1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "runtime/objectMonitor.hpp"
  52 #include "runtime/orderAccess.inline.hpp"
  53 #include "runtime/osThread.hpp"
  54 #include "runtime/perfMemory.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/statSampler.hpp"
  57 #include "runtime/stubRoutines.hpp"
  58 #include "runtime/thread.inline.hpp"
  59 #include "runtime/threadCritical.hpp"
  60 #include "runtime/timer.hpp"
  61 #include "services/attachListener.hpp"
  62 #include "services/memTracker.hpp"
  63 #include "services/runtimeService.hpp"
  64 #include "utilities/decoder.hpp"
  65 #include "utilities/defaultStream.hpp"
  66 #include "utilities/events.hpp"
  67 #include "utilities/elfFile.hpp"
  68 #include "utilities/growableArray.hpp"
  69 #include "utilities/vmError.hpp"
  70 
  71 // put OS-includes here
  72 # include <sys/types.h>
  73 # include <sys/mman.h>
  74 # include <sys/stat.h>
  75 # include <sys/select.h>
  76 # include <pthread.h>
  77 # include <signal.h>
  78 # include <errno.h>
  79 # include <dlfcn.h>
  80 # include <stdio.h>
  81 # include <unistd.h>
  82 # include <sys/resource.h>
  83 # include <pthread.h>
  84 # include <sys/stat.h>
  85 # include <sys/time.h>
  86 # include <sys/times.h>
  87 # include <sys/utsname.h>
  88 # include <sys/socket.h>
  89 # include <sys/wait.h>
  90 # include <pwd.h>
  91 # include <poll.h>
  92 # include <semaphore.h>
  93 # include <fcntl.h>
  94 # include <string.h>
  95 # include <syscall.h>
  96 # include <sys/sysinfo.h>
  97 # include <gnu/libc-version.h>
  98 # include <sys/ipc.h>
  99 # include <sys/shm.h>
 100 # include <link.h>
 101 # include <stdint.h>
 102 # include <inttypes.h>
 103 # include <sys/ioctl.h>
 104 
 105 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 106 
 107 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 108 // getrusage() is prepared to handle the associated failure.
 109 #ifndef RUSAGE_THREAD
 110 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 111 #endif
 112 
 113 #define MAX_PATH    (2 * K)
 114 
 115 #define MAX_SECS 100000000
 116 
 117 // for timer info max values which include all bits
 118 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 119 
 120 #define LARGEPAGES_BIT (1 << 6)
 121 ////////////////////////////////////////////////////////////////////////////////
 122 // global variables
 123 julong os::Linux::_physical_memory = 0;
 124 
 125 address   os::Linux::_initial_thread_stack_bottom = NULL;
 126 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 127 
 128 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 129 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 130 Mutex* os::Linux::_createThread_lock = NULL;
 131 pthread_t os::Linux::_main_thread;
 132 int os::Linux::_page_size = -1;
 133 const int os::Linux::_vm_default_page_size = (8 * K);
 134 bool os::Linux::_is_floating_stack = false;
 135 bool os::Linux::_is_NPTL = false;
 136 bool os::Linux::_supports_fast_thread_cpu_time = false;
 137 const char * os::Linux::_glibc_version = NULL;
 138 const char * os::Linux::_libpthread_version = NULL;
 139 pthread_condattr_t os::Linux::_condattr[1];
 140 
 141 static jlong initial_time_count=0;
 142 
 143 static int clock_tics_per_sec = 100;
 144 
 145 // For diagnostics to print a message once. see run_periodic_checks
 146 static sigset_t check_signal_done;
 147 static bool check_signals = true;
 148 
 149 static pid_t _initial_pid = 0;
 150 
 151 /* Signal number used to suspend/resume a thread */
 152 
 153 /* do not use any signal number less than SIGSEGV, see 4355769 */
 154 static int SR_signum = SIGUSR2;
 155 sigset_t SR_sigset;
 156 
 157 /* Used to protect dlsym() calls */
 158 static pthread_mutex_t dl_mutex;
 159 
 160 // Declarations
 161 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 162 
 163 #ifdef JAVASE_EMBEDDED
 164 class MemNotifyThread: public Thread {
 165   friend class VMStructs;
 166  public:
 167   virtual void run();
 168 
 169  private:
 170   static MemNotifyThread* _memnotify_thread;
 171   int _fd;
 172 
 173  public:
 174 
 175   // Constructor
 176   MemNotifyThread(int fd);
 177 
 178   // Tester
 179   bool is_memnotify_thread() const { return true; }
 180 
 181   // Printing
 182   char* name() const { return (char*)"Linux MemNotify Thread"; }
 183 
 184   // Returns the single instance of the MemNotifyThread
 185   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
 186 
 187   // Create and start the single instance of MemNotifyThread
 188   static void start();
 189 };
 190 #endif // JAVASE_EMBEDDED
 191 
 192 // utility functions
 193 
 194 static int SR_initialize();
 195 
 196 julong os::available_memory() {
 197   return Linux::available_memory();
 198 }
 199 
 200 julong os::Linux::available_memory() {
 201   // values in struct sysinfo are "unsigned long"
 202   struct sysinfo si;
 203   sysinfo(&si);
 204 
 205   return (julong)si.freeram * si.mem_unit;
 206 }
 207 
 208 julong os::physical_memory() {
 209   return Linux::physical_memory();
 210 }
 211 
 212 ////////////////////////////////////////////////////////////////////////////////
 213 // environment support
 214 
 215 bool os::getenv(const char* name, char* buf, int len) {
 216   const char* val = ::getenv(name);
 217   if (val != NULL && strlen(val) < (size_t)len) {
 218     strcpy(buf, val);
 219     return true;
 220   }
 221   if (len > 0) buf[0] = 0;  // return a null string
 222   return false;
 223 }
 224 
 225 
 226 // Return true if user is running as root.
 227 
 228 bool os::have_special_privileges() {
 229   static bool init = false;
 230   static bool privileges = false;
 231   if (!init) {
 232     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 233     init = true;
 234   }
 235   return privileges;
 236 }
 237 
 238 
 239 #ifndef SYS_gettid
 240 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 241 #ifdef __ia64__
 242 #define SYS_gettid 1105
 243 #elif __i386__
 244 #define SYS_gettid 224
 245 #elif __amd64__
 246 #define SYS_gettid 186
 247 #elif __sparc__
 248 #define SYS_gettid 143
 249 #else
 250 #error define gettid for the arch
 251 #endif
 252 #endif
 253 
 254 // Cpu architecture string
 255 #if   defined(ZERO)
 256 static char cpu_arch[] = ZERO_LIBARCH;
 257 #elif defined(IA64)
 258 static char cpu_arch[] = "ia64";
 259 #elif defined(IA32)
 260 static char cpu_arch[] = "i386";
 261 #elif defined(AMD64)
 262 static char cpu_arch[] = "amd64";
 263 #elif defined(ARM)
 264 static char cpu_arch[] = "arm";
 265 #elif defined(PPC32)
 266 static char cpu_arch[] = "ppc";
 267 #elif defined(PPC64)
 268 static char cpu_arch[] = "ppc64";
 269 #elif defined(SPARC)
 270 #  ifdef _LP64
 271 static char cpu_arch[] = "sparcv9";
 272 #  else
 273 static char cpu_arch[] = "sparc";
 274 #  endif
 275 #else
 276 #error Add appropriate cpu_arch setting
 277 #endif
 278 
 279 
 280 // pid_t gettid()
 281 //
 282 // Returns the kernel thread id of the currently running thread. Kernel
 283 // thread id is used to access /proc.
 284 //
 285 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 286 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 287 //
 288 pid_t os::Linux::gettid() {
 289   int rslt = syscall(SYS_gettid);
 290   if (rslt == -1) {
 291      // old kernel, no NPTL support
 292      return getpid();
 293   } else {
 294      return (pid_t)rslt;
 295   }
 296 }
 297 
 298 // Most versions of linux have a bug where the number of processors are
 299 // determined by looking at the /proc file system.  In a chroot environment,
 300 // the system call returns 1.  This causes the VM to act as if it is
 301 // a single processor and elide locking (see is_MP() call).
 302 static bool unsafe_chroot_detected = false;
 303 static const char *unstable_chroot_error = "/proc file system not found.\n"
 304                      "Java may be unstable running multithreaded in a chroot "
 305                      "environment on Linux when /proc filesystem is not mounted.";
 306 
 307 void os::Linux::initialize_system_info() {
 308   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 309   if (processor_count() == 1) {
 310     pid_t pid = os::Linux::gettid();
 311     char fname[32];
 312     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 313     FILE *fp = fopen(fname, "r");
 314     if (fp == NULL) {
 315       unsafe_chroot_detected = true;
 316     } else {
 317       fclose(fp);
 318     }
 319   }
 320   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 321   assert(processor_count() > 0, "linux error");
 322 }
 323 
 324 void os::init_system_properties_values() {
 325   // The next steps are taken in the product version:
 326   //
 327   // Obtain the JAVA_HOME value from the location of libjvm.so.
 328   // This library should be located at:
 329   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 330   //
 331   // If "/jre/lib/" appears at the right place in the path, then we
 332   // assume libjvm.so is installed in a JDK and we use this path.
 333   //
 334   // Otherwise exit with message: "Could not create the Java virtual machine."
 335   //
 336   // The following extra steps are taken in the debugging version:
 337   //
 338   // If "/jre/lib/" does NOT appear at the right place in the path
 339   // instead of exit check for $JAVA_HOME environment variable.
 340   //
 341   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 342   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 343   // it looks like libjvm.so is installed there
 344   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 345   //
 346   // Otherwise exit.
 347   //
 348   // Important note: if the location of libjvm.so changes this
 349   // code needs to be changed accordingly.
 350 
 351 // See ld(1):
 352 //      The linker uses the following search paths to locate required
 353 //      shared libraries:
 354 //        1: ...
 355 //        ...
 356 //        7: The default directories, normally /lib and /usr/lib.
 357 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 358 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 359 #else
 360 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 361 #endif
 362 
 363 // Base path of extensions installed on the system.
 364 #define SYS_EXT_DIR     "/usr/java/packages"
 365 #define EXTENSIONS_DIR  "/lib/ext"
 366 #define ENDORSED_DIR    "/lib/endorsed"
 367 
 368   // Buffer that fits several sprintfs.
 369   // Note that the space for the colon and the trailing null are provided
 370   // by the nulls included by the sizeof operator.
 371   const size_t bufsize =
 372     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 373          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
 374          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 375   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 376 
 377   // sysclasspath, java_home, dll_dir
 378   {
 379     char *pslash;
 380     os::jvm_path(buf, bufsize);
 381 
 382     // Found the full path to libjvm.so.
 383     // Now cut the path to <java_home>/jre if we can.
 384     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 385     pslash = strrchr(buf, '/');
 386     if (pslash != NULL) {
 387       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 388     }
 389     Arguments::set_dll_dir(buf);
 390 
 391     if (pslash != NULL) {
 392       pslash = strrchr(buf, '/');
 393       if (pslash != NULL) {
 394         *pslash = '\0';          // Get rid of /<arch>.
 395         pslash = strrchr(buf, '/');
 396         if (pslash != NULL) {
 397           *pslash = '\0';        // Get rid of /lib.
 398         }
 399       }
 400     }
 401     Arguments::set_java_home(buf);
 402     set_boot_path('/', ':');
 403   }
 404 
 405   // Where to look for native libraries.
 406   //
 407   // Note: Due to a legacy implementation, most of the library path
 408   // is set in the launcher. This was to accomodate linking restrictions
 409   // on legacy Linux implementations (which are no longer supported).
 410   // Eventually, all the library path setting will be done here.
 411   //
 412   // However, to prevent the proliferation of improperly built native
 413   // libraries, the new path component /usr/java/packages is added here.
 414   // Eventually, all the library path setting will be done here.
 415   {
 416     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 417     // should always exist (until the legacy problem cited above is
 418     // addressed).
 419     const char *v = ::getenv("LD_LIBRARY_PATH");
 420     const char *v_colon = ":";
 421     if (v == NULL) { v = ""; v_colon = ""; }
 422     // That's +1 for the colon and +1 for the trailing '\0'.
 423     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 424                                                      strlen(v) + 1 +
 425                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 426                                                      mtInternal);
 427     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 428     Arguments::set_library_path(ld_library_path);
 429     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 430   }
 431 
 432   // Extensions directories.
 433   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 434   Arguments::set_ext_dirs(buf);
 435 
 436   // Endorsed standards default directory.
 437   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 438   Arguments::set_endorsed_dirs(buf);
 439 
 440   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 441 
 442 #undef DEFAULT_LIBPATH
 443 #undef SYS_EXT_DIR
 444 #undef EXTENSIONS_DIR
 445 #undef ENDORSED_DIR
 446 }
 447 
 448 ////////////////////////////////////////////////////////////////////////////////
 449 // breakpoint support
 450 
 451 void os::breakpoint() {
 452   BREAKPOINT;
 453 }
 454 
 455 extern "C" void breakpoint() {
 456   // use debugger to set breakpoint here
 457 }
 458 
 459 ////////////////////////////////////////////////////////////////////////////////
 460 // signal support
 461 
 462 debug_only(static bool signal_sets_initialized = false);
 463 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 464 
 465 bool os::Linux::is_sig_ignored(int sig) {
 466       struct sigaction oact;
 467       sigaction(sig, (struct sigaction*)NULL, &oact);
 468       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 469                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 470       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 471            return true;
 472       else
 473            return false;
 474 }
 475 
 476 void os::Linux::signal_sets_init() {
 477   // Should also have an assertion stating we are still single-threaded.
 478   assert(!signal_sets_initialized, "Already initialized");
 479   // Fill in signals that are necessarily unblocked for all threads in
 480   // the VM. Currently, we unblock the following signals:
 481   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 482   //                         by -Xrs (=ReduceSignalUsage));
 483   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 484   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 485   // the dispositions or masks wrt these signals.
 486   // Programs embedding the VM that want to use the above signals for their
 487   // own purposes must, at this time, use the "-Xrs" option to prevent
 488   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 489   // (See bug 4345157, and other related bugs).
 490   // In reality, though, unblocking these signals is really a nop, since
 491   // these signals are not blocked by default.
 492   sigemptyset(&unblocked_sigs);
 493   sigemptyset(&allowdebug_blocked_sigs);
 494   sigaddset(&unblocked_sigs, SIGILL);
 495   sigaddset(&unblocked_sigs, SIGSEGV);
 496   sigaddset(&unblocked_sigs, SIGBUS);
 497   sigaddset(&unblocked_sigs, SIGFPE);
 498 #if defined(PPC64)
 499   sigaddset(&unblocked_sigs, SIGTRAP);
 500 #endif
 501   sigaddset(&unblocked_sigs, SR_signum);
 502 
 503   if (!ReduceSignalUsage) {
 504    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 505       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 506       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 507    }
 508    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 509       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 510       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 511    }
 512    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 513       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 514       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 515    }
 516   }
 517   // Fill in signals that are blocked by all but the VM thread.
 518   sigemptyset(&vm_sigs);
 519   if (!ReduceSignalUsage)
 520     sigaddset(&vm_sigs, BREAK_SIGNAL);
 521   debug_only(signal_sets_initialized = true);
 522 
 523 }
 524 
 525 // These are signals that are unblocked while a thread is running Java.
 526 // (For some reason, they get blocked by default.)
 527 sigset_t* os::Linux::unblocked_signals() {
 528   assert(signal_sets_initialized, "Not initialized");
 529   return &unblocked_sigs;
 530 }
 531 
 532 // These are the signals that are blocked while a (non-VM) thread is
 533 // running Java. Only the VM thread handles these signals.
 534 sigset_t* os::Linux::vm_signals() {
 535   assert(signal_sets_initialized, "Not initialized");
 536   return &vm_sigs;
 537 }
 538 
 539 // These are signals that are blocked during cond_wait to allow debugger in
 540 sigset_t* os::Linux::allowdebug_blocked_signals() {
 541   assert(signal_sets_initialized, "Not initialized");
 542   return &allowdebug_blocked_sigs;
 543 }
 544 
 545 void os::Linux::hotspot_sigmask(Thread* thread) {
 546 
 547   //Save caller's signal mask before setting VM signal mask
 548   sigset_t caller_sigmask;
 549   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 550 
 551   OSThread* osthread = thread->osthread();
 552   osthread->set_caller_sigmask(caller_sigmask);
 553 
 554   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 555 
 556   if (!ReduceSignalUsage) {
 557     if (thread->is_VM_thread()) {
 558       // Only the VM thread handles BREAK_SIGNAL ...
 559       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 560     } else {
 561       // ... all other threads block BREAK_SIGNAL
 562       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 563     }
 564   }
 565 }
 566 
 567 //////////////////////////////////////////////////////////////////////////////
 568 // detecting pthread library
 569 
 570 void os::Linux::libpthread_init() {
 571   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 572   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 573   // generic name for earlier versions.
 574   // Define macros here so we can build HotSpot on old systems.
 575 # ifndef _CS_GNU_LIBC_VERSION
 576 # define _CS_GNU_LIBC_VERSION 2
 577 # endif
 578 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 579 # define _CS_GNU_LIBPTHREAD_VERSION 3
 580 # endif
 581 
 582   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 583   if (n > 0) {
 584      char *str = (char *)malloc(n, mtInternal);
 585      confstr(_CS_GNU_LIBC_VERSION, str, n);
 586      os::Linux::set_glibc_version(str);
 587   } else {
 588      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 589      static char _gnu_libc_version[32];
 590      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 591               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 592      os::Linux::set_glibc_version(_gnu_libc_version);
 593   }
 594 
 595   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 596   if (n > 0) {
 597      char *str = (char *)malloc(n, mtInternal);
 598      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 599      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 600      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 601      // is the case. LinuxThreads has a hard limit on max number of threads.
 602      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 603      // On the other hand, NPTL does not have such a limit, sysconf()
 604      // will return -1 and errno is not changed. Check if it is really NPTL.
 605      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 606          strstr(str, "NPTL") &&
 607          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 608        free(str);
 609        os::Linux::set_libpthread_version("linuxthreads");
 610      } else {
 611        os::Linux::set_libpthread_version(str);
 612      }
 613   } else {
 614     // glibc before 2.3.2 only has LinuxThreads.
 615     os::Linux::set_libpthread_version("linuxthreads");
 616   }
 617 
 618   if (strstr(libpthread_version(), "NPTL")) {
 619      os::Linux::set_is_NPTL();
 620   } else {
 621      os::Linux::set_is_LinuxThreads();
 622   }
 623 
 624   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 625   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 626   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 627      os::Linux::set_is_floating_stack();
 628   }
 629 }
 630 
 631 /////////////////////////////////////////////////////////////////////////////
 632 // thread stack
 633 
 634 // Force Linux kernel to expand current thread stack. If "bottom" is close
 635 // to the stack guard, caller should block all signals.
 636 //
 637 // MAP_GROWSDOWN:
 638 //   A special mmap() flag that is used to implement thread stacks. It tells
 639 //   kernel that the memory region should extend downwards when needed. This
 640 //   allows early versions of LinuxThreads to only mmap the first few pages
 641 //   when creating a new thread. Linux kernel will automatically expand thread
 642 //   stack as needed (on page faults).
 643 //
 644 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 645 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 646 //   region, it's hard to tell if the fault is due to a legitimate stack
 647 //   access or because of reading/writing non-exist memory (e.g. buffer
 648 //   overrun). As a rule, if the fault happens below current stack pointer,
 649 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 650 //   application (see Linux kernel fault.c).
 651 //
 652 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 653 //   stack overflow detection.
 654 //
 655 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 656 //   not use this flag. However, the stack of initial thread is not created
 657 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 658 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 659 //   and then attach the thread to JVM.
 660 //
 661 // To get around the problem and allow stack banging on Linux, we need to
 662 // manually expand thread stack after receiving the SIGSEGV.
 663 //
 664 // There are two ways to expand thread stack to address "bottom", we used
 665 // both of them in JVM before 1.5:
 666 //   1. adjust stack pointer first so that it is below "bottom", and then
 667 //      touch "bottom"
 668 //   2. mmap() the page in question
 669 //
 670 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 671 // if current sp is already near the lower end of page 101, and we need to
 672 // call mmap() to map page 100, it is possible that part of the mmap() frame
 673 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 674 // That will destroy the mmap() frame and cause VM to crash.
 675 //
 676 // The following code works by adjusting sp first, then accessing the "bottom"
 677 // page to force a page fault. Linux kernel will then automatically expand the
 678 // stack mapping.
 679 //
 680 // _expand_stack_to() assumes its frame size is less than page size, which
 681 // should always be true if the function is not inlined.
 682 
 683 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 684 #define NOINLINE
 685 #else
 686 #define NOINLINE __attribute__ ((noinline))
 687 #endif
 688 
 689 static void _expand_stack_to(address bottom) NOINLINE;
 690 
 691 static void _expand_stack_to(address bottom) {
 692   address sp;
 693   size_t size;
 694   volatile char *p;
 695 
 696   // Adjust bottom to point to the largest address within the same page, it
 697   // gives us a one-page buffer if alloca() allocates slightly more memory.
 698   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 699   bottom += os::Linux::page_size() - 1;
 700 
 701   // sp might be slightly above current stack pointer; if that's the case, we
 702   // will alloca() a little more space than necessary, which is OK. Don't use
 703   // os::current_stack_pointer(), as its result can be slightly below current
 704   // stack pointer, causing us to not alloca enough to reach "bottom".
 705   sp = (address)&sp;
 706 
 707   if (sp > bottom) {
 708     size = sp - bottom;
 709     p = (volatile char *)alloca(size);
 710     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 711     p[0] = '\0';
 712   }
 713 }
 714 
 715 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 716   assert(t!=NULL, "just checking");
 717   assert(t->osthread()->expanding_stack(), "expand should be set");
 718   assert(t->stack_base() != NULL, "stack_base was not initialized");
 719 
 720   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 721     sigset_t mask_all, old_sigset;
 722     sigfillset(&mask_all);
 723     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 724     _expand_stack_to(addr);
 725     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 726     return true;
 727   }
 728   return false;
 729 }
 730 
 731 //////////////////////////////////////////////////////////////////////////////
 732 // create new thread
 733 
 734 static address highest_vm_reserved_address();
 735 
 736 // check if it's safe to start a new thread
 737 static bool _thread_safety_check(Thread* thread) {
 738   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 739     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 740     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 741     //   allocated (MAP_FIXED) from high address space. Every thread stack
 742     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 743     //   it to other values if they rebuild LinuxThreads).
 744     //
 745     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 746     // the memory region has already been mmap'ed. That means if we have too
 747     // many threads and/or very large heap, eventually thread stack will
 748     // collide with heap.
 749     //
 750     // Here we try to prevent heap/stack collision by comparing current
 751     // stack bottom with the highest address that has been mmap'ed by JVM
 752     // plus a safety margin for memory maps created by native code.
 753     //
 754     // This feature can be disabled by setting ThreadSafetyMargin to 0
 755     //
 756     if (ThreadSafetyMargin > 0) {
 757       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 758 
 759       // not safe if our stack extends below the safety margin
 760       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 761     } else {
 762       return true;
 763     }
 764   } else {
 765     // Floating stack LinuxThreads or NPTL:
 766     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 767     //   there's not enough space left, pthread_create() will fail. If we come
 768     //   here, that means enough space has been reserved for stack.
 769     return true;
 770   }
 771 }
 772 
 773 // Thread start routine for all newly created threads
 774 static void *java_start(Thread *thread) {
 775   // Try to randomize the cache line index of hot stack frames.
 776   // This helps when threads of the same stack traces evict each other's
 777   // cache lines. The threads can be either from the same JVM instance, or
 778   // from different JVM instances. The benefit is especially true for
 779   // processors with hyperthreading technology.
 780   static int counter = 0;
 781   int pid = os::current_process_id();
 782   alloca(((pid ^ counter++) & 7) * 128);
 783 
 784   ThreadLocalStorage::set_thread(thread);
 785 
 786   OSThread* osthread = thread->osthread();
 787   Monitor* sync = osthread->startThread_lock();
 788 
 789   // non floating stack LinuxThreads needs extra check, see above
 790   if (!_thread_safety_check(thread)) {
 791     // notify parent thread
 792     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 793     osthread->set_state(ZOMBIE);
 794     sync->notify_all();
 795     return NULL;
 796   }
 797 
 798   // thread_id is kernel thread id (similar to Solaris LWP id)
 799   osthread->set_thread_id(os::Linux::gettid());
 800 
 801   if (UseNUMA) {
 802     int lgrp_id = os::numa_get_group_id();
 803     if (lgrp_id != -1) {
 804       thread->set_lgrp_id(lgrp_id);
 805     }
 806   }
 807   // initialize signal mask for this thread
 808   os::Linux::hotspot_sigmask(thread);
 809 
 810   // initialize floating point control register
 811   os::Linux::init_thread_fpu_state();
 812 
 813   // handshaking with parent thread
 814   {
 815     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 816 
 817     // notify parent thread
 818     osthread->set_state(INITIALIZED);
 819     sync->notify_all();
 820 
 821     // wait until os::start_thread()
 822     while (osthread->get_state() == INITIALIZED) {
 823       sync->wait(Mutex::_no_safepoint_check_flag);
 824     }
 825   }
 826 
 827   // call one more level start routine
 828   thread->run();
 829 
 830   return 0;
 831 }
 832 
 833 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 834   assert(thread->osthread() == NULL, "caller responsible");
 835 
 836   // Allocate the OSThread object
 837   OSThread* osthread = new OSThread(NULL, NULL);
 838   if (osthread == NULL) {
 839     return false;
 840   }
 841 
 842   // set the correct thread state
 843   osthread->set_thread_type(thr_type);
 844 
 845   // Initial state is ALLOCATED but not INITIALIZED
 846   osthread->set_state(ALLOCATED);
 847 
 848   thread->set_osthread(osthread);
 849 
 850   // init thread attributes
 851   pthread_attr_t attr;
 852   pthread_attr_init(&attr);
 853   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 854 
 855   // stack size
 856   if (os::Linux::supports_variable_stack_size()) {
 857     // calculate stack size if it's not specified by caller
 858     if (stack_size == 0) {
 859       stack_size = os::Linux::default_stack_size(thr_type);
 860 
 861       switch (thr_type) {
 862       case os::java_thread:
 863         // Java threads use ThreadStackSize which default value can be
 864         // changed with the flag -Xss
 865         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 866         stack_size = JavaThread::stack_size_at_create();
 867         break;
 868       case os::compiler_thread:
 869         if (CompilerThreadStackSize > 0) {
 870           stack_size = (size_t)(CompilerThreadStackSize * K);
 871           break;
 872         } // else fall through:
 873           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 874       case os::vm_thread:
 875       case os::pgc_thread:
 876       case os::cgc_thread:
 877       case os::watcher_thread:
 878         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 879         break;
 880       }
 881     }
 882 
 883     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 884     pthread_attr_setstacksize(&attr, stack_size);
 885   } else {
 886     // let pthread_create() pick the default value.
 887   }
 888 
 889   // glibc guard page
 890   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 891 
 892   ThreadState state;
 893 
 894   {
 895     // Serialize thread creation if we are running with fixed stack LinuxThreads
 896     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 897     if (lock) {
 898       os::Linux::createThread_lock()->lock_without_safepoint_check();
 899     }
 900 
 901     pthread_t tid;
 902     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 903 
 904     pthread_attr_destroy(&attr);
 905 
 906     if (ret != 0) {
 907       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 908         perror("pthread_create()");
 909       }
 910       // Need to clean up stuff we've allocated so far
 911       thread->set_osthread(NULL);
 912       delete osthread;
 913       if (lock) os::Linux::createThread_lock()->unlock();
 914       return false;
 915     }
 916 
 917     // Store pthread info into the OSThread
 918     osthread->set_pthread_id(tid);
 919 
 920     // Wait until child thread is either initialized or aborted
 921     {
 922       Monitor* sync_with_child = osthread->startThread_lock();
 923       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 924       while ((state = osthread->get_state()) == ALLOCATED) {
 925         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 926       }
 927     }
 928 
 929     if (lock) {
 930       os::Linux::createThread_lock()->unlock();
 931     }
 932   }
 933 
 934   // Aborted due to thread limit being reached
 935   if (state == ZOMBIE) {
 936       thread->set_osthread(NULL);
 937       delete osthread;
 938       return false;
 939   }
 940 
 941   // The thread is returned suspended (in state INITIALIZED),
 942   // and is started higher up in the call chain
 943   assert(state == INITIALIZED, "race condition");
 944   return true;
 945 }
 946 
 947 /////////////////////////////////////////////////////////////////////////////
 948 // attach existing thread
 949 
 950 // bootstrap the main thread
 951 bool os::create_main_thread(JavaThread* thread) {
 952   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 953   return create_attached_thread(thread);
 954 }
 955 
 956 bool os::create_attached_thread(JavaThread* thread) {
 957 #ifdef ASSERT
 958     thread->verify_not_published();
 959 #endif
 960 
 961   // Allocate the OSThread object
 962   OSThread* osthread = new OSThread(NULL, NULL);
 963 
 964   if (osthread == NULL) {
 965     return false;
 966   }
 967 
 968   // Store pthread info into the OSThread
 969   osthread->set_thread_id(os::Linux::gettid());
 970   osthread->set_pthread_id(::pthread_self());
 971 
 972   // initialize floating point control register
 973   os::Linux::init_thread_fpu_state();
 974 
 975   // Initial thread state is RUNNABLE
 976   osthread->set_state(RUNNABLE);
 977 
 978   thread->set_osthread(osthread);
 979 
 980   if (UseNUMA) {
 981     int lgrp_id = os::numa_get_group_id();
 982     if (lgrp_id != -1) {
 983       thread->set_lgrp_id(lgrp_id);
 984     }
 985   }
 986 
 987   if (os::Linux::is_initial_thread()) {
 988     // If current thread is initial thread, its stack is mapped on demand,
 989     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 990     // the entire stack region to avoid SEGV in stack banging.
 991     // It is also useful to get around the heap-stack-gap problem on SuSE
 992     // kernel (see 4821821 for details). We first expand stack to the top
 993     // of yellow zone, then enable stack yellow zone (order is significant,
 994     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 995     // is no gap between the last two virtual memory regions.
 996 
 997     JavaThread *jt = (JavaThread *)thread;
 998     address addr = jt->stack_yellow_zone_base();
 999     assert(addr != NULL, "initialization problem?");
1000     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1001 
1002     osthread->set_expanding_stack();
1003     os::Linux::manually_expand_stack(jt, addr);
1004     osthread->clear_expanding_stack();
1005   }
1006 
1007   // initialize signal mask for this thread
1008   // and save the caller's signal mask
1009   os::Linux::hotspot_sigmask(thread);
1010 
1011   return true;
1012 }
1013 
1014 void os::pd_start_thread(Thread* thread) {
1015   OSThread * osthread = thread->osthread();
1016   assert(osthread->get_state() != INITIALIZED, "just checking");
1017   Monitor* sync_with_child = osthread->startThread_lock();
1018   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1019   sync_with_child->notify();
1020 }
1021 
1022 // Free Linux resources related to the OSThread
1023 void os::free_thread(OSThread* osthread) {
1024   assert(osthread != NULL, "osthread not set");
1025 
1026   if (Thread::current()->osthread() == osthread) {
1027     // Restore caller's signal mask
1028     sigset_t sigmask = osthread->caller_sigmask();
1029     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1030    }
1031 
1032   delete osthread;
1033 }
1034 
1035 //////////////////////////////////////////////////////////////////////////////
1036 // thread local storage
1037 
1038 // Restore the thread pointer if the destructor is called. This is in case
1039 // someone from JNI code sets up a destructor with pthread_key_create to run
1040 // detachCurrentThread on thread death. Unless we restore the thread pointer we
1041 // will hang or crash. When detachCurrentThread is called the key will be set
1042 // to null and we will not be called again. If detachCurrentThread is never
1043 // called we could loop forever depending on the pthread implementation.
1044 static void restore_thread_pointer(void* p) {
1045   Thread* thread = (Thread*) p;
1046   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1047 }
1048 
1049 int os::allocate_thread_local_storage() {
1050   pthread_key_t key;
1051   int rslt = pthread_key_create(&key, restore_thread_pointer);
1052   assert(rslt == 0, "cannot allocate thread local storage");
1053   return (int)key;
1054 }
1055 
1056 // Note: This is currently not used by VM, as we don't destroy TLS key
1057 // on VM exit.
1058 void os::free_thread_local_storage(int index) {
1059   int rslt = pthread_key_delete((pthread_key_t)index);
1060   assert(rslt == 0, "invalid index");
1061 }
1062 
1063 void os::thread_local_storage_at_put(int index, void* value) {
1064   int rslt = pthread_setspecific((pthread_key_t)index, value);
1065   assert(rslt == 0, "pthread_setspecific failed");
1066 }
1067 
1068 extern "C" Thread* get_thread() {
1069   return ThreadLocalStorage::thread();
1070 }
1071 
1072 //////////////////////////////////////////////////////////////////////////////
1073 // initial thread
1074 
1075 // Check if current thread is the initial thread, similar to Solaris thr_main.
1076 bool os::Linux::is_initial_thread(void) {
1077   char dummy;
1078   // If called before init complete, thread stack bottom will be null.
1079   // Can be called if fatal error occurs before initialization.
1080   if (initial_thread_stack_bottom() == NULL) return false;
1081   assert(initial_thread_stack_bottom() != NULL &&
1082          initial_thread_stack_size()   != 0,
1083          "os::init did not locate initial thread's stack region");
1084   if ((address)&dummy >= initial_thread_stack_bottom() &&
1085       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1086        return true;
1087   else return false;
1088 }
1089 
1090 // Find the virtual memory area that contains addr
1091 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1092   FILE *fp = fopen("/proc/self/maps", "r");
1093   if (fp) {
1094     address low, high;
1095     while (!feof(fp)) {
1096       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1097         if (low <= addr && addr < high) {
1098            if (vma_low)  *vma_low  = low;
1099            if (vma_high) *vma_high = high;
1100            fclose (fp);
1101            return true;
1102         }
1103       }
1104       for (;;) {
1105         int ch = fgetc(fp);
1106         if (ch == EOF || ch == (int)'\n') break;
1107       }
1108     }
1109     fclose(fp);
1110   }
1111   return false;
1112 }
1113 
1114 // Locate initial thread stack. This special handling of initial thread stack
1115 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1116 // bogus value for initial thread.
1117 void os::Linux::capture_initial_stack(size_t max_size) {
1118   // stack size is the easy part, get it from RLIMIT_STACK
1119   size_t stack_size;
1120   struct rlimit rlim;
1121   getrlimit(RLIMIT_STACK, &rlim);
1122   stack_size = rlim.rlim_cur;
1123 
1124   // 6308388: a bug in ld.so will relocate its own .data section to the
1125   //   lower end of primordial stack; reduce ulimit -s value a little bit
1126   //   so we won't install guard page on ld.so's data section.
1127   stack_size -= 2 * page_size();
1128 
1129   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1130   //   7.1, in both cases we will get 2G in return value.
1131   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1132   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1133   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1134   //   in case other parts in glibc still assumes 2M max stack size.
1135   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1136   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1137   if (stack_size > 2 * K * K IA64_ONLY(*2))
1138       stack_size = 2 * K * K IA64_ONLY(*2);
1139   // Try to figure out where the stack base (top) is. This is harder.
1140   //
1141   // When an application is started, glibc saves the initial stack pointer in
1142   // a global variable "__libc_stack_end", which is then used by system
1143   // libraries. __libc_stack_end should be pretty close to stack top. The
1144   // variable is available since the very early days. However, because it is
1145   // a private interface, it could disappear in the future.
1146   //
1147   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1148   // to __libc_stack_end, it is very close to stack top, but isn't the real
1149   // stack top. Note that /proc may not exist if VM is running as a chroot
1150   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1151   // /proc/<pid>/stat could change in the future (though unlikely).
1152   //
1153   // We try __libc_stack_end first. If that doesn't work, look for
1154   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1155   // as a hint, which should work well in most cases.
1156 
1157   uintptr_t stack_start;
1158 
1159   // try __libc_stack_end first
1160   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1161   if (p && *p) {
1162     stack_start = *p;
1163   } else {
1164     // see if we can get the start_stack field from /proc/self/stat
1165     FILE *fp;
1166     int pid;
1167     char state;
1168     int ppid;
1169     int pgrp;
1170     int session;
1171     int nr;
1172     int tpgrp;
1173     unsigned long flags;
1174     unsigned long minflt;
1175     unsigned long cminflt;
1176     unsigned long majflt;
1177     unsigned long cmajflt;
1178     unsigned long utime;
1179     unsigned long stime;
1180     long cutime;
1181     long cstime;
1182     long prio;
1183     long nice;
1184     long junk;
1185     long it_real;
1186     uintptr_t start;
1187     uintptr_t vsize;
1188     intptr_t rss;
1189     uintptr_t rsslim;
1190     uintptr_t scodes;
1191     uintptr_t ecode;
1192     int i;
1193 
1194     // Figure what the primordial thread stack base is. Code is inspired
1195     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1196     // followed by command name surrounded by parentheses, state, etc.
1197     char stat[2048];
1198     int statlen;
1199 
1200     fp = fopen("/proc/self/stat", "r");
1201     if (fp) {
1202       statlen = fread(stat, 1, 2047, fp);
1203       stat[statlen] = '\0';
1204       fclose(fp);
1205 
1206       // Skip pid and the command string. Note that we could be dealing with
1207       // weird command names, e.g. user could decide to rename java launcher
1208       // to "java 1.4.2 :)", then the stat file would look like
1209       //                1234 (java 1.4.2 :)) R ... ...
1210       // We don't really need to know the command string, just find the last
1211       // occurrence of ")" and then start parsing from there. See bug 4726580.
1212       char * s = strrchr(stat, ')');
1213 
1214       i = 0;
1215       if (s) {
1216         // Skip blank chars
1217         do s++; while (isspace(*s));
1218 
1219 #define _UFM UINTX_FORMAT
1220 #define _DFM INTX_FORMAT
1221 
1222         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1223         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1224         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1225              &state,          /* 3  %c  */
1226              &ppid,           /* 4  %d  */
1227              &pgrp,           /* 5  %d  */
1228              &session,        /* 6  %d  */
1229              &nr,             /* 7  %d  */
1230              &tpgrp,          /* 8  %d  */
1231              &flags,          /* 9  %lu  */
1232              &minflt,         /* 10 %lu  */
1233              &cminflt,        /* 11 %lu  */
1234              &majflt,         /* 12 %lu  */
1235              &cmajflt,        /* 13 %lu  */
1236              &utime,          /* 14 %lu  */
1237              &stime,          /* 15 %lu  */
1238              &cutime,         /* 16 %ld  */
1239              &cstime,         /* 17 %ld  */
1240              &prio,           /* 18 %ld  */
1241              &nice,           /* 19 %ld  */
1242              &junk,           /* 20 %ld  */
1243              &it_real,        /* 21 %ld  */
1244              &start,          /* 22 UINTX_FORMAT */
1245              &vsize,          /* 23 UINTX_FORMAT */
1246              &rss,            /* 24 INTX_FORMAT  */
1247              &rsslim,         /* 25 UINTX_FORMAT */
1248              &scodes,         /* 26 UINTX_FORMAT */
1249              &ecode,          /* 27 UINTX_FORMAT */
1250              &stack_start);   /* 28 UINTX_FORMAT */
1251       }
1252 
1253 #undef _UFM
1254 #undef _DFM
1255 
1256       if (i != 28 - 2) {
1257          assert(false, "Bad conversion from /proc/self/stat");
1258          // product mode - assume we are the initial thread, good luck in the
1259          // embedded case.
1260          warning("Can't detect initial thread stack location - bad conversion");
1261          stack_start = (uintptr_t) &rlim;
1262       }
1263     } else {
1264       // For some reason we can't open /proc/self/stat (for example, running on
1265       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1266       // most cases, so don't abort:
1267       warning("Can't detect initial thread stack location - no /proc/self/stat");
1268       stack_start = (uintptr_t) &rlim;
1269     }
1270   }
1271 
1272   // Now we have a pointer (stack_start) very close to the stack top, the
1273   // next thing to do is to figure out the exact location of stack top. We
1274   // can find out the virtual memory area that contains stack_start by
1275   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1276   // and its upper limit is the real stack top. (again, this would fail if
1277   // running inside chroot, because /proc may not exist.)
1278 
1279   uintptr_t stack_top;
1280   address low, high;
1281   if (find_vma((address)stack_start, &low, &high)) {
1282     // success, "high" is the true stack top. (ignore "low", because initial
1283     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1284     stack_top = (uintptr_t)high;
1285   } else {
1286     // failed, likely because /proc/self/maps does not exist
1287     warning("Can't detect initial thread stack location - find_vma failed");
1288     // best effort: stack_start is normally within a few pages below the real
1289     // stack top, use it as stack top, and reduce stack size so we won't put
1290     // guard page outside stack.
1291     stack_top = stack_start;
1292     stack_size -= 16 * page_size();
1293   }
1294 
1295   // stack_top could be partially down the page so align it
1296   stack_top = align_size_up(stack_top, page_size());
1297 
1298   if (max_size && stack_size > max_size) {
1299      _initial_thread_stack_size = max_size;
1300   } else {
1301      _initial_thread_stack_size = stack_size;
1302   }
1303 
1304   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1305   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1306 }
1307 
1308 ////////////////////////////////////////////////////////////////////////////////
1309 // time support
1310 
1311 // Time since start-up in seconds to a fine granularity.
1312 // Used by VMSelfDestructTimer and the MemProfiler.
1313 double os::elapsedTime() {
1314 
1315   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1316 }
1317 
1318 jlong os::elapsed_counter() {
1319   return javaTimeNanos() - initial_time_count;
1320 }
1321 
1322 jlong os::elapsed_frequency() {
1323   return NANOSECS_PER_SEC; // nanosecond resolution
1324 }
1325 
1326 bool os::supports_vtime() { return true; }
1327 bool os::enable_vtime()   { return false; }
1328 bool os::vtime_enabled()  { return false; }
1329 
1330 double os::elapsedVTime() {
1331   struct rusage usage;
1332   int retval = getrusage(RUSAGE_THREAD, &usage);
1333   if (retval == 0) {
1334     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1335   } else {
1336     // better than nothing, but not much
1337     return elapsedTime();
1338   }
1339 }
1340 
1341 jlong os::javaTimeMillis() {
1342   timeval time;
1343   int status = gettimeofday(&time, NULL);
1344   assert(status != -1, "linux error");
1345   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1346 }
1347 
1348 #ifndef CLOCK_MONOTONIC
1349 #define CLOCK_MONOTONIC (1)
1350 #endif
1351 
1352 void os::Linux::clock_init() {
1353   // we do dlopen's in this particular order due to bug in linux
1354   // dynamical loader (see 6348968) leading to crash on exit
1355   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1356   if (handle == NULL) {
1357     handle = dlopen("librt.so", RTLD_LAZY);
1358   }
1359 
1360   if (handle) {
1361     int (*clock_getres_func)(clockid_t, struct timespec*) =
1362            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1363     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1364            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1365     if (clock_getres_func && clock_gettime_func) {
1366       // See if monotonic clock is supported by the kernel. Note that some
1367       // early implementations simply return kernel jiffies (updated every
1368       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1369       // for nano time (though the monotonic property is still nice to have).
1370       // It's fixed in newer kernels, however clock_getres() still returns
1371       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1372       // resolution for now. Hopefully as people move to new kernels, this
1373       // won't be a problem.
1374       struct timespec res;
1375       struct timespec tp;
1376       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1377           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1378         // yes, monotonic clock is supported
1379         _clock_gettime = clock_gettime_func;
1380         return;
1381       } else {
1382         // close librt if there is no monotonic clock
1383         dlclose(handle);
1384       }
1385     }
1386   }
1387   warning("No monotonic clock was available - timed services may " \
1388           "be adversely affected if the time-of-day clock changes");
1389 }
1390 
1391 #ifndef SYS_clock_getres
1392 
1393 #if defined(IA32) || defined(AMD64)
1394 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1395 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1396 #else
1397 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1398 #define sys_clock_getres(x,y)  -1
1399 #endif
1400 
1401 #else
1402 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1403 #endif
1404 
1405 void os::Linux::fast_thread_clock_init() {
1406   if (!UseLinuxPosixThreadCPUClocks) {
1407     return;
1408   }
1409   clockid_t clockid;
1410   struct timespec tp;
1411   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1412       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1413 
1414   // Switch to using fast clocks for thread cpu time if
1415   // the sys_clock_getres() returns 0 error code.
1416   // Note, that some kernels may support the current thread
1417   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1418   // returned by the pthread_getcpuclockid().
1419   // If the fast Posix clocks are supported then the sys_clock_getres()
1420   // must return at least tp.tv_sec == 0 which means a resolution
1421   // better than 1 sec. This is extra check for reliability.
1422 
1423   if(pthread_getcpuclockid_func &&
1424      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1425      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1426 
1427     _supports_fast_thread_cpu_time = true;
1428     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1429   }
1430 }
1431 
1432 jlong os::javaTimeNanos() {
1433   if (Linux::supports_monotonic_clock()) {
1434     struct timespec tp;
1435     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1436     assert(status == 0, "gettime error");
1437     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1438     return result;
1439   } else {
1440     timeval time;
1441     int status = gettimeofday(&time, NULL);
1442     assert(status != -1, "linux error");
1443     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1444     return 1000 * usecs;
1445   }
1446 }
1447 
1448 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1449   if (Linux::supports_monotonic_clock()) {
1450     info_ptr->max_value = ALL_64_BITS;
1451 
1452     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1453     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1454     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1455   } else {
1456     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1457     info_ptr->max_value = ALL_64_BITS;
1458 
1459     // gettimeofday is a real time clock so it skips
1460     info_ptr->may_skip_backward = true;
1461     info_ptr->may_skip_forward = true;
1462   }
1463 
1464   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1465 }
1466 
1467 // Return the real, user, and system times in seconds from an
1468 // arbitrary fixed point in the past.
1469 bool os::getTimesSecs(double* process_real_time,
1470                       double* process_user_time,
1471                       double* process_system_time) {
1472   struct tms ticks;
1473   clock_t real_ticks = times(&ticks);
1474 
1475   if (real_ticks == (clock_t) (-1)) {
1476     return false;
1477   } else {
1478     double ticks_per_second = (double) clock_tics_per_sec;
1479     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1480     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1481     *process_real_time = ((double) real_ticks) / ticks_per_second;
1482 
1483     return true;
1484   }
1485 }
1486 
1487 
1488 char * os::local_time_string(char *buf, size_t buflen) {
1489   struct tm t;
1490   time_t long_time;
1491   time(&long_time);
1492   localtime_r(&long_time, &t);
1493   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1494                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1495                t.tm_hour, t.tm_min, t.tm_sec);
1496   return buf;
1497 }
1498 
1499 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1500   return localtime_r(clock, res);
1501 }
1502 
1503 ////////////////////////////////////////////////////////////////////////////////
1504 // runtime exit support
1505 
1506 // Note: os::shutdown() might be called very early during initialization, or
1507 // called from signal handler. Before adding something to os::shutdown(), make
1508 // sure it is async-safe and can handle partially initialized VM.
1509 void os::shutdown() {
1510 
1511   // allow PerfMemory to attempt cleanup of any persistent resources
1512   perfMemory_exit();
1513 
1514   // needs to remove object in file system
1515   AttachListener::abort();
1516 
1517   // flush buffered output, finish log files
1518   ostream_abort();
1519 
1520   // Check for abort hook
1521   abort_hook_t abort_hook = Arguments::abort_hook();
1522   if (abort_hook != NULL) {
1523     abort_hook();
1524   }
1525 
1526 }
1527 
1528 // Note: os::abort() might be called very early during initialization, or
1529 // called from signal handler. Before adding something to os::abort(), make
1530 // sure it is async-safe and can handle partially initialized VM.
1531 void os::abort(bool dump_core) {
1532   os::shutdown();
1533   if (dump_core) {
1534 #ifndef PRODUCT
1535     fdStream out(defaultStream::output_fd());
1536     out.print_raw("Current thread is ");
1537     char buf[16];
1538     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1539     out.print_raw_cr(buf);
1540     out.print_raw_cr("Dumping core ...");
1541 #endif
1542     ::abort(); // dump core
1543   }
1544 
1545   ::exit(1);
1546 }
1547 
1548 // Die immediately, no exit hook, no abort hook, no cleanup.
1549 void os::die() {
1550   // _exit() on LinuxThreads only kills current thread
1551   ::abort();
1552 }
1553 
1554 
1555 // This method is a copy of JDK's sysGetLastErrorString
1556 // from src/solaris/hpi/src/system_md.c
1557 
1558 size_t os::lasterror(char *buf, size_t len) {
1559 
1560   if (errno == 0)  return 0;
1561 
1562   const char *s = ::strerror(errno);
1563   size_t n = ::strlen(s);
1564   if (n >= len) {
1565     n = len - 1;
1566   }
1567   ::strncpy(buf, s, n);
1568   buf[n] = '\0';
1569   return n;
1570 }
1571 
1572 intx os::current_thread_id() { return (intx)pthread_self(); }
1573 int os::current_process_id() {
1574 
1575   // Under the old linux thread library, linux gives each thread
1576   // its own process id. Because of this each thread will return
1577   // a different pid if this method were to return the result
1578   // of getpid(2). Linux provides no api that returns the pid
1579   // of the launcher thread for the vm. This implementation
1580   // returns a unique pid, the pid of the launcher thread
1581   // that starts the vm 'process'.
1582 
1583   // Under the NPTL, getpid() returns the same pid as the
1584   // launcher thread rather than a unique pid per thread.
1585   // Use gettid() if you want the old pre NPTL behaviour.
1586 
1587   // if you are looking for the result of a call to getpid() that
1588   // returns a unique pid for the calling thread, then look at the
1589   // OSThread::thread_id() method in osThread_linux.hpp file
1590 
1591   return (int)(_initial_pid ? _initial_pid : getpid());
1592 }
1593 
1594 // DLL functions
1595 
1596 const char* os::dll_file_extension() { return ".so"; }
1597 
1598 // This must be hard coded because it's the system's temporary
1599 // directory not the java application's temp directory, ala java.io.tmpdir.
1600 const char* os::get_temp_directory() { return "/tmp"; }
1601 
1602 static bool file_exists(const char* filename) {
1603   struct stat statbuf;
1604   if (filename == NULL || strlen(filename) == 0) {
1605     return false;
1606   }
1607   return os::stat(filename, &statbuf) == 0;
1608 }
1609 
1610 bool os::dll_build_name(char* buffer, size_t buflen,
1611                         const char* pname, const char* fname) {
1612   bool retval = false;
1613   // Copied from libhpi
1614   const size_t pnamelen = pname ? strlen(pname) : 0;
1615 
1616   // Return error on buffer overflow.
1617   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1618     return retval;
1619   }
1620 
1621   if (pnamelen == 0) {
1622     snprintf(buffer, buflen, "lib%s.so", fname);
1623     retval = true;
1624   } else if (strchr(pname, *os::path_separator()) != NULL) {
1625     int n;
1626     char** pelements = split_path(pname, &n);
1627     if (pelements == NULL) {
1628       return false;
1629     }
1630     for (int i = 0 ; i < n ; i++) {
1631       // Really shouldn't be NULL, but check can't hurt
1632       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1633         continue; // skip the empty path values
1634       }
1635       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1636       if (file_exists(buffer)) {
1637         retval = true;
1638         break;
1639       }
1640     }
1641     // release the storage
1642     for (int i = 0 ; i < n ; i++) {
1643       if (pelements[i] != NULL) {
1644         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1645       }
1646     }
1647     if (pelements != NULL) {
1648       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1649     }
1650   } else {
1651     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1652     retval = true;
1653   }
1654   return retval;
1655 }
1656 
1657 // check if addr is inside libjvm.so
1658 bool os::address_is_in_vm(address addr) {
1659   static address libjvm_base_addr;
1660   Dl_info dlinfo;
1661 
1662   if (libjvm_base_addr == NULL) {
1663     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1664       libjvm_base_addr = (address)dlinfo.dli_fbase;
1665     }
1666     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1667   }
1668 
1669   if (dladdr((void *)addr, &dlinfo) != 0) {
1670     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1671   }
1672 
1673   return false;
1674 }
1675 
1676 bool os::dll_address_to_function_name(address addr, char *buf,
1677                                       int buflen, int *offset) {
1678   // buf is not optional, but offset is optional
1679   assert(buf != NULL, "sanity check");
1680 
1681   Dl_info dlinfo;
1682 
1683   if (dladdr((void*)addr, &dlinfo) != 0) {
1684     // see if we have a matching symbol
1685     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1686       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1687         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1688       }
1689       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1690       return true;
1691     }
1692     // no matching symbol so try for just file info
1693     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1694       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1695                           buf, buflen, offset, dlinfo.dli_fname)) {
1696         return true;
1697       }
1698     }
1699   }
1700 
1701   buf[0] = '\0';
1702   if (offset != NULL) *offset = -1;
1703   return false;
1704 }
1705 
1706 struct _address_to_library_name {
1707   address addr;          // input : memory address
1708   size_t  buflen;        //         size of fname
1709   char*   fname;         // output: library name
1710   address base;          //         library base addr
1711 };
1712 
1713 static int address_to_library_name_callback(struct dl_phdr_info *info,
1714                                             size_t size, void *data) {
1715   int i;
1716   bool found = false;
1717   address libbase = NULL;
1718   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1719 
1720   // iterate through all loadable segments
1721   for (i = 0; i < info->dlpi_phnum; i++) {
1722     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1723     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1724       // base address of a library is the lowest address of its loaded
1725       // segments.
1726       if (libbase == NULL || libbase > segbase) {
1727         libbase = segbase;
1728       }
1729       // see if 'addr' is within current segment
1730       if (segbase <= d->addr &&
1731           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1732         found = true;
1733       }
1734     }
1735   }
1736 
1737   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1738   // so dll_address_to_library_name() can fall through to use dladdr() which
1739   // can figure out executable name from argv[0].
1740   if (found && info->dlpi_name && info->dlpi_name[0]) {
1741     d->base = libbase;
1742     if (d->fname) {
1743       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1744     }
1745     return 1;
1746   }
1747   return 0;
1748 }
1749 
1750 bool os::dll_address_to_library_name(address addr, char* buf,
1751                                      int buflen, int* offset) {
1752   // buf is not optional, but offset is optional
1753   assert(buf != NULL, "sanity check");
1754 
1755   Dl_info dlinfo;
1756   struct _address_to_library_name data;
1757 
1758   // There is a bug in old glibc dladdr() implementation that it could resolve
1759   // to wrong library name if the .so file has a base address != NULL. Here
1760   // we iterate through the program headers of all loaded libraries to find
1761   // out which library 'addr' really belongs to. This workaround can be
1762   // removed once the minimum requirement for glibc is moved to 2.3.x.
1763   data.addr = addr;
1764   data.fname = buf;
1765   data.buflen = buflen;
1766   data.base = NULL;
1767   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1768 
1769   if (rslt) {
1770      // buf already contains library name
1771      if (offset) *offset = addr - data.base;
1772      return true;
1773   }
1774   if (dladdr((void*)addr, &dlinfo) != 0) {
1775     if (dlinfo.dli_fname != NULL) {
1776       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1777     }
1778     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1779       *offset = addr - (address)dlinfo.dli_fbase;
1780     }
1781     return true;
1782   }
1783 
1784   buf[0] = '\0';
1785   if (offset) *offset = -1;
1786   return false;
1787 }
1788 
1789   // Loads .dll/.so and
1790   // in case of error it checks if .dll/.so was built for the
1791   // same architecture as Hotspot is running on
1792 
1793 
1794 // Remember the stack's state. The Linux dynamic linker will change
1795 // the stack to 'executable' at most once, so we must safepoint only once.
1796 bool os::Linux::_stack_is_executable = false;
1797 
1798 // VM operation that loads a library.  This is necessary if stack protection
1799 // of the Java stacks can be lost during loading the library.  If we
1800 // do not stop the Java threads, they can stack overflow before the stacks
1801 // are protected again.
1802 class VM_LinuxDllLoad: public VM_Operation {
1803  private:
1804   const char *_filename;
1805   char *_ebuf;
1806   int _ebuflen;
1807   void *_lib;
1808  public:
1809   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1810     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1811   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1812   void doit() {
1813     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1814     os::Linux::_stack_is_executable = true;
1815   }
1816   void* loaded_library() { return _lib; }
1817 };
1818 
1819 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1820 {
1821   void * result = NULL;
1822   bool load_attempted = false;
1823 
1824   // Check whether the library to load might change execution rights
1825   // of the stack. If they are changed, the protection of the stack
1826   // guard pages will be lost. We need a safepoint to fix this.
1827   //
1828   // See Linux man page execstack(8) for more info.
1829   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1830     ElfFile ef(filename);
1831     if (!ef.specifies_noexecstack()) {
1832       if (!is_init_completed()) {
1833         os::Linux::_stack_is_executable = true;
1834         // This is OK - No Java threads have been created yet, and hence no
1835         // stack guard pages to fix.
1836         //
1837         // This should happen only when you are building JDK7 using a very
1838         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1839         //
1840         // Dynamic loader will make all stacks executable after
1841         // this function returns, and will not do that again.
1842         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1843       } else {
1844         warning("You have loaded library %s which might have disabled stack guard. "
1845                 "The VM will try to fix the stack guard now.\n"
1846                 "It's highly recommended that you fix the library with "
1847                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1848                 filename);
1849 
1850         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1851         JavaThread *jt = JavaThread::current();
1852         if (jt->thread_state() != _thread_in_native) {
1853           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1854           // that requires ExecStack. Cannot enter safe point. Let's give up.
1855           warning("Unable to fix stack guard. Giving up.");
1856         } else {
1857           if (!LoadExecStackDllInVMThread) {
1858             // This is for the case where the DLL has an static
1859             // constructor function that executes JNI code. We cannot
1860             // load such DLLs in the VMThread.
1861             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1862           }
1863 
1864           ThreadInVMfromNative tiv(jt);
1865           debug_only(VMNativeEntryWrapper vew;)
1866 
1867           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1868           VMThread::execute(&op);
1869           if (LoadExecStackDllInVMThread) {
1870             result = op.loaded_library();
1871           }
1872           load_attempted = true;
1873         }
1874       }
1875     }
1876   }
1877 
1878   if (!load_attempted) {
1879     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1880   }
1881 
1882   if (result != NULL) {
1883     // Successful loading
1884     return result;
1885   }
1886 
1887   Elf32_Ehdr elf_head;
1888   int diag_msg_max_length=ebuflen-strlen(ebuf);
1889   char* diag_msg_buf=ebuf+strlen(ebuf);
1890 
1891   if (diag_msg_max_length==0) {
1892     // No more space in ebuf for additional diagnostics message
1893     return NULL;
1894   }
1895 
1896 
1897   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1898 
1899   if (file_descriptor < 0) {
1900     // Can't open library, report dlerror() message
1901     return NULL;
1902   }
1903 
1904   bool failed_to_read_elf_head=
1905     (sizeof(elf_head)!=
1906         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1907 
1908   ::close(file_descriptor);
1909   if (failed_to_read_elf_head) {
1910     // file i/o error - report dlerror() msg
1911     return NULL;
1912   }
1913 
1914   typedef struct {
1915     Elf32_Half  code;         // Actual value as defined in elf.h
1916     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1917     char        elf_class;    // 32 or 64 bit
1918     char        endianess;    // MSB or LSB
1919     char*       name;         // String representation
1920   } arch_t;
1921 
1922   #ifndef EM_486
1923   #define EM_486          6               /* Intel 80486 */
1924   #endif
1925 
1926   static const arch_t arch_array[]={
1927     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1928     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1929     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1930     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1931     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1932     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1933     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1934     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1935 #if defined(VM_LITTLE_ENDIAN)
1936     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1937 #else
1938     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1939 #endif
1940     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1941     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1942     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1943     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1944     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1945     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1946     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1947   };
1948 
1949   #if  (defined IA32)
1950     static  Elf32_Half running_arch_code=EM_386;
1951   #elif   (defined AMD64)
1952     static  Elf32_Half running_arch_code=EM_X86_64;
1953   #elif  (defined IA64)
1954     static  Elf32_Half running_arch_code=EM_IA_64;
1955   #elif  (defined __sparc) && (defined _LP64)
1956     static  Elf32_Half running_arch_code=EM_SPARCV9;
1957   #elif  (defined __sparc) && (!defined _LP64)
1958     static  Elf32_Half running_arch_code=EM_SPARC;
1959   #elif  (defined __powerpc64__)
1960     static  Elf32_Half running_arch_code=EM_PPC64;
1961   #elif  (defined __powerpc__)
1962     static  Elf32_Half running_arch_code=EM_PPC;
1963   #elif  (defined ARM)
1964     static  Elf32_Half running_arch_code=EM_ARM;
1965   #elif  (defined S390)
1966     static  Elf32_Half running_arch_code=EM_S390;
1967   #elif  (defined ALPHA)
1968     static  Elf32_Half running_arch_code=EM_ALPHA;
1969   #elif  (defined MIPSEL)
1970     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1971   #elif  (defined PARISC)
1972     static  Elf32_Half running_arch_code=EM_PARISC;
1973   #elif  (defined MIPS)
1974     static  Elf32_Half running_arch_code=EM_MIPS;
1975   #elif  (defined M68K)
1976     static  Elf32_Half running_arch_code=EM_68K;
1977   #else
1978     #error Method os::dll_load requires that one of following is defined:\
1979          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1980   #endif
1981 
1982   // Identify compatability class for VM's architecture and library's architecture
1983   // Obtain string descriptions for architectures
1984 
1985   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1986   int running_arch_index=-1;
1987 
1988   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1989     if (running_arch_code == arch_array[i].code) {
1990       running_arch_index    = i;
1991     }
1992     if (lib_arch.code == arch_array[i].code) {
1993       lib_arch.compat_class = arch_array[i].compat_class;
1994       lib_arch.name         = arch_array[i].name;
1995     }
1996   }
1997 
1998   assert(running_arch_index != -1,
1999     "Didn't find running architecture code (running_arch_code) in arch_array");
2000   if (running_arch_index == -1) {
2001     // Even though running architecture detection failed
2002     // we may still continue with reporting dlerror() message
2003     return NULL;
2004   }
2005 
2006   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2007     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2008     return NULL;
2009   }
2010 
2011 #ifndef S390
2012   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2013     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2014     return NULL;
2015   }
2016 #endif // !S390
2017 
2018   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2019     if ( lib_arch.name!=NULL ) {
2020       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2021         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2022         lib_arch.name, arch_array[running_arch_index].name);
2023     } else {
2024       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2025       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2026         lib_arch.code,
2027         arch_array[running_arch_index].name);
2028     }
2029   }
2030 
2031   return NULL;
2032 }
2033 
2034 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2035   void * result = ::dlopen(filename, RTLD_LAZY);
2036   if (result == NULL) {
2037     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2038     ebuf[ebuflen-1] = '\0';
2039   }
2040   return result;
2041 }
2042 
2043 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2044   void * result = NULL;
2045   if (LoadExecStackDllInVMThread) {
2046     result = dlopen_helper(filename, ebuf, ebuflen);
2047   }
2048 
2049   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2050   // library that requires an executable stack, or which does not have this
2051   // stack attribute set, dlopen changes the stack attribute to executable. The
2052   // read protection of the guard pages gets lost.
2053   //
2054   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2055   // may have been queued at the same time.
2056 
2057   if (!_stack_is_executable) {
2058     JavaThread *jt = Threads::first();
2059 
2060     while (jt) {
2061       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2062           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2063         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2064                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2065           warning("Attempt to reguard stack yellow zone failed.");
2066         }
2067       }
2068       jt = jt->next();
2069     }
2070   }
2071 
2072   return result;
2073 }
2074 
2075 /*
2076  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2077  * chances are you might want to run the generated bits against glibc-2.0
2078  * libdl.so, so always use locking for any version of glibc.
2079  */
2080 void* os::dll_lookup(void* handle, const char* name) {
2081   pthread_mutex_lock(&dl_mutex);
2082   void* res = dlsym(handle, name);
2083   pthread_mutex_unlock(&dl_mutex);
2084   return res;
2085 }
2086 
2087 void* os::get_default_process_handle() {
2088   return (void*)::dlopen(NULL, RTLD_LAZY);
2089 }
2090 
2091 static bool _print_ascii_file(const char* filename, outputStream* st) {
2092   int fd = ::open(filename, O_RDONLY);
2093   if (fd == -1) {
2094      return false;
2095   }
2096 
2097   char buf[32];
2098   int bytes;
2099   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2100     st->print_raw(buf, bytes);
2101   }
2102 
2103   ::close(fd);
2104 
2105   return true;
2106 }
2107 
2108 void os::print_dll_info(outputStream *st) {
2109    st->print_cr("Dynamic libraries:");
2110 
2111    char fname[32];
2112    pid_t pid = os::Linux::gettid();
2113 
2114    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2115 
2116    if (!_print_ascii_file(fname, st)) {
2117      st->print("Can not get library information for pid = %d\n", pid);
2118    }
2119 }
2120 
2121 void os::print_os_info_brief(outputStream* st) {
2122   os::Linux::print_distro_info(st);
2123 
2124   os::Posix::print_uname_info(st);
2125 
2126   os::Linux::print_libversion_info(st);
2127 
2128 }
2129 
2130 void os::print_os_info(outputStream* st) {
2131   st->print("OS:");
2132 
2133   os::Linux::print_distro_info(st);
2134 
2135   os::Posix::print_uname_info(st);
2136 
2137   // Print warning if unsafe chroot environment detected
2138   if (unsafe_chroot_detected) {
2139     st->print("WARNING!! ");
2140     st->print_cr("%s", unstable_chroot_error);
2141   }
2142 
2143   os::Linux::print_libversion_info(st);
2144 
2145   os::Posix::print_rlimit_info(st);
2146 
2147   os::Posix::print_load_average(st);
2148 
2149   os::Linux::print_full_memory_info(st);
2150 }
2151 
2152 // Try to identify popular distros.
2153 // Most Linux distributions have a /etc/XXX-release file, which contains
2154 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2155 // file that also contains the OS version string. Some have more than one
2156 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2157 // /etc/redhat-release.), so the order is important.
2158 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2159 // their own specific XXX-release file as well as a redhat-release file.
2160 // Because of this the XXX-release file needs to be searched for before the
2161 // redhat-release file.
2162 // Since Red Hat has a lsb-release file that is not very descriptive the
2163 // search for redhat-release needs to be before lsb-release.
2164 // Since the lsb-release file is the new standard it needs to be searched
2165 // before the older style release files.
2166 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2167 // next to last resort.  The os-release file is a new standard that contains
2168 // distribution information and the system-release file seems to be an old
2169 // standard that has been replaced by the lsb-release and os-release files.
2170 // Searching for the debian_version file is the last resort.  It contains
2171 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2172 // "Debian " is printed before the contents of the debian_version file.
2173 void os::Linux::print_distro_info(outputStream* st) {
2174    if (!_print_ascii_file("/etc/oracle-release", st) &&
2175        !_print_ascii_file("/etc/mandriva-release", st) &&
2176        !_print_ascii_file("/etc/mandrake-release", st) &&
2177        !_print_ascii_file("/etc/sun-release", st) &&
2178        !_print_ascii_file("/etc/redhat-release", st) &&
2179        !_print_ascii_file("/etc/lsb-release", st) &&
2180        !_print_ascii_file("/etc/SuSE-release", st) &&
2181        !_print_ascii_file("/etc/turbolinux-release", st) &&
2182        !_print_ascii_file("/etc/gentoo-release", st) &&
2183        !_print_ascii_file("/etc/ltib-release", st) &&
2184        !_print_ascii_file("/etc/angstrom-version", st) &&
2185        !_print_ascii_file("/etc/system-release", st) &&
2186        !_print_ascii_file("/etc/os-release", st)) {
2187 
2188        if (file_exists("/etc/debian_version")) {
2189          st->print("Debian ");
2190          _print_ascii_file("/etc/debian_version", st);
2191        } else {
2192          st->print("Linux");
2193        }
2194    }
2195    st->cr();
2196 }
2197 
2198 void os::Linux::print_libversion_info(outputStream* st) {
2199   // libc, pthread
2200   st->print("libc:");
2201   st->print("%s ", os::Linux::glibc_version());
2202   st->print("%s ", os::Linux::libpthread_version());
2203   if (os::Linux::is_LinuxThreads()) {
2204      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2205   }
2206   st->cr();
2207 }
2208 
2209 void os::Linux::print_full_memory_info(outputStream* st) {
2210    st->print("\n/proc/meminfo:\n");
2211    _print_ascii_file("/proc/meminfo", st);
2212    st->cr();
2213 }
2214 
2215 void os::print_memory_info(outputStream* st) {
2216 
2217   st->print("Memory:");
2218   st->print(" %dk page", os::vm_page_size()>>10);
2219 
2220   // values in struct sysinfo are "unsigned long"
2221   struct sysinfo si;
2222   sysinfo(&si);
2223 
2224   st->print(", physical " UINT64_FORMAT "k",
2225             os::physical_memory() >> 10);
2226   st->print("(" UINT64_FORMAT "k free)",
2227             os::available_memory() >> 10);
2228   st->print(", swap " UINT64_FORMAT "k",
2229             ((jlong)si.totalswap * si.mem_unit) >> 10);
2230   st->print("(" UINT64_FORMAT "k free)",
2231             ((jlong)si.freeswap * si.mem_unit) >> 10);
2232   st->cr();
2233 }
2234 
2235 void os::pd_print_cpu_info(outputStream* st) {
2236   st->print("\n/proc/cpuinfo:\n");
2237   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2238     st->print("  <Not Available>");
2239   }
2240   st->cr();
2241 }
2242 
2243 void os::print_siginfo(outputStream* st, void* siginfo) {
2244   const siginfo_t* si = (const siginfo_t*)siginfo;
2245 
2246   os::Posix::print_siginfo_brief(st, si);
2247 #if INCLUDE_CDS
2248   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2249       UseSharedSpaces) {
2250     FileMapInfo* mapinfo = FileMapInfo::current_info();
2251     if (mapinfo->is_in_shared_space(si->si_addr)) {
2252       st->print("\n\nError accessing class data sharing archive."   \
2253                 " Mapped file inaccessible during execution, "      \
2254                 " possible disk/network problem.");
2255     }
2256   }
2257 #endif
2258   st->cr();
2259 }
2260 
2261 
2262 static void print_signal_handler(outputStream* st, int sig,
2263                                  char* buf, size_t buflen);
2264 
2265 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2266   st->print_cr("Signal Handlers:");
2267   print_signal_handler(st, SIGSEGV, buf, buflen);
2268   print_signal_handler(st, SIGBUS , buf, buflen);
2269   print_signal_handler(st, SIGFPE , buf, buflen);
2270   print_signal_handler(st, SIGPIPE, buf, buflen);
2271   print_signal_handler(st, SIGXFSZ, buf, buflen);
2272   print_signal_handler(st, SIGILL , buf, buflen);
2273   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2274   print_signal_handler(st, SR_signum, buf, buflen);
2275   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2276   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2277   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2278   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2279 #if defined(PPC64)
2280   print_signal_handler(st, SIGTRAP, buf, buflen);
2281 #endif
2282 }
2283 
2284 static char saved_jvm_path[MAXPATHLEN] = {0};
2285 
2286 // Find the full path to the current module, libjvm.so
2287 void os::jvm_path(char *buf, jint buflen) {
2288   // Error checking.
2289   if (buflen < MAXPATHLEN) {
2290     assert(false, "must use a large-enough buffer");
2291     buf[0] = '\0';
2292     return;
2293   }
2294   // Lazy resolve the path to current module.
2295   if (saved_jvm_path[0] != 0) {
2296     strcpy(buf, saved_jvm_path);
2297     return;
2298   }
2299 
2300   char dli_fname[MAXPATHLEN];
2301   bool ret = dll_address_to_library_name(
2302                 CAST_FROM_FN_PTR(address, os::jvm_path),
2303                 dli_fname, sizeof(dli_fname), NULL);
2304   assert(ret, "cannot locate libjvm");
2305   char *rp = NULL;
2306   if (ret && dli_fname[0] != '\0') {
2307     rp = realpath(dli_fname, buf);
2308   }
2309   if (rp == NULL)
2310     return;
2311 
2312   if (Arguments::created_by_gamma_launcher()) {
2313     // Support for the gamma launcher.  Typical value for buf is
2314     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2315     // the right place in the string, then assume we are installed in a JDK and
2316     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2317     // up the path so it looks like libjvm.so is installed there (append a
2318     // fake suffix hotspot/libjvm.so).
2319     const char *p = buf + strlen(buf) - 1;
2320     for (int count = 0; p > buf && count < 5; ++count) {
2321       for (--p; p > buf && *p != '/'; --p)
2322         /* empty */ ;
2323     }
2324 
2325     if (strncmp(p, "/jre/lib/", 9) != 0) {
2326       // Look for JAVA_HOME in the environment.
2327       char* java_home_var = ::getenv("JAVA_HOME");
2328       if (java_home_var != NULL && java_home_var[0] != 0) {
2329         char* jrelib_p;
2330         int len;
2331 
2332         // Check the current module name "libjvm.so".
2333         p = strrchr(buf, '/');
2334         assert(strstr(p, "/libjvm") == p, "invalid library name");
2335 
2336         rp = realpath(java_home_var, buf);
2337         if (rp == NULL)
2338           return;
2339 
2340         // determine if this is a legacy image or modules image
2341         // modules image doesn't have "jre" subdirectory
2342         len = strlen(buf);
2343         assert(len < buflen, "Ran out of buffer room");
2344         jrelib_p = buf + len;
2345         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2346         if (0 != access(buf, F_OK)) {
2347           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2348         }
2349 
2350         if (0 == access(buf, F_OK)) {
2351           // Use current module name "libjvm.so"
2352           len = strlen(buf);
2353           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2354         } else {
2355           // Go back to path of .so
2356           rp = realpath(dli_fname, buf);
2357           if (rp == NULL)
2358             return;
2359         }
2360       }
2361     }
2362   }
2363 
2364   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2365 }
2366 
2367 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2368   // no prefix required, not even "_"
2369 }
2370 
2371 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2372   // no suffix required
2373 }
2374 
2375 ////////////////////////////////////////////////////////////////////////////////
2376 // sun.misc.Signal support
2377 
2378 static volatile jint sigint_count = 0;
2379 
2380 static void
2381 UserHandler(int sig, void *siginfo, void *context) {
2382   // 4511530 - sem_post is serialized and handled by the manager thread. When
2383   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2384   // don't want to flood the manager thread with sem_post requests.
2385   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2386       return;
2387 
2388   // Ctrl-C is pressed during error reporting, likely because the error
2389   // handler fails to abort. Let VM die immediately.
2390   if (sig == SIGINT && is_error_reported()) {
2391      os::die();
2392   }
2393 
2394   os::signal_notify(sig);
2395 }
2396 
2397 void* os::user_handler() {
2398   return CAST_FROM_FN_PTR(void*, UserHandler);
2399 }
2400 
2401 class Semaphore : public StackObj {
2402   public:
2403     Semaphore();
2404     ~Semaphore();
2405     void signal();
2406     void wait();
2407     bool trywait();
2408     bool timedwait(unsigned int sec, int nsec);
2409   private:
2410     sem_t _semaphore;
2411 };
2412 
2413 Semaphore::Semaphore() {
2414   sem_init(&_semaphore, 0, 0);
2415 }
2416 
2417 Semaphore::~Semaphore() {
2418   sem_destroy(&_semaphore);
2419 }
2420 
2421 void Semaphore::signal() {
2422   sem_post(&_semaphore);
2423 }
2424 
2425 void Semaphore::wait() {
2426   sem_wait(&_semaphore);
2427 }
2428 
2429 bool Semaphore::trywait() {
2430   return sem_trywait(&_semaphore) == 0;
2431 }
2432 
2433 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2434 
2435   struct timespec ts;
2436   // Semaphore's are always associated with CLOCK_REALTIME
2437   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2438   // see unpackTime for discussion on overflow checking
2439   if (sec >= MAX_SECS) {
2440     ts.tv_sec += MAX_SECS;
2441     ts.tv_nsec = 0;
2442   } else {
2443     ts.tv_sec += sec;
2444     ts.tv_nsec += nsec;
2445     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2446       ts.tv_nsec -= NANOSECS_PER_SEC;
2447       ++ts.tv_sec; // note: this must be <= max_secs
2448     }
2449   }
2450 
2451   while (1) {
2452     int result = sem_timedwait(&_semaphore, &ts);
2453     if (result == 0) {
2454       return true;
2455     } else if (errno == EINTR) {
2456       continue;
2457     } else if (errno == ETIMEDOUT) {
2458       return false;
2459     } else {
2460       return false;
2461     }
2462   }
2463 }
2464 
2465 extern "C" {
2466   typedef void (*sa_handler_t)(int);
2467   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2468 }
2469 
2470 void* os::signal(int signal_number, void* handler) {
2471   struct sigaction sigAct, oldSigAct;
2472 
2473   sigfillset(&(sigAct.sa_mask));
2474   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2475   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2476 
2477   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2478     // -1 means registration failed
2479     return (void *)-1;
2480   }
2481 
2482   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2483 }
2484 
2485 void os::signal_raise(int signal_number) {
2486   ::raise(signal_number);
2487 }
2488 
2489 /*
2490  * The following code is moved from os.cpp for making this
2491  * code platform specific, which it is by its very nature.
2492  */
2493 
2494 // Will be modified when max signal is changed to be dynamic
2495 int os::sigexitnum_pd() {
2496   return NSIG;
2497 }
2498 
2499 // a counter for each possible signal value
2500 static volatile jint pending_signals[NSIG+1] = { 0 };
2501 
2502 // Linux(POSIX) specific hand shaking semaphore.
2503 static sem_t sig_sem;
2504 static Semaphore sr_semaphore;
2505 
2506 void os::signal_init_pd() {
2507   // Initialize signal structures
2508   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2509 
2510   // Initialize signal semaphore
2511   ::sem_init(&sig_sem, 0, 0);
2512 }
2513 
2514 void os::signal_notify(int sig) {
2515   Atomic::inc(&pending_signals[sig]);
2516   ::sem_post(&sig_sem);
2517 }
2518 
2519 static int check_pending_signals(bool wait) {
2520   Atomic::store(0, &sigint_count);
2521   for (;;) {
2522     for (int i = 0; i < NSIG + 1; i++) {
2523       jint n = pending_signals[i];
2524       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2525         return i;
2526       }
2527     }
2528     if (!wait) {
2529       return -1;
2530     }
2531     JavaThread *thread = JavaThread::current();
2532     ThreadBlockInVM tbivm(thread);
2533 
2534     bool threadIsSuspended;
2535     do {
2536       thread->set_suspend_equivalent();
2537       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2538       ::sem_wait(&sig_sem);
2539 
2540       // were we externally suspended while we were waiting?
2541       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2542       if (threadIsSuspended) {
2543         //
2544         // The semaphore has been incremented, but while we were waiting
2545         // another thread suspended us. We don't want to continue running
2546         // while suspended because that would surprise the thread that
2547         // suspended us.
2548         //
2549         ::sem_post(&sig_sem);
2550 
2551         thread->java_suspend_self();
2552       }
2553     } while (threadIsSuspended);
2554   }
2555 }
2556 
2557 int os::signal_lookup() {
2558   return check_pending_signals(false);
2559 }
2560 
2561 int os::signal_wait() {
2562   return check_pending_signals(true);
2563 }
2564 
2565 ////////////////////////////////////////////////////////////////////////////////
2566 // Virtual Memory
2567 
2568 int os::vm_page_size() {
2569   // Seems redundant as all get out
2570   assert(os::Linux::page_size() != -1, "must call os::init");
2571   return os::Linux::page_size();
2572 }
2573 
2574 // Solaris allocates memory by pages.
2575 int os::vm_allocation_granularity() {
2576   assert(os::Linux::page_size() != -1, "must call os::init");
2577   return os::Linux::page_size();
2578 }
2579 
2580 // Rationale behind this function:
2581 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2582 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2583 //  samples for JITted code. Here we create private executable mapping over the code cache
2584 //  and then we can use standard (well, almost, as mapping can change) way to provide
2585 //  info for the reporting script by storing timestamp and location of symbol
2586 void linux_wrap_code(char* base, size_t size) {
2587   static volatile jint cnt = 0;
2588 
2589   if (!UseOprofile) {
2590     return;
2591   }
2592 
2593   char buf[PATH_MAX+1];
2594   int num = Atomic::add(1, &cnt);
2595 
2596   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2597            os::get_temp_directory(), os::current_process_id(), num);
2598   unlink(buf);
2599 
2600   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2601 
2602   if (fd != -1) {
2603     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2604     if (rv != (off_t)-1) {
2605       if (::write(fd, "", 1) == 1) {
2606         mmap(base, size,
2607              PROT_READ|PROT_WRITE|PROT_EXEC,
2608              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2609       }
2610     }
2611     ::close(fd);
2612     unlink(buf);
2613   }
2614 }
2615 
2616 static bool recoverable_mmap_error(int err) {
2617   // See if the error is one we can let the caller handle. This
2618   // list of errno values comes from JBS-6843484. I can't find a
2619   // Linux man page that documents this specific set of errno
2620   // values so while this list currently matches Solaris, it may
2621   // change as we gain experience with this failure mode.
2622   switch (err) {
2623   case EBADF:
2624   case EINVAL:
2625   case ENOTSUP:
2626     // let the caller deal with these errors
2627     return true;
2628 
2629   default:
2630     // Any remaining errors on this OS can cause our reserved mapping
2631     // to be lost. That can cause confusion where different data
2632     // structures think they have the same memory mapped. The worst
2633     // scenario is if both the VM and a library think they have the
2634     // same memory mapped.
2635     return false;
2636   }
2637 }
2638 
2639 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2640                                     int err) {
2641   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2642           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2643           strerror(err), err);
2644 }
2645 
2646 static void warn_fail_commit_memory(char* addr, size_t size,
2647                                     size_t alignment_hint, bool exec,
2648                                     int err) {
2649   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2650           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2651           alignment_hint, exec, strerror(err), err);
2652 }
2653 
2654 // NOTE: Linux kernel does not really reserve the pages for us.
2655 //       All it does is to check if there are enough free pages
2656 //       left at the time of mmap(). This could be a potential
2657 //       problem.
2658 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2659   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2660   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2661                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2662   if (res != (uintptr_t) MAP_FAILED) {
2663     if (UseNUMAInterleaving) {
2664       numa_make_global(addr, size);
2665     }
2666     return 0;
2667   }
2668 
2669   int err = errno;  // save errno from mmap() call above
2670 
2671   if (!recoverable_mmap_error(err)) {
2672     warn_fail_commit_memory(addr, size, exec, err);
2673     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2674   }
2675 
2676   return err;
2677 }
2678 
2679 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2680   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2681 }
2682 
2683 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2684                                   const char* mesg) {
2685   assert(mesg != NULL, "mesg must be specified");
2686   int err = os::Linux::commit_memory_impl(addr, size, exec);
2687   if (err != 0) {
2688     // the caller wants all commit errors to exit with the specified mesg:
2689     warn_fail_commit_memory(addr, size, exec, err);
2690     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2691   }
2692 }
2693 
2694 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2695 #ifndef MAP_HUGETLB
2696 #define MAP_HUGETLB 0x40000
2697 #endif
2698 
2699 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2700 #ifndef MADV_HUGEPAGE
2701 #define MADV_HUGEPAGE 14
2702 #endif
2703 
2704 int os::Linux::commit_memory_impl(char* addr, size_t size,
2705                                   size_t alignment_hint, bool exec) {
2706   int err = os::Linux::commit_memory_impl(addr, size, exec);
2707   if (err == 0) {
2708     realign_memory(addr, size, alignment_hint);
2709   }
2710   return err;
2711 }
2712 
2713 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2714                           bool exec) {
2715   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2716 }
2717 
2718 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2719                                   size_t alignment_hint, bool exec,
2720                                   const char* mesg) {
2721   assert(mesg != NULL, "mesg must be specified");
2722   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2723   if (err != 0) {
2724     // the caller wants all commit errors to exit with the specified mesg:
2725     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2726     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2727   }
2728 }
2729 
2730 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2731   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2732     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2733     // be supported or the memory may already be backed by huge pages.
2734     ::madvise(addr, bytes, MADV_HUGEPAGE);
2735   }
2736 }
2737 
2738 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2739   // This method works by doing an mmap over an existing mmaping and effectively discarding
2740   // the existing pages. However it won't work for SHM-based large pages that cannot be
2741   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2742   // small pages on top of the SHM segment. This method always works for small pages, so we
2743   // allow that in any case.
2744   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2745     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2746   }
2747 }
2748 
2749 void os::numa_make_global(char *addr, size_t bytes) {
2750   Linux::numa_interleave_memory(addr, bytes);
2751 }
2752 
2753 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2754 // bind policy to MPOL_PREFERRED for the current thread.
2755 #define USE_MPOL_PREFERRED 0
2756 
2757 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2758   // To make NUMA and large pages more robust when both enabled, we need to ease
2759   // the requirements on where the memory should be allocated. MPOL_BIND is the
2760   // default policy and it will force memory to be allocated on the specified
2761   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2762   // the specified node, but will not force it. Using this policy will prevent
2763   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2764   // free large pages.
2765   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2766   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2767 }
2768 
2769 bool os::numa_topology_changed()   { return false; }
2770 
2771 size_t os::numa_get_groups_num() {
2772   int max_node = Linux::numa_max_node();
2773   return max_node > 0 ? max_node + 1 : 1;
2774 }
2775 
2776 int os::numa_get_group_id() {
2777   int cpu_id = Linux::sched_getcpu();
2778   if (cpu_id != -1) {
2779     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2780     if (lgrp_id != -1) {
2781       return lgrp_id;
2782     }
2783   }
2784   return 0;
2785 }
2786 
2787 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2788   for (size_t i = 0; i < size; i++) {
2789     ids[i] = i;
2790   }
2791   return size;
2792 }
2793 
2794 bool os::get_page_info(char *start, page_info* info) {
2795   return false;
2796 }
2797 
2798 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2799   return end;
2800 }
2801 
2802 
2803 int os::Linux::sched_getcpu_syscall(void) {
2804   unsigned int cpu;
2805   int retval = -1;
2806 
2807 #if defined(IA32)
2808 # ifndef SYS_getcpu
2809 # define SYS_getcpu 318
2810 # endif
2811   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2812 #elif defined(AMD64)
2813 // Unfortunately we have to bring all these macros here from vsyscall.h
2814 // to be able to compile on old linuxes.
2815 # define __NR_vgetcpu 2
2816 # define VSYSCALL_START (-10UL << 20)
2817 # define VSYSCALL_SIZE 1024
2818 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2819   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2820   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2821   retval = vgetcpu(&cpu, NULL, NULL);
2822 #endif
2823 
2824   return (retval == -1) ? retval : cpu;
2825 }
2826 
2827 // Something to do with the numa-aware allocator needs these symbols
2828 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2829 extern "C" JNIEXPORT void numa_error(char *where) { }
2830 extern "C" JNIEXPORT int fork1() { return fork(); }
2831 
2832 
2833 // If we are running with libnuma version > 2, then we should
2834 // be trying to use symbols with versions 1.1
2835 // If we are running with earlier version, which did not have symbol versions,
2836 // we should use the base version.
2837 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2838   void *f = dlvsym(handle, name, "libnuma_1.1");
2839   if (f == NULL) {
2840     f = dlsym(handle, name);
2841   }
2842   return f;
2843 }
2844 
2845 bool os::Linux::libnuma_init() {
2846   // sched_getcpu() should be in libc.
2847   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2848                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2849 
2850   // If it's not, try a direct syscall.
2851   if (sched_getcpu() == -1)
2852     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2853 
2854   if (sched_getcpu() != -1) { // Does it work?
2855     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2856     if (handle != NULL) {
2857       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2858                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2859       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2860                                        libnuma_dlsym(handle, "numa_max_node")));
2861       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2862                                         libnuma_dlsym(handle, "numa_available")));
2863       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2864                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2865       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2866                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2867       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2868                                             libnuma_dlsym(handle, "numa_set_bind_policy")));
2869 
2870 
2871       if (numa_available() != -1) {
2872         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2873         // Create a cpu -> node mapping
2874         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2875         rebuild_cpu_to_node_map();
2876         return true;
2877       }
2878     }
2879   }
2880   return false;
2881 }
2882 
2883 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2884 // The table is later used in get_node_by_cpu().
2885 void os::Linux::rebuild_cpu_to_node_map() {
2886   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2887                               // in libnuma (possible values are starting from 16,
2888                               // and continuing up with every other power of 2, but less
2889                               // than the maximum number of CPUs supported by kernel), and
2890                               // is a subject to change (in libnuma version 2 the requirements
2891                               // are more reasonable) we'll just hardcode the number they use
2892                               // in the library.
2893   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2894 
2895   size_t cpu_num = os::active_processor_count();
2896   size_t cpu_map_size = NCPUS / BitsPerCLong;
2897   size_t cpu_map_valid_size =
2898     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2899 
2900   cpu_to_node()->clear();
2901   cpu_to_node()->at_grow(cpu_num - 1);
2902   size_t node_num = numa_get_groups_num();
2903 
2904   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2905   for (size_t i = 0; i < node_num; i++) {
2906     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2907       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2908         if (cpu_map[j] != 0) {
2909           for (size_t k = 0; k < BitsPerCLong; k++) {
2910             if (cpu_map[j] & (1UL << k)) {
2911               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2912             }
2913           }
2914         }
2915       }
2916     }
2917   }
2918   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2919 }
2920 
2921 int os::Linux::get_node_by_cpu(int cpu_id) {
2922   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2923     return cpu_to_node()->at(cpu_id);
2924   }
2925   return -1;
2926 }
2927 
2928 GrowableArray<int>* os::Linux::_cpu_to_node;
2929 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2930 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2931 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2932 os::Linux::numa_available_func_t os::Linux::_numa_available;
2933 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2934 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2935 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2936 unsigned long* os::Linux::_numa_all_nodes;
2937 
2938 bool os::pd_uncommit_memory(char* addr, size_t size) {
2939   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2940                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2941   return res  != (uintptr_t) MAP_FAILED;
2942 }
2943 
2944 static
2945 address get_stack_commited_bottom(address bottom, size_t size) {
2946   address nbot = bottom;
2947   address ntop = bottom + size;
2948 
2949   size_t page_sz = os::vm_page_size();
2950   unsigned pages = size / page_sz;
2951 
2952   unsigned char vec[1];
2953   unsigned imin = 1, imax = pages + 1, imid;
2954   int mincore_return_value = 0;
2955 
2956   assert(imin <= imax, "Unexpected page size");
2957 
2958   while (imin < imax) {
2959     imid = (imax + imin) / 2;
2960     nbot = ntop - (imid * page_sz);
2961 
2962     // Use a trick with mincore to check whether the page is mapped or not.
2963     // mincore sets vec to 1 if page resides in memory and to 0 if page
2964     // is swapped output but if page we are asking for is unmapped
2965     // it returns -1,ENOMEM
2966     mincore_return_value = mincore(nbot, page_sz, vec);
2967 
2968     if (mincore_return_value == -1) {
2969       // Page is not mapped go up
2970       // to find first mapped page
2971       if (errno != EAGAIN) {
2972         assert(errno == ENOMEM, "Unexpected mincore errno");
2973         imax = imid;
2974       }
2975     } else {
2976       // Page is mapped go down
2977       // to find first not mapped page
2978       imin = imid + 1;
2979     }
2980   }
2981 
2982   nbot = nbot + page_sz;
2983 
2984   // Adjust stack bottom one page up if last checked page is not mapped
2985   if (mincore_return_value == -1) {
2986     nbot = nbot + page_sz;
2987   }
2988 
2989   return nbot;
2990 }
2991 
2992 
2993 // Linux uses a growable mapping for the stack, and if the mapping for
2994 // the stack guard pages is not removed when we detach a thread the
2995 // stack cannot grow beyond the pages where the stack guard was
2996 // mapped.  If at some point later in the process the stack expands to
2997 // that point, the Linux kernel cannot expand the stack any further
2998 // because the guard pages are in the way, and a segfault occurs.
2999 //
3000 // However, it's essential not to split the stack region by unmapping
3001 // a region (leaving a hole) that's already part of the stack mapping,
3002 // so if the stack mapping has already grown beyond the guard pages at
3003 // the time we create them, we have to truncate the stack mapping.
3004 // So, we need to know the extent of the stack mapping when
3005 // create_stack_guard_pages() is called.
3006 
3007 // We only need this for stacks that are growable: at the time of
3008 // writing thread stacks don't use growable mappings (i.e. those
3009 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3010 // only applies to the main thread.
3011 
3012 // If the (growable) stack mapping already extends beyond the point
3013 // where we're going to put our guard pages, truncate the mapping at
3014 // that point by munmap()ping it.  This ensures that when we later
3015 // munmap() the guard pages we don't leave a hole in the stack
3016 // mapping. This only affects the main/initial thread
3017 
3018 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3019 
3020   if (os::Linux::is_initial_thread()) {
3021     // As we manually grow stack up to bottom inside create_attached_thread(),
3022     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3023     // we don't need to do anything special.
3024     // Check it first, before calling heavy function.
3025     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3026     unsigned char vec[1];
3027 
3028     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3029       // Fallback to slow path on all errors, including EAGAIN
3030       stack_extent = (uintptr_t) get_stack_commited_bottom(
3031                                     os::Linux::initial_thread_stack_bottom(),
3032                                     (size_t)addr - stack_extent);
3033     }
3034 
3035     if (stack_extent < (uintptr_t)addr) {
3036       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3037     }
3038   }
3039 
3040   return os::commit_memory(addr, size, !ExecMem);
3041 }
3042 
3043 // If this is a growable mapping, remove the guard pages entirely by
3044 // munmap()ping them.  If not, just call uncommit_memory(). This only
3045 // affects the main/initial thread, but guard against future OS changes
3046 // It's safe to always unmap guard pages for initial thread because we
3047 // always place it right after end of the mapped region
3048 
3049 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3050   uintptr_t stack_extent, stack_base;
3051 
3052   if (os::Linux::is_initial_thread()) {
3053     return ::munmap(addr, size) == 0;
3054   }
3055 
3056   return os::uncommit_memory(addr, size);
3057 }
3058 
3059 static address _highest_vm_reserved_address = NULL;
3060 
3061 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3062 // at 'requested_addr'. If there are existing memory mappings at the same
3063 // location, however, they will be overwritten. If 'fixed' is false,
3064 // 'requested_addr' is only treated as a hint, the return value may or
3065 // may not start from the requested address. Unlike Linux mmap(), this
3066 // function returns NULL to indicate failure.
3067 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3068   char * addr;
3069   int flags;
3070 
3071   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3072   if (fixed) {
3073     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3074     flags |= MAP_FIXED;
3075   }
3076 
3077   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3078   // touch an uncommitted page. Otherwise, the read/write might
3079   // succeed if we have enough swap space to back the physical page.
3080   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3081                        flags, -1, 0);
3082 
3083   if (addr != MAP_FAILED) {
3084     // anon_mmap() should only get called during VM initialization,
3085     // don't need lock (actually we can skip locking even it can be called
3086     // from multiple threads, because _highest_vm_reserved_address is just a
3087     // hint about the upper limit of non-stack memory regions.)
3088     if ((address)addr + bytes > _highest_vm_reserved_address) {
3089       _highest_vm_reserved_address = (address)addr + bytes;
3090     }
3091   }
3092 
3093   return addr == MAP_FAILED ? NULL : addr;
3094 }
3095 
3096 // Don't update _highest_vm_reserved_address, because there might be memory
3097 // regions above addr + size. If so, releasing a memory region only creates
3098 // a hole in the address space, it doesn't help prevent heap-stack collision.
3099 //
3100 static int anon_munmap(char * addr, size_t size) {
3101   return ::munmap(addr, size) == 0;
3102 }
3103 
3104 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3105                          size_t alignment_hint) {
3106   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3107 }
3108 
3109 bool os::pd_release_memory(char* addr, size_t size) {
3110   return anon_munmap(addr, size);
3111 }
3112 
3113 static address highest_vm_reserved_address() {
3114   return _highest_vm_reserved_address;
3115 }
3116 
3117 static bool linux_mprotect(char* addr, size_t size, int prot) {
3118   // Linux wants the mprotect address argument to be page aligned.
3119   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3120 
3121   // According to SUSv3, mprotect() should only be used with mappings
3122   // established by mmap(), and mmap() always maps whole pages. Unaligned
3123   // 'addr' likely indicates problem in the VM (e.g. trying to change
3124   // protection of malloc'ed or statically allocated memory). Check the
3125   // caller if you hit this assert.
3126   assert(addr == bottom, "sanity check");
3127 
3128   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3129   return ::mprotect(bottom, size, prot) == 0;
3130 }
3131 
3132 // Set protections specified
3133 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3134                         bool is_committed) {
3135   unsigned int p = 0;
3136   switch (prot) {
3137   case MEM_PROT_NONE: p = PROT_NONE; break;
3138   case MEM_PROT_READ: p = PROT_READ; break;
3139   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3140   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3141   default:
3142     ShouldNotReachHere();
3143   }
3144   // is_committed is unused.
3145   return linux_mprotect(addr, bytes, p);
3146 }
3147 
3148 bool os::guard_memory(char* addr, size_t size) {
3149   return linux_mprotect(addr, size, PROT_NONE);
3150 }
3151 
3152 bool os::unguard_memory(char* addr, size_t size) {
3153   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3154 }
3155 
3156 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3157   bool result = false;
3158   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3159                  MAP_ANONYMOUS|MAP_PRIVATE,
3160                  -1, 0);
3161   if (p != MAP_FAILED) {
3162     void *aligned_p = align_ptr_up(p, page_size);
3163 
3164     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3165 
3166     munmap(p, page_size * 2);
3167   }
3168 
3169   if (warn && !result) {
3170     warning("TransparentHugePages is not supported by the operating system.");
3171   }
3172 
3173   return result;
3174 }
3175 
3176 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3177   bool result = false;
3178   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3179                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3180                  -1, 0);
3181 
3182   if (p != MAP_FAILED) {
3183     // We don't know if this really is a huge page or not.
3184     FILE *fp = fopen("/proc/self/maps", "r");
3185     if (fp) {
3186       while (!feof(fp)) {
3187         char chars[257];
3188         long x = 0;
3189         if (fgets(chars, sizeof(chars), fp)) {
3190           if (sscanf(chars, "%lx-%*x", &x) == 1
3191               && x == (long)p) {
3192             if (strstr (chars, "hugepage")) {
3193               result = true;
3194               break;
3195             }
3196           }
3197         }
3198       }
3199       fclose(fp);
3200     }
3201     munmap(p, page_size);
3202   }
3203 
3204   if (warn && !result) {
3205     warning("HugeTLBFS is not supported by the operating system.");
3206   }
3207 
3208   return result;
3209 }
3210 
3211 /*
3212 * Set the coredump_filter bits to include largepages in core dump (bit 6)
3213 *
3214 * From the coredump_filter documentation:
3215 *
3216 * - (bit 0) anonymous private memory
3217 * - (bit 1) anonymous shared memory
3218 * - (bit 2) file-backed private memory
3219 * - (bit 3) file-backed shared memory
3220 * - (bit 4) ELF header pages in file-backed private memory areas (it is
3221 *           effective only if the bit 2 is cleared)
3222 * - (bit 5) hugetlb private memory
3223 * - (bit 6) hugetlb shared memory
3224 */
3225 static void set_coredump_filter(void) {
3226   FILE *f;
3227   long cdm;
3228 
3229   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3230     return;
3231   }
3232 
3233   if (fscanf(f, "%lx", &cdm) != 1) {
3234     fclose(f);
3235     return;
3236   }
3237 
3238   rewind(f);
3239 
3240   if ((cdm & LARGEPAGES_BIT) == 0) {
3241     cdm |= LARGEPAGES_BIT;
3242     fprintf(f, "%#lx", cdm);
3243   }
3244 
3245   fclose(f);
3246 }
3247 
3248 // Large page support
3249 
3250 static size_t _large_page_size = 0;
3251 
3252 size_t os::Linux::find_large_page_size() {
3253   size_t large_page_size = 0;
3254 
3255   // large_page_size on Linux is used to round up heap size. x86 uses either
3256   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3257   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3258   // page as large as 256M.
3259   //
3260   // Here we try to figure out page size by parsing /proc/meminfo and looking
3261   // for a line with the following format:
3262   //    Hugepagesize:     2048 kB
3263   //
3264   // If we can't determine the value (e.g. /proc is not mounted, or the text
3265   // format has been changed), we'll use the largest page size supported by
3266   // the processor.
3267 
3268 #ifndef ZERO
3269   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3270                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3271 #endif // ZERO
3272 
3273   FILE *fp = fopen("/proc/meminfo", "r");
3274   if (fp) {
3275     while (!feof(fp)) {
3276       int x = 0;
3277       char buf[16];
3278       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3279         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3280           large_page_size = x * K;
3281           break;
3282         }
3283       } else {
3284         // skip to next line
3285         for (;;) {
3286           int ch = fgetc(fp);
3287           if (ch == EOF || ch == (int)'\n') break;
3288         }
3289       }
3290     }
3291     fclose(fp);
3292   }
3293 
3294   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3295     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3296         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3297         proper_unit_for_byte_size(large_page_size));
3298   }
3299 
3300   return large_page_size;
3301 }
3302 
3303 size_t os::Linux::setup_large_page_size() {
3304   _large_page_size = Linux::find_large_page_size();
3305   const size_t default_page_size = (size_t)Linux::page_size();
3306   if (_large_page_size > default_page_size) {
3307     _page_sizes[0] = _large_page_size;
3308     _page_sizes[1] = default_page_size;
3309     _page_sizes[2] = 0;
3310   }
3311 
3312   return _large_page_size;
3313 }
3314 
3315 bool os::Linux::setup_large_page_type(size_t page_size) {
3316   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3317       FLAG_IS_DEFAULT(UseSHM) &&
3318       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3319 
3320     // The type of large pages has not been specified by the user.
3321 
3322     // Try UseHugeTLBFS and then UseSHM.
3323     UseHugeTLBFS = UseSHM = true;
3324 
3325     // Don't try UseTransparentHugePages since there are known
3326     // performance issues with it turned on. This might change in the future.
3327     UseTransparentHugePages = false;
3328   }
3329 
3330   if (UseTransparentHugePages) {
3331     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3332     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3333       UseHugeTLBFS = false;
3334       UseSHM = false;
3335       return true;
3336     }
3337     UseTransparentHugePages = false;
3338   }
3339 
3340   if (UseHugeTLBFS) {
3341     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3342     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3343       UseSHM = false;
3344       return true;
3345     }
3346     UseHugeTLBFS = false;
3347   }
3348 
3349   return UseSHM;
3350 }
3351 
3352 void os::large_page_init() {
3353   if (!UseLargePages &&
3354       !UseTransparentHugePages &&
3355       !UseHugeTLBFS &&
3356       !UseSHM) {
3357     // Not using large pages.
3358     return;
3359   }
3360 
3361   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3362     // The user explicitly turned off large pages.
3363     // Ignore the rest of the large pages flags.
3364     UseTransparentHugePages = false;
3365     UseHugeTLBFS = false;
3366     UseSHM = false;
3367     return;
3368   }
3369 
3370   size_t large_page_size = Linux::setup_large_page_size();
3371   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3372 
3373   set_coredump_filter();
3374 }
3375 
3376 #ifndef SHM_HUGETLB
3377 #define SHM_HUGETLB 04000
3378 #endif
3379 
3380 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3381   // "exec" is passed in but not used.  Creating the shared image for
3382   // the code cache doesn't have an SHM_X executable permission to check.
3383   assert(UseLargePages && UseSHM, "only for SHM large pages");
3384   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3385 
3386   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3387     return NULL; // Fallback to small pages.
3388   }
3389 
3390   key_t key = IPC_PRIVATE;
3391   char *addr;
3392 
3393   bool warn_on_failure = UseLargePages &&
3394                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3395                          !FLAG_IS_DEFAULT(UseSHM) ||
3396                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3397                         );
3398   char msg[128];
3399 
3400   // Create a large shared memory region to attach to based on size.
3401   // Currently, size is the total size of the heap
3402   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3403   if (shmid == -1) {
3404      // Possible reasons for shmget failure:
3405      // 1. shmmax is too small for Java heap.
3406      //    > check shmmax value: cat /proc/sys/kernel/shmmax
3407      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3408      // 2. not enough large page memory.
3409      //    > check available large pages: cat /proc/meminfo
3410      //    > increase amount of large pages:
3411      //          echo new_value > /proc/sys/vm/nr_hugepages
3412      //      Note 1: different Linux may use different name for this property,
3413      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3414      //      Note 2: it's possible there's enough physical memory available but
3415      //            they are so fragmented after a long run that they can't
3416      //            coalesce into large pages. Try to reserve large pages when
3417      //            the system is still "fresh".
3418      if (warn_on_failure) {
3419        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3420        warning("%s", msg);
3421      }
3422      return NULL;
3423   }
3424 
3425   // attach to the region
3426   addr = (char*)shmat(shmid, req_addr, 0);
3427   int err = errno;
3428 
3429   // Remove shmid. If shmat() is successful, the actual shared memory segment
3430   // will be deleted when it's detached by shmdt() or when the process
3431   // terminates. If shmat() is not successful this will remove the shared
3432   // segment immediately.
3433   shmctl(shmid, IPC_RMID, NULL);
3434 
3435   if ((intptr_t)addr == -1) {
3436      if (warn_on_failure) {
3437        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3438        warning("%s", msg);
3439      }
3440      return NULL;
3441   }
3442 
3443   return addr;
3444 }
3445 
3446 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3447   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3448 
3449   bool warn_on_failure = UseLargePages &&
3450       (!FLAG_IS_DEFAULT(UseLargePages) ||
3451        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3452        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3453 
3454   if (warn_on_failure) {
3455     char msg[128];
3456     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3457         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3458     warning("%s", msg);
3459   }
3460 }
3461 
3462 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3463   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3464   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3465   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3466 
3467   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3468   char* addr = (char*)::mmap(req_addr, bytes, prot,
3469                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3470                              -1, 0);
3471 
3472   if (addr == MAP_FAILED) {
3473     warn_on_large_pages_failure(req_addr, bytes, errno);
3474     return NULL;
3475   }
3476 
3477   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3478 
3479   return addr;
3480 }
3481 
3482 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3483   size_t large_page_size = os::large_page_size();
3484 
3485   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3486 
3487   // Allocate small pages.
3488 
3489   char* start;
3490   if (req_addr != NULL) {
3491     assert(is_ptr_aligned(req_addr, alignment), "Must be");
3492     assert(is_size_aligned(bytes, alignment), "Must be");
3493     start = os::reserve_memory(bytes, req_addr);
3494     assert(start == NULL || start == req_addr, "Must be");
3495   } else {
3496     start = os::reserve_memory_aligned(bytes, alignment);
3497   }
3498 
3499   if (start == NULL) {
3500     return NULL;
3501   }
3502 
3503   assert(is_ptr_aligned(start, alignment), "Must be");
3504 
3505   if (MemTracker::tracking_level() > NMT_minimal) {
3506     // os::reserve_memory_special will record this memory area.
3507     // Need to release it here to prevent overlapping reservations.
3508     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3509     tkr.record((address)start, bytes);
3510   }
3511 
3512   char* end = start + bytes;
3513 
3514   // Find the regions of the allocated chunk that can be promoted to large pages.
3515   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3516   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3517 
3518   size_t lp_bytes = lp_end - lp_start;
3519 
3520   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3521 
3522   if (lp_bytes == 0) {
3523     // The mapped region doesn't even span the start and the end of a large page.
3524     // Fall back to allocate a non-special area.
3525     ::munmap(start, end - start);
3526     return NULL;
3527   }
3528 
3529   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3530 
3531 
3532   void* result;
3533 
3534   if (start != lp_start) {
3535     result = ::mmap(start, lp_start - start, prot,
3536                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3537                     -1, 0);
3538     if (result == MAP_FAILED) {
3539       ::munmap(lp_start, end - lp_start);
3540       return NULL;
3541     }
3542   }
3543 
3544   result = ::mmap(lp_start, lp_bytes, prot,
3545                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3546                   -1, 0);
3547   if (result == MAP_FAILED) {
3548     warn_on_large_pages_failure(req_addr, bytes, errno);
3549     // If the mmap above fails, the large pages region will be unmapped and we
3550     // have regions before and after with small pages. Release these regions.
3551     //
3552     // |  mapped  |  unmapped  |  mapped  |
3553     // ^          ^            ^          ^
3554     // start      lp_start     lp_end     end
3555     //
3556     ::munmap(start, lp_start - start);
3557     ::munmap(lp_end, end - lp_end);
3558     return NULL;
3559   }
3560 
3561   if (lp_end != end) {
3562       result = ::mmap(lp_end, end - lp_end, prot,
3563                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3564                       -1, 0);
3565     if (result == MAP_FAILED) {
3566       ::munmap(start, lp_end - start);
3567       return NULL;
3568     }
3569   }
3570 
3571   return start;
3572 }
3573 
3574 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3575   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3576   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3577   assert(is_power_of_2(alignment), "Must be");
3578   assert(is_power_of_2(os::large_page_size()), "Must be");
3579   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3580 
3581   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3582     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3583   } else {
3584     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3585   }
3586 }
3587 
3588 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3589   assert(UseLargePages, "only for large pages");
3590 
3591   char* addr;
3592   if (UseSHM) {
3593     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3594   } else {
3595     assert(UseHugeTLBFS, "must be");
3596     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3597   }
3598 
3599   if (addr != NULL) {
3600     if (UseNUMAInterleaving) {
3601       numa_make_global(addr, bytes);
3602     }
3603 
3604     // The memory is committed
3605     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3606   }
3607 
3608   return addr;
3609 }
3610 
3611 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3612   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3613   return shmdt(base) == 0;
3614 }
3615 
3616 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3617   return pd_release_memory(base, bytes);
3618 }
3619 
3620 bool os::release_memory_special(char* base, size_t bytes) {
3621   bool res;
3622   if (MemTracker::tracking_level() > NMT_minimal) {
3623     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3624     res = os::Linux::release_memory_special_impl(base, bytes);
3625     if (res) {
3626       tkr.record((address)base, bytes);
3627     }
3628 
3629   } else {
3630     res = os::Linux::release_memory_special_impl(base, bytes);
3631   }
3632   return res;
3633 }
3634 
3635 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3636   assert(UseLargePages, "only for large pages");
3637   bool res;
3638 
3639   if (UseSHM) {
3640     res = os::Linux::release_memory_special_shm(base, bytes);
3641   } else {
3642     assert(UseHugeTLBFS, "must be");
3643     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3644   }
3645   return res;
3646 }
3647 
3648 size_t os::large_page_size() {
3649   return _large_page_size;
3650 }
3651 
3652 // With SysV SHM the entire memory region must be allocated as shared
3653 // memory.
3654 // HugeTLBFS allows application to commit large page memory on demand.
3655 // However, when committing memory with HugeTLBFS fails, the region
3656 // that was supposed to be committed will lose the old reservation
3657 // and allow other threads to steal that memory region. Because of this
3658 // behavior we can't commit HugeTLBFS memory.
3659 bool os::can_commit_large_page_memory() {
3660   return UseTransparentHugePages;
3661 }
3662 
3663 bool os::can_execute_large_page_memory() {
3664   return UseTransparentHugePages || UseHugeTLBFS;
3665 }
3666 
3667 // Reserve memory at an arbitrary address, only if that area is
3668 // available (and not reserved for something else).
3669 
3670 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3671   const int max_tries = 10;
3672   char* base[max_tries];
3673   size_t size[max_tries];
3674   const size_t gap = 0x000000;
3675 
3676   // Assert only that the size is a multiple of the page size, since
3677   // that's all that mmap requires, and since that's all we really know
3678   // about at this low abstraction level.  If we need higher alignment,
3679   // we can either pass an alignment to this method or verify alignment
3680   // in one of the methods further up the call chain.  See bug 5044738.
3681   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3682 
3683   // Repeatedly allocate blocks until the block is allocated at the
3684   // right spot. Give up after max_tries. Note that reserve_memory() will
3685   // automatically update _highest_vm_reserved_address if the call is
3686   // successful. The variable tracks the highest memory address every reserved
3687   // by JVM. It is used to detect heap-stack collision if running with
3688   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3689   // space than needed, it could confuse the collision detecting code. To
3690   // solve the problem, save current _highest_vm_reserved_address and
3691   // calculate the correct value before return.
3692   address old_highest = _highest_vm_reserved_address;
3693 
3694   // Linux mmap allows caller to pass an address as hint; give it a try first,
3695   // if kernel honors the hint then we can return immediately.
3696   char * addr = anon_mmap(requested_addr, bytes, false);
3697   if (addr == requested_addr) {
3698      return requested_addr;
3699   }
3700 
3701   if (addr != NULL) {
3702      // mmap() is successful but it fails to reserve at the requested address
3703      anon_munmap(addr, bytes);
3704   }
3705 
3706   int i;
3707   for (i = 0; i < max_tries; ++i) {
3708     base[i] = reserve_memory(bytes);
3709 
3710     if (base[i] != NULL) {
3711       // Is this the block we wanted?
3712       if (base[i] == requested_addr) {
3713         size[i] = bytes;
3714         break;
3715       }
3716 
3717       // Does this overlap the block we wanted? Give back the overlapped
3718       // parts and try again.
3719 
3720       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3721       if (top_overlap >= 0 && top_overlap < bytes) {
3722         unmap_memory(base[i], top_overlap);
3723         base[i] += top_overlap;
3724         size[i] = bytes - top_overlap;
3725       } else {
3726         size_t bottom_overlap = base[i] + bytes - requested_addr;
3727         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3728           unmap_memory(requested_addr, bottom_overlap);
3729           size[i] = bytes - bottom_overlap;
3730         } else {
3731           size[i] = bytes;
3732         }
3733       }
3734     }
3735   }
3736 
3737   // Give back the unused reserved pieces.
3738 
3739   for (int j = 0; j < i; ++j) {
3740     if (base[j] != NULL) {
3741       unmap_memory(base[j], size[j]);
3742     }
3743   }
3744 
3745   if (i < max_tries) {
3746     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3747     return requested_addr;
3748   } else {
3749     _highest_vm_reserved_address = old_highest;
3750     return NULL;
3751   }
3752 }
3753 
3754 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3755   return ::read(fd, buf, nBytes);
3756 }
3757 
3758 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3759 // Solaris uses poll(), linux uses park().
3760 // Poll() is likely a better choice, assuming that Thread.interrupt()
3761 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3762 // SIGSEGV, see 4355769.
3763 
3764 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3765   assert(thread == Thread::current(),  "thread consistency check");
3766 
3767   ParkEvent * const slp = thread->_SleepEvent ;
3768   slp->reset() ;
3769   OrderAccess::fence() ;
3770 
3771   if (interruptible) {
3772     jlong prevtime = javaTimeNanos();
3773 
3774     for (;;) {
3775       if (os::is_interrupted(thread, true)) {
3776         return OS_INTRPT;
3777       }
3778 
3779       jlong newtime = javaTimeNanos();
3780 
3781       if (newtime - prevtime < 0) {
3782         // time moving backwards, should only happen if no monotonic clock
3783         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3784         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3785       } else {
3786         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3787       }
3788 
3789       if(millis <= 0) {
3790         return OS_OK;
3791       }
3792 
3793       prevtime = newtime;
3794 
3795       {
3796         assert(thread->is_Java_thread(), "sanity check");
3797         JavaThread *jt = (JavaThread *) thread;
3798         ThreadBlockInVM tbivm(jt);
3799         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3800 
3801         jt->set_suspend_equivalent();
3802         // cleared by handle_special_suspend_equivalent_condition() or
3803         // java_suspend_self() via check_and_wait_while_suspended()
3804 
3805         slp->park(millis);
3806 
3807         // were we externally suspended while we were waiting?
3808         jt->check_and_wait_while_suspended();
3809       }
3810     }
3811   } else {
3812     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3813     jlong prevtime = javaTimeNanos();
3814 
3815     for (;;) {
3816       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3817       // the 1st iteration ...
3818       jlong newtime = javaTimeNanos();
3819 
3820       if (newtime - prevtime < 0) {
3821         // time moving backwards, should only happen if no monotonic clock
3822         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3823         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3824       } else {
3825         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3826       }
3827 
3828       if(millis <= 0) break ;
3829 
3830       prevtime = newtime;
3831       slp->park(millis);
3832     }
3833     return OS_OK ;
3834   }
3835 }
3836 
3837 //
3838 // Short sleep, direct OS call.
3839 //
3840 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3841 // sched_yield(2) will actually give up the CPU:
3842 //
3843 //   * Alone on this pariticular CPU, keeps running.
3844 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3845 //     (pre 2.6.39).
3846 //
3847 // So calling this with 0 is an alternative.
3848 //
3849 void os::naked_short_sleep(jlong ms) {
3850   struct timespec req;
3851 
3852   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3853   req.tv_sec = 0;
3854   if (ms > 0) {
3855     req.tv_nsec = (ms % 1000) * 1000000;
3856   }
3857   else {
3858     req.tv_nsec = 1;
3859   }
3860 
3861   nanosleep(&req, NULL);
3862 
3863   return;
3864 }
3865 
3866 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3867 void os::infinite_sleep() {
3868   while (true) {    // sleep forever ...
3869     ::sleep(100);   // ... 100 seconds at a time
3870   }
3871 }
3872 
3873 // Used to convert frequent JVM_Yield() to nops
3874 bool os::dont_yield() {
3875   return DontYieldALot;
3876 }
3877 
3878 void os::yield() {
3879   sched_yield();
3880 }
3881 
3882 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3883 
3884 void os::yield_all(int attempts) {
3885   // Yields to all threads, including threads with lower priorities
3886   // Threads on Linux are all with same priority. The Solaris style
3887   // os::yield_all() with nanosleep(1ms) is not necessary.
3888   sched_yield();
3889 }
3890 
3891 // Called from the tight loops to possibly influence time-sharing heuristics
3892 void os::loop_breaker(int attempts) {
3893   os::yield_all(attempts);
3894 }
3895 
3896 ////////////////////////////////////////////////////////////////////////////////
3897 // thread priority support
3898 
3899 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3900 // only supports dynamic priority, static priority must be zero. For real-time
3901 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3902 // However, for large multi-threaded applications, SCHED_RR is not only slower
3903 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3904 // of 5 runs - Sep 2005).
3905 //
3906 // The following code actually changes the niceness of kernel-thread/LWP. It
3907 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3908 // not the entire user process, and user level threads are 1:1 mapped to kernel
3909 // threads. It has always been the case, but could change in the future. For
3910 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3911 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3912 
3913 int os::java_to_os_priority[CriticalPriority + 1] = {
3914   19,              // 0 Entry should never be used
3915 
3916    4,              // 1 MinPriority
3917    3,              // 2
3918    2,              // 3
3919 
3920    1,              // 4
3921    0,              // 5 NormPriority
3922   -1,              // 6
3923 
3924   -2,              // 7
3925   -3,              // 8
3926   -4,              // 9 NearMaxPriority
3927 
3928   -5,              // 10 MaxPriority
3929 
3930   -5               // 11 CriticalPriority
3931 };
3932 
3933 static int prio_init() {
3934   if (ThreadPriorityPolicy == 1) {
3935     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3936     // if effective uid is not root. Perhaps, a more elegant way of doing
3937     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3938     if (geteuid() != 0) {
3939       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3940         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3941       }
3942       ThreadPriorityPolicy = 0;
3943     }
3944   }
3945   if (UseCriticalJavaThreadPriority) {
3946     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3947   }
3948   return 0;
3949 }
3950 
3951 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3952   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3953 
3954   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3955   return (ret == 0) ? OS_OK : OS_ERR;
3956 }
3957 
3958 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3959   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3960     *priority_ptr = java_to_os_priority[NormPriority];
3961     return OS_OK;
3962   }
3963 
3964   errno = 0;
3965   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3966   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3967 }
3968 
3969 // Hint to the underlying OS that a task switch would not be good.
3970 // Void return because it's a hint and can fail.
3971 void os::hint_no_preempt() {}
3972 
3973 ////////////////////////////////////////////////////////////////////////////////
3974 // suspend/resume support
3975 
3976 //  the low-level signal-based suspend/resume support is a remnant from the
3977 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3978 //  within hotspot. Now there is a single use-case for this:
3979 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3980 //      that runs in the watcher thread.
3981 //  The remaining code is greatly simplified from the more general suspension
3982 //  code that used to be used.
3983 //
3984 //  The protocol is quite simple:
3985 //  - suspend:
3986 //      - sends a signal to the target thread
3987 //      - polls the suspend state of the osthread using a yield loop
3988 //      - target thread signal handler (SR_handler) sets suspend state
3989 //        and blocks in sigsuspend until continued
3990 //  - resume:
3991 //      - sets target osthread state to continue
3992 //      - sends signal to end the sigsuspend loop in the SR_handler
3993 //
3994 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3995 //
3996 
3997 static void resume_clear_context(OSThread *osthread) {
3998   osthread->set_ucontext(NULL);
3999   osthread->set_siginfo(NULL);
4000 }
4001 
4002 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
4003   osthread->set_ucontext(context);
4004   osthread->set_siginfo(siginfo);
4005 }
4006 
4007 //
4008 // Handler function invoked when a thread's execution is suspended or
4009 // resumed. We have to be careful that only async-safe functions are
4010 // called here (Note: most pthread functions are not async safe and
4011 // should be avoided.)
4012 //
4013 // Note: sigwait() is a more natural fit than sigsuspend() from an
4014 // interface point of view, but sigwait() prevents the signal hander
4015 // from being run. libpthread would get very confused by not having
4016 // its signal handlers run and prevents sigwait()'s use with the
4017 // mutex granting granting signal.
4018 //
4019 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4020 //
4021 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4022   // Save and restore errno to avoid confusing native code with EINTR
4023   // after sigsuspend.
4024   int old_errno = errno;
4025 
4026   Thread* thread = Thread::current();
4027   OSThread* osthread = thread->osthread();
4028   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4029 
4030   os::SuspendResume::State current = osthread->sr.state();
4031   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4032     suspend_save_context(osthread, siginfo, context);
4033 
4034     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4035     os::SuspendResume::State state = osthread->sr.suspended();
4036     if (state == os::SuspendResume::SR_SUSPENDED) {
4037       sigset_t suspend_set;  // signals for sigsuspend()
4038 
4039       // get current set of blocked signals and unblock resume signal
4040       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4041       sigdelset(&suspend_set, SR_signum);
4042 
4043       sr_semaphore.signal();
4044       // wait here until we are resumed
4045       while (1) {
4046         sigsuspend(&suspend_set);
4047 
4048         os::SuspendResume::State result = osthread->sr.running();
4049         if (result == os::SuspendResume::SR_RUNNING) {
4050           sr_semaphore.signal();
4051           break;
4052         }
4053       }
4054 
4055     } else if (state == os::SuspendResume::SR_RUNNING) {
4056       // request was cancelled, continue
4057     } else {
4058       ShouldNotReachHere();
4059     }
4060 
4061     resume_clear_context(osthread);
4062   } else if (current == os::SuspendResume::SR_RUNNING) {
4063     // request was cancelled, continue
4064   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4065     // ignore
4066   } else {
4067     // ignore
4068   }
4069 
4070   errno = old_errno;
4071 }
4072 
4073 
4074 static int SR_initialize() {
4075   struct sigaction act;
4076   char *s;
4077   /* Get signal number to use for suspend/resume */
4078   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4079     int sig = ::strtol(s, 0, 10);
4080     if (sig > 0 || sig < _NSIG) {
4081         SR_signum = sig;
4082     }
4083   }
4084 
4085   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4086         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4087 
4088   sigemptyset(&SR_sigset);
4089   sigaddset(&SR_sigset, SR_signum);
4090 
4091   /* Set up signal handler for suspend/resume */
4092   act.sa_flags = SA_RESTART|SA_SIGINFO;
4093   act.sa_handler = (void (*)(int)) SR_handler;
4094 
4095   // SR_signum is blocked by default.
4096   // 4528190 - We also need to block pthread restart signal (32 on all
4097   // supported Linux platforms). Note that LinuxThreads need to block
4098   // this signal for all threads to work properly. So we don't have
4099   // to use hard-coded signal number when setting up the mask.
4100   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4101 
4102   if (sigaction(SR_signum, &act, 0) == -1) {
4103     return -1;
4104   }
4105 
4106   // Save signal flag
4107   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4108   return 0;
4109 }
4110 
4111 static int sr_notify(OSThread* osthread) {
4112   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4113   assert_status(status == 0, status, "pthread_kill");
4114   return status;
4115 }
4116 
4117 // "Randomly" selected value for how long we want to spin
4118 // before bailing out on suspending a thread, also how often
4119 // we send a signal to a thread we want to resume
4120 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4121 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4122 
4123 // returns true on success and false on error - really an error is fatal
4124 // but this seems the normal response to library errors
4125 static bool do_suspend(OSThread* osthread) {
4126   assert(osthread->sr.is_running(), "thread should be running");
4127   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4128 
4129   // mark as suspended and send signal
4130   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4131     // failed to switch, state wasn't running?
4132     ShouldNotReachHere();
4133     return false;
4134   }
4135 
4136   if (sr_notify(osthread) != 0) {
4137     ShouldNotReachHere();
4138   }
4139 
4140   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4141   while (true) {
4142     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4143       break;
4144     } else {
4145       // timeout
4146       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4147       if (cancelled == os::SuspendResume::SR_RUNNING) {
4148         return false;
4149       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4150         // make sure that we consume the signal on the semaphore as well
4151         sr_semaphore.wait();
4152         break;
4153       } else {
4154         ShouldNotReachHere();
4155         return false;
4156       }
4157     }
4158   }
4159 
4160   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4161   return true;
4162 }
4163 
4164 static void do_resume(OSThread* osthread) {
4165   assert(osthread->sr.is_suspended(), "thread should be suspended");
4166   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4167 
4168   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4169     // failed to switch to WAKEUP_REQUEST
4170     ShouldNotReachHere();
4171     return;
4172   }
4173 
4174   while (true) {
4175     if (sr_notify(osthread) == 0) {
4176       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4177         if (osthread->sr.is_running()) {
4178           return;
4179         }
4180       }
4181     } else {
4182       ShouldNotReachHere();
4183     }
4184   }
4185 
4186   guarantee(osthread->sr.is_running(), "Must be running!");
4187 }
4188 
4189 ////////////////////////////////////////////////////////////////////////////////
4190 // interrupt support
4191 
4192 void os::interrupt(Thread* thread) {
4193   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4194     "possibility of dangling Thread pointer");
4195 
4196   OSThread* osthread = thread->osthread();
4197 
4198   if (!osthread->interrupted()) {
4199     osthread->set_interrupted(true);
4200     // More than one thread can get here with the same value of osthread,
4201     // resulting in multiple notifications.  We do, however, want the store
4202     // to interrupted() to be visible to other threads before we execute unpark().
4203     OrderAccess::fence();
4204     ParkEvent * const slp = thread->_SleepEvent ;
4205     if (slp != NULL) slp->unpark() ;
4206   }
4207 
4208   // For JSR166. Unpark even if interrupt status already was set
4209   if (thread->is_Java_thread())
4210     ((JavaThread*)thread)->parker()->unpark();
4211 
4212   ParkEvent * ev = thread->_ParkEvent ;
4213   if (ev != NULL) ev->unpark() ;
4214 
4215 }
4216 
4217 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
4218   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4219     "possibility of dangling Thread pointer");
4220 
4221   OSThread* osthread = thread->osthread();
4222 
4223   bool interrupted = osthread->interrupted();
4224 
4225   if (interrupted && clear_interrupted) {
4226     osthread->set_interrupted(false);
4227     // consider thread->_SleepEvent->reset() ... optional optimization
4228   }
4229 
4230   return interrupted;
4231 }
4232 
4233 ///////////////////////////////////////////////////////////////////////////////////
4234 // signal handling (except suspend/resume)
4235 
4236 // This routine may be used by user applications as a "hook" to catch signals.
4237 // The user-defined signal handler must pass unrecognized signals to this
4238 // routine, and if it returns true (non-zero), then the signal handler must
4239 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4240 // routine will never retun false (zero), but instead will execute a VM panic
4241 // routine kill the process.
4242 //
4243 // If this routine returns false, it is OK to call it again.  This allows
4244 // the user-defined signal handler to perform checks either before or after
4245 // the VM performs its own checks.  Naturally, the user code would be making
4246 // a serious error if it tried to handle an exception (such as a null check
4247 // or breakpoint) that the VM was generating for its own correct operation.
4248 //
4249 // This routine may recognize any of the following kinds of signals:
4250 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4251 // It should be consulted by handlers for any of those signals.
4252 //
4253 // The caller of this routine must pass in the three arguments supplied
4254 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4255 // field of the structure passed to sigaction().  This routine assumes that
4256 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4257 //
4258 // Note that the VM will print warnings if it detects conflicting signal
4259 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4260 //
4261 extern "C" JNIEXPORT int
4262 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4263                         void* ucontext, int abort_if_unrecognized);
4264 
4265 void signalHandler(int sig, siginfo_t* info, void* uc) {
4266   assert(info != NULL && uc != NULL, "it must be old kernel");
4267   int orig_errno = errno;  // Preserve errno value over signal handler.
4268   JVM_handle_linux_signal(sig, info, uc, true);
4269   errno = orig_errno;
4270 }
4271 
4272 
4273 // This boolean allows users to forward their own non-matching signals
4274 // to JVM_handle_linux_signal, harmlessly.
4275 bool os::Linux::signal_handlers_are_installed = false;
4276 
4277 // For signal-chaining
4278 struct sigaction os::Linux::sigact[MAXSIGNUM];
4279 unsigned int os::Linux::sigs = 0;
4280 bool os::Linux::libjsig_is_loaded = false;
4281 typedef struct sigaction *(*get_signal_t)(int);
4282 get_signal_t os::Linux::get_signal_action = NULL;
4283 
4284 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4285   struct sigaction *actp = NULL;
4286 
4287   if (libjsig_is_loaded) {
4288     // Retrieve the old signal handler from libjsig
4289     actp = (*get_signal_action)(sig);
4290   }
4291   if (actp == NULL) {
4292     // Retrieve the preinstalled signal handler from jvm
4293     actp = get_preinstalled_handler(sig);
4294   }
4295 
4296   return actp;
4297 }
4298 
4299 static bool call_chained_handler(struct sigaction *actp, int sig,
4300                                  siginfo_t *siginfo, void *context) {
4301   // Call the old signal handler
4302   if (actp->sa_handler == SIG_DFL) {
4303     // It's more reasonable to let jvm treat it as an unexpected exception
4304     // instead of taking the default action.
4305     return false;
4306   } else if (actp->sa_handler != SIG_IGN) {
4307     if ((actp->sa_flags & SA_NODEFER) == 0) {
4308       // automaticlly block the signal
4309       sigaddset(&(actp->sa_mask), sig);
4310     }
4311 
4312     sa_handler_t hand;
4313     sa_sigaction_t sa;
4314     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4315     // retrieve the chained handler
4316     if (siginfo_flag_set) {
4317       sa = actp->sa_sigaction;
4318     } else {
4319       hand = actp->sa_handler;
4320     }
4321 
4322     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4323       actp->sa_handler = SIG_DFL;
4324     }
4325 
4326     // try to honor the signal mask
4327     sigset_t oset;
4328     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4329 
4330     // call into the chained handler
4331     if (siginfo_flag_set) {
4332       (*sa)(sig, siginfo, context);
4333     } else {
4334       (*hand)(sig);
4335     }
4336 
4337     // restore the signal mask
4338     pthread_sigmask(SIG_SETMASK, &oset, 0);
4339   }
4340   // Tell jvm's signal handler the signal is taken care of.
4341   return true;
4342 }
4343 
4344 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4345   bool chained = false;
4346   // signal-chaining
4347   if (UseSignalChaining) {
4348     struct sigaction *actp = get_chained_signal_action(sig);
4349     if (actp != NULL) {
4350       chained = call_chained_handler(actp, sig, siginfo, context);
4351     }
4352   }
4353   return chained;
4354 }
4355 
4356 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4357   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4358     return &sigact[sig];
4359   }
4360   return NULL;
4361 }
4362 
4363 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4364   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4365   sigact[sig] = oldAct;
4366   sigs |= (unsigned int)1 << sig;
4367 }
4368 
4369 // for diagnostic
4370 int os::Linux::sigflags[MAXSIGNUM];
4371 
4372 int os::Linux::get_our_sigflags(int sig) {
4373   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4374   return sigflags[sig];
4375 }
4376 
4377 void os::Linux::set_our_sigflags(int sig, int flags) {
4378   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4379   sigflags[sig] = flags;
4380 }
4381 
4382 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4383   // Check for overwrite.
4384   struct sigaction oldAct;
4385   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4386 
4387   void* oldhand = oldAct.sa_sigaction
4388                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4389                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4390   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4391       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4392       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4393     if (AllowUserSignalHandlers || !set_installed) {
4394       // Do not overwrite; user takes responsibility to forward to us.
4395       return;
4396     } else if (UseSignalChaining) {
4397       // save the old handler in jvm
4398       save_preinstalled_handler(sig, oldAct);
4399       // libjsig also interposes the sigaction() call below and saves the
4400       // old sigaction on it own.
4401     } else {
4402       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4403                     "%#lx for signal %d.", (long)oldhand, sig));
4404     }
4405   }
4406 
4407   struct sigaction sigAct;
4408   sigfillset(&(sigAct.sa_mask));
4409   sigAct.sa_handler = SIG_DFL;
4410   if (!set_installed) {
4411     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4412   } else {
4413     sigAct.sa_sigaction = signalHandler;
4414     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4415   }
4416   // Save flags, which are set by ours
4417   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4418   sigflags[sig] = sigAct.sa_flags;
4419 
4420   int ret = sigaction(sig, &sigAct, &oldAct);
4421   assert(ret == 0, "check");
4422 
4423   void* oldhand2  = oldAct.sa_sigaction
4424                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4425                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4426   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4427 }
4428 
4429 // install signal handlers for signals that HotSpot needs to
4430 // handle in order to support Java-level exception handling.
4431 
4432 void os::Linux::install_signal_handlers() {
4433   if (!signal_handlers_are_installed) {
4434     signal_handlers_are_installed = true;
4435 
4436     // signal-chaining
4437     typedef void (*signal_setting_t)();
4438     signal_setting_t begin_signal_setting = NULL;
4439     signal_setting_t end_signal_setting = NULL;
4440     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4441                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4442     if (begin_signal_setting != NULL) {
4443       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4444                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4445       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4446                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4447       libjsig_is_loaded = true;
4448       assert(UseSignalChaining, "should enable signal-chaining");
4449     }
4450     if (libjsig_is_loaded) {
4451       // Tell libjsig jvm is setting signal handlers
4452       (*begin_signal_setting)();
4453     }
4454 
4455     set_signal_handler(SIGSEGV, true);
4456     set_signal_handler(SIGPIPE, true);
4457     set_signal_handler(SIGBUS, true);
4458     set_signal_handler(SIGILL, true);
4459     set_signal_handler(SIGFPE, true);
4460 #if defined(PPC64)
4461     set_signal_handler(SIGTRAP, true);
4462 #endif
4463     set_signal_handler(SIGXFSZ, true);
4464 
4465     if (libjsig_is_loaded) {
4466       // Tell libjsig jvm finishes setting signal handlers
4467       (*end_signal_setting)();
4468     }
4469 
4470     // We don't activate signal checker if libjsig is in place, we trust ourselves
4471     // and if UserSignalHandler is installed all bets are off.
4472     // Log that signal checking is off only if -verbose:jni is specified.
4473     if (CheckJNICalls) {
4474       if (libjsig_is_loaded) {
4475         if (PrintJNIResolving) {
4476           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4477         }
4478         check_signals = false;
4479       }
4480       if (AllowUserSignalHandlers) {
4481         if (PrintJNIResolving) {
4482           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4483         }
4484         check_signals = false;
4485       }
4486     }
4487   }
4488 }
4489 
4490 // This is the fastest way to get thread cpu time on Linux.
4491 // Returns cpu time (user+sys) for any thread, not only for current.
4492 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4493 // It might work on 2.6.10+ with a special kernel/glibc patch.
4494 // For reference, please, see IEEE Std 1003.1-2004:
4495 //   http://www.unix.org/single_unix_specification
4496 
4497 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4498   struct timespec tp;
4499   int rc = os::Linux::clock_gettime(clockid, &tp);
4500   assert(rc == 0, "clock_gettime is expected to return 0 code");
4501 
4502   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4503 }
4504 
4505 /////
4506 // glibc on Linux platform uses non-documented flag
4507 // to indicate, that some special sort of signal
4508 // trampoline is used.
4509 // We will never set this flag, and we should
4510 // ignore this flag in our diagnostic
4511 #ifdef SIGNIFICANT_SIGNAL_MASK
4512 #undef SIGNIFICANT_SIGNAL_MASK
4513 #endif
4514 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4515 
4516 static const char* get_signal_handler_name(address handler,
4517                                            char* buf, int buflen) {
4518   int offset;
4519   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4520   if (found) {
4521     // skip directory names
4522     const char *p1, *p2;
4523     p1 = buf;
4524     size_t len = strlen(os::file_separator());
4525     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4526     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4527   } else {
4528     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4529   }
4530   return buf;
4531 }
4532 
4533 static void print_signal_handler(outputStream* st, int sig,
4534                                  char* buf, size_t buflen) {
4535   struct sigaction sa;
4536 
4537   sigaction(sig, NULL, &sa);
4538 
4539   // See comment for SIGNIFICANT_SIGNAL_MASK define
4540   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4541 
4542   st->print("%s: ", os::exception_name(sig, buf, buflen));
4543 
4544   address handler = (sa.sa_flags & SA_SIGINFO)
4545     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4546     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4547 
4548   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4549     st->print("SIG_DFL");
4550   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4551     st->print("SIG_IGN");
4552   } else {
4553     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4554   }
4555 
4556   st->print(", sa_mask[0]=");
4557   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4558 
4559   address rh = VMError::get_resetted_sighandler(sig);
4560   // May be, handler was resetted by VMError?
4561   if(rh != NULL) {
4562     handler = rh;
4563     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4564   }
4565 
4566   st->print(", sa_flags=");
4567   os::Posix::print_sa_flags(st, sa.sa_flags);
4568 
4569   // Check: is it our handler?
4570   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4571      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4572     // It is our signal handler
4573     // check for flags, reset system-used one!
4574     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4575       st->print(
4576                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4577                 os::Linux::get_our_sigflags(sig));
4578     }
4579   }
4580   st->cr();
4581 }
4582 
4583 
4584 #define DO_SIGNAL_CHECK(sig) \
4585   if (!sigismember(&check_signal_done, sig)) \
4586     os::Linux::check_signal_handler(sig)
4587 
4588 // This method is a periodic task to check for misbehaving JNI applications
4589 // under CheckJNI, we can add any periodic checks here
4590 
4591 void os::run_periodic_checks() {
4592 
4593   if (check_signals == false) return;
4594 
4595   // SEGV and BUS if overridden could potentially prevent
4596   // generation of hs*.log in the event of a crash, debugging
4597   // such a case can be very challenging, so we absolutely
4598   // check the following for a good measure:
4599   DO_SIGNAL_CHECK(SIGSEGV);
4600   DO_SIGNAL_CHECK(SIGILL);
4601   DO_SIGNAL_CHECK(SIGFPE);
4602   DO_SIGNAL_CHECK(SIGBUS);
4603   DO_SIGNAL_CHECK(SIGPIPE);
4604   DO_SIGNAL_CHECK(SIGXFSZ);
4605 #if defined(PPC64)
4606   DO_SIGNAL_CHECK(SIGTRAP);
4607 #endif
4608 
4609   // ReduceSignalUsage allows the user to override these handlers
4610   // see comments at the very top and jvm_solaris.h
4611   if (!ReduceSignalUsage) {
4612     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4613     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4614     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4615     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4616   }
4617 
4618   DO_SIGNAL_CHECK(SR_signum);
4619   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4620 }
4621 
4622 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4623 
4624 static os_sigaction_t os_sigaction = NULL;
4625 
4626 void os::Linux::check_signal_handler(int sig) {
4627   char buf[O_BUFLEN];
4628   address jvmHandler = NULL;
4629 
4630 
4631   struct sigaction act;
4632   if (os_sigaction == NULL) {
4633     // only trust the default sigaction, in case it has been interposed
4634     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4635     if (os_sigaction == NULL) return;
4636   }
4637 
4638   os_sigaction(sig, (struct sigaction*)NULL, &act);
4639 
4640 
4641   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4642 
4643   address thisHandler = (act.sa_flags & SA_SIGINFO)
4644     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4645     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4646 
4647 
4648   switch(sig) {
4649   case SIGSEGV:
4650   case SIGBUS:
4651   case SIGFPE:
4652   case SIGPIPE:
4653   case SIGILL:
4654   case SIGXFSZ:
4655     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4656     break;
4657 
4658   case SHUTDOWN1_SIGNAL:
4659   case SHUTDOWN2_SIGNAL:
4660   case SHUTDOWN3_SIGNAL:
4661   case BREAK_SIGNAL:
4662     jvmHandler = (address)user_handler();
4663     break;
4664 
4665   case INTERRUPT_SIGNAL:
4666     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4667     break;
4668 
4669   default:
4670     if (sig == SR_signum) {
4671       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4672     } else {
4673       return;
4674     }
4675     break;
4676   }
4677 
4678   if (thisHandler != jvmHandler) {
4679     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4680     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4681     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4682     // No need to check this sig any longer
4683     sigaddset(&check_signal_done, sig);
4684   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4685     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4686     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4687     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4688     // No need to check this sig any longer
4689     sigaddset(&check_signal_done, sig);
4690   }
4691 
4692   // Dump all the signal
4693   if (sigismember(&check_signal_done, sig)) {
4694     print_signal_handlers(tty, buf, O_BUFLEN);
4695   }
4696 }
4697 
4698 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4699 
4700 extern bool signal_name(int signo, char* buf, size_t len);
4701 
4702 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4703   if (0 < exception_code && exception_code <= SIGRTMAX) {
4704     // signal
4705     if (!signal_name(exception_code, buf, size)) {
4706       jio_snprintf(buf, size, "SIG%d", exception_code);
4707     }
4708     return buf;
4709   } else {
4710     return NULL;
4711   }
4712 }
4713 
4714 // this is called _before_ the most of global arguments have been parsed
4715 void os::init(void) {
4716   char dummy;   /* used to get a guess on initial stack address */
4717 //  first_hrtime = gethrtime();
4718 
4719   // With LinuxThreads the JavaMain thread pid (primordial thread)
4720   // is different than the pid of the java launcher thread.
4721   // So, on Linux, the launcher thread pid is passed to the VM
4722   // via the sun.java.launcher.pid property.
4723   // Use this property instead of getpid() if it was correctly passed.
4724   // See bug 6351349.
4725   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4726 
4727   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4728 
4729   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4730 
4731   init_random(1234567);
4732 
4733   ThreadCritical::initialize();
4734 
4735   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4736   if (Linux::page_size() == -1) {
4737     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4738                   strerror(errno)));
4739   }
4740   init_page_sizes((size_t) Linux::page_size());
4741 
4742   Linux::initialize_system_info();
4743 
4744   // main_thread points to the aboriginal thread
4745   Linux::_main_thread = pthread_self();
4746 
4747   Linux::clock_init();
4748   initial_time_count = javaTimeNanos();
4749 
4750   // pthread_condattr initialization for monotonic clock
4751   int status;
4752   pthread_condattr_t* _condattr = os::Linux::condAttr();
4753   if ((status = pthread_condattr_init(_condattr)) != 0) {
4754     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4755   }
4756   // Only set the clock if CLOCK_MONOTONIC is available
4757   if (Linux::supports_monotonic_clock()) {
4758     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4759       if (status == EINVAL) {
4760         warning("Unable to use monotonic clock with relative timed-waits" \
4761                 " - changes to the time-of-day clock may have adverse affects");
4762       } else {
4763         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4764       }
4765     }
4766   }
4767   // else it defaults to CLOCK_REALTIME
4768 
4769   pthread_mutex_init(&dl_mutex, NULL);
4770 
4771   // If the pagesize of the VM is greater than 8K determine the appropriate
4772   // number of initial guard pages.  The user can change this with the
4773   // command line arguments, if needed.
4774   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4775     StackYellowPages = 1;
4776     StackRedPages = 1;
4777     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4778   }
4779 }
4780 
4781 // To install functions for atexit system call
4782 extern "C" {
4783   static void perfMemory_exit_helper() {
4784     perfMemory_exit();
4785   }
4786 }
4787 
4788 // this is called _after_ the global arguments have been parsed
4789 jint os::init_2(void)
4790 {
4791   Linux::fast_thread_clock_init();
4792 
4793   // Allocate a single page and mark it as readable for safepoint polling
4794   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4795   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4796 
4797   os::set_polling_page( polling_page );
4798 
4799 #ifndef PRODUCT
4800   if(Verbose && PrintMiscellaneous)
4801     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4802 #endif
4803 
4804   if (!UseMembar) {
4805     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4806     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4807     os::set_memory_serialize_page( mem_serialize_page );
4808 
4809 #ifndef PRODUCT
4810     if(Verbose && PrintMiscellaneous)
4811       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4812 #endif
4813   }
4814 
4815   // initialize suspend/resume support - must do this before signal_sets_init()
4816   if (SR_initialize() != 0) {
4817     perror("SR_initialize failed");
4818     return JNI_ERR;
4819   }
4820 
4821   Linux::signal_sets_init();
4822   Linux::install_signal_handlers();
4823 
4824   // Check minimum allowable stack size for thread creation and to initialize
4825   // the java system classes, including StackOverflowError - depends on page
4826   // size.  Add a page for compiler2 recursion in main thread.
4827   // Add in 2*BytesPerWord times page size to account for VM stack during
4828   // class initialization depending on 32 or 64 bit VM.
4829   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4830             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4831                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4832 
4833   size_t threadStackSizeInBytes = ThreadStackSize * K;
4834   if (threadStackSizeInBytes != 0 &&
4835       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4836         tty->print_cr("\nThe stack size specified is too small, "
4837                       "Specify at least %dk",
4838                       os::Linux::min_stack_allowed/ K);
4839         return JNI_ERR;
4840   }
4841 
4842   // Make the stack size a multiple of the page size so that
4843   // the yellow/red zones can be guarded.
4844   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4845         vm_page_size()));
4846 
4847   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4848 
4849 #if defined(IA32)
4850   workaround_expand_exec_shield_cs_limit();
4851 #endif
4852 
4853   Linux::libpthread_init();
4854   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4855      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4856           Linux::glibc_version(), Linux::libpthread_version(),
4857           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4858   }
4859 
4860   if (UseNUMA) {
4861     if (!Linux::libnuma_init()) {
4862       UseNUMA = false;
4863     } else {
4864       if ((Linux::numa_max_node() < 1)) {
4865         // There's only one node(they start from 0), disable NUMA.
4866         UseNUMA = false;
4867       }
4868     }
4869     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4870     // we can make the adaptive lgrp chunk resizing work. If the user specified
4871     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4872     // disable adaptive resizing.
4873     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4874       if (FLAG_IS_DEFAULT(UseNUMA)) {
4875         UseNUMA = false;
4876       } else {
4877         if (FLAG_IS_DEFAULT(UseLargePages) &&
4878             FLAG_IS_DEFAULT(UseSHM) &&
4879             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4880           UseLargePages = false;
4881         } else {
4882           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4883           UseAdaptiveSizePolicy = false;
4884           UseAdaptiveNUMAChunkSizing = false;
4885         }
4886       }
4887     }
4888     if (!UseNUMA && ForceNUMA) {
4889       UseNUMA = true;
4890     }
4891   }
4892 
4893   if (MaxFDLimit) {
4894     // set the number of file descriptors to max. print out error
4895     // if getrlimit/setrlimit fails but continue regardless.
4896     struct rlimit nbr_files;
4897     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4898     if (status != 0) {
4899       if (PrintMiscellaneous && (Verbose || WizardMode))
4900         perror("os::init_2 getrlimit failed");
4901     } else {
4902       nbr_files.rlim_cur = nbr_files.rlim_max;
4903       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4904       if (status != 0) {
4905         if (PrintMiscellaneous && (Verbose || WizardMode))
4906           perror("os::init_2 setrlimit failed");
4907       }
4908     }
4909   }
4910 
4911   // Initialize lock used to serialize thread creation (see os::create_thread)
4912   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4913 
4914   // at-exit methods are called in the reverse order of their registration.
4915   // atexit functions are called on return from main or as a result of a
4916   // call to exit(3C). There can be only 32 of these functions registered
4917   // and atexit() does not set errno.
4918 
4919   if (PerfAllowAtExitRegistration) {
4920     // only register atexit functions if PerfAllowAtExitRegistration is set.
4921     // atexit functions can be delayed until process exit time, which
4922     // can be problematic for embedded VM situations. Embedded VMs should
4923     // call DestroyJavaVM() to assure that VM resources are released.
4924 
4925     // note: perfMemory_exit_helper atexit function may be removed in
4926     // the future if the appropriate cleanup code can be added to the
4927     // VM_Exit VMOperation's doit method.
4928     if (atexit(perfMemory_exit_helper) != 0) {
4929       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4930     }
4931   }
4932 
4933   // initialize thread priority policy
4934   prio_init();
4935 
4936   return JNI_OK;
4937 }
4938 
4939 // this is called at the end of vm_initialization
4940 void os::init_3(void) {
4941 #ifdef JAVASE_EMBEDDED
4942   // Start the MemNotifyThread
4943   if (LowMemoryProtection) {
4944     MemNotifyThread::start();
4945   }
4946   return;
4947 #endif
4948 }
4949 
4950 // Mark the polling page as unreadable
4951 void os::make_polling_page_unreadable(void) {
4952   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4953     fatal("Could not disable polling page");
4954 };
4955 
4956 // Mark the polling page as readable
4957 void os::make_polling_page_readable(void) {
4958   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4959     fatal("Could not enable polling page");
4960   }
4961 };
4962 
4963 int os::active_processor_count() {
4964   // Linux doesn't yet have a (official) notion of processor sets,
4965   // so just return the number of online processors.
4966   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4967   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4968   return online_cpus;
4969 }
4970 
4971 void os::set_native_thread_name(const char *name) {
4972   // Not yet implemented.
4973   return;
4974 }
4975 
4976 bool os::distribute_processes(uint length, uint* distribution) {
4977   // Not yet implemented.
4978   return false;
4979 }
4980 
4981 bool os::bind_to_processor(uint processor_id) {
4982   // Not yet implemented.
4983   return false;
4984 }
4985 
4986 ///
4987 
4988 void os::SuspendedThreadTask::internal_do_task() {
4989   if (do_suspend(_thread->osthread())) {
4990     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4991     do_task(context);
4992     do_resume(_thread->osthread());
4993   }
4994 }
4995 
4996 class PcFetcher : public os::SuspendedThreadTask {
4997 public:
4998   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4999   ExtendedPC result();
5000 protected:
5001   void do_task(const os::SuspendedThreadTaskContext& context);
5002 private:
5003   ExtendedPC _epc;
5004 };
5005 
5006 ExtendedPC PcFetcher::result() {
5007   guarantee(is_done(), "task is not done yet.");
5008   return _epc;
5009 }
5010 
5011 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5012   Thread* thread = context.thread();
5013   OSThread* osthread = thread->osthread();
5014   if (osthread->ucontext() != NULL) {
5015     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
5016   } else {
5017     // NULL context is unexpected, double-check this is the VMThread
5018     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5019   }
5020 }
5021 
5022 // Suspends the target using the signal mechanism and then grabs the PC before
5023 // resuming the target. Used by the flat-profiler only
5024 ExtendedPC os::get_thread_pc(Thread* thread) {
5025   // Make sure that it is called by the watcher for the VMThread
5026   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5027   assert(thread->is_VM_thread(), "Can only be called for VMThread");
5028 
5029   PcFetcher fetcher(thread);
5030   fetcher.run();
5031   return fetcher.result();
5032 }
5033 
5034 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
5035 {
5036    if (is_NPTL()) {
5037       return pthread_cond_timedwait(_cond, _mutex, _abstime);
5038    } else {
5039       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
5040       // word back to default 64bit precision if condvar is signaled. Java
5041       // wants 53bit precision.  Save and restore current value.
5042       int fpu = get_fpu_control_word();
5043       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
5044       set_fpu_control_word(fpu);
5045       return status;
5046    }
5047 }
5048 
5049 ////////////////////////////////////////////////////////////////////////////////
5050 // debug support
5051 
5052 bool os::find(address addr, outputStream* st) {
5053   Dl_info dlinfo;
5054   memset(&dlinfo, 0, sizeof(dlinfo));
5055   if (dladdr(addr, &dlinfo) != 0) {
5056     st->print(PTR_FORMAT ": ", addr);
5057     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5058       st->print("%s+%#x", dlinfo.dli_sname,
5059                  addr - (intptr_t)dlinfo.dli_saddr);
5060     } else if (dlinfo.dli_fbase != NULL) {
5061       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
5062     } else {
5063       st->print("<absolute address>");
5064     }
5065     if (dlinfo.dli_fname != NULL) {
5066       st->print(" in %s", dlinfo.dli_fname);
5067     }
5068     if (dlinfo.dli_fbase != NULL) {
5069       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5070     }
5071     st->cr();
5072 
5073     if (Verbose) {
5074       // decode some bytes around the PC
5075       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5076       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5077       address       lowest = (address) dlinfo.dli_sname;
5078       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5079       if (begin < lowest)  begin = lowest;
5080       Dl_info dlinfo2;
5081       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5082           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
5083         end = (address) dlinfo2.dli_saddr;
5084       Disassembler::decode(begin, end, st);
5085     }
5086     return true;
5087   }
5088   return false;
5089 }
5090 
5091 ////////////////////////////////////////////////////////////////////////////////
5092 // misc
5093 
5094 // This does not do anything on Linux. This is basically a hook for being
5095 // able to use structured exception handling (thread-local exception filters)
5096 // on, e.g., Win32.
5097 void
5098 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5099                          JavaCallArguments* args, Thread* thread) {
5100   f(value, method, args, thread);
5101 }
5102 
5103 void os::print_statistics() {
5104 }
5105 
5106 int os::message_box(const char* title, const char* message) {
5107   int i;
5108   fdStream err(defaultStream::error_fd());
5109   for (i = 0; i < 78; i++) err.print_raw("=");
5110   err.cr();
5111   err.print_raw_cr(title);
5112   for (i = 0; i < 78; i++) err.print_raw("-");
5113   err.cr();
5114   err.print_raw_cr(message);
5115   for (i = 0; i < 78; i++) err.print_raw("=");
5116   err.cr();
5117 
5118   char buf[16];
5119   // Prevent process from exiting upon "read error" without consuming all CPU
5120   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5121 
5122   return buf[0] == 'y' || buf[0] == 'Y';
5123 }
5124 
5125 int os::stat(const char *path, struct stat *sbuf) {
5126   char pathbuf[MAX_PATH];
5127   if (strlen(path) > MAX_PATH - 1) {
5128     errno = ENAMETOOLONG;
5129     return -1;
5130   }
5131   os::native_path(strcpy(pathbuf, path));
5132   return ::stat(pathbuf, sbuf);
5133 }
5134 
5135 bool os::check_heap(bool force) {
5136   return true;
5137 }
5138 
5139 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5140   return ::vsnprintf(buf, count, format, args);
5141 }
5142 
5143 // Is a (classpath) directory empty?
5144 bool os::dir_is_empty(const char* path) {
5145   DIR *dir = NULL;
5146   struct dirent *ptr;
5147 
5148   dir = opendir(path);
5149   if (dir == NULL) return true;
5150 
5151   /* Scan the directory */
5152   bool result = true;
5153   char buf[sizeof(struct dirent) + MAX_PATH];
5154   while (result && (ptr = ::readdir(dir)) != NULL) {
5155     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5156       result = false;
5157     }
5158   }
5159   closedir(dir);
5160   return result;
5161 }
5162 
5163 // This code originates from JDK's sysOpen and open64_w
5164 // from src/solaris/hpi/src/system_md.c
5165 
5166 #ifndef O_DELETE
5167 #define O_DELETE 0x10000
5168 #endif
5169 
5170 // Open a file. Unlink the file immediately after open returns
5171 // if the specified oflag has the O_DELETE flag set.
5172 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5173 
5174 int os::open(const char *path, int oflag, int mode) {
5175 
5176   if (strlen(path) > MAX_PATH - 1) {
5177     errno = ENAMETOOLONG;
5178     return -1;
5179   }
5180   int fd;
5181   int o_delete = (oflag & O_DELETE);
5182   oflag = oflag & ~O_DELETE;
5183 
5184   fd = ::open64(path, oflag, mode);
5185   if (fd == -1) return -1;
5186 
5187   //If the open succeeded, the file might still be a directory
5188   {
5189     struct stat64 buf64;
5190     int ret = ::fstat64(fd, &buf64);
5191     int st_mode = buf64.st_mode;
5192 
5193     if (ret != -1) {
5194       if ((st_mode & S_IFMT) == S_IFDIR) {
5195         errno = EISDIR;
5196         ::close(fd);
5197         return -1;
5198       }
5199     } else {
5200       ::close(fd);
5201       return -1;
5202     }
5203   }
5204 
5205     /*
5206      * All file descriptors that are opened in the JVM and not
5207      * specifically destined for a subprocess should have the
5208      * close-on-exec flag set.  If we don't set it, then careless 3rd
5209      * party native code might fork and exec without closing all
5210      * appropriate file descriptors (e.g. as we do in closeDescriptors in
5211      * UNIXProcess.c), and this in turn might:
5212      *
5213      * - cause end-of-file to fail to be detected on some file
5214      *   descriptors, resulting in mysterious hangs, or
5215      *
5216      * - might cause an fopen in the subprocess to fail on a system
5217      *   suffering from bug 1085341.
5218      *
5219      * (Yes, the default setting of the close-on-exec flag is a Unix
5220      * design flaw)
5221      *
5222      * See:
5223      * 1085341: 32-bit stdio routines should support file descriptors >255
5224      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5225      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5226      */
5227 #ifdef FD_CLOEXEC
5228     {
5229         int flags = ::fcntl(fd, F_GETFD);
5230         if (flags != -1)
5231             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5232     }
5233 #endif
5234 
5235   if (o_delete != 0) {
5236     ::unlink(path);
5237   }
5238   return fd;
5239 }
5240 
5241 
5242 // create binary file, rewriting existing file if required
5243 int os::create_binary_file(const char* path, bool rewrite_existing) {
5244   int oflags = O_WRONLY | O_CREAT;
5245   if (!rewrite_existing) {
5246     oflags |= O_EXCL;
5247   }
5248   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5249 }
5250 
5251 // return current position of file pointer
5252 jlong os::current_file_offset(int fd) {
5253   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5254 }
5255 
5256 // move file pointer to the specified offset
5257 jlong os::seek_to_file_offset(int fd, jlong offset) {
5258   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5259 }
5260 
5261 // This code originates from JDK's sysAvailable
5262 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5263 
5264 int os::available(int fd, jlong *bytes) {
5265   jlong cur, end;
5266   int mode;
5267   struct stat64 buf64;
5268 
5269   if (::fstat64(fd, &buf64) >= 0) {
5270     mode = buf64.st_mode;
5271     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5272       /*
5273       * XXX: is the following call interruptible? If so, this might
5274       * need to go through the INTERRUPT_IO() wrapper as for other
5275       * blocking, interruptible calls in this file.
5276       */
5277       int n;
5278       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5279         *bytes = n;
5280         return 1;
5281       }
5282     }
5283   }
5284   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5285     return 0;
5286   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5287     return 0;
5288   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5289     return 0;
5290   }
5291   *bytes = end - cur;
5292   return 1;
5293 }
5294 
5295 int os::socket_available(int fd, jint *pbytes) {
5296   // Linux doc says EINTR not returned, unlike Solaris
5297   int ret = ::ioctl(fd, FIONREAD, pbytes);
5298 
5299   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5300   // is expected to return 0 on failure and 1 on success to the jdk.
5301   return (ret < 0) ? 0 : 1;
5302 }
5303 
5304 // Map a block of memory.
5305 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5306                      char *addr, size_t bytes, bool read_only,
5307                      bool allow_exec) {
5308   int prot;
5309   int flags = MAP_PRIVATE;
5310 
5311   if (read_only) {
5312     prot = PROT_READ;
5313   } else {
5314     prot = PROT_READ | PROT_WRITE;
5315   }
5316 
5317   if (allow_exec) {
5318     prot |= PROT_EXEC;
5319   }
5320 
5321   if (addr != NULL) {
5322     flags |= MAP_FIXED;
5323   }
5324 
5325   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5326                                      fd, file_offset);
5327   if (mapped_address == MAP_FAILED) {
5328     return NULL;
5329   }
5330   return mapped_address;
5331 }
5332 
5333 
5334 // Remap a block of memory.
5335 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5336                        char *addr, size_t bytes, bool read_only,
5337                        bool allow_exec) {
5338   // same as map_memory() on this OS
5339   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5340                         allow_exec);
5341 }
5342 
5343 
5344 // Unmap a block of memory.
5345 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5346   return munmap(addr, bytes) == 0;
5347 }
5348 
5349 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5350 
5351 static clockid_t thread_cpu_clockid(Thread* thread) {
5352   pthread_t tid = thread->osthread()->pthread_id();
5353   clockid_t clockid;
5354 
5355   // Get thread clockid
5356   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5357   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5358   return clockid;
5359 }
5360 
5361 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5362 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5363 // of a thread.
5364 //
5365 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5366 // the fast estimate available on the platform.
5367 
5368 jlong os::current_thread_cpu_time() {
5369   if (os::Linux::supports_fast_thread_cpu_time()) {
5370     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5371   } else {
5372     // return user + sys since the cost is the same
5373     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5374   }
5375 }
5376 
5377 jlong os::thread_cpu_time(Thread* thread) {
5378   // consistent with what current_thread_cpu_time() returns
5379   if (os::Linux::supports_fast_thread_cpu_time()) {
5380     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5381   } else {
5382     return slow_thread_cpu_time(thread, true /* user + sys */);
5383   }
5384 }
5385 
5386 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5387   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5388     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5389   } else {
5390     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5391   }
5392 }
5393 
5394 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5395   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5396     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5397   } else {
5398     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5399   }
5400 }
5401 
5402 //
5403 //  -1 on error.
5404 //
5405 
5406 PRAGMA_DIAG_PUSH
5407 PRAGMA_FORMAT_NONLITERAL_IGNORED
5408 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5409   static bool proc_task_unchecked = true;
5410   static const char *proc_stat_path = "/proc/%d/stat";
5411   pid_t  tid = thread->osthread()->thread_id();
5412   char *s;
5413   char stat[2048];
5414   int statlen;
5415   char proc_name[64];
5416   int count;
5417   long sys_time, user_time;
5418   char cdummy;
5419   int idummy;
5420   long ldummy;
5421   FILE *fp;
5422 
5423   // The /proc/<tid>/stat aggregates per-process usage on
5424   // new Linux kernels 2.6+ where NPTL is supported.
5425   // The /proc/self/task/<tid>/stat still has the per-thread usage.
5426   // See bug 6328462.
5427   // There possibly can be cases where there is no directory
5428   // /proc/self/task, so we check its availability.
5429   if (proc_task_unchecked && os::Linux::is_NPTL()) {
5430     // This is executed only once
5431     proc_task_unchecked = false;
5432     fp = fopen("/proc/self/task", "r");
5433     if (fp != NULL) {
5434       proc_stat_path = "/proc/self/task/%d/stat";
5435       fclose(fp);
5436     }
5437   }
5438 
5439   sprintf(proc_name, proc_stat_path, tid);
5440   fp = fopen(proc_name, "r");
5441   if ( fp == NULL ) return -1;
5442   statlen = fread(stat, 1, 2047, fp);
5443   stat[statlen] = '\0';
5444   fclose(fp);
5445 
5446   // Skip pid and the command string. Note that we could be dealing with
5447   // weird command names, e.g. user could decide to rename java launcher
5448   // to "java 1.4.2 :)", then the stat file would look like
5449   //                1234 (java 1.4.2 :)) R ... ...
5450   // We don't really need to know the command string, just find the last
5451   // occurrence of ")" and then start parsing from there. See bug 4726580.
5452   s = strrchr(stat, ')');
5453   if (s == NULL ) return -1;
5454 
5455   // Skip blank chars
5456   do s++; while (isspace(*s));
5457 
5458   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5459                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5460                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5461                  &user_time, &sys_time);
5462   if ( count != 13 ) return -1;
5463   if (user_sys_cpu_time) {
5464     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5465   } else {
5466     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5467   }
5468 }
5469 PRAGMA_DIAG_POP
5470 
5471 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5472   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5473   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5474   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5475   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5476 }
5477 
5478 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5479   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5480   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5481   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5482   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5483 }
5484 
5485 bool os::is_thread_cpu_time_supported() {
5486   return true;
5487 }
5488 
5489 // System loadavg support.  Returns -1 if load average cannot be obtained.
5490 // Linux doesn't yet have a (official) notion of processor sets,
5491 // so just return the system wide load average.
5492 int os::loadavg(double loadavg[], int nelem) {
5493   return ::getloadavg(loadavg, nelem);
5494 }
5495 
5496 void os::pause() {
5497   char filename[MAX_PATH];
5498   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5499     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5500   } else {
5501     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5502   }
5503 
5504   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5505   if (fd != -1) {
5506     struct stat buf;
5507     ::close(fd);
5508     while (::stat(filename, &buf) == 0) {
5509       (void)::poll(NULL, 0, 100);
5510     }
5511   } else {
5512     jio_fprintf(stderr,
5513       "Could not open pause file '%s', continuing immediately.\n", filename);
5514   }
5515 }
5516 
5517 
5518 // Refer to the comments in os_solaris.cpp park-unpark.
5519 //
5520 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5521 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5522 // For specifics regarding the bug see GLIBC BUGID 261237 :
5523 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5524 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5525 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5526 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5527 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5528 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5529 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5530 // of libpthread avoids the problem, but isn't practical.
5531 //
5532 // Possible remedies:
5533 //
5534 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5535 //      This is palliative and probabilistic, however.  If the thread is preempted
5536 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5537 //      than the minimum period may have passed, and the abstime may be stale (in the
5538 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5539 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5540 //
5541 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5542 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5543 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5544 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5545 //      thread.
5546 //
5547 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5548 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5549 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5550 //      This also works well.  In fact it avoids kernel-level scalability impediments
5551 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5552 //      timers in a graceful fashion.
5553 //
5554 // 4.   When the abstime value is in the past it appears that control returns
5555 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5556 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5557 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5558 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5559 //      It may be possible to avoid reinitialization by checking the return
5560 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5561 //      condvar we must establish the invariant that cond_signal() is only called
5562 //      within critical sections protected by the adjunct mutex.  This prevents
5563 //      cond_signal() from "seeing" a condvar that's in the midst of being
5564 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5565 //      desirable signal-after-unlock optimization that avoids futile context switching.
5566 //
5567 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5568 //      structure when a condvar is used or initialized.  cond_destroy()  would
5569 //      release the helper structure.  Our reinitialize-after-timedwait fix
5570 //      put excessive stress on malloc/free and locks protecting the c-heap.
5571 //
5572 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5573 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5574 // and only enabling the work-around for vulnerable environments.
5575 
5576 // utility to compute the abstime argument to timedwait:
5577 // millis is the relative timeout time
5578 // abstime will be the absolute timeout time
5579 // TODO: replace compute_abstime() with unpackTime()
5580 
5581 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5582   if (millis < 0)  millis = 0;
5583 
5584   jlong seconds = millis / 1000;
5585   millis %= 1000;
5586   if (seconds > 50000000) { // see man cond_timedwait(3T)
5587     seconds = 50000000;
5588   }
5589 
5590   if (os::Linux::supports_monotonic_clock()) {
5591     struct timespec now;
5592     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5593     assert_status(status == 0, status, "clock_gettime");
5594     abstime->tv_sec = now.tv_sec  + seconds;
5595     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5596     if (nanos >= NANOSECS_PER_SEC) {
5597       abstime->tv_sec += 1;
5598       nanos -= NANOSECS_PER_SEC;
5599     }
5600     abstime->tv_nsec = nanos;
5601   } else {
5602     struct timeval now;
5603     int status = gettimeofday(&now, NULL);
5604     assert(status == 0, "gettimeofday");
5605     abstime->tv_sec = now.tv_sec  + seconds;
5606     long usec = now.tv_usec + millis * 1000;
5607     if (usec >= 1000000) {
5608       abstime->tv_sec += 1;
5609       usec -= 1000000;
5610     }
5611     abstime->tv_nsec = usec * 1000;
5612   }
5613   return abstime;
5614 }
5615 
5616 
5617 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5618 // Conceptually TryPark() should be equivalent to park(0).
5619 
5620 int os::PlatformEvent::TryPark() {
5621   for (;;) {
5622     const int v = _Event ;
5623     guarantee ((v == 0) || (v == 1), "invariant") ;
5624     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5625   }
5626 }
5627 
5628 void os::PlatformEvent::park() {       // AKA "down()"
5629   // Invariant: Only the thread associated with the Event/PlatformEvent
5630   // may call park().
5631   // TODO: assert that _Assoc != NULL or _Assoc == Self
5632   int v ;
5633   for (;;) {
5634       v = _Event ;
5635       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5636   }
5637   guarantee (v >= 0, "invariant") ;
5638   if (v == 0) {
5639      // Do this the hard way by blocking ...
5640      int status = pthread_mutex_lock(_mutex);
5641      assert_status(status == 0, status, "mutex_lock");
5642      guarantee (_nParked == 0, "invariant") ;
5643      ++ _nParked ;
5644      while (_Event < 0) {
5645         status = pthread_cond_wait(_cond, _mutex);
5646         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5647         // Treat this the same as if the wait was interrupted
5648         if (status == ETIME) { status = EINTR; }
5649         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5650      }
5651      -- _nParked ;
5652 
5653     _Event = 0 ;
5654      status = pthread_mutex_unlock(_mutex);
5655      assert_status(status == 0, status, "mutex_unlock");
5656     // Paranoia to ensure our locked and lock-free paths interact
5657     // correctly with each other.
5658     OrderAccess::fence();
5659   }
5660   guarantee (_Event >= 0, "invariant") ;
5661 }
5662 
5663 int os::PlatformEvent::park(jlong millis) {
5664   guarantee (_nParked == 0, "invariant") ;
5665 
5666   int v ;
5667   for (;;) {
5668       v = _Event ;
5669       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5670   }
5671   guarantee (v >= 0, "invariant") ;
5672   if (v != 0) return OS_OK ;
5673 
5674   // We do this the hard way, by blocking the thread.
5675   // Consider enforcing a minimum timeout value.
5676   struct timespec abst;
5677   compute_abstime(&abst, millis);
5678 
5679   int ret = OS_TIMEOUT;
5680   int status = pthread_mutex_lock(_mutex);
5681   assert_status(status == 0, status, "mutex_lock");
5682   guarantee (_nParked == 0, "invariant") ;
5683   ++_nParked ;
5684 
5685   // Object.wait(timo) will return because of
5686   // (a) notification
5687   // (b) timeout
5688   // (c) thread.interrupt
5689   //
5690   // Thread.interrupt and object.notify{All} both call Event::set.
5691   // That is, we treat thread.interrupt as a special case of notification.
5692   // The underlying Solaris implementation, cond_timedwait, admits
5693   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5694   // JVM from making those visible to Java code.  As such, we must
5695   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5696   //
5697   // TODO: properly differentiate simultaneous notify+interrupt.
5698   // In that case, we should propagate the notify to another waiter.
5699 
5700   while (_Event < 0) {
5701     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5702     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5703       pthread_cond_destroy (_cond);
5704       pthread_cond_init (_cond, os::Linux::condAttr()) ;
5705     }
5706     assert_status(status == 0 || status == EINTR ||
5707                   status == ETIME || status == ETIMEDOUT,
5708                   status, "cond_timedwait");
5709     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5710     if (status == ETIME || status == ETIMEDOUT) break ;
5711     // We consume and ignore EINTR and spurious wakeups.
5712   }
5713   --_nParked ;
5714   if (_Event >= 0) {
5715      ret = OS_OK;
5716   }
5717   _Event = 0 ;
5718   status = pthread_mutex_unlock(_mutex);
5719   assert_status(status == 0, status, "mutex_unlock");
5720   assert (_nParked == 0, "invariant") ;
5721   // Paranoia to ensure our locked and lock-free paths interact
5722   // correctly with each other.
5723   OrderAccess::fence();
5724   return ret;
5725 }
5726 
5727 void os::PlatformEvent::unpark() {
5728   // Transitions for _Event:
5729   //    0 :=> 1
5730   //    1 :=> 1
5731   //   -1 :=> either 0 or 1; must signal target thread
5732   //          That is, we can safely transition _Event from -1 to either
5733   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5734   //          unpark() calls.
5735   // See also: "Semaphores in Plan 9" by Mullender & Cox
5736   //
5737   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5738   // that it will take two back-to-back park() calls for the owning
5739   // thread to block. This has the benefit of forcing a spurious return
5740   // from the first park() call after an unpark() call which will help
5741   // shake out uses of park() and unpark() without condition variables.
5742 
5743   if (Atomic::xchg(1, &_Event) >= 0) return;
5744 
5745   // Wait for the thread associated with the event to vacate
5746   int status = pthread_mutex_lock(_mutex);
5747   assert_status(status == 0, status, "mutex_lock");
5748   int AnyWaiters = _nParked;
5749   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5750   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5751     AnyWaiters = 0;
5752     pthread_cond_signal(_cond);
5753   }
5754   status = pthread_mutex_unlock(_mutex);
5755   assert_status(status == 0, status, "mutex_unlock");
5756   if (AnyWaiters != 0) {
5757     status = pthread_cond_signal(_cond);
5758     assert_status(status == 0, status, "cond_signal");
5759   }
5760 
5761   // Note that we signal() _after dropping the lock for "immortal" Events.
5762   // This is safe and avoids a common class of  futile wakeups.  In rare
5763   // circumstances this can cause a thread to return prematurely from
5764   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5765   // simply re-test the condition and re-park itself.
5766 }
5767 
5768 
5769 // JSR166
5770 // -------------------------------------------------------
5771 
5772 /*
5773  * The solaris and linux implementations of park/unpark are fairly
5774  * conservative for now, but can be improved. They currently use a
5775  * mutex/condvar pair, plus a a count.
5776  * Park decrements count if > 0, else does a condvar wait.  Unpark
5777  * sets count to 1 and signals condvar.  Only one thread ever waits
5778  * on the condvar. Contention seen when trying to park implies that someone
5779  * is unparking you, so don't wait. And spurious returns are fine, so there
5780  * is no need to track notifications.
5781  */
5782 
5783 /*
5784  * This code is common to linux and solaris and will be moved to a
5785  * common place in dolphin.
5786  *
5787  * The passed in time value is either a relative time in nanoseconds
5788  * or an absolute time in milliseconds. Either way it has to be unpacked
5789  * into suitable seconds and nanoseconds components and stored in the
5790  * given timespec structure.
5791  * Given time is a 64-bit value and the time_t used in the timespec is only
5792  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5793  * overflow if times way in the future are given. Further on Solaris versions
5794  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5795  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5796  * As it will be 28 years before "now + 100000000" will overflow we can
5797  * ignore overflow and just impose a hard-limit on seconds using the value
5798  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5799  * years from "now".
5800  */
5801 
5802 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5803   assert (time > 0, "convertTime");
5804   time_t max_secs = 0;
5805 
5806   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
5807     struct timeval now;
5808     int status = gettimeofday(&now, NULL);
5809     assert(status == 0, "gettimeofday");
5810 
5811     max_secs = now.tv_sec + MAX_SECS;
5812 
5813     if (isAbsolute) {
5814       jlong secs = time / 1000;
5815       if (secs > max_secs) {
5816         absTime->tv_sec = max_secs;
5817       } else {
5818         absTime->tv_sec = secs;
5819       }
5820       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5821     } else {
5822       jlong secs = time / NANOSECS_PER_SEC;
5823       if (secs >= MAX_SECS) {
5824         absTime->tv_sec = max_secs;
5825         absTime->tv_nsec = 0;
5826       } else {
5827         absTime->tv_sec = now.tv_sec + secs;
5828         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5829         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5830           absTime->tv_nsec -= NANOSECS_PER_SEC;
5831           ++absTime->tv_sec; // note: this must be <= max_secs
5832         }
5833       }
5834     }
5835   } else {
5836     // must be relative using monotonic clock
5837     struct timespec now;
5838     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5839     assert_status(status == 0, status, "clock_gettime");
5840     max_secs = now.tv_sec + MAX_SECS;
5841     jlong secs = time / NANOSECS_PER_SEC;
5842     if (secs >= MAX_SECS) {
5843       absTime->tv_sec = max_secs;
5844       absTime->tv_nsec = 0;
5845     } else {
5846       absTime->tv_sec = now.tv_sec + secs;
5847       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5848       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5849         absTime->tv_nsec -= NANOSECS_PER_SEC;
5850         ++absTime->tv_sec; // note: this must be <= max_secs
5851       }
5852     }
5853   }
5854   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5855   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5856   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5857   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5858 }
5859 
5860 void Parker::park(bool isAbsolute, jlong time) {
5861   // Ideally we'd do something useful while spinning, such
5862   // as calling unpackTime().
5863 
5864   // Optional fast-path check:
5865   // Return immediately if a permit is available.
5866   // We depend on Atomic::xchg() having full barrier semantics
5867   // since we are doing a lock-free update to _counter.
5868   if (Atomic::xchg(0, &_counter) > 0) return;
5869 
5870   Thread* thread = Thread::current();
5871   assert(thread->is_Java_thread(), "Must be JavaThread");
5872   JavaThread *jt = (JavaThread *)thread;
5873 
5874   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5875   // Check interrupt before trying to wait
5876   if (Thread::is_interrupted(thread, false)) {
5877     return;
5878   }
5879 
5880   // Next, demultiplex/decode time arguments
5881   timespec absTime;
5882   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5883     return;
5884   }
5885   if (time > 0) {
5886     unpackTime(&absTime, isAbsolute, time);
5887   }
5888 
5889 
5890   // Enter safepoint region
5891   // Beware of deadlocks such as 6317397.
5892   // The per-thread Parker:: mutex is a classic leaf-lock.
5893   // In particular a thread must never block on the Threads_lock while
5894   // holding the Parker:: mutex.  If safepoints are pending both the
5895   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5896   ThreadBlockInVM tbivm(jt);
5897 
5898   // Don't wait if cannot get lock since interference arises from
5899   // unblocking.  Also. check interrupt before trying wait
5900   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5901     return;
5902   }
5903 
5904   int status ;
5905   if (_counter > 0)  { // no wait needed
5906     _counter = 0;
5907     status = pthread_mutex_unlock(_mutex);
5908     assert (status == 0, "invariant") ;
5909     // Paranoia to ensure our locked and lock-free paths interact
5910     // correctly with each other and Java-level accesses.
5911     OrderAccess::fence();
5912     return;
5913   }
5914 
5915 #ifdef ASSERT
5916   // Don't catch signals while blocked; let the running threads have the signals.
5917   // (This allows a debugger to break into the running thread.)
5918   sigset_t oldsigs;
5919   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5920   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5921 #endif
5922 
5923   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5924   jt->set_suspend_equivalent();
5925   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5926 
5927   assert(_cur_index == -1, "invariant");
5928   if (time == 0) {
5929     _cur_index = REL_INDEX; // arbitrary choice when not timed
5930     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
5931   } else {
5932     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5933     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
5934     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5935       pthread_cond_destroy (&_cond[_cur_index]) ;
5936       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5937     }
5938   }
5939   _cur_index = -1;
5940   assert_status(status == 0 || status == EINTR ||
5941                 status == ETIME || status == ETIMEDOUT,
5942                 status, "cond_timedwait");
5943 
5944 #ifdef ASSERT
5945   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5946 #endif
5947 
5948   _counter = 0 ;
5949   status = pthread_mutex_unlock(_mutex) ;
5950   assert_status(status == 0, status, "invariant") ;
5951   // Paranoia to ensure our locked and lock-free paths interact
5952   // correctly with each other and Java-level accesses.
5953   OrderAccess::fence();
5954 
5955   // If externally suspended while waiting, re-suspend
5956   if (jt->handle_special_suspend_equivalent_condition()) {
5957     jt->java_suspend_self();
5958   }
5959 }
5960 
5961 void Parker::unpark() {
5962   int s, status ;
5963   status = pthread_mutex_lock(_mutex);
5964   assert (status == 0, "invariant") ;
5965   s = _counter;
5966   _counter = 1;
5967   if (s < 1) {
5968     // thread might be parked
5969     if (_cur_index != -1) {
5970       // thread is definitely parked
5971       if (WorkAroundNPTLTimedWaitHang) {
5972         status = pthread_cond_signal (&_cond[_cur_index]);
5973         assert (status == 0, "invariant");
5974         status = pthread_mutex_unlock(_mutex);
5975         assert (status == 0, "invariant");
5976       } else {
5977         status = pthread_mutex_unlock(_mutex);
5978         assert (status == 0, "invariant");
5979         status = pthread_cond_signal (&_cond[_cur_index]);
5980         assert (status == 0, "invariant");
5981       }
5982     } else {
5983       pthread_mutex_unlock(_mutex);
5984       assert (status == 0, "invariant") ;
5985     }
5986   } else {
5987     pthread_mutex_unlock(_mutex);
5988     assert (status == 0, "invariant") ;
5989   }
5990 }
5991 
5992 
5993 extern char** environ;
5994 
5995 #ifndef __NR_fork
5996 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5997 #endif
5998 
5999 #ifndef __NR_execve
6000 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
6001 #endif
6002 
6003 // Run the specified command in a separate process. Return its exit value,
6004 // or -1 on failure (e.g. can't fork a new process).
6005 // Unlike system(), this function can be called from signal handler. It
6006 // doesn't block SIGINT et al.
6007 int os::fork_and_exec(char* cmd) {
6008   const char * argv[4] = {"sh", "-c", cmd, NULL};
6009 
6010   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
6011   // pthread_atfork handlers and reset pthread library. All we need is a
6012   // separate process to execve. Make a direct syscall to fork process.
6013   // On IA64 there's no fork syscall, we have to use fork() and hope for
6014   // the best...
6015   pid_t pid = NOT_IA64(syscall(__NR_fork);)
6016               IA64_ONLY(fork();)
6017 
6018   if (pid < 0) {
6019     // fork failed
6020     return -1;
6021 
6022   } else if (pid == 0) {
6023     // child process
6024 
6025     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
6026     // first to kill every thread on the thread list. Because this list is
6027     // not reset by fork() (see notes above), execve() will instead kill
6028     // every thread in the parent process. We know this is the only thread
6029     // in the new process, so make a system call directly.
6030     // IA64 should use normal execve() from glibc to match the glibc fork()
6031     // above.
6032     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
6033     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
6034 
6035     // execve failed
6036     _exit(-1);
6037 
6038   } else  {
6039     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
6040     // care about the actual exit code, for now.
6041 
6042     int status;
6043 
6044     // Wait for the child process to exit.  This returns immediately if
6045     // the child has already exited. */
6046     while (waitpid(pid, &status, 0) < 0) {
6047         switch (errno) {
6048         case ECHILD: return 0;
6049         case EINTR: break;
6050         default: return -1;
6051         }
6052     }
6053 
6054     if (WIFEXITED(status)) {
6055        // The child exited normally; get its exit code.
6056        return WEXITSTATUS(status);
6057     } else if (WIFSIGNALED(status)) {
6058        // The child exited because of a signal
6059        // The best value to return is 0x80 + signal number,
6060        // because that is what all Unix shells do, and because
6061        // it allows callers to distinguish between process exit and
6062        // process death by signal.
6063        return 0x80 + WTERMSIG(status);
6064     } else {
6065        // Unknown exit code; pass it through
6066        return status;
6067     }
6068   }
6069 }
6070 
6071 // is_headless_jre()
6072 //
6073 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
6074 // in order to report if we are running in a headless jre
6075 //
6076 // Since JDK8 xawt/libmawt.so was moved into the same directory
6077 // as libawt.so, and renamed libawt_xawt.so
6078 //
6079 bool os::is_headless_jre() {
6080     struct stat statbuf;
6081     char buf[MAXPATHLEN];
6082     char libmawtpath[MAXPATHLEN];
6083     const char *xawtstr  = "/xawt/libmawt.so";
6084     const char *new_xawtstr = "/libawt_xawt.so";
6085     char *p;
6086 
6087     // Get path to libjvm.so
6088     os::jvm_path(buf, sizeof(buf));
6089 
6090     // Get rid of libjvm.so
6091     p = strrchr(buf, '/');
6092     if (p == NULL) return false;
6093     else *p = '\0';
6094 
6095     // Get rid of client or server
6096     p = strrchr(buf, '/');
6097     if (p == NULL) return false;
6098     else *p = '\0';
6099 
6100     // check xawt/libmawt.so
6101     strcpy(libmawtpath, buf);
6102     strcat(libmawtpath, xawtstr);
6103     if (::stat(libmawtpath, &statbuf) == 0) return false;
6104 
6105     // check libawt_xawt.so
6106     strcpy(libmawtpath, buf);
6107     strcat(libmawtpath, new_xawtstr);
6108     if (::stat(libmawtpath, &statbuf) == 0) return false;
6109 
6110     return true;
6111 }
6112 
6113 // Get the default path to the core file
6114 // Returns the length of the string
6115 int os::get_core_path(char* buffer, size_t bufferSize) {
6116   const char* p = get_current_directory(buffer, bufferSize);
6117 
6118   if (p == NULL) {
6119     assert(p != NULL, "failed to get current directory");
6120     return 0;
6121   }
6122 
6123   return strlen(buffer);
6124 }
6125 
6126 #ifdef JAVASE_EMBEDDED
6127 //
6128 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
6129 //
6130 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
6131 
6132 // ctor
6133 //
6134 MemNotifyThread::MemNotifyThread(int fd): Thread() {
6135   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
6136   _fd = fd;
6137 
6138   if (os::create_thread(this, os::os_thread)) {
6139     _memnotify_thread = this;
6140     os::set_priority(this, NearMaxPriority);
6141     os::start_thread(this);
6142   }
6143 }
6144 
6145 // Where all the work gets done
6146 //
6147 void MemNotifyThread::run() {
6148   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
6149 
6150   // Set up the select arguments
6151   fd_set rfds;
6152   if (_fd != -1) {
6153     FD_ZERO(&rfds);
6154     FD_SET(_fd, &rfds);
6155   }
6156 
6157   // Now wait for the mem_notify device to wake up
6158   while (1) {
6159     // Wait for the mem_notify device to signal us..
6160     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
6161     if (rc == -1) {
6162       perror("select!\n");
6163       break;
6164     } else if (rc) {
6165       //ssize_t free_before = os::available_memory();
6166       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
6167 
6168       // The kernel is telling us there is not much memory left...
6169       // try to do something about that
6170 
6171       // If we are not already in a GC, try one.
6172       if (!Universe::heap()->is_gc_active()) {
6173         Universe::heap()->collect(GCCause::_allocation_failure);
6174 
6175         //ssize_t free_after = os::available_memory();
6176         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
6177         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
6178       }
6179       // We might want to do something like the following if we find the GC's are not helping...
6180       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
6181     }
6182   }
6183 }
6184 
6185 //
6186 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
6187 //
6188 void MemNotifyThread::start() {
6189   int    fd;
6190   fd = open ("/dev/mem_notify", O_RDONLY, 0);
6191   if (fd < 0) {
6192       return;
6193   }
6194 
6195   if (memnotify_thread() == NULL) {
6196     new MemNotifyThread(fd);
6197   }
6198 }
6199 
6200 #endif // JAVASE_EMBEDDED
6201 
6202 
6203 /////////////// Unit tests ///////////////
6204 
6205 #ifndef PRODUCT
6206 
6207 #define test_log(...) \
6208   do {\
6209     if (VerboseInternalVMTests) { \
6210       tty->print_cr(__VA_ARGS__); \
6211       tty->flush(); \
6212     }\
6213   } while (false)
6214 
6215 class TestReserveMemorySpecial : AllStatic {
6216  public:
6217   static void small_page_write(void* addr, size_t size) {
6218     size_t page_size = os::vm_page_size();
6219 
6220     char* end = (char*)addr + size;
6221     for (char* p = (char*)addr; p < end; p += page_size) {
6222       *p = 1;
6223     }
6224   }
6225 
6226   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6227     if (!UseHugeTLBFS) {
6228       return;
6229     }
6230 
6231     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6232 
6233     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6234 
6235     if (addr != NULL) {
6236       small_page_write(addr, size);
6237 
6238       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6239     }
6240   }
6241 
6242   static void test_reserve_memory_special_huge_tlbfs_only() {
6243     if (!UseHugeTLBFS) {
6244       return;
6245     }
6246 
6247     size_t lp = os::large_page_size();
6248 
6249     for (size_t size = lp; size <= lp * 10; size += lp) {
6250       test_reserve_memory_special_huge_tlbfs_only(size);
6251     }
6252   }
6253 
6254   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6255     if (!UseHugeTLBFS) {
6256         return;
6257     }
6258 
6259     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6260         size, alignment);
6261 
6262     assert(size >= os::large_page_size(), "Incorrect input to test");
6263 
6264     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6265 
6266     if (addr != NULL) {
6267       small_page_write(addr, size);
6268 
6269       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6270     }
6271   }
6272 
6273   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6274     size_t lp = os::large_page_size();
6275     size_t ag = os::vm_allocation_granularity();
6276 
6277     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6278       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6279     }
6280   }
6281 
6282   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6283     size_t lp = os::large_page_size();
6284     size_t ag = os::vm_allocation_granularity();
6285 
6286     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6287     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6288     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6289     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6290     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6291     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6292     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6293     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6294     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6295   }
6296 
6297   static void test_reserve_memory_special_huge_tlbfs() {
6298     if (!UseHugeTLBFS) {
6299       return;
6300     }
6301 
6302     test_reserve_memory_special_huge_tlbfs_only();
6303     test_reserve_memory_special_huge_tlbfs_mixed();
6304   }
6305 
6306   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6307     if (!UseSHM) {
6308       return;
6309     }
6310 
6311     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6312 
6313     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6314 
6315     if (addr != NULL) {
6316       assert(is_ptr_aligned(addr, alignment), "Check");
6317       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6318 
6319       small_page_write(addr, size);
6320 
6321       os::Linux::release_memory_special_shm(addr, size);
6322     }
6323   }
6324 
6325   static void test_reserve_memory_special_shm() {
6326     size_t lp = os::large_page_size();
6327     size_t ag = os::vm_allocation_granularity();
6328 
6329     for (size_t size = ag; size < lp * 3; size += ag) {
6330       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6331         test_reserve_memory_special_shm(size, alignment);
6332       }
6333     }
6334   }
6335 
6336   static void test() {
6337     test_reserve_memory_special_huge_tlbfs();
6338     test_reserve_memory_special_shm();
6339   }
6340 };
6341 
6342 void TestReserveMemorySpecial_test() {
6343   TestReserveMemorySpecial::test();
6344 }
6345 
6346 #endif