1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #include "opto/addnode.hpp"
  36 #include "opto/block.hpp"
  37 #include "opto/c2compiler.hpp"
  38 #include "opto/callGenerator.hpp"
  39 #include "opto/callnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/chaitin.hpp"
  42 #include "opto/compile.hpp"
  43 #include "opto/connode.hpp"
  44 #include "opto/divnode.hpp"
  45 #include "opto/escape.hpp"
  46 #include "opto/idealGraphPrinter.hpp"
  47 #include "opto/loopnode.hpp"
  48 #include "opto/machnode.hpp"
  49 #include "opto/macro.hpp"
  50 #include "opto/matcher.hpp"
  51 #include "opto/mathexactnode.hpp"
  52 #include "opto/memnode.hpp"
  53 #include "opto/mulnode.hpp"
  54 #include "opto/node.hpp"
  55 #include "opto/opcodes.hpp"
  56 #include "opto/output.hpp"
  57 #include "opto/parse.hpp"
  58 #include "opto/phaseX.hpp"
  59 #include "opto/rootnode.hpp"
  60 #include "opto/runtime.hpp"
  61 #include "opto/stringopts.hpp"
  62 #include "opto/type.hpp"
  63 #include "opto/vectornode.hpp"
  64 #include "runtime/arguments.hpp"
  65 #include "runtime/signature.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/timer.hpp"
  68 #include "trace/tracing.hpp"
  69 #include "utilities/copy.hpp"
  70 #ifdef TARGET_ARCH_MODEL_x86_32
  71 # include "adfiles/ad_x86_32.hpp"
  72 #endif
  73 #ifdef TARGET_ARCH_MODEL_x86_64
  74 # include "adfiles/ad_x86_64.hpp"
  75 #endif
  76 #ifdef TARGET_ARCH_MODEL_sparc
  77 # include "adfiles/ad_sparc.hpp"
  78 #endif
  79 #ifdef TARGET_ARCH_MODEL_zero
  80 # include "adfiles/ad_zero.hpp"
  81 #endif
  82 #ifdef TARGET_ARCH_MODEL_arm
  83 # include "adfiles/ad_arm.hpp"
  84 #endif
  85 #ifdef TARGET_ARCH_MODEL_ppc_32
  86 # include "adfiles/ad_ppc_32.hpp"
  87 #endif
  88 #ifdef TARGET_ARCH_MODEL_ppc_64
  89 # include "adfiles/ad_ppc_64.hpp"
  90 #endif
  91 
  92 
  93 // -------------------- Compile::mach_constant_base_node -----------------------
  94 // Constant table base node singleton.
  95 MachConstantBaseNode* Compile::mach_constant_base_node() {
  96   if (_mach_constant_base_node == NULL) {
  97     _mach_constant_base_node = new (C) MachConstantBaseNode();
  98     _mach_constant_base_node->add_req(C->root());
  99   }
 100   return _mach_constant_base_node;
 101 }
 102 
 103 
 104 /// Support for intrinsics.
 105 
 106 // Return the index at which m must be inserted (or already exists).
 107 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 108 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 109 #ifdef ASSERT
 110   for (int i = 1; i < _intrinsics->length(); i++) {
 111     CallGenerator* cg1 = _intrinsics->at(i-1);
 112     CallGenerator* cg2 = _intrinsics->at(i);
 113     assert(cg1->method() != cg2->method()
 114            ? cg1->method()     < cg2->method()
 115            : cg1->is_virtual() < cg2->is_virtual(),
 116            "compiler intrinsics list must stay sorted");
 117   }
 118 #endif
 119   // Binary search sorted list, in decreasing intervals [lo, hi].
 120   int lo = 0, hi = _intrinsics->length()-1;
 121   while (lo <= hi) {
 122     int mid = (uint)(hi + lo) / 2;
 123     ciMethod* mid_m = _intrinsics->at(mid)->method();
 124     if (m < mid_m) {
 125       hi = mid-1;
 126     } else if (m > mid_m) {
 127       lo = mid+1;
 128     } else {
 129       // look at minor sort key
 130       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 131       if (is_virtual < mid_virt) {
 132         hi = mid-1;
 133       } else if (is_virtual > mid_virt) {
 134         lo = mid+1;
 135       } else {
 136         return mid;  // exact match
 137       }
 138     }
 139   }
 140   return lo;  // inexact match
 141 }
 142 
 143 void Compile::register_intrinsic(CallGenerator* cg) {
 144   if (_intrinsics == NULL) {
 145     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 146   }
 147   // This code is stolen from ciObjectFactory::insert.
 148   // Really, GrowableArray should have methods for
 149   // insert_at, remove_at, and binary_search.
 150   int len = _intrinsics->length();
 151   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 152   if (index == len) {
 153     _intrinsics->append(cg);
 154   } else {
 155 #ifdef ASSERT
 156     CallGenerator* oldcg = _intrinsics->at(index);
 157     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 158 #endif
 159     _intrinsics->append(_intrinsics->at(len-1));
 160     int pos;
 161     for (pos = len-2; pos >= index; pos--) {
 162       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 163     }
 164     _intrinsics->at_put(index, cg);
 165   }
 166   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 167 }
 168 
 169 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 170   assert(m->is_loaded(), "don't try this on unloaded methods");
 171   if (_intrinsics != NULL) {
 172     int index = intrinsic_insertion_index(m, is_virtual);
 173     if (index < _intrinsics->length()
 174         && _intrinsics->at(index)->method() == m
 175         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 176       return _intrinsics->at(index);
 177     }
 178   }
 179   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 180   if (m->intrinsic_id() != vmIntrinsics::_none &&
 181       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 182     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 183     if (cg != NULL) {
 184       // Save it for next time:
 185       register_intrinsic(cg);
 186       return cg;
 187     } else {
 188       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 189     }
 190   }
 191   return NULL;
 192 }
 193 
 194 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 195 // in library_call.cpp.
 196 
 197 
 198 #ifndef PRODUCT
 199 // statistics gathering...
 200 
 201 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 202 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 203 
 204 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 205   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 206   int oflags = _intrinsic_hist_flags[id];
 207   assert(flags != 0, "what happened?");
 208   if (is_virtual) {
 209     flags |= _intrinsic_virtual;
 210   }
 211   bool changed = (flags != oflags);
 212   if ((flags & _intrinsic_worked) != 0) {
 213     juint count = (_intrinsic_hist_count[id] += 1);
 214     if (count == 1) {
 215       changed = true;           // first time
 216     }
 217     // increment the overall count also:
 218     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 219   }
 220   if (changed) {
 221     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 222       // Something changed about the intrinsic's virtuality.
 223       if ((flags & _intrinsic_virtual) != 0) {
 224         // This is the first use of this intrinsic as a virtual call.
 225         if (oflags != 0) {
 226           // We already saw it as a non-virtual, so note both cases.
 227           flags |= _intrinsic_both;
 228         }
 229       } else if ((oflags & _intrinsic_both) == 0) {
 230         // This is the first use of this intrinsic as a non-virtual
 231         flags |= _intrinsic_both;
 232       }
 233     }
 234     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 235   }
 236   // update the overall flags also:
 237   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 238   return changed;
 239 }
 240 
 241 static char* format_flags(int flags, char* buf) {
 242   buf[0] = 0;
 243   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 244   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 245   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 246   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 247   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 248   if (buf[0] == 0)  strcat(buf, ",");
 249   assert(buf[0] == ',', "must be");
 250   return &buf[1];
 251 }
 252 
 253 void Compile::print_intrinsic_statistics() {
 254   char flagsbuf[100];
 255   ttyLocker ttyl;
 256   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 257   tty->print_cr("Compiler intrinsic usage:");
 258   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 259   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 260   #define PRINT_STAT_LINE(name, c, f) \
 261     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 262   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 263     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 264     int   flags = _intrinsic_hist_flags[id];
 265     juint count = _intrinsic_hist_count[id];
 266     if ((flags | count) != 0) {
 267       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 268     }
 269   }
 270   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 271   if (xtty != NULL)  xtty->tail("statistics");
 272 }
 273 
 274 void Compile::print_statistics() {
 275   { ttyLocker ttyl;
 276     if (xtty != NULL)  xtty->head("statistics type='opto'");
 277     Parse::print_statistics();
 278     PhaseCCP::print_statistics();
 279     PhaseRegAlloc::print_statistics();
 280     Scheduling::print_statistics();
 281     PhasePeephole::print_statistics();
 282     PhaseIdealLoop::print_statistics();
 283     if (xtty != NULL)  xtty->tail("statistics");
 284   }
 285   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 286     // put this under its own <statistics> element.
 287     print_intrinsic_statistics();
 288   }
 289 }
 290 #endif //PRODUCT
 291 
 292 // Support for bundling info
 293 Bundle* Compile::node_bundling(const Node *n) {
 294   assert(valid_bundle_info(n), "oob");
 295   return &_node_bundling_base[n->_idx];
 296 }
 297 
 298 bool Compile::valid_bundle_info(const Node *n) {
 299   return (_node_bundling_limit > n->_idx);
 300 }
 301 
 302 
 303 void Compile::gvn_replace_by(Node* n, Node* nn) {
 304   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 305     Node* use = n->last_out(i);
 306     bool is_in_table = initial_gvn()->hash_delete(use);
 307     uint uses_found = 0;
 308     for (uint j = 0; j < use->len(); j++) {
 309       if (use->in(j) == n) {
 310         if (j < use->req())
 311           use->set_req(j, nn);
 312         else
 313           use->set_prec(j, nn);
 314         uses_found++;
 315       }
 316     }
 317     if (is_in_table) {
 318       // reinsert into table
 319       initial_gvn()->hash_find_insert(use);
 320     }
 321     record_for_igvn(use);
 322     i -= uses_found;    // we deleted 1 or more copies of this edge
 323   }
 324 }
 325 
 326 
 327 static inline bool not_a_node(const Node* n) {
 328   if (n == NULL)                   return true;
 329   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 330   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 331   return false;
 332 }
 333 
 334 // Identify all nodes that are reachable from below, useful.
 335 // Use breadth-first pass that records state in a Unique_Node_List,
 336 // recursive traversal is slower.
 337 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 338   int estimated_worklist_size = unique();
 339   useful.map( estimated_worklist_size, NULL );  // preallocate space
 340 
 341   // Initialize worklist
 342   if (root() != NULL)     { useful.push(root()); }
 343   // If 'top' is cached, declare it useful to preserve cached node
 344   if( cached_top_node() ) { useful.push(cached_top_node()); }
 345 
 346   // Push all useful nodes onto the list, breadthfirst
 347   for( uint next = 0; next < useful.size(); ++next ) {
 348     assert( next < unique(), "Unique useful nodes < total nodes");
 349     Node *n  = useful.at(next);
 350     uint max = n->len();
 351     for( uint i = 0; i < max; ++i ) {
 352       Node *m = n->in(i);
 353       if (not_a_node(m))  continue;
 354       useful.push(m);
 355     }
 356   }
 357 }
 358 
 359 // Update dead_node_list with any missing dead nodes using useful
 360 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 361 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 362   uint max_idx = unique();
 363   VectorSet& useful_node_set = useful.member_set();
 364 
 365   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 366     // If node with index node_idx is not in useful set,
 367     // mark it as dead in dead node list.
 368     if (! useful_node_set.test(node_idx) ) {
 369       record_dead_node(node_idx);
 370     }
 371   }
 372 }
 373 
 374 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 375   int shift = 0;
 376   for (int i = 0; i < inlines->length(); i++) {
 377     CallGenerator* cg = inlines->at(i);
 378     CallNode* call = cg->call_node();
 379     if (shift > 0) {
 380       inlines->at_put(i-shift, cg);
 381     }
 382     if (!useful.member(call)) {
 383       shift++;
 384     }
 385   }
 386   inlines->trunc_to(inlines->length()-shift);
 387 }
 388 
 389 // Disconnect all useless nodes by disconnecting those at the boundary.
 390 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 391   uint next = 0;
 392   while (next < useful.size()) {
 393     Node *n = useful.at(next++);
 394     if (n->is_SafePoint()) {
 395       // We're done with a parsing phase. Replaced nodes are not valid
 396       // beyond that point.
 397       n->as_SafePoint()->delete_replaced_nodes();
 398     }
 399     // Use raw traversal of out edges since this code removes out edges
 400     int max = n->outcnt();
 401     for (int j = 0; j < max; ++j) {
 402       Node* child = n->raw_out(j);
 403       if (! useful.member(child)) {
 404         assert(!child->is_top() || child != top(),
 405                "If top is cached in Compile object it is in useful list");
 406         // Only need to remove this out-edge to the useless node
 407         n->raw_del_out(j);
 408         --j;
 409         --max;
 410       }
 411     }
 412     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 413       record_for_igvn(n->unique_out());
 414     }
 415   }
 416   // Remove useless macro and predicate opaq nodes
 417   for (int i = C->macro_count()-1; i >= 0; i--) {
 418     Node* n = C->macro_node(i);
 419     if (!useful.member(n)) {
 420       remove_macro_node(n);
 421     }
 422   }
 423   // Remove useless expensive node
 424   for (int i = C->expensive_count()-1; i >= 0; i--) {
 425     Node* n = C->expensive_node(i);
 426     if (!useful.member(n)) {
 427       remove_expensive_node(n);
 428     }
 429   }
 430   // clean up the late inline lists
 431   remove_useless_late_inlines(&_string_late_inlines, useful);
 432   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 433   remove_useless_late_inlines(&_late_inlines, useful);
 434   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 435 }
 436 
 437 //------------------------------frame_size_in_words-----------------------------
 438 // frame_slots in units of words
 439 int Compile::frame_size_in_words() const {
 440   // shift is 0 in LP32 and 1 in LP64
 441   const int shift = (LogBytesPerWord - LogBytesPerInt);
 442   int words = _frame_slots >> shift;
 443   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 444   return words;
 445 }
 446 
 447 // To bang the stack of this compiled method we use the stack size
 448 // that the interpreter would need in case of a deoptimization. This
 449 // removes the need to bang the stack in the deoptimization blob which
 450 // in turn simplifies stack overflow handling.
 451 int Compile::bang_size_in_bytes() const {
 452   return MAX2(_interpreter_frame_size, frame_size_in_bytes());
 453 }
 454 
 455 // ============================================================================
 456 //------------------------------CompileWrapper---------------------------------
 457 class CompileWrapper : public StackObj {
 458   Compile *const _compile;
 459  public:
 460   CompileWrapper(Compile* compile);
 461 
 462   ~CompileWrapper();
 463 };
 464 
 465 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 466   // the Compile* pointer is stored in the current ciEnv:
 467   ciEnv* env = compile->env();
 468   assert(env == ciEnv::current(), "must already be a ciEnv active");
 469   assert(env->compiler_data() == NULL, "compile already active?");
 470   env->set_compiler_data(compile);
 471   assert(compile == Compile::current(), "sanity");
 472 
 473   compile->set_type_dict(NULL);
 474   compile->set_type_hwm(NULL);
 475   compile->set_type_last_size(0);
 476   compile->set_last_tf(NULL, NULL);
 477   compile->set_indexSet_arena(NULL);
 478   compile->set_indexSet_free_block_list(NULL);
 479   compile->init_type_arena();
 480   Type::Initialize(compile);
 481   _compile->set_scratch_buffer_blob(NULL);
 482   _compile->begin_method();
 483 }
 484 CompileWrapper::~CompileWrapper() {
 485   _compile->end_method();
 486   if (_compile->scratch_buffer_blob() != NULL)
 487     BufferBlob::free(_compile->scratch_buffer_blob());
 488   _compile->env()->set_compiler_data(NULL);
 489 }
 490 
 491 
 492 //----------------------------print_compile_messages---------------------------
 493 void Compile::print_compile_messages() {
 494 #ifndef PRODUCT
 495   // Check if recompiling
 496   if (_subsume_loads == false && PrintOpto) {
 497     // Recompiling without allowing machine instructions to subsume loads
 498     tty->print_cr("*********************************************************");
 499     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 500     tty->print_cr("*********************************************************");
 501   }
 502   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 503     // Recompiling without escape analysis
 504     tty->print_cr("*********************************************************");
 505     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 506     tty->print_cr("*********************************************************");
 507   }
 508   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 509     // Recompiling without boxing elimination
 510     tty->print_cr("*********************************************************");
 511     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 512     tty->print_cr("*********************************************************");
 513   }
 514   if (env()->break_at_compile()) {
 515     // Open the debugger when compiling this method.
 516     tty->print("### Breaking when compiling: ");
 517     method()->print_short_name();
 518     tty->cr();
 519     BREAKPOINT;
 520   }
 521 
 522   if( PrintOpto ) {
 523     if (is_osr_compilation()) {
 524       tty->print("[OSR]%3d", _compile_id);
 525     } else {
 526       tty->print("%3d", _compile_id);
 527     }
 528   }
 529 #endif
 530 }
 531 
 532 
 533 //-----------------------init_scratch_buffer_blob------------------------------
 534 // Construct a temporary BufferBlob and cache it for this compile.
 535 void Compile::init_scratch_buffer_blob(int const_size) {
 536   // If there is already a scratch buffer blob allocated and the
 537   // constant section is big enough, use it.  Otherwise free the
 538   // current and allocate a new one.
 539   BufferBlob* blob = scratch_buffer_blob();
 540   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 541     // Use the current blob.
 542   } else {
 543     if (blob != NULL) {
 544       BufferBlob::free(blob);
 545     }
 546 
 547     ResourceMark rm;
 548     _scratch_const_size = const_size;
 549     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 550     blob = BufferBlob::create("Compile::scratch_buffer", size);
 551     // Record the buffer blob for next time.
 552     set_scratch_buffer_blob(blob);
 553     // Have we run out of code space?
 554     if (scratch_buffer_blob() == NULL) {
 555       // Let CompilerBroker disable further compilations.
 556       record_failure("Not enough space for scratch buffer in CodeCache");
 557       return;
 558     }
 559   }
 560 
 561   // Initialize the relocation buffers
 562   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 563   set_scratch_locs_memory(locs_buf);
 564 }
 565 
 566 
 567 //-----------------------scratch_emit_size-------------------------------------
 568 // Helper function that computes size by emitting code
 569 uint Compile::scratch_emit_size(const Node* n) {
 570   // Start scratch_emit_size section.
 571   set_in_scratch_emit_size(true);
 572 
 573   // Emit into a trash buffer and count bytes emitted.
 574   // This is a pretty expensive way to compute a size,
 575   // but it works well enough if seldom used.
 576   // All common fixed-size instructions are given a size
 577   // method by the AD file.
 578   // Note that the scratch buffer blob and locs memory are
 579   // allocated at the beginning of the compile task, and
 580   // may be shared by several calls to scratch_emit_size.
 581   // The allocation of the scratch buffer blob is particularly
 582   // expensive, since it has to grab the code cache lock.
 583   BufferBlob* blob = this->scratch_buffer_blob();
 584   assert(blob != NULL, "Initialize BufferBlob at start");
 585   assert(blob->size() > MAX_inst_size, "sanity");
 586   relocInfo* locs_buf = scratch_locs_memory();
 587   address blob_begin = blob->content_begin();
 588   address blob_end   = (address)locs_buf;
 589   assert(blob->content_contains(blob_end), "sanity");
 590   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 591   buf.initialize_consts_size(_scratch_const_size);
 592   buf.initialize_stubs_size(MAX_stubs_size);
 593   assert(locs_buf != NULL, "sanity");
 594   int lsize = MAX_locs_size / 3;
 595   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 596   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 597   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 598 
 599   // Do the emission.
 600 
 601   Label fakeL; // Fake label for branch instructions.
 602   Label*   saveL = NULL;
 603   uint save_bnum = 0;
 604   bool is_branch = n->is_MachBranch();
 605   if (is_branch) {
 606     MacroAssembler masm(&buf);
 607     masm.bind(fakeL);
 608     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 609     n->as_MachBranch()->label_set(&fakeL, 0);
 610   }
 611   n->emit(buf, this->regalloc());
 612   if (is_branch) // Restore label.
 613     n->as_MachBranch()->label_set(saveL, save_bnum);
 614 
 615   // End scratch_emit_size section.
 616   set_in_scratch_emit_size(false);
 617 
 618   return buf.insts_size();
 619 }
 620 
 621 
 622 // ============================================================================
 623 //------------------------------Compile standard-------------------------------
 624 debug_only( int Compile::_debug_idx = 100000; )
 625 
 626 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 627 // the continuation bci for on stack replacement.
 628 
 629 
 630 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 631                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 632                 : Phase(Compiler),
 633                   _env(ci_env),
 634                   _log(ci_env->log()),
 635                   _compile_id(ci_env->compile_id()),
 636                   _save_argument_registers(false),
 637                   _stub_name(NULL),
 638                   _stub_function(NULL),
 639                   _stub_entry_point(NULL),
 640                   _method(target),
 641                   _entry_bci(osr_bci),
 642                   _initial_gvn(NULL),
 643                   _for_igvn(NULL),
 644                   _warm_calls(NULL),
 645                   _subsume_loads(subsume_loads),
 646                   _do_escape_analysis(do_escape_analysis),
 647                   _eliminate_boxing(eliminate_boxing),
 648                   _failure_reason(NULL),
 649                   _code_buffer("Compile::Fill_buffer"),
 650                   _orig_pc_slot(0),
 651                   _orig_pc_slot_offset_in_bytes(0),
 652                   _has_method_handle_invokes(false),
 653                   _mach_constant_base_node(NULL),
 654                   _node_bundling_limit(0),
 655                   _node_bundling_base(NULL),
 656                   _java_calls(0),
 657                   _inner_loops(0),
 658                   _scratch_const_size(-1),
 659                   _in_scratch_emit_size(false),
 660                   _dead_node_list(comp_arena()),
 661                   _dead_node_count(0),
 662 #ifndef PRODUCT
 663                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 664                   _in_dump_cnt(0),
 665                   _printer(IdealGraphPrinter::printer()),
 666 #endif
 667                   _congraph(NULL),
 668                   _comp_arena(mtCompiler),
 669                   _node_arena(mtCompiler),
 670                   _old_arena(mtCompiler),
 671                   _Compile_types(mtCompiler),
 672                   _replay_inline_data(NULL),
 673                   _late_inlines(comp_arena(), 2, 0, NULL),
 674                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 675                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 676                   _late_inlines_pos(0),
 677                   _number_of_mh_late_inlines(0),
 678                   _inlining_progress(false),
 679                   _inlining_incrementally(false),
 680                   _print_inlining_list(NULL),
 681                   _print_inlining_idx(0),
 682                   _interpreter_frame_size(0),
 683                   _max_node_limit(MaxNodeLimit) {
 684   C = this;
 685 
 686   CompileWrapper cw(this);
 687 #ifndef PRODUCT
 688   if (TimeCompiler2) {
 689     tty->print(" ");
 690     target->holder()->name()->print();
 691     tty->print(".");
 692     target->print_short_name();
 693     tty->print("  ");
 694   }
 695   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 696   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 697   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 698   if (!print_opto_assembly) {
 699     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 700     if (print_assembly && !Disassembler::can_decode()) {
 701       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 702       print_opto_assembly = true;
 703     }
 704   }
 705   set_print_assembly(print_opto_assembly);
 706   set_parsed_irreducible_loop(false);
 707 
 708   if (method()->has_option("ReplayInline")) {
 709     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 710   }
 711 #endif
 712   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 713   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 714   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 715 
 716   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 717     // Make sure the method being compiled gets its own MDO,
 718     // so we can at least track the decompile_count().
 719     // Need MDO to record RTM code generation state.
 720     method()->ensure_method_data();
 721   }
 722 
 723   Init(::AliasLevel);
 724 
 725 
 726   print_compile_messages();
 727 
 728   _ilt = InlineTree::build_inline_tree_root();
 729 
 730   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 731   assert(num_alias_types() >= AliasIdxRaw, "");
 732 
 733 #define MINIMUM_NODE_HASH  1023
 734   // Node list that Iterative GVN will start with
 735   Unique_Node_List for_igvn(comp_arena());
 736   set_for_igvn(&for_igvn);
 737 
 738   // GVN that will be run immediately on new nodes
 739   uint estimated_size = method()->code_size()*4+64;
 740   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 741   PhaseGVN gvn(node_arena(), estimated_size);
 742   set_initial_gvn(&gvn);
 743 
 744   if (print_inlining() || print_intrinsics()) {
 745     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
 746   }
 747   { // Scope for timing the parser
 748     TracePhase t3("parse", &_t_parser, true);
 749 
 750     // Put top into the hash table ASAP.
 751     initial_gvn()->transform_no_reclaim(top());
 752 
 753     // Set up tf(), start(), and find a CallGenerator.
 754     CallGenerator* cg = NULL;
 755     if (is_osr_compilation()) {
 756       const TypeTuple *domain = StartOSRNode::osr_domain();
 757       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 758       init_tf(TypeFunc::make(domain, range));
 759       StartNode* s = new (this) StartOSRNode(root(), domain);
 760       initial_gvn()->set_type_bottom(s);
 761       init_start(s);
 762       cg = CallGenerator::for_osr(method(), entry_bci());
 763     } else {
 764       // Normal case.
 765       init_tf(TypeFunc::make(method()));
 766       StartNode* s = new (this) StartNode(root(), tf()->domain());
 767       initial_gvn()->set_type_bottom(s);
 768       init_start(s);
 769       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 770         // With java.lang.ref.reference.get() we must go through the
 771         // intrinsic when G1 is enabled - even when get() is the root
 772         // method of the compile - so that, if necessary, the value in
 773         // the referent field of the reference object gets recorded by
 774         // the pre-barrier code.
 775         // Specifically, if G1 is enabled, the value in the referent
 776         // field is recorded by the G1 SATB pre barrier. This will
 777         // result in the referent being marked live and the reference
 778         // object removed from the list of discovered references during
 779         // reference processing.
 780         cg = find_intrinsic(method(), false);
 781       }
 782       if (cg == NULL) {
 783         float past_uses = method()->interpreter_invocation_count();
 784         float expected_uses = past_uses;
 785         cg = CallGenerator::for_inline(method(), expected_uses);
 786       }
 787     }
 788     if (failing())  return;
 789     if (cg == NULL) {
 790       record_method_not_compilable_all_tiers("cannot parse method");
 791       return;
 792     }
 793     JVMState* jvms = build_start_state(start(), tf());
 794     if ((jvms = cg->generate(jvms)) == NULL) {
 795       record_method_not_compilable("method parse failed");
 796       return;
 797     }
 798     GraphKit kit(jvms);
 799 
 800     if (!kit.stopped()) {
 801       // Accept return values, and transfer control we know not where.
 802       // This is done by a special, unique ReturnNode bound to root.
 803       return_values(kit.jvms());
 804     }
 805 
 806     if (kit.has_exceptions()) {
 807       // Any exceptions that escape from this call must be rethrown
 808       // to whatever caller is dynamically above us on the stack.
 809       // This is done by a special, unique RethrowNode bound to root.
 810       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 811     }
 812 
 813     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 814 
 815     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 816       inline_string_calls(true);
 817     }
 818 
 819     if (failing())  return;
 820 
 821     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 822 
 823     // Remove clutter produced by parsing.
 824     if (!failing()) {
 825       ResourceMark rm;
 826       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 827     }
 828   }
 829 
 830   // Note:  Large methods are capped off in do_one_bytecode().
 831   if (failing())  return;
 832 
 833   // After parsing, node notes are no longer automagic.
 834   // They must be propagated by register_new_node_with_optimizer(),
 835   // clone(), or the like.
 836   set_default_node_notes(NULL);
 837 
 838   for (;;) {
 839     int successes = Inline_Warm();
 840     if (failing())  return;
 841     if (successes == 0)  break;
 842   }
 843 
 844   // Drain the list.
 845   Finish_Warm();
 846 #ifndef PRODUCT
 847   if (_printer) {
 848     _printer->print_inlining(this);
 849   }
 850 #endif
 851 
 852   if (failing())  return;
 853   NOT_PRODUCT( verify_graph_edges(); )
 854 
 855   // Now optimize
 856   Optimize();
 857   if (failing())  return;
 858   NOT_PRODUCT( verify_graph_edges(); )
 859 
 860 #ifndef PRODUCT
 861   if (PrintIdeal) {
 862     ttyLocker ttyl;  // keep the following output all in one block
 863     // This output goes directly to the tty, not the compiler log.
 864     // To enable tools to match it up with the compilation activity,
 865     // be sure to tag this tty output with the compile ID.
 866     if (xtty != NULL) {
 867       xtty->head("ideal compile_id='%d'%s", compile_id(),
 868                  is_osr_compilation()    ? " compile_kind='osr'" :
 869                  "");
 870     }
 871     root()->dump(9999);
 872     if (xtty != NULL) {
 873       xtty->tail("ideal");
 874     }
 875   }
 876 #endif
 877 
 878   NOT_PRODUCT( verify_barriers(); )
 879 
 880   // Dump compilation data to replay it.
 881   if (method()->has_option("DumpReplay")) {
 882     env()->dump_replay_data(_compile_id);
 883   }
 884   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
 885     env()->dump_inline_data(_compile_id);
 886   }
 887 
 888   // Now that we know the size of all the monitors we can add a fixed slot
 889   // for the original deopt pc.
 890 
 891   _orig_pc_slot =  fixed_slots();
 892   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 893   set_fixed_slots(next_slot);
 894 
 895   // Compute when to use implicit null checks. Used by matching trap based
 896   // nodes and NullCheck optimization.
 897   set_allowed_deopt_reasons();
 898 
 899   // Now generate code
 900   Code_Gen();
 901   if (failing())  return;
 902 
 903   // Check if we want to skip execution of all compiled code.
 904   {
 905 #ifndef PRODUCT
 906     if (OptoNoExecute) {
 907       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 908       return;
 909     }
 910     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 911 #endif
 912 
 913     if (is_osr_compilation()) {
 914       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 915       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 916     } else {
 917       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 918       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 919     }
 920 
 921     env()->register_method(_method, _entry_bci,
 922                            &_code_offsets,
 923                            _orig_pc_slot_offset_in_bytes,
 924                            code_buffer(),
 925                            frame_size_in_words(), _oop_map_set,
 926                            &_handler_table, &_inc_table,
 927                            compiler,
 928                            env()->comp_level(),
 929                            has_unsafe_access(),
 930                            SharedRuntime::is_wide_vector(max_vector_size()),
 931                            rtm_state()
 932                            );
 933 
 934     if (log() != NULL) // Print code cache state into compiler log
 935       log()->code_cache_state();
 936   }
 937 }
 938 
 939 //------------------------------Compile----------------------------------------
 940 // Compile a runtime stub
 941 Compile::Compile( ciEnv* ci_env,
 942                   TypeFunc_generator generator,
 943                   address stub_function,
 944                   const char *stub_name,
 945                   int is_fancy_jump,
 946                   bool pass_tls,
 947                   bool save_arg_registers,
 948                   bool return_pc )
 949   : Phase(Compiler),
 950     _env(ci_env),
 951     _log(ci_env->log()),
 952     _compile_id(0),
 953     _save_argument_registers(save_arg_registers),
 954     _method(NULL),
 955     _stub_name(stub_name),
 956     _stub_function(stub_function),
 957     _stub_entry_point(NULL),
 958     _entry_bci(InvocationEntryBci),
 959     _initial_gvn(NULL),
 960     _for_igvn(NULL),
 961     _warm_calls(NULL),
 962     _orig_pc_slot(0),
 963     _orig_pc_slot_offset_in_bytes(0),
 964     _subsume_loads(true),
 965     _do_escape_analysis(false),
 966     _eliminate_boxing(false),
 967     _failure_reason(NULL),
 968     _code_buffer("Compile::Fill_buffer"),
 969     _has_method_handle_invokes(false),
 970     _mach_constant_base_node(NULL),
 971     _node_bundling_limit(0),
 972     _node_bundling_base(NULL),
 973     _java_calls(0),
 974     _inner_loops(0),
 975 #ifndef PRODUCT
 976     _trace_opto_output(TraceOptoOutput),
 977     _in_dump_cnt(0),
 978     _printer(NULL),
 979 #endif
 980     _comp_arena(mtCompiler),
 981     _node_arena(mtCompiler),
 982     _old_arena(mtCompiler),
 983     _Compile_types(mtCompiler),
 984     _dead_node_list(comp_arena()),
 985     _dead_node_count(0),
 986     _congraph(NULL),
 987     _replay_inline_data(NULL),
 988     _number_of_mh_late_inlines(0),
 989     _inlining_progress(false),
 990     _inlining_incrementally(false),
 991     _print_inlining_list(NULL),
 992     _print_inlining_idx(0),
 993     _allowed_reasons(0),
 994     _interpreter_frame_size(0),
 995     _max_node_limit(MaxNodeLimit) {
 996   C = this;
 997 
 998 #ifndef PRODUCT
 999   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
1000   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
1001   set_print_assembly(PrintFrameConverterAssembly);
1002   set_parsed_irreducible_loop(false);
1003 #endif
1004   set_has_irreducible_loop(false); // no loops
1005 
1006   CompileWrapper cw(this);
1007   Init(/*AliasLevel=*/ 0);
1008   init_tf((*generator)());
1009 
1010   {
1011     // The following is a dummy for the sake of GraphKit::gen_stub
1012     Unique_Node_List for_igvn(comp_arena());
1013     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1014     PhaseGVN gvn(Thread::current()->resource_area(),255);
1015     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1016     gvn.transform_no_reclaim(top());
1017 
1018     GraphKit kit;
1019     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1020   }
1021 
1022   NOT_PRODUCT( verify_graph_edges(); )
1023   Code_Gen();
1024   if (failing())  return;
1025 
1026 
1027   // Entry point will be accessed using compile->stub_entry_point();
1028   if (code_buffer() == NULL) {
1029     Matcher::soft_match_failure();
1030   } else {
1031     if (PrintAssembly && (WizardMode || Verbose))
1032       tty->print_cr("### Stub::%s", stub_name);
1033 
1034     if (!failing()) {
1035       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1036 
1037       // Make the NMethod
1038       // For now we mark the frame as never safe for profile stackwalking
1039       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1040                                                       code_buffer(),
1041                                                       CodeOffsets::frame_never_safe,
1042                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1043                                                       frame_size_in_words(),
1044                                                       _oop_map_set,
1045                                                       save_arg_registers);
1046       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1047 
1048       _stub_entry_point = rs->entry_point();
1049     }
1050   }
1051 }
1052 
1053 //------------------------------Init-------------------------------------------
1054 // Prepare for a single compilation
1055 void Compile::Init(int aliaslevel) {
1056   _unique  = 0;
1057   _regalloc = NULL;
1058 
1059   _tf      = NULL;  // filled in later
1060   _top     = NULL;  // cached later
1061   _matcher = NULL;  // filled in later
1062   _cfg     = NULL;  // filled in later
1063 
1064   set_24_bit_selection_and_mode(Use24BitFP, false);
1065 
1066   _node_note_array = NULL;
1067   _default_node_notes = NULL;
1068 
1069   _immutable_memory = NULL; // filled in at first inquiry
1070 
1071   // Globally visible Nodes
1072   // First set TOP to NULL to give safe behavior during creation of RootNode
1073   set_cached_top_node(NULL);
1074   set_root(new (this) RootNode());
1075   // Now that you have a Root to point to, create the real TOP
1076   set_cached_top_node( new (this) ConNode(Type::TOP) );
1077   set_recent_alloc(NULL, NULL);
1078 
1079   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1080   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1081   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1082   env()->set_dependencies(new Dependencies(env()));
1083 
1084   _fixed_slots = 0;
1085   set_has_split_ifs(false);
1086   set_has_loops(has_method() && method()->has_loops()); // first approximation
1087   set_has_stringbuilder(false);
1088   set_has_boxed_value(false);
1089   _trap_can_recompile = false;  // no traps emitted yet
1090   _major_progress = true; // start out assuming good things will happen
1091   set_has_unsafe_access(false);
1092   set_max_vector_size(0);
1093   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1094   set_decompile_count(0);
1095 
1096   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1097   set_num_loop_opts(LoopOptsCount);
1098   set_do_inlining(Inline);
1099   set_max_inline_size(MaxInlineSize);
1100   set_freq_inline_size(FreqInlineSize);
1101   set_do_scheduling(OptoScheduling);
1102   set_do_count_invocations(false);
1103   set_do_method_data_update(false);
1104   set_rtm_state(NoRTM); // No RTM lock eliding by default
1105   method_has_option_value("MaxNodeLimit", _max_node_limit);
1106 #if INCLUDE_RTM_OPT
1107   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1108     int rtm_state = method()->method_data()->rtm_state();
1109     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1110       // Don't generate RTM lock eliding code.
1111       set_rtm_state(NoRTM);
1112     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1113       // Generate RTM lock eliding code without abort ratio calculation code.
1114       set_rtm_state(UseRTM);
1115     } else if (UseRTMDeopt) {
1116       // Generate RTM lock eliding code and include abort ratio calculation
1117       // code if UseRTMDeopt is on.
1118       set_rtm_state(ProfileRTM);
1119     }
1120   }
1121 #endif
1122   if (debug_info()->recording_non_safepoints()) {
1123     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1124                         (comp_arena(), 8, 0, NULL));
1125     set_default_node_notes(Node_Notes::make(this));
1126   }
1127 
1128   // // -- Initialize types before each compile --
1129   // // Update cached type information
1130   // if( _method && _method->constants() )
1131   //   Type::update_loaded_types(_method, _method->constants());
1132 
1133   // Init alias_type map.
1134   if (!_do_escape_analysis && aliaslevel == 3)
1135     aliaslevel = 2;  // No unique types without escape analysis
1136   _AliasLevel = aliaslevel;
1137   const int grow_ats = 16;
1138   _max_alias_types = grow_ats;
1139   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1140   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1141   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1142   {
1143     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1144   }
1145   // Initialize the first few types.
1146   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1147   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1148   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1149   _num_alias_types = AliasIdxRaw+1;
1150   // Zero out the alias type cache.
1151   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1152   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1153   probe_alias_cache(NULL)->_index = AliasIdxTop;
1154 
1155   _intrinsics = NULL;
1156   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1157   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1158   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1159   register_library_intrinsics();
1160 }
1161 
1162 //---------------------------init_start----------------------------------------
1163 // Install the StartNode on this compile object.
1164 void Compile::init_start(StartNode* s) {
1165   if (failing())
1166     return; // already failing
1167   assert(s == start(), "");
1168 }
1169 
1170 StartNode* Compile::start() const {
1171   assert(!failing(), "");
1172   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1173     Node* start = root()->fast_out(i);
1174     if( start->is_Start() )
1175       return start->as_Start();
1176   }
1177   fatal("Did not find Start node!");
1178   return NULL;
1179 }
1180 
1181 //-------------------------------immutable_memory-------------------------------------
1182 // Access immutable memory
1183 Node* Compile::immutable_memory() {
1184   if (_immutable_memory != NULL) {
1185     return _immutable_memory;
1186   }
1187   StartNode* s = start();
1188   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1189     Node *p = s->fast_out(i);
1190     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1191       _immutable_memory = p;
1192       return _immutable_memory;
1193     }
1194   }
1195   ShouldNotReachHere();
1196   return NULL;
1197 }
1198 
1199 //----------------------set_cached_top_node------------------------------------
1200 // Install the cached top node, and make sure Node::is_top works correctly.
1201 void Compile::set_cached_top_node(Node* tn) {
1202   if (tn != NULL)  verify_top(tn);
1203   Node* old_top = _top;
1204   _top = tn;
1205   // Calling Node::setup_is_top allows the nodes the chance to adjust
1206   // their _out arrays.
1207   if (_top != NULL)     _top->setup_is_top();
1208   if (old_top != NULL)  old_top->setup_is_top();
1209   assert(_top == NULL || top()->is_top(), "");
1210 }
1211 
1212 #ifdef ASSERT
1213 uint Compile::count_live_nodes_by_graph_walk() {
1214   Unique_Node_List useful(comp_arena());
1215   // Get useful node list by walking the graph.
1216   identify_useful_nodes(useful);
1217   return useful.size();
1218 }
1219 
1220 void Compile::print_missing_nodes() {
1221 
1222   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1223   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1224     return;
1225   }
1226 
1227   // This is an expensive function. It is executed only when the user
1228   // specifies VerifyIdealNodeCount option or otherwise knows the
1229   // additional work that needs to be done to identify reachable nodes
1230   // by walking the flow graph and find the missing ones using
1231   // _dead_node_list.
1232 
1233   Unique_Node_List useful(comp_arena());
1234   // Get useful node list by walking the graph.
1235   identify_useful_nodes(useful);
1236 
1237   uint l_nodes = C->live_nodes();
1238   uint l_nodes_by_walk = useful.size();
1239 
1240   if (l_nodes != l_nodes_by_walk) {
1241     if (_log != NULL) {
1242       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1243       _log->stamp();
1244       _log->end_head();
1245     }
1246     VectorSet& useful_member_set = useful.member_set();
1247     int last_idx = l_nodes_by_walk;
1248     for (int i = 0; i < last_idx; i++) {
1249       if (useful_member_set.test(i)) {
1250         if (_dead_node_list.test(i)) {
1251           if (_log != NULL) {
1252             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1253           }
1254           if (PrintIdealNodeCount) {
1255             // Print the log message to tty
1256               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1257               useful.at(i)->dump();
1258           }
1259         }
1260       }
1261       else if (! _dead_node_list.test(i)) {
1262         if (_log != NULL) {
1263           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1264         }
1265         if (PrintIdealNodeCount) {
1266           // Print the log message to tty
1267           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1268         }
1269       }
1270     }
1271     if (_log != NULL) {
1272       _log->tail("mismatched_nodes");
1273     }
1274   }
1275 }
1276 #endif
1277 
1278 #ifndef PRODUCT
1279 void Compile::verify_top(Node* tn) const {
1280   if (tn != NULL) {
1281     assert(tn->is_Con(), "top node must be a constant");
1282     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1283     assert(tn->in(0) != NULL, "must have live top node");
1284   }
1285 }
1286 #endif
1287 
1288 
1289 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1290 
1291 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1292   guarantee(arr != NULL, "");
1293   int num_blocks = arr->length();
1294   if (grow_by < num_blocks)  grow_by = num_blocks;
1295   int num_notes = grow_by * _node_notes_block_size;
1296   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1297   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1298   while (num_notes > 0) {
1299     arr->append(notes);
1300     notes     += _node_notes_block_size;
1301     num_notes -= _node_notes_block_size;
1302   }
1303   assert(num_notes == 0, "exact multiple, please");
1304 }
1305 
1306 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1307   if (source == NULL || dest == NULL)  return false;
1308 
1309   if (dest->is_Con())
1310     return false;               // Do not push debug info onto constants.
1311 
1312 #ifdef ASSERT
1313   // Leave a bread crumb trail pointing to the original node:
1314   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1315     dest->set_debug_orig(source);
1316   }
1317 #endif
1318 
1319   if (node_note_array() == NULL)
1320     return false;               // Not collecting any notes now.
1321 
1322   // This is a copy onto a pre-existing node, which may already have notes.
1323   // If both nodes have notes, do not overwrite any pre-existing notes.
1324   Node_Notes* source_notes = node_notes_at(source->_idx);
1325   if (source_notes == NULL || source_notes->is_clear())  return false;
1326   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1327   if (dest_notes == NULL || dest_notes->is_clear()) {
1328     return set_node_notes_at(dest->_idx, source_notes);
1329   }
1330 
1331   Node_Notes merged_notes = (*source_notes);
1332   // The order of operations here ensures that dest notes will win...
1333   merged_notes.update_from(dest_notes);
1334   return set_node_notes_at(dest->_idx, &merged_notes);
1335 }
1336 
1337 
1338 //--------------------------allow_range_check_smearing-------------------------
1339 // Gating condition for coalescing similar range checks.
1340 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1341 // single covering check that is at least as strong as any of them.
1342 // If the optimization succeeds, the simplified (strengthened) range check
1343 // will always succeed.  If it fails, we will deopt, and then give up
1344 // on the optimization.
1345 bool Compile::allow_range_check_smearing() const {
1346   // If this method has already thrown a range-check,
1347   // assume it was because we already tried range smearing
1348   // and it failed.
1349   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1350   return !already_trapped;
1351 }
1352 
1353 
1354 //------------------------------flatten_alias_type-----------------------------
1355 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1356   int offset = tj->offset();
1357   TypePtr::PTR ptr = tj->ptr();
1358 
1359   // Known instance (scalarizable allocation) alias only with itself.
1360   bool is_known_inst = tj->isa_oopptr() != NULL &&
1361                        tj->is_oopptr()->is_known_instance();
1362 
1363   // Process weird unsafe references.
1364   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1365     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1366     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1367     tj = TypeOopPtr::BOTTOM;
1368     ptr = tj->ptr();
1369     offset = tj->offset();
1370   }
1371 
1372   // Array pointers need some flattening
1373   const TypeAryPtr *ta = tj->isa_aryptr();
1374   if (ta && ta->is_stable()) {
1375     // Erase stability property for alias analysis.
1376     tj = ta = ta->cast_to_stable(false);
1377   }
1378   if( ta && is_known_inst ) {
1379     if ( offset != Type::OffsetBot &&
1380          offset > arrayOopDesc::length_offset_in_bytes() ) {
1381       offset = Type::OffsetBot; // Flatten constant access into array body only
1382       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1383     }
1384   } else if( ta && _AliasLevel >= 2 ) {
1385     // For arrays indexed by constant indices, we flatten the alias
1386     // space to include all of the array body.  Only the header, klass
1387     // and array length can be accessed un-aliased.
1388     if( offset != Type::OffsetBot ) {
1389       if( ta->const_oop() ) { // MethodData* or Method*
1390         offset = Type::OffsetBot;   // Flatten constant access into array body
1391         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1392       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1393         // range is OK as-is.
1394         tj = ta = TypeAryPtr::RANGE;
1395       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1396         tj = TypeInstPtr::KLASS; // all klass loads look alike
1397         ta = TypeAryPtr::RANGE; // generic ignored junk
1398         ptr = TypePtr::BotPTR;
1399       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1400         tj = TypeInstPtr::MARK;
1401         ta = TypeAryPtr::RANGE; // generic ignored junk
1402         ptr = TypePtr::BotPTR;
1403       } else {                  // Random constant offset into array body
1404         offset = Type::OffsetBot;   // Flatten constant access into array body
1405         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1406       }
1407     }
1408     // Arrays of fixed size alias with arrays of unknown size.
1409     if (ta->size() != TypeInt::POS) {
1410       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1411       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1412     }
1413     // Arrays of known objects become arrays of unknown objects.
1414     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1415       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1416       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1417     }
1418     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1419       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1420       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1421     }
1422     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1423     // cannot be distinguished by bytecode alone.
1424     if (ta->elem() == TypeInt::BOOL) {
1425       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1426       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1427       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1428     }
1429     // During the 2nd round of IterGVN, NotNull castings are removed.
1430     // Make sure the Bottom and NotNull variants alias the same.
1431     // Also, make sure exact and non-exact variants alias the same.
1432     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1433       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1434     }
1435   }
1436 
1437   // Oop pointers need some flattening
1438   const TypeInstPtr *to = tj->isa_instptr();
1439   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1440     ciInstanceKlass *k = to->klass()->as_instance_klass();
1441     if( ptr == TypePtr::Constant ) {
1442       if (to->klass() != ciEnv::current()->Class_klass() ||
1443           offset < k->size_helper() * wordSize) {
1444         // No constant oop pointers (such as Strings); they alias with
1445         // unknown strings.
1446         assert(!is_known_inst, "not scalarizable allocation");
1447         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1448       }
1449     } else if( is_known_inst ) {
1450       tj = to; // Keep NotNull and klass_is_exact for instance type
1451     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1452       // During the 2nd round of IterGVN, NotNull castings are removed.
1453       // Make sure the Bottom and NotNull variants alias the same.
1454       // Also, make sure exact and non-exact variants alias the same.
1455       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1456     }
1457     if (to->speculative() != NULL) {
1458       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1459     }
1460     // Canonicalize the holder of this field
1461     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1462       // First handle header references such as a LoadKlassNode, even if the
1463       // object's klass is unloaded at compile time (4965979).
1464       if (!is_known_inst) { // Do it only for non-instance types
1465         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1466       }
1467     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1468       // Static fields are in the space above the normal instance
1469       // fields in the java.lang.Class instance.
1470       if (to->klass() != ciEnv::current()->Class_klass()) {
1471         to = NULL;
1472         tj = TypeOopPtr::BOTTOM;
1473         offset = tj->offset();
1474       }
1475     } else {
1476       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1477       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1478         if( is_known_inst ) {
1479           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1480         } else {
1481           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1482         }
1483       }
1484     }
1485   }
1486 
1487   // Klass pointers to object array klasses need some flattening
1488   const TypeKlassPtr *tk = tj->isa_klassptr();
1489   if( tk ) {
1490     // If we are referencing a field within a Klass, we need
1491     // to assume the worst case of an Object.  Both exact and
1492     // inexact types must flatten to the same alias class so
1493     // use NotNull as the PTR.
1494     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1495 
1496       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1497                                    TypeKlassPtr::OBJECT->klass(),
1498                                    offset);
1499     }
1500 
1501     ciKlass* klass = tk->klass();
1502     if( klass->is_obj_array_klass() ) {
1503       ciKlass* k = TypeAryPtr::OOPS->klass();
1504       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1505         k = TypeInstPtr::BOTTOM->klass();
1506       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1507     }
1508 
1509     // Check for precise loads from the primary supertype array and force them
1510     // to the supertype cache alias index.  Check for generic array loads from
1511     // the primary supertype array and also force them to the supertype cache
1512     // alias index.  Since the same load can reach both, we need to merge
1513     // these 2 disparate memories into the same alias class.  Since the
1514     // primary supertype array is read-only, there's no chance of confusion
1515     // where we bypass an array load and an array store.
1516     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1517     if (offset == Type::OffsetBot ||
1518         (offset >= primary_supers_offset &&
1519          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1520         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1521       offset = in_bytes(Klass::secondary_super_cache_offset());
1522       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1523     }
1524   }
1525 
1526   // Flatten all Raw pointers together.
1527   if (tj->base() == Type::RawPtr)
1528     tj = TypeRawPtr::BOTTOM;
1529 
1530   if (tj->base() == Type::AnyPtr)
1531     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1532 
1533   // Flatten all to bottom for now
1534   switch( _AliasLevel ) {
1535   case 0:
1536     tj = TypePtr::BOTTOM;
1537     break;
1538   case 1:                       // Flatten to: oop, static, field or array
1539     switch (tj->base()) {
1540     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1541     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1542     case Type::AryPtr:   // do not distinguish arrays at all
1543     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1544     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1545     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1546     default: ShouldNotReachHere();
1547     }
1548     break;
1549   case 2:                       // No collapsing at level 2; keep all splits
1550   case 3:                       // No collapsing at level 3; keep all splits
1551     break;
1552   default:
1553     Unimplemented();
1554   }
1555 
1556   offset = tj->offset();
1557   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1558 
1559   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1560           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1561           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1562           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1563           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1564           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1565           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1566           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1567   assert( tj->ptr() != TypePtr::TopPTR &&
1568           tj->ptr() != TypePtr::AnyNull &&
1569           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1570 //    assert( tj->ptr() != TypePtr::Constant ||
1571 //            tj->base() == Type::RawPtr ||
1572 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1573 
1574   return tj;
1575 }
1576 
1577 void Compile::AliasType::Init(int i, const TypePtr* at) {
1578   _index = i;
1579   _adr_type = at;
1580   _field = NULL;
1581   _element = NULL;
1582   _is_rewritable = true; // default
1583   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1584   if (atoop != NULL && atoop->is_known_instance()) {
1585     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1586     _general_index = Compile::current()->get_alias_index(gt);
1587   } else {
1588     _general_index = 0;
1589   }
1590 }
1591 
1592 //---------------------------------print_on------------------------------------
1593 #ifndef PRODUCT
1594 void Compile::AliasType::print_on(outputStream* st) {
1595   if (index() < 10)
1596         st->print("@ <%d> ", index());
1597   else  st->print("@ <%d>",  index());
1598   st->print(is_rewritable() ? "   " : " RO");
1599   int offset = adr_type()->offset();
1600   if (offset == Type::OffsetBot)
1601         st->print(" +any");
1602   else  st->print(" +%-3d", offset);
1603   st->print(" in ");
1604   adr_type()->dump_on(st);
1605   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1606   if (field() != NULL && tjp) {
1607     if (tjp->klass()  != field()->holder() ||
1608         tjp->offset() != field()->offset_in_bytes()) {
1609       st->print(" != ");
1610       field()->print();
1611       st->print(" ***");
1612     }
1613   }
1614 }
1615 
1616 void print_alias_types() {
1617   Compile* C = Compile::current();
1618   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1619   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1620     C->alias_type(idx)->print_on(tty);
1621     tty->cr();
1622   }
1623 }
1624 #endif
1625 
1626 
1627 //----------------------------probe_alias_cache--------------------------------
1628 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1629   intptr_t key = (intptr_t) adr_type;
1630   key ^= key >> logAliasCacheSize;
1631   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1632 }
1633 
1634 
1635 //-----------------------------grow_alias_types--------------------------------
1636 void Compile::grow_alias_types() {
1637   const int old_ats  = _max_alias_types; // how many before?
1638   const int new_ats  = old_ats;          // how many more?
1639   const int grow_ats = old_ats+new_ats;  // how many now?
1640   _max_alias_types = grow_ats;
1641   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1642   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1643   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1644   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1645 }
1646 
1647 
1648 //--------------------------------find_alias_type------------------------------
1649 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1650   if (_AliasLevel == 0)
1651     return alias_type(AliasIdxBot);
1652 
1653   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1654   if (ace->_adr_type == adr_type) {
1655     return alias_type(ace->_index);
1656   }
1657 
1658   // Handle special cases.
1659   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1660   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1661 
1662   // Do it the slow way.
1663   const TypePtr* flat = flatten_alias_type(adr_type);
1664 
1665 #ifdef ASSERT
1666   assert(flat == flatten_alias_type(flat), "idempotent");
1667   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1668   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1669     const TypeOopPtr* foop = flat->is_oopptr();
1670     // Scalarizable allocations have exact klass always.
1671     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1672     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1673     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1674   }
1675   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1676 #endif
1677 
1678   int idx = AliasIdxTop;
1679   for (int i = 0; i < num_alias_types(); i++) {
1680     if (alias_type(i)->adr_type() == flat) {
1681       idx = i;
1682       break;
1683     }
1684   }
1685 
1686   if (idx == AliasIdxTop) {
1687     if (no_create)  return NULL;
1688     // Grow the array if necessary.
1689     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1690     // Add a new alias type.
1691     idx = _num_alias_types++;
1692     _alias_types[idx]->Init(idx, flat);
1693     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1694     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1695     if (flat->isa_instptr()) {
1696       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1697           && flat->is_instptr()->klass() == env()->Class_klass())
1698         alias_type(idx)->set_rewritable(false);
1699     }
1700     if (flat->isa_aryptr()) {
1701 #ifdef ASSERT
1702       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1703       // (T_BYTE has the weakest alignment and size restrictions...)
1704       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1705 #endif
1706       if (flat->offset() == TypePtr::OffsetBot) {
1707         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1708       }
1709     }
1710     if (flat->isa_klassptr()) {
1711       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1712         alias_type(idx)->set_rewritable(false);
1713       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1714         alias_type(idx)->set_rewritable(false);
1715       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1716         alias_type(idx)->set_rewritable(false);
1717       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1718         alias_type(idx)->set_rewritable(false);
1719     }
1720     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1721     // but the base pointer type is not distinctive enough to identify
1722     // references into JavaThread.)
1723 
1724     // Check for final fields.
1725     const TypeInstPtr* tinst = flat->isa_instptr();
1726     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1727       ciField* field;
1728       if (tinst->const_oop() != NULL &&
1729           tinst->klass() == ciEnv::current()->Class_klass() &&
1730           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1731         // static field
1732         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1733         field = k->get_field_by_offset(tinst->offset(), true);
1734       } else {
1735         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1736         field = k->get_field_by_offset(tinst->offset(), false);
1737       }
1738       assert(field == NULL ||
1739              original_field == NULL ||
1740              (field->holder() == original_field->holder() &&
1741               field->offset() == original_field->offset() &&
1742               field->is_static() == original_field->is_static()), "wrong field?");
1743       // Set field() and is_rewritable() attributes.
1744       if (field != NULL)  alias_type(idx)->set_field(field);
1745     }
1746   }
1747 
1748   // Fill the cache for next time.
1749   ace->_adr_type = adr_type;
1750   ace->_index    = idx;
1751   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1752 
1753   // Might as well try to fill the cache for the flattened version, too.
1754   AliasCacheEntry* face = probe_alias_cache(flat);
1755   if (face->_adr_type == NULL) {
1756     face->_adr_type = flat;
1757     face->_index    = idx;
1758     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1759   }
1760 
1761   return alias_type(idx);
1762 }
1763 
1764 
1765 Compile::AliasType* Compile::alias_type(ciField* field) {
1766   const TypeOopPtr* t;
1767   if (field->is_static())
1768     t = TypeInstPtr::make(field->holder()->java_mirror());
1769   else
1770     t = TypeOopPtr::make_from_klass_raw(field->holder());
1771   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1772   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1773   return atp;
1774 }
1775 
1776 
1777 //------------------------------have_alias_type--------------------------------
1778 bool Compile::have_alias_type(const TypePtr* adr_type) {
1779   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1780   if (ace->_adr_type == adr_type) {
1781     return true;
1782   }
1783 
1784   // Handle special cases.
1785   if (adr_type == NULL)             return true;
1786   if (adr_type == TypePtr::BOTTOM)  return true;
1787 
1788   return find_alias_type(adr_type, true, NULL) != NULL;
1789 }
1790 
1791 //-----------------------------must_alias--------------------------------------
1792 // True if all values of the given address type are in the given alias category.
1793 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1794   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1795   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1796   if (alias_idx == AliasIdxTop)         return false; // the empty category
1797   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1798 
1799   // the only remaining possible overlap is identity
1800   int adr_idx = get_alias_index(adr_type);
1801   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1802   assert(adr_idx == alias_idx ||
1803          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1804           && adr_type                       != TypeOopPtr::BOTTOM),
1805          "should not be testing for overlap with an unsafe pointer");
1806   return adr_idx == alias_idx;
1807 }
1808 
1809 //------------------------------can_alias--------------------------------------
1810 // True if any values of the given address type are in the given alias category.
1811 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1812   if (alias_idx == AliasIdxTop)         return false; // the empty category
1813   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1814   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1815   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1816 
1817   // the only remaining possible overlap is identity
1818   int adr_idx = get_alias_index(adr_type);
1819   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1820   return adr_idx == alias_idx;
1821 }
1822 
1823 
1824 
1825 //---------------------------pop_warm_call-------------------------------------
1826 WarmCallInfo* Compile::pop_warm_call() {
1827   WarmCallInfo* wci = _warm_calls;
1828   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1829   return wci;
1830 }
1831 
1832 //----------------------------Inline_Warm--------------------------------------
1833 int Compile::Inline_Warm() {
1834   // If there is room, try to inline some more warm call sites.
1835   // %%% Do a graph index compaction pass when we think we're out of space?
1836   if (!InlineWarmCalls)  return 0;
1837 
1838   int calls_made_hot = 0;
1839   int room_to_grow   = NodeCountInliningCutoff - unique();
1840   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1841   int amount_grown   = 0;
1842   WarmCallInfo* call;
1843   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1844     int est_size = (int)call->size();
1845     if (est_size > (room_to_grow - amount_grown)) {
1846       // This one won't fit anyway.  Get rid of it.
1847       call->make_cold();
1848       continue;
1849     }
1850     call->make_hot();
1851     calls_made_hot++;
1852     amount_grown   += est_size;
1853     amount_to_grow -= est_size;
1854   }
1855 
1856   if (calls_made_hot > 0)  set_major_progress();
1857   return calls_made_hot;
1858 }
1859 
1860 
1861 //----------------------------Finish_Warm--------------------------------------
1862 void Compile::Finish_Warm() {
1863   if (!InlineWarmCalls)  return;
1864   if (failing())  return;
1865   if (warm_calls() == NULL)  return;
1866 
1867   // Clean up loose ends, if we are out of space for inlining.
1868   WarmCallInfo* call;
1869   while ((call = pop_warm_call()) != NULL) {
1870     call->make_cold();
1871   }
1872 }
1873 
1874 //---------------------cleanup_loop_predicates-----------------------
1875 // Remove the opaque nodes that protect the predicates so that all unused
1876 // checks and uncommon_traps will be eliminated from the ideal graph
1877 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1878   if (predicate_count()==0) return;
1879   for (int i = predicate_count(); i > 0; i--) {
1880     Node * n = predicate_opaque1_node(i-1);
1881     assert(n->Opcode() == Op_Opaque1, "must be");
1882     igvn.replace_node(n, n->in(1));
1883   }
1884   assert(predicate_count()==0, "should be clean!");
1885 }
1886 
1887 // StringOpts and late inlining of string methods
1888 void Compile::inline_string_calls(bool parse_time) {
1889   {
1890     // remove useless nodes to make the usage analysis simpler
1891     ResourceMark rm;
1892     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1893   }
1894 
1895   {
1896     ResourceMark rm;
1897     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1898     PhaseStringOpts pso(initial_gvn(), for_igvn());
1899     print_method(PHASE_AFTER_STRINGOPTS, 3);
1900   }
1901 
1902   // now inline anything that we skipped the first time around
1903   if (!parse_time) {
1904     _late_inlines_pos = _late_inlines.length();
1905   }
1906 
1907   while (_string_late_inlines.length() > 0) {
1908     CallGenerator* cg = _string_late_inlines.pop();
1909     cg->do_late_inline();
1910     if (failing())  return;
1911   }
1912   _string_late_inlines.trunc_to(0);
1913 }
1914 
1915 // Late inlining of boxing methods
1916 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1917   if (_boxing_late_inlines.length() > 0) {
1918     assert(has_boxed_value(), "inconsistent");
1919 
1920     PhaseGVN* gvn = initial_gvn();
1921     set_inlining_incrementally(true);
1922 
1923     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1924     for_igvn()->clear();
1925     gvn->replace_with(&igvn);
1926 
1927     _late_inlines_pos = _late_inlines.length();
1928 
1929     while (_boxing_late_inlines.length() > 0) {
1930       CallGenerator* cg = _boxing_late_inlines.pop();
1931       cg->do_late_inline();
1932       if (failing())  return;
1933     }
1934     _boxing_late_inlines.trunc_to(0);
1935 
1936     {
1937       ResourceMark rm;
1938       PhaseRemoveUseless pru(gvn, for_igvn());
1939     }
1940 
1941     igvn = PhaseIterGVN(gvn);
1942     igvn.optimize();
1943 
1944     set_inlining_progress(false);
1945     set_inlining_incrementally(false);
1946   }
1947 }
1948 
1949 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1950   assert(IncrementalInline, "incremental inlining should be on");
1951   PhaseGVN* gvn = initial_gvn();
1952 
1953   set_inlining_progress(false);
1954   for_igvn()->clear();
1955   gvn->replace_with(&igvn);
1956 
1957   int i = 0;
1958 
1959   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1960     CallGenerator* cg = _late_inlines.at(i);
1961     _late_inlines_pos = i+1;
1962     cg->do_late_inline();
1963     if (failing())  return;
1964   }
1965   int j = 0;
1966   for (; i < _late_inlines.length(); i++, j++) {
1967     _late_inlines.at_put(j, _late_inlines.at(i));
1968   }
1969   _late_inlines.trunc_to(j);
1970 
1971   {
1972     ResourceMark rm;
1973     PhaseRemoveUseless pru(gvn, for_igvn());
1974   }
1975 
1976   igvn = PhaseIterGVN(gvn);
1977 }
1978 
1979 // Perform incremental inlining until bound on number of live nodes is reached
1980 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1981   PhaseGVN* gvn = initial_gvn();
1982 
1983   set_inlining_incrementally(true);
1984   set_inlining_progress(true);
1985   uint low_live_nodes = 0;
1986 
1987   while(inlining_progress() && _late_inlines.length() > 0) {
1988 
1989     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1990       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1991         // PhaseIdealLoop is expensive so we only try it once we are
1992         // out of live nodes and we only try it again if the previous
1993         // helped got the number of nodes down significantly
1994         PhaseIdealLoop ideal_loop( igvn, false, true );
1995         if (failing())  return;
1996         low_live_nodes = live_nodes();
1997         _major_progress = true;
1998       }
1999 
2000       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2001         break;
2002       }
2003     }
2004 
2005     inline_incrementally_one(igvn);
2006 
2007     if (failing())  return;
2008 
2009     igvn.optimize();
2010 
2011     if (failing())  return;
2012   }
2013 
2014   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2015 
2016   if (_string_late_inlines.length() > 0) {
2017     assert(has_stringbuilder(), "inconsistent");
2018     for_igvn()->clear();
2019     initial_gvn()->replace_with(&igvn);
2020 
2021     inline_string_calls(false);
2022 
2023     if (failing())  return;
2024 
2025     {
2026       ResourceMark rm;
2027       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2028     }
2029 
2030     igvn = PhaseIterGVN(gvn);
2031 
2032     igvn.optimize();
2033   }
2034 
2035   set_inlining_incrementally(false);
2036 }
2037 
2038 
2039 //------------------------------Optimize---------------------------------------
2040 // Given a graph, optimize it.
2041 void Compile::Optimize() {
2042   TracePhase t1("optimizer", &_t_optimizer, true);
2043 
2044 #ifndef PRODUCT
2045   if (env()->break_at_compile()) {
2046     BREAKPOINT;
2047   }
2048 
2049 #endif
2050 
2051   ResourceMark rm;
2052   int          loop_opts_cnt;
2053 
2054   NOT_PRODUCT( verify_graph_edges(); )
2055 
2056   print_method(PHASE_AFTER_PARSING);
2057 
2058  {
2059   // Iterative Global Value Numbering, including ideal transforms
2060   // Initialize IterGVN with types and values from parse-time GVN
2061   PhaseIterGVN igvn(initial_gvn());
2062   {
2063     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
2064     igvn.optimize();
2065   }
2066 
2067   print_method(PHASE_ITER_GVN1, 2);
2068 
2069   if (failing())  return;
2070 
2071   {
2072     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2073     inline_incrementally(igvn);
2074   }
2075 
2076   print_method(PHASE_INCREMENTAL_INLINE, 2);
2077 
2078   if (failing())  return;
2079 
2080   if (eliminate_boxing()) {
2081     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2082     // Inline valueOf() methods now.
2083     inline_boxing_calls(igvn);
2084 
2085     if (AlwaysIncrementalInline) {
2086       inline_incrementally(igvn);
2087     }
2088 
2089     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2090 
2091     if (failing())  return;
2092   }
2093 
2094   // Remove the speculative part of types and clean up the graph from
2095   // the extra CastPP nodes whose only purpose is to carry them. Do
2096   // that early so that optimizations are not disrupted by the extra
2097   // CastPP nodes.
2098   remove_speculative_types(igvn);
2099 
2100   // No more new expensive nodes will be added to the list from here
2101   // so keep only the actual candidates for optimizations.
2102   cleanup_expensive_nodes(igvn);
2103 
2104   // Perform escape analysis
2105   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2106     if (has_loops()) {
2107       // Cleanup graph (remove dead nodes).
2108       TracePhase t2("idealLoop", &_t_idealLoop, true);
2109       PhaseIdealLoop ideal_loop( igvn, false, true );
2110       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2111       if (failing())  return;
2112     }
2113     ConnectionGraph::do_analysis(this, &igvn);
2114 
2115     if (failing())  return;
2116 
2117     // Optimize out fields loads from scalar replaceable allocations.
2118     igvn.optimize();
2119     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2120 
2121     if (failing())  return;
2122 
2123     if (congraph() != NULL && macro_count() > 0) {
2124       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2125       PhaseMacroExpand mexp(igvn);
2126       mexp.eliminate_macro_nodes();
2127       igvn.set_delay_transform(false);
2128 
2129       igvn.optimize();
2130       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2131 
2132       if (failing())  return;
2133     }
2134   }
2135 
2136   // Loop transforms on the ideal graph.  Range Check Elimination,
2137   // peeling, unrolling, etc.
2138 
2139   // Set loop opts counter
2140   loop_opts_cnt = num_loop_opts();
2141   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2142     {
2143       TracePhase t2("idealLoop", &_t_idealLoop, true);
2144       PhaseIdealLoop ideal_loop( igvn, true );
2145       loop_opts_cnt--;
2146       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2147       if (failing())  return;
2148     }
2149     // Loop opts pass if partial peeling occurred in previous pass
2150     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2151       TracePhase t3("idealLoop", &_t_idealLoop, true);
2152       PhaseIdealLoop ideal_loop( igvn, false );
2153       loop_opts_cnt--;
2154       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2155       if (failing())  return;
2156     }
2157     // Loop opts pass for loop-unrolling before CCP
2158     if(major_progress() && (loop_opts_cnt > 0)) {
2159       TracePhase t4("idealLoop", &_t_idealLoop, true);
2160       PhaseIdealLoop ideal_loop( igvn, false );
2161       loop_opts_cnt--;
2162       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2163     }
2164     if (!failing()) {
2165       // Verify that last round of loop opts produced a valid graph
2166       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2167       PhaseIdealLoop::verify(igvn);
2168     }
2169   }
2170   if (failing())  return;
2171 
2172   // Conditional Constant Propagation;
2173   PhaseCCP ccp( &igvn );
2174   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2175   {
2176     TracePhase t2("ccp", &_t_ccp, true);
2177     ccp.do_transform();
2178   }
2179   print_method(PHASE_CPP1, 2);
2180 
2181   assert( true, "Break here to ccp.dump_old2new_map()");
2182 
2183   // Iterative Global Value Numbering, including ideal transforms
2184   {
2185     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2186     igvn = ccp;
2187     igvn.optimize();
2188   }
2189 
2190   print_method(PHASE_ITER_GVN2, 2);
2191 
2192   if (failing())  return;
2193 
2194   // Loop transforms on the ideal graph.  Range Check Elimination,
2195   // peeling, unrolling, etc.
2196   if(loop_opts_cnt > 0) {
2197     debug_only( int cnt = 0; );
2198     while(major_progress() && (loop_opts_cnt > 0)) {
2199       TracePhase t2("idealLoop", &_t_idealLoop, true);
2200       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2201       PhaseIdealLoop ideal_loop( igvn, true);
2202       loop_opts_cnt--;
2203       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2204       if (failing())  return;
2205     }
2206   }
2207 
2208   {
2209     // Verify that all previous optimizations produced a valid graph
2210     // at least to this point, even if no loop optimizations were done.
2211     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2212     PhaseIdealLoop::verify(igvn);
2213   }
2214 
2215   {
2216     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2217     PhaseMacroExpand  mex(igvn);
2218     if (mex.expand_macro_nodes()) {
2219       assert(failing(), "must bail out w/ explicit message");
2220       return;
2221     }
2222   }
2223 
2224  } // (End scope of igvn; run destructor if necessary for asserts.)
2225 
2226   dump_inlining();
2227   // A method with only infinite loops has no edges entering loops from root
2228   {
2229     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2230     if (final_graph_reshaping()) {
2231       assert(failing(), "must bail out w/ explicit message");
2232       return;
2233     }
2234   }
2235 
2236   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2237 }
2238 
2239 
2240 //------------------------------Code_Gen---------------------------------------
2241 // Given a graph, generate code for it
2242 void Compile::Code_Gen() {
2243   if (failing()) {
2244     return;
2245   }
2246 
2247   // Perform instruction selection.  You might think we could reclaim Matcher
2248   // memory PDQ, but actually the Matcher is used in generating spill code.
2249   // Internals of the Matcher (including some VectorSets) must remain live
2250   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2251   // set a bit in reclaimed memory.
2252 
2253   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2254   // nodes.  Mapping is only valid at the root of each matched subtree.
2255   NOT_PRODUCT( verify_graph_edges(); )
2256 
2257   Matcher matcher;
2258   _matcher = &matcher;
2259   {
2260     TracePhase t2("matcher", &_t_matcher, true);
2261     matcher.match();
2262   }
2263   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2264   // nodes.  Mapping is only valid at the root of each matched subtree.
2265   NOT_PRODUCT( verify_graph_edges(); )
2266 
2267   // If you have too many nodes, or if matching has failed, bail out
2268   check_node_count(0, "out of nodes matching instructions");
2269   if (failing()) {
2270     return;
2271   }
2272 
2273   // Build a proper-looking CFG
2274   PhaseCFG cfg(node_arena(), root(), matcher);
2275   _cfg = &cfg;
2276   {
2277     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2278     bool success = cfg.do_global_code_motion();
2279     if (!success) {
2280       return;
2281     }
2282 
2283     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2284     NOT_PRODUCT( verify_graph_edges(); )
2285     debug_only( cfg.verify(); )
2286   }
2287 
2288   PhaseChaitin regalloc(unique(), cfg, matcher);
2289   _regalloc = &regalloc;
2290   {
2291     TracePhase t2("regalloc", &_t_registerAllocation, true);
2292     // Perform register allocation.  After Chaitin, use-def chains are
2293     // no longer accurate (at spill code) and so must be ignored.
2294     // Node->LRG->reg mappings are still accurate.
2295     _regalloc->Register_Allocate();
2296 
2297     // Bail out if the allocator builds too many nodes
2298     if (failing()) {
2299       return;
2300     }
2301   }
2302 
2303   // Prior to register allocation we kept empty basic blocks in case the
2304   // the allocator needed a place to spill.  After register allocation we
2305   // are not adding any new instructions.  If any basic block is empty, we
2306   // can now safely remove it.
2307   {
2308     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2309     cfg.remove_empty_blocks();
2310     if (do_freq_based_layout()) {
2311       PhaseBlockLayout layout(cfg);
2312     } else {
2313       cfg.set_loop_alignment();
2314     }
2315     cfg.fixup_flow();
2316   }
2317 
2318   // Apply peephole optimizations
2319   if( OptoPeephole ) {
2320     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2321     PhasePeephole peep( _regalloc, cfg);
2322     peep.do_transform();
2323   }
2324 
2325   // Do late expand if CPU requires this.
2326   if (Matcher::require_postalloc_expand) {
2327     NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
2328     cfg.postalloc_expand(_regalloc);
2329   }
2330 
2331   // Convert Nodes to instruction bits in a buffer
2332   {
2333     // %%%% workspace merge brought two timers together for one job
2334     TracePhase t2a("output", &_t_output, true);
2335     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2336     Output();
2337   }
2338 
2339   print_method(PHASE_FINAL_CODE);
2340 
2341   // He's dead, Jim.
2342   _cfg     = (PhaseCFG*)0xdeadbeef;
2343   _regalloc = (PhaseChaitin*)0xdeadbeef;
2344 }
2345 
2346 
2347 //------------------------------dump_asm---------------------------------------
2348 // Dump formatted assembly
2349 #ifndef PRODUCT
2350 void Compile::dump_asm(int *pcs, uint pc_limit) {
2351   bool cut_short = false;
2352   tty->print_cr("#");
2353   tty->print("#  ");  _tf->dump();  tty->cr();
2354   tty->print_cr("#");
2355 
2356   // For all blocks
2357   int pc = 0x0;                 // Program counter
2358   char starts_bundle = ' ';
2359   _regalloc->dump_frame();
2360 
2361   Node *n = NULL;
2362   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2363     if (VMThread::should_terminate()) {
2364       cut_short = true;
2365       break;
2366     }
2367     Block* block = _cfg->get_block(i);
2368     if (block->is_connector() && !Verbose) {
2369       continue;
2370     }
2371     n = block->head();
2372     if (pcs && n->_idx < pc_limit) {
2373       tty->print("%3.3x   ", pcs[n->_idx]);
2374     } else {
2375       tty->print("      ");
2376     }
2377     block->dump_head(_cfg);
2378     if (block->is_connector()) {
2379       tty->print_cr("        # Empty connector block");
2380     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2381       tty->print_cr("        # Block is sole successor of call");
2382     }
2383 
2384     // For all instructions
2385     Node *delay = NULL;
2386     for (uint j = 0; j < block->number_of_nodes(); j++) {
2387       if (VMThread::should_terminate()) {
2388         cut_short = true;
2389         break;
2390       }
2391       n = block->get_node(j);
2392       if (valid_bundle_info(n)) {
2393         Bundle* bundle = node_bundling(n);
2394         if (bundle->used_in_unconditional_delay()) {
2395           delay = n;
2396           continue;
2397         }
2398         if (bundle->starts_bundle()) {
2399           starts_bundle = '+';
2400         }
2401       }
2402 
2403       if (WizardMode) {
2404         n->dump();
2405       }
2406 
2407       if( !n->is_Region() &&    // Dont print in the Assembly
2408           !n->is_Phi() &&       // a few noisely useless nodes
2409           !n->is_Proj() &&
2410           !n->is_MachTemp() &&
2411           !n->is_SafePointScalarObject() &&
2412           !n->is_Catch() &&     // Would be nice to print exception table targets
2413           !n->is_MergeMem() &&  // Not very interesting
2414           !n->is_top() &&       // Debug info table constants
2415           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2416           ) {
2417         if (pcs && n->_idx < pc_limit)
2418           tty->print("%3.3x", pcs[n->_idx]);
2419         else
2420           tty->print("   ");
2421         tty->print(" %c ", starts_bundle);
2422         starts_bundle = ' ';
2423         tty->print("\t");
2424         n->format(_regalloc, tty);
2425         tty->cr();
2426       }
2427 
2428       // If we have an instruction with a delay slot, and have seen a delay,
2429       // then back up and print it
2430       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2431         assert(delay != NULL, "no unconditional delay instruction");
2432         if (WizardMode) delay->dump();
2433 
2434         if (node_bundling(delay)->starts_bundle())
2435           starts_bundle = '+';
2436         if (pcs && n->_idx < pc_limit)
2437           tty->print("%3.3x", pcs[n->_idx]);
2438         else
2439           tty->print("   ");
2440         tty->print(" %c ", starts_bundle);
2441         starts_bundle = ' ';
2442         tty->print("\t");
2443         delay->format(_regalloc, tty);
2444         tty->cr();
2445         delay = NULL;
2446       }
2447 
2448       // Dump the exception table as well
2449       if( n->is_Catch() && (Verbose || WizardMode) ) {
2450         // Print the exception table for this offset
2451         _handler_table.print_subtable_for(pc);
2452       }
2453     }
2454 
2455     if (pcs && n->_idx < pc_limit)
2456       tty->print_cr("%3.3x", pcs[n->_idx]);
2457     else
2458       tty->cr();
2459 
2460     assert(cut_short || delay == NULL, "no unconditional delay branch");
2461 
2462   } // End of per-block dump
2463   tty->cr();
2464 
2465   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2466 }
2467 #endif
2468 
2469 //------------------------------Final_Reshape_Counts---------------------------
2470 // This class defines counters to help identify when a method
2471 // may/must be executed using hardware with only 24-bit precision.
2472 struct Final_Reshape_Counts : public StackObj {
2473   int  _call_count;             // count non-inlined 'common' calls
2474   int  _float_count;            // count float ops requiring 24-bit precision
2475   int  _double_count;           // count double ops requiring more precision
2476   int  _java_call_count;        // count non-inlined 'java' calls
2477   int  _inner_loop_count;       // count loops which need alignment
2478   VectorSet _visited;           // Visitation flags
2479   Node_List _tests;             // Set of IfNodes & PCTableNodes
2480 
2481   Final_Reshape_Counts() :
2482     _call_count(0), _float_count(0), _double_count(0),
2483     _java_call_count(0), _inner_loop_count(0),
2484     _visited( Thread::current()->resource_area() ) { }
2485 
2486   void inc_call_count  () { _call_count  ++; }
2487   void inc_float_count () { _float_count ++; }
2488   void inc_double_count() { _double_count++; }
2489   void inc_java_call_count() { _java_call_count++; }
2490   void inc_inner_loop_count() { _inner_loop_count++; }
2491 
2492   int  get_call_count  () const { return _call_count  ; }
2493   int  get_float_count () const { return _float_count ; }
2494   int  get_double_count() const { return _double_count; }
2495   int  get_java_call_count() const { return _java_call_count; }
2496   int  get_inner_loop_count() const { return _inner_loop_count; }
2497 };
2498 
2499 #ifdef ASSERT
2500 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2501   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2502   // Make sure the offset goes inside the instance layout.
2503   return k->contains_field_offset(tp->offset());
2504   // Note that OffsetBot and OffsetTop are very negative.
2505 }
2506 #endif
2507 
2508 // Eliminate trivially redundant StoreCMs and accumulate their
2509 // precedence edges.
2510 void Compile::eliminate_redundant_card_marks(Node* n) {
2511   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2512   if (n->in(MemNode::Address)->outcnt() > 1) {
2513     // There are multiple users of the same address so it might be
2514     // possible to eliminate some of the StoreCMs
2515     Node* mem = n->in(MemNode::Memory);
2516     Node* adr = n->in(MemNode::Address);
2517     Node* val = n->in(MemNode::ValueIn);
2518     Node* prev = n;
2519     bool done = false;
2520     // Walk the chain of StoreCMs eliminating ones that match.  As
2521     // long as it's a chain of single users then the optimization is
2522     // safe.  Eliminating partially redundant StoreCMs would require
2523     // cloning copies down the other paths.
2524     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2525       if (adr == mem->in(MemNode::Address) &&
2526           val == mem->in(MemNode::ValueIn)) {
2527         // redundant StoreCM
2528         if (mem->req() > MemNode::OopStore) {
2529           // Hasn't been processed by this code yet.
2530           n->add_prec(mem->in(MemNode::OopStore));
2531         } else {
2532           // Already converted to precedence edge
2533           for (uint i = mem->req(); i < mem->len(); i++) {
2534             // Accumulate any precedence edges
2535             if (mem->in(i) != NULL) {
2536               n->add_prec(mem->in(i));
2537             }
2538           }
2539           // Everything above this point has been processed.
2540           done = true;
2541         }
2542         // Eliminate the previous StoreCM
2543         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2544         assert(mem->outcnt() == 0, "should be dead");
2545         mem->disconnect_inputs(NULL, this);
2546       } else {
2547         prev = mem;
2548       }
2549       mem = prev->in(MemNode::Memory);
2550     }
2551   }
2552 }
2553 
2554 //------------------------------final_graph_reshaping_impl----------------------
2555 // Implement items 1-5 from final_graph_reshaping below.
2556 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2557 
2558   if ( n->outcnt() == 0 ) return; // dead node
2559   uint nop = n->Opcode();
2560 
2561   // Check for 2-input instruction with "last use" on right input.
2562   // Swap to left input.  Implements item (2).
2563   if( n->req() == 3 &&          // two-input instruction
2564       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2565       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2566       n->in(2)->outcnt() == 1 &&// right use IS a last use
2567       !n->in(2)->is_Con() ) {   // right use is not a constant
2568     // Check for commutative opcode
2569     switch( nop ) {
2570     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2571     case Op_MaxI:  case Op_MinI:
2572     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2573     case Op_AndL:  case Op_XorL:  case Op_OrL:
2574     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2575       // Move "last use" input to left by swapping inputs
2576       n->swap_edges(1, 2);
2577       break;
2578     }
2579     default:
2580       break;
2581     }
2582   }
2583 
2584 #ifdef ASSERT
2585   if( n->is_Mem() ) {
2586     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2587     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2588             // oop will be recorded in oop map if load crosses safepoint
2589             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2590                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2591             "raw memory operations should have control edge");
2592   }
2593 #endif
2594   // Count FPU ops and common calls, implements item (3)
2595   switch( nop ) {
2596   // Count all float operations that may use FPU
2597   case Op_AddF:
2598   case Op_SubF:
2599   case Op_MulF:
2600   case Op_DivF:
2601   case Op_NegF:
2602   case Op_ModF:
2603   case Op_ConvI2F:
2604   case Op_ConF:
2605   case Op_CmpF:
2606   case Op_CmpF3:
2607   // case Op_ConvL2F: // longs are split into 32-bit halves
2608     frc.inc_float_count();
2609     break;
2610 
2611   case Op_ConvF2D:
2612   case Op_ConvD2F:
2613     frc.inc_float_count();
2614     frc.inc_double_count();
2615     break;
2616 
2617   // Count all double operations that may use FPU
2618   case Op_AddD:
2619   case Op_SubD:
2620   case Op_MulD:
2621   case Op_DivD:
2622   case Op_NegD:
2623   case Op_ModD:
2624   case Op_ConvI2D:
2625   case Op_ConvD2I:
2626   // case Op_ConvL2D: // handled by leaf call
2627   // case Op_ConvD2L: // handled by leaf call
2628   case Op_ConD:
2629   case Op_CmpD:
2630   case Op_CmpD3:
2631     frc.inc_double_count();
2632     break;
2633   case Op_Opaque1:              // Remove Opaque Nodes before matching
2634   case Op_Opaque2:              // Remove Opaque Nodes before matching
2635   case Op_Opaque3:
2636     n->subsume_by(n->in(1), this);
2637     break;
2638   case Op_CallStaticJava:
2639   case Op_CallJava:
2640   case Op_CallDynamicJava:
2641     frc.inc_java_call_count(); // Count java call site;
2642   case Op_CallRuntime:
2643   case Op_CallLeaf:
2644   case Op_CallLeafNoFP: {
2645     assert( n->is_Call(), "" );
2646     CallNode *call = n->as_Call();
2647     // Count call sites where the FP mode bit would have to be flipped.
2648     // Do not count uncommon runtime calls:
2649     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2650     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2651     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2652       frc.inc_call_count();   // Count the call site
2653     } else {                  // See if uncommon argument is shared
2654       Node *n = call->in(TypeFunc::Parms);
2655       int nop = n->Opcode();
2656       // Clone shared simple arguments to uncommon calls, item (1).
2657       if( n->outcnt() > 1 &&
2658           !n->is_Proj() &&
2659           nop != Op_CreateEx &&
2660           nop != Op_CheckCastPP &&
2661           nop != Op_DecodeN &&
2662           nop != Op_DecodeNKlass &&
2663           !n->is_Mem() ) {
2664         Node *x = n->clone();
2665         call->set_req( TypeFunc::Parms, x );
2666       }
2667     }
2668     break;
2669   }
2670 
2671   case Op_StoreD:
2672   case Op_LoadD:
2673   case Op_LoadD_unaligned:
2674     frc.inc_double_count();
2675     goto handle_mem;
2676   case Op_StoreF:
2677   case Op_LoadF:
2678     frc.inc_float_count();
2679     goto handle_mem;
2680 
2681   case Op_StoreCM:
2682     {
2683       // Convert OopStore dependence into precedence edge
2684       Node* prec = n->in(MemNode::OopStore);
2685       n->del_req(MemNode::OopStore);
2686       n->add_prec(prec);
2687       eliminate_redundant_card_marks(n);
2688     }
2689 
2690     // fall through
2691 
2692   case Op_StoreB:
2693   case Op_StoreC:
2694   case Op_StorePConditional:
2695   case Op_StoreI:
2696   case Op_StoreL:
2697   case Op_StoreIConditional:
2698   case Op_StoreLConditional:
2699   case Op_CompareAndSwapI:
2700   case Op_CompareAndSwapL:
2701   case Op_CompareAndSwapP:
2702   case Op_CompareAndSwapN:
2703   case Op_GetAndAddI:
2704   case Op_GetAndAddL:
2705   case Op_GetAndSetI:
2706   case Op_GetAndSetL:
2707   case Op_GetAndSetP:
2708   case Op_GetAndSetN:
2709   case Op_StoreP:
2710   case Op_StoreN:
2711   case Op_StoreNKlass:
2712   case Op_LoadB:
2713   case Op_LoadUB:
2714   case Op_LoadUS:
2715   case Op_LoadI:
2716   case Op_LoadKlass:
2717   case Op_LoadNKlass:
2718   case Op_LoadL:
2719   case Op_LoadL_unaligned:
2720   case Op_LoadPLocked:
2721   case Op_LoadP:
2722   case Op_LoadN:
2723   case Op_LoadRange:
2724   case Op_LoadS: {
2725   handle_mem:
2726 #ifdef ASSERT
2727     if( VerifyOptoOopOffsets ) {
2728       assert( n->is_Mem(), "" );
2729       MemNode *mem  = (MemNode*)n;
2730       // Check to see if address types have grounded out somehow.
2731       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2732       assert( !tp || oop_offset_is_sane(tp), "" );
2733     }
2734 #endif
2735     break;
2736   }
2737 
2738   case Op_AddP: {               // Assert sane base pointers
2739     Node *addp = n->in(AddPNode::Address);
2740     assert( !addp->is_AddP() ||
2741             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2742             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2743             "Base pointers must match" );
2744 #ifdef _LP64
2745     if ((UseCompressedOops || UseCompressedClassPointers) &&
2746         addp->Opcode() == Op_ConP &&
2747         addp == n->in(AddPNode::Base) &&
2748         n->in(AddPNode::Offset)->is_Con()) {
2749       // Use addressing with narrow klass to load with offset on x86.
2750       // On sparc loading 32-bits constant and decoding it have less
2751       // instructions (4) then load 64-bits constant (7).
2752       // Do this transformation here since IGVN will convert ConN back to ConP.
2753       const Type* t = addp->bottom_type();
2754       if (t->isa_oopptr() || t->isa_klassptr()) {
2755         Node* nn = NULL;
2756 
2757         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2758 
2759         // Look for existing ConN node of the same exact type.
2760         Node* r  = root();
2761         uint cnt = r->outcnt();
2762         for (uint i = 0; i < cnt; i++) {
2763           Node* m = r->raw_out(i);
2764           if (m!= NULL && m->Opcode() == op &&
2765               m->bottom_type()->make_ptr() == t) {
2766             nn = m;
2767             break;
2768           }
2769         }
2770         if (nn != NULL) {
2771           // Decode a narrow oop to match address
2772           // [R12 + narrow_oop_reg<<3 + offset]
2773           if (t->isa_oopptr()) {
2774             nn = new (this) DecodeNNode(nn, t);
2775           } else {
2776             nn = new (this) DecodeNKlassNode(nn, t);
2777           }
2778           n->set_req(AddPNode::Base, nn);
2779           n->set_req(AddPNode::Address, nn);
2780           if (addp->outcnt() == 0) {
2781             addp->disconnect_inputs(NULL, this);
2782           }
2783         }
2784       }
2785     }
2786 #endif
2787     break;
2788   }
2789 
2790 #ifdef _LP64
2791   case Op_CastPP:
2792     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2793       Node* in1 = n->in(1);
2794       const Type* t = n->bottom_type();
2795       Node* new_in1 = in1->clone();
2796       new_in1->as_DecodeN()->set_type(t);
2797 
2798       if (!Matcher::narrow_oop_use_complex_address()) {
2799         //
2800         // x86, ARM and friends can handle 2 adds in addressing mode
2801         // and Matcher can fold a DecodeN node into address by using
2802         // a narrow oop directly and do implicit NULL check in address:
2803         //
2804         // [R12 + narrow_oop_reg<<3 + offset]
2805         // NullCheck narrow_oop_reg
2806         //
2807         // On other platforms (Sparc) we have to keep new DecodeN node and
2808         // use it to do implicit NULL check in address:
2809         //
2810         // decode_not_null narrow_oop_reg, base_reg
2811         // [base_reg + offset]
2812         // NullCheck base_reg
2813         //
2814         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2815         // to keep the information to which NULL check the new DecodeN node
2816         // corresponds to use it as value in implicit_null_check().
2817         //
2818         new_in1->set_req(0, n->in(0));
2819       }
2820 
2821       n->subsume_by(new_in1, this);
2822       if (in1->outcnt() == 0) {
2823         in1->disconnect_inputs(NULL, this);
2824       }
2825     }
2826     break;
2827 
2828   case Op_CmpP:
2829     // Do this transformation here to preserve CmpPNode::sub() and
2830     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2831     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2832       Node* in1 = n->in(1);
2833       Node* in2 = n->in(2);
2834       if (!in1->is_DecodeNarrowPtr()) {
2835         in2 = in1;
2836         in1 = n->in(2);
2837       }
2838       assert(in1->is_DecodeNarrowPtr(), "sanity");
2839 
2840       Node* new_in2 = NULL;
2841       if (in2->is_DecodeNarrowPtr()) {
2842         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2843         new_in2 = in2->in(1);
2844       } else if (in2->Opcode() == Op_ConP) {
2845         const Type* t = in2->bottom_type();
2846         if (t == TypePtr::NULL_PTR) {
2847           assert(in1->is_DecodeN(), "compare klass to null?");
2848           // Don't convert CmpP null check into CmpN if compressed
2849           // oops implicit null check is not generated.
2850           // This will allow to generate normal oop implicit null check.
2851           if (Matcher::gen_narrow_oop_implicit_null_checks())
2852             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2853           //
2854           // This transformation together with CastPP transformation above
2855           // will generated code for implicit NULL checks for compressed oops.
2856           //
2857           // The original code after Optimize()
2858           //
2859           //    LoadN memory, narrow_oop_reg
2860           //    decode narrow_oop_reg, base_reg
2861           //    CmpP base_reg, NULL
2862           //    CastPP base_reg // NotNull
2863           //    Load [base_reg + offset], val_reg
2864           //
2865           // after these transformations will be
2866           //
2867           //    LoadN memory, narrow_oop_reg
2868           //    CmpN narrow_oop_reg, NULL
2869           //    decode_not_null narrow_oop_reg, base_reg
2870           //    Load [base_reg + offset], val_reg
2871           //
2872           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2873           // since narrow oops can be used in debug info now (see the code in
2874           // final_graph_reshaping_walk()).
2875           //
2876           // At the end the code will be matched to
2877           // on x86:
2878           //
2879           //    Load_narrow_oop memory, narrow_oop_reg
2880           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2881           //    NullCheck narrow_oop_reg
2882           //
2883           // and on sparc:
2884           //
2885           //    Load_narrow_oop memory, narrow_oop_reg
2886           //    decode_not_null narrow_oop_reg, base_reg
2887           //    Load [base_reg + offset], val_reg
2888           //    NullCheck base_reg
2889           //
2890         } else if (t->isa_oopptr()) {
2891           new_in2 = ConNode::make(this, t->make_narrowoop());
2892         } else if (t->isa_klassptr()) {
2893           new_in2 = ConNode::make(this, t->make_narrowklass());
2894         }
2895       }
2896       if (new_in2 != NULL) {
2897         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2898         n->subsume_by(cmpN, this);
2899         if (in1->outcnt() == 0) {
2900           in1->disconnect_inputs(NULL, this);
2901         }
2902         if (in2->outcnt() == 0) {
2903           in2->disconnect_inputs(NULL, this);
2904         }
2905       }
2906     }
2907     break;
2908 
2909   case Op_DecodeN:
2910   case Op_DecodeNKlass:
2911     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2912     // DecodeN could be pinned when it can't be fold into
2913     // an address expression, see the code for Op_CastPP above.
2914     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2915     break;
2916 
2917   case Op_EncodeP:
2918   case Op_EncodePKlass: {
2919     Node* in1 = n->in(1);
2920     if (in1->is_DecodeNarrowPtr()) {
2921       n->subsume_by(in1->in(1), this);
2922     } else if (in1->Opcode() == Op_ConP) {
2923       const Type* t = in1->bottom_type();
2924       if (t == TypePtr::NULL_PTR) {
2925         assert(t->isa_oopptr(), "null klass?");
2926         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2927       } else if (t->isa_oopptr()) {
2928         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2929       } else if (t->isa_klassptr()) {
2930         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2931       }
2932     }
2933     if (in1->outcnt() == 0) {
2934       in1->disconnect_inputs(NULL, this);
2935     }
2936     break;
2937   }
2938 
2939   case Op_Proj: {
2940     if (OptimizeStringConcat) {
2941       ProjNode* p = n->as_Proj();
2942       if (p->_is_io_use) {
2943         // Separate projections were used for the exception path which
2944         // are normally removed by a late inline.  If it wasn't inlined
2945         // then they will hang around and should just be replaced with
2946         // the original one.
2947         Node* proj = NULL;
2948         // Replace with just one
2949         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2950           Node *use = i.get();
2951           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2952             proj = use;
2953             break;
2954           }
2955         }
2956         assert(proj != NULL, "must be found");
2957         p->subsume_by(proj, this);
2958       }
2959     }
2960     break;
2961   }
2962 
2963   case Op_Phi:
2964     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2965       // The EncodeP optimization may create Phi with the same edges
2966       // for all paths. It is not handled well by Register Allocator.
2967       Node* unique_in = n->in(1);
2968       assert(unique_in != NULL, "");
2969       uint cnt = n->req();
2970       for (uint i = 2; i < cnt; i++) {
2971         Node* m = n->in(i);
2972         assert(m != NULL, "");
2973         if (unique_in != m)
2974           unique_in = NULL;
2975       }
2976       if (unique_in != NULL) {
2977         n->subsume_by(unique_in, this);
2978       }
2979     }
2980     break;
2981 
2982 #endif
2983 
2984   case Op_ModI:
2985     if (UseDivMod) {
2986       // Check if a%b and a/b both exist
2987       Node* d = n->find_similar(Op_DivI);
2988       if (d) {
2989         // Replace them with a fused divmod if supported
2990         if (Matcher::has_match_rule(Op_DivModI)) {
2991           DivModINode* divmod = DivModINode::make(this, n);
2992           d->subsume_by(divmod->div_proj(), this);
2993           n->subsume_by(divmod->mod_proj(), this);
2994         } else {
2995           // replace a%b with a-((a/b)*b)
2996           Node* mult = new (this) MulINode(d, d->in(2));
2997           Node* sub  = new (this) SubINode(d->in(1), mult);
2998           n->subsume_by(sub, this);
2999         }
3000       }
3001     }
3002     break;
3003 
3004   case Op_ModL:
3005     if (UseDivMod) {
3006       // Check if a%b and a/b both exist
3007       Node* d = n->find_similar(Op_DivL);
3008       if (d) {
3009         // Replace them with a fused divmod if supported
3010         if (Matcher::has_match_rule(Op_DivModL)) {
3011           DivModLNode* divmod = DivModLNode::make(this, n);
3012           d->subsume_by(divmod->div_proj(), this);
3013           n->subsume_by(divmod->mod_proj(), this);
3014         } else {
3015           // replace a%b with a-((a/b)*b)
3016           Node* mult = new (this) MulLNode(d, d->in(2));
3017           Node* sub  = new (this) SubLNode(d->in(1), mult);
3018           n->subsume_by(sub, this);
3019         }
3020       }
3021     }
3022     break;
3023 
3024   case Op_LoadVector:
3025   case Op_StoreVector:
3026     break;
3027 
3028   case Op_PackB:
3029   case Op_PackS:
3030   case Op_PackI:
3031   case Op_PackF:
3032   case Op_PackL:
3033   case Op_PackD:
3034     if (n->req()-1 > 2) {
3035       // Replace many operand PackNodes with a binary tree for matching
3036       PackNode* p = (PackNode*) n;
3037       Node* btp = p->binary_tree_pack(this, 1, n->req());
3038       n->subsume_by(btp, this);
3039     }
3040     break;
3041   case Op_Loop:
3042   case Op_CountedLoop:
3043     if (n->as_Loop()->is_inner_loop()) {
3044       frc.inc_inner_loop_count();
3045     }
3046     break;
3047   case Op_LShiftI:
3048   case Op_RShiftI:
3049   case Op_URShiftI:
3050   case Op_LShiftL:
3051   case Op_RShiftL:
3052   case Op_URShiftL:
3053     if (Matcher::need_masked_shift_count) {
3054       // The cpu's shift instructions don't restrict the count to the
3055       // lower 5/6 bits. We need to do the masking ourselves.
3056       Node* in2 = n->in(2);
3057       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3058       const TypeInt* t = in2->find_int_type();
3059       if (t != NULL && t->is_con()) {
3060         juint shift = t->get_con();
3061         if (shift > mask) { // Unsigned cmp
3062           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
3063         }
3064       } else {
3065         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3066           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
3067           n->set_req(2, shift);
3068         }
3069       }
3070       if (in2->outcnt() == 0) { // Remove dead node
3071         in2->disconnect_inputs(NULL, this);
3072       }
3073     }
3074     break;
3075   case Op_MemBarStoreStore:
3076   case Op_MemBarRelease:
3077     // Break the link with AllocateNode: it is no longer useful and
3078     // confuses register allocation.
3079     if (n->req() > MemBarNode::Precedent) {
3080       n->set_req(MemBarNode::Precedent, top());
3081     }
3082     break;
3083   default:
3084     assert( !n->is_Call(), "" );
3085     assert( !n->is_Mem(), "" );
3086     break;
3087   }
3088 
3089   // Collect CFG split points
3090   if (n->is_MultiBranch())
3091     frc._tests.push(n);
3092 }
3093 
3094 //------------------------------final_graph_reshaping_walk---------------------
3095 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3096 // requires that the walk visits a node's inputs before visiting the node.
3097 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3098   ResourceArea *area = Thread::current()->resource_area();
3099   Unique_Node_List sfpt(area);
3100 
3101   frc._visited.set(root->_idx); // first, mark node as visited
3102   uint cnt = root->req();
3103   Node *n = root;
3104   uint  i = 0;
3105   while (true) {
3106     if (i < cnt) {
3107       // Place all non-visited non-null inputs onto stack
3108       Node* m = n->in(i);
3109       ++i;
3110       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3111         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3112           // compute worst case interpreter size in case of a deoptimization
3113           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3114 
3115           sfpt.push(m);
3116         }
3117         cnt = m->req();
3118         nstack.push(n, i); // put on stack parent and next input's index
3119         n = m;
3120         i = 0;
3121       }
3122     } else {
3123       // Now do post-visit work
3124       final_graph_reshaping_impl( n, frc );
3125       if (nstack.is_empty())
3126         break;             // finished
3127       n = nstack.node();   // Get node from stack
3128       cnt = n->req();
3129       i = nstack.index();
3130       nstack.pop();        // Shift to the next node on stack
3131     }
3132   }
3133 
3134   // Skip next transformation if compressed oops are not used.
3135   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3136       (!UseCompressedOops && !UseCompressedClassPointers))
3137     return;
3138 
3139   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3140   // It could be done for an uncommon traps or any safepoints/calls
3141   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3142   while (sfpt.size() > 0) {
3143     n = sfpt.pop();
3144     JVMState *jvms = n->as_SafePoint()->jvms();
3145     assert(jvms != NULL, "sanity");
3146     int start = jvms->debug_start();
3147     int end   = n->req();
3148     bool is_uncommon = (n->is_CallStaticJava() &&
3149                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3150     for (int j = start; j < end; j++) {
3151       Node* in = n->in(j);
3152       if (in->is_DecodeNarrowPtr()) {
3153         bool safe_to_skip = true;
3154         if (!is_uncommon ) {
3155           // Is it safe to skip?
3156           for (uint i = 0; i < in->outcnt(); i++) {
3157             Node* u = in->raw_out(i);
3158             if (!u->is_SafePoint() ||
3159                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3160               safe_to_skip = false;
3161             }
3162           }
3163         }
3164         if (safe_to_skip) {
3165           n->set_req(j, in->in(1));
3166         }
3167         if (in->outcnt() == 0) {
3168           in->disconnect_inputs(NULL, this);
3169         }
3170       }
3171     }
3172   }
3173 }
3174 
3175 //------------------------------final_graph_reshaping--------------------------
3176 // Final Graph Reshaping.
3177 //
3178 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3179 //     and not commoned up and forced early.  Must come after regular
3180 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3181 //     inputs to Loop Phis; these will be split by the allocator anyways.
3182 //     Remove Opaque nodes.
3183 // (2) Move last-uses by commutative operations to the left input to encourage
3184 //     Intel update-in-place two-address operations and better register usage
3185 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3186 //     calls canonicalizing them back.
3187 // (3) Count the number of double-precision FP ops, single-precision FP ops
3188 //     and call sites.  On Intel, we can get correct rounding either by
3189 //     forcing singles to memory (requires extra stores and loads after each
3190 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3191 //     clearing the mode bit around call sites).  The mode bit is only used
3192 //     if the relative frequency of single FP ops to calls is low enough.
3193 //     This is a key transform for SPEC mpeg_audio.
3194 // (4) Detect infinite loops; blobs of code reachable from above but not
3195 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3196 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3197 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3198 //     Detection is by looking for IfNodes where only 1 projection is
3199 //     reachable from below or CatchNodes missing some targets.
3200 // (5) Assert for insane oop offsets in debug mode.
3201 
3202 bool Compile::final_graph_reshaping() {
3203   // an infinite loop may have been eliminated by the optimizer,
3204   // in which case the graph will be empty.
3205   if (root()->req() == 1) {
3206     record_method_not_compilable("trivial infinite loop");
3207     return true;
3208   }
3209 
3210   // Expensive nodes have their control input set to prevent the GVN
3211   // from freely commoning them. There's no GVN beyond this point so
3212   // no need to keep the control input. We want the expensive nodes to
3213   // be freely moved to the least frequent code path by gcm.
3214   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3215   for (int i = 0; i < expensive_count(); i++) {
3216     _expensive_nodes->at(i)->set_req(0, NULL);
3217   }
3218 
3219   Final_Reshape_Counts frc;
3220 
3221   // Visit everybody reachable!
3222   // Allocate stack of size C->unique()/2 to avoid frequent realloc
3223   Node_Stack nstack(unique() >> 1);
3224   final_graph_reshaping_walk(nstack, root(), frc);
3225 
3226   // Check for unreachable (from below) code (i.e., infinite loops).
3227   for( uint i = 0; i < frc._tests.size(); i++ ) {
3228     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3229     // Get number of CFG targets.
3230     // Note that PCTables include exception targets after calls.
3231     uint required_outcnt = n->required_outcnt();
3232     if (n->outcnt() != required_outcnt) {
3233       // Check for a few special cases.  Rethrow Nodes never take the
3234       // 'fall-thru' path, so expected kids is 1 less.
3235       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3236         if (n->in(0)->in(0)->is_Call()) {
3237           CallNode *call = n->in(0)->in(0)->as_Call();
3238           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3239             required_outcnt--;      // Rethrow always has 1 less kid
3240           } else if (call->req() > TypeFunc::Parms &&
3241                      call->is_CallDynamicJava()) {
3242             // Check for null receiver. In such case, the optimizer has
3243             // detected that the virtual call will always result in a null
3244             // pointer exception. The fall-through projection of this CatchNode
3245             // will not be populated.
3246             Node *arg0 = call->in(TypeFunc::Parms);
3247             if (arg0->is_Type() &&
3248                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3249               required_outcnt--;
3250             }
3251           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3252                      call->req() > TypeFunc::Parms+1 &&
3253                      call->is_CallStaticJava()) {
3254             // Check for negative array length. In such case, the optimizer has
3255             // detected that the allocation attempt will always result in an
3256             // exception. There is no fall-through projection of this CatchNode .
3257             Node *arg1 = call->in(TypeFunc::Parms+1);
3258             if (arg1->is_Type() &&
3259                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3260               required_outcnt--;
3261             }
3262           }
3263         }
3264       }
3265       // Recheck with a better notion of 'required_outcnt'
3266       if (n->outcnt() != required_outcnt) {
3267         record_method_not_compilable("malformed control flow");
3268         return true;            // Not all targets reachable!
3269       }
3270     }
3271     // Check that I actually visited all kids.  Unreached kids
3272     // must be infinite loops.
3273     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3274       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3275         record_method_not_compilable("infinite loop");
3276         return true;            // Found unvisited kid; must be unreach
3277       }
3278   }
3279 
3280   // If original bytecodes contained a mixture of floats and doubles
3281   // check if the optimizer has made it homogenous, item (3).
3282   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3283       frc.get_float_count() > 32 &&
3284       frc.get_double_count() == 0 &&
3285       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3286     set_24_bit_selection_and_mode( false,  true );
3287   }
3288 
3289   set_java_calls(frc.get_java_call_count());
3290   set_inner_loops(frc.get_inner_loop_count());
3291 
3292   // No infinite loops, no reason to bail out.
3293   return false;
3294 }
3295 
3296 //-----------------------------too_many_traps----------------------------------
3297 // Report if there are too many traps at the current method and bci.
3298 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3299 bool Compile::too_many_traps(ciMethod* method,
3300                              int bci,
3301                              Deoptimization::DeoptReason reason) {
3302   ciMethodData* md = method->method_data();
3303   if (md->is_empty()) {
3304     // Assume the trap has not occurred, or that it occurred only
3305     // because of a transient condition during start-up in the interpreter.
3306     return false;
3307   }
3308   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3309   if (md->has_trap_at(bci, m, reason) != 0) {
3310     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3311     // Also, if there are multiple reasons, or if there is no per-BCI record,
3312     // assume the worst.
3313     if (log())
3314       log()->elem("observe trap='%s' count='%d'",
3315                   Deoptimization::trap_reason_name(reason),
3316                   md->trap_count(reason));
3317     return true;
3318   } else {
3319     // Ignore method/bci and see if there have been too many globally.
3320     return too_many_traps(reason, md);
3321   }
3322 }
3323 
3324 // Less-accurate variant which does not require a method and bci.
3325 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3326                              ciMethodData* logmd) {
3327   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3328     // Too many traps globally.
3329     // Note that we use cumulative trap_count, not just md->trap_count.
3330     if (log()) {
3331       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3332       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3333                   Deoptimization::trap_reason_name(reason),
3334                   mcount, trap_count(reason));
3335     }
3336     return true;
3337   } else {
3338     // The coast is clear.
3339     return false;
3340   }
3341 }
3342 
3343 //--------------------------too_many_recompiles--------------------------------
3344 // Report if there are too many recompiles at the current method and bci.
3345 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3346 // Is not eager to return true, since this will cause the compiler to use
3347 // Action_none for a trap point, to avoid too many recompilations.
3348 bool Compile::too_many_recompiles(ciMethod* method,
3349                                   int bci,
3350                                   Deoptimization::DeoptReason reason) {
3351   ciMethodData* md = method->method_data();
3352   if (md->is_empty()) {
3353     // Assume the trap has not occurred, or that it occurred only
3354     // because of a transient condition during start-up in the interpreter.
3355     return false;
3356   }
3357   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3358   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3359   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3360   Deoptimization::DeoptReason per_bc_reason
3361     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3362   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3363   if ((per_bc_reason == Deoptimization::Reason_none
3364        || md->has_trap_at(bci, m, reason) != 0)
3365       // The trap frequency measure we care about is the recompile count:
3366       && md->trap_recompiled_at(bci, m)
3367       && md->overflow_recompile_count() >= bc_cutoff) {
3368     // Do not emit a trap here if it has already caused recompilations.
3369     // Also, if there are multiple reasons, or if there is no per-BCI record,
3370     // assume the worst.
3371     if (log())
3372       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3373                   Deoptimization::trap_reason_name(reason),
3374                   md->trap_count(reason),
3375                   md->overflow_recompile_count());
3376     return true;
3377   } else if (trap_count(reason) != 0
3378              && decompile_count() >= m_cutoff) {
3379     // Too many recompiles globally, and we have seen this sort of trap.
3380     // Use cumulative decompile_count, not just md->decompile_count.
3381     if (log())
3382       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3383                   Deoptimization::trap_reason_name(reason),
3384                   md->trap_count(reason), trap_count(reason),
3385                   md->decompile_count(), decompile_count());
3386     return true;
3387   } else {
3388     // The coast is clear.
3389     return false;
3390   }
3391 }
3392 
3393 // Compute when not to trap. Used by matching trap based nodes and
3394 // NullCheck optimization.
3395 void Compile::set_allowed_deopt_reasons() {
3396   _allowed_reasons = 0;
3397   if (is_method_compilation()) {
3398     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3399       assert(rs < BitsPerInt, "recode bit map");
3400       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3401         _allowed_reasons |= nth_bit(rs);
3402       }
3403     }
3404   }
3405 }
3406 
3407 #ifndef PRODUCT
3408 //------------------------------verify_graph_edges---------------------------
3409 // Walk the Graph and verify that there is a one-to-one correspondence
3410 // between Use-Def edges and Def-Use edges in the graph.
3411 void Compile::verify_graph_edges(bool no_dead_code) {
3412   if (VerifyGraphEdges) {
3413     ResourceArea *area = Thread::current()->resource_area();
3414     Unique_Node_List visited(area);
3415     // Call recursive graph walk to check edges
3416     _root->verify_edges(visited);
3417     if (no_dead_code) {
3418       // Now make sure that no visited node is used by an unvisited node.
3419       bool dead_nodes = 0;
3420       Unique_Node_List checked(area);
3421       while (visited.size() > 0) {
3422         Node* n = visited.pop();
3423         checked.push(n);
3424         for (uint i = 0; i < n->outcnt(); i++) {
3425           Node* use = n->raw_out(i);
3426           if (checked.member(use))  continue;  // already checked
3427           if (visited.member(use))  continue;  // already in the graph
3428           if (use->is_Con())        continue;  // a dead ConNode is OK
3429           // At this point, we have found a dead node which is DU-reachable.
3430           if (dead_nodes++ == 0)
3431             tty->print_cr("*** Dead nodes reachable via DU edges:");
3432           use->dump(2);
3433           tty->print_cr("---");
3434           checked.push(use);  // No repeats; pretend it is now checked.
3435         }
3436       }
3437       assert(dead_nodes == 0, "using nodes must be reachable from root");
3438     }
3439   }
3440 }
3441 
3442 // Verify GC barriers consistency
3443 // Currently supported:
3444 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3445 void Compile::verify_barriers() {
3446   if (UseG1GC) {
3447     // Verify G1 pre-barriers
3448     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3449 
3450     ResourceArea *area = Thread::current()->resource_area();
3451     Unique_Node_List visited(area);
3452     Node_List worklist(area);
3453     // We're going to walk control flow backwards starting from the Root
3454     worklist.push(_root);
3455     while (worklist.size() > 0) {
3456       Node* x = worklist.pop();
3457       if (x == NULL || x == top()) continue;
3458       if (visited.member(x)) {
3459         continue;
3460       } else {
3461         visited.push(x);
3462       }
3463 
3464       if (x->is_Region()) {
3465         for (uint i = 1; i < x->req(); i++) {
3466           worklist.push(x->in(i));
3467         }
3468       } else {
3469         worklist.push(x->in(0));
3470         // We are looking for the pattern:
3471         //                            /->ThreadLocal
3472         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3473         //              \->ConI(0)
3474         // We want to verify that the If and the LoadB have the same control
3475         // See GraphKit::g1_write_barrier_pre()
3476         if (x->is_If()) {
3477           IfNode *iff = x->as_If();
3478           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3479             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3480             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3481                 && cmp->in(1)->is_Load()) {
3482               LoadNode* load = cmp->in(1)->as_Load();
3483               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3484                   && load->in(2)->in(3)->is_Con()
3485                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3486 
3487                 Node* if_ctrl = iff->in(0);
3488                 Node* load_ctrl = load->in(0);
3489 
3490                 if (if_ctrl != load_ctrl) {
3491                   // Skip possible CProj->NeverBranch in infinite loops
3492                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3493                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3494                     if_ctrl = if_ctrl->in(0)->in(0);
3495                   }
3496                 }
3497                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3498               }
3499             }
3500           }
3501         }
3502       }
3503     }
3504   }
3505 }
3506 
3507 #endif
3508 
3509 // The Compile object keeps track of failure reasons separately from the ciEnv.
3510 // This is required because there is not quite a 1-1 relation between the
3511 // ciEnv and its compilation task and the Compile object.  Note that one
3512 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3513 // to backtrack and retry without subsuming loads.  Other than this backtracking
3514 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3515 // by the logic in C2Compiler.
3516 void Compile::record_failure(const char* reason) {
3517   if (log() != NULL) {
3518     log()->elem("failure reason='%s' phase='compile'", reason);
3519   }
3520   if (_failure_reason == NULL) {
3521     // Record the first failure reason.
3522     _failure_reason = reason;
3523   }
3524 
3525   EventCompilerFailure event;
3526   if (event.should_commit()) {
3527     event.set_compileID(Compile::compile_id());
3528     event.set_failure(reason);
3529     event.commit();
3530   }
3531 
3532   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3533     C->print_method(PHASE_FAILURE);
3534   }
3535   _root = NULL;  // flush the graph, too
3536 }
3537 
3538 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3539   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3540     _phase_name(name), _dolog(dolog)
3541 {
3542   if (dolog) {
3543     C = Compile::current();
3544     _log = C->log();
3545   } else {
3546     C = NULL;
3547     _log = NULL;
3548   }
3549   if (_log != NULL) {
3550     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3551     _log->stamp();
3552     _log->end_head();
3553   }
3554 }
3555 
3556 Compile::TracePhase::~TracePhase() {
3557 
3558   C = Compile::current();
3559   if (_dolog) {
3560     _log = C->log();
3561   } else {
3562     _log = NULL;
3563   }
3564 
3565 #ifdef ASSERT
3566   if (PrintIdealNodeCount) {
3567     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3568                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3569   }
3570 
3571   if (VerifyIdealNodeCount) {
3572     Compile::current()->print_missing_nodes();
3573   }
3574 #endif
3575 
3576   if (_log != NULL) {
3577     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3578   }
3579 }
3580 
3581 //=============================================================================
3582 // Two Constant's are equal when the type and the value are equal.
3583 bool Compile::Constant::operator==(const Constant& other) {
3584   if (type()          != other.type()         )  return false;
3585   if (can_be_reused() != other.can_be_reused())  return false;
3586   // For floating point values we compare the bit pattern.
3587   switch (type()) {
3588   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3589   case T_LONG:
3590   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3591   case T_OBJECT:
3592   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3593   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3594   case T_METADATA: return (_v._metadata == other._v._metadata);
3595   default: ShouldNotReachHere();
3596   }
3597   return false;
3598 }
3599 
3600 static int type_to_size_in_bytes(BasicType t) {
3601   switch (t) {
3602   case T_LONG:    return sizeof(jlong  );
3603   case T_FLOAT:   return sizeof(jfloat );
3604   case T_DOUBLE:  return sizeof(jdouble);
3605   case T_METADATA: return sizeof(Metadata*);
3606     // We use T_VOID as marker for jump-table entries (labels) which
3607     // need an internal word relocation.
3608   case T_VOID:
3609   case T_ADDRESS:
3610   case T_OBJECT:  return sizeof(jobject);
3611   }
3612 
3613   ShouldNotReachHere();
3614   return -1;
3615 }
3616 
3617 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3618   // sort descending
3619   if (a->freq() > b->freq())  return -1;
3620   if (a->freq() < b->freq())  return  1;
3621   return 0;
3622 }
3623 
3624 void Compile::ConstantTable::calculate_offsets_and_size() {
3625   // First, sort the array by frequencies.
3626   _constants.sort(qsort_comparator);
3627 
3628 #ifdef ASSERT
3629   // Make sure all jump-table entries were sorted to the end of the
3630   // array (they have a negative frequency).
3631   bool found_void = false;
3632   for (int i = 0; i < _constants.length(); i++) {
3633     Constant con = _constants.at(i);
3634     if (con.type() == T_VOID)
3635       found_void = true;  // jump-tables
3636     else
3637       assert(!found_void, "wrong sorting");
3638   }
3639 #endif
3640 
3641   int offset = 0;
3642   for (int i = 0; i < _constants.length(); i++) {
3643     Constant* con = _constants.adr_at(i);
3644 
3645     // Align offset for type.
3646     int typesize = type_to_size_in_bytes(con->type());
3647     offset = align_size_up(offset, typesize);
3648     con->set_offset(offset);   // set constant's offset
3649 
3650     if (con->type() == T_VOID) {
3651       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3652       offset = offset + typesize * n->outcnt();  // expand jump-table
3653     } else {
3654       offset = offset + typesize;
3655     }
3656   }
3657 
3658   // Align size up to the next section start (which is insts; see
3659   // CodeBuffer::align_at_start).
3660   assert(_size == -1, "already set?");
3661   _size = align_size_up(offset, CodeEntryAlignment);
3662 }
3663 
3664 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3665   MacroAssembler _masm(&cb);
3666   for (int i = 0; i < _constants.length(); i++) {
3667     Constant con = _constants.at(i);
3668     address constant_addr;
3669     switch (con.type()) {
3670     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3671     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3672     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3673     case T_OBJECT: {
3674       jobject obj = con.get_jobject();
3675       int oop_index = _masm.oop_recorder()->find_index(obj);
3676       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3677       break;
3678     }
3679     case T_ADDRESS: {
3680       address addr = (address) con.get_jobject();
3681       constant_addr = _masm.address_constant(addr);
3682       break;
3683     }
3684     // We use T_VOID as marker for jump-table entries (labels) which
3685     // need an internal word relocation.
3686     case T_VOID: {
3687       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3688       // Fill the jump-table with a dummy word.  The real value is
3689       // filled in later in fill_jump_table.
3690       address dummy = (address) n;
3691       constant_addr = _masm.address_constant(dummy);
3692       // Expand jump-table
3693       for (uint i = 1; i < n->outcnt(); i++) {
3694         address temp_addr = _masm.address_constant(dummy + i);
3695         assert(temp_addr, "consts section too small");
3696       }
3697       break;
3698     }
3699     case T_METADATA: {
3700       Metadata* obj = con.get_metadata();
3701       int metadata_index = _masm.oop_recorder()->find_index(obj);
3702       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3703       break;
3704     }
3705     default: ShouldNotReachHere();
3706     }
3707     assert(constant_addr, "consts section too small");
3708     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3709             err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
3710   }
3711 }
3712 
3713 int Compile::ConstantTable::find_offset(Constant& con) const {
3714   int idx = _constants.find(con);
3715   assert(idx != -1, "constant must be in constant table");
3716   int offset = _constants.at(idx).offset();
3717   assert(offset != -1, "constant table not emitted yet?");
3718   return offset;
3719 }
3720 
3721 void Compile::ConstantTable::add(Constant& con) {
3722   if (con.can_be_reused()) {
3723     int idx = _constants.find(con);
3724     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3725       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3726       return;
3727     }
3728   }
3729   (void) _constants.append(con);
3730 }
3731 
3732 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3733   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3734   Constant con(type, value, b->_freq);
3735   add(con);
3736   return con;
3737 }
3738 
3739 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3740   Constant con(metadata);
3741   add(con);
3742   return con;
3743 }
3744 
3745 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3746   jvalue value;
3747   BasicType type = oper->type()->basic_type();
3748   switch (type) {
3749   case T_LONG:    value.j = oper->constantL(); break;
3750   case T_FLOAT:   value.f = oper->constantF(); break;
3751   case T_DOUBLE:  value.d = oper->constantD(); break;
3752   case T_OBJECT:
3753   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3754   case T_METADATA: return add((Metadata*)oper->constant()); break;
3755   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3756   }
3757   return add(n, type, value);
3758 }
3759 
3760 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3761   jvalue value;
3762   // We can use the node pointer here to identify the right jump-table
3763   // as this method is called from Compile::Fill_buffer right before
3764   // the MachNodes are emitted and the jump-table is filled (means the
3765   // MachNode pointers do not change anymore).
3766   value.l = (jobject) n;
3767   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3768   add(con);
3769   return con;
3770 }
3771 
3772 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3773   // If called from Compile::scratch_emit_size do nothing.
3774   if (Compile::current()->in_scratch_emit_size())  return;
3775 
3776   assert(labels.is_nonempty(), "must be");
3777   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3778 
3779   // Since MachConstantNode::constant_offset() also contains
3780   // table_base_offset() we need to subtract the table_base_offset()
3781   // to get the plain offset into the constant table.
3782   int offset = n->constant_offset() - table_base_offset();
3783 
3784   MacroAssembler _masm(&cb);
3785   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3786 
3787   for (uint i = 0; i < n->outcnt(); i++) {
3788     address* constant_addr = &jump_table_base[i];
3789     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
3790     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3791     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3792   }
3793 }
3794 
3795 void Compile::dump_inlining() {
3796   if (print_inlining() || print_intrinsics()) {
3797     // Print inlining message for candidates that we couldn't inline
3798     // for lack of space or non constant receiver
3799     for (int i = 0; i < _late_inlines.length(); i++) {
3800       CallGenerator* cg = _late_inlines.at(i);
3801       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
3802     }
3803     Unique_Node_List useful;
3804     useful.push(root());
3805     for (uint next = 0; next < useful.size(); ++next) {
3806       Node* n  = useful.at(next);
3807       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
3808         CallNode* call = n->as_Call();
3809         CallGenerator* cg = call->generator();
3810         cg->print_inlining_late("receiver not constant");
3811       }
3812       uint max = n->len();
3813       for ( uint i = 0; i < max; ++i ) {
3814         Node *m = n->in(i);
3815         if ( m == NULL ) continue;
3816         useful.push(m);
3817       }
3818     }
3819     for (int i = 0; i < _print_inlining_list->length(); i++) {
3820       tty->print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
3821     }
3822   }
3823 }
3824 
3825 // Dump inlining replay data to the stream.
3826 // Don't change thread state and acquire any locks.
3827 void Compile::dump_inline_data(outputStream* out) {
3828   InlineTree* inl_tree = ilt();
3829   if (inl_tree != NULL) {
3830     out->print(" inline %d", inl_tree->count());
3831     inl_tree->dump_replay_data(out);
3832   }
3833 }
3834 
3835 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3836   if (n1->Opcode() < n2->Opcode())      return -1;
3837   else if (n1->Opcode() > n2->Opcode()) return 1;
3838 
3839   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3840   for (uint i = 1; i < n1->req(); i++) {
3841     if (n1->in(i) < n2->in(i))      return -1;
3842     else if (n1->in(i) > n2->in(i)) return 1;
3843   }
3844 
3845   return 0;
3846 }
3847 
3848 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3849   Node* n1 = *n1p;
3850   Node* n2 = *n2p;
3851 
3852   return cmp_expensive_nodes(n1, n2);
3853 }
3854 
3855 void Compile::sort_expensive_nodes() {
3856   if (!expensive_nodes_sorted()) {
3857     _expensive_nodes->sort(cmp_expensive_nodes);
3858   }
3859 }
3860 
3861 bool Compile::expensive_nodes_sorted() const {
3862   for (int i = 1; i < _expensive_nodes->length(); i++) {
3863     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3864       return false;
3865     }
3866   }
3867   return true;
3868 }
3869 
3870 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3871   if (_expensive_nodes->length() == 0) {
3872     return false;
3873   }
3874 
3875   assert(OptimizeExpensiveOps, "optimization off?");
3876 
3877   // Take this opportunity to remove dead nodes from the list
3878   int j = 0;
3879   for (int i = 0; i < _expensive_nodes->length(); i++) {
3880     Node* n = _expensive_nodes->at(i);
3881     if (!n->is_unreachable(igvn)) {
3882       assert(n->is_expensive(), "should be expensive");
3883       _expensive_nodes->at_put(j, n);
3884       j++;
3885     }
3886   }
3887   _expensive_nodes->trunc_to(j);
3888 
3889   // Then sort the list so that similar nodes are next to each other
3890   // and check for at least two nodes of identical kind with same data
3891   // inputs.
3892   sort_expensive_nodes();
3893 
3894   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
3895     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
3896       return true;
3897     }
3898   }
3899 
3900   return false;
3901 }
3902 
3903 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
3904   if (_expensive_nodes->length() == 0) {
3905     return;
3906   }
3907 
3908   assert(OptimizeExpensiveOps, "optimization off?");
3909 
3910   // Sort to bring similar nodes next to each other and clear the
3911   // control input of nodes for which there's only a single copy.
3912   sort_expensive_nodes();
3913 
3914   int j = 0;
3915   int identical = 0;
3916   int i = 0;
3917   for (; i < _expensive_nodes->length()-1; i++) {
3918     assert(j <= i, "can't write beyond current index");
3919     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
3920       identical++;
3921       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3922       continue;
3923     }
3924     if (identical > 0) {
3925       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3926       identical = 0;
3927     } else {
3928       Node* n = _expensive_nodes->at(i);
3929       igvn.hash_delete(n);
3930       n->set_req(0, NULL);
3931       igvn.hash_insert(n);
3932     }
3933   }
3934   if (identical > 0) {
3935     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3936   } else if (_expensive_nodes->length() >= 1) {
3937     Node* n = _expensive_nodes->at(i);
3938     igvn.hash_delete(n);
3939     n->set_req(0, NULL);
3940     igvn.hash_insert(n);
3941   }
3942   _expensive_nodes->trunc_to(j);
3943 }
3944 
3945 void Compile::add_expensive_node(Node * n) {
3946   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
3947   assert(n->is_expensive(), "expensive nodes with non-null control here only");
3948   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
3949   if (OptimizeExpensiveOps) {
3950     _expensive_nodes->append(n);
3951   } else {
3952     // Clear control input and let IGVN optimize expensive nodes if
3953     // OptimizeExpensiveOps is off.
3954     n->set_req(0, NULL);
3955   }
3956 }
3957 
3958 /**
3959  * Remove the speculative part of types and clean up the graph
3960  */
3961 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
3962   if (UseTypeSpeculation) {
3963     Unique_Node_List worklist;
3964     worklist.push(root());
3965     int modified = 0;
3966     // Go over all type nodes that carry a speculative type, drop the
3967     // speculative part of the type and enqueue the node for an igvn
3968     // which may optimize it out.
3969     for (uint next = 0; next < worklist.size(); ++next) {
3970       Node *n  = worklist.at(next);
3971       if (n->is_Type()) {
3972         TypeNode* tn = n->as_Type();
3973         const Type* t = tn->type();
3974         const Type* t_no_spec = t->remove_speculative();
3975         if (t_no_spec != t) {
3976           bool in_hash = igvn.hash_delete(n);
3977           assert(in_hash, "node should be in igvn hash table");
3978           tn->set_type(t_no_spec);
3979           igvn.hash_insert(n);
3980           igvn._worklist.push(n); // give it a chance to go away
3981           modified++;
3982         }
3983       }
3984       uint max = n->len();
3985       for( uint i = 0; i < max; ++i ) {
3986         Node *m = n->in(i);
3987         if (not_a_node(m))  continue;
3988         worklist.push(m);
3989       }
3990     }
3991     // Drop the speculative part of all types in the igvn's type table
3992     igvn.remove_speculative_types();
3993     if (modified > 0) {
3994       igvn.optimize();
3995     }
3996 #ifdef ASSERT
3997     // Verify that after the IGVN is over no speculative type has resurfaced
3998     worklist.clear();
3999     worklist.push(root());
4000     for (uint next = 0; next < worklist.size(); ++next) {
4001       Node *n  = worklist.at(next);
4002       const Type* t = igvn.type_or_null(n);
4003       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4004       if (n->is_Type()) {
4005         t = n->as_Type()->type();
4006         assert(t == t->remove_speculative(), "no more speculative types");
4007       }
4008       uint max = n->len();
4009       for( uint i = 0; i < max; ++i ) {
4010         Node *m = n->in(i);
4011         if (not_a_node(m))  continue;
4012         worklist.push(m);
4013       }
4014     }
4015     igvn.check_no_speculative_types();
4016 #endif
4017   }
4018 }
4019 
4020 // Auxiliary method to support randomized stressing/fuzzing.
4021 //
4022 // This method can be called the arbitrary number of times, with current count
4023 // as the argument. The logic allows selecting a single candidate from the
4024 // running list of candidates as follows:
4025 //    int count = 0;
4026 //    Cand* selected = null;
4027 //    while(cand = cand->next()) {
4028 //      if (randomized_select(++count)) {
4029 //        selected = cand;
4030 //      }
4031 //    }
4032 //
4033 // Including count equalizes the chances any candidate is "selected".
4034 // This is useful when we don't have the complete list of candidates to choose
4035 // from uniformly. In this case, we need to adjust the randomicity of the
4036 // selection, or else we will end up biasing the selection towards the latter
4037 // candidates.
4038 //
4039 // Quick back-envelope calculation shows that for the list of n candidates
4040 // the equal probability for the candidate to persist as "best" can be
4041 // achieved by replacing it with "next" k-th candidate with the probability
4042 // of 1/k. It can be easily shown that by the end of the run, the
4043 // probability for any candidate is converged to 1/n, thus giving the
4044 // uniform distribution among all the candidates.
4045 //
4046 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4047 #define RANDOMIZED_DOMAIN_POW 29
4048 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4049 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4050 bool Compile::randomized_select(int count) {
4051   assert(count > 0, "only positive");
4052   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4053 }