_t max_hrtime = 0;
 288 
 289 
 290 void os::Solaris::initialize_system_info() {
 291   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 292   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
 293                                      (julong)sysconf(_SC_PAGESIZE);
 294 }
 295 
 296 uint os::processor_id() {
 297   const processorid_t id = ::getcpuid();
 298   assert(id >= 0 && id < _processor_count, "Invalid processor id");
 299   return (uint)id;
 300 }
 301 
 302 int os::active_processor_count() {
 303   // User has overridden the number of active processors
 304   if (ActiveProcessorCount > 0) {
 305     log_trace(os)("active_processor_count: "
 306                   "active processor count set by user : %d",
 307                   ActiveProcessorCount);
 308     return ActiveProcessorCount;
 309   }
 310 
 311   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
 312   pid_t pid = getpid();
 313   psetid_t pset = PS_NONE;
 314   // Are we running in a processor set or is there any processor set around?
 315   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
 316     uint_t pset_cpus;
 317     // Query the number of cpus available to us.
 318     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
 319       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
 320       return pset_cpus;
 321     }
 322   }
 323   // Otherwise return number of online cpus
 324   return online_cpus;
 325 }
 326 
 327 void os::set_native_thread_name(const char *name) {
 328   if (Solaris::_pthread_setname_np != NULL) {
 329     // Only the first 31 bytes of 'name' are processed by pthread_setname_np
 330     // but we explicitly copy into a size-limited buffer to avoid any
 331     // possible overflow.
 332     char buf[32];
 333     snprintf(buf, sizeof(buf), "%s", name);
 334     buf[sizeof(buf) - 1] = '\0';
 335     Solaris::_pthread_setname_np(pthread_self(), buf);
 336   }
 337 }
 338 
 339 bool os::bind_to_processor(uint processor_id) {
 340   // We assume that a processorid_t can be stored in a uint.
 341   assert(sizeof(uint) == sizeof(processorid_t),
 342          "can't convert uint to processorid_t");
 343   int bind_result =
 344     processor_bind(P_LWPID,                       // bind LWP.
 345                    P_MYID,                        // bind current LWP.
 346                    (processorid_t) processor_id,  // id.
 347                    NULL);                         // don't return old binding.
 348   return (bind_result == 0);
 349 }
 350 
 351 // Return true if user is running as root.
 352 
 353 bool os::have_special_privileges() {
 354   static bool init = false;
 355   static bool privileges = false;
 356   if (!init) {
 357     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 358     init = true;
 359   }
 360   return privileges;
 361 }
 362 
 363 
 364 void os::init_system_properties_values() {
 365   // The next steps are taken in the product version:
 366   //
 367   // Obtain the JAVA_HOME value from the location of libjvm.so.
 368   // This library should be located at:
 369   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 370   //
 371   // If "/jre/lib/" appears at the right place in the path, then we
 372   // assume libjvm.so is installed in a JDK and we use this path.
 373   //
 374   // Otherwise exit with message: "Could not create the Java virtual machine."
 375   //
 376   // The following extra steps are taken in the debugging version:
 377   //
 378   // If "/jre/lib/" does NOT appear at the right place in the path
 379   // instead of exit check for $JAVA_HOME environment variable.
 380   //
 381   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 382   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 383   // it looks like libjvm.so is installed there
 384   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 385   //
 386   // Otherwise exit.
 387   //
 388   // Important note: if the location of libjvm.so changes this
 389   // code needs to be changed accordingly.
 390 
 391 // Base path of extensions installed on the system.
 392 #define SYS_EXT_DIR     "/usr/jdk/packages"
 393 #define EXTENSIONS_DIR  "/lib/ext"
 394 
 395   // Buffer that fits several sprintfs.
 396   // Note that the space for the colon and the trailing null are provided
 397   // by the nulls included by the sizeof operator.
 398   const size_t bufsize =
 399     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 400          sizeof(SYS_EXT_DIR) + sizeof("/lib/"), // invariant ld_library_path
 401          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 402   char *buf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 403 
 404   // sysclasspath, java_home, dll_dir
 405   {
 406     char *pslash;
 407     os::jvm_path(buf, bufsize);
 408 
 409     // Found the full path to libjvm.so.
 410     // Now cut the path to <java_home>/jre if we can.
 411     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 412     pslash = strrchr(buf, '/');
 413     if (pslash != NULL) {
 414       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 415     }
 416     Arguments::set_dll_dir(buf);
 417 
 418     if (pslash != NULL) {
 419       pslash = strrchr(buf, '/');
 420       if (pslash != NULL) {
 421         *pslash = '\0';        // Get rid of /lib.
 422       }
 423     }
 424     Arguments::set_java_home(buf);
 425     if (!set_boot_path('/', ':')) {
 426       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 427     }
 428   }
 429 
 430   // Where to look for native libraries.
 431   {
 432     // Use dlinfo() to determine the correct java.library.path.
 433     //
 434     // If we're launched by the Java launcher, and the user
 435     // does not set java.library.path explicitly on the commandline,
 436     // the Java launcher sets LD_LIBRARY_PATH for us and unsets
 437     // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
 438     // dlinfo returns LD_LIBRARY_PATH + crle settings (including
 439     // /usr/lib), which is exactly what we want.
 440     //
 441     // If the user does set java.library.path, it completely
 442     // overwrites this setting, and always has.
 443     //
 444     // If we're not launched by the Java launcher, we may
 445     // get here with any/all of the LD_LIBRARY_PATH[_32|64]
 446     // settings.  Again, dlinfo does exactly what we want.
 447 
 448     Dl_serinfo     info_sz, *info = &info_sz;
 449     Dl_serpath     *path;
 450     char           *library_path;
 451     char           *common_path = buf;
 452 
 453     // Determine search path count and required buffer size.
 454     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
 455       FREE_C_HEAP_ARRAY(char, buf);
 456       vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
 457     }
 458 
 459     // Allocate new buffer and initialize.
 460     info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
 461     info->dls_size = info_sz.dls_size;
 462     info->dls_cnt = info_sz.dls_cnt;
 463 
 464     // Obtain search path information.
 465     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
 466       FREE_C_HEAP_ARRAY(char, buf);
 467       FREE_C_HEAP_ARRAY(char, info);
 468       vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
 469     }
 470 
 471     path = &info->dls_serpath[0];
 472 
 473     // Note: Due to a legacy implementation, most of the library path
 474     // is set in the launcher. This was to accomodate linking restrictions
 475     // on legacy Solaris implementations (which are no longer supported).
 476     // Eventually, all the library path setting will be done here.
 477     //
 478     // However, to prevent the proliferation of improperly built native
 479     // libraries, the new path component /usr/jdk/packages is added here.
 480 
 481     // Construct the invariant part of ld_library_path.
 482     sprintf(common_path, SYS_EXT_DIR "/lib");
 483 
 484     // Struct size is more than sufficient for the path components obtained
 485     // through the dlinfo() call, so only add additional space for the path
 486     // components explicitly added here.
 487     size_t library_path_size = info->dls_size + strlen(common_path);
 488     library_path = NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
 489     library_path[0] = '\0';
 490 
 491     // Construct the desired Java library path from the linker's library
 492     // search path.
 493     //
 494     // For compatibility, it is optimal that we insert the additional path
 495     // components specific to the Java VM after those components specified
 496     // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
 497     // infrastructure.
 498     if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
 499       strcpy(library_path, common_path);
 500     } else {
 501       int inserted = 0;
 502       int i;
 503       for (i = 0; i < info->dls_cnt; i++, path++) {
 504         uint_t flags = path->dls_flags & LA_SER_MASK;
 505         if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
 506           strcat(library_path, common_path);
 507           strcat(library_path, os::path_separator());
 508           inserted = 1;
 509         }
 510         strcat(library_path, path->dls_name);
 511         strcat(library_path, os::path_separator());
 512       }
 513       // Eliminate trailing path separator.
 514       library_path[strlen(library_path)-1] = '\0';
 515     }
 516 
 517     // happens before argument parsing - can't use a trace flag
 518     // tty->print_raw("init_system_properties_values: native lib path: ");
 519     // tty->print_raw_cr(library_path);
 520 
 521     // Callee copies into its own buffer.
 522     Arguments::set_library_path(library_path);
 523 
 524     FREE_C_HEAP_ARRAY(char, library_path);
 525     FREE_C_HEAP_ARRAY(char, info);
 526   }
 527 
 528   // Extensions directories.
 529   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 530   Arguments::set_ext_dirs(buf);
 531 
 532   FREE_C_HEAP_ARRAY(char, buf);
 533 
 534 #undef SYS_EXT_DIR
 535 #undef EXTENSIONS_DIR
 536 }
 537 
 538 void os::breakpoint() {
 539   BREAKPOINT;
 540 }
 541 
 542 extern "C" void breakpoint() {
 543   // use debugger to set breakpoint here
 544 }
 545 
 546 static thread_t main_thread;
 547 
 548 // Thread start routine for all newly created threads
 549 extern "C" void* thread_native_entry(void* thread_addr) {
 550 
 551   Thread* thread = (Thread*)thread_addr;
 552 
 553   thread->record_stack_base_and_size();
 554 
 555   // Try to randomize the cache line index of hot stack frames.
 556   // This helps when threads of the same stack traces evict each other's
 557   // cache lines. The threads can be either from the same JVM instance, or
 558   // from different JVM instances. The benefit is especially true for
 559   // processors with hyperthreading technology.
 560   static int counter = 0;
 561   int pid = os::current_process_id();
 562   alloca(((pid ^ counter++) & 7) * 128);
 563 
 564   int prio;
 565 
 566   thread->initialize_thread_current();
 567 
 568   OSThread* osthr = thread->osthread();
 569 
 570   osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
 571 
 572   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").",
 573     os::current_thread_id());
 574 
 575   if (UseNUMA) {
 576     int lgrp_id = os::numa_get_group_id();
 577     if (lgrp_id != -1) {
 578       thread->set_lgrp_id(lgrp_id);
 579     }
 580   }
 581 
 582   // Our priority was set when we were created, and stored in the
 583   // osthread, but couldn't be passed through to our LWP until now.
 584   // So read back the priority and set it again.
 585 
 586   if (osthr->thread_id() != -1) {
 587     if (UseThreadPriorities) {
 588       int prio = osthr->native_priority();
 589       if (ThreadPriorityVerbose) {
 590         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
 591                       INTPTR_FORMAT ", setting priority: %d\n",
 592                       osthr->thread_id(), osthr->lwp_id(), prio);
 593       }
 594       os::set_native_priority(thread, prio);
 595     }
 596   } else if (ThreadPriorityVerbose) {
 597     warning("Can't set priority in _start routine, thread id hasn't been set\n");
 598   }
 599 
 600   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 601 
 602   // initialize signal mask for this thread
 603   os::Solaris::hotspot_sigmask(thread);
 604 
 605   os::Solaris::init_thread_fpu_state();
 606   std::set_terminate(_handle_uncaught_cxx_exception);
 607 
 608   thread->call_run();
 609 
 610   // Note: at this point the thread object may already have deleted itself.
 611   // Do not dereference it from here on out.
 612 
 613   // One less thread is executing
 614   // When the VMThread gets here, the main thread may have already exited
 615   // which frees the CodeHeap containing the Atomic::dec code
 616   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 617     Atomic::dec(&os::Solaris::_os_thread_count);
 618   }
 619 
 620   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 621 
 622   if (UseDetachedThreads) {
 623     thr_exit(NULL);
 624     ShouldNotReachHere();
 625   }
 626   return NULL;
 627 }
 628 
 629 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
 630   // Allocate the OSThread object
 631   OSThread* osthread = new OSThread(NULL, NULL);
 632   if (osthread == NULL) return NULL;
 633 
 634   // Store info on the Solaris thread into the OSThread
 635   osthread->set_thread_id(thread_id);
 636   osthread->set_lwp_id(_lwp_self());
 637 
 638   if (UseNUMA) {
 639     int lgrp_id = os::numa_get_group_id();
 640     if (lgrp_id != -1) {
 641       thread->set_lgrp_id(lgrp_id);
 642     }
 643   }
 644 
 645   if (ThreadPriorityVerbose) {
 646     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
 647                   osthread->thread_id(), osthread->lwp_id());
 648   }
 649 
 650   // Initial thread state is INITIALIZED, not SUSPENDED
 651   osthread->set_state(INITIALIZED);
 652 
 653   return osthread;
 654 }
 655 
 656 void os::Solaris::hotspot_sigmask(Thread* thread) {
 657   //Save caller's signal mask
 658   sigset_t sigmask;
 659   pthread_sigmask(SIG_SETMASK, NULL, &sigmask);
 660   OSThread *osthread = thread->osthread();
 661   osthread->set_caller_sigmask(sigmask);
 662 
 663   pthread_sigmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
 664   if (!ReduceSignalUsage) {
 665     if (thread->is_VM_thread()) {
 666       // Only the VM thread handles BREAK_SIGNAL ...
 667       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 668     } else {
 669       // ... all other threads block BREAK_SIGNAL
 670       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
 671       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 672     }
 673   }
 674 }
 675 
 676 bool os::create_attached_thread(JavaThread* thread) {
 677 #ifdef ASSERT
 678   thread->verify_not_published();
 679 #endif
 680   OSThread* osthread = create_os_thread(thread, thr_self());
 681   if (osthread == NULL) {
 682     return false;
 683   }
 684 
 685   // Initial thread state is RUNNABLE
 686   osthread->set_state(RUNNABLE);
 687   thread->set_osthread(osthread);
 688 
 689   // initialize signal mask for this thread
 690   // and save the caller's signal mask
 691   os::Solaris::hotspot_sigmask(thread);
 692 
 693   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 694     os::current_thread_id());
 695 
 696   return true;
 697 }
 698 
 699 bool os::create_main_thread(JavaThread* thread) {
 700 #ifdef ASSERT
 701   thread->verify_not_published();
 702 #endif
 703   if (_starting_thread == NULL) {
 704     _starting_thread = create_os_thread(thread, main_thread);
 705     if (_starting_thread == NULL) {
 706       return false;
 707     }
 708   }
 709 
 710   // The primodial thread is runnable from the start
 711   _starting_thread->set_state(RUNNABLE);
 712 
 713   thread->set_osthread(_starting_thread);
 714 
 715   // initialize signal mask for this thread
 716   // and save the caller's signal mask
 717   os::Solaris::hotspot_sigmask(thread);
 718 
 719   return true;
 720 }
 721 
 722 // Helper function to trace thread attributes, similar to os::Posix::describe_pthread_attr()
 723 static char* describe_thr_create_attributes(char* buf, size_t buflen,
 724                                             size_t stacksize, long flags) {
 725   stringStream ss(buf, buflen);
 726   ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 727   ss.print("flags: ");
 728   #define PRINT_FLAG(f) if (flags & f) ss.print( #f " ");
 729   #define ALL(X) \
 730     X(THR_SUSPENDED) \
 731     X(THR_DETACHED) \
 732     X(THR_BOUND) \
 733     X(THR_NEW_LWP) \
 734     X(THR_DAEMON)
 735   ALL(PRINT_FLAG)
 736   #undef ALL
 737   #undef PRINT_FLAG
 738   return buf;
 739 }
 740 
 741 // return default stack size for thr_type
 742 size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
 743   // default stack size when not specified by caller is 1M (2M for LP64)
 744   size_t s = (BytesPerWord >> 2) * K * K;
 745   return s;
 746 }
 747 
 748 bool os::create_thread(Thread* thread, ThreadType thr_type,
 749                        size_t req_stack_size) {
 750   // Allocate the OSThread object
 751   OSThread* osthread = new OSThread(NULL, NULL);
 752   if (osthread == NULL) {
 753     return false;
 754   }
 755 
 756   if (ThreadPriorityVerbose) {
 757     char *thrtyp;
 758     switch (thr_type) {
 759     case vm_thread:
 760       thrtyp = (char *)"vm";
 761       break;
 762     case cgc_thread:
 763       thrtyp = (char *)"cgc";
 764       break;
 765     case pgc_thread:
 766       thrtyp = (char *)"pgc";
 767       break;
 768     case java_thread:
 769       thrtyp = (char *)"java";
 770       break;
 771     case compiler_thread:
 772       thrtyp = (char *)"compiler";
 773       break;
 774     case watcher_thread:
 775       thrtyp = (char *)"watcher";
 776       break;
 777     default:
 778       thrtyp = (char *)"unknown";
 779       break;
 780     }
 781     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
 782   }
 783 
 784   // calculate stack size if it's not specified by caller
 785   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 786 
 787   // Initial state is ALLOCATED but not INITIALIZED
 788   osthread->set_state(ALLOCATED);
 789 
 790   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
 791     // We got lots of threads. Check if we still have some address space left.
 792     // Need to be at least 5Mb of unreserved address space. We do check by
 793     // trying to reserve some.
 794     const size_t VirtualMemoryBangSize = 20*K*K;
 795     char* mem = os::reserve_memory(VirtualMemoryBangSize);
 796     if (mem == NULL) {
 797       delete osthread;
 798       return false;
 799     } else {
 800       // Release the memory again
 801       os::release_memory(mem, VirtualMemoryBangSize);
 802     }
 803   }
 804 
 805   // Setup osthread because the child thread may need it.
 806   thread->set_osthread(osthread);
 807 
 808   // Create the Solaris thread
 809   thread_t tid = 0;
 810   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
 811   int      status;
 812 
 813   // Mark that we don't have an lwp or thread id yet.
 814   // In case we attempt to set the priority before the thread starts.
 815   osthread->set_lwp_id(-1);
 816   osthread->set_thread_id(-1);
 817 
 818   status = thr_create(NULL, stack_size, thread_native_entry, thread, flags, &tid);
 819 
 820   char buf[64];
 821   if (status == 0) {
 822     log_info(os, thread)("Thread started (tid: " UINTX_FORMAT ", attributes: %s). ",
 823       (uintx) tid, describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
 824   } else {
 825     log_warning(os, thread)("Failed to start thread - thr_create failed (%s) for attributes: %s.",
 826       os::errno_name(status), describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
 827     // Log some OS information which might explain why creating the thread failed.
 828     log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 829     LogStream st(Log(os, thread)::info());
 830     os::Posix::print_rlimit_info(&st);
 831     os::print_memory_info(&st);
 832   }
 833 
 834   if (status != 0) {
 835     thread->set_osthread(NULL);
 836     // Need to clean up stuff we've allocated so far
 837     delete osthread;
 838     return false;
 839   }
 840 
 841   Atomic::inc(&os::Solaris::_os_thread_count);
 842 
 843   // Store info on the Solaris thread into the OSThread
 844   osthread->set_thread_id(tid);
 845 
 846   // Remember that we created this thread so we can set priority on it
 847   osthread->set_vm_created();
 848 
 849   // Most thread types will set an explicit priority before starting the thread,
 850   // but for those that don't we need a valid value to read back in thread_native_entry.
 851   osthread->set_native_priority(NormPriority);
 852 
 853   // Initial thread state is INITIALIZED, not SUSPENDED
 854   osthread->set_state(INITIALIZED);
 855 
 856   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 857   return true;
 858 }
 859 
 860 debug_only(static bool signal_sets_initialized = false);
 861 static sigset_t unblocked_sigs, vm_sigs;
 862 
 863 void os::Solaris::signal_sets_init() {
 864   // Should also have an assertion stating we are still single-threaded.
 865   assert(!signal_sets_initialized, "Already initialized");
 866   // Fill in signals that are necessarily unblocked for all threads in
 867   // the VM. Currently, we unblock the following signals:
 868   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 869   //                         by -Xrs (=ReduceSignalUsage));
 870   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 871   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 872   // the dispositions or masks wrt these signals.
 873   // Programs embedding the VM that want to use the above signals for their
 874   // own purposes must, at this time, use the "-Xrs" option to prevent
 875   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 876   // (See bug 4345157, and other related bugs).
 877   // In reality, though, unblocking these signals is really a nop, since
 878   // these signals are not blocked by default.
 879   sigemptyset(&unblocked_sigs);
 880   sigaddset(&unblocked_sigs, SIGILL);
 881   sigaddset(&unblocked_sigs, SIGSEGV);
 882   sigaddset(&unblocked_sigs, SIGBUS);
 883   sigaddset(&unblocked_sigs, SIGFPE);
 884   sigaddset(&unblocked_sigs, ASYNC_SIGNAL);
 885 
 886   if (!ReduceSignalUsage) {
 887     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 888       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 889     }
 890     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 891       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 892     }
 893     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 894       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 895     }
 896   }
 897   // Fill in signals that are blocked by all but the VM thread.
 898   sigemptyset(&vm_sigs);
 899   if (!ReduceSignalUsage) {
 900     sigaddset(&vm_sigs, BREAK_SIGNAL);
 901   }
 902   debug_only(signal_sets_initialized = true);
 903 
 904   // For diagnostics only used in run_periodic_checks
 905   sigemptyset(&check_signal_done);
 906 }
 907 
 908 // These are signals that are unblocked while a thread is running Java.
 909 // (For some reason, they get blocked by default.)
 910 sigset_t* os::Solaris::unblocked_signals() {
 911   assert(signal_sets_initialized, "Not initialized");
 912   return &unblocked_sigs;
 913 }
 914 
 915 // These are the signals that are blocked while a (non-VM) thread is
 916 // running Java. Only the VM thread handles these signals.
 917 sigset_t* os::Solaris::vm_signals() {
 918   assert(signal_sets_initialized, "Not initialized");
 919   return &vm_sigs;
 920 }
 921 
 922 // CR 7190089: on Solaris, primordial thread's stack needs adjusting.
 923 // Without the adjustment, stack size is incorrect if stack is set to unlimited (ulimit -s unlimited).
 924 void os::Solaris::correct_stack_boundaries_for_primordial_thread(Thread* thr) {
 925   assert(is_primordial_thread(), "Call only for primordial thread");
 926 
 927   JavaThread* jt = (JavaThread *)thr;
 928   assert(jt != NULL, "Sanity check");
 929   size_t stack_size;
 930   address base = jt->stack_base();
 931   if (Arguments::created_by_java_launcher()) {
 932     // Use 2MB to allow for Solaris 7 64 bit mode.
 933     stack_size = JavaThread::stack_size_at_create() == 0
 934       ? 2048*K : JavaThread::stack_size_at_create();
 935 
 936     // There are rare cases when we may have already used more than
 937     // the basic stack size allotment before this method is invoked.
 938     // Attempt to allow for a normally sized java_stack.
 939     size_t current_stack_offset = (size_t)(base - (address)&stack_size);
 940     stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
 941   } else {
 942     // 6269555: If we were not created by a Java launcher, i.e. if we are
 943     // running embedded in a native application, treat the primordial thread
 944     // as much like a native attached thread as possible.  This means using
 945     // the current stack size from thr_stksegment(), unless it is too large
 946     // to reliably setup guard pages.  A reasonable max size is 8MB.
 947     size_t current_size = os::current_stack_size();
 948     // This should never happen, but just in case....
 949     if (current_size == 0) current_size = 2 * K * K;
 950     stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
 951   }
 952   address bottom = align_up(base - stack_size, os::vm_page_size());;
 953   stack_size = (size_t)(base - bottom);
 954 
 955   assert(stack_size > 0, "Stack size calculation problem");
 956 
 957   if (stack_size > jt->stack_size()) {
 958 #ifndef PRODUCT
 959     struct rlimit limits;
 960     getrlimit(RLIMIT_STACK, &limits);
 961     size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
 962     assert(size >= jt->stack_size(), "Stack size problem in main thread");
 963 #endif
 964     tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
 965                   "(Stack sizes are rounded up to a multiple of the system page size.)\n"
 966                   "See limit(1) to increase the stack size limit.",
 967                   stack_size / K, jt->stack_size() / K);
 968     vm_exit(1);
 969   }
 970   assert(jt->stack_size() >= stack_size,
 971          "Attempt to map more stack than was allocated");
 972   jt->set_stack_size(stack_size);
 973 
 974 }
 975 
 976 
 977 
 978 // Free Solaris resources related to the OSThread
 979 void os::free_thread(OSThread* osthread) {
 980   assert(osthread != NULL, "os::free_thread but osthread not set");
 981 
 982   // We are told to free resources of the argument thread,
 983   // but we can only really operate on the current thread.
 984   assert(Thread::current()->osthread() == osthread,
 985          "os::free_thread but not current thread");
 986 
 987   // Restore caller's signal mask
 988   sigset_t sigmask = osthread->caller_sigmask();
 989   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 990 
 991   delete osthread;
 992 }
 993 
 994 void os::pd_start_thread(Thread* thread) {
 995   int status = thr_continue(thread->osthread()->thread_id());
 996   assert_status(status == 0, status, "thr_continue failed");
 997 }
 998 
 999 
1000 intx os::current_thread_id() {
1001   return (intx)thr_self();
1002 }
1003 
1004 static pid_t _initial_pid = 0;
1005 
1006 int os::current_process_id() {
1007   return (int)(_initial_pid ? _initial_pid : getpid());
1008 }
1009 
1010 // gethrtime() should be monotonic according to the documentation,
1011 // but some virtualized platforms are known to break this guarantee.
1012 // getTimeNanos() must be guaranteed not to move backwards, so we
1013 // are forced to add a check here.
1014 inline hrtime_t getTimeNanos() {
1015   const hrtime_t now = gethrtime();
1016   const hrtime_t prev = max_hrtime;
1017   if (now <= prev) {
1018     return prev;   // same or retrograde time;
1019   }
1020   const hrtime_t obsv = Atomic::cmpxchg(&max_hrtime, prev, now);
1021   assert(obsv >= prev, "invariant");   // Monotonicity
1022   // If the CAS succeeded then we're done and return "now".
1023   // If the CAS failed and the observed value "obsv" is >= now then
1024   // we should return "obsv".  If the CAS failed and now > obsv > prv then
1025   // some other thread raced this thread and installed a new value, in which case
1026   // we could either (a) retry the entire operation, (b) retry trying to install now
1027   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1028   // we might discard a higher "now" value in deference to a slightly lower but freshly
1029   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1030   // to (a) or (b) -- and greatly reduces coherence traffic.
1031   // We might also condition (c) on the magnitude of the delta between obsv and now.
1032   // Avoiding excessive CAS operations to hot RW locations is critical.
1033   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1034   return (prev == obsv) ? now : obsv;
1035 }
1036 
1037 // Time since start-up in seconds to a fine granularity.
1038 // Used by VMSelfDestructTimer and the MemProfiler.
1039 double os::elapsedTime() {
1040   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1041 }
1042 
1043 jlong os::elapsed_counter() {
1044   return (jlong)(getTimeNanos() - first_hrtime);
1045 }
1046 
1047 jlong os::elapsed_frequency() {
1048   return hrtime_hz;
1049 }
1050 
1051 // Return the real, user, and system times in seconds from an
1052 // arbitrary fixed point in the past.
1053 bool os::getTimesSecs(double* process_real_time,
1054                       double* process_user_time,
1055                       double* process_system_time) {
1056   struct tms ticks;
1057   clock_t real_ticks = times(&ticks);
1058 
1059   if (real_ticks == (clock_t) (-1)) {
1060     return false;
1061   } else {
1062     double ticks_per_second = (double) clock_tics_per_sec;
1063     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1064     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1065     // For consistency return the real time from getTimeNanos()
1066     // converted to seconds.
1067     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1068 
1069     return true;
1070   }
1071 }
1072 
1073 bool os::supports_vtime() { return true; }
1074 
1075 double os::elapsedVTime() {
1076   return (double)gethrvtime() / (double)hrtime_hz;
1077 }
1078 
1079 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1080 jlong os::javaTimeMillis() {
1081   timeval t;
1082   if (gettimeofday(&t, NULL) == -1) {
1083     fatal("os::javaTimeMillis: gettimeofday (%s)", os::strerror(errno));
1084   }
1085   return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1086 }
1087 
1088 // Must return seconds+nanos since Jan 1 1970. This must use the same
1089 // time source as javaTimeMillis and can't use get_nsec_fromepoch as
1090 // we need better than 1ms accuracy
1091 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1092   timeval t;
1093   if (gettimeofday(&t, NULL) == -1) {
1094     fatal("os::javaTimeSystemUTC: gettimeofday (%s)", os::strerror(errno));
1095   }
1096   seconds = jlong(t.tv_sec);
1097   nanos = jlong(t.tv_usec) * 1000;
1098 }
1099 
1100 
1101 jlong os::javaTimeNanos() {
1102   return (jlong)getTimeNanos();
1103 }
1104 
1105 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1106   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1107   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1108   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1109   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1110 }
1111 
1112 char * os::local_time_string(char *buf, size_t buflen) {
1113   struct tm t;
1114   time_t long_time;
1115   time(&long_time);
1116   localtime_r(&long_time, &t);
1117   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1118                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1119                t.tm_hour, t.tm_min, t.tm_sec);
1120   return buf;
1121 }
1122 
1123 // Note: os::shutdown() might be called very early during initialization, or
1124 // called from signal handler. Before adding something to os::shutdown(), make
1125 // sure it is async-safe and can handle partially initialized VM.
1126 void os::shutdown() {
1127 
1128   // allow PerfMemory to attempt cleanup of any persistent resources
1129   perfMemory_exit();
1130 
1131   // needs to remove object in file system
1132   AttachListener::abort();
1133 
1134   // flush buffered output, finish log files
1135   ostream_abort();
1136 
1137   // Check for abort hook
1138   abort_hook_t abort_hook = Arguments::abort_hook();
1139   if (abort_hook != NULL) {
1140     abort_hook();
1141   }
1142 }
1143 
1144 // Note: os::abort() might be called very early during initialization, or
1145 // called from signal handler. Before adding something to os::abort(), make
1146 // sure it is async-safe and can handle partially initialized VM.
1147 void os::abort(bool dump_core, void* siginfo, const void* context) {
1148   os::shutdown();
1149   if (dump_core) {
1150 #ifndef PRODUCT
1151     fdStream out(defaultStream::output_fd());
1152     out.print_raw("Current thread is ");
1153     char buf[16];
1154     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1155     out.print_raw_cr(buf);
1156     out.print_raw_cr("Dumping core ...");
1157 #endif
1158     ::abort(); // dump core (for debugging)
1159   }
1160 
1161   ::exit(1);
1162 }
1163 
1164 // Die immediately, no exit hook, no abort hook, no cleanup.
1165 // Dump a core file, if possible, for debugging.
1166 void os::die() {
1167   if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) {
1168     // For TimeoutInErrorHandlingTest.java, we just kill the VM
1169     // and don't take the time to generate a core file.
1170     os::signal_raise(SIGKILL);
1171   } else {
1172     ::abort();
1173   }
1174 }
1175 
1176 // DLL functions
1177 
1178 const char* os::dll_file_extension() { return ".so"; }
1179 
1180 // This must be hard coded because it's the system's temporary
1181 // directory not the java application's temp directory, ala java.io.tmpdir.
1182 const char* os::get_temp_directory() { return "/tmp"; }
1183 
1184 // check if addr is inside libjvm.so
1185 bool os::address_is_in_vm(address addr) {
1186   static address libjvm_base_addr;
1187   Dl_info dlinfo;
1188 
1189   if (libjvm_base_addr == NULL) {
1190     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1191       libjvm_base_addr = (address)dlinfo.dli_fbase;
1192     }
1193     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1194   }
1195 
1196   if (dladdr((void *)addr, &dlinfo) != 0) {
1197     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1198   }
1199 
1200   return false;
1201 }
1202 
1203 typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1204 static dladdr1_func_type dladdr1_func = NULL;
1205 
1206 bool os::dll_address_to_function_name(address addr, char *buf,
1207                                       int buflen, int * offset,
1208                                       bool demangle) {
1209   // buf is not optional, but offset is optional
1210   assert(buf != NULL, "sanity check");
1211 
1212   Dl_info dlinfo;
1213 
1214   // dladdr1_func was initialized in os::init()
1215   if (dladdr1_func != NULL) {
1216     // yes, we have dladdr1
1217 
1218     // Support for dladdr1 is checked at runtime; it may be
1219     // available even if the vm is built on a machine that does
1220     // not have dladdr1 support.  Make sure there is a value for
1221     // RTLD_DL_SYMENT.
1222 #ifndef RTLD_DL_SYMENT
1223   #define RTLD_DL_SYMENT 1
1224 #endif
1225 #ifdef _LP64
1226     Elf64_Sym * info;
1227 #else
1228     Elf32_Sym * info;
1229 #endif
1230     if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1231                      RTLD_DL_SYMENT) != 0) {
1232       // see if we have a matching symbol that covers our address
1233       if (dlinfo.dli_saddr != NULL &&
1234           (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1235         if (dlinfo.dli_sname != NULL) {
1236           if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1237             jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1238           }
1239           if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1240           return true;
1241         }
1242       }
1243       // no matching symbol so try for just file info
1244       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1245         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1246                             buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1247           return true;
1248         }
1249       }
1250     }
1251     buf[0] = '\0';
1252     if (offset != NULL) *offset  = -1;
1253     return false;
1254   }
1255 
1256   // no, only dladdr is available
1257   if (dladdr((void *)addr, &dlinfo) != 0) {
1258     // see if we have a matching symbol
1259     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1260       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1261         jio_snprintf(buf, buflen, dlinfo.dli_sname);
1262       }
1263       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1264       return true;
1265     }
1266     // no matching symbol so try for just file info
1267     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1268       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1269                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1270         return true;
1271       }
1272     }
1273   }
1274   buf[0] = '\0';
1275   if (offset != NULL) *offset  = -1;
1276   return false;
1277 }
1278 
1279 bool os::dll_address_to_library_name(address addr, char* buf,
1280                                      int buflen, int* offset) {
1281   // buf is not optional, but offset is optional
1282   assert(buf != NULL, "sanity check");
1283 
1284   Dl_info dlinfo;
1285 
1286   if (dladdr((void*)addr, &dlinfo) != 0) {
1287     if (dlinfo.dli_fname != NULL) {
1288       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1289     }
1290     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1291       *offset = addr - (address)dlinfo.dli_fbase;
1292     }
1293     return true;
1294   }
1295 
1296   buf[0] = '\0';
1297   if (offset) *offset = -1;
1298   return false;
1299 }
1300 
1301 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1302   Dl_info dli;
1303   // Sanity check?
1304   if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1305       dli.dli_fname == NULL) {
1306     return 1;
1307   }
1308 
1309   void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1310   if (handle == NULL) {
1311     return 1;
1312   }
1313 
1314   Link_map *map;
1315   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1316   if (map == NULL) {
1317     dlclose(handle);
1318     return 1;
1319   }
1320 
1321   while (map->l_prev != NULL) {
1322     map = map->l_prev;
1323   }
1324 
1325   while (map != NULL) {
1326     // Iterate through all map entries and call callback with fields of interest
1327     if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1328       dlclose(handle);
1329       return 1;
1330     }
1331     map = map->l_next;
1332   }
1333 
1334   dlclose(handle);
1335   return 0;
1336 }
1337 
1338 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1339   outputStream * out = (outputStream *) param;
1340   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1341   return 0;
1342 }
1343 
1344 void os::print_dll_info(outputStream * st) {
1345   st->print_cr("Dynamic libraries:"); st->flush();
1346   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1347     st->print_cr("Error: Cannot print dynamic libraries.");
1348   }
1349 }
1350 
1351 static void change_endianness(Elf32_Half& val) {
1352   unsigned char *ptr = (unsigned char *)&val;
1353   unsigned char swp = ptr[0];
1354   ptr[0] = ptr[1];
1355   ptr[1] = swp;
1356 }
1357 
1358 // Loads .dll/.so and
1359 // in case of error it checks if .dll/.so was built for the
1360 // same architecture as Hotspot is running on
1361 
1362 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1363   log_info(os)("attempting shared library load of %s", filename);
1364 
1365   void * result= ::dlopen(filename, RTLD_LAZY);
1366   if (result != NULL) {
1367     // Successful loading
1368     Events::log(NULL, "Loaded shared library %s", filename);
1369     log_info(os)("shared library load of %s was successful", filename);
1370     return result;
1371   }
1372 
1373   Elf32_Ehdr elf_head;
1374   const char* error_report = ::dlerror();
1375   if (error_report == NULL) {
1376     error_report = "dlerror returned no error description";
1377   }
1378   if (ebuf != NULL && ebuflen > 0) {
1379     ::strncpy(ebuf, error_report, ebuflen-1);
1380     ebuf[ebuflen-1]='\0';
1381   }
1382 
1383   Events::log(NULL, "Loading shared library %s failed, %s", filename, error_report);
1384   log_info(os)("shared library load of %s failed, %s", filename, error_report);
1385 
1386   int diag_msg_max_length=ebuflen-strlen(ebuf);
1387   char* diag_msg_buf=ebuf+strlen(ebuf);
1388 
1389   if (diag_msg_max_length==0) {
1390     // No more space in ebuf for additional diagnostics message
1391     return NULL;
1392   }
1393 
1394 
1395   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1396 
1397   if (file_descriptor < 0) {
1398     // Can't open library, report dlerror() message
1399     return NULL;
1400   }
1401 
1402   bool failed_to_read_elf_head=
1403     (sizeof(elf_head)!=
1404      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1405 
1406   ::close(file_descriptor);
1407   if (failed_to_read_elf_head) {
1408     // file i/o error - report dlerror() msg
1409     return NULL;
1410   }
1411 
1412   if (elf_head.e_ident[EI_DATA] != LITTLE_ENDIAN_ONLY(ELFDATA2LSB) BIG_ENDIAN_ONLY(ELFDATA2MSB)) {
1413     // handle invalid/out of range endianness values
1414     if (elf_head.e_ident[EI_DATA] == 0 || elf_head.e_ident[EI_DATA] > 2) {
1415       return NULL;
1416     }
1417     change_endianness(elf_head.e_machine);
1418   }
1419 
1420   typedef struct {
1421     Elf32_Half    code;         // Actual value as defined in elf.h
1422     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1423     unsigned char elf_class;    // 32 or 64 bit
1424     unsigned char endianess;    // MSB or LSB
1425     char*         name;         // String representation
1426   } arch_t;
1427 
1428 #ifndef EM_AARCH64
1429   #define EM_AARCH64    183               /* ARM AARCH64 */
1430 #endif
1431 
1432   static const arch_t arch_array[]={
1433     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1434     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1435     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1436     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1437     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1438     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1439     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1440     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1441     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1442     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
1443     // we only support 64 bit z architecture
1444     {EM_S390,        EM_S390,    ELFCLASS64, ELFDATA2MSB, (char*)"IBM System/390"},
1445     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"}
1446   };
1447 
1448 #if  (defined IA32)
1449   static  Elf32_Half running_arch_code=EM_386;
1450 #elif   (defined AMD64)
1451   static  Elf32_Half running_arch_code=EM_X86_64;
1452 #elif  (defined IA64)
1453   static  Elf32_Half running_arch_code=EM_IA_64;
1454 #elif  (defined __sparc) && (defined _LP64)
1455   static  Elf32_Half running_arch_code=EM_SPARCV9;
1456 #elif  (defined __sparc) && (!defined _LP64)
1457   static  Elf32_Half running_arch_code=EM_SPARC;
1458 #elif  (defined __powerpc64__)
1459   static  Elf32_Half running_arch_code=EM_PPC64;
1460 #elif  (defined __powerpc__)
1461   static  Elf32_Half running_arch_code=EM_PPC;
1462 #elif (defined ARM)
1463   static  Elf32_Half running_arch_code=EM_ARM;
1464 #else
1465   #error Method os::dll_load requires that one of following is defined:\
1466        IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1467 #endif
1468 
1469   // Identify compatibility class for VM's architecture and library's architecture
1470   // Obtain string descriptions for architectures
1471 
1472   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1473   int running_arch_index=-1;
1474 
1475   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1476     if (running_arch_code == arch_array[i].code) {
1477       running_arch_index    = i;
1478     }
1479     if (lib_arch.code == arch_array[i].code) {
1480       lib_arch.compat_class = arch_array[i].compat_class;
1481       lib_arch.name         = arch_array[i].name;
1482     }
1483   }
1484 
1485   assert(running_arch_index != -1,
1486          "Didn't find running architecture code (running_arch_code) in arch_array");
1487   if (running_arch_index == -1) {
1488     // Even though running architecture detection failed
1489     // we may still continue with reporting dlerror() message
1490     return NULL;
1491   }
1492 
1493   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1494     if (lib_arch.name != NULL) {
1495       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1496                  " (Possible cause: can't load %s .so on a %s platform)",
1497                  lib_arch.name, arch_array[running_arch_index].name);
1498     } else {
1499       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1500                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s platform)",
1501                  lib_arch.code, arch_array[running_arch_index].name);
1502     }
1503     return NULL;
1504   }
1505 
1506   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1507     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1508     return NULL;
1509   }
1510 
1511   // ELF file class/capacity : 0 - invalid, 1 - 32bit, 2 - 64bit
1512   if (lib_arch.elf_class > 2 || lib_arch.elf_class < 1) {
1513     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: invalid ELF file class)");
1514     return NULL;
1515   }
1516 
1517   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1518     ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1519                " (Possible cause: architecture word width mismatch, can't load %d-bit .so on a %d-bit platform)",
1520                (int) lib_arch.elf_class * 32, arch_array[running_arch_index].elf_class * 32);
1521     return NULL;
1522   }
1523 
1524   return NULL;
1525 }
1526 
1527 void* os::dll_lookup(void* handle, const char* name) {
1528   return dlsym(handle, name);
1529 }
1530 
1531 void* os::get_default_process_handle() {
1532   return (void*)::dlopen(NULL, RTLD_LAZY);
1533 }
1534 
1535 static inline time_t get_mtime(const char* filename) {
1536   struct stat st;
1537   int ret = os::stat(filename, &st);
1538   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
1539   return st.st_mtime;
1540 }
1541 
1542 int os::compare_file_modified_times(const char* file1, const char* file2) {
1543   time_t t1 = get_mtime(file1);
1544   time_t t2 = get_mtime(file2);
1545   return t1 - t2;
1546 }
1547 
1548 static bool _print_ascii_file(const char* filename, outputStream* st) {
1549   int fd = ::open(filename, O_RDONLY);
1550   if (fd == -1) {
1551     return false;
1552   }
1553 
1554   char buf[32];
1555   int bytes;
1556   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1557     st->print_raw(buf, bytes);
1558   }
1559 
1560   ::close(fd);
1561 
1562   return true;
1563 }
1564 
1565 void os::print_os_info_brief(outputStream* st) {
1566   os::Solaris::print_distro_info(st);
1567 
1568   os::Posix::print_uname_info(st);
1569 
1570   os::Solaris::print_libversion_info(st);
1571 }
1572 
1573 void os::print_os_info(outputStream* st) {
1574   st->print("OS:");
1575 
1576   os::Solaris::print_distro_info(st);
1577 
1578   os::Posix::print_uname_info(st);
1579 
1580   os::Posix::print_uptime_info(st);
1581 
1582   os::Solaris::print_libversion_info(st);
1583 
1584   os::Posix::print_rlimit_info(st);
1585 
1586   os::Posix::print_load_average(st);
1587 }
1588 
1589 void os::Solaris::print_distro_info(outputStream* st) {
1590   if (!_print_ascii_file("/etc/release", st)) {
1591     st->print("Solaris");
1592   }
1593   st->cr();
1594 }
1595 
1596 void os::get_summary_os_info(char* buf, size_t buflen) {
1597   strncpy(buf, "Solaris", buflen);  // default to plain solaris
1598   FILE* fp = fopen("/etc/release", "r");
1599   if (fp != NULL) {
1600     char tmp[256];
1601     // Only get the first line and chop out everything but the os name.
1602     if (fgets(tmp, sizeof(tmp), fp)) {
1603       char* ptr = tmp;
1604       // skip past whitespace characters
1605       while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1606       if (*ptr != '\0') {
1607         char* nl = strchr(ptr, '\n');
1608         if (nl != NULL) *nl = '\0';
1609         strncpy(buf, ptr, buflen);
1610       }
1611     }
1612     fclose(fp);
1613   }
1614 }
1615 
1616 void os::Solaris::print_libversion_info(outputStream* st) {
1617   st->print("  (T2 libthread)");
1618   st->cr();
1619 }
1620 
1621 static bool check_addr0(outputStream* st) {
1622   jboolean status = false;
1623   const int read_chunk = 200;
1624   int ret = 0;
1625   int nmap = 0;
1626   int fd = ::open("/proc/self/map",O_RDONLY);
1627   if (fd >= 0) {
1628     prmap_t *p = NULL;
1629     char *mbuff = (char *) calloc(read_chunk, sizeof(prmap_t));
1630     if (NULL == mbuff) {
1631       ::close(fd);
1632       return status;
1633     }
1634     while ((ret = ::read(fd, mbuff, read_chunk*sizeof(prmap_t))) > 0) {
1635       //check if read() has not read partial data
1636       if( 0 != ret % sizeof(prmap_t)){
1637         break;
1638       }
1639       nmap = ret / sizeof(prmap_t);
1640       p = (prmap_t *)mbuff;
1641       for(int i = 0; i < nmap; i++){
1642         if (p->pr_vaddr == 0x0) {
1643           st->print("Warning: Address: " PTR_FORMAT ", Size: " SIZE_FORMAT "K, ",p->pr_vaddr, p->pr_size/1024);
1644           st->print("Mapped file: %s, ", p->pr_mapname[0] == '\0' ? "None" : p->pr_mapname);
1645           st->print("Access: ");
1646           st->print("%s",(p->pr_mflags & MA_READ)  ? "r" : "-");
1647           st->print("%s",(p->pr_mflags & MA_WRITE) ? "w" : "-");
1648           st->print("%s",(p->pr_mflags & MA_EXEC)  ? "x" : "-");
1649           st->cr();
1650           status = true;
1651         }
1652         p++;
1653       }
1654     }
1655     free(mbuff);
1656     ::close(fd);
1657   }
1658   return status;
1659 }
1660 
1661 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1662   // Get MHz with system call. We don't seem to already have this.
1663   processor_info_t stats;
1664   processorid_t id = getcpuid();
1665   int clock = 0;
1666   if (processor_info(id, &stats) != -1) {
1667     clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
1668   }
1669 #ifdef AMD64
1670   snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1671 #else
1672   // must be sparc
1673   snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1674 #endif
1675 }
1676 
1677 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1678   // Nothing to do for now.
1679 }
1680 
1681 void os::print_memory_info(outputStream* st) {
1682   st->print("Memory:");
1683   st->print(" %dk page", os::vm_page_size()>>10);
1684   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1685   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1686   st->cr();
1687   (void) check_addr0(st);
1688 }
1689 
1690 // Moved from whole group, because we need them here for diagnostic
1691 // prints.
1692 static int Maxsignum = 0;
1693 static int *ourSigFlags = NULL;
1694 
1695 int os::Solaris::get_our_sigflags(int sig) {
1696   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1697   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1698   return ourSigFlags[sig];
1699 }
1700 
1701 void os::Solaris::set_our_sigflags(int sig, int flags) {
1702   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1703   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1704   ourSigFlags[sig] = flags;
1705 }
1706 
1707 
1708 static const char* get_signal_handler_name(address handler,
1709                                            char* buf, int buflen) {
1710   int offset;
1711   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
1712   if (found) {
1713     // skip directory names
1714     const char *p1, *p2;
1715     p1 = buf;
1716     size_t len = strlen(os::file_separator());
1717     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
1718     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
1719   } else {
1720     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
1721   }
1722   return buf;
1723 }
1724 
1725 static void print_signal_handler(outputStream* st, int sig,
1726                                  char* buf, size_t buflen) {
1727   struct sigaction sa;
1728 
1729   sigaction(sig, NULL, &sa);
1730 
1731   st->print("%s: ", os::exception_name(sig, buf, buflen));
1732 
1733   address handler = (sa.sa_flags & SA_SIGINFO)
1734                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
1735                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
1736 
1737   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
1738     st->print("SIG_DFL");
1739   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
1740     st->print("SIG_IGN");
1741   } else {
1742     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
1743   }
1744 
1745   st->print(", sa_mask[0]=");
1746   os::Posix::print_signal_set_short(st, &sa.sa_mask);
1747 
1748   address rh = VMError::get_resetted_sighandler(sig);
1749   // May be, handler was resetted by VMError?
1750   if (rh != NULL) {
1751     handler = rh;
1752     sa.sa_flags = VMError::get_resetted_sigflags(sig);
1753   }
1754 
1755   st->print(", sa_flags=");
1756   os::Posix::print_sa_flags(st, sa.sa_flags);
1757 
1758   // Check: is it our handler?
1759   if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
1760     // It is our signal handler
1761     // check for flags
1762     if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
1763       st->print(
1764                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
1765                 os::Solaris::get_our_sigflags(sig));
1766     }
1767   }
1768   st->cr();
1769 }
1770 
1771 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1772   st->print_cr("Signal Handlers:");
1773   print_signal_handler(st, SIGSEGV, buf, buflen);
1774   print_signal_handler(st, SIGBUS , buf, buflen);
1775   print_signal_handler(st, SIGFPE , buf, buflen);
1776   print_signal_handler(st, SIGPIPE, buf, buflen);
1777   print_signal_handler(st, SIGXFSZ, buf, buflen);
1778   print_signal_handler(st, SIGILL , buf, buflen);
1779   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
1780   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1781   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
1782   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1783   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
1784 }
1785 
1786 static char saved_jvm_path[MAXPATHLEN] = { 0 };
1787 
1788 // Find the full path to the current module, libjvm.so
1789 void os::jvm_path(char *buf, jint buflen) {
1790   // Error checking.
1791   if (buflen < MAXPATHLEN) {
1792     assert(false, "must use a large-enough buffer");
1793     buf[0] = '\0';
1794     return;
1795   }
1796   // Lazy resolve the path to current module.
1797   if (saved_jvm_path[0] != 0) {
1798     strcpy(buf, saved_jvm_path);
1799     return;
1800   }
1801 
1802   Dl_info dlinfo;
1803   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
1804   assert(ret != 0, "cannot locate libjvm");
1805   if (ret != 0 && dlinfo.dli_fname != NULL) {
1806     if (os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen) == NULL) {
1807       return;
1808     }
1809   } else {
1810     buf[0] = '\0';
1811     return;
1812   }
1813 
1814   if (Arguments::sun_java_launcher_is_altjvm()) {
1815     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1816     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
1817     // If "/jre/lib/" appears at the right place in the string, then
1818     // assume we are installed in a JDK and we're done.  Otherwise, check
1819     // for a JAVA_HOME environment variable and fix up the path so it
1820     // looks like libjvm.so is installed there (append a fake suffix
1821     // hotspot/libjvm.so).
1822     const char *p = buf + strlen(buf) - 1;
1823     for (int count = 0; p > buf && count < 5; ++count) {
1824       for (--p; p > buf && *p != '/'; --p)
1825         /* empty */ ;
1826     }
1827 
1828     if (strncmp(p, "/jre/lib/", 9) != 0) {
1829       // Look for JAVA_HOME in the environment.
1830       char* java_home_var = ::getenv("JAVA_HOME");
1831       if (java_home_var != NULL && java_home_var[0] != 0) {
1832         char* jrelib_p;
1833         int   len;
1834 
1835         // Check the current module name "libjvm.so".
1836         p = strrchr(buf, '/');
1837         assert(strstr(p, "/libjvm") == p, "invalid library name");
1838 
1839         if (os::Posix::realpath(java_home_var, buf, buflen) == NULL) {
1840           return;
1841         }
1842         // determine if this is a legacy image or modules image
1843         // modules image doesn't have "jre" subdirectory
1844         len = strlen(buf);
1845         assert(len < buflen, "Ran out of buffer space");
1846         jrelib_p = buf + len;
1847         snprintf(jrelib_p, buflen-len, "/jre/lib");
1848         if (0 != access(buf, F_OK)) {
1849           snprintf(jrelib_p, buflen-len, "/lib");
1850         }
1851 
1852         if (0 == access(buf, F_OK)) {
1853           // Use current module name "libjvm.so"
1854           len = strlen(buf);
1855           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
1856         } else {
1857           // Go back to path of .so
1858           if (os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen) == NULL) {
1859             return;
1860           }
1861         }
1862       }
1863     }
1864   }
1865 
1866   strncpy(saved_jvm_path, buf, MAXPATHLEN);
1867   saved_jvm_path[MAXPATHLEN - 1] = '\0';
1868 }
1869 
1870 
1871 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1872   // no prefix required, not even "_"
1873 }
1874 
1875 
1876 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1877   // no suffix required
1878 }
1879 
1880 // sun.misc.Signal
1881 
1882 extern "C" {
1883   static void UserHandler(int sig, void *siginfo, void *context) {
1884     // Ctrl-C is pressed during error reporting, likely because the error
1885     // handler fails to abort. Let VM die immediately.
1886     if (sig == SIGINT && VMError::is_error_reported()) {
1887       os::die();
1888     }
1889 
1890     os::signal_notify(sig);
1891     // We do not need to reinstate the signal handler each time...
1892   }
1893 }
1894 
1895 void* os::user_handler() {
1896   return CAST_FROM_FN_PTR(void*, UserHandler);
1897 }
1898 
1899 extern "C" {
1900   typedef void (*sa_handler_t)(int);
1901   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1902 }
1903 
1904 void* os::signal(int signal_number, void* handler) {
1905   struct sigaction sigAct, oldSigAct;
1906   sigfillset(&(sigAct.sa_mask));
1907   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
1908   sigAct.sa_flags |= SA_SIGINFO;
1909   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1910 
1911   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1912     // -1 means registration failed
1913     return (void *)-1;
1914   }
1915 
1916   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1917 }
1918 
1919 void os::signal_raise(int signal_number) {
1920   raise(signal_number);
1921 }
1922 
1923 // The following code is moved from os.cpp for making this
1924 // code platform specific, which it is by its very nature.
1925 
1926 // a counter for each possible signal value
1927 static int Sigexit = 0;
1928 static jint *pending_signals = NULL;
1929 static int *preinstalled_sigs = NULL;
1930 static struct sigaction *chainedsigactions = NULL;
1931 static Semaphore* sig_sem = NULL;
1932 
1933 int os::sigexitnum_pd() {
1934   assert(Sigexit > 0, "signal memory not yet initialized");
1935   return Sigexit;
1936 }
1937 
1938 void os::Solaris::init_signal_mem() {
1939   // Initialize signal structures
1940   Maxsignum = SIGRTMAX;
1941   Sigexit = Maxsignum+1;
1942   assert(Maxsignum >0, "Unable to obtain max signal number");
1943 
1944   // Initialize signal structures
1945   // pending_signals has one int per signal
1946   // The additional signal is for SIGEXIT - exit signal to signal_thread
1947   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
1948   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
1949 
1950   if (UseSignalChaining) {
1951     chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
1952                                                    * (Maxsignum + 1), mtInternal);
1953     memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
1954     preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
1955     memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
1956   }
1957   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
1958   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
1959 }
1960 
1961 static void jdk_misc_signal_init() {
1962   // Initialize signal semaphore
1963   sig_sem = new Semaphore();
1964 }
1965 
1966 void os::signal_notify(int sig) {
1967   if (sig_sem != NULL) {
1968     Atomic::inc(&pending_signals[sig]);
1969     sig_sem->signal();
1970   } else {
1971     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
1972     // initialization isn't called.
1973     assert(ReduceSignalUsage, "signal semaphore should be created");
1974   }
1975 }
1976 
1977 static int check_pending_signals() {
1978   int ret;
1979   while (true) {
1980     for (int i = 0; i < Sigexit + 1; i++) {
1981       jint n = pending_signals[i];
1982       if (n > 0 && n == Atomic::cmpxchg(&pending_signals[i], n, n - 1)) {
1983         return i;
1984       }
1985     }
1986     JavaThread *thread = JavaThread::current();
1987     ThreadBlockInVM tbivm(thread);
1988 
1989     bool threadIsSuspended;
1990     do {
1991       thread->set_suspend_equivalent();
1992       sig_sem->wait();
1993 
1994       // were we externally suspended while we were waiting?
1995       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1996       if (threadIsSuspended) {
1997         // The semaphore has been incremented, but while we were waiting
1998         // another thread suspended us. We don't want to continue running
1999         // while suspended because that would surprise the thread that
2000         // suspended us.
2001         sig_sem->signal();
2002 
2003         thread->java_suspend_self();
2004       }
2005     } while (threadIsSuspended);
2006   }
2007 }
2008 
2009 int os::signal_wait() {
2010   return check_pending_signals();
2011 }
2012 
2013 ////////////////////////////////////////////////////////////////////////////////
2014 // Virtual Memory
2015 
2016 static int page_size = -1;
2017 
2018 int os::vm_page_size() {
2019   assert(page_size != -1, "must call os::init");
2020   return page_size;
2021 }
2022 
2023 // Solaris allocates memory by pages.
2024 int os::vm_allocation_granularity() {
2025   assert(page_size != -1, "must call os::init");
2026   return page_size;
2027 }
2028 
2029 static bool recoverable_mmap_error(int err) {
2030   // See if the error is one we can let the caller handle. This
2031   // list of errno values comes from the Solaris mmap(2) man page.
2032   switch (err) {
2033   case EBADF:
2034   case EINVAL:
2035   case ENOTSUP:
2036     // let the caller deal with these errors
2037     return true;
2038 
2039   default:
2040     // Any remaining errors on this OS can cause our reserved mapping
2041     // to be lost. That can cause confusion where different data
2042     // structures think they have the same memory mapped. The worst
2043     // scenario is if both the VM and a library think they have the
2044     // same memory mapped.
2045     return false;
2046   }
2047 }
2048 
2049 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2050                                     int err) {
2051   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2052           ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2053           os::strerror(err), err);
2054 }
2055 
2056 static void warn_fail_commit_memory(char* addr, size_t bytes,
2057                                     size_t alignment_hint, bool exec,
2058                                     int err) {
2059   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2060           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2061           alignment_hint, exec, os::strerror(err), err);
2062 }
2063 
2064 int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2065   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2066   size_t size = bytes;
2067   char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2068   if (res != NULL) {
2069     if (UseNUMAInterleaving) {
2070         numa_make_global(addr, bytes);
2071     }
2072     return 0;
2073   }
2074 
2075   int err = errno;  // save errno from mmap() call in mmap_chunk()
2076 
2077   if (!recoverable_mmap_error(err)) {
2078     warn_fail_commit_memory(addr, bytes, exec, err);
2079     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2080   }
2081 
2082   return err;
2083 }
2084 
2085 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2086   return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2087 }
2088 
2089 void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2090                                   const char* mesg) {
2091   assert(mesg != NULL, "mesg must be specified");
2092   int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2093   if (err != 0) {
2094     // the caller wants all commit errors to exit with the specified mesg:
2095     warn_fail_commit_memory(addr, bytes, exec, err);
2096     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2097   }
2098 }
2099 
2100 size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2101   assert(is_aligned(alignment, (size_t) vm_page_size()),
2102          SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2103          alignment, (size_t) vm_page_size());
2104 
2105   for (int i = 0; _page_sizes[i] != 0; i++) {
2106     if (is_aligned(alignment, _page_sizes[i])) {
2107       return _page_sizes[i];
2108     }
2109   }
2110 
2111   return (size_t) vm_page_size();
2112 }
2113 
2114 int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2115                                     size_t alignment_hint, bool exec) {
2116   int err = Solaris::commit_memory_impl(addr, bytes, exec);
2117   if (err == 0 && UseLargePages && alignment_hint > 0) {
2118     assert(is_aligned(bytes, alignment_hint),
2119            SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2120 
2121     // The syscall memcntl requires an exact page size (see man memcntl for details).
2122     size_t page_size = page_size_for_alignment(alignment_hint);
2123     if (page_size > (size_t) vm_page_size()) {
2124       (void)Solaris::setup_large_pages(addr, bytes, page_size);
2125     }
2126   }
2127   return err;
2128 }
2129 
2130 bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2131                           bool exec) {
2132   return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2133 }
2134 
2135 void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2136                                   size_t alignment_hint, bool exec,
2137                                   const char* mesg) {
2138   assert(mesg != NULL, "mesg must be specified");
2139   int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2140   if (err != 0) {
2141     // the caller wants all commit errors to exit with the specified mesg:
2142     warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2143     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2144   }
2145 }
2146 
2147 // Uncommit the pages in a specified region.
2148 void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2149   if (madvise(addr, bytes, MADV_FREE) < 0) {
2150     debug_only(warning("MADV_FREE failed."));
2151     return;
2152   }
2153 }
2154 
2155 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2156   return os::commit_memory(addr, size, !ExecMem);
2157 }
2158 
2159 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2160   return os::uncommit_memory(addr, size);
2161 }
2162 
2163 // Change the page size in a given range.
2164 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2165   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2166   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2167   if (UseLargePages) {
2168     size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2169     if (page_size > (size_t) vm_page_size()) {
2170       Solaris::setup_large_pages(addr, bytes, page_size);
2171     }
2172   }
2173 }
2174 
2175 // Tell the OS to make the range local to the first-touching LWP
2176 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2177   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2178   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2179     debug_only(warning("MADV_ACCESS_LWP failed."));
2180   }
2181 }
2182 
2183 // Tell the OS that this range would be accessed from different LWPs.
2184 void os::numa_make_global(char *addr, size_t bytes) {
2185   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2186   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2187     debug_only(warning("MADV_ACCESS_MANY failed."));
2188   }
2189 }
2190 
2191 // Get the number of the locality groups.
2192 size_t os::numa_get_groups_num() {
2193   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2194   return n != -1 ? n : 1;
2195 }
2196 
2197 // Get a list of leaf locality groups. A leaf lgroup is group that
2198 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2199 // board. An LWP is assigned to one of these groups upon creation.
2200 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2201   if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2202     ids[0] = 0;
2203     return 1;
2204   }
2205   int result_size = 0, top = 1, bottom = 0, cur = 0;
2206   for (int k = 0; k < size; k++) {
2207     int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2208                                    (Solaris::lgrp_id_t*)&ids[top], size - top);
2209     if (r == -1) {
2210       ids[0] = 0;
2211       return 1;
2212     }
2213     if (!r) {
2214       // That's a leaf node.
2215       assert(bottom <= cur, "Sanity check");
2216       // Check if the node has memory
2217       if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2218                                   NULL, 0, LGRP_RSRC_MEM) > 0) {
2219         ids[bottom++] = ids[cur];
2220       }
2221     }
2222     top += r;
2223     cur++;
2224   }
2225   if (bottom == 0) {
2226     // Handle a situation, when the OS reports no memory available.
2227     // Assume UMA architecture.
2228     ids[0] = 0;
2229     return 1;
2230   }
2231   return bottom;
2232 }
2233 
2234 // Detect the topology change. Typically happens during CPU plugging-unplugging.
2235 bool os::numa_topology_changed() {
2236   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2237   if (is_stale != -1 && is_stale) {
2238     Solaris::lgrp_fini(Solaris::lgrp_cookie());
2239     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2240     assert(c != 0, "Failure to initialize LGRP API");
2241     Solaris::set_lgrp_cookie(c);
2242     return true;
2243   }
2244   return false;
2245 }
2246 
2247 // Get the group id of the current LWP.
2248 int os::numa_get_group_id() {
2249   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2250   if (lgrp_id == -1) {
2251     return 0;
2252   }
2253   const int size = os::numa_get_groups_num();
2254   int *ids = (int*)alloca(size * sizeof(int));
2255 
2256   // Get the ids of all lgroups with memory; r is the count.
2257   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2258                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2259   if (r <= 0) {
2260     return 0;
2261   }
2262   return ids[os::random() % r];
2263 }
2264 
2265 int os::numa_get_group_id_for_address(const void* address) {
2266   return 0;
2267 }
2268 
2269 // Request information about the page.
2270 bool os::get_page_info(char *start, page_info* info) {
2271   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2272   uint64_t addr = (uintptr_t)start;
2273   uint64_t outdata[2];
2274   uint_t validity = 0;
2275 
2276   if (meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2277     return false;
2278   }
2279 
2280   info->size = 0;
2281   info->lgrp_id = -1;
2282 
2283   if ((validity & 1) != 0) {
2284     if ((validity & 2) != 0) {
2285       info->lgrp_id = outdata[0];
2286     }
2287     if ((validity & 4) != 0) {
2288       info->size = outdata[1];
2289     }
2290     return true;
2291   }
2292   return false;
2293 }
2294 
2295 // Scan the pages from start to end until a page different than
2296 // the one described in the info parameter is encountered.
2297 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2298                      page_info* page_found) {
2299   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2300   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2301   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2302   uint_t validity[MAX_MEMINFO_CNT];
2303 
2304   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2305   uint64_t p = (uint64_t)start;
2306   while (p < (uint64_t)end) {
2307     addrs[0] = p;
2308     size_t addrs_count = 1;
2309     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2310       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2311       addrs_count++;
2312     }
2313 
2314     if (meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2315       return NULL;
2316     }
2317 
2318     size_t i = 0;
2319     for (; i < addrs_count; i++) {
2320       if ((validity[i] & 1) != 0) {
2321         if ((validity[i] & 4) != 0) {
2322           if (outdata[types * i + 1] != page_expected->size) {
2323             break;
2324           }
2325         } else if (page_expected->size != 0) {
2326           break;
2327         }
2328 
2329         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2330           if (outdata[types * i] != page_expected->lgrp_id) {
2331             break;
2332           }
2333         }
2334       } else {
2335         return NULL;
2336       }
2337     }
2338 
2339     if (i < addrs_count) {
2340       if ((validity[i] & 2) != 0) {
2341         page_found->lgrp_id = outdata[types * i];
2342       } else {
2343         page_found->lgrp_id = -1;
2344       }
2345       if ((validity[i] & 4) != 0) {
2346         page_found->size = outdata[types * i + 1];
2347       } else {
2348         page_found->size = 0;
2349       }
2350       return (char*)addrs[i];
2351     }
2352 
2353     p = addrs[addrs_count - 1] + page_size;
2354   }
2355   return end;
2356 }
2357 
2358 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2359   size_t size = bytes;
2360   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2361   // uncommitted page. Otherwise, the read/write might succeed if we
2362   // have enough swap space to back the physical page.
2363   return
2364     NULL != Solaris::mmap_chunk(addr, size,
2365                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2366                                 PROT_NONE);
2367 }
2368 
2369 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2370   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2371 
2372   if (b == MAP_FAILED) {
2373     return NULL;
2374   }
2375   return b;
2376 }
2377 
2378 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2379                              size_t alignment_hint, bool fixed) {
2380   char* addr = requested_addr;
2381   int flags = MAP_PRIVATE | MAP_NORESERVE;
2382 
2383   assert(!(fixed && (alignment_hint > 0)),
2384          "alignment hint meaningless with fixed mmap");
2385 
2386   if (fixed) {
2387     flags |= MAP_FIXED;
2388   } else if (alignment_hint > (size_t) vm_page_size()) {
2389     flags |= MAP_ALIGN;
2390     addr = (char*) alignment_hint;
2391   }
2392 
2393   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2394   // uncommitted page. Otherwise, the read/write might succeed if we
2395   // have enough swap space to back the physical page.
2396   return mmap_chunk(addr, bytes, flags, PROT_NONE);
2397 }
2398 
2399 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2400                             size_t alignment_hint) {
2401   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2402                                   (requested_addr != NULL));
2403 
2404   guarantee(requested_addr == NULL || requested_addr == addr,
2405             "OS failed to return requested mmap address.");
2406   return addr;
2407 }
2408 
2409 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
2410   assert(file_desc >= 0, "file_desc is not valid");
2411   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
2412   if (result != NULL) {
2413     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
2414       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
2415     }
2416   }
2417   return result;
2418 }
2419 
2420 // Reserve memory at an arbitrary address, only if that area is
2421 // available (and not reserved for something else).
2422 
2423 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2424   // Assert only that the size is a multiple of the page size, since
2425   // that's all that mmap requires, and since that's all we really know
2426   // about at this low abstraction level.  If we need higher alignment,
2427   // we can either pass an alignment to this method or verify alignment
2428   // in one of the methods further up the call chain.  See bug 5044738.
2429   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2430 
2431   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2432   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2433 
2434   volatile int err = errno;
2435   if (addr == requested_addr) {
2436     return addr;
2437   }
2438 
2439   if (addr != NULL) {
2440     pd_unmap_memory(addr, bytes);
2441   }
2442 
2443   return NULL;
2444 }
2445 
2446 bool os::pd_release_memory(char* addr, size_t bytes) {
2447   size_t size = bytes;
2448   return munmap(addr, size) == 0;
2449 }
2450 
2451 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2452   assert(addr == (char*)align_down((uintptr_t)addr, os::vm_page_size()),
2453          "addr must be page aligned");
2454   Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(addr), p2i(addr+bytes), prot);
2455   int retVal = mprotect(addr, bytes, prot);
2456   return retVal == 0;
2457 }
2458 
2459 // Protect memory (Used to pass readonly pages through
2460 // JNI GetArray<type>Elements with empty arrays.)
2461 // Also, used for serialization page and for compressed oops null pointer
2462 // checking.
2463 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2464                         bool is_committed) {
2465   unsigned int p = 0;
2466   switch (prot) {
2467   case MEM_PROT_NONE: p = PROT_NONE; break;
2468   case MEM_PROT_READ: p = PROT_READ; break;
2469   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2470   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2471   default:
2472     ShouldNotReachHere();
2473   }
2474   // is_committed is unused.
2475   return solaris_mprotect(addr, bytes, p);
2476 }
2477 
2478 // guard_memory and unguard_memory only happens within stack guard pages.
2479 // Since ISM pertains only to the heap, guard and unguard memory should not
2480 /// happen with an ISM region.
2481 bool os::guard_memory(char* addr, size_t bytes) {
2482   return solaris_mprotect(addr, bytes, PROT_NONE);
2483 }
2484 
2485 bool os::unguard_memory(char* addr, size_t bytes) {
2486   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2487 }
2488 
2489 // Large page support
2490 static size_t _large_page_size = 0;
2491 
2492 // Insertion sort for small arrays (descending order).
2493 static void insertion_sort_descending(size_t* array, int len) {
2494   for (int i = 0; i < len; i++) {
2495     size_t val = array[i];
2496     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2497       size_t tmp = array[key];
2498       array[key] = array[key - 1];
2499       array[key - 1] = tmp;
2500     }
2501   }
2502 }
2503 
2504 bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2505   const unsigned int usable_count = VM_Version::page_size_count();
2506   if (usable_count == 1) {
2507     return false;
2508   }
2509 
2510   // Find the right getpagesizes interface.  When solaris 11 is the minimum
2511   // build platform, getpagesizes() (without the '2') can be called directly.
2512   typedef int (*gps_t)(size_t[], int);
2513   gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2514   if (gps_func == NULL) {
2515     gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2516     if (gps_func == NULL) {
2517       if (warn) {
2518         warning("MPSS is not supported by the operating system.");
2519       }
2520       return false;
2521     }
2522   }
2523 
2524   // Fill the array of page sizes.
2525   int n = (*gps_func)(_page_sizes, page_sizes_max);
2526   assert(n > 0, "Solaris bug?");
2527 
2528   if (n == page_sizes_max) {
2529     // Add a sentinel value (necessary only if the array was completely filled
2530     // since it is static (zeroed at initialization)).
2531     _page_sizes[--n] = 0;
2532     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2533   }
2534   assert(_page_sizes[n] == 0, "missing sentinel");
2535   trace_page_sizes("available page sizes", _page_sizes, n);
2536 
2537   if (n == 1) return false;     // Only one page size available.
2538 
2539   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2540   // select up to usable_count elements.  First sort the array, find the first
2541   // acceptable value, then copy the usable sizes to the top of the array and
2542   // trim the rest.  Make sure to include the default page size :-).
2543   //
2544   // A better policy could get rid of the 4M limit by taking the sizes of the
2545   // important VM memory regions (java heap and possibly the code cache) into
2546   // account.
2547   insertion_sort_descending(_page_sizes, n);
2548   const size_t size_limit =
2549     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2550   int beg;
2551   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2552   const int end = MIN2((int)usable_count, n) - 1;
2553   for (int cur = 0; cur < end; ++cur, ++beg) {
2554     _page_sizes[cur] = _page_sizes[beg];
2555   }
2556   _page_sizes[end] = vm_page_size();
2557   _page_sizes[end + 1] = 0;
2558 
2559   if (_page_sizes[end] > _page_sizes[end - 1]) {
2560     // Default page size is not the smallest; sort again.
2561     insertion_sort_descending(_page_sizes, end + 1);
2562   }
2563   *page_size = _page_sizes[0];
2564 
2565   trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2566   return true;
2567 }
2568 
2569 void os::large_page_init() {
2570   if (UseLargePages) {
2571     // print a warning if any large page related flag is specified on command line
2572     bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
2573                            !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2574 
2575     UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
2576   }
2577 }
2578 
2579 bool os::Solaris::is_valid_page_size(size_t bytes) {
2580   for (int i = 0; _page_sizes[i] != 0; i++) {
2581     if (_page_sizes[i] == bytes) {
2582       return true;
2583     }
2584   }
2585   return false;
2586 }
2587 
2588 bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
2589   assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
2590   assert(is_aligned((void*) start, align),
2591          PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
2592   assert(is_aligned(bytes, align),
2593          SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
2594 
2595   // Signal to OS that we want large pages for addresses
2596   // from addr, addr + bytes
2597   struct memcntl_mha mpss_struct;
2598   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
2599   mpss_struct.mha_pagesize = align;
2600   mpss_struct.mha_flags = 0;
2601   // Upon successful completion, memcntl() returns 0
2602   if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
2603     debug_only(warning("Attempt to use MPSS failed."));
2604     return false;
2605   }
2606   return true;
2607 }
2608 
2609 char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
2610   fatal("os::reserve_memory_special should not be called on Solaris.");
2611   return NULL;
2612 }
2613 
2614 bool os::release_memory_special(char* base, size_t bytes) {
2615   fatal("os::release_memory_special should not be called on Solaris.");
2616   return false;
2617 }
2618 
2619 size_t os::large_page_size() {
2620   return _large_page_size;
2621 }
2622 
2623 // MPSS allows application to commit large page memory on demand; with ISM
2624 // the entire memory region must be allocated as shared memory.
2625 bool os::can_commit_large_page_memory() {
2626   return true;
2627 }
2628 
2629 bool os::can_execute_large_page_memory() {
2630   return true;
2631 }
2632 
2633 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2634 void os::infinite_sleep() {
2635   while (true) {    // sleep forever ...
2636     ::sleep(100);   // ... 100 seconds at a time
2637   }
2638 }
2639 
2640 // Used to convert frequent JVM_Yield() to nops
2641 bool os::dont_yield() {
2642   if (DontYieldALot) {
2643     static hrtime_t last_time = 0;
2644     hrtime_t diff = getTimeNanos() - last_time;
2645 
2646     if (diff < DontYieldALotInterval * 1000000) {
2647       return true;
2648     }
2649 
2650     last_time += diff;
2651 
2652     return false;
2653   } else {
2654     return false;
2655   }
2656 }
2657 
2658 // Note that yield semantics are defined by the scheduling class to which
2659 // the thread currently belongs.  Typically, yield will _not yield to
2660 // other equal or higher priority threads that reside on the dispatch queues
2661 // of other CPUs.
2662 
2663 void os::naked_yield() {
2664   thr_yield();
2665 }
2666 
2667 // Interface for setting lwp priorities.  We are using T2 libthread,
2668 // which forces the use of bound threads, so all of our threads will
2669 // be assigned to real lwp's.  Using the thr_setprio function is
2670 // meaningless in this mode so we must adjust the real lwp's priority.
2671 // The routines below implement the getting and setting of lwp priorities.
2672 //
2673 // Note: There are three priority scales used on Solaris.  Java priotities
2674 //       which range from 1 to 10, libthread "thr_setprio" scale which range
2675 //       from 0 to 127, and the current scheduling class of the process we
2676 //       are running in.  This is typically from -60 to +60.
2677 //       The setting of the lwp priorities in done after a call to thr_setprio
2678 //       so Java priorities are mapped to libthread priorities and we map from
2679 //       the latter to lwp priorities.  We don't keep priorities stored in
2680 //       Java priorities since some of our worker threads want to set priorities
2681 //       higher than all Java threads.
2682 //
2683 // For related information:
2684 // (1)  man -s 2 priocntl
2685 // (2)  man -s 4 priocntl
2686 // (3)  man dispadmin
2687 // =    librt.so
2688 // =    libthread/common/rtsched.c - thrp_setlwpprio().
2689 // =    ps -cL <pid> ... to validate priority.
2690 // =    sched_get_priority_min and _max
2691 //              pthread_create
2692 //              sched_setparam
2693 //              pthread_setschedparam
2694 //
2695 // Assumptions:
2696 // +    We assume that all threads in the process belong to the same
2697 //              scheduling class.   IE. an homogenous process.
2698 // +    Must be root or in IA group to change change "interactive" attribute.
2699 //              Priocntl() will fail silently.  The only indication of failure is when
2700 //              we read-back the value and notice that it hasn't changed.
2701 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
2702 // +    For RT, change timeslice as well.  Invariant:
2703 //              constant "priority integral"
2704 //              Konst == TimeSlice * (60-Priority)
2705 //              Given a priority, compute appropriate timeslice.
2706 // +    Higher numerical values have higher priority.
2707 
2708 // sched class attributes
2709 typedef struct {
2710   int   schedPolicy;              // classID
2711   int   maxPrio;
2712   int   minPrio;
2713 } SchedInfo;
2714 
2715 
2716 static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
2717 
2718 #ifdef ASSERT
2719 static int  ReadBackValidate = 1;
2720 #endif
2721 static int  myClass     = 0;
2722 static int  myMin       = 0;
2723 static int  myMax       = 0;
2724 static int  myCur       = 0;
2725 static bool priocntl_enable = false;
2726 
2727 static const int criticalPrio = FXCriticalPriority;
2728 static int java_MaxPriority_to_os_priority = 0; // Saved mapping
2729 
2730 
2731 // lwp_priocntl_init
2732 //
2733 // Try to determine the priority scale for our process.
2734 //
2735 // Return errno or 0 if OK.
2736 //
2737 static int lwp_priocntl_init() {
2738   int rslt;
2739   pcinfo_t ClassInfo;
2740   pcparms_t ParmInfo;
2741   int i;
2742 
2743   if (!UseThreadPriorities) return 0;
2744 
2745   // If ThreadPriorityPolicy is 1, switch tables
2746   if (ThreadPriorityPolicy == 1) {
2747     for (i = 0; i < CriticalPriority+1; i++)
2748       os::java_to_os_priority[i] = prio_policy1[i];
2749   }
2750   if (UseCriticalJavaThreadPriority) {
2751     // MaxPriority always maps to the FX scheduling class and criticalPrio.
2752     // See set_native_priority() and set_lwp_class_and_priority().
2753     // Save original MaxPriority mapping in case attempt to
2754     // use critical priority fails.
2755     java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
2756     // Set negative to distinguish from other priorities
2757     os::java_to_os_priority[MaxPriority] = -criticalPrio;
2758   }
2759 
2760   // Get IDs for a set of well-known scheduling classes.
2761   // TODO-FIXME: GETCLINFO returns the current # of classes in the
2762   // the system.  We should have a loop that iterates over the
2763   // classID values, which are known to be "small" integers.
2764 
2765   strcpy(ClassInfo.pc_clname, "TS");
2766   ClassInfo.pc_cid = -1;
2767   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
2768   if (rslt < 0) return errno;
2769   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
2770   tsLimits.schedPolicy = ClassInfo.pc_cid;
2771   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
2772   tsLimits.minPrio = -tsLimits.maxPrio;
2773 
2774   strcpy(ClassInfo.pc_clname, "IA");
2775   ClassInfo.pc_cid = -1;
2776   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
2777   if (rslt < 0) return errno;
2778   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
2779   iaLimits.schedPolicy = ClassInfo.pc_cid;
2780   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
2781   iaLimits.minPrio = -iaLimits.maxPrio;
2782 
2783   strcpy(ClassInfo.pc_clname, "RT");
2784   ClassInfo.pc_cid = -1;
2785   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
2786   if (rslt < 0) return errno;
2787   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
2788   rtLimits.schedPolicy = ClassInfo.pc_cid;
2789   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
2790   rtLimits.minPrio = 0;
2791 
2792   strcpy(ClassInfo.pc_clname, "FX");
2793   ClassInfo.pc_cid = -1;
2794   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
2795   if (rslt < 0) return errno;
2796   assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
2797   fxLimits.schedPolicy = ClassInfo.pc_cid;
2798   fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
2799   fxLimits.minPrio = 0;
2800 
2801   // Query our "current" scheduling class.
2802   // This will normally be IA, TS or, rarely, FX or RT.
2803   memset(&ParmInfo, 0, sizeof(ParmInfo));
2804   ParmInfo.pc_cid = PC_CLNULL;
2805   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
2806   if (rslt < 0) return errno;
2807   myClass = ParmInfo.pc_cid;
2808 
2809   // We now know our scheduling classId, get specific information
2810   // about the class.
2811   ClassInfo.pc_cid = myClass;
2812   ClassInfo.pc_clname[0] = 0;
2813   rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
2814   if (rslt < 0) return errno;
2815 
2816   if (ThreadPriorityVerbose) {
2817     tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
2818   }
2819 
2820   memset(&ParmInfo, 0, sizeof(pcparms_t));
2821   ParmInfo.pc_cid = PC_CLNULL;
2822   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
2823   if (rslt < 0) return errno;
2824 
2825   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
2826     myMin = rtLimits.minPrio;
2827     myMax = rtLimits.maxPrio;
2828   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
2829     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
2830     myMin = iaLimits.minPrio;
2831     myMax = iaLimits.maxPrio;
2832     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
2833   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
2834     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
2835     myMin = tsLimits.minPrio;
2836     myMax = tsLimits.maxPrio;
2837     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
2838   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
2839     fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
2840     myMin = fxLimits.minPrio;
2841     myMax = fxLimits.maxPrio;
2842     myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
2843   } else {
2844     // No clue - punt
2845     if (ThreadPriorityVerbose) {
2846       tty->print_cr("Unknown scheduling class: %s ... \n",
2847                     ClassInfo.pc_clname);
2848     }
2849     return EINVAL;      // no clue, punt
2850   }
2851 
2852   if (ThreadPriorityVerbose) {
2853     tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
2854   }
2855 
2856   priocntl_enable = true;  // Enable changing priorities
2857   return 0;
2858 }
2859 
2860 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
2861 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
2862 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
2863 #define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
2864 
2865 
2866 // scale_to_lwp_priority
2867 //
2868 // Convert from the libthread "thr_setprio" scale to our current
2869 // lwp scheduling class scale.
2870 //
2871 static int scale_to_lwp_priority(int rMin, int rMax, int x) {
2872   int v;
2873 
2874   if (x == 127) return rMax;            // avoid round-down
2875   v = (((x*(rMax-rMin)))/128)+rMin;
2876   return v;
2877 }
2878 
2879 
2880 // set_lwp_class_and_priority
2881 int set_lwp_class_and_priority(int ThreadID, int lwpid,
2882                                int newPrio, int new_class, bool scale) {
2883   int rslt;
2884   int Actual, Expected, prv;
2885   pcparms_t ParmInfo;                   // for GET-SET
2886 #ifdef ASSERT
2887   pcparms_t ReadBack;                   // for readback
2888 #endif
2889 
2890   // Set priority via PC_GETPARMS, update, PC_SETPARMS
2891   // Query current values.
2892   // TODO: accelerate this by eliminating the PC_GETPARMS call.
2893   // Cache "pcparms_t" in global ParmCache.
2894   // TODO: elide set-to-same-value
2895 
2896   // If something went wrong on init, don't change priorities.
2897   if (!priocntl_enable) {
2898     if (ThreadPriorityVerbose) {
2899       tty->print_cr("Trying to set priority but init failed, ignoring");
2900     }
2901     return EINVAL;
2902   }
2903 
2904   // If lwp hasn't started yet, just return
2905   // the _start routine will call us again.
2906   if (lwpid <= 0) {
2907     if (ThreadPriorityVerbose) {
2908       tty->print_cr("deferring the set_lwp_class_and_priority of thread "
2909                     INTPTR_FORMAT " to %d, lwpid not set",
2910                     ThreadID, newPrio);
2911     }
2912     return 0;
2913   }
2914 
2915   if (ThreadPriorityVerbose) {
2916     tty->print_cr ("set_lwp_class_and_priority("
2917                    INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
2918                    ThreadID, lwpid, newPrio);
2919   }
2920 
2921   memset(&ParmInfo, 0, sizeof(pcparms_t));
2922   ParmInfo.pc_cid = PC_CLNULL;
2923   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
2924   if (rslt < 0) return errno;
2925 
2926   int cur_class = ParmInfo.pc_cid;
2927   ParmInfo.pc_cid = (id_t)new_class;
2928 
2929   if (new_class == rtLimits.schedPolicy) {
2930     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
2931     rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
2932                                                        rtLimits.maxPrio, newPrio)
2933                                : newPrio;
2934     rtInfo->rt_tqsecs  = RT_NOCHANGE;
2935     rtInfo->rt_tqnsecs = RT_NOCHANGE;
2936     if (ThreadPriorityVerbose) {
2937       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
2938     }
2939   } else if (new_class == iaLimits.schedPolicy) {
2940     iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
2941     int maxClamped     = MIN2(iaLimits.maxPrio,
2942                               cur_class == new_class
2943                               ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
2944     iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
2945                                                        maxClamped, newPrio)
2946                                : newPrio;
2947     iaInfo->ia_uprilim = cur_class == new_class
2948                            ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
2949     iaInfo->ia_mode    = IA_NOCHANGE;
2950     if (ThreadPriorityVerbose) {
2951       tty->print_cr("IA: [%d...%d] %d->%d\n",
2952                     iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
2953     }
2954   } else if (new_class == tsLimits.schedPolicy) {
2955     tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
2956     int maxClamped     = MIN2(tsLimits.maxPrio,
2957                               cur_class == new_class
2958                               ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
2959     tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
2960                                                        maxClamped, newPrio)
2961                                : newPrio;
2962     tsInfo->ts_uprilim = cur_class == new_class
2963                            ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
2964     if (ThreadPriorityVerbose) {
2965       tty->print_cr("TS: [%d...%d] %d->%d\n",
2966                     tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
2967     }
2968   } else if (new_class == fxLimits.schedPolicy) {
2969     fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
2970     int maxClamped     = MIN2(fxLimits.maxPrio,
2971                               cur_class == new_class
2972                               ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
2973     fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
2974                                                        maxClamped, newPrio)
2975                                : newPrio;
2976     fxInfo->fx_uprilim = cur_class == new_class
2977                            ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
2978     fxInfo->fx_tqsecs  = FX_NOCHANGE;
2979     fxInfo->fx_tqnsecs = FX_NOCHANGE;
2980     if (ThreadPriorityVerbose) {
2981       tty->print_cr("FX: [%d...%d] %d->%d\n",
2982                     fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
2983     }
2984   } else {
2985     if (ThreadPriorityVerbose) {
2986       tty->print_cr("Unknown new scheduling class %d\n", new_class);
2987     }
2988     return EINVAL;    // no clue, punt
2989   }
2990 
2991   rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
2992   if (ThreadPriorityVerbose && rslt) {
2993     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
2994   }
2995   if (rslt < 0) return errno;
2996 
2997 #ifdef ASSERT
2998   // Sanity check: read back what we just attempted to set.
2999   // In theory it could have changed in the interim ...
3000   //
3001   // The priocntl system call is tricky.
3002   // Sometimes it'll validate the priority value argument and
3003   // return EINVAL if unhappy.  At other times it fails silently.
3004   // Readbacks are prudent.
3005 
3006   if (!ReadBackValidate) return 0;
3007 
3008   memset(&ReadBack, 0, sizeof(pcparms_t));
3009   ReadBack.pc_cid = PC_CLNULL;
3010   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3011   assert(rslt >= 0, "priocntl failed");
3012   Actual = Expected = 0xBAD;
3013   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3014   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3015     Actual   = RTPRI(ReadBack)->rt_pri;
3016     Expected = RTPRI(ParmInfo)->rt_pri;
3017   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3018     Actual   = IAPRI(ReadBack)->ia_upri;
3019     Expected = IAPRI(ParmInfo)->ia_upri;
3020   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3021     Actual   = TSPRI(ReadBack)->ts_upri;
3022     Expected = TSPRI(ParmInfo)->ts_upri;
3023   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3024     Actual   = FXPRI(ReadBack)->fx_upri;
3025     Expected = FXPRI(ParmInfo)->fx_upri;
3026   } else {
3027     if (ThreadPriorityVerbose) {
3028       tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3029                     ParmInfo.pc_cid);
3030     }
3031   }
3032 
3033   if (Actual != Expected) {
3034     if (ThreadPriorityVerbose) {
3035       tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3036                      lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3037     }
3038   }
3039 #endif
3040 
3041   return 0;
3042 }
3043 
3044 // Solaris only gives access to 128 real priorities at a time,
3045 // so we expand Java's ten to fill this range.  This would be better
3046 // if we dynamically adjusted relative priorities.
3047 //
3048 // The ThreadPriorityPolicy option allows us to select 2 different
3049 // priority scales.
3050 //
3051 // ThreadPriorityPolicy=0
3052 // Since the Solaris' default priority is MaximumPriority, we do not
3053 // set a priority lower than Max unless a priority lower than
3054 // NormPriority is requested.
3055 //
3056 // ThreadPriorityPolicy=1
3057 // This mode causes the priority table to get filled with
3058 // linear values.  NormPriority get's mapped to 50% of the
3059 // Maximum priority an so on.  This will cause VM threads
3060 // to get unfair treatment against other Solaris processes
3061 // which do not explicitly alter their thread priorities.
3062 
3063 int os::java_to_os_priority[CriticalPriority + 1] = {
3064   -99999,         // 0 Entry should never be used
3065 
3066   0,              // 1 MinPriority
3067   32,             // 2
3068   64,             // 3
3069 
3070   96,             // 4
3071   127,            // 5 NormPriority
3072   127,            // 6
3073 
3074   127,            // 7
3075   127,            // 8
3076   127,            // 9 NearMaxPriority
3077 
3078   127,            // 10 MaxPriority
3079 
3080   -criticalPrio   // 11 CriticalPriority
3081 };
3082 
3083 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3084   OSThread* osthread = thread->osthread();
3085 
3086   // Save requested priority in case the thread hasn't been started
3087   osthread->set_native_priority(newpri);
3088 
3089   // Check for critical priority request
3090   bool fxcritical = false;
3091   if (newpri == -criticalPrio) {
3092     fxcritical = true;
3093     newpri = criticalPrio;
3094   }
3095 
3096   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3097   if (!UseThreadPriorities) return OS_OK;
3098 
3099   int status = 0;
3100 
3101   if (!fxcritical) {
3102     // Use thr_setprio only if we have a priority that thr_setprio understands
3103     status = thr_setprio(thread->osthread()->thread_id(), newpri);
3104   }
3105 
3106   int lwp_status =
3107           set_lwp_class_and_priority(osthread->thread_id(),
3108                                      osthread->lwp_id(),
3109                                      newpri,
3110                                      fxcritical ? fxLimits.schedPolicy : myClass,
3111                                      !fxcritical);
3112   if (lwp_status != 0 && fxcritical) {
3113     // Try again, this time without changing the scheduling class
3114     newpri = java_MaxPriority_to_os_priority;
3115     lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3116                                             osthread->lwp_id(),
3117                                             newpri, myClass, false);
3118   }
3119   status |= lwp_status;
3120   return (status == 0) ? OS_OK : OS_ERR;
3121 }
3122 
3123 
3124 OSReturn os::get_native_priority(const Thread* const thread,
3125                                  int *priority_ptr) {
3126   int p;
3127   if (!UseThreadPriorities) {
3128     *priority_ptr = NormalPriority;
3129     return OS_OK;
3130   }
3131   int status = thr_getprio(thread->osthread()->thread_id(), &p);
3132   if (status != 0) {
3133     return OS_ERR;
3134   }
3135   *priority_ptr = p;
3136   return OS_OK;
3137 }
3138 
3139 ////////////////////////////////////////////////////////////////////////////////
3140 // suspend/resume support
3141 
3142 //  The low-level signal-based suspend/resume support is a remnant from the
3143 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3144 //  within hotspot. Currently used by JFR's OSThreadSampler
3145 //
3146 //  The remaining code is greatly simplified from the more general suspension
3147 //  code that used to be used.
3148 //
3149 //  The protocol is quite simple:
3150 //  - suspend:
3151 //      - sends a signal to the target thread
3152 //      - polls the suspend state of the osthread using a yield loop
3153 //      - target thread signal handler (SR_handler) sets suspend state
3154 //        and blocks in sigsuspend until continued
3155 //  - resume:
3156 //      - sets target osthread state to continue
3157 //      - sends signal to end the sigsuspend loop in the SR_handler
3158 //
3159 //  Note that the SR_lock plays no role in this suspend/resume protocol,
3160 //  but is checked for NULL in SR_handler as a thread termination indicator.
3161 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
3162 //
3163 //  Note that resume_clear_context() and suspend_save_context() are needed
3164 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
3165 //  which in part is used by:
3166 //    - Forte Analyzer: AsyncGetCallTrace()
3167 //    - StackBanging: get_frame_at_stack_banging_point()
3168 //    - JFR: get_topframe()-->....-->get_valid_uc_in_signal_handler()
3169 
3170 static void resume_clear_context(OSThread *osthread) {
3171   osthread->set_ucontext(NULL);
3172 }
3173 
3174 static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3175   osthread->set_ucontext(context);
3176 }
3177 
3178 static PosixSemaphore sr_semaphore;
3179 
3180 void os::Solaris::SR_handler(Thread* thread, ucontext_t* context) {
3181   // Save and restore errno to avoid confusing native code with EINTR
3182   // after sigsuspend.
3183   int old_errno = errno;
3184 
3185   OSThread* osthread = thread->osthread();
3186   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3187 
3188   os::SuspendResume::State current = osthread->sr.state();
3189   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3190     suspend_save_context(osthread, context);
3191 
3192     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3193     os::SuspendResume::State state = osthread->sr.suspended();
3194     if (state == os::SuspendResume::SR_SUSPENDED) {
3195       sigset_t suspend_set;  // signals for sigsuspend()
3196 
3197       // get current set of blocked signals and unblock resume signal
3198       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3199       sigdelset(&suspend_set, ASYNC_SIGNAL);
3200 
3201       sr_semaphore.signal();
3202       // wait here until we are resumed
3203       while (1) {
3204         sigsuspend(&suspend_set);
3205 
3206         os::SuspendResume::State result = osthread->sr.running();
3207         if (result == os::SuspendResume::SR_RUNNING) {
3208           sr_semaphore.signal();
3209           break;
3210         }
3211       }
3212 
3213     } else if (state == os::SuspendResume::SR_RUNNING) {
3214       // request was cancelled, continue
3215     } else {
3216       ShouldNotReachHere();
3217     }
3218 
3219     resume_clear_context(osthread);
3220   } else if (current == os::SuspendResume::SR_RUNNING) {
3221     // request was cancelled, continue
3222   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3223     // ignore
3224   } else {
3225     // ignore
3226   }
3227 
3228   errno = old_errno;
3229 }
3230 
3231 void os::print_statistics() {
3232 }
3233 
3234 bool os::message_box(const char* title, const char* message) {
3235   int i;
3236   fdStream err(defaultStream::error_fd());
3237   for (i = 0; i < 78; i++) err.print_raw("=");
3238   err.cr();
3239   err.print_raw_cr(title);
3240   for (i = 0; i < 78; i++) err.print_raw("-");
3241   err.cr();
3242   err.print_raw_cr(message);
3243   for (i = 0; i < 78; i++) err.print_raw("=");
3244   err.cr();
3245 
3246   char buf[16];
3247   // Prevent process from exiting upon "read error" without consuming all CPU
3248   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3249 
3250   return buf[0] == 'y' || buf[0] == 'Y';
3251 }
3252 
3253 static int sr_notify(OSThread* osthread) {
3254   int status = thr_kill(osthread->thread_id(), ASYNC_SIGNAL);
3255   assert_status(status == 0, status, "thr_kill");
3256   return status;
3257 }
3258 
3259 // "Randomly" selected value for how long we want to spin
3260 // before bailing out on suspending a thread, also how often
3261 // we send a signal to a thread we want to resume
3262 static const int RANDOMLY_LARGE_INTEGER = 1000000;
3263 static const int RANDOMLY_LARGE_INTEGER2 = 100;
3264 
3265 static bool do_suspend(OSThread* osthread) {
3266   assert(osthread->sr.is_running(), "thread should be running");
3267   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3268 
3269   // mark as suspended and send signal
3270   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3271     // failed to switch, state wasn't running?
3272     ShouldNotReachHere();
3273     return false;
3274   }
3275 
3276   if (sr_notify(osthread) != 0) {
3277     ShouldNotReachHere();
3278   }
3279 
3280   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3281   while (true) {
3282     if (sr_semaphore.timedwait(2000)) {
3283       break;
3284     } else {
3285       // timeout
3286       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3287       if (cancelled == os::SuspendResume::SR_RUNNING) {
3288         return false;
3289       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3290         // make sure that we consume the signal on the semaphore as well
3291         sr_semaphore.wait();
3292         break;
3293       } else {
3294         ShouldNotReachHere();
3295         return false;
3296       }
3297     }
3298   }
3299 
3300   guarantee(osthread->sr.is_suspended(), "Must be suspended");
3301   return true;
3302 }
3303 
3304 static void do_resume(OSThread* osthread) {
3305   assert(osthread->sr.is_suspended(), "thread should be suspended");
3306   assert(!sr_semaphore.trywait(), "invalid semaphore state");
3307 
3308   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3309     // failed to switch to WAKEUP_REQUEST
3310     ShouldNotReachHere();
3311     return;
3312   }
3313 
3314   while (true) {
3315     if (sr_notify(osthread) == 0) {
3316       if (sr_semaphore.timedwait(2)) {
3317         if (osthread->sr.is_running()) {
3318           return;
3319         }
3320       }
3321     } else {
3322       ShouldNotReachHere();
3323     }
3324   }
3325 
3326   guarantee(osthread->sr.is_running(), "Must be running!");
3327 }
3328 
3329 void os::SuspendedThreadTask::internal_do_task() {
3330   if (do_suspend(_thread->osthread())) {
3331     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3332     do_task(context);
3333     do_resume(_thread->osthread());
3334   }
3335 }
3336 
3337 // This does not do anything on Solaris. This is basically a hook for being
3338 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3339 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3340                               const methodHandle& method, JavaCallArguments* args,
3341                               Thread* thread) {
3342   f(value, method, args, thread);
3343 }
3344 
3345 // This routine may be used by user applications as a "hook" to catch signals.
3346 // The user-defined signal handler must pass unrecognized signals to this
3347 // routine, and if it returns true (non-zero), then the signal handler must
3348 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3349 // routine will never retun false (zero), but instead will execute a VM panic
3350 // routine kill the process.
3351 //
3352 // If this routine returns false, it is OK to call it again.  This allows
3353 // the user-defined signal handler to perform checks either before or after
3354 // the VM performs its own checks.  Naturally, the user code would be making
3355 // a serious error if it tried to handle an exception (such as a null check
3356 // or breakpoint) that the VM was generating for its own correct operation.
3357 //
3358 // This routine may recognize any of the following kinds of signals:
3359 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3360 // ASYNC_SIGNAL.
3361 // It should be consulted by handlers for any of those signals.
3362 //
3363 // The caller of this routine must pass in the three arguments supplied
3364 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3365 // field of the structure passed to sigaction().  This routine assumes that
3366 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3367 //
3368 // Note that the VM will print warnings if it detects conflicting signal
3369 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3370 //
3371 extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3372                                                    siginfo_t* siginfo,
3373                                                    void* ucontext,
3374                                                    int abort_if_unrecognized);
3375 
3376 
3377 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3378   int orig_errno = errno;  // Preserve errno value over signal handler.
3379   JVM_handle_solaris_signal(sig, info, ucVoid, true);
3380   errno = orig_errno;
3381 }
3382 
3383 // This boolean allows users to forward their own non-matching signals
3384 // to JVM_handle_solaris_signal, harmlessly.
3385 bool os::Solaris::signal_handlers_are_installed = false;
3386 
3387 // For signal-chaining
3388 bool os::Solaris::libjsig_is_loaded = false;
3389 typedef struct sigaction *(*get_signal_t)(int);
3390 get_signal_t os::Solaris::get_signal_action = NULL;
3391 
3392 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3393   struct sigaction *actp = NULL;
3394 
3395   if ((libjsig_is_loaded)  && (sig <= Maxsignum)) {
3396     // Retrieve the old signal handler from libjsig
3397     actp = (*get_signal_action)(sig);
3398   }
3399   if (actp == NULL) {
3400     // Retrieve the preinstalled signal handler from jvm
3401     actp = get_preinstalled_handler(sig);
3402   }
3403 
3404   return actp;
3405 }
3406 
3407 static bool call_chained_handler(struct sigaction *actp, int sig,
3408                                  siginfo_t *siginfo, void *context) {
3409   // Call the old signal handler
3410   if (actp->sa_handler == SIG_DFL) {
3411     // It's more reasonable to let jvm treat it as an unexpected exception
3412     // instead of taking the default action.
3413     return false;
3414   } else if (actp->sa_handler != SIG_IGN) {
3415     if ((actp->sa_flags & SA_NODEFER) == 0) {
3416       // automaticlly block the signal
3417       sigaddset(&(actp->sa_mask), sig);
3418     }
3419 
3420     sa_handler_t hand;
3421     sa_sigaction_t sa;
3422     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3423     // retrieve the chained handler
3424     if (siginfo_flag_set) {
3425       sa = actp->sa_sigaction;
3426     } else {
3427       hand = actp->sa_handler;
3428     }
3429 
3430     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3431       actp->sa_handler = SIG_DFL;
3432     }
3433 
3434     // try to honor the signal mask
3435     sigset_t oset;
3436     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3437 
3438     // call into the chained handler
3439     if (siginfo_flag_set) {
3440       (*sa)(sig, siginfo, context);
3441     } else {
3442       (*hand)(sig);
3443     }
3444 
3445     // restore the signal mask
3446     pthread_sigmask(SIG_SETMASK, &oset, 0);
3447   }
3448   // Tell jvm's signal handler the signal is taken care of.
3449   return true;
3450 }
3451 
3452 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3453   bool chained = false;
3454   // signal-chaining
3455   if (UseSignalChaining) {
3456     struct sigaction *actp = get_chained_signal_action(sig);
3457     if (actp != NULL) {
3458       chained = call_chained_handler(actp, sig, siginfo, context);
3459     }
3460   }
3461   return chained;
3462 }
3463 
3464 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
3465   assert((chainedsigactions != (struct sigaction *)NULL) &&
3466          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3467   if (preinstalled_sigs[sig] != 0) {
3468     return &chainedsigactions[sig];
3469   }
3470   return NULL;
3471 }
3472 
3473 void os::Solaris::save_preinstalled_handler(int sig,
3474                                             struct sigaction& oldAct) {
3475   assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
3476   assert((chainedsigactions != (struct sigaction *)NULL) &&
3477          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3478   chainedsigactions[sig] = oldAct;
3479   preinstalled_sigs[sig] = 1;
3480 }
3481 
3482 void os::Solaris::set_signal_handler(int sig, bool set_installed,
3483                                      bool oktochain) {
3484   // Check for overwrite.
3485   struct sigaction oldAct;
3486   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3487   void* oldhand =
3488       oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3489                           : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3490   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3491       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3492       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3493     if (AllowUserSignalHandlers || !set_installed) {
3494       // Do not overwrite; user takes responsibility to forward to us.
3495       return;
3496     } else if (UseSignalChaining) {
3497       if (oktochain) {
3498         // save the old handler in jvm
3499         save_preinstalled_handler(sig, oldAct);
3500       } else {
3501         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3502       }
3503       // libjsig also interposes the sigaction() call below and saves the
3504       // old sigaction on it own.
3505     } else {
3506       fatal("Encountered unexpected pre-existing sigaction handler "
3507             "%#lx for signal %d.", (long)oldhand, sig);
3508     }
3509   }
3510 
3511   struct sigaction sigAct;
3512   sigfillset(&(sigAct.sa_mask));
3513   sigAct.sa_handler = SIG_DFL;
3514 
3515   sigAct.sa_sigaction = signalHandler;
3516   // Handle SIGSEGV on alternate signal stack if
3517   // not using stack banging
3518   if (!UseStackBanging && sig == SIGSEGV) {
3519     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
3520   } else {
3521     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
3522   }
3523   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
3524 
3525   sigaction(sig, &sigAct, &oldAct);
3526 
3527   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3528                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3529   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3530 }
3531 
3532 
3533 #define DO_SIGNAL_CHECK(sig)                      \
3534   do {                                            \
3535     if (!sigismember(&check_signal_done, sig)) {  \
3536       os::Solaris::check_signal_handler(sig);     \
3537     }                                             \
3538   } while (0)
3539 
3540 // This method is a periodic task to check for misbehaving JNI applications
3541 // under CheckJNI, we can add any periodic checks here
3542 
3543 void os::run_periodic_checks() {
3544   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
3545   // thereby preventing a NULL checks.
3546   if (!check_addr0_done) check_addr0_done = check_addr0(tty);
3547 
3548   if (check_signals == false) return;
3549 
3550   // SEGV and BUS if overridden could potentially prevent
3551   // generation of hs*.log in the event of a crash, debugging
3552   // such a case can be very challenging, so we absolutely
3553   // check for the following for a good measure:
3554   DO_SIGNAL_CHECK(SIGSEGV);
3555   DO_SIGNAL_CHECK(SIGILL);
3556   DO_SIGNAL_CHECK(SIGFPE);
3557   DO_SIGNAL_CHECK(SIGBUS);
3558   DO_SIGNAL_CHECK(SIGPIPE);
3559   DO_SIGNAL_CHECK(SIGXFSZ);
3560   DO_SIGNAL_CHECK(ASYNC_SIGNAL);
3561 
3562   // ReduceSignalUsage allows the user to override these handlers
3563   // see comments at the very top and jvm_solaris.h
3564   if (!ReduceSignalUsage) {
3565     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3566     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3567     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3568     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3569   }
3570 }
3571 
3572 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3573 
3574 static os_sigaction_t os_sigaction = NULL;
3575 
3576 void os::Solaris::check_signal_handler(int sig) {
3577   char buf[O_BUFLEN];
3578   address jvmHandler = NULL;
3579 
3580   struct sigaction act;
3581   if (os_sigaction == NULL) {
3582     // only trust the default sigaction, in case it has been interposed
3583     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3584     if (os_sigaction == NULL) return;
3585   }
3586 
3587   os_sigaction(sig, (struct sigaction*)NULL, &act);
3588 
3589   address thisHandler = (act.sa_flags & SA_SIGINFO)
3590     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3591     : CAST_FROM_FN_PTR(address, act.sa_handler);
3592 
3593 
3594   switch (sig) {
3595   case SIGSEGV:
3596   case SIGBUS:
3597   case SIGFPE:
3598   case SIGPIPE:
3599   case SIGXFSZ:
3600   case SIGILL:
3601   case ASYNC_SIGNAL:
3602     jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
3603     break;
3604 
3605   case SHUTDOWN1_SIGNAL:
3606   case SHUTDOWN2_SIGNAL:
3607   case SHUTDOWN3_SIGNAL:
3608   case BREAK_SIGNAL:
3609     jvmHandler = (address)user_handler();
3610     break;
3611 
3612   default:
3613       return;
3614   }
3615 
3616   if (thisHandler != jvmHandler) {
3617     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3618     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3619     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3620     // No need to check this sig any longer
3621     sigaddset(&check_signal_done, sig);
3622     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3623     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3624       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3625                     exception_name(sig, buf, O_BUFLEN));
3626     }
3627   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
3628     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3629     tty->print("expected:");
3630     os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
3631     tty->cr();
3632     tty->print("  found:");
3633     os::Posix::print_sa_flags(tty, act.sa_flags);
3634     tty->cr();
3635     // No need to check this sig any longer
3636     sigaddset(&check_signal_done, sig);
3637   }
3638 
3639   // Print all the signal handler state
3640   if (sigismember(&check_signal_done, sig)) {
3641     print_signal_handlers(tty, buf, O_BUFLEN);
3642   }
3643 
3644 }
3645 
3646 void os::Solaris::install_signal_handlers() {
3647   signal_handlers_are_installed = true;
3648 
3649   // signal-chaining
3650   typedef void (*signal_setting_t)();
3651   signal_setting_t begin_signal_setting = NULL;
3652   signal_setting_t end_signal_setting = NULL;
3653   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3654                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3655   if (begin_signal_setting != NULL) {
3656     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3657                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3658     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3659                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3660     libjsig_is_loaded = true;
3661     assert(UseSignalChaining, "should enable signal-chaining");
3662   }
3663   if (libjsig_is_loaded) {
3664     // Tell libjsig jvm is setting signal handlers
3665     (*begin_signal_setting)();
3666   }
3667 
3668   set_signal_handler(SIGSEGV, true, true);
3669   set_signal_handler(SIGPIPE, true, true);
3670   set_signal_handler(SIGXFSZ, true, true);
3671   set_signal_handler(SIGBUS, true, true);
3672   set_signal_handler(SIGILL, true, true);
3673   set_signal_handler(SIGFPE, true, true);
3674   set_signal_handler(ASYNC_SIGNAL, true, true);
3675 
3676   if (libjsig_is_loaded) {
3677     // Tell libjsig jvm finishes setting signal handlers
3678     (*end_signal_setting)();
3679   }
3680 
3681   // We don't activate signal checker if libjsig is in place, we trust ourselves
3682   // and if UserSignalHandler is installed all bets are off.
3683   // Log that signal checking is off only if -verbose:jni is specified.
3684   if (CheckJNICalls) {
3685     if (libjsig_is_loaded) {
3686       log_debug(jni, resolve)("Info: libjsig is activated, all active signal checking is disabled");
3687       check_signals = false;
3688     }
3689     if (AllowUserSignalHandlers) {
3690       log_debug(jni, resolve)("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3691       check_signals = false;
3692     }
3693   }
3694 }
3695 
3696 
3697 void report_error(const char* file_name, int line_no, const char* title,
3698                   const char* format, ...);
3699 
3700 // (Static) wrappers for the liblgrp API
3701 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
3702 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
3703 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
3704 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
3705 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
3706 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
3707 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
3708 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
3709 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
3710 
3711 static address resolve_symbol_lazy(const char* name) {
3712   address addr = (address) dlsym(RTLD_DEFAULT, name);
3713   if (addr == NULL) {
3714     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
3715     addr = (address) dlsym(RTLD_NEXT, name);
3716   }
3717   return addr;
3718 }
3719 
3720 static address resolve_symbol(const char* name) {
3721   address addr = resolve_symbol_lazy(name);
3722   if (addr == NULL) {
3723     fatal(dlerror());
3724   }
3725   return addr;
3726 }
3727 
3728 void os::Solaris::libthread_init() {
3729   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
3730 
3731   lwp_priocntl_init();
3732 
3733   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
3734   if (func == NULL) {
3735     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
3736     // Guarantee that this VM is running on an new enough OS (5.6 or
3737     // later) that it will have a new enough libthread.so.
3738     guarantee(func != NULL, "libthread.so is too old.");
3739   }
3740 
3741   int size;
3742   void (*handler_info_func)(address *, int *);
3743   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
3744   handler_info_func(&handler_start, &size);
3745   handler_end = handler_start + size;
3746 }
3747 
3748 
3749 int_fnP_mutex_tP os::Solaris::_mutex_lock;
3750 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
3751 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
3752 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
3753 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
3754 int os::Solaris::_mutex_scope = USYNC_THREAD;
3755 
3756 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
3757 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
3758 int_fnP_cond_tP os::Solaris::_cond_signal;
3759 int_fnP_cond_tP os::Solaris::_cond_broadcast;
3760 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
3761 int_fnP_cond_tP os::Solaris::_cond_destroy;
3762 int os::Solaris::_cond_scope = USYNC_THREAD;
3763 bool os::Solaris::_synchronization_initialized;
3764 
3765 void os::Solaris::synchronization_init() {
3766   if (UseLWPSynchronization) {
3767     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
3768     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
3769     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
3770     os::Solaris::set_mutex_init(lwp_mutex_init);
3771     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
3772     os::Solaris::set_mutex_scope(USYNC_THREAD);
3773 
3774     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
3775     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
3776     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
3777     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
3778     os::Solaris::set_cond_init(lwp_cond_init);
3779     os::Solaris::set_cond_destroy(lwp_cond_destroy);
3780     os::Solaris::set_cond_scope(USYNC_THREAD);
3781   } else {
3782     os::Solaris::set_mutex_scope(USYNC_THREAD);
3783     os::Solaris::set_cond_scope(USYNC_THREAD);
3784 
3785     if (UsePthreads) {
3786       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
3787       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
3788       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
3789       os::Solaris::set_mutex_init(pthread_mutex_default_init);
3790       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
3791 
3792       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
3793       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
3794       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
3795       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
3796       os::Solaris::set_cond_init(pthread_cond_default_init);
3797       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
3798     } else {
3799       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
3800       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
3801       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
3802       os::Solaris::set_mutex_init(::mutex_init);
3803       os::Solaris::set_mutex_destroy(::mutex_destroy);
3804 
3805       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
3806       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
3807       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
3808       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
3809       os::Solaris::set_cond_init(::cond_init);
3810       os::Solaris::set_cond_destroy(::cond_destroy);
3811     }
3812   }
3813   _synchronization_initialized = true;
3814 }
3815 
3816 bool os::Solaris::liblgrp_init() {
3817   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
3818   if (handle != NULL) {
3819     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
3820     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
3821     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
3822     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
3823     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
3824     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
3825     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
3826     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
3827                                                       dlsym(handle, "lgrp_cookie_stale")));
3828 
3829     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
3830     set_lgrp_cookie(c);
3831     return true;
3832   }
3833   return false;
3834 }
3835 
3836 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
3837 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
3838 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
3839 
3840 void init_pset_getloadavg_ptr(void) {
3841   pset_getloadavg_ptr =
3842     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
3843   if (pset_getloadavg_ptr == NULL) {
3844     log_warning(os)("pset_getloadavg function not found");
3845   }
3846 }
3847 
3848 int os::Solaris::_dev_zero_fd = -1;
3849 
3850 // this is called _before_ the global arguments have been parsed
3851 void os::init(void) {
3852   _initial_pid = getpid();
3853 
3854   max_hrtime = first_hrtime = gethrtime();
3855 
3856   init_random(1234567);
3857 
3858   page_size = sysconf(_SC_PAGESIZE);
3859   if (page_size == -1) {
3860     fatal("os_solaris.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
3861   }
3862   init_page_sizes((size_t) page_size);
3863 
3864   Solaris::initialize_system_info();
3865 
3866   int fd = ::open("/dev/zero", O_RDWR);
3867   if (fd < 0) {
3868     fatal("os::init: cannot open /dev/zero (%s)", os::strerror(errno));
3869   } else {
3870     Solaris::set_dev_zero_fd(fd);
3871 
3872     // Close on exec, child won't inherit.
3873     fcntl(fd, F_SETFD, FD_CLOEXEC);
3874   }
3875 
3876   clock_tics_per_sec = CLK_TCK;
3877 
3878   // check if dladdr1() exists; dladdr1 can provide more information than
3879   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
3880   // and is available on linker patches for 5.7 and 5.8.
3881   // libdl.so must have been loaded, this call is just an entry lookup
3882   void * hdl = dlopen("libdl.so", RTLD_NOW);
3883   if (hdl) {
3884     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
3885   }
3886 
3887   // main_thread points to the thread that created/loaded the JVM.
3888   main_thread = thr_self();
3889 
3890   // dynamic lookup of functions that may not be available in our lowest
3891   // supported Solaris release
3892   void * handle = dlopen("libc.so.1", RTLD_LAZY);
3893   if (handle != NULL) {
3894     Solaris::_pthread_setname_np =  // from 11.3
3895         (Solaris::pthread_setname_np_func_t)dlsym(handle, "pthread_setname_np");
3896   }
3897 
3898   // Shared Posix initialization
3899   os::Posix::init();
3900 }
3901 
3902 // To install functions for atexit system call
3903 extern "C" {
3904   static void perfMemory_exit_helper() {
3905     perfMemory_exit();
3906   }
3907 }
3908 
3909 // this is called _after_ the global arguments have been parsed
3910 jint os::init_2(void) {
3911   // try to enable extended file IO ASAP, see 6431278
3912   os::Solaris::try_enable_extended_io();
3913 
3914   // Check and sets minimum stack sizes against command line options
3915   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
3916     return JNI_ERR;
3917   }
3918 
3919   Solaris::libthread_init();
3920 
3921   if (UseNUMA) {
3922     if (!Solaris::liblgrp_init()) {
3923       UseNUMA = false;
3924     } else {
3925       size_t lgrp_limit = os::numa_get_groups_num();
3926       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
3927       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
3928       FREE_C_HEAP_ARRAY(int, lgrp_ids);
3929       if (lgrp_num < 2) {
3930         // There's only one locality group, disable NUMA.
3931         UseNUMA = false;
3932       }
3933     }
3934     if (!UseNUMA && ForceNUMA) {
3935       UseNUMA = true;
3936     }
3937   }
3938 
3939   Solaris::signal_sets_init();
3940   Solaris::init_signal_mem();
3941   Solaris::install_signal_handlers();
3942   // Initialize data for jdk.internal.misc.Signal
3943   if (!ReduceSignalUsage) {
3944     jdk_misc_signal_init();
3945   }
3946 
3947   // initialize synchronization primitives to use either thread or
3948   // lwp synchronization (controlled by UseLWPSynchronization)
3949   Solaris::synchronization_init();
3950   DEBUG_ONLY(os::set_mutex_init_done();)
3951 
3952   if (MaxFDLimit) {
3953     // set the number of file descriptors to max. print out error
3954     // if getrlimit/setrlimit fails but continue regardless.
3955     struct rlimit nbr_files;
3956     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3957     if (status != 0) {
3958       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
3959     } else {
3960       nbr_files.rlim_cur = nbr_files.rlim_max;
3961       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3962       if (status != 0) {
3963         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
3964       }
3965     }
3966   }
3967 
3968   // Calculate theoretical max. size of Threads to guard gainst
3969   // artifical out-of-memory situations, where all available address-
3970   // space has been reserved by thread stacks. Default stack size is 1Mb.
3971   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
3972     JavaThread::stack_size_at_create() : (1*K*K);
3973   assert(pre_thread_stack_size != 0, "Must have a stack");
3974   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
3975   // we should start doing Virtual Memory banging. Currently when the threads will
3976   // have used all but 200Mb of space.
3977   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
3978   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
3979 
3980   // at-exit methods are called in the reverse order of their registration.
3981   // In Solaris 7 and earlier, atexit functions are called on return from
3982   // main or as a result of a call to exit(3C). There can be only 32 of
3983   // these functions registered and atexit() does not set errno. In Solaris
3984   // 8 and later, there is no limit to the number of functions registered
3985   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
3986   // functions are called upon dlclose(3DL) in addition to return from main
3987   // and exit(3C).
3988 
3989   if (PerfAllowAtExitRegistration) {
3990     // only register atexit functions if PerfAllowAtExitRegistration is set.
3991     // atexit functions can be delayed until process exit time, which
3992     // can be problematic for embedded VM situations. Embedded VMs should
3993     // call DestroyJavaVM() to assure that VM resources are released.
3994 
3995     // note: perfMemory_exit_helper atexit function may be removed in
3996     // the future if the appropriate cleanup code can be added to the
3997     // VM_Exit VMOperation's doit method.
3998     if (atexit(perfMemory_exit_helper) != 0) {
3999       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4000     }
4001   }
4002 
4003   // Init pset_loadavg function pointer
4004   init_pset_getloadavg_ptr();
4005 
4006   // Shared Posix initialization
4007   os::Posix::init_2();
4008 
4009   return JNI_OK;
4010 }
4011 
4012 // Mark the polling page as unreadable
4013 void os::make_polling_page_unreadable(void) {
4014   Events::log(NULL, "Protecting polling page " INTPTR_FORMAT " with PROT_NONE", p2i(_polling_page));
4015   if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4016     fatal("Could not disable polling page");
4017   }
4018 }
4019 
4020 // Mark the polling page as readable
4021 void os::make_polling_page_readable(void) {
4022   Events::log(NULL, "Protecting polling page " INTPTR_FORMAT " with PROT_READ", p2i(_polling_page));
4023   if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4024     fatal("Could not enable polling page");
4025   }
4026 }
4027 
4028 // Is a (classpath) directory empty?
4029 bool os::dir_is_empty(const char* path) {
4030   DIR *dir = NULL;
4031   struct dirent *ptr;
4032 
4033   dir = opendir(path);
4034   if (dir == NULL) return true;
4035 
4036   // Scan the directory
4037   bool result = true;
4038   while (result && (ptr = readdir(dir)) != NULL) {
4039     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4040       result = false;
4041     }
4042   }
4043   closedir(dir);
4044   return result;
4045 }
4046 
4047 // This code originates from JDK's sysOpen and open64_w
4048 // from src/solaris/hpi/src/system_md.c
4049 
4050 int os::open(const char *path, int oflag, int mode) {
4051   if (strlen(path) > MAX_PATH - 1) {
4052     errno = ENAMETOOLONG;
4053     return -1;
4054   }
4055   int fd;
4056 
4057   fd = ::open64(path, oflag, mode);
4058   if (fd == -1) return -1;
4059 
4060   // If the open succeeded, the file might still be a directory
4061   {
4062     struct stat64 buf64;
4063     int ret = ::fstat64(fd, &buf64);
4064     int st_mode = buf64.st_mode;
4065 
4066     if (ret != -1) {
4067       if ((st_mode & S_IFMT) == S_IFDIR) {
4068         errno = EISDIR;
4069         ::close(fd);
4070         return -1;
4071       }
4072     } else {
4073       ::close(fd);
4074       return -1;
4075     }
4076   }
4077 
4078   // 32-bit Solaris systems suffer from:
4079   //
4080   // - an historical default soft limit of 256 per-process file
4081   //   descriptors that is too low for many Java programs.
4082   //
4083   // - a design flaw where file descriptors created using stdio
4084   //   fopen must be less than 256, _even_ when the first limit above
4085   //   has been raised.  This can cause calls to fopen (but not calls to
4086   //   open, for example) to fail mysteriously, perhaps in 3rd party
4087   //   native code (although the JDK itself uses fopen).  One can hardly
4088   //   criticize them for using this most standard of all functions.
4089   //
4090   // We attempt to make everything work anyways by:
4091   //
4092   // - raising the soft limit on per-process file descriptors beyond
4093   //   256
4094   //
4095   // - As of Solaris 10u4, we can request that Solaris raise the 256
4096   //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4097   //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4098   //
4099   // - If we are stuck on an old (pre 10u4) Solaris system, we can
4100   //   workaround the bug by remapping non-stdio file descriptors below
4101   //   256 to ones beyond 256, which is done below.
4102   //
4103   // See:
4104   // 1085341: 32-bit stdio routines should support file descriptors >255
4105   // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4106   // 6431278: Netbeans crash on 32 bit Solaris: need to call
4107   //          enable_extended_FILE_stdio() in VM initialisation
4108   // Giri Mandalika's blog
4109   // http://technopark02.blogspot.com/2005_05_01_archive.html
4110   //
4111 #ifndef  _LP64
4112   if ((!enabled_extended_FILE_stdio) && fd < 256) {
4113     int newfd = ::fcntl(fd, F_DUPFD, 256);
4114     if (newfd != -1) {
4115       ::close(fd);
4116       fd = newfd;
4117     }
4118   }
4119 #endif // 32-bit Solaris
4120 
4121   // All file descriptors that are opened in the JVM and not
4122   // specifically destined for a subprocess should have the
4123   // close-on-exec flag set.  If we don't set it, then careless 3rd
4124   // party native code might fork and exec without closing all
4125   // appropriate file descriptors (e.g. as we do in closeDescriptors in
4126   // UNIXProcess.c), and this in turn might:
4127   //
4128   // - cause end-of-file to fail to be detected on some file
4129   //   descriptors, resulting in mysterious hangs, or
4130   //
4131   // - might cause an fopen in the subprocess to fail on a system
4132   //   suffering from bug 1085341.
4133   //
4134   // (Yes, the default setting of the close-on-exec flag is a Unix
4135   // design flaw)
4136   //
4137   // See:
4138   // 1085341: 32-bit stdio routines should support file descriptors >255
4139   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4140   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4141   //
4142 #ifdef FD_CLOEXEC
4143   {
4144     int flags = ::fcntl(fd, F_GETFD);
4145     if (flags != -1) {
4146       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4147     }
4148   }
4149 #endif
4150 
4151   return fd;
4152 }
4153 
4154 // create binary file, rewriting existing file if required
4155 int os::create_binary_file(const char* path, bool rewrite_existing) {
4156   int oflags = O_WRONLY | O_CREAT;
4157   if (!rewrite_existing) {
4158     oflags |= O_EXCL;
4159   }
4160   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4161 }
4162 
4163 // return current position of file pointer
4164 jlong os::current_file_offset(int fd) {
4165   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4166 }
4167 
4168 // move file pointer to the specified offset
4169 jlong os::seek_to_file_offset(int fd, jlong offset) {
4170   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4171 }
4172 
4173 jlong os::lseek(int fd, jlong offset, int whence) {
4174   return (jlong) ::lseek64(fd, offset, whence);
4175 }
4176 
4177 int os::ftruncate(int fd, jlong length) {
4178   return ::ftruncate64(fd, length);
4179 }
4180 
4181 int os::fsync(int fd)  {
4182   RESTARTABLE_RETURN_INT(::fsync(fd));
4183 }
4184 
4185 int os::available(int fd, jlong *bytes) {
4186   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4187          "Assumed _thread_in_native");
4188   jlong cur, end;
4189   int mode;
4190   struct stat64 buf64;
4191 
4192   if (::fstat64(fd, &buf64) >= 0) {
4193     mode = buf64.st_mode;
4194     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4195       int n,ioctl_return;
4196 
4197       RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4198       if (ioctl_return>= 0) {
4199         *bytes = n;
4200         return 1;
4201       }
4202     }
4203   }
4204   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4205     return 0;
4206   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4207     return 0;
4208   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4209     return 0;
4210   }
4211   *bytes = end - cur;
4212   return 1;
4213 }
4214 
4215 // Map a block of memory.
4216 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4217                         char *addr, size_t bytes, bool read_only,
4218                         bool allow_exec) {
4219   int prot;
4220   int flags;
4221 
4222   if (read_only) {
4223     prot = PROT_READ;
4224     flags = MAP_SHARED;
4225   } else {
4226     prot = PROT_READ | PROT_WRITE;
4227     flags = MAP_PRIVATE;
4228   }
4229 
4230   if (allow_exec) {
4231     prot |= PROT_EXEC;
4232   }
4233 
4234   if (addr != NULL) {
4235     flags |= MAP_FIXED;
4236   }
4237 
4238   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4239                                      fd, file_offset);
4240   if (mapped_address == MAP_FAILED) {
4241     return NULL;
4242   }
4243   return mapped_address;
4244 }
4245 
4246 
4247 // Remap a block of memory.
4248 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4249                           char *addr, size_t bytes, bool read_only,
4250                           bool allow_exec) {
4251   // same as map_memory() on this OS
4252   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4253                         allow_exec);
4254 }
4255 
4256 
4257 // Unmap a block of memory.
4258 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4259   return munmap(addr, bytes) == 0;
4260 }
4261 
4262 void os::pause() {
4263   char filename[MAX_PATH];
4264   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4265     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
4266   } else {
4267     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4268   }
4269 
4270   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4271   if (fd != -1) {
4272     struct stat buf;
4273     ::close(fd);
4274     while (::stat(filename, &buf) == 0) {
4275       (void)::poll(NULL, 0, 100);
4276     }
4277   } else {
4278     jio_fprintf(stderr,
4279                 "Could not open pause file '%s', continuing immediately.\n", filename);
4280   }
4281 }
4282 
4283 #ifndef PRODUCT
4284 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4285 // Turn this on if you need to trace synch operations.
4286 // Set RECORD_SYNCH_LIMIT to a large-enough value,
4287 // and call record_synch_enable and record_synch_disable
4288 // around the computation of interest.
4289 
4290 void record_synch(char* name, bool returning);  // defined below
4291 
4292 class RecordSynch {
4293   char* _name;
4294  public:
4295   RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4296   ~RecordSynch()                       { record_synch(_name, true); }
4297 };
4298 
4299 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
4300 extern "C" ret name params {                                    \
4301   typedef ret name##_t params;                                  \
4302   static name##_t* implem = NULL;                               \
4303   static int callcount = 0;                                     \
4304   if (implem == NULL) {                                         \
4305     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
4306     if (implem == NULL)  fatal(dlerror());                      \
4307   }                                                             \
4308   ++callcount;                                                  \
4309   RecordSynch _rs(#name);                                       \
4310   inner;                                                        \
4311   return implem args;                                           \
4312 }
4313 // in dbx, examine callcounts this way:
4314 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4315 
4316 #define CHECK_POINTER_OK(p) \
4317   (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4318 #define CHECK_MU \
4319   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4320 #define CHECK_CV \
4321   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4322 #define CHECK_P(p) \
4323   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
4324 
4325 #define CHECK_MUTEX(mutex_op) \
4326   CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4327 
4328 CHECK_MUTEX(   mutex_lock)
4329 CHECK_MUTEX(  _mutex_lock)
4330 CHECK_MUTEX( mutex_unlock)
4331 CHECK_MUTEX(_mutex_unlock)
4332 CHECK_MUTEX( mutex_trylock)
4333 CHECK_MUTEX(_mutex_trylock)
4334 
4335 #define CHECK_COND(cond_op) \
4336   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4337 
4338 CHECK_COND( cond_wait);
4339 CHECK_COND(_cond_wait);
4340 CHECK_COND(_cond_wait_cancel);
4341 
4342 #define CHECK_COND2(cond_op) \
4343   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4344 
4345 CHECK_COND2( cond_timedwait);
4346 CHECK_COND2(_cond_timedwait);
4347 CHECK_COND2(_cond_timedwait_cancel);
4348 
4349 // do the _lwp_* versions too
4350 #define mutex_t lwp_mutex_t
4351 #define cond_t  lwp_cond_t
4352 CHECK_MUTEX(  _lwp_mutex_lock)
4353 CHECK_MUTEX(  _lwp_mutex_unlock)
4354 CHECK_MUTEX(  _lwp_mutex_trylock)
4355 CHECK_MUTEX( __lwp_mutex_lock)
4356 CHECK_MUTEX( __lwp_mutex_unlock)
4357 CHECK_MUTEX( __lwp_mutex_trylock)
4358 CHECK_MUTEX(___lwp_mutex_lock)
4359 CHECK_MUTEX(___lwp_mutex_unlock)
4360 
4361 CHECK_COND(  _lwp_cond_wait);
4362 CHECK_COND( __lwp_cond_wait);
4363 CHECK_COND(___lwp_cond_wait);
4364 
4365 CHECK_COND2(  _lwp_cond_timedwait);
4366 CHECK_COND2( __lwp_cond_timedwait);
4367 #undef mutex_t
4368 #undef cond_t
4369 
4370 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4371 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4372 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4373 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4374 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4375 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4376 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4377 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4378 
4379 
4380 // recording machinery:
4381 
4382 enum { RECORD_SYNCH_LIMIT = 200 };
4383 char* record_synch_name[RECORD_SYNCH_LIMIT];
4384 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
4385 bool record_synch_returning[RECORD_SYNCH_LIMIT];
4386 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
4387 int record_synch_count = 0;
4388 bool record_synch_enabled = false;
4389 
4390 // in dbx, examine recorded data this way:
4391 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
4392 
4393 void record_synch(char* name, bool returning) {
4394   if (record_synch_enabled) {
4395     if (record_synch_count < RECORD_SYNCH_LIMIT) {
4396       record_synch_name[record_synch_count] = name;
4397       record_synch_returning[record_synch_count] = returning;
4398       record_synch_thread[record_synch_count] = thr_self();
4399       record_synch_arg0ptr[record_synch_count] = &name;
4400       record_synch_count++;
4401     }
4402     // put more checking code here:
4403     // ...
4404   }
4405 }
4406 
4407 void record_synch_enable() {
4408   // start collecting trace data, if not already doing so
4409   if (!record_synch_enabled)  record_synch_count = 0;
4410   record_synch_enabled = true;
4411 }
4412 
4413 void record_synch_disable() {
4414   // stop collecting trace data
4415   record_synch_enabled = false;
4416 }
4417 
4418 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4419 #endif // PRODUCT
4420 
4421 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4422 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
4423                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4424 
4425 
4426 // JVMTI & JVM monitoring and management support
4427 // The thread_cpu_time() and current_thread_cpu_time() are only
4428 // supported if is_thread_cpu_time_supported() returns true.
4429 // They are not supported on Solaris T1.
4430 
4431 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4432 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4433 // of a thread.
4434 //
4435 // current_thread_cpu_time() and thread_cpu_time(Thread *)
4436 // returns the fast estimate available on the platform.
4437 
4438 // hrtime_t gethrvtime() return value includes
4439 // user time but does not include system time
4440 jlong os::current_thread_cpu_time() {
4441   return (jlong) gethrvtime();
4442 }
4443 
4444 jlong os::thread_cpu_time(Thread *thread) {
4445   // return user level CPU time only to be consistent with
4446   // what current_thread_cpu_time returns.
4447   // thread_cpu_time_info() must be changed if this changes
4448   return os::thread_cpu_time(thread, false /* user time only */);
4449 }
4450 
4451 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4452   if (user_sys_cpu_time) {
4453     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4454   } else {
4455     return os::current_thread_cpu_time();
4456   }
4457 }
4458 
4459 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4460   char proc_name[64];
4461   int count;
4462   prusage_t prusage;
4463   jlong lwp_time;
4464   int fd;
4465 
4466   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
4467           getpid(),
4468           thread->osthread()->lwp_id());
4469   fd = ::open(proc_name, O_RDONLY);
4470   if (fd == -1) return -1;
4471 
4472   do {
4473     count = ::pread(fd,
4474                     (void *)&prusage.pr_utime,
4475                     thr_time_size,
4476                     thr_time_off);
4477   } while (count < 0 && errno == EINTR);
4478   ::close(fd);
4479   if (count < 0) return -1;
4480 
4481   if (user_sys_cpu_time) {
4482     // user + system CPU time
4483     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
4484                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
4485                  (jlong)prusage.pr_stime.tv_nsec +
4486                  (jlong)prusage.pr_utime.tv_nsec;
4487   } else {
4488     // user level CPU time only
4489     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
4490                 (jlong)prusage.pr_utime.tv_nsec;
4491   }
4492 
4493   return (lwp_time);
4494 }
4495 
4496 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4497   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4498   info_ptr->may_skip_backward = false;    // elapsed time not wall time
4499   info_ptr->may_skip_forward = false;     // elapsed time not wall time
4500   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
4501 }
4502 
4503 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4504   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4505   info_ptr->may_skip_backward = false;    // elapsed time not wall time
4506   info_ptr->may_skip_forward = false;     // elapsed time not wall time
4507   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
4508 }
4509 
4510 bool os::is_thread_cpu_time_supported() {
4511   return true;
4512 }
4513 
4514 // System loadavg support.  Returns -1 if load average cannot be obtained.
4515 // Return the load average for our processor set if the primitive exists
4516 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
4517 int os::loadavg(double loadavg[], int nelem) {
4518   if (pset_getloadavg_ptr != NULL) {
4519     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
4520   } else {
4521     return ::getloadavg(loadavg, nelem);
4522   }
4523 }
4524 
4525 //---------------------------------------------------------------------------------
4526 
4527 bool os::find(address addr, outputStream* st) {
4528   Dl_info dlinfo;
4529   memset(&dlinfo, 0, sizeof(dlinfo));
4530   if (dladdr(addr, &dlinfo) != 0) {
4531     st->print(PTR_FORMAT ": ", addr);
4532     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4533       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
4534     } else if (dlinfo.dli_fbase != NULL) {
4535       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
4536     } else {
4537       st->print("<absolute address>");
4538     }
4539     if (dlinfo.dli_fname != NULL) {
4540       st->print(" in %s", dlinfo.dli_fname);
4541     }
4542     if (dlinfo.dli_fbase != NULL) {
4543       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4544     }
4545     st->cr();
4546 
4547     if (Verbose) {
4548       // decode some bytes around the PC
4549       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4550       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4551       address       lowest = (address) dlinfo.dli_sname;
4552       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4553       if (begin < lowest)  begin = lowest;
4554       Dl_info dlinfo2;
4555       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4556           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4557         end = (address) dlinfo2.dli_saddr;
4558       }
4559       Disassembler::decode(begin, end, st);
4560     }
4561     return true;
4562   }
4563   return false;
4564 }
4565 
4566 // Following function has been added to support HotSparc's libjvm.so running
4567 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
4568 // src/solaris/hpi/native_threads in the EVM codebase.
4569 //
4570 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
4571 // libraries and should thus be removed. We will leave it behind for a while
4572 // until we no longer want to able to run on top of 1.3.0 Solaris production
4573 // JDK. See 4341971.
4574 
4575 #define STACK_SLACK 0x800
4576 
4577 extern "C" {
4578   intptr_t sysThreadAvailableStackWithSlack() {
4579     stack_t st;
4580     intptr_t retval, stack_top;
4581     retval = thr_stksegment(&st);
4582     assert(retval == 0, "incorrect return value from thr_stksegment");
4583     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
4584     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
4585     stack_top=(intptr_t)st.ss_sp-st.ss_size;
4586     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
4587   }
4588 }
4589 
4590 // ObjectMonitor park-unpark infrastructure ...
4591 //
4592 // We implement Solaris and Linux PlatformEvents with the
4593 // obvious condvar-mutex-flag triple.
4594 // Another alternative that works quite well is pipes:
4595 // Each PlatformEvent consists of a pipe-pair.
4596 // The thread associated with the PlatformEvent
4597 // calls park(), which reads from the input end of the pipe.
4598 // Unpark() writes into the other end of the pipe.
4599 // The write-side of the pipe must be set NDELAY.
4600 // Unfortunately pipes consume a large # of handles.
4601 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
4602 // Using pipes for the 1st few threads might be workable, however.
4603 //
4604 // park() is permitted to return spuriously.
4605 // Callers of park() should wrap the call to park() in
4606 // an appropriate loop.  A litmus test for the correct
4607 // usage of park is the following: if park() were modified
4608 // to immediately return 0 your code should still work,
4609 // albeit degenerating to a spin loop.
4610 //
4611 // In a sense, park()-unpark() just provides more polite spinning
4612 // and polling with the key difference over naive spinning being
4613 // that a parked thread needs to be explicitly unparked() in order
4614 // to wake up and to poll the underlying condition.
4615 //
4616 // Assumption:
4617 //    Only one parker can exist on an event, which is why we allocate
4618 //    them per-thread. Multiple unparkers can coexist.
4619 //
4620 // _Event transitions in park()
4621 //   -1 => -1 : illegal
4622 //    1 =>  0 : pass - return immediately
4623 //    0 => -1 : block; then set _Event to 0 before returning
4624 //
4625 // _Event transitions in unpark()
4626 //    0 => 1 : just return
4627 //    1 => 1 : just return
4628 //   -1 => either 0 or 1; must signal target thread
4629 //         That is, we can safely transition _Event from -1 to either
4630 //         0 or 1.
4631 //
4632 // _Event serves as a restricted-range semaphore.
4633 //   -1 : thread is blocked, i.e. there is a waiter
4634 //    0 : neutral: thread is running or ready,
4635 //        could have been signaled after a wait started
4636 //    1 : signaled - thread is running or ready
4637 //
4638 // Another possible encoding of _Event would be with
4639 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4640 //
4641 // TODO-FIXME: add DTRACE probes for:
4642 // 1.   Tx parks
4643 // 2.   Ty unparks Tx
4644 // 3.   Tx resumes from park
4645 
4646 
4647 // value determined through experimentation
4648 #define ROUNDINGFIX 11
4649 
4650 // utility to compute the abstime argument to timedwait.
4651 // TODO-FIXME: switch from compute_abstime() to unpackTime().
4652 
4653 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
4654   // millis is the relative timeout time
4655   // abstime will be the absolute timeout time
4656   if (millis < 0)  millis = 0;
4657   struct timeval now;
4658   int status = gettimeofday(&now, NULL);
4659   assert(status == 0, "gettimeofday");
4660   jlong seconds = millis / 1000;
4661   jlong max_wait_period;
4662 
4663   if (UseLWPSynchronization) {
4664     // forward port of fix for 4275818 (not sleeping long enough)
4665     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
4666     // _lwp_cond_timedwait() used a round_down algorithm rather
4667     // than a round_up. For millis less than our roundfactor
4668     // it rounded down to 0 which doesn't meet the spec.
4669     // For millis > roundfactor we may return a bit sooner, but
4670     // since we can not accurately identify the patch level and
4671     // this has already been fixed in Solaris 9 and 8 we will
4672     // leave it alone rather than always rounding down.
4673 
4674     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
4675     // It appears that when we go directly through Solaris _lwp_cond_timedwait()
4676     // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
4677     max_wait_period = 21000000;
4678   } else {
4679     max_wait_period = 50000000;
4680   }
4681   millis %= 1000;
4682   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
4683     seconds = max_wait_period;
4684   }
4685   abstime->tv_sec = now.tv_sec  + seconds;
4686   long       usec = now.tv_usec + millis * 1000;
4687   if (usec >= 1000000) {
4688     abstime->tv_sec += 1;
4689     usec -= 1000000;
4690   }
4691   abstime->tv_nsec = usec * 1000;
4692   return abstime;
4693 }
4694 
4695 void os::PlatformEvent::park() {           // AKA: down()
4696   // Transitions for _Event:
4697   //   -1 => -1 : illegal
4698   //    1 =>  0 : pass - return immediately
4699   //    0 => -1 : block; then set _Event to 0 before returning
4700 
4701   // Invariant: Only the thread associated with the Event/PlatformEvent
4702   // may call park().
4703   assert(_nParked == 0, "invariant");
4704 
4705   int v;
4706   for (;;) {
4707     v = _Event;
4708     if (Atomic::cmpxchg(&_Event, v, v-1) == v) break;
4709   }
4710   guarantee(v >= 0, "invariant");
4711   if (v == 0) {
4712     // Do this the hard way by blocking ...
4713     // See http://monaco.sfbay/detail.jsf?cr=5094058.
4714     int status = os::Solaris::mutex_lock(_mutex);
4715     assert_status(status == 0, status, "mutex_lock");
4716     guarantee(_nParked == 0, "invariant");
4717     ++_nParked;
4718     while (_Event < 0) {
4719       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4720       // Treat this the same as if the wait was interrupted
4721       // With usr/lib/lwp going to kernel, always handle ETIME
4722       status = os::Solaris::cond_wait(_cond, _mutex);
4723       if (status == ETIME) status = EINTR;
4724       assert_status(status == 0 || status == EINTR, status, "cond_wait");
4725     }
4726     --_nParked;
4727     _Event = 0;
4728     status = os::Solaris::mutex_unlock(_mutex);
4729     assert_status(status == 0, status, "mutex_unlock");
4730     // Paranoia to ensure our locked and lock-free paths interact
4731     // correctly with each other.
4732     OrderAccess::fence();
4733   }
4734 }
4735 
4736 int os::PlatformEvent::park(jlong millis) {
4737   // Transitions for _Event:
4738   //   -1 => -1 : illegal
4739   //    1 =>  0 : pass - return immediately
4740   //    0 => -1 : block; then set _Event to 0 before returning
4741 
4742   guarantee(_nParked == 0, "invariant");
4743   int v;
4744   for (;;) {
4745     v = _Event;
4746     if (Atomic::cmpxchg(&_Event, v, v-1) == v) break;
4747   }
4748   guarantee(v >= 0, "invariant");
4749   if (v != 0) return OS_OK;
4750 
4751   int ret = OS_TIMEOUT;
4752   timestruc_t abst;
4753   compute_abstime(&abst, millis);
4754 
4755   // See http://monaco.sfbay/detail.jsf?cr=5094058.
4756   int status = os::Solaris::mutex_lock(_mutex);
4757   assert_status(status == 0, status, "mutex_lock");
4758   guarantee(_nParked == 0, "invariant");
4759   ++_nParked;
4760   while (_Event < 0) {
4761     int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
4762     assert_status(status == 0 || status == EINTR ||
4763                   status == ETIME || status == ETIMEDOUT,
4764                   status, "cond_timedwait");
4765     if (!FilterSpuriousWakeups) break;                // previous semantics
4766     if (status == ETIME || status == ETIMEDOUT) break;
4767     // We consume and ignore EINTR and spurious wakeups.
4768   }
4769   --_nParked;
4770   if (_Event >= 0) ret = OS_OK;
4771   _Event = 0;
4772   status = os::Solaris::mutex_unlock(_mutex);
4773   assert_status(status == 0, status, "mutex_unlock");
4774   // Paranoia to ensure our locked and lock-free paths interact
4775   // correctly with each other.
4776   OrderAccess::fence();
4777   return ret;
4778 }
4779 
4780 void os::PlatformEvent::unpark() {
4781   // Transitions for _Event:
4782   //    0 => 1 : just return
4783   //    1 => 1 : just return
4784   //   -1 => either 0 or 1; must signal target thread
4785   //         That is, we can safely transition _Event from -1 to either
4786   //         0 or 1.
4787   // See also: "Semaphores in Plan 9" by Mullender & Cox
4788   //
4789   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4790   // that it will take two back-to-back park() calls for the owning
4791   // thread to block. This has the benefit of forcing a spurious return
4792   // from the first park() call after an unpark() call which will help
4793   // shake out uses of park() and unpark() without condition variables.
4794 
4795   if (Atomic::xchg(&_Event, 1) >= 0) return;
4796 
4797   // If the thread associated with the event was parked, wake it.
4798   // Wait for the thread assoc with the PlatformEvent to vacate.
4799   int status = os::Solaris::mutex_lock(_mutex);
4800   assert_status(status == 0, status, "mutex_lock");
4801   int AnyWaiters = _nParked;
4802   status = os::Solaris::mutex_unlock(_mutex);
4803   assert_status(status == 0, status, "mutex_unlock");
4804   guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4805   if (AnyWaiters != 0) {
4806     // Note that we signal() *after* dropping the lock for "immortal" Events.
4807     // This is safe and avoids a common class of  futile wakeups.  In rare
4808     // circumstances this can cause a thread to return prematurely from
4809     // cond_{timed}wait() but the spurious wakeup is benign and the victim
4810     // will simply re-test the condition and re-park itself.
4811     // This provides particular benefit if the underlying platform does not
4812     // provide wait morphing.
4813     status = os::Solaris::cond_signal(_cond);
4814     assert_status(status == 0, status, "cond_signal");
4815   }
4816 }
4817 
4818 // JSR166
4819 // -------------------------------------------------------
4820 
4821 // The solaris and linux implementations of park/unpark are fairly
4822 // conservative for now, but can be improved. They currently use a
4823 // mutex/condvar pair, plus _counter.
4824 // Park decrements _counter if > 0, else does a condvar wait.  Unpark
4825 // sets count to 1 and signals condvar.  Only one thread ever waits
4826 // on the condvar. Contention seen when trying to park implies that someone
4827 // is unparking you, so don't wait. And spurious returns are fine, so there
4828 // is no need to track notifications.
4829 
4830 #define MAX_SECS 100000000
4831 
4832 // This code is common to linux and solaris and will be moved to a
4833 // common place in dolphin.
4834 //
4835 // The passed in time value is either a relative time in nanoseconds
4836 // or an absolute time in milliseconds. Either way it has to be unpacked
4837 // into suitable seconds and nanoseconds components and stored in the
4838 // given timespec structure.
4839 // Given time is a 64-bit value and the time_t used in the timespec is only
4840 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
4841 // overflow if times way in the future are given. Further on Solaris versions
4842 // prior to 10 there is a restriction (see cond_timedwait) that the specified
4843 // number of seconds, in abstime, is less than current_time  + 100,000,000.
4844 // As it will be 28 years before "now + 100000000" will overflow we can
4845 // ignore overflow and just impose a hard-limit on seconds using the value
4846 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
4847 // years from "now".
4848 //
4849 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
4850   assert(time > 0, "convertTime");
4851 
4852   struct timeval now;
4853   int status = gettimeofday(&now, NULL);
4854   assert(status == 0, "gettimeofday");
4855 
4856   time_t max_secs = now.tv_sec + MAX_SECS;
4857 
4858   if (isAbsolute) {
4859     jlong secs = time / 1000;
4860     if (secs > max_secs) {
4861       absTime->tv_sec = max_secs;
4862     } else {
4863       absTime->tv_sec = secs;
4864     }
4865     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4866   } else {
4867     jlong secs = time / NANOSECS_PER_SEC;
4868     if (secs >= MAX_SECS) {
4869       absTime->tv_sec = max_secs;
4870       absTime->tv_nsec = 0;
4871     } else {
4872       absTime->tv_sec = now.tv_sec + secs;
4873       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4874       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4875         absTime->tv_nsec -= NANOSECS_PER_SEC;
4876         ++absTime->tv_sec; // note: this must be <= max_secs
4877       }
4878     }
4879   }
4880   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4881   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4882   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4883   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4884 }
4885 
4886 void Parker::park(bool isAbsolute, jlong time) {
4887   // Ideally we'd do something useful while spinning, such
4888   // as calling unpackTime().
4889 
4890   // Optional fast-path check:
4891   // Return immediately if a permit is available.
4892   // We depend on Atomic::xchg() having full barrier semantics
4893   // since we are doing a lock-free update to _counter.
4894   if (Atomic::xchg(&_counter, 0) > 0) return;
4895 
4896   // Optional fast-exit: Check interrupt before trying to wait
4897   Thread* thread = Thread::current();
4898   assert(thread->is_Java_thread(), "Must be JavaThread");
4899   JavaThread *jt = (JavaThread *)thread;
4900   if (jt->is_interrupted(false)) {
4901     return;
4902   }
4903 
4904   // First, demultiplex/decode time arguments
4905   timespec absTime;
4906   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4907     return;
4908   }
4909   if (time > 0) {
4910     // Warning: this code might be exposed to the old Solaris time
4911     // round-down bugs.  Grep "roundingFix" for details.
4912     unpackTime(&absTime, isAbsolute, time);
4913   }
4914 
4915   // Enter safepoint region
4916   // Beware of deadlocks such as 6317397.
4917   // The per-thread Parker:: _mutex is a classic leaf-lock.
4918   // In particular a thread must never block on the Threads_lock while
4919   // holding the Parker:: mutex.  If safepoints are pending both the
4920   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4921   ThreadBlockInVM tbivm(jt);
4922 
4923   // Can't access interrupt state now that we are _thread_blocked. If we've
4924   // been interrupted since we checked above then _counter will be > 0.
4925 
4926   // Don't wait if cannot get lock since interference arises from
4927   // unblocking.
4928   if (os::Solaris::mutex_trylock(_mutex) != 0) {
4929     return;
4930   }
4931 
4932   int status;
4933 
4934   if (_counter > 0)  { // no wait needed
4935     _counter = 0;
4936     status = os::Solaris::mutex_unlock(_mutex);
4937     assert(status == 0, "invariant");
4938     // Paranoia to ensure our locked and lock-free paths interact
4939     // correctly with each other and Java-level accesses.
4940     OrderAccess::fence();
4941     return;
4942   }
4943 
4944   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4945   jt->set_suspend_equivalent();
4946   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4947 
4948   // Do this the hard way by blocking ...
4949   // See http://monaco.sfbay/detail.jsf?cr=5094058.
4950   if (time == 0) {
4951     status = os::Solaris::cond_wait(_cond, _mutex);
4952   } else {
4953     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
4954   }
4955   // Note that an untimed cond_wait() can sometimes return ETIME on older
4956   // versions of the Solaris.
4957   assert_status(status == 0 || status == EINTR ||
4958                 status == ETIME || status == ETIMEDOUT,
4959                 status, "cond_timedwait");
4960 
4961   _counter = 0;
4962   status = os::Solaris::mutex_unlock(_mutex);
4963   assert_status(status == 0, status, "mutex_unlock");
4964   // Paranoia to ensure our locked and lock-free paths interact
4965   // correctly with each other and Java-level accesses.
4966   OrderAccess::fence();
4967 
4968   // If externally suspended while waiting, re-suspend
4969   if (jt->handle_special_suspend_equivalent_condition()) {
4970     jt->java_suspend_self();
4971   }
4972 }
4973 
4974 void Parker::unpark() {
4975   int status = os::Solaris::mutex_lock(_mutex);
4976   assert(status == 0, "invariant");
4977   const int s = _counter;
4978   _counter = 1;
4979   status = os::Solaris::mutex_unlock(_mutex);
4980   assert(status == 0, "invariant");
4981 
4982   if (s < 1) {
4983     status = os::Solaris::cond_signal(_cond);
4984     assert(status == 0, "invariant");
4985   }
4986 }
4987 
4988 // Platform Mutex/Monitor implementations
4989 
4990 os::PlatformMutex::PlatformMutex() {
4991   int status = os::Solaris::mutex_init(&_mutex);
4992   assert_status(status == 0, status, "mutex_init");
4993 }
4994 
4995 os::PlatformMutex::~PlatformMutex() {
4996   int status = os::Solaris::mutex_destroy(&_mutex);
4997   assert_status(status == 0, status, "mutex_destroy");
4998 }
4999 
5000 void os::PlatformMutex::lock() {
5001   int status = os::Solaris::mutex_lock(&_mutex);
5002   assert_status(status == 0, status, "mutex_lock");
5003 }
5004 
5005 void os::PlatformMutex::unlock() {
5006   int status = os::Solaris::mutex_unlock(&_mutex);
5007   assert_status(status == 0, status, "mutex_unlock");
5008 }
5009 
5010 bool os::PlatformMutex::try_lock() {
5011   int status = os::Solaris::mutex_trylock(&_mutex);
5012   assert_status(status == 0 || status == EBUSY, status, "mutex_trylock");
5013   return status == 0;
5014 }
5015 
5016 os::PlatformMonitor::PlatformMonitor() {
5017   int status = os::Solaris::cond_init(&_cond);
5018   assert_status(status == 0, status, "cond_init");
5019 }
5020 
5021 os::PlatformMonitor::~PlatformMonitor() {
5022   int status = os::Solaris::cond_destroy(&_cond);
5023   assert_status(status == 0, status, "cond_destroy");
5024 }
5025 
5026 // Must already be locked
5027 int os::PlatformMonitor::wait(jlong millis) {
5028   assert(millis >= 0, "negative timeout");
5029   if (millis > 0) {
5030     timestruc_t abst;
5031     int ret = OS_TIMEOUT;
5032     compute_abstime(&abst, millis);
5033     int status = os::Solaris::cond_timedwait(&_cond, &_mutex, &abst);
5034     assert_status(status == 0 || status == EINTR ||
5035                   status == ETIME || status == ETIMEDOUT,
5036                   status, "cond_timedwait");
5037     // EINTR acts as spurious wakeup - which is permitted anyway
5038     if (status == 0 || status == EINTR) {
5039       ret = OS_OK;
5040     }
5041     return ret;
5042   } else {
5043     int status = os::Solaris::cond_wait(&_cond, &_mutex);
5044     assert_status(status == 0 || status == EINTR,
5045                   status, "cond_wait");
5046     return OS_OK;
5047   }
5048 }
5049 
5050 void os::PlatformMonitor::notify() {
5051   int status = os::Solaris::cond_signal(&_cond);
5052   assert_status(status == 0, status, "cond_signal");
5053 }
5054 
5055 void os::PlatformMonitor::notify_all() {
5056   int status = os::Solaris::cond_broadcast(&_cond);
5057   assert_status(status == 0, status, "cond_broadcast");
5058 }
5059 
5060 extern char** environ;
5061 
5062 // Run the specified command in a separate process. Return its exit value,
5063 // or -1 on failure (e.g. can't fork a new process).
5064 // Unlike system(), this function can be called from signal handler. It
5065 // doesn't block SIGINT et al.
5066 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5067   char * argv[4];
5068   argv[0] = (char *)"sh";
5069   argv[1] = (char *)"-c";
5070   argv[2] = cmd;
5071   argv[3] = NULL;
5072 
5073   // fork is async-safe, fork1 is not so can't use in signal handler
5074   pid_t pid;
5075   Thread* t = Thread::current_or_null_safe();
5076   if (t != NULL && t->is_inside_signal_handler()) {
5077     pid = fork();
5078   } else {
5079     pid = fork1();
5080   }
5081 
5082   if (pid < 0) {
5083     // fork failed
5084     warning("fork failed: %s", os::strerror(errno));
5085     return -1;
5086 
5087   } else if (pid == 0) {
5088     // child process
5089 
5090     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5091     execve("/usr/bin/sh", argv, environ);
5092 
5093     // execve failed
5094     _exit(-1);
5095 
5096   } else  {
5097     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5098     // care about the actual exit code, for now.
5099 
5100     int status;
5101 
5102     // Wait for the child process to exit.  This returns immediately if
5103     // the child has already exited. */
5104     while (waitpid(pid, &status, 0) < 0) {
5105       switch (errno) {
5106       case ECHILD: return 0;
5107       case EINTR: break;
5108       default: return -1;
5109       }
5110     }
5111 
5112     if (WIFEXITED(status)) {
5113       // The child exited normally; get its exit code.
5114       return WEXITSTATUS(status);
5115     } else if (WIFSIGNALED(status)) {
5116       // The child exited because of a signal
5117       // The best value to return is 0x80 + signal number,
5118       // because that is what all Unix shells do, and because
5119       // it allows callers to distinguish between process exit and
5120       // process death by signal.
5121       return 0x80 + WTERMSIG(status);
5122     } else {
5123       // Unknown exit code; pass it through
5124       return status;
5125     }
5126   }
5127 }
5128 
5129 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5130   size_t res;
5131   RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5132   return res;
5133 }
5134 
5135 int os::close(int fd) {
5136   return ::close(fd);
5137 }
5138 
5139 int os::socket_close(int fd) {
5140   return ::close(fd);
5141 }
5142 
5143 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5144   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5145          "Assumed _thread_in_native");
5146   RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5147 }
5148 
5149 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5150   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5151          "Assumed _thread_in_native");
5152   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5153 }
5154 
5155 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5156   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5157 }
5158 
5159 // As both poll and select can be interrupted by signals, we have to be
5160 // prepared to restart the system call after updating the timeout, unless
5161 // a poll() is done with timeout == -1, in which case we repeat with this
5162 // "wait forever" value.
5163 
5164 int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5165   int _result;
5166   _result = ::connect(fd, him, len);
5167 
5168   // On Solaris, when a connect() call is interrupted, the connection
5169   // can be established asynchronously (see 6343810). Subsequent calls
5170   // to connect() must check the errno value which has the semantic
5171   // described below (copied from the connect() man page). Handling
5172   // of asynchronously established connections is required for both
5173   // blocking and non-blocking sockets.
5174   //     EINTR            The  connection  attempt  was   interrupted
5175   //                      before  any data arrived by the delivery of
5176   //                      a signal. The connection, however, will  be
5177   //                      established asynchronously.
5178   //
5179   //     EINPROGRESS      The socket is non-blocking, and the connec-
5180   //                      tion  cannot  be completed immediately.
5181   //
5182   //     EALREADY         The socket is non-blocking,  and a previous
5183   //                      connection  attempt  has  not yet been com-
5184   //                      pleted.
5185   //
5186   //     EISCONN          The socket is already connected.
5187   if (_result == OS_ERR && errno == EINTR) {
5188     // restarting a connect() changes its errno semantics
5189     RESTARTABLE(::connect(fd, him, len), _result);
5190     // undo these changes
5191     if (_result == OS_ERR) {
5192       if (errno == EALREADY) {
5193         errno = EINPROGRESS; // fall through
5194       } else if (errno == EISCONN) {
5195         errno = 0;
5196         return OS_OK;
5197       }
5198     }
5199   }
5200   return _result;
5201 }
5202 
5203 // Get the default path to the core file
5204 // Returns the length of the string
5205 int os::get_core_path(char* buffer, size_t bufferSize) {
5206   const char* p = get_current_directory(buffer, bufferSize);
5207 
5208   if (p == NULL) {
5209     assert(p != NULL, "failed to get current directory");
5210     return 0;
5211   }
5212 
5213   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5214                                               p, current_process_id());
5215 
5216   return strlen(buffer);
5217 }
5218 
5219 bool os::supports_map_sync() {
5220   return false;
5221 }
5222 
5223 #ifndef PRODUCT
5224 void TestReserveMemorySpecial_test() {
5225   // No tests available for this platform
5226 }
5227 #endif
5228 
5229 bool os::start_debugging(char *buf, int buflen) {
5230   int len = (int)strlen(buf);
5231   char *p = &buf[len];
5232 
5233   jio_snprintf(p, buflen-len,
5234                "\n\n"
5235                "Do you want to debug the problem?\n\n"
5236                "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5237                "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5238                "Otherwise, press RETURN to abort...",
5239                os::current_process_id(), os::current_thread_id());
5240 
5241   bool yes = os::message_box("Unexpected Error", buf);
5242 
5243   if (yes) {
5244     // yes, user asked VM to launch debugger
5245     jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5246 
5247     os::fork_and_exec(buf);
5248     yes = false;
5249   }
5250   return yes;
5251 }