1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciInstance.hpp"
  34 #include "ci/ciObjArray.hpp"
  35 #include "runtime/arguments.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "runtime/vm_version.hpp"
  39 #include "utilities/bitMap.inline.hpp"
  40 #include "utilities/macros.hpp"
  41 #if INCLUDE_ALL_GCS
  42 #include "gc_implementation/g1/heapRegion.hpp"
  43 #endif // INCLUDE_ALL_GCS
  44 
  45 #ifdef ASSERT
  46 #define __ gen()->lir(__FILE__, __LINE__)->
  47 #else
  48 #define __ gen()->lir()->
  49 #endif
  50 
  51 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
  52 #ifdef ARM
  53 #define PATCHED_ADDR  (204)
  54 #else
  55 #define PATCHED_ADDR  (max_jint)
  56 #endif
  57 
  58 void PhiResolverState::reset(int max_vregs) {
  59   // Initialize array sizes
  60   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  61   _virtual_operands.trunc_to(0);
  62   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  63   _other_operands.trunc_to(0);
  64   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  65   _vreg_table.trunc_to(0);
  66 }
  67 
  68 
  69 
  70 //--------------------------------------------------------------
  71 // PhiResolver
  72 
  73 // Resolves cycles:
  74 //
  75 //  r1 := r2  becomes  temp := r1
  76 //  r2 := r1           r1 := r2
  77 //                     r2 := temp
  78 // and orders moves:
  79 //
  80 //  r2 := r3  becomes  r1 := r2
  81 //  r1 := r2           r2 := r3
  82 
  83 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  84  : _gen(gen)
  85  , _state(gen->resolver_state())
  86  , _temp(LIR_OprFact::illegalOpr)
  87 {
  88   // reinitialize the shared state arrays
  89   _state.reset(max_vregs);
  90 }
  91 
  92 
  93 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  94   assert(src->is_valid(), "");
  95   assert(dest->is_valid(), "");
  96   __ move(src, dest);
  97 }
  98 
  99 
 100 void PhiResolver::move_temp_to(LIR_Opr dest) {
 101   assert(_temp->is_valid(), "");
 102   emit_move(_temp, dest);
 103   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 104 }
 105 
 106 
 107 void PhiResolver::move_to_temp(LIR_Opr src) {
 108   assert(_temp->is_illegal(), "");
 109   _temp = _gen->new_register(src->type());
 110   emit_move(src, _temp);
 111 }
 112 
 113 
 114 // Traverse assignment graph in depth first order and generate moves in post order
 115 // ie. two assignments: b := c, a := b start with node c:
 116 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 117 // Generates moves in this order: move b to a and move c to b
 118 // ie. cycle a := b, b := a start with node a
 119 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 120 // Generates moves in this order: move b to temp, move a to b, move temp to a
 121 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 122   if (!dest->visited()) {
 123     dest->set_visited();
 124     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 125       move(dest, dest->destination_at(i));
 126     }
 127   } else if (!dest->start_node()) {
 128     // cylce in graph detected
 129     assert(_loop == NULL, "only one loop valid!");
 130     _loop = dest;
 131     move_to_temp(src->operand());
 132     return;
 133   } // else dest is a start node
 134 
 135   if (!dest->assigned()) {
 136     if (_loop == dest) {
 137       move_temp_to(dest->operand());
 138       dest->set_assigned();
 139     } else if (src != NULL) {
 140       emit_move(src->operand(), dest->operand());
 141       dest->set_assigned();
 142     }
 143   }
 144 }
 145 
 146 
 147 PhiResolver::~PhiResolver() {
 148   int i;
 149   // resolve any cycles in moves from and to virtual registers
 150   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 151     ResolveNode* node = virtual_operands()[i];
 152     if (!node->visited()) {
 153       _loop = NULL;
 154       move(NULL, node);
 155       node->set_start_node();
 156       assert(_temp->is_illegal(), "move_temp_to() call missing");
 157     }
 158   }
 159 
 160   // generate move for move from non virtual register to abitrary destination
 161   for (i = other_operands().length() - 1; i >= 0; i --) {
 162     ResolveNode* node = other_operands()[i];
 163     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 164       emit_move(node->operand(), node->destination_at(j)->operand());
 165     }
 166   }
 167 }
 168 
 169 
 170 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 171   ResolveNode* node;
 172   if (opr->is_virtual()) {
 173     int vreg_num = opr->vreg_number();
 174     node = vreg_table().at_grow(vreg_num, NULL);
 175     assert(node == NULL || node->operand() == opr, "");
 176     if (node == NULL) {
 177       node = new ResolveNode(opr);
 178       vreg_table()[vreg_num] = node;
 179     }
 180     // Make sure that all virtual operands show up in the list when
 181     // they are used as the source of a move.
 182     if (source && !virtual_operands().contains(node)) {
 183       virtual_operands().append(node);
 184     }
 185   } else {
 186     assert(source, "");
 187     node = new ResolveNode(opr);
 188     other_operands().append(node);
 189   }
 190   return node;
 191 }
 192 
 193 
 194 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 195   assert(dest->is_virtual(), "");
 196   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 197   assert(src->is_valid(), "");
 198   assert(dest->is_valid(), "");
 199   ResolveNode* source = source_node(src);
 200   source->append(destination_node(dest));
 201 }
 202 
 203 
 204 //--------------------------------------------------------------
 205 // LIRItem
 206 
 207 void LIRItem::set_result(LIR_Opr opr) {
 208   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 209   value()->set_operand(opr);
 210 
 211   if (opr->is_virtual()) {
 212     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 213   }
 214 
 215   _result = opr;
 216 }
 217 
 218 void LIRItem::load_item() {
 219   if (result()->is_illegal()) {
 220     // update the items result
 221     _result = value()->operand();
 222   }
 223   if (!result()->is_register()) {
 224     LIR_Opr reg = _gen->new_register(value()->type());
 225     __ move(result(), reg);
 226     if (result()->is_constant()) {
 227       _result = reg;
 228     } else {
 229       set_result(reg);
 230     }
 231   }
 232 }
 233 
 234 
 235 void LIRItem::load_for_store(BasicType type) {
 236   if (_gen->can_store_as_constant(value(), type)) {
 237     _result = value()->operand();
 238     if (!_result->is_constant()) {
 239       _result = LIR_OprFact::value_type(value()->type());
 240     }
 241   } else if (type == T_BYTE || type == T_BOOLEAN) {
 242     load_byte_item();
 243   } else {
 244     load_item();
 245   }
 246 }
 247 
 248 void LIRItem::load_item_force(LIR_Opr reg) {
 249   LIR_Opr r = result();
 250   if (r != reg) {
 251 #if !defined(ARM) && !defined(E500V2)
 252     if (r->type() != reg->type()) {
 253       // moves between different types need an intervening spill slot
 254       r = _gen->force_to_spill(r, reg->type());
 255     }
 256 #endif
 257     __ move(r, reg);
 258     _result = reg;
 259   }
 260 }
 261 
 262 ciObject* LIRItem::get_jobject_constant() const {
 263   ObjectType* oc = type()->as_ObjectType();
 264   if (oc) {
 265     return oc->constant_value();
 266   }
 267   return NULL;
 268 }
 269 
 270 
 271 jint LIRItem::get_jint_constant() const {
 272   assert(is_constant() && value() != NULL, "");
 273   assert(type()->as_IntConstant() != NULL, "type check");
 274   return type()->as_IntConstant()->value();
 275 }
 276 
 277 
 278 jint LIRItem::get_address_constant() const {
 279   assert(is_constant() && value() != NULL, "");
 280   assert(type()->as_AddressConstant() != NULL, "type check");
 281   return type()->as_AddressConstant()->value();
 282 }
 283 
 284 
 285 jfloat LIRItem::get_jfloat_constant() const {
 286   assert(is_constant() && value() != NULL, "");
 287   assert(type()->as_FloatConstant() != NULL, "type check");
 288   return type()->as_FloatConstant()->value();
 289 }
 290 
 291 
 292 jdouble LIRItem::get_jdouble_constant() const {
 293   assert(is_constant() && value() != NULL, "");
 294   assert(type()->as_DoubleConstant() != NULL, "type check");
 295   return type()->as_DoubleConstant()->value();
 296 }
 297 
 298 
 299 jlong LIRItem::get_jlong_constant() const {
 300   assert(is_constant() && value() != NULL, "");
 301   assert(type()->as_LongConstant() != NULL, "type check");
 302   return type()->as_LongConstant()->value();
 303 }
 304 
 305 
 306 
 307 //--------------------------------------------------------------
 308 
 309 
 310 void LIRGenerator::init() {
 311   _bs = Universe::heap()->barrier_set();
 312 }
 313 
 314 
 315 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 316 #ifndef PRODUCT
 317   if (PrintIRWithLIR) {
 318     block->print();
 319   }
 320 #endif
 321 
 322   // set up the list of LIR instructions
 323   assert(block->lir() == NULL, "LIR list already computed for this block");
 324   _lir = new LIR_List(compilation(), block);
 325   block->set_lir(_lir);
 326 
 327   __ branch_destination(block->label());
 328 
 329   if (LIRTraceExecution &&
 330       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 331       !block->is_set(BlockBegin::exception_entry_flag)) {
 332     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 333     trace_block_entry(block);
 334   }
 335 }
 336 
 337 
 338 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 339 #ifndef PRODUCT
 340   if (PrintIRWithLIR) {
 341     tty->cr();
 342   }
 343 #endif
 344 
 345   // LIR_Opr for unpinned constants shouldn't be referenced by other
 346   // blocks so clear them out after processing the block.
 347   for (int i = 0; i < _unpinned_constants.length(); i++) {
 348     _unpinned_constants.at(i)->clear_operand();
 349   }
 350   _unpinned_constants.trunc_to(0);
 351 
 352   // clear our any registers for other local constants
 353   _constants.trunc_to(0);
 354   _reg_for_constants.trunc_to(0);
 355 }
 356 
 357 
 358 void LIRGenerator::block_do(BlockBegin* block) {
 359   CHECK_BAILOUT();
 360 
 361   block_do_prolog(block);
 362   set_block(block);
 363 
 364   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 365     if (instr->is_pinned()) do_root(instr);
 366   }
 367 
 368   set_block(NULL);
 369   block_do_epilog(block);
 370 }
 371 
 372 
 373 //-------------------------LIRGenerator-----------------------------
 374 
 375 // This is where the tree-walk starts; instr must be root;
 376 void LIRGenerator::do_root(Value instr) {
 377   CHECK_BAILOUT();
 378 
 379   InstructionMark im(compilation(), instr);
 380 
 381   assert(instr->is_pinned(), "use only with roots");
 382   assert(instr->subst() == instr, "shouldn't have missed substitution");
 383 
 384   instr->visit(this);
 385 
 386   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 387          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 388 }
 389 
 390 
 391 // This is called for each node in tree; the walk stops if a root is reached
 392 void LIRGenerator::walk(Value instr) {
 393   InstructionMark im(compilation(), instr);
 394   //stop walk when encounter a root
 395   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 396     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 397   } else {
 398     assert(instr->subst() == instr, "shouldn't have missed substitution");
 399     instr->visit(this);
 400     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 401   }
 402 }
 403 
 404 
 405 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 406   assert(state != NULL, "state must be defined");
 407 
 408 #ifndef PRODUCT
 409   state->verify();
 410 #endif
 411 
 412   ValueStack* s = state;
 413   for_each_state(s) {
 414     if (s->kind() == ValueStack::EmptyExceptionState) {
 415       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 416       continue;
 417     }
 418 
 419     int index;
 420     Value value;
 421     for_each_stack_value(s, index, value) {
 422       assert(value->subst() == value, "missed substitution");
 423       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 424         walk(value);
 425         assert(value->operand()->is_valid(), "must be evaluated now");
 426       }
 427     }
 428 
 429     int bci = s->bci();
 430     IRScope* scope = s->scope();
 431     ciMethod* method = scope->method();
 432 
 433     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 434     if (bci == SynchronizationEntryBCI) {
 435       if (x->as_ExceptionObject() || x->as_Throw()) {
 436         // all locals are dead on exit from the synthetic unlocker
 437         liveness.clear();
 438       } else {
 439         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 440       }
 441     }
 442     if (!liveness.is_valid()) {
 443       // Degenerate or breakpointed method.
 444       bailout("Degenerate or breakpointed method");
 445     } else {
 446       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 447       for_each_local_value(s, index, value) {
 448         assert(value->subst() == value, "missed substition");
 449         if (liveness.at(index) && !value->type()->is_illegal()) {
 450           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 451             walk(value);
 452             assert(value->operand()->is_valid(), "must be evaluated now");
 453           }
 454         } else {
 455           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 456           s->invalidate_local(index);
 457         }
 458       }
 459     }
 460   }
 461 
 462   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 463 }
 464 
 465 
 466 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 467   return state_for(x, x->exception_state());
 468 }
 469 
 470 
 471 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 472   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 473    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 474    * the class. */
 475   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 476     assert(info != NULL, "info must be set if class is not loaded");
 477     __ klass2reg_patch(NULL, r, info);
 478   } else {
 479     // no patching needed
 480     __ metadata2reg(obj->constant_encoding(), r);
 481   }
 482 }
 483 
 484 
 485 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 486                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 487   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 488   if (index->is_constant()) {
 489     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 490                 index->as_jint(), null_check_info);
 491     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 492   } else {
 493     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 494                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 495     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 496   }
 497 }
 498 
 499 
 500 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 501   CodeStub* stub = new RangeCheckStub(info, index, true);
 502   if (index->is_constant()) {
 503     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 504     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 505   } else {
 506     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 507                 java_nio_Buffer::limit_offset(), T_INT, info);
 508     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 509   }
 510   __ move(index, result);
 511 }
 512 
 513 
 514 
 515 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 516   LIR_Opr result_op = result;
 517   LIR_Opr left_op   = left;
 518   LIR_Opr right_op  = right;
 519 
 520   if (TwoOperandLIRForm && left_op != result_op) {
 521     assert(right_op != result_op, "malformed");
 522     __ move(left_op, result_op);
 523     left_op = result_op;
 524   }
 525 
 526   switch(code) {
 527     case Bytecodes::_dadd:
 528     case Bytecodes::_fadd:
 529     case Bytecodes::_ladd:
 530     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 531     case Bytecodes::_fmul:
 532     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 533 
 534     case Bytecodes::_dmul:
 535       {
 536         if (is_strictfp) {
 537           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 538         } else {
 539           __ mul(left_op, right_op, result_op); break;
 540         }
 541       }
 542       break;
 543 
 544     case Bytecodes::_imul:
 545       {
 546         bool    did_strength_reduce = false;
 547 
 548         if (right->is_constant()) {
 549           int c = right->as_jint();
 550           if (is_power_of_2(c)) {
 551             // do not need tmp here
 552             __ shift_left(left_op, exact_log2(c), result_op);
 553             did_strength_reduce = true;
 554           } else {
 555             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 556           }
 557         }
 558         // we couldn't strength reduce so just emit the multiply
 559         if (!did_strength_reduce) {
 560           __ mul(left_op, right_op, result_op);
 561         }
 562       }
 563       break;
 564 
 565     case Bytecodes::_dsub:
 566     case Bytecodes::_fsub:
 567     case Bytecodes::_lsub:
 568     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 569 
 570     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 571     // ldiv and lrem are implemented with a direct runtime call
 572 
 573     case Bytecodes::_ddiv:
 574       {
 575         if (is_strictfp) {
 576           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 577         } else {
 578           __ div (left_op, right_op, result_op); break;
 579         }
 580       }
 581       break;
 582 
 583     case Bytecodes::_drem:
 584     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 585 
 586     default: ShouldNotReachHere();
 587   }
 588 }
 589 
 590 
 591 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 592   arithmetic_op(code, result, left, right, false, tmp);
 593 }
 594 
 595 
 596 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 597   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 598 }
 599 
 600 
 601 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 602   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 603 }
 604 
 605 
 606 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 607   if (TwoOperandLIRForm && value != result_op) {
 608     assert(count != result_op, "malformed");
 609     __ move(value, result_op);
 610     value = result_op;
 611   }
 612 
 613   assert(count->is_constant() || count->is_register(), "must be");
 614   switch(code) {
 615   case Bytecodes::_ishl:
 616   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 617   case Bytecodes::_ishr:
 618   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 619   case Bytecodes::_iushr:
 620   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 621   default: ShouldNotReachHere();
 622   }
 623 }
 624 
 625 
 626 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 627   if (TwoOperandLIRForm && left_op != result_op) {
 628     assert(right_op != result_op, "malformed");
 629     __ move(left_op, result_op);
 630     left_op = result_op;
 631   }
 632 
 633   switch(code) {
 634     case Bytecodes::_iand:
 635     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 636 
 637     case Bytecodes::_ior:
 638     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 639 
 640     case Bytecodes::_ixor:
 641     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 642 
 643     default: ShouldNotReachHere();
 644   }
 645 }
 646 
 647 
 648 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 649   if (!GenerateSynchronizationCode) return;
 650   // for slow path, use debug info for state after successful locking
 651   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 652   __ load_stack_address_monitor(monitor_no, lock);
 653   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 654   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 655 }
 656 
 657 
 658 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 659   if (!GenerateSynchronizationCode) return;
 660   // setup registers
 661   LIR_Opr hdr = lock;
 662   lock = new_hdr;
 663   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 664   __ load_stack_address_monitor(monitor_no, lock);
 665   __ unlock_object(hdr, object, lock, scratch, slow_path);
 666 }
 667 
 668 #ifndef PRODUCT
 669 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 670   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 671     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 672   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 673     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 674   }
 675 }
 676 #endif
 677 
 678 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 679   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 680   // If klass is not loaded we do not know if the klass has finalizers:
 681   if (UseFastNewInstance && klass->is_loaded()
 682       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 683 
 684     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 685 
 686     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 687 
 688     assert(klass->is_loaded(), "must be loaded");
 689     // allocate space for instance
 690     assert(klass->size_helper() >= 0, "illegal instance size");
 691     const int instance_size = align_object_size(klass->size_helper());
 692     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 693                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 694   } else {
 695     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 696     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 697     __ branch_destination(slow_path->continuation());
 698   }
 699 }
 700 
 701 
 702 static bool is_constant_zero(Instruction* inst) {
 703   IntConstant* c = inst->type()->as_IntConstant();
 704   if (c) {
 705     return (c->value() == 0);
 706   }
 707   return false;
 708 }
 709 
 710 
 711 static bool positive_constant(Instruction* inst) {
 712   IntConstant* c = inst->type()->as_IntConstant();
 713   if (c) {
 714     return (c->value() >= 0);
 715   }
 716   return false;
 717 }
 718 
 719 
 720 static ciArrayKlass* as_array_klass(ciType* type) {
 721   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 722     return (ciArrayKlass*)type;
 723   } else {
 724     return NULL;
 725   }
 726 }
 727 
 728 static ciType* phi_declared_type(Phi* phi) {
 729   ciType* t = phi->operand_at(0)->declared_type();
 730   if (t == NULL) {
 731     return NULL;
 732   }
 733   for(int i = 1; i < phi->operand_count(); i++) {
 734     if (t != phi->operand_at(i)->declared_type()) {
 735       return NULL;
 736     }
 737   }
 738   return t;
 739 }
 740 
 741 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 742   Instruction* src     = x->argument_at(0);
 743   Instruction* src_pos = x->argument_at(1);
 744   Instruction* dst     = x->argument_at(2);
 745   Instruction* dst_pos = x->argument_at(3);
 746   Instruction* length  = x->argument_at(4);
 747 
 748   // first try to identify the likely type of the arrays involved
 749   ciArrayKlass* expected_type = NULL;
 750   bool is_exact = false, src_objarray = false, dst_objarray = false;
 751   {
 752     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 753     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 754     Phi* phi;
 755     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 756       src_declared_type = as_array_klass(phi_declared_type(phi));
 757     }
 758     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 759     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 760     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 761       dst_declared_type = as_array_klass(phi_declared_type(phi));
 762     }
 763 
 764     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 765       // the types exactly match so the type is fully known
 766       is_exact = true;
 767       expected_type = src_exact_type;
 768     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 769       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 770       ciArrayKlass* src_type = NULL;
 771       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 772         src_type = (ciArrayKlass*) src_exact_type;
 773       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 774         src_type = (ciArrayKlass*) src_declared_type;
 775       }
 776       if (src_type != NULL) {
 777         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 778           is_exact = true;
 779           expected_type = dst_type;
 780         }
 781       }
 782     }
 783     // at least pass along a good guess
 784     if (expected_type == NULL) expected_type = dst_exact_type;
 785     if (expected_type == NULL) expected_type = src_declared_type;
 786     if (expected_type == NULL) expected_type = dst_declared_type;
 787 
 788     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 789     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 790   }
 791 
 792   // if a probable array type has been identified, figure out if any
 793   // of the required checks for a fast case can be elided.
 794   int flags = LIR_OpArrayCopy::all_flags;
 795 
 796   if (!src_objarray)
 797     flags &= ~LIR_OpArrayCopy::src_objarray;
 798   if (!dst_objarray)
 799     flags &= ~LIR_OpArrayCopy::dst_objarray;
 800 
 801   if (!x->arg_needs_null_check(0))
 802     flags &= ~LIR_OpArrayCopy::src_null_check;
 803   if (!x->arg_needs_null_check(2))
 804     flags &= ~LIR_OpArrayCopy::dst_null_check;
 805 
 806 
 807   if (expected_type != NULL) {
 808     Value length_limit = NULL;
 809 
 810     IfOp* ifop = length->as_IfOp();
 811     if (ifop != NULL) {
 812       // look for expressions like min(v, a.length) which ends up as
 813       //   x > y ? y : x  or  x >= y ? y : x
 814       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 815           ifop->x() == ifop->fval() &&
 816           ifop->y() == ifop->tval()) {
 817         length_limit = ifop->y();
 818       }
 819     }
 820 
 821     // try to skip null checks and range checks
 822     NewArray* src_array = src->as_NewArray();
 823     if (src_array != NULL) {
 824       flags &= ~LIR_OpArrayCopy::src_null_check;
 825       if (length_limit != NULL &&
 826           src_array->length() == length_limit &&
 827           is_constant_zero(src_pos)) {
 828         flags &= ~LIR_OpArrayCopy::src_range_check;
 829       }
 830     }
 831 
 832     NewArray* dst_array = dst->as_NewArray();
 833     if (dst_array != NULL) {
 834       flags &= ~LIR_OpArrayCopy::dst_null_check;
 835       if (length_limit != NULL &&
 836           dst_array->length() == length_limit &&
 837           is_constant_zero(dst_pos)) {
 838         flags &= ~LIR_OpArrayCopy::dst_range_check;
 839       }
 840     }
 841 
 842     // check from incoming constant values
 843     if (positive_constant(src_pos))
 844       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 845     if (positive_constant(dst_pos))
 846       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 847     if (positive_constant(length))
 848       flags &= ~LIR_OpArrayCopy::length_positive_check;
 849 
 850     // see if the range check can be elided, which might also imply
 851     // that src or dst is non-null.
 852     ArrayLength* al = length->as_ArrayLength();
 853     if (al != NULL) {
 854       if (al->array() == src) {
 855         // it's the length of the source array
 856         flags &= ~LIR_OpArrayCopy::length_positive_check;
 857         flags &= ~LIR_OpArrayCopy::src_null_check;
 858         if (is_constant_zero(src_pos))
 859           flags &= ~LIR_OpArrayCopy::src_range_check;
 860       }
 861       if (al->array() == dst) {
 862         // it's the length of the destination array
 863         flags &= ~LIR_OpArrayCopy::length_positive_check;
 864         flags &= ~LIR_OpArrayCopy::dst_null_check;
 865         if (is_constant_zero(dst_pos))
 866           flags &= ~LIR_OpArrayCopy::dst_range_check;
 867       }
 868     }
 869     if (is_exact) {
 870       flags &= ~LIR_OpArrayCopy::type_check;
 871     }
 872   }
 873 
 874   IntConstant* src_int = src_pos->type()->as_IntConstant();
 875   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 876   if (src_int && dst_int) {
 877     int s_offs = src_int->value();
 878     int d_offs = dst_int->value();
 879     if (src_int->value() >= dst_int->value()) {
 880       flags &= ~LIR_OpArrayCopy::overlapping;
 881     }
 882     if (expected_type != NULL) {
 883       BasicType t = expected_type->element_type()->basic_type();
 884       int element_size = type2aelembytes(t);
 885       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 886           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 887         flags &= ~LIR_OpArrayCopy::unaligned;
 888       }
 889     }
 890   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 891     // src and dest positions are the same, or dst is zero so assume
 892     // nonoverlapping copy.
 893     flags &= ~LIR_OpArrayCopy::overlapping;
 894   }
 895 
 896   if (src == dst) {
 897     // moving within a single array so no type checks are needed
 898     if (flags & LIR_OpArrayCopy::type_check) {
 899       flags &= ~LIR_OpArrayCopy::type_check;
 900     }
 901   }
 902   *flagsp = flags;
 903   *expected_typep = (ciArrayKlass*)expected_type;
 904 }
 905 
 906 
 907 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 908   assert(opr->is_register(), "why spill if item is not register?");
 909 
 910   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 911     LIR_Opr result = new_register(T_FLOAT);
 912     set_vreg_flag(result, must_start_in_memory);
 913     assert(opr->is_register(), "only a register can be spilled");
 914     assert(opr->value_type()->is_float(), "rounding only for floats available");
 915     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 916     return result;
 917   }
 918   return opr;
 919 }
 920 
 921 
 922 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 923   assert(type2size[t] == type2size[value->type()],
 924          err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
 925   if (!value->is_register()) {
 926     // force into a register
 927     LIR_Opr r = new_register(value->type());
 928     __ move(value, r);
 929     value = r;
 930   }
 931 
 932   // create a spill location
 933   LIR_Opr tmp = new_register(t);
 934   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 935 
 936   // move from register to spill
 937   __ move(value, tmp);
 938   return tmp;
 939 }
 940 
 941 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 942   if (if_instr->should_profile()) {
 943     ciMethod* method = if_instr->profiled_method();
 944     assert(method != NULL, "method should be set if branch is profiled");
 945     ciMethodData* md = method->method_data_or_null();
 946     assert(md != NULL, "Sanity");
 947     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 948     assert(data != NULL, "must have profiling data");
 949     assert(data->is_BranchData(), "need BranchData for two-way branches");
 950     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 951     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 952     if (if_instr->is_swapped()) {
 953       int t = taken_count_offset;
 954       taken_count_offset = not_taken_count_offset;
 955       not_taken_count_offset = t;
 956     }
 957 
 958     LIR_Opr md_reg = new_register(T_METADATA);
 959     __ metadata2reg(md->constant_encoding(), md_reg);
 960 
 961     LIR_Opr data_offset_reg = new_pointer_register();
 962     __ cmove(lir_cond(cond),
 963              LIR_OprFact::intptrConst(taken_count_offset),
 964              LIR_OprFact::intptrConst(not_taken_count_offset),
 965              data_offset_reg, as_BasicType(if_instr->x()->type()));
 966 
 967     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 968     LIR_Opr data_reg = new_pointer_register();
 969     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 970     __ move(data_addr, data_reg);
 971     // Use leal instead of add to avoid destroying condition codes on x86
 972     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 973     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 974     __ move(data_reg, data_addr);
 975   }
 976 }
 977 
 978 // Phi technique:
 979 // This is about passing live values from one basic block to the other.
 980 // In code generated with Java it is rather rare that more than one
 981 // value is on the stack from one basic block to the other.
 982 // We optimize our technique for efficient passing of one value
 983 // (of type long, int, double..) but it can be extended.
 984 // When entering or leaving a basic block, all registers and all spill
 985 // slots are release and empty. We use the released registers
 986 // and spill slots to pass the live values from one block
 987 // to the other. The topmost value, i.e., the value on TOS of expression
 988 // stack is passed in registers. All other values are stored in spilling
 989 // area. Every Phi has an index which designates its spill slot
 990 // At exit of a basic block, we fill the register(s) and spill slots.
 991 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 992 // and locks necessary registers and spilling slots.
 993 
 994 
 995 // move current value to referenced phi function
 996 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 997   Phi* phi = sux_val->as_Phi();
 998   // cur_val can be null without phi being null in conjunction with inlining
 999   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1000     LIR_Opr operand = cur_val->operand();
1001     if (cur_val->operand()->is_illegal()) {
1002       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1003              "these can be produced lazily");
1004       operand = operand_for_instruction(cur_val);
1005     }
1006     resolver->move(operand, operand_for_instruction(phi));
1007   }
1008 }
1009 
1010 
1011 // Moves all stack values into their PHI position
1012 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1013   BlockBegin* bb = block();
1014   if (bb->number_of_sux() == 1) {
1015     BlockBegin* sux = bb->sux_at(0);
1016     assert(sux->number_of_preds() > 0, "invalid CFG");
1017 
1018     // a block with only one predecessor never has phi functions
1019     if (sux->number_of_preds() > 1) {
1020       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1021       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1022 
1023       ValueStack* sux_state = sux->state();
1024       Value sux_value;
1025       int index;
1026 
1027       assert(cur_state->scope() == sux_state->scope(), "not matching");
1028       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1029       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1030 
1031       for_each_stack_value(sux_state, index, sux_value) {
1032         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1033       }
1034 
1035       for_each_local_value(sux_state, index, sux_value) {
1036         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1037       }
1038 
1039       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1040     }
1041   }
1042 }
1043 
1044 
1045 LIR_Opr LIRGenerator::new_register(BasicType type) {
1046   int vreg = _virtual_register_number;
1047   // add a little fudge factor for the bailout, since the bailout is
1048   // only checked periodically.  This gives a few extra registers to
1049   // hand out before we really run out, which helps us keep from
1050   // tripping over assertions.
1051   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1052     bailout("out of virtual registers");
1053     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1054       // wrap it around
1055       _virtual_register_number = LIR_OprDesc::vreg_base;
1056     }
1057   }
1058   _virtual_register_number += 1;
1059   return LIR_OprFact::virtual_register(vreg, type);
1060 }
1061 
1062 
1063 // Try to lock using register in hint
1064 LIR_Opr LIRGenerator::rlock(Value instr) {
1065   return new_register(instr->type());
1066 }
1067 
1068 
1069 // does an rlock and sets result
1070 LIR_Opr LIRGenerator::rlock_result(Value x) {
1071   LIR_Opr reg = rlock(x);
1072   set_result(x, reg);
1073   return reg;
1074 }
1075 
1076 
1077 // does an rlock and sets result
1078 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1079   LIR_Opr reg;
1080   switch (type) {
1081   case T_BYTE:
1082   case T_BOOLEAN:
1083     reg = rlock_byte(type);
1084     break;
1085   default:
1086     reg = rlock(x);
1087     break;
1088   }
1089 
1090   set_result(x, reg);
1091   return reg;
1092 }
1093 
1094 
1095 //---------------------------------------------------------------------
1096 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1097   ObjectType* oc = value->type()->as_ObjectType();
1098   if (oc) {
1099     return oc->constant_value();
1100   }
1101   return NULL;
1102 }
1103 
1104 
1105 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1106   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1107   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1108 
1109   // no moves are created for phi functions at the begin of exception
1110   // handlers, so assign operands manually here
1111   for_each_phi_fun(block(), phi,
1112                    operand_for_instruction(phi));
1113 
1114   LIR_Opr thread_reg = getThreadPointer();
1115   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1116                exceptionOopOpr());
1117   __ move_wide(LIR_OprFact::oopConst(NULL),
1118                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1119   __ move_wide(LIR_OprFact::oopConst(NULL),
1120                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1121 
1122   LIR_Opr result = new_register(T_OBJECT);
1123   __ move(exceptionOopOpr(), result);
1124   set_result(x, result);
1125 }
1126 
1127 
1128 //----------------------------------------------------------------------
1129 //----------------------------------------------------------------------
1130 //----------------------------------------------------------------------
1131 //----------------------------------------------------------------------
1132 //                        visitor functions
1133 //----------------------------------------------------------------------
1134 //----------------------------------------------------------------------
1135 //----------------------------------------------------------------------
1136 //----------------------------------------------------------------------
1137 
1138 void LIRGenerator::do_Phi(Phi* x) {
1139   // phi functions are never visited directly
1140   ShouldNotReachHere();
1141 }
1142 
1143 
1144 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1145 void LIRGenerator::do_Constant(Constant* x) {
1146   if (x->state_before() != NULL) {
1147     // Any constant with a ValueStack requires patching so emit the patch here
1148     LIR_Opr reg = rlock_result(x);
1149     CodeEmitInfo* info = state_for(x, x->state_before());
1150     __ oop2reg_patch(NULL, reg, info);
1151   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1152     if (!x->is_pinned()) {
1153       // unpinned constants are handled specially so that they can be
1154       // put into registers when they are used multiple times within a
1155       // block.  After the block completes their operand will be
1156       // cleared so that other blocks can't refer to that register.
1157       set_result(x, load_constant(x));
1158     } else {
1159       LIR_Opr res = x->operand();
1160       if (!res->is_valid()) {
1161         res = LIR_OprFact::value_type(x->type());
1162       }
1163       if (res->is_constant()) {
1164         LIR_Opr reg = rlock_result(x);
1165         __ move(res, reg);
1166       } else {
1167         set_result(x, res);
1168       }
1169     }
1170   } else {
1171     set_result(x, LIR_OprFact::value_type(x->type()));
1172   }
1173 }
1174 
1175 
1176 void LIRGenerator::do_Local(Local* x) {
1177   // operand_for_instruction has the side effect of setting the result
1178   // so there's no need to do it here.
1179   operand_for_instruction(x);
1180 }
1181 
1182 
1183 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1184   Unimplemented();
1185 }
1186 
1187 
1188 void LIRGenerator::do_Return(Return* x) {
1189   if (compilation()->env()->dtrace_method_probes()) {
1190     BasicTypeList signature;
1191     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1192     signature.append(T_METADATA); // Method*
1193     LIR_OprList* args = new LIR_OprList();
1194     args->append(getThreadPointer());
1195     LIR_Opr meth = new_register(T_METADATA);
1196     __ metadata2reg(method()->constant_encoding(), meth);
1197     args->append(meth);
1198     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1199   }
1200 
1201   if (x->type()->is_void()) {
1202     __ return_op(LIR_OprFact::illegalOpr);
1203   } else {
1204     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1205     LIRItem result(x->result(), this);
1206 
1207     result.load_item_force(reg);
1208     __ return_op(result.result());
1209   }
1210   set_no_result(x);
1211 }
1212 
1213 // Examble: ref.get()
1214 // Combination of LoadField and g1 pre-write barrier
1215 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1216 
1217   const int referent_offset = java_lang_ref_Reference::referent_offset;
1218   guarantee(referent_offset > 0, "referent offset not initialized");
1219 
1220   assert(x->number_of_arguments() == 1, "wrong type");
1221 
1222   LIRItem reference(x->argument_at(0), this);
1223   reference.load_item();
1224 
1225   // need to perform the null check on the reference objecy
1226   CodeEmitInfo* info = NULL;
1227   if (x->needs_null_check()) {
1228     info = state_for(x);
1229   }
1230 
1231   LIR_Address* referent_field_adr =
1232     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1233 
1234   LIR_Opr result = rlock_result(x);
1235 
1236   __ load(referent_field_adr, result, info);
1237 
1238   // Register the value in the referent field with the pre-barrier
1239   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1240               result /* pre_val */,
1241               false  /* do_load */,
1242               false  /* patch */,
1243               NULL   /* info */);
1244 }
1245 
1246 // Example: clazz.isInstance(object)
1247 void LIRGenerator::do_isInstance(Intrinsic* x) {
1248   assert(x->number_of_arguments() == 2, "wrong type");
1249 
1250   // TODO could try to substitute this node with an equivalent InstanceOf
1251   // if clazz is known to be a constant Class. This will pick up newly found
1252   // constants after HIR construction. I'll leave this to a future change.
1253 
1254   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1255   // could follow the aastore example in a future change.
1256 
1257   LIRItem clazz(x->argument_at(0), this);
1258   LIRItem object(x->argument_at(1), this);
1259   clazz.load_item();
1260   object.load_item();
1261   LIR_Opr result = rlock_result(x);
1262 
1263   // need to perform null check on clazz
1264   if (x->needs_null_check()) {
1265     CodeEmitInfo* info = state_for(x);
1266     __ null_check(clazz.result(), info);
1267   }
1268 
1269   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1270                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1271                                      x->type(),
1272                                      NULL); // NULL CodeEmitInfo results in a leaf call
1273   __ move(call_result, result);
1274 }
1275 
1276 // Example: object.getClass ()
1277 void LIRGenerator::do_getClass(Intrinsic* x) {
1278   assert(x->number_of_arguments() == 1, "wrong type");
1279 
1280   LIRItem rcvr(x->argument_at(0), this);
1281   rcvr.load_item();
1282   LIR_Opr temp = new_register(T_METADATA);
1283   LIR_Opr result = rlock_result(x);
1284 
1285   // need to perform the null check on the rcvr
1286   CodeEmitInfo* info = NULL;
1287   if (x->needs_null_check()) {
1288     info = state_for(x);
1289   }
1290 
1291   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1292   // meaning of these two is mixed up (see JDK-8026837).
1293   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1294   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1295 }
1296 
1297 
1298 // Example: Thread.currentThread()
1299 void LIRGenerator::do_currentThread(Intrinsic* x) {
1300   assert(x->number_of_arguments() == 0, "wrong type");
1301   LIR_Opr reg = rlock_result(x);
1302   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1303 }
1304 
1305 
1306 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1307   assert(x->number_of_arguments() == 1, "wrong type");
1308   LIRItem receiver(x->argument_at(0), this);
1309 
1310   receiver.load_item();
1311   BasicTypeList signature;
1312   signature.append(T_OBJECT); // receiver
1313   LIR_OprList* args = new LIR_OprList();
1314   args->append(receiver.result());
1315   CodeEmitInfo* info = state_for(x, x->state());
1316   call_runtime(&signature, args,
1317                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1318                voidType, info);
1319 
1320   set_no_result(x);
1321 }
1322 
1323 
1324 //------------------------local access--------------------------------------
1325 
1326 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1327   if (x->operand()->is_illegal()) {
1328     Constant* c = x->as_Constant();
1329     if (c != NULL) {
1330       x->set_operand(LIR_OprFact::value_type(c->type()));
1331     } else {
1332       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1333       // allocate a virtual register for this local or phi
1334       x->set_operand(rlock(x));
1335       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1336     }
1337   }
1338   return x->operand();
1339 }
1340 
1341 
1342 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1343   if (opr->is_virtual()) {
1344     return instruction_for_vreg(opr->vreg_number());
1345   }
1346   return NULL;
1347 }
1348 
1349 
1350 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1351   if (reg_num < _instruction_for_operand.length()) {
1352     return _instruction_for_operand.at(reg_num);
1353   }
1354   return NULL;
1355 }
1356 
1357 
1358 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1359   if (_vreg_flags.size_in_bits() == 0) {
1360     BitMap2D temp(100, num_vreg_flags);
1361     temp.clear();
1362     _vreg_flags = temp;
1363   }
1364   _vreg_flags.at_put_grow(vreg_num, f, true);
1365 }
1366 
1367 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1368   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1369     return false;
1370   }
1371   return _vreg_flags.at(vreg_num, f);
1372 }
1373 
1374 
1375 // Block local constant handling.  This code is useful for keeping
1376 // unpinned constants and constants which aren't exposed in the IR in
1377 // registers.  Unpinned Constant instructions have their operands
1378 // cleared when the block is finished so that other blocks can't end
1379 // up referring to their registers.
1380 
1381 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1382   assert(!x->is_pinned(), "only for unpinned constants");
1383   _unpinned_constants.append(x);
1384   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1385 }
1386 
1387 
1388 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1389   BasicType t = c->type();
1390   for (int i = 0; i < _constants.length(); i++) {
1391     LIR_Const* other = _constants.at(i);
1392     if (t == other->type()) {
1393       switch (t) {
1394       case T_INT:
1395       case T_FLOAT:
1396         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1397         break;
1398       case T_LONG:
1399       case T_DOUBLE:
1400         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1401         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1402         break;
1403       case T_OBJECT:
1404         if (c->as_jobject() != other->as_jobject()) continue;
1405         break;
1406       }
1407       return _reg_for_constants.at(i);
1408     }
1409   }
1410 
1411   LIR_Opr result = new_register(t);
1412   __ move((LIR_Opr)c, result);
1413   _constants.append(c);
1414   _reg_for_constants.append(result);
1415   return result;
1416 }
1417 
1418 // Various barriers
1419 
1420 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1421                                bool do_load, bool patch, CodeEmitInfo* info) {
1422   // Do the pre-write barrier, if any.
1423   switch (_bs->kind()) {
1424 #if INCLUDE_ALL_GCS
1425     case BarrierSet::G1SATBCT:
1426     case BarrierSet::G1SATBCTLogging:
1427       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1428       break;
1429 #endif // INCLUDE_ALL_GCS
1430     case BarrierSet::CardTableModRef:
1431     case BarrierSet::CardTableExtension:
1432       // No pre barriers
1433       break;
1434     case BarrierSet::ModRef:
1435       // No pre barriers
1436       break;
1437     default      :
1438       ShouldNotReachHere();
1439 
1440   }
1441 }
1442 
1443 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1444   switch (_bs->kind()) {
1445 #if INCLUDE_ALL_GCS
1446     case BarrierSet::G1SATBCT:
1447     case BarrierSet::G1SATBCTLogging:
1448       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1449       break;
1450 #endif // INCLUDE_ALL_GCS
1451     case BarrierSet::CardTableModRef:
1452     case BarrierSet::CardTableExtension:
1453       CardTableModRef_post_barrier(addr,  new_val);
1454       break;
1455     case BarrierSet::ModRef:
1456       // No post barriers
1457       break;
1458     default      :
1459       ShouldNotReachHere();
1460     }
1461 }
1462 
1463 ////////////////////////////////////////////////////////////////////////
1464 #if INCLUDE_ALL_GCS
1465 
1466 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1467                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1468   // First we test whether marking is in progress.
1469   BasicType flag_type;
1470   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1471     flag_type = T_INT;
1472   } else {
1473     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1474               "Assumption");
1475     flag_type = T_BYTE;
1476   }
1477   LIR_Opr thrd = getThreadPointer();
1478   LIR_Address* mark_active_flag_addr =
1479     new LIR_Address(thrd,
1480                     in_bytes(JavaThread::satb_mark_queue_offset() +
1481                              PtrQueue::byte_offset_of_active()),
1482                     flag_type);
1483   // Read the marking-in-progress flag.
1484   LIR_Opr flag_val = new_register(T_INT);
1485   __ load(mark_active_flag_addr, flag_val);
1486   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1487 
1488   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1489 
1490   CodeStub* slow;
1491 
1492   if (do_load) {
1493     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1494     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1495 
1496     if (patch)
1497       pre_val_patch_code = lir_patch_normal;
1498 
1499     pre_val = new_register(T_OBJECT);
1500 
1501     if (!addr_opr->is_address()) {
1502       assert(addr_opr->is_register(), "must be");
1503       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1504     }
1505     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1506   } else {
1507     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1508     assert(pre_val->is_register(), "must be");
1509     assert(pre_val->type() == T_OBJECT, "must be an object");
1510     assert(info == NULL, "sanity");
1511 
1512     slow = new G1PreBarrierStub(pre_val);
1513   }
1514 
1515   __ branch(lir_cond_notEqual, T_INT, slow);
1516   __ branch_destination(slow->continuation());
1517 }
1518 
1519 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1520   // If the "new_val" is a constant NULL, no barrier is necessary.
1521   if (new_val->is_constant() &&
1522       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1523 
1524   if (!new_val->is_register()) {
1525     LIR_Opr new_val_reg = new_register(T_OBJECT);
1526     if (new_val->is_constant()) {
1527       __ move(new_val, new_val_reg);
1528     } else {
1529       __ leal(new_val, new_val_reg);
1530     }
1531     new_val = new_val_reg;
1532   }
1533   assert(new_val->is_register(), "must be a register at this point");
1534 
1535   if (addr->is_address()) {
1536     LIR_Address* address = addr->as_address_ptr();
1537     LIR_Opr ptr = new_pointer_register();
1538     if (!address->index()->is_valid() && address->disp() == 0) {
1539       __ move(address->base(), ptr);
1540     } else {
1541       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1542       __ leal(addr, ptr);
1543     }
1544     addr = ptr;
1545   }
1546   assert(addr->is_register(), "must be a register at this point");
1547 
1548   LIR_Opr xor_res = new_pointer_register();
1549   LIR_Opr xor_shift_res = new_pointer_register();
1550   if (TwoOperandLIRForm ) {
1551     __ move(addr, xor_res);
1552     __ logical_xor(xor_res, new_val, xor_res);
1553     __ move(xor_res, xor_shift_res);
1554     __ unsigned_shift_right(xor_shift_res,
1555                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1556                             xor_shift_res,
1557                             LIR_OprDesc::illegalOpr());
1558   } else {
1559     __ logical_xor(addr, new_val, xor_res);
1560     __ unsigned_shift_right(xor_res,
1561                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1562                             xor_shift_res,
1563                             LIR_OprDesc::illegalOpr());
1564   }
1565 
1566   if (!new_val->is_register()) {
1567     LIR_Opr new_val_reg = new_register(T_OBJECT);
1568     __ leal(new_val, new_val_reg);
1569     new_val = new_val_reg;
1570   }
1571   assert(new_val->is_register(), "must be a register at this point");
1572 
1573   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1574 
1575   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1576   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1577   __ branch_destination(slow->continuation());
1578 }
1579 
1580 #endif // INCLUDE_ALL_GCS
1581 ////////////////////////////////////////////////////////////////////////
1582 
1583 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1584 
1585   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1586   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1587   if (addr->is_address()) {
1588     LIR_Address* address = addr->as_address_ptr();
1589     // ptr cannot be an object because we use this barrier for array card marks
1590     // and addr can point in the middle of an array.
1591     LIR_Opr ptr = new_pointer_register();
1592     if (!address->index()->is_valid() && address->disp() == 0) {
1593       __ move(address->base(), ptr);
1594     } else {
1595       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1596       __ leal(addr, ptr);
1597     }
1598     addr = ptr;
1599   }
1600   assert(addr->is_register(), "must be a register at this point");
1601 
1602 #ifdef ARM
1603   // TODO: ARM - move to platform-dependent code
1604   LIR_Opr tmp = FrameMap::R14_opr;
1605   if (VM_Version::supports_movw()) {
1606     __ move((LIR_Opr)card_table_base, tmp);
1607   } else {
1608     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
1609   }
1610 
1611   CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
1612   LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
1613   if(((int)ct->byte_map_base & 0xff) == 0) {
1614     __ move(tmp, card_addr);
1615   } else {
1616     LIR_Opr tmp_zero = new_register(T_INT);
1617     __ move(LIR_OprFact::intConst(0), tmp_zero);
1618     __ move(tmp_zero, card_addr);
1619   }
1620 #else // ARM
1621   LIR_Opr tmp = new_pointer_register();
1622   if (TwoOperandLIRForm) {
1623     __ move(addr, tmp);
1624     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1625   } else {
1626     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1627   }
1628   if (can_inline_as_constant(card_table_base)) {
1629     __ move(LIR_OprFact::intConst(0),
1630               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1631   } else {
1632     __ move(LIR_OprFact::intConst(0),
1633               new LIR_Address(tmp, load_constant(card_table_base),
1634                               T_BYTE));
1635   }
1636 #endif // ARM
1637 }
1638 
1639 
1640 //------------------------field access--------------------------------------
1641 
1642 // Comment copied form templateTable_i486.cpp
1643 // ----------------------------------------------------------------------------
1644 // Volatile variables demand their effects be made known to all CPU's in
1645 // order.  Store buffers on most chips allow reads & writes to reorder; the
1646 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1647 // memory barrier (i.e., it's not sufficient that the interpreter does not
1648 // reorder volatile references, the hardware also must not reorder them).
1649 //
1650 // According to the new Java Memory Model (JMM):
1651 // (1) All volatiles are serialized wrt to each other.
1652 // ALSO reads & writes act as aquire & release, so:
1653 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1654 // the read float up to before the read.  It's OK for non-volatile memory refs
1655 // that happen before the volatile read to float down below it.
1656 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1657 // that happen BEFORE the write float down to after the write.  It's OK for
1658 // non-volatile memory refs that happen after the volatile write to float up
1659 // before it.
1660 //
1661 // We only put in barriers around volatile refs (they are expensive), not
1662 // _between_ memory refs (that would require us to track the flavor of the
1663 // previous memory refs).  Requirements (2) and (3) require some barriers
1664 // before volatile stores and after volatile loads.  These nearly cover
1665 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1666 // case is placed after volatile-stores although it could just as well go
1667 // before volatile-loads.
1668 
1669 
1670 void LIRGenerator::do_StoreField(StoreField* x) {
1671   bool needs_patching = x->needs_patching();
1672   bool is_volatile = x->field()->is_volatile();
1673   BasicType field_type = x->field_type();
1674   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1675 
1676   CodeEmitInfo* info = NULL;
1677   if (needs_patching) {
1678     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1679     info = state_for(x, x->state_before());
1680   } else if (x->needs_null_check()) {
1681     NullCheck* nc = x->explicit_null_check();
1682     if (nc == NULL) {
1683       info = state_for(x);
1684     } else {
1685       info = state_for(nc);
1686     }
1687   }
1688 
1689 
1690   LIRItem object(x->obj(), this);
1691   LIRItem value(x->value(),  this);
1692 
1693   object.load_item();
1694 
1695   if (is_volatile || needs_patching) {
1696     // load item if field is volatile (fewer special cases for volatiles)
1697     // load item if field not initialized
1698     // load item if field not constant
1699     // because of code patching we cannot inline constants
1700     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1701       value.load_byte_item();
1702     } else  {
1703       value.load_item();
1704     }
1705   } else {
1706     value.load_for_store(field_type);
1707   }
1708 
1709   set_no_result(x);
1710 
1711 #ifndef PRODUCT
1712   if (PrintNotLoaded && needs_patching) {
1713     tty->print_cr("   ###class not loaded at store_%s bci %d",
1714                   x->is_static() ?  "static" : "field", x->printable_bci());
1715   }
1716 #endif
1717 
1718   if (x->needs_null_check() &&
1719       (needs_patching ||
1720        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1721     // emit an explicit null check because the offset is too large
1722     __ null_check(object.result(), new CodeEmitInfo(info));
1723   }
1724 
1725   LIR_Address* address;
1726   if (needs_patching) {
1727     // we need to patch the offset in the instruction so don't allow
1728     // generate_address to try to be smart about emitting the -1.
1729     // Otherwise the patching code won't know how to find the
1730     // instruction to patch.
1731     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1732   } else {
1733     address = generate_address(object.result(), x->offset(), field_type);
1734   }
1735 
1736   if (is_volatile && os::is_MP()) {
1737     __ membar_release();
1738   }
1739 
1740   if (is_oop) {
1741     // Do the pre-write barrier, if any.
1742     pre_barrier(LIR_OprFact::address(address),
1743                 LIR_OprFact::illegalOpr /* pre_val */,
1744                 true /* do_load*/,
1745                 needs_patching,
1746                 (info ? new CodeEmitInfo(info) : NULL));
1747   }
1748 
1749   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1750   if (needs_atomic_access && !needs_patching) {
1751     volatile_field_store(value.result(), address, info);
1752   } else {
1753     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1754     __ store(value.result(), address, info, patch_code);
1755   }
1756 
1757   if (is_oop) {
1758     // Store to object so mark the card of the header
1759     post_barrier(object.result(), value.result());
1760   }
1761 
1762   if (is_volatile && os::is_MP()) {
1763     __ membar();
1764   }
1765 }
1766 
1767 
1768 void LIRGenerator::do_LoadField(LoadField* x) {
1769   bool needs_patching = x->needs_patching();
1770   bool is_volatile = x->field()->is_volatile();
1771   BasicType field_type = x->field_type();
1772 
1773   CodeEmitInfo* info = NULL;
1774   if (needs_patching) {
1775     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1776     info = state_for(x, x->state_before());
1777   } else if (x->needs_null_check()) {
1778     NullCheck* nc = x->explicit_null_check();
1779     if (nc == NULL) {
1780       info = state_for(x);
1781     } else {
1782       info = state_for(nc);
1783     }
1784   }
1785 
1786   LIRItem object(x->obj(), this);
1787 
1788   object.load_item();
1789 
1790 #ifndef PRODUCT
1791   if (PrintNotLoaded && needs_patching) {
1792     tty->print_cr("   ###class not loaded at load_%s bci %d",
1793                   x->is_static() ?  "static" : "field", x->printable_bci());
1794   }
1795 #endif
1796 
1797   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1798   if (x->needs_null_check() &&
1799       (needs_patching ||
1800        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1801        stress_deopt)) {
1802     LIR_Opr obj = object.result();
1803     if (stress_deopt) {
1804       obj = new_register(T_OBJECT);
1805       __ move(LIR_OprFact::oopConst(NULL), obj);
1806     }
1807     // emit an explicit null check because the offset is too large
1808     __ null_check(obj, new CodeEmitInfo(info));
1809   }
1810 
1811   LIR_Opr reg = rlock_result(x, field_type);
1812   LIR_Address* address;
1813   if (needs_patching) {
1814     // we need to patch the offset in the instruction so don't allow
1815     // generate_address to try to be smart about emitting the -1.
1816     // Otherwise the patching code won't know how to find the
1817     // instruction to patch.
1818     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1819   } else {
1820     address = generate_address(object.result(), x->offset(), field_type);
1821   }
1822 
1823   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1824   if (needs_atomic_access && !needs_patching) {
1825     volatile_field_load(address, reg, info);
1826   } else {
1827     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1828     __ load(address, reg, info, patch_code);
1829   }
1830 
1831   if (is_volatile && os::is_MP()) {
1832     __ membar_acquire();
1833   }
1834 }
1835 
1836 
1837 //------------------------java.nio.Buffer.checkIndex------------------------
1838 
1839 // int java.nio.Buffer.checkIndex(int)
1840 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1841   // NOTE: by the time we are in checkIndex() we are guaranteed that
1842   // the buffer is non-null (because checkIndex is package-private and
1843   // only called from within other methods in the buffer).
1844   assert(x->number_of_arguments() == 2, "wrong type");
1845   LIRItem buf  (x->argument_at(0), this);
1846   LIRItem index(x->argument_at(1), this);
1847   buf.load_item();
1848   index.load_item();
1849 
1850   LIR_Opr result = rlock_result(x);
1851   if (GenerateRangeChecks) {
1852     CodeEmitInfo* info = state_for(x);
1853     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1854     if (index.result()->is_constant()) {
1855       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1856       __ branch(lir_cond_belowEqual, T_INT, stub);
1857     } else {
1858       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1859                   java_nio_Buffer::limit_offset(), T_INT, info);
1860       __ branch(lir_cond_aboveEqual, T_INT, stub);
1861     }
1862     __ move(index.result(), result);
1863   } else {
1864     // Just load the index into the result register
1865     __ move(index.result(), result);
1866   }
1867 }
1868 
1869 
1870 //------------------------array access--------------------------------------
1871 
1872 
1873 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1874   LIRItem array(x->array(), this);
1875   array.load_item();
1876   LIR_Opr reg = rlock_result(x);
1877 
1878   CodeEmitInfo* info = NULL;
1879   if (x->needs_null_check()) {
1880     NullCheck* nc = x->explicit_null_check();
1881     if (nc == NULL) {
1882       info = state_for(x);
1883     } else {
1884       info = state_for(nc);
1885     }
1886     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1887       LIR_Opr obj = new_register(T_OBJECT);
1888       __ move(LIR_OprFact::oopConst(NULL), obj);
1889       __ null_check(obj, new CodeEmitInfo(info));
1890     }
1891   }
1892   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1893 }
1894 
1895 
1896 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1897   bool use_length = x->length() != NULL;
1898   LIRItem array(x->array(), this);
1899   LIRItem index(x->index(), this);
1900   LIRItem length(this);
1901   bool needs_range_check = x->compute_needs_range_check();
1902 
1903   if (use_length && needs_range_check) {
1904     length.set_instruction(x->length());
1905     length.load_item();
1906   }
1907 
1908   array.load_item();
1909   if (index.is_constant() && can_inline_as_constant(x->index())) {
1910     // let it be a constant
1911     index.dont_load_item();
1912   } else {
1913     index.load_item();
1914   }
1915 
1916   CodeEmitInfo* range_check_info = state_for(x);
1917   CodeEmitInfo* null_check_info = NULL;
1918   if (x->needs_null_check()) {
1919     NullCheck* nc = x->explicit_null_check();
1920     if (nc != NULL) {
1921       null_check_info = state_for(nc);
1922     } else {
1923       null_check_info = range_check_info;
1924     }
1925     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1926       LIR_Opr obj = new_register(T_OBJECT);
1927       __ move(LIR_OprFact::oopConst(NULL), obj);
1928       __ null_check(obj, new CodeEmitInfo(null_check_info));
1929     }
1930   }
1931 
1932   // emit array address setup early so it schedules better
1933   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1934 
1935   if (GenerateRangeChecks && needs_range_check) {
1936     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1937       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1938     } else if (use_length) {
1939       // TODO: use a (modified) version of array_range_check that does not require a
1940       //       constant length to be loaded to a register
1941       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1942       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1943     } else {
1944       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1945       // The range check performs the null check, so clear it out for the load
1946       null_check_info = NULL;
1947     }
1948   }
1949 
1950   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1951 }
1952 
1953 
1954 void LIRGenerator::do_NullCheck(NullCheck* x) {
1955   if (x->can_trap()) {
1956     LIRItem value(x->obj(), this);
1957     value.load_item();
1958     CodeEmitInfo* info = state_for(x);
1959     __ null_check(value.result(), info);
1960   }
1961 }
1962 
1963 
1964 void LIRGenerator::do_TypeCast(TypeCast* x) {
1965   LIRItem value(x->obj(), this);
1966   value.load_item();
1967   // the result is the same as from the node we are casting
1968   set_result(x, value.result());
1969 }
1970 
1971 
1972 void LIRGenerator::do_Throw(Throw* x) {
1973   LIRItem exception(x->exception(), this);
1974   exception.load_item();
1975   set_no_result(x);
1976   LIR_Opr exception_opr = exception.result();
1977   CodeEmitInfo* info = state_for(x, x->state());
1978 
1979 #ifndef PRODUCT
1980   if (PrintC1Statistics) {
1981     increment_counter(Runtime1::throw_count_address(), T_INT);
1982   }
1983 #endif
1984 
1985   // check if the instruction has an xhandler in any of the nested scopes
1986   bool unwind = false;
1987   if (info->exception_handlers()->length() == 0) {
1988     // this throw is not inside an xhandler
1989     unwind = true;
1990   } else {
1991     // get some idea of the throw type
1992     bool type_is_exact = true;
1993     ciType* throw_type = x->exception()->exact_type();
1994     if (throw_type == NULL) {
1995       type_is_exact = false;
1996       throw_type = x->exception()->declared_type();
1997     }
1998     if (throw_type != NULL && throw_type->is_instance_klass()) {
1999       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2000       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2001     }
2002   }
2003 
2004   // do null check before moving exception oop into fixed register
2005   // to avoid a fixed interval with an oop during the null check.
2006   // Use a copy of the CodeEmitInfo because debug information is
2007   // different for null_check and throw.
2008   if (GenerateCompilerNullChecks &&
2009       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
2010     // if the exception object wasn't created using new then it might be null.
2011     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2012   }
2013 
2014   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2015     // we need to go through the exception lookup path to get JVMTI
2016     // notification done
2017     unwind = false;
2018   }
2019 
2020   // move exception oop into fixed register
2021   __ move(exception_opr, exceptionOopOpr());
2022 
2023   if (unwind) {
2024     __ unwind_exception(exceptionOopOpr());
2025   } else {
2026     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2027   }
2028 }
2029 
2030 
2031 void LIRGenerator::do_RoundFP(RoundFP* x) {
2032   LIRItem input(x->input(), this);
2033   input.load_item();
2034   LIR_Opr input_opr = input.result();
2035   assert(input_opr->is_register(), "why round if value is not in a register?");
2036   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2037   if (input_opr->is_single_fpu()) {
2038     set_result(x, round_item(input_opr)); // This code path not currently taken
2039   } else {
2040     LIR_Opr result = new_register(T_DOUBLE);
2041     set_vreg_flag(result, must_start_in_memory);
2042     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2043     set_result(x, result);
2044   }
2045 }
2046 
2047 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2048 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2049 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2050   LIRItem base(x->base(), this);
2051   LIRItem idx(this);
2052 
2053   base.load_item();
2054   if (x->has_index()) {
2055     idx.set_instruction(x->index());
2056     idx.load_nonconstant();
2057   }
2058 
2059   LIR_Opr reg = rlock_result(x, x->basic_type());
2060 
2061   int   log2_scale = 0;
2062   if (x->has_index()) {
2063     log2_scale = x->log2_scale();
2064   }
2065 
2066   assert(!x->has_index() || idx.value() == x->index(), "should match");
2067 
2068   LIR_Opr base_op = base.result();
2069   LIR_Opr index_op = idx.result();
2070 #ifndef _LP64
2071   if (base_op->type() == T_LONG) {
2072     base_op = new_register(T_INT);
2073     __ convert(Bytecodes::_l2i, base.result(), base_op);
2074   }
2075   if (x->has_index()) {
2076     if (index_op->type() == T_LONG) {
2077       LIR_Opr long_index_op = index_op;
2078       if (index_op->is_constant()) {
2079         long_index_op = new_register(T_LONG);
2080         __ move(index_op, long_index_op);
2081       }
2082       index_op = new_register(T_INT);
2083       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2084     } else {
2085       assert(x->index()->type()->tag() == intTag, "must be");
2086     }
2087   }
2088   // At this point base and index should be all ints.
2089   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2090   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2091 #else
2092   if (x->has_index()) {
2093     if (index_op->type() == T_INT) {
2094       if (!index_op->is_constant()) {
2095         index_op = new_register(T_LONG);
2096         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2097       }
2098     } else {
2099       assert(index_op->type() == T_LONG, "must be");
2100       if (index_op->is_constant()) {
2101         index_op = new_register(T_LONG);
2102         __ move(idx.result(), index_op);
2103       }
2104     }
2105   }
2106   // At this point base is a long non-constant
2107   // Index is a long register or a int constant.
2108   // We allow the constant to stay an int because that would allow us a more compact encoding by
2109   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2110   // move it into a register first.
2111   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2112   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2113                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2114 #endif
2115 
2116   BasicType dst_type = x->basic_type();
2117 
2118   LIR_Address* addr;
2119   if (index_op->is_constant()) {
2120     assert(log2_scale == 0, "must not have a scale");
2121     assert(index_op->type() == T_INT, "only int constants supported");
2122     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2123   } else {
2124 #ifdef X86
2125     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2126 #elif defined(ARM)
2127     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2128 #else
2129     if (index_op->is_illegal() || log2_scale == 0) {
2130       addr = new LIR_Address(base_op, index_op, dst_type);
2131     } else {
2132       LIR_Opr tmp = new_pointer_register();
2133       __ shift_left(index_op, log2_scale, tmp);
2134       addr = new LIR_Address(base_op, tmp, dst_type);
2135     }
2136 #endif
2137   }
2138 
2139   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2140     __ unaligned_move(addr, reg);
2141   } else {
2142     if (dst_type == T_OBJECT && x->is_wide()) {
2143       __ move_wide(addr, reg);
2144     } else {
2145       __ move(addr, reg);
2146     }
2147   }
2148 }
2149 
2150 
2151 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2152   int  log2_scale = 0;
2153   BasicType type = x->basic_type();
2154 
2155   if (x->has_index()) {
2156     log2_scale = x->log2_scale();
2157   }
2158 
2159   LIRItem base(x->base(), this);
2160   LIRItem value(x->value(), this);
2161   LIRItem idx(this);
2162 
2163   base.load_item();
2164   if (x->has_index()) {
2165     idx.set_instruction(x->index());
2166     idx.load_item();
2167   }
2168 
2169   if (type == T_BYTE || type == T_BOOLEAN) {
2170     value.load_byte_item();
2171   } else {
2172     value.load_item();
2173   }
2174 
2175   set_no_result(x);
2176 
2177   LIR_Opr base_op = base.result();
2178   LIR_Opr index_op = idx.result();
2179 
2180 #ifndef _LP64
2181   if (base_op->type() == T_LONG) {
2182     base_op = new_register(T_INT);
2183     __ convert(Bytecodes::_l2i, base.result(), base_op);
2184   }
2185   if (x->has_index()) {
2186     if (index_op->type() == T_LONG) {
2187       index_op = new_register(T_INT);
2188       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2189     }
2190   }
2191   // At this point base and index should be all ints and not constants
2192   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2193   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2194 #else
2195   if (x->has_index()) {
2196     if (index_op->type() == T_INT) {
2197       index_op = new_register(T_LONG);
2198       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2199     }
2200   }
2201   // At this point base and index are long and non-constant
2202   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2203   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2204 #endif
2205 
2206   if (log2_scale != 0) {
2207     // temporary fix (platform dependent code without shift on Intel would be better)
2208     // TODO: ARM also allows embedded shift in the address
2209     __ shift_left(index_op, log2_scale, index_op);
2210   }
2211 
2212   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2213   __ move(value.result(), addr);
2214 }
2215 
2216 
2217 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2218   BasicType type = x->basic_type();
2219   LIRItem src(x->object(), this);
2220   LIRItem off(x->offset(), this);
2221 
2222   off.load_item();
2223   src.load_item();
2224 
2225   LIR_Opr value = rlock_result(x, x->basic_type());
2226 
2227   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2228 
2229 #if INCLUDE_ALL_GCS
2230   // We might be reading the value of the referent field of a
2231   // Reference object in order to attach it back to the live
2232   // object graph. If G1 is enabled then we need to record
2233   // the value that is being returned in an SATB log buffer.
2234   //
2235   // We need to generate code similar to the following...
2236   //
2237   // if (offset == java_lang_ref_Reference::referent_offset) {
2238   //   if (src != NULL) {
2239   //     if (klass(src)->reference_type() != REF_NONE) {
2240   //       pre_barrier(..., value, ...);
2241   //     }
2242   //   }
2243   // }
2244 
2245   if (UseG1GC && type == T_OBJECT) {
2246     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2247     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2248     bool gen_source_check = true;    // Assume we need to check the src object for null.
2249     bool gen_type_check = true;      // Assume we need to check the reference_type.
2250 
2251     if (off.is_constant()) {
2252       jlong off_con = (off.type()->is_int() ?
2253                         (jlong) off.get_jint_constant() :
2254                         off.get_jlong_constant());
2255 
2256 
2257       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2258         // The constant offset is something other than referent_offset.
2259         // We can skip generating/checking the remaining guards and
2260         // skip generation of the code stub.
2261         gen_pre_barrier = false;
2262       } else {
2263         // The constant offset is the same as referent_offset -
2264         // we do not need to generate a runtime offset check.
2265         gen_offset_check = false;
2266       }
2267     }
2268 
2269     // We don't need to generate stub if the source object is an array
2270     if (gen_pre_barrier && src.type()->is_array()) {
2271       gen_pre_barrier = false;
2272     }
2273 
2274     if (gen_pre_barrier) {
2275       // We still need to continue with the checks.
2276       if (src.is_constant()) {
2277         ciObject* src_con = src.get_jobject_constant();
2278         guarantee(src_con != NULL, "no source constant");
2279 
2280         if (src_con->is_null_object()) {
2281           // The constant src object is null - We can skip
2282           // generating the code stub.
2283           gen_pre_barrier = false;
2284         } else {
2285           // Non-null constant source object. We still have to generate
2286           // the slow stub - but we don't need to generate the runtime
2287           // null object check.
2288           gen_source_check = false;
2289         }
2290       }
2291     }
2292     if (gen_pre_barrier && !PatchALot) {
2293       // Can the klass of object be statically determined to be
2294       // a sub-class of Reference?
2295       ciType* type = src.value()->declared_type();
2296       if ((type != NULL) && type->is_loaded()) {
2297         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2298           gen_type_check = false;
2299         } else if (type->is_klass() &&
2300                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2301           // Not Reference and not Object klass.
2302           gen_pre_barrier = false;
2303         }
2304       }
2305     }
2306 
2307     if (gen_pre_barrier) {
2308       LabelObj* Lcont = new LabelObj();
2309 
2310       // We can have generate one runtime check here. Let's start with
2311       // the offset check.
2312       if (gen_offset_check) {
2313         // if (offset != referent_offset) -> continue
2314         // If offset is an int then we can do the comparison with the
2315         // referent_offset constant; otherwise we need to move
2316         // referent_offset into a temporary register and generate
2317         // a reg-reg compare.
2318 
2319         LIR_Opr referent_off;
2320 
2321         if (off.type()->is_int()) {
2322           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2323         } else {
2324           assert(off.type()->is_long(), "what else?");
2325           referent_off = new_register(T_LONG);
2326           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2327         }
2328         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2329         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2330       }
2331       if (gen_source_check) {
2332         // offset is a const and equals referent offset
2333         // if (source == null) -> continue
2334         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2335         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2336       }
2337       LIR_Opr src_klass = new_register(T_OBJECT);
2338       if (gen_type_check) {
2339         // We have determined that offset == referent_offset && src != null.
2340         // if (src->_klass->_reference_type == REF_NONE) -> continue
2341         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2342         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2343         LIR_Opr reference_type = new_register(T_INT);
2344         __ move(reference_type_addr, reference_type);
2345         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2346         __ branch(lir_cond_equal, T_INT, Lcont->label());
2347       }
2348       {
2349         // We have determined that src->_klass->_reference_type != REF_NONE
2350         // so register the value in the referent field with the pre-barrier.
2351         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2352                     value  /* pre_val */,
2353                     false  /* do_load */,
2354                     false  /* patch */,
2355                     NULL   /* info */);
2356       }
2357       __ branch_destination(Lcont->label());
2358     }
2359   }
2360 #endif // INCLUDE_ALL_GCS
2361 
2362   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2363 }
2364 
2365 
2366 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2367   BasicType type = x->basic_type();
2368   LIRItem src(x->object(), this);
2369   LIRItem off(x->offset(), this);
2370   LIRItem data(x->value(), this);
2371 
2372   src.load_item();
2373   if (type == T_BOOLEAN || type == T_BYTE) {
2374     data.load_byte_item();
2375   } else {
2376     data.load_item();
2377   }
2378   off.load_item();
2379 
2380   set_no_result(x);
2381 
2382   if (x->is_volatile() && os::is_MP()) __ membar_release();
2383   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2384   if (x->is_volatile() && os::is_MP()) __ membar();
2385 }
2386 
2387 
2388 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2389   int lng = x->length();
2390 
2391   for (int i = 0; i < lng; i++) {
2392     SwitchRange* one_range = x->at(i);
2393     int low_key = one_range->low_key();
2394     int high_key = one_range->high_key();
2395     BlockBegin* dest = one_range->sux();
2396     if (low_key == high_key) {
2397       __ cmp(lir_cond_equal, value, low_key);
2398       __ branch(lir_cond_equal, T_INT, dest);
2399     } else if (high_key - low_key == 1) {
2400       __ cmp(lir_cond_equal, value, low_key);
2401       __ branch(lir_cond_equal, T_INT, dest);
2402       __ cmp(lir_cond_equal, value, high_key);
2403       __ branch(lir_cond_equal, T_INT, dest);
2404     } else {
2405       LabelObj* L = new LabelObj();
2406       __ cmp(lir_cond_less, value, low_key);
2407       __ branch(lir_cond_less, T_INT, L->label());
2408       __ cmp(lir_cond_lessEqual, value, high_key);
2409       __ branch(lir_cond_lessEqual, T_INT, dest);
2410       __ branch_destination(L->label());
2411     }
2412   }
2413   __ jump(default_sux);
2414 }
2415 
2416 
2417 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2418   SwitchRangeList* res = new SwitchRangeList();
2419   int len = x->length();
2420   if (len > 0) {
2421     BlockBegin* sux = x->sux_at(0);
2422     int key = x->lo_key();
2423     BlockBegin* default_sux = x->default_sux();
2424     SwitchRange* range = new SwitchRange(key, sux);
2425     for (int i = 0; i < len; i++, key++) {
2426       BlockBegin* new_sux = x->sux_at(i);
2427       if (sux == new_sux) {
2428         // still in same range
2429         range->set_high_key(key);
2430       } else {
2431         // skip tests which explicitly dispatch to the default
2432         if (sux != default_sux) {
2433           res->append(range);
2434         }
2435         range = new SwitchRange(key, new_sux);
2436       }
2437       sux = new_sux;
2438     }
2439     if (res->length() == 0 || res->last() != range)  res->append(range);
2440   }
2441   return res;
2442 }
2443 
2444 
2445 // we expect the keys to be sorted by increasing value
2446 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2447   SwitchRangeList* res = new SwitchRangeList();
2448   int len = x->length();
2449   if (len > 0) {
2450     BlockBegin* default_sux = x->default_sux();
2451     int key = x->key_at(0);
2452     BlockBegin* sux = x->sux_at(0);
2453     SwitchRange* range = new SwitchRange(key, sux);
2454     for (int i = 1; i < len; i++) {
2455       int new_key = x->key_at(i);
2456       BlockBegin* new_sux = x->sux_at(i);
2457       if (key+1 == new_key && sux == new_sux) {
2458         // still in same range
2459         range->set_high_key(new_key);
2460       } else {
2461         // skip tests which explicitly dispatch to the default
2462         if (range->sux() != default_sux) {
2463           res->append(range);
2464         }
2465         range = new SwitchRange(new_key, new_sux);
2466       }
2467       key = new_key;
2468       sux = new_sux;
2469     }
2470     if (res->length() == 0 || res->last() != range)  res->append(range);
2471   }
2472   return res;
2473 }
2474 
2475 
2476 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2477   LIRItem tag(x->tag(), this);
2478   tag.load_item();
2479   set_no_result(x);
2480 
2481   if (x->is_safepoint()) {
2482     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2483   }
2484 
2485   // move values into phi locations
2486   move_to_phi(x->state());
2487 
2488   int lo_key = x->lo_key();
2489   int hi_key = x->hi_key();
2490   int len = x->length();
2491   LIR_Opr value = tag.result();
2492   if (UseTableRanges) {
2493     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2494   } else {
2495     for (int i = 0; i < len; i++) {
2496       __ cmp(lir_cond_equal, value, i + lo_key);
2497       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2498     }
2499     __ jump(x->default_sux());
2500   }
2501 }
2502 
2503 
2504 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2505   LIRItem tag(x->tag(), this);
2506   tag.load_item();
2507   set_no_result(x);
2508 
2509   if (x->is_safepoint()) {
2510     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2511   }
2512 
2513   // move values into phi locations
2514   move_to_phi(x->state());
2515 
2516   LIR_Opr value = tag.result();
2517   if (UseTableRanges) {
2518     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2519   } else {
2520     int len = x->length();
2521     for (int i = 0; i < len; i++) {
2522       __ cmp(lir_cond_equal, value, x->key_at(i));
2523       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2524     }
2525     __ jump(x->default_sux());
2526   }
2527 }
2528 
2529 
2530 void LIRGenerator::do_Goto(Goto* x) {
2531   set_no_result(x);
2532 
2533   if (block()->next()->as_OsrEntry()) {
2534     // need to free up storage used for OSR entry point
2535     LIR_Opr osrBuffer = block()->next()->operand();
2536     BasicTypeList signature;
2537     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2538     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2539     __ move(osrBuffer, cc->args()->at(0));
2540     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2541                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2542   }
2543 
2544   if (x->is_safepoint()) {
2545     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2546 
2547     // increment backedge counter if needed
2548     CodeEmitInfo* info = state_for(x, state);
2549     increment_backedge_counter(info, x->profiled_bci());
2550     CodeEmitInfo* safepoint_info = state_for(x, state);
2551     __ safepoint(safepoint_poll_register(), safepoint_info);
2552   }
2553 
2554   // Gotos can be folded Ifs, handle this case.
2555   if (x->should_profile()) {
2556     ciMethod* method = x->profiled_method();
2557     assert(method != NULL, "method should be set if branch is profiled");
2558     ciMethodData* md = method->method_data_or_null();
2559     assert(md != NULL, "Sanity");
2560     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2561     assert(data != NULL, "must have profiling data");
2562     int offset;
2563     if (x->direction() == Goto::taken) {
2564       assert(data->is_BranchData(), "need BranchData for two-way branches");
2565       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2566     } else if (x->direction() == Goto::not_taken) {
2567       assert(data->is_BranchData(), "need BranchData for two-way branches");
2568       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2569     } else {
2570       assert(data->is_JumpData(), "need JumpData for branches");
2571       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2572     }
2573     LIR_Opr md_reg = new_register(T_METADATA);
2574     __ metadata2reg(md->constant_encoding(), md_reg);
2575 
2576     increment_counter(new LIR_Address(md_reg, offset,
2577                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2578   }
2579 
2580   // emit phi-instruction move after safepoint since this simplifies
2581   // describing the state as the safepoint.
2582   move_to_phi(x->state());
2583 
2584   __ jump(x->default_sux());
2585 }
2586 
2587 /**
2588  * Emit profiling code if needed for arguments, parameters, return value types
2589  *
2590  * @param md                    MDO the code will update at runtime
2591  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2592  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2593  * @param profiled_k            current profile
2594  * @param obj                   IR node for the object to be profiled
2595  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2596  *                              Set once we find an update to make and use for next ones.
2597  * @param not_null              true if we know obj cannot be null
2598  * @param signature_at_call_k   signature at call for obj
2599  * @param callee_signature_k    signature of callee for obj
2600  *                              at call and callee signatures differ at method handle call
2601  * @return                      the only klass we know will ever be seen at this profile point
2602  */
2603 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2604                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2605                                     ciKlass* callee_signature_k) {
2606   ciKlass* result = NULL;
2607   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2608   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2609   // known not to be null or null bit already set and already set to
2610   // unknown: nothing we can do to improve profiling
2611   if (!do_null && !do_update) {
2612     return result;
2613   }
2614 
2615   ciKlass* exact_klass = NULL;
2616   Compilation* comp = Compilation::current();
2617   if (do_update) {
2618     // try to find exact type, using CHA if possible, so that loading
2619     // the klass from the object can be avoided
2620     ciType* type = obj->exact_type();
2621     if (type == NULL) {
2622       type = obj->declared_type();
2623       type = comp->cha_exact_type(type);
2624     }
2625     assert(type == NULL || type->is_klass(), "type should be class");
2626     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2627 
2628     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2629   }
2630 
2631   if (!do_null && !do_update) {
2632     return result;
2633   }
2634 
2635   ciKlass* exact_signature_k = NULL;
2636   if (do_update) {
2637     // Is the type from the signature exact (the only one possible)?
2638     exact_signature_k = signature_at_call_k->exact_klass();
2639     if (exact_signature_k == NULL) {
2640       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2641     } else {
2642       result = exact_signature_k;
2643       // Known statically. No need to emit any code: prevent
2644       // LIR_Assembler::emit_profile_type() from emitting useless code
2645       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2646     }
2647     // exact_klass and exact_signature_k can be both non NULL but
2648     // different if exact_klass is loaded after the ciObject for
2649     // exact_signature_k is created.
2650     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2651       // sometimes the type of the signature is better than the best type
2652       // the compiler has
2653       exact_klass = exact_signature_k;
2654     }
2655     if (callee_signature_k != NULL &&
2656         callee_signature_k != signature_at_call_k) {
2657       ciKlass* improved_klass = callee_signature_k->exact_klass();
2658       if (improved_klass == NULL) {
2659         improved_klass = comp->cha_exact_type(callee_signature_k);
2660       }
2661       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2662         exact_klass = exact_signature_k;
2663       }
2664     }
2665     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2666   }
2667 
2668   if (!do_null && !do_update) {
2669     return result;
2670   }
2671 
2672   if (mdp == LIR_OprFact::illegalOpr) {
2673     mdp = new_register(T_METADATA);
2674     __ metadata2reg(md->constant_encoding(), mdp);
2675     if (md_base_offset != 0) {
2676       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2677       mdp = new_pointer_register();
2678       __ leal(LIR_OprFact::address(base_type_address), mdp);
2679     }
2680   }
2681   LIRItem value(obj, this);
2682   value.load_item();
2683   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2684                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2685   return result;
2686 }
2687 
2688 // profile parameters on entry to the root of the compilation
2689 void LIRGenerator::profile_parameters(Base* x) {
2690   if (compilation()->profile_parameters()) {
2691     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2692     ciMethodData* md = scope()->method()->method_data_or_null();
2693     assert(md != NULL, "Sanity");
2694 
2695     if (md->parameters_type_data() != NULL) {
2696       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2697       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2698       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2699       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2700         LIR_Opr src = args->at(i);
2701         assert(!src->is_illegal(), "check");
2702         BasicType t = src->type();
2703         if (t == T_OBJECT || t == T_ARRAY) {
2704           intptr_t profiled_k = parameters->type(j);
2705           Local* local = x->state()->local_at(java_index)->as_Local();
2706           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2707                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2708                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2709           // If the profile is known statically set it once for all and do not emit any code
2710           if (exact != NULL) {
2711             md->set_parameter_type(j, exact);
2712           }
2713           j++;
2714         }
2715         java_index += type2size[t];
2716       }
2717     }
2718   }
2719 }
2720 
2721 void LIRGenerator::do_Base(Base* x) {
2722   __ std_entry(LIR_OprFact::illegalOpr);
2723   // Emit moves from physical registers / stack slots to virtual registers
2724   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2725   IRScope* irScope = compilation()->hir()->top_scope();
2726   int java_index = 0;
2727   for (int i = 0; i < args->length(); i++) {
2728     LIR_Opr src = args->at(i);
2729     assert(!src->is_illegal(), "check");
2730     BasicType t = src->type();
2731 
2732     // Types which are smaller than int are passed as int, so
2733     // correct the type which passed.
2734     switch (t) {
2735     case T_BYTE:
2736     case T_BOOLEAN:
2737     case T_SHORT:
2738     case T_CHAR:
2739       t = T_INT;
2740       break;
2741     }
2742 
2743     LIR_Opr dest = new_register(t);
2744     __ move(src, dest);
2745 
2746     // Assign new location to Local instruction for this local
2747     Local* local = x->state()->local_at(java_index)->as_Local();
2748     assert(local != NULL, "Locals for incoming arguments must have been created");
2749 #ifndef __SOFTFP__
2750     // The java calling convention passes double as long and float as int.
2751     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2752 #endif // __SOFTFP__
2753     local->set_operand(dest);
2754     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2755     java_index += type2size[t];
2756   }
2757 
2758   if (compilation()->env()->dtrace_method_probes()) {
2759     BasicTypeList signature;
2760     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2761     signature.append(T_METADATA); // Method*
2762     LIR_OprList* args = new LIR_OprList();
2763     args->append(getThreadPointer());
2764     LIR_Opr meth = new_register(T_METADATA);
2765     __ metadata2reg(method()->constant_encoding(), meth);
2766     args->append(meth);
2767     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2768   }
2769 
2770   if (method()->is_synchronized()) {
2771     LIR_Opr obj;
2772     if (method()->is_static()) {
2773       obj = new_register(T_OBJECT);
2774       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2775     } else {
2776       Local* receiver = x->state()->local_at(0)->as_Local();
2777       assert(receiver != NULL, "must already exist");
2778       obj = receiver->operand();
2779     }
2780     assert(obj->is_valid(), "must be valid");
2781 
2782     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2783       LIR_Opr lock = new_register(T_INT);
2784       __ load_stack_address_monitor(0, lock);
2785 
2786       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2787       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2788 
2789       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2790       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2791     }
2792   }
2793   if (compilation()->age_code()) {
2794     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2795     decrement_age(info);
2796   }
2797   // increment invocation counters if needed
2798   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2799     profile_parameters(x);
2800     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2801     increment_invocation_counter(info);
2802   }
2803 
2804   // all blocks with a successor must end with an unconditional jump
2805   // to the successor even if they are consecutive
2806   __ jump(x->default_sux());
2807 }
2808 
2809 
2810 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2811   // construct our frame and model the production of incoming pointer
2812   // to the OSR buffer.
2813   __ osr_entry(LIR_Assembler::osrBufferPointer());
2814   LIR_Opr result = rlock_result(x);
2815   __ move(LIR_Assembler::osrBufferPointer(), result);
2816 }
2817 
2818 
2819 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2820   assert(args->length() == arg_list->length(),
2821          err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
2822   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2823     LIRItem* param = args->at(i);
2824     LIR_Opr loc = arg_list->at(i);
2825     if (loc->is_register()) {
2826       param->load_item_force(loc);
2827     } else {
2828       LIR_Address* addr = loc->as_address_ptr();
2829       param->load_for_store(addr->type());
2830       if (addr->type() == T_OBJECT) {
2831         __ move_wide(param->result(), addr);
2832       } else
2833         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2834           __ unaligned_move(param->result(), addr);
2835         } else {
2836           __ move(param->result(), addr);
2837         }
2838     }
2839   }
2840 
2841   if (x->has_receiver()) {
2842     LIRItem* receiver = args->at(0);
2843     LIR_Opr loc = arg_list->at(0);
2844     if (loc->is_register()) {
2845       receiver->load_item_force(loc);
2846     } else {
2847       assert(loc->is_address(), "just checking");
2848       receiver->load_for_store(T_OBJECT);
2849       __ move_wide(receiver->result(), loc->as_address_ptr());
2850     }
2851   }
2852 }
2853 
2854 
2855 // Visits all arguments, returns appropriate items without loading them
2856 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2857   LIRItemList* argument_items = new LIRItemList();
2858   if (x->has_receiver()) {
2859     LIRItem* receiver = new LIRItem(x->receiver(), this);
2860     argument_items->append(receiver);
2861   }
2862   for (int i = 0; i < x->number_of_arguments(); i++) {
2863     LIRItem* param = new LIRItem(x->argument_at(i), this);
2864     argument_items->append(param);
2865   }
2866   return argument_items;
2867 }
2868 
2869 
2870 // The invoke with receiver has following phases:
2871 //   a) traverse and load/lock receiver;
2872 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2873 //   c) push receiver on stack
2874 //   d) load each of the items and push on stack
2875 //   e) unlock receiver
2876 //   f) move receiver into receiver-register %o0
2877 //   g) lock result registers and emit call operation
2878 //
2879 // Before issuing a call, we must spill-save all values on stack
2880 // that are in caller-save register. "spill-save" moves thos registers
2881 // either in a free callee-save register or spills them if no free
2882 // callee save register is available.
2883 //
2884 // The problem is where to invoke spill-save.
2885 // - if invoked between e) and f), we may lock callee save
2886 //   register in "spill-save" that destroys the receiver register
2887 //   before f) is executed
2888 // - if we rearange the f) to be earlier, by loading %o0, it
2889 //   may destroy a value on the stack that is currently in %o0
2890 //   and is waiting to be spilled
2891 // - if we keep the receiver locked while doing spill-save,
2892 //   we cannot spill it as it is spill-locked
2893 //
2894 void LIRGenerator::do_Invoke(Invoke* x) {
2895   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2896 
2897   LIR_OprList* arg_list = cc->args();
2898   LIRItemList* args = invoke_visit_arguments(x);
2899   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2900 
2901   // setup result register
2902   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2903   if (x->type() != voidType) {
2904     result_register = result_register_for(x->type());
2905   }
2906 
2907   CodeEmitInfo* info = state_for(x, x->state());
2908 
2909   invoke_load_arguments(x, args, arg_list);
2910 
2911   if (x->has_receiver()) {
2912     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2913     receiver = args->at(0)->result();
2914   }
2915 
2916   // emit invoke code
2917   bool optimized = x->target_is_loaded() && x->target_is_final();
2918   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2919 
2920   // JSR 292
2921   // Preserve the SP over MethodHandle call sites.
2922   ciMethod* target = x->target();
2923   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2924                                   target->is_method_handle_intrinsic() ||
2925                                   target->is_compiled_lambda_form());
2926   if (is_method_handle_invoke) {
2927     info->set_is_method_handle_invoke(true);
2928     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2929   }
2930 
2931   switch (x->code()) {
2932     case Bytecodes::_invokestatic:
2933       __ call_static(target, result_register,
2934                      SharedRuntime::get_resolve_static_call_stub(),
2935                      arg_list, info);
2936       break;
2937     case Bytecodes::_invokespecial:
2938     case Bytecodes::_invokevirtual:
2939     case Bytecodes::_invokeinterface:
2940       // for final target we still produce an inline cache, in order
2941       // to be able to call mixed mode
2942       if (x->code() == Bytecodes::_invokespecial || optimized) {
2943         __ call_opt_virtual(target, receiver, result_register,
2944                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2945                             arg_list, info);
2946       } else if (x->vtable_index() < 0) {
2947         __ call_icvirtual(target, receiver, result_register,
2948                           SharedRuntime::get_resolve_virtual_call_stub(),
2949                           arg_list, info);
2950       } else {
2951         int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2952         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2953         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2954       }
2955       break;
2956     case Bytecodes::_invokedynamic: {
2957       __ call_dynamic(target, receiver, result_register,
2958                       SharedRuntime::get_resolve_static_call_stub(),
2959                       arg_list, info);
2960       break;
2961     }
2962     default:
2963       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
2964       break;
2965   }
2966 
2967   // JSR 292
2968   // Restore the SP after MethodHandle call sites.
2969   if (is_method_handle_invoke) {
2970     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2971   }
2972 
2973   if (x->type()->is_float() || x->type()->is_double()) {
2974     // Force rounding of results from non-strictfp when in strictfp
2975     // scope (or when we don't know the strictness of the callee, to
2976     // be safe.)
2977     if (method()->is_strict()) {
2978       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2979         result_register = round_item(result_register);
2980       }
2981     }
2982   }
2983 
2984   if (result_register->is_valid()) {
2985     LIR_Opr result = rlock_result(x);
2986     __ move(result_register, result);
2987   }
2988 }
2989 
2990 
2991 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2992   assert(x->number_of_arguments() == 1, "wrong type");
2993   LIRItem value       (x->argument_at(0), this);
2994   LIR_Opr reg = rlock_result(x);
2995   value.load_item();
2996   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2997   __ move(tmp, reg);
2998 }
2999 
3000 
3001 
3002 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3003 void LIRGenerator::do_IfOp(IfOp* x) {
3004 #ifdef ASSERT
3005   {
3006     ValueTag xtag = x->x()->type()->tag();
3007     ValueTag ttag = x->tval()->type()->tag();
3008     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3009     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3010     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3011   }
3012 #endif
3013 
3014   LIRItem left(x->x(), this);
3015   LIRItem right(x->y(), this);
3016   left.load_item();
3017   if (can_inline_as_constant(right.value())) {
3018     right.dont_load_item();
3019   } else {
3020     right.load_item();
3021   }
3022 
3023   LIRItem t_val(x->tval(), this);
3024   LIRItem f_val(x->fval(), this);
3025   t_val.dont_load_item();
3026   f_val.dont_load_item();
3027   LIR_Opr reg = rlock_result(x);
3028 
3029   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3030   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3031 }
3032 
3033 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
3034     assert(x->number_of_arguments() == expected_arguments, "wrong type");
3035     LIR_Opr reg = result_register_for(x->type());
3036     __ call_runtime_leaf(routine, getThreadTemp(),
3037                          reg, new LIR_OprList());
3038     LIR_Opr result = rlock_result(x);
3039     __ move(reg, result);
3040 }
3041 
3042 #ifdef TRACE_HAVE_INTRINSICS
3043 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
3044     LIR_Opr thread = getThreadPointer();
3045     LIR_Opr osthread = new_pointer_register();
3046     __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
3047     size_t thread_id_size = OSThread::thread_id_size();
3048     if (thread_id_size == (size_t) BytesPerLong) {
3049       LIR_Opr id = new_register(T_LONG);
3050       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
3051       __ convert(Bytecodes::_l2i, id, rlock_result(x));
3052     } else if (thread_id_size == (size_t) BytesPerInt) {
3053       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
3054     } else {
3055       ShouldNotReachHere();
3056     }
3057 }
3058 
3059 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3060     CodeEmitInfo* info = state_for(x);
3061     CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3062     BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
3063     assert(info != NULL, "must have info");
3064     LIRItem arg(x->argument_at(1), this);
3065     arg.load_item();
3066     LIR_Opr klass = new_pointer_register();
3067     __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
3068     LIR_Opr id = new_register(T_LONG);
3069     ByteSize offset = TRACE_ID_OFFSET;
3070     LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3071     __ move(trace_id_addr, id);
3072     __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3073     __ store(id, trace_id_addr);
3074     __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
3075     __ move(id, rlock_result(x));
3076 }
3077 #endif
3078 
3079 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3080   switch (x->id()) {
3081   case vmIntrinsics::_intBitsToFloat      :
3082   case vmIntrinsics::_doubleToRawLongBits :
3083   case vmIntrinsics::_longBitsToDouble    :
3084   case vmIntrinsics::_floatToRawIntBits   : {
3085     do_FPIntrinsics(x);
3086     break;
3087   }
3088 
3089 #ifdef TRACE_HAVE_INTRINSICS
3090   case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
3091   case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
3092   case vmIntrinsics::_counterTime:
3093     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
3094     break;
3095 #endif
3096 
3097   case vmIntrinsics::_currentTimeMillis:
3098     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
3099     break;
3100 
3101   case vmIntrinsics::_nanoTime:
3102     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
3103     break;
3104 
3105   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3106   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3107   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3108   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3109 
3110   case vmIntrinsics::_dlog:           // fall through
3111   case vmIntrinsics::_dlog10:         // fall through
3112   case vmIntrinsics::_dabs:           // fall through
3113   case vmIntrinsics::_dsqrt:          // fall through
3114   case vmIntrinsics::_dtan:           // fall through
3115   case vmIntrinsics::_dsin :          // fall through
3116   case vmIntrinsics::_dcos :          // fall through
3117   case vmIntrinsics::_dexp :          // fall through
3118   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3119   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3120 
3121   // java.nio.Buffer.checkIndex
3122   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3123 
3124   case vmIntrinsics::_compareAndSwapObject:
3125     do_CompareAndSwap(x, objectType);
3126     break;
3127   case vmIntrinsics::_compareAndSwapInt:
3128     do_CompareAndSwap(x, intType);
3129     break;
3130   case vmIntrinsics::_compareAndSwapLong:
3131     do_CompareAndSwap(x, longType);
3132     break;
3133 
3134   case vmIntrinsics::_loadFence :
3135     if (os::is_MP()) __ membar_acquire();
3136     break;
3137   case vmIntrinsics::_storeFence:
3138     if (os::is_MP()) __ membar_release();
3139     break;
3140   case vmIntrinsics::_fullFence :
3141     if (os::is_MP()) __ membar();
3142     break;
3143 
3144   case vmIntrinsics::_Reference_get:
3145     do_Reference_get(x);
3146     break;
3147 
3148   case vmIntrinsics::_updateCRC32:
3149   case vmIntrinsics::_updateBytesCRC32:
3150   case vmIntrinsics::_updateByteBufferCRC32:
3151     do_update_CRC32(x);
3152     break;
3153 
3154   default: ShouldNotReachHere(); break;
3155   }
3156 }
3157 
3158 void LIRGenerator::profile_arguments(ProfileCall* x) {
3159   if (compilation()->profile_arguments()) {
3160     int bci = x->bci_of_invoke();
3161     ciMethodData* md = x->method()->method_data_or_null();
3162     ciProfileData* data = md->bci_to_data(bci);
3163     if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3164         (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3165       ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3166       int base_offset = md->byte_offset_of_slot(data, extra);
3167       LIR_Opr mdp = LIR_OprFact::illegalOpr;
3168       ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3169 
3170       Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3171       int start = 0;
3172       int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3173       if (x->inlined() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3174         // first argument is not profiled at call (method handle invoke)
3175         assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3176         start = 1;
3177       }
3178       ciSignature* callee_signature = x->callee()->signature();
3179       // method handle call to virtual method
3180       bool has_receiver = x->inlined() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3181       ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3182 
3183       bool ignored_will_link;
3184       ciSignature* signature_at_call = NULL;
3185       x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3186       ciSignatureStream signature_at_call_stream(signature_at_call);
3187 
3188       // if called through method handle invoke, some arguments may have been popped
3189       for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3190         int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3191         ciKlass* exact = profile_type(md, base_offset, off,
3192                                       args->type(i), x->profiled_arg_at(i+start), mdp,
3193                                       !x->arg_needs_null_check(i+start),
3194                                       signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3195         if (exact != NULL) {
3196           md->set_argument_type(bci, i, exact);
3197         }
3198       }
3199     } else {
3200 #ifdef ASSERT
3201       Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3202       int n = x->nb_profiled_args();
3203       assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3204                                                   (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3205              "only at JSR292 bytecodes");
3206 #endif
3207     }
3208   }
3209 }
3210 
3211 // profile parameters on entry to an inlined method
3212 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3213   if (compilation()->profile_parameters() && x->inlined()) {
3214     ciMethodData* md = x->callee()->method_data_or_null();
3215     if (md != NULL) {
3216       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3217       if (parameters_type_data != NULL) {
3218         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3219         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3220         bool has_receiver = !x->callee()->is_static();
3221         ciSignature* sig = x->callee()->signature();
3222         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3223         int i = 0; // to iterate on the Instructions
3224         Value arg = x->recv();
3225         bool not_null = false;
3226         int bci = x->bci_of_invoke();
3227         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3228         // The first parameter is the receiver so that's what we start
3229         // with if it exists. One exception is method handle call to
3230         // virtual method: the receiver is in the args list
3231         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3232           i = 1;
3233           arg = x->profiled_arg_at(0);
3234           not_null = !x->arg_needs_null_check(0);
3235         }
3236         int k = 0; // to iterate on the profile data
3237         for (;;) {
3238           intptr_t profiled_k = parameters->type(k);
3239           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3240                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3241                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3242           // If the profile is known statically set it once for all and do not emit any code
3243           if (exact != NULL) {
3244             md->set_parameter_type(k, exact);
3245           }
3246           k++;
3247           if (k >= parameters_type_data->number_of_parameters()) {
3248 #ifdef ASSERT
3249             int extra = 0;
3250             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3251                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3252                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3253               extra += 1;
3254             }
3255             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3256 #endif
3257             break;
3258           }
3259           arg = x->profiled_arg_at(i);
3260           not_null = !x->arg_needs_null_check(i);
3261           i++;
3262         }
3263       }
3264     }
3265   }
3266 }
3267 
3268 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3269   // Need recv in a temporary register so it interferes with the other temporaries
3270   LIR_Opr recv = LIR_OprFact::illegalOpr;
3271   LIR_Opr mdo = new_register(T_OBJECT);
3272   // tmp is used to hold the counters on SPARC
3273   LIR_Opr tmp = new_pointer_register();
3274 
3275   if (x->nb_profiled_args() > 0) {
3276     profile_arguments(x);
3277   }
3278 
3279   // profile parameters on inlined method entry including receiver
3280   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3281     profile_parameters_at_call(x);
3282   }
3283 
3284   if (x->recv() != NULL) {
3285     LIRItem value(x->recv(), this);
3286     value.load_item();
3287     recv = new_register(T_OBJECT);
3288     __ move(value.result(), recv);
3289   }
3290   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3291 }
3292 
3293 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3294   int bci = x->bci_of_invoke();
3295   ciMethodData* md = x->method()->method_data_or_null();
3296   ciProfileData* data = md->bci_to_data(bci);
3297   assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3298   ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3299   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3300 
3301   bool ignored_will_link;
3302   ciSignature* signature_at_call = NULL;
3303   x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3304 
3305   // The offset within the MDO of the entry to update may be too large
3306   // to be used in load/store instructions on some platforms. So have
3307   // profile_type() compute the address of the profile in a register.
3308   ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3309                                 ret->type(), x->ret(), mdp,
3310                                 !x->needs_null_check(),
3311                                 signature_at_call->return_type()->as_klass(),
3312                                 x->callee()->signature()->return_type()->as_klass());
3313   if (exact != NULL) {
3314     md->set_return_type(bci, exact);
3315   }
3316 }
3317 
3318 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3319   // We can safely ignore accessors here, since c2 will inline them anyway,
3320   // accessors are also always mature.
3321   if (!x->inlinee()->is_accessor()) {
3322     CodeEmitInfo* info = state_for(x, x->state(), true);
3323     // Notify the runtime very infrequently only to take care of counter overflows
3324     int freq_log = Tier23InlineeNotifyFreqLog;
3325     double scale;
3326     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3327       freq_log = Arguments::scaled_freq_log(freq_log, scale);
3328     }
3329     increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3330   }
3331 }
3332 
3333 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3334   int freq_log;
3335   int level = compilation()->env()->comp_level();
3336   if (level == CompLevel_limited_profile) {
3337     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3338   } else if (level == CompLevel_full_profile) {
3339     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3340   } else {
3341     ShouldNotReachHere();
3342   }
3343   // Increment the appropriate invocation/backedge counter and notify the runtime.
3344   double scale;
3345   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3346     freq_log = Arguments::scaled_freq_log(freq_log, scale);
3347   }
3348   increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3349 }
3350 
3351 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3352   ciMethod* method = info->scope()->method();
3353   MethodCounters* mc_adr = method->ensure_method_counters();
3354   if (mc_adr != NULL) {
3355     LIR_Opr mc = new_pointer_register();
3356     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3357     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3358     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3359     LIR_Opr result = new_register(T_INT);
3360     __ load(counter, result);
3361     __ sub(result, LIR_OprFact::intConst(1), result);
3362     __ store(result, counter);
3363     // DeoptimizeStub will reexecute from the current state in code info.
3364     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3365                                          Deoptimization::Action_make_not_entrant);
3366     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3367     __ branch(lir_cond_lessEqual, T_INT, deopt);
3368   }
3369 }
3370 
3371 
3372 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3373                                                 ciMethod *method, int frequency,
3374                                                 int bci, bool backedge, bool notify) {
3375   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3376   int level = _compilation->env()->comp_level();
3377   assert(level > CompLevel_simple, "Shouldn't be here");
3378 
3379   int offset = -1;
3380   LIR_Opr counter_holder;
3381   if (level == CompLevel_limited_profile) {
3382     MethodCounters* counters_adr = method->ensure_method_counters();
3383     if (counters_adr == NULL) {
3384       bailout("method counters allocation failed");
3385       return;
3386     }
3387     counter_holder = new_pointer_register();
3388     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3389     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3390                                  MethodCounters::invocation_counter_offset());
3391   } else if (level == CompLevel_full_profile) {
3392     counter_holder = new_register(T_METADATA);
3393     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3394                                  MethodData::invocation_counter_offset());
3395     ciMethodData* md = method->method_data_or_null();
3396     assert(md != NULL, "Sanity");
3397     __ metadata2reg(md->constant_encoding(), counter_holder);
3398   } else {
3399     ShouldNotReachHere();
3400   }
3401   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3402   LIR_Opr result = new_register(T_INT);
3403   __ load(counter, result);
3404   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3405   __ store(result, counter);
3406   if (notify) {
3407     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
3408     LIR_Opr meth = new_register(T_METADATA);
3409     __ metadata2reg(method->constant_encoding(), meth);
3410     __ logical_and(result, mask, result);
3411     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3412     // The bci for info can point to cmp for if's we want the if bci
3413     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3414     __ branch(lir_cond_equal, T_INT, overflow);
3415     __ branch_destination(overflow->continuation());
3416   }
3417 }
3418 
3419 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3420   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3421   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3422 
3423   if (x->pass_thread()) {
3424     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3425     args->append(getThreadPointer());
3426   }
3427 
3428   for (int i = 0; i < x->number_of_arguments(); i++) {
3429     Value a = x->argument_at(i);
3430     LIRItem* item = new LIRItem(a, this);
3431     item->load_item();
3432     args->append(item->result());
3433     signature->append(as_BasicType(a->type()));
3434   }
3435 
3436   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3437   if (x->type() == voidType) {
3438     set_no_result(x);
3439   } else {
3440     __ move(result, rlock_result(x));
3441   }
3442 }
3443 
3444 #ifdef ASSERT
3445 void LIRGenerator::do_Assert(Assert *x) {
3446   ValueTag tag = x->x()->type()->tag();
3447   If::Condition cond = x->cond();
3448 
3449   LIRItem xitem(x->x(), this);
3450   LIRItem yitem(x->y(), this);
3451   LIRItem* xin = &xitem;
3452   LIRItem* yin = &yitem;
3453 
3454   assert(tag == intTag, "Only integer assertions are valid!");
3455 
3456   xin->load_item();
3457   yin->dont_load_item();
3458 
3459   set_no_result(x);
3460 
3461   LIR_Opr left = xin->result();
3462   LIR_Opr right = yin->result();
3463 
3464   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3465 }
3466 #endif
3467 
3468 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3469 
3470 
3471   Instruction *a = x->x();
3472   Instruction *b = x->y();
3473   if (!a || StressRangeCheckElimination) {
3474     assert(!b || StressRangeCheckElimination, "B must also be null");
3475 
3476     CodeEmitInfo *info = state_for(x, x->state());
3477     CodeStub* stub = new PredicateFailedStub(info);
3478 
3479     __ jump(stub);
3480   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3481     int a_int = a->type()->as_IntConstant()->value();
3482     int b_int = b->type()->as_IntConstant()->value();
3483 
3484     bool ok = false;
3485 
3486     switch(x->cond()) {
3487       case Instruction::eql: ok = (a_int == b_int); break;
3488       case Instruction::neq: ok = (a_int != b_int); break;
3489       case Instruction::lss: ok = (a_int < b_int); break;
3490       case Instruction::leq: ok = (a_int <= b_int); break;
3491       case Instruction::gtr: ok = (a_int > b_int); break;
3492       case Instruction::geq: ok = (a_int >= b_int); break;
3493       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3494       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3495       default: ShouldNotReachHere();
3496     }
3497 
3498     if (ok) {
3499 
3500       CodeEmitInfo *info = state_for(x, x->state());
3501       CodeStub* stub = new PredicateFailedStub(info);
3502 
3503       __ jump(stub);
3504     }
3505   } else {
3506 
3507     ValueTag tag = x->x()->type()->tag();
3508     If::Condition cond = x->cond();
3509     LIRItem xitem(x->x(), this);
3510     LIRItem yitem(x->y(), this);
3511     LIRItem* xin = &xitem;
3512     LIRItem* yin = &yitem;
3513 
3514     assert(tag == intTag, "Only integer deoptimizations are valid!");
3515 
3516     xin->load_item();
3517     yin->dont_load_item();
3518     set_no_result(x);
3519 
3520     LIR_Opr left = xin->result();
3521     LIR_Opr right = yin->result();
3522 
3523     CodeEmitInfo *info = state_for(x, x->state());
3524     CodeStub* stub = new PredicateFailedStub(info);
3525 
3526     __ cmp(lir_cond(cond), left, right);
3527     __ branch(lir_cond(cond), right->type(), stub);
3528   }
3529 }
3530 
3531 
3532 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3533   LIRItemList args(1);
3534   LIRItem value(arg1, this);
3535   args.append(&value);
3536   BasicTypeList signature;
3537   signature.append(as_BasicType(arg1->type()));
3538 
3539   return call_runtime(&signature, &args, entry, result_type, info);
3540 }
3541 
3542 
3543 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3544   LIRItemList args(2);
3545   LIRItem value1(arg1, this);
3546   LIRItem value2(arg2, this);
3547   args.append(&value1);
3548   args.append(&value2);
3549   BasicTypeList signature;
3550   signature.append(as_BasicType(arg1->type()));
3551   signature.append(as_BasicType(arg2->type()));
3552 
3553   return call_runtime(&signature, &args, entry, result_type, info);
3554 }
3555 
3556 
3557 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3558                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3559   // get a result register
3560   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3561   LIR_Opr result = LIR_OprFact::illegalOpr;
3562   if (result_type->tag() != voidTag) {
3563     result = new_register(result_type);
3564     phys_reg = result_register_for(result_type);
3565   }
3566 
3567   // move the arguments into the correct location
3568   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3569   assert(cc->length() == args->length(), "argument mismatch");
3570   for (int i = 0; i < args->length(); i++) {
3571     LIR_Opr arg = args->at(i);
3572     LIR_Opr loc = cc->at(i);
3573     if (loc->is_register()) {
3574       __ move(arg, loc);
3575     } else {
3576       LIR_Address* addr = loc->as_address_ptr();
3577 //           if (!can_store_as_constant(arg)) {
3578 //             LIR_Opr tmp = new_register(arg->type());
3579 //             __ move(arg, tmp);
3580 //             arg = tmp;
3581 //           }
3582       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3583         __ unaligned_move(arg, addr);
3584       } else {
3585         __ move(arg, addr);
3586       }
3587     }
3588   }
3589 
3590   if (info) {
3591     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3592   } else {
3593     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3594   }
3595   if (result->is_valid()) {
3596     __ move(phys_reg, result);
3597   }
3598   return result;
3599 }
3600 
3601 
3602 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3603                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3604   // get a result register
3605   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3606   LIR_Opr result = LIR_OprFact::illegalOpr;
3607   if (result_type->tag() != voidTag) {
3608     result = new_register(result_type);
3609     phys_reg = result_register_for(result_type);
3610   }
3611 
3612   // move the arguments into the correct location
3613   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3614 
3615   assert(cc->length() == args->length(), "argument mismatch");
3616   for (int i = 0; i < args->length(); i++) {
3617     LIRItem* arg = args->at(i);
3618     LIR_Opr loc = cc->at(i);
3619     if (loc->is_register()) {
3620       arg->load_item_force(loc);
3621     } else {
3622       LIR_Address* addr = loc->as_address_ptr();
3623       arg->load_for_store(addr->type());
3624       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3625         __ unaligned_move(arg->result(), addr);
3626       } else {
3627         __ move(arg->result(), addr);
3628       }
3629     }
3630   }
3631 
3632   if (info) {
3633     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3634   } else {
3635     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3636   }
3637   if (result->is_valid()) {
3638     __ move(phys_reg, result);
3639   }
3640   return result;
3641 }
3642 
3643 void LIRGenerator::do_MemBar(MemBar* x) {
3644   if (os::is_MP()) {
3645     LIR_Code code = x->code();
3646     switch(code) {
3647       case lir_membar_acquire   : __ membar_acquire(); break;
3648       case lir_membar_release   : __ membar_release(); break;
3649       case lir_membar           : __ membar(); break;
3650       case lir_membar_loadload  : __ membar_loadload(); break;
3651       case lir_membar_storestore: __ membar_storestore(); break;
3652       case lir_membar_loadstore : __ membar_loadstore(); break;
3653       case lir_membar_storeload : __ membar_storeload(); break;
3654       default                   : ShouldNotReachHere(); break;
3655     }
3656   }
3657 }