1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/decoder.hpp"
  67 #include "utilities/defaultStream.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/elfFile.hpp"
  70 #include "utilities/growableArray.hpp"
  71 #include "utilities/macros.hpp"
  72 #include "utilities/vmError.hpp"
  73 
  74 // put OS-includes here
  75 # include <sys/types.h>
  76 # include <sys/mman.h>
  77 # include <sys/stat.h>
  78 # include <sys/select.h>
  79 # include <pthread.h>
  80 # include <signal.h>
  81 # include <errno.h>
  82 # include <dlfcn.h>
  83 # include <stdio.h>
  84 # include <unistd.h>
  85 # include <sys/resource.h>
  86 # include <pthread.h>
  87 # include <sys/stat.h>
  88 # include <sys/time.h>
  89 # include <sys/times.h>
  90 # include <sys/utsname.h>
  91 # include <sys/socket.h>
  92 # include <sys/wait.h>
  93 # include <pwd.h>
  94 # include <poll.h>
  95 # include <semaphore.h>
  96 # include <fcntl.h>
  97 # include <string.h>
  98 # include <syscall.h>
  99 # include <sys/sysinfo.h>
 100 # include <gnu/libc-version.h>
 101 # include <sys/ipc.h>
 102 # include <sys/shm.h>
 103 # include <link.h>
 104 # include <stdint.h>
 105 # include <inttypes.h>
 106 # include <sys/ioctl.h>
 107 
 108 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 109 
 110 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 111 // getrusage() is prepared to handle the associated failure.
 112 #ifndef RUSAGE_THREAD
 113   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 114 #endif
 115 
 116 #define MAX_PATH    (2 * K)
 117 
 118 #define MAX_SECS 100000000
 119 
 120 // for timer info max values which include all bits
 121 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 122 
 123 #define LARGEPAGES_BIT (1 << 6)
 124 ////////////////////////////////////////////////////////////////////////////////
 125 // global variables
 126 julong os::Linux::_physical_memory = 0;
 127 
 128 address   os::Linux::_initial_thread_stack_bottom = NULL;
 129 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 130 
 131 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 132 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 133 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 134 Mutex* os::Linux::_createThread_lock = NULL;
 135 pthread_t os::Linux::_main_thread;
 136 int os::Linux::_page_size = -1;
 137 const int os::Linux::_vm_default_page_size = (8 * K);
 138 bool os::Linux::_is_floating_stack = false;
 139 bool os::Linux::_is_NPTL = false;
 140 bool os::Linux::_supports_fast_thread_cpu_time = false;
 141 const char * os::Linux::_glibc_version = NULL;
 142 const char * os::Linux::_libpthread_version = NULL;
 143 pthread_condattr_t os::Linux::_condattr[1];
 144 
 145 static jlong initial_time_count=0;
 146 
 147 static int clock_tics_per_sec = 100;
 148 
 149 // For diagnostics to print a message once. see run_periodic_checks
 150 static sigset_t check_signal_done;
 151 static bool check_signals = true;
 152 
 153 static pid_t _initial_pid = 0;
 154 
 155 // Signal number used to suspend/resume a thread
 156 
 157 // do not use any signal number less than SIGSEGV, see 4355769
 158 static int SR_signum = SIGUSR2;
 159 sigset_t SR_sigset;
 160 
 161 // Used to protect dlsym() calls
 162 static pthread_mutex_t dl_mutex;
 163 
 164 // Declarations
 165 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 166 
 167 // utility functions
 168 
 169 static int SR_initialize();
 170 
 171 julong os::available_memory() {
 172   return Linux::available_memory();
 173 }
 174 
 175 julong os::Linux::available_memory() {
 176   // values in struct sysinfo are "unsigned long"
 177   struct sysinfo si;
 178   sysinfo(&si);
 179 
 180   return (julong)si.freeram * si.mem_unit;
 181 }
 182 
 183 julong os::physical_memory() {
 184   return Linux::physical_memory();
 185 }
 186 
 187 ////////////////////////////////////////////////////////////////////////////////
 188 // environment support
 189 
 190 bool os::getenv(const char* name, char* buf, int len) {
 191   const char* val = ::getenv(name);
 192   if (val != NULL && strlen(val) < (size_t)len) {
 193     strcpy(buf, val);
 194     return true;
 195   }
 196   if (len > 0) buf[0] = 0;  // return a null string
 197   return false;
 198 }
 199 
 200 
 201 // Return true if user is running as root.
 202 
 203 bool os::have_special_privileges() {
 204   static bool init = false;
 205   static bool privileges = false;
 206   if (!init) {
 207     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 208     init = true;
 209   }
 210   return privileges;
 211 }
 212 
 213 
 214 #ifndef SYS_gettid
 215 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 216   #ifdef __ia64__
 217     #define SYS_gettid 1105
 218   #elif __i386__
 219     #define SYS_gettid 224
 220   #elif __amd64__
 221     #define SYS_gettid 186
 222   #elif __sparc__
 223     #define SYS_gettid 143
 224   #else
 225     #error define gettid for the arch
 226   #endif
 227 #endif
 228 
 229 // Cpu architecture string
 230 #if   defined(ZERO)
 231 static char cpu_arch[] = ZERO_LIBARCH;
 232 #elif defined(IA64)
 233 static char cpu_arch[] = "ia64";
 234 #elif defined(IA32)
 235 static char cpu_arch[] = "i386";
 236 #elif defined(AMD64)
 237 static char cpu_arch[] = "amd64";
 238 #elif defined(ARM)
 239 static char cpu_arch[] = "arm";
 240 #elif defined(PPC32)
 241 static char cpu_arch[] = "ppc";
 242 #elif defined(PPC64)
 243 static char cpu_arch[] = "ppc64";
 244 #elif defined(SPARC)
 245   #ifdef _LP64
 246 static char cpu_arch[] = "sparcv9";
 247   #else
 248 static char cpu_arch[] = "sparc";
 249   #endif
 250 #elif defined(AARCH64)
 251 static char cpu_arch[] = "aarch64";
 252 #else
 253   #error Add appropriate cpu_arch setting
 254 #endif
 255 
 256 
 257 // pid_t gettid()
 258 //
 259 // Returns the kernel thread id of the currently running thread. Kernel
 260 // thread id is used to access /proc.
 261 //
 262 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 263 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 264 //
 265 pid_t os::Linux::gettid() {
 266   int rslt = syscall(SYS_gettid);
 267   if (rslt == -1) {
 268     // old kernel, no NPTL support
 269     return getpid();
 270   } else {
 271     return (pid_t)rslt;
 272   }
 273 }
 274 
 275 // Most versions of linux have a bug where the number of processors are
 276 // determined by looking at the /proc file system.  In a chroot environment,
 277 // the system call returns 1.  This causes the VM to act as if it is
 278 // a single processor and elide locking (see is_MP() call).
 279 static bool unsafe_chroot_detected = false;
 280 static const char *unstable_chroot_error = "/proc file system not found.\n"
 281                      "Java may be unstable running multithreaded in a chroot "
 282                      "environment on Linux when /proc filesystem is not mounted.";
 283 
 284 void os::Linux::initialize_system_info() {
 285   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 286   if (processor_count() == 1) {
 287     pid_t pid = os::Linux::gettid();
 288     char fname[32];
 289     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 290     FILE *fp = fopen(fname, "r");
 291     if (fp == NULL) {
 292       unsafe_chroot_detected = true;
 293     } else {
 294       fclose(fp);
 295     }
 296   }
 297   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 298   assert(processor_count() > 0, "linux error");
 299 }
 300 
 301 void os::init_system_properties_values() {
 302   // The next steps are taken in the product version:
 303   //
 304   // Obtain the JAVA_HOME value from the location of libjvm.so.
 305   // This library should be located at:
 306   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 307   //
 308   // If "/jre/lib/" appears at the right place in the path, then we
 309   // assume libjvm.so is installed in a JDK and we use this path.
 310   //
 311   // Otherwise exit with message: "Could not create the Java virtual machine."
 312   //
 313   // The following extra steps are taken in the debugging version:
 314   //
 315   // If "/jre/lib/" does NOT appear at the right place in the path
 316   // instead of exit check for $JAVA_HOME environment variable.
 317   //
 318   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 319   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 320   // it looks like libjvm.so is installed there
 321   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 322   //
 323   // Otherwise exit.
 324   //
 325   // Important note: if the location of libjvm.so changes this
 326   // code needs to be changed accordingly.
 327 
 328   // See ld(1):
 329   //      The linker uses the following search paths to locate required
 330   //      shared libraries:
 331   //        1: ...
 332   //        ...
 333   //        7: The default directories, normally /lib and /usr/lib.
 334 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 335   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 336 #else
 337   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 338 #endif
 339 
 340 // Base path of extensions installed on the system.
 341 #define SYS_EXT_DIR     "/usr/java/packages"
 342 #define EXTENSIONS_DIR  "/lib/ext"
 343 
 344   // Buffer that fits several sprintfs.
 345   // Note that the space for the colon and the trailing null are provided
 346   // by the nulls included by the sizeof operator.
 347   const size_t bufsize =
 348     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 349          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 350   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 351 
 352   // sysclasspath, java_home, dll_dir
 353   {
 354     char *pslash;
 355     os::jvm_path(buf, bufsize);
 356 
 357     // Found the full path to libjvm.so.
 358     // Now cut the path to <java_home>/jre if we can.
 359     pslash = strrchr(buf, '/');
 360     if (pslash != NULL) {
 361       *pslash = '\0';            // Get rid of /libjvm.so.
 362     }
 363     pslash = strrchr(buf, '/');
 364     if (pslash != NULL) {
 365       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 366     }
 367     Arguments::set_dll_dir(buf);
 368 
 369     if (pslash != NULL) {
 370       pslash = strrchr(buf, '/');
 371       if (pslash != NULL) {
 372         *pslash = '\0';          // Get rid of /<arch>.
 373         pslash = strrchr(buf, '/');
 374         if (pslash != NULL) {
 375           *pslash = '\0';        // Get rid of /lib.
 376         }
 377       }
 378     }
 379     Arguments::set_java_home(buf);
 380     set_boot_path('/', ':');
 381   }
 382 
 383   // Where to look for native libraries.
 384   //
 385   // Note: Due to a legacy implementation, most of the library path
 386   // is set in the launcher. This was to accomodate linking restrictions
 387   // on legacy Linux implementations (which are no longer supported).
 388   // Eventually, all the library path setting will be done here.
 389   //
 390   // However, to prevent the proliferation of improperly built native
 391   // libraries, the new path component /usr/java/packages is added here.
 392   // Eventually, all the library path setting will be done here.
 393   {
 394     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 395     // should always exist (until the legacy problem cited above is
 396     // addressed).
 397     const char *v = ::getenv("LD_LIBRARY_PATH");
 398     const char *v_colon = ":";
 399     if (v == NULL) { v = ""; v_colon = ""; }
 400     // That's +1 for the colon and +1 for the trailing '\0'.
 401     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 402                                                      strlen(v) + 1 +
 403                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 404                                                      mtInternal);
 405     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 406     Arguments::set_library_path(ld_library_path);
 407     FREE_C_HEAP_ARRAY(char, ld_library_path);
 408   }
 409 
 410   // Extensions directories.
 411   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 412   Arguments::set_ext_dirs(buf);
 413 
 414   FREE_C_HEAP_ARRAY(char, buf);
 415 
 416 #undef DEFAULT_LIBPATH
 417 #undef SYS_EXT_DIR
 418 #undef EXTENSIONS_DIR
 419 }
 420 
 421 ////////////////////////////////////////////////////////////////////////////////
 422 // breakpoint support
 423 
 424 void os::breakpoint() {
 425   BREAKPOINT;
 426 }
 427 
 428 extern "C" void breakpoint() {
 429   // use debugger to set breakpoint here
 430 }
 431 
 432 ////////////////////////////////////////////////////////////////////////////////
 433 // signal support
 434 
 435 debug_only(static bool signal_sets_initialized = false);
 436 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 437 
 438 bool os::Linux::is_sig_ignored(int sig) {
 439   struct sigaction oact;
 440   sigaction(sig, (struct sigaction*)NULL, &oact);
 441   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 442                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 443   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 444     return true;
 445   } else {
 446     return false;
 447   }
 448 }
 449 
 450 void os::Linux::signal_sets_init() {
 451   // Should also have an assertion stating we are still single-threaded.
 452   assert(!signal_sets_initialized, "Already initialized");
 453   // Fill in signals that are necessarily unblocked for all threads in
 454   // the VM. Currently, we unblock the following signals:
 455   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 456   //                         by -Xrs (=ReduceSignalUsage));
 457   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 458   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 459   // the dispositions or masks wrt these signals.
 460   // Programs embedding the VM that want to use the above signals for their
 461   // own purposes must, at this time, use the "-Xrs" option to prevent
 462   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 463   // (See bug 4345157, and other related bugs).
 464   // In reality, though, unblocking these signals is really a nop, since
 465   // these signals are not blocked by default.
 466   sigemptyset(&unblocked_sigs);
 467   sigemptyset(&allowdebug_blocked_sigs);
 468   sigaddset(&unblocked_sigs, SIGILL);
 469   sigaddset(&unblocked_sigs, SIGSEGV);
 470   sigaddset(&unblocked_sigs, SIGBUS);
 471   sigaddset(&unblocked_sigs, SIGFPE);
 472 #if defined(PPC64)
 473   sigaddset(&unblocked_sigs, SIGTRAP);
 474 #endif
 475   sigaddset(&unblocked_sigs, SR_signum);
 476 
 477   if (!ReduceSignalUsage) {
 478     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 479       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 480       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 481     }
 482     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 483       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 484       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 485     }
 486     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 487       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 488       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 489     }
 490   }
 491   // Fill in signals that are blocked by all but the VM thread.
 492   sigemptyset(&vm_sigs);
 493   if (!ReduceSignalUsage) {
 494     sigaddset(&vm_sigs, BREAK_SIGNAL);
 495   }
 496   debug_only(signal_sets_initialized = true);
 497 
 498 }
 499 
 500 // These are signals that are unblocked while a thread is running Java.
 501 // (For some reason, they get blocked by default.)
 502 sigset_t* os::Linux::unblocked_signals() {
 503   assert(signal_sets_initialized, "Not initialized");
 504   return &unblocked_sigs;
 505 }
 506 
 507 // These are the signals that are blocked while a (non-VM) thread is
 508 // running Java. Only the VM thread handles these signals.
 509 sigset_t* os::Linux::vm_signals() {
 510   assert(signal_sets_initialized, "Not initialized");
 511   return &vm_sigs;
 512 }
 513 
 514 // These are signals that are blocked during cond_wait to allow debugger in
 515 sigset_t* os::Linux::allowdebug_blocked_signals() {
 516   assert(signal_sets_initialized, "Not initialized");
 517   return &allowdebug_blocked_sigs;
 518 }
 519 
 520 void os::Linux::hotspot_sigmask(Thread* thread) {
 521 
 522   //Save caller's signal mask before setting VM signal mask
 523   sigset_t caller_sigmask;
 524   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 525 
 526   OSThread* osthread = thread->osthread();
 527   osthread->set_caller_sigmask(caller_sigmask);
 528 
 529   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 530 
 531   if (!ReduceSignalUsage) {
 532     if (thread->is_VM_thread()) {
 533       // Only the VM thread handles BREAK_SIGNAL ...
 534       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 535     } else {
 536       // ... all other threads block BREAK_SIGNAL
 537       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 538     }
 539   }
 540 }
 541 
 542 //////////////////////////////////////////////////////////////////////////////
 543 // detecting pthread library
 544 
 545 void os::Linux::libpthread_init() {
 546   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 547   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 548   // generic name for earlier versions.
 549   // Define macros here so we can build HotSpot on old systems.
 550 #ifndef _CS_GNU_LIBC_VERSION
 551   #define _CS_GNU_LIBC_VERSION 2
 552 #endif
 553 #ifndef _CS_GNU_LIBPTHREAD_VERSION
 554   #define _CS_GNU_LIBPTHREAD_VERSION 3
 555 #endif
 556 
 557   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 558   if (n > 0) {
 559     char *str = (char *)malloc(n, mtInternal);
 560     confstr(_CS_GNU_LIBC_VERSION, str, n);
 561     os::Linux::set_glibc_version(str);
 562   } else {
 563     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 564     static char _gnu_libc_version[32];
 565     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 566                  "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 567     os::Linux::set_glibc_version(_gnu_libc_version);
 568   }
 569 
 570   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 571   if (n > 0) {
 572     char *str = (char *)malloc(n, mtInternal);
 573     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 574     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 575     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 576     // is the case. LinuxThreads has a hard limit on max number of threads.
 577     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 578     // On the other hand, NPTL does not have such a limit, sysconf()
 579     // will return -1 and errno is not changed. Check if it is really NPTL.
 580     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 581         strstr(str, "NPTL") &&
 582         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 583       free(str);
 584       os::Linux::set_libpthread_version("linuxthreads");
 585     } else {
 586       os::Linux::set_libpthread_version(str);
 587     }
 588   } else {
 589     // glibc before 2.3.2 only has LinuxThreads.
 590     os::Linux::set_libpthread_version("linuxthreads");
 591   }
 592 
 593   if (strstr(libpthread_version(), "NPTL")) {
 594     os::Linux::set_is_NPTL();
 595   } else {
 596     os::Linux::set_is_LinuxThreads();
 597   }
 598 
 599   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 600   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 601   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 602     os::Linux::set_is_floating_stack();
 603   }
 604 }
 605 
 606 /////////////////////////////////////////////////////////////////////////////
 607 // thread stack
 608 
 609 // Force Linux kernel to expand current thread stack. If "bottom" is close
 610 // to the stack guard, caller should block all signals.
 611 //
 612 // MAP_GROWSDOWN:
 613 //   A special mmap() flag that is used to implement thread stacks. It tells
 614 //   kernel that the memory region should extend downwards when needed. This
 615 //   allows early versions of LinuxThreads to only mmap the first few pages
 616 //   when creating a new thread. Linux kernel will automatically expand thread
 617 //   stack as needed (on page faults).
 618 //
 619 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 620 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 621 //   region, it's hard to tell if the fault is due to a legitimate stack
 622 //   access or because of reading/writing non-exist memory (e.g. buffer
 623 //   overrun). As a rule, if the fault happens below current stack pointer,
 624 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 625 //   application (see Linux kernel fault.c).
 626 //
 627 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 628 //   stack overflow detection.
 629 //
 630 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 631 //   not use this flag. However, the stack of initial thread is not created
 632 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 633 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 634 //   and then attach the thread to JVM.
 635 //
 636 // To get around the problem and allow stack banging on Linux, we need to
 637 // manually expand thread stack after receiving the SIGSEGV.
 638 //
 639 // There are two ways to expand thread stack to address "bottom", we used
 640 // both of them in JVM before 1.5:
 641 //   1. adjust stack pointer first so that it is below "bottom", and then
 642 //      touch "bottom"
 643 //   2. mmap() the page in question
 644 //
 645 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 646 // if current sp is already near the lower end of page 101, and we need to
 647 // call mmap() to map page 100, it is possible that part of the mmap() frame
 648 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 649 // That will destroy the mmap() frame and cause VM to crash.
 650 //
 651 // The following code works by adjusting sp first, then accessing the "bottom"
 652 // page to force a page fault. Linux kernel will then automatically expand the
 653 // stack mapping.
 654 //
 655 // _expand_stack_to() assumes its frame size is less than page size, which
 656 // should always be true if the function is not inlined.
 657 
 658 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 659   #define NOINLINE
 660 #else
 661   #define NOINLINE __attribute__ ((noinline))
 662 #endif
 663 
 664 static void _expand_stack_to(address bottom) NOINLINE;
 665 
 666 static void _expand_stack_to(address bottom) {
 667   address sp;
 668   size_t size;
 669   volatile char *p;
 670 
 671   // Adjust bottom to point to the largest address within the same page, it
 672   // gives us a one-page buffer if alloca() allocates slightly more memory.
 673   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 674   bottom += os::Linux::page_size() - 1;
 675 
 676   // sp might be slightly above current stack pointer; if that's the case, we
 677   // will alloca() a little more space than necessary, which is OK. Don't use
 678   // os::current_stack_pointer(), as its result can be slightly below current
 679   // stack pointer, causing us to not alloca enough to reach "bottom".
 680   sp = (address)&sp;
 681 
 682   if (sp > bottom) {
 683     size = sp - bottom;
 684     p = (volatile char *)alloca(size);
 685     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 686     p[0] = '\0';
 687   }
 688 }
 689 
 690 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 691   assert(t!=NULL, "just checking");
 692   assert(t->osthread()->expanding_stack(), "expand should be set");
 693   assert(t->stack_base() != NULL, "stack_base was not initialized");
 694 
 695   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 696     sigset_t mask_all, old_sigset;
 697     sigfillset(&mask_all);
 698     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 699     _expand_stack_to(addr);
 700     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 701     return true;
 702   }
 703   return false;
 704 }
 705 
 706 //////////////////////////////////////////////////////////////////////////////
 707 // create new thread
 708 
 709 static address highest_vm_reserved_address();
 710 
 711 // check if it's safe to start a new thread
 712 static bool _thread_safety_check(Thread* thread) {
 713   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 714     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 715     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 716     //   allocated (MAP_FIXED) from high address space. Every thread stack
 717     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 718     //   it to other values if they rebuild LinuxThreads).
 719     //
 720     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 721     // the memory region has already been mmap'ed. That means if we have too
 722     // many threads and/or very large heap, eventually thread stack will
 723     // collide with heap.
 724     //
 725     // Here we try to prevent heap/stack collision by comparing current
 726     // stack bottom with the highest address that has been mmap'ed by JVM
 727     // plus a safety margin for memory maps created by native code.
 728     //
 729     // This feature can be disabled by setting ThreadSafetyMargin to 0
 730     //
 731     if (ThreadSafetyMargin > 0) {
 732       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 733 
 734       // not safe if our stack extends below the safety margin
 735       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 736     } else {
 737       return true;
 738     }
 739   } else {
 740     // Floating stack LinuxThreads or NPTL:
 741     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 742     //   there's not enough space left, pthread_create() will fail. If we come
 743     //   here, that means enough space has been reserved for stack.
 744     return true;
 745   }
 746 }
 747 
 748 // Thread start routine for all newly created threads
 749 static void *java_start(Thread *thread) {
 750   // Try to randomize the cache line index of hot stack frames.
 751   // This helps when threads of the same stack traces evict each other's
 752   // cache lines. The threads can be either from the same JVM instance, or
 753   // from different JVM instances. The benefit is especially true for
 754   // processors with hyperthreading technology.
 755   static int counter = 0;
 756   int pid = os::current_process_id();
 757   alloca(((pid ^ counter++) & 7) * 128);
 758 
 759   ThreadLocalStorage::set_thread(thread);
 760 
 761   OSThread* osthread = thread->osthread();
 762   Monitor* sync = osthread->startThread_lock();
 763 
 764   // non floating stack LinuxThreads needs extra check, see above
 765   if (!_thread_safety_check(thread)) {
 766     // notify parent thread
 767     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 768     osthread->set_state(ZOMBIE);
 769     sync->notify_all();
 770     return NULL;
 771   }
 772 
 773   // thread_id is kernel thread id (similar to Solaris LWP id)
 774   osthread->set_thread_id(os::Linux::gettid());
 775 
 776   if (UseNUMA) {
 777     int lgrp_id = os::numa_get_group_id();
 778     if (lgrp_id != -1) {
 779       thread->set_lgrp_id(lgrp_id);
 780     }
 781   }
 782   // initialize signal mask for this thread
 783   os::Linux::hotspot_sigmask(thread);
 784 
 785   // initialize floating point control register
 786   os::Linux::init_thread_fpu_state();
 787 
 788   // handshaking with parent thread
 789   {
 790     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 791 
 792     // notify parent thread
 793     osthread->set_state(INITIALIZED);
 794     sync->notify_all();
 795 
 796     // wait until os::start_thread()
 797     while (osthread->get_state() == INITIALIZED) {
 798       sync->wait(Mutex::_no_safepoint_check_flag);
 799     }
 800   }
 801 
 802   // call one more level start routine
 803   thread->run();
 804 
 805   return 0;
 806 }
 807 
 808 bool os::create_thread(Thread* thread, ThreadType thr_type,
 809                        size_t stack_size) {
 810   assert(thread->osthread() == NULL, "caller responsible");
 811 
 812   // Allocate the OSThread object
 813   OSThread* osthread = new OSThread(NULL, NULL);
 814   if (osthread == NULL) {
 815     return false;
 816   }
 817 
 818   // set the correct thread state
 819   osthread->set_thread_type(thr_type);
 820 
 821   // Initial state is ALLOCATED but not INITIALIZED
 822   osthread->set_state(ALLOCATED);
 823 
 824   thread->set_osthread(osthread);
 825 
 826   // init thread attributes
 827   pthread_attr_t attr;
 828   pthread_attr_init(&attr);
 829   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 830 
 831   // stack size
 832   if (os::Linux::supports_variable_stack_size()) {
 833     // calculate stack size if it's not specified by caller
 834     if (stack_size == 0) {
 835       stack_size = os::Linux::default_stack_size(thr_type);
 836 
 837       switch (thr_type) {
 838       case os::java_thread:
 839         // Java threads use ThreadStackSize which default value can be
 840         // changed with the flag -Xss
 841         assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 842         stack_size = JavaThread::stack_size_at_create();
 843         break;
 844       case os::compiler_thread:
 845         if (CompilerThreadStackSize > 0) {
 846           stack_size = (size_t)(CompilerThreadStackSize * K);
 847           break;
 848         } // else fall through:
 849           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 850       case os::vm_thread:
 851       case os::pgc_thread:
 852       case os::cgc_thread:
 853       case os::watcher_thread:
 854         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 855         break;
 856       }
 857     }
 858 
 859     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 860     pthread_attr_setstacksize(&attr, stack_size);
 861   } else {
 862     // let pthread_create() pick the default value.
 863   }
 864 
 865   // glibc guard page
 866   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 867 
 868   ThreadState state;
 869 
 870   {
 871     // Serialize thread creation if we are running with fixed stack LinuxThreads
 872     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 873     if (lock) {
 874       os::Linux::createThread_lock()->lock_without_safepoint_check();
 875     }
 876 
 877     pthread_t tid;
 878     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 879 
 880     pthread_attr_destroy(&attr);
 881 
 882     if (ret != 0) {
 883       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 884         perror("pthread_create()");
 885       }
 886       // Need to clean up stuff we've allocated so far
 887       thread->set_osthread(NULL);
 888       delete osthread;
 889       if (lock) os::Linux::createThread_lock()->unlock();
 890       return false;
 891     }
 892 
 893     // Store pthread info into the OSThread
 894     osthread->set_pthread_id(tid);
 895 
 896     // Wait until child thread is either initialized or aborted
 897     {
 898       Monitor* sync_with_child = osthread->startThread_lock();
 899       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 900       while ((state = osthread->get_state()) == ALLOCATED) {
 901         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 902       }
 903     }
 904 
 905     if (lock) {
 906       os::Linux::createThread_lock()->unlock();
 907     }
 908   }
 909 
 910   // Aborted due to thread limit being reached
 911   if (state == ZOMBIE) {
 912     thread->set_osthread(NULL);
 913     delete osthread;
 914     return false;
 915   }
 916 
 917   // The thread is returned suspended (in state INITIALIZED),
 918   // and is started higher up in the call chain
 919   assert(state == INITIALIZED, "race condition");
 920   return true;
 921 }
 922 
 923 /////////////////////////////////////////////////////////////////////////////
 924 // attach existing thread
 925 
 926 // bootstrap the main thread
 927 bool os::create_main_thread(JavaThread* thread) {
 928   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 929   return create_attached_thread(thread);
 930 }
 931 
 932 bool os::create_attached_thread(JavaThread* thread) {
 933 #ifdef ASSERT
 934   thread->verify_not_published();
 935 #endif
 936 
 937   // Allocate the OSThread object
 938   OSThread* osthread = new OSThread(NULL, NULL);
 939 
 940   if (osthread == NULL) {
 941     return false;
 942   }
 943 
 944   // Store pthread info into the OSThread
 945   osthread->set_thread_id(os::Linux::gettid());
 946   osthread->set_pthread_id(::pthread_self());
 947 
 948   // initialize floating point control register
 949   os::Linux::init_thread_fpu_state();
 950 
 951   // Initial thread state is RUNNABLE
 952   osthread->set_state(RUNNABLE);
 953 
 954   thread->set_osthread(osthread);
 955 
 956   if (UseNUMA) {
 957     int lgrp_id = os::numa_get_group_id();
 958     if (lgrp_id != -1) {
 959       thread->set_lgrp_id(lgrp_id);
 960     }
 961   }
 962 
 963   if (os::Linux::is_initial_thread()) {
 964     // If current thread is initial thread, its stack is mapped on demand,
 965     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 966     // the entire stack region to avoid SEGV in stack banging.
 967     // It is also useful to get around the heap-stack-gap problem on SuSE
 968     // kernel (see 4821821 for details). We first expand stack to the top
 969     // of yellow zone, then enable stack yellow zone (order is significant,
 970     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 971     // is no gap between the last two virtual memory regions.
 972 
 973     JavaThread *jt = (JavaThread *)thread;
 974     address addr = jt->stack_yellow_zone_base();
 975     assert(addr != NULL, "initialization problem?");
 976     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 977 
 978     osthread->set_expanding_stack();
 979     os::Linux::manually_expand_stack(jt, addr);
 980     osthread->clear_expanding_stack();
 981   }
 982 
 983   // initialize signal mask for this thread
 984   // and save the caller's signal mask
 985   os::Linux::hotspot_sigmask(thread);
 986 
 987   return true;
 988 }
 989 
 990 void os::pd_start_thread(Thread* thread) {
 991   OSThread * osthread = thread->osthread();
 992   assert(osthread->get_state() != INITIALIZED, "just checking");
 993   Monitor* sync_with_child = osthread->startThread_lock();
 994   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 995   sync_with_child->notify();
 996 }
 997 
 998 // Free Linux resources related to the OSThread
 999 void os::free_thread(OSThread* osthread) {
1000   assert(osthread != NULL, "osthread not set");
1001 
1002   if (Thread::current()->osthread() == osthread) {
1003     // Restore caller's signal mask
1004     sigset_t sigmask = osthread->caller_sigmask();
1005     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1006   }
1007 
1008   delete osthread;
1009 }
1010 
1011 //////////////////////////////////////////////////////////////////////////////
1012 // thread local storage
1013 
1014 // Restore the thread pointer if the destructor is called. This is in case
1015 // someone from JNI code sets up a destructor with pthread_key_create to run
1016 // detachCurrentThread on thread death. Unless we restore the thread pointer we
1017 // will hang or crash. When detachCurrentThread is called the key will be set
1018 // to null and we will not be called again. If detachCurrentThread is never
1019 // called we could loop forever depending on the pthread implementation.
1020 static void restore_thread_pointer(void* p) {
1021   Thread* thread = (Thread*) p;
1022   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1023 }
1024 
1025 int os::allocate_thread_local_storage() {
1026   pthread_key_t key;
1027   int rslt = pthread_key_create(&key, restore_thread_pointer);
1028   assert(rslt == 0, "cannot allocate thread local storage");
1029   return (int)key;
1030 }
1031 
1032 // Note: This is currently not used by VM, as we don't destroy TLS key
1033 // on VM exit.
1034 void os::free_thread_local_storage(int index) {
1035   int rslt = pthread_key_delete((pthread_key_t)index);
1036   assert(rslt == 0, "invalid index");
1037 }
1038 
1039 void os::thread_local_storage_at_put(int index, void* value) {
1040   int rslt = pthread_setspecific((pthread_key_t)index, value);
1041   assert(rslt == 0, "pthread_setspecific failed");
1042 }
1043 
1044 extern "C" Thread* get_thread() {
1045   return ThreadLocalStorage::thread();
1046 }
1047 
1048 //////////////////////////////////////////////////////////////////////////////
1049 // initial thread
1050 
1051 // Check if current thread is the initial thread, similar to Solaris thr_main.
1052 bool os::Linux::is_initial_thread(void) {
1053   char dummy;
1054   // If called before init complete, thread stack bottom will be null.
1055   // Can be called if fatal error occurs before initialization.
1056   if (initial_thread_stack_bottom() == NULL) return false;
1057   assert(initial_thread_stack_bottom() != NULL &&
1058          initial_thread_stack_size()   != 0,
1059          "os::init did not locate initial thread's stack region");
1060   if ((address)&dummy >= initial_thread_stack_bottom() &&
1061       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
1062     return true;
1063   } else {
1064     return false;
1065   }
1066 }
1067 
1068 // Find the virtual memory area that contains addr
1069 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1070   FILE *fp = fopen("/proc/self/maps", "r");
1071   if (fp) {
1072     address low, high;
1073     while (!feof(fp)) {
1074       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1075         if (low <= addr && addr < high) {
1076           if (vma_low)  *vma_low  = low;
1077           if (vma_high) *vma_high = high;
1078           fclose(fp);
1079           return true;
1080         }
1081       }
1082       for (;;) {
1083         int ch = fgetc(fp);
1084         if (ch == EOF || ch == (int)'\n') break;
1085       }
1086     }
1087     fclose(fp);
1088   }
1089   return false;
1090 }
1091 
1092 // Locate initial thread stack. This special handling of initial thread stack
1093 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1094 // bogus value for initial thread.
1095 void os::Linux::capture_initial_stack(size_t max_size) {
1096   // stack size is the easy part, get it from RLIMIT_STACK
1097   size_t stack_size;
1098   struct rlimit rlim;
1099   getrlimit(RLIMIT_STACK, &rlim);
1100   stack_size = rlim.rlim_cur;
1101 
1102   // 6308388: a bug in ld.so will relocate its own .data section to the
1103   //   lower end of primordial stack; reduce ulimit -s value a little bit
1104   //   so we won't install guard page on ld.so's data section.
1105   stack_size -= 2 * page_size();
1106 
1107   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1108   //   7.1, in both cases we will get 2G in return value.
1109   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1110   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1111   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1112   //   in case other parts in glibc still assumes 2M max stack size.
1113   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1114   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1115   if (stack_size > 2 * K * K IA64_ONLY(*2)) {
1116     stack_size = 2 * K * K IA64_ONLY(*2);
1117   }
1118   // Try to figure out where the stack base (top) is. This is harder.
1119   //
1120   // When an application is started, glibc saves the initial stack pointer in
1121   // a global variable "__libc_stack_end", which is then used by system
1122   // libraries. __libc_stack_end should be pretty close to stack top. The
1123   // variable is available since the very early days. However, because it is
1124   // a private interface, it could disappear in the future.
1125   //
1126   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1127   // to __libc_stack_end, it is very close to stack top, but isn't the real
1128   // stack top. Note that /proc may not exist if VM is running as a chroot
1129   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1130   // /proc/<pid>/stat could change in the future (though unlikely).
1131   //
1132   // We try __libc_stack_end first. If that doesn't work, look for
1133   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1134   // as a hint, which should work well in most cases.
1135 
1136   uintptr_t stack_start;
1137 
1138   // try __libc_stack_end first
1139   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1140   if (p && *p) {
1141     stack_start = *p;
1142   } else {
1143     // see if we can get the start_stack field from /proc/self/stat
1144     FILE *fp;
1145     int pid;
1146     char state;
1147     int ppid;
1148     int pgrp;
1149     int session;
1150     int nr;
1151     int tpgrp;
1152     unsigned long flags;
1153     unsigned long minflt;
1154     unsigned long cminflt;
1155     unsigned long majflt;
1156     unsigned long cmajflt;
1157     unsigned long utime;
1158     unsigned long stime;
1159     long cutime;
1160     long cstime;
1161     long prio;
1162     long nice;
1163     long junk;
1164     long it_real;
1165     uintptr_t start;
1166     uintptr_t vsize;
1167     intptr_t rss;
1168     uintptr_t rsslim;
1169     uintptr_t scodes;
1170     uintptr_t ecode;
1171     int i;
1172 
1173     // Figure what the primordial thread stack base is. Code is inspired
1174     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1175     // followed by command name surrounded by parentheses, state, etc.
1176     char stat[2048];
1177     int statlen;
1178 
1179     fp = fopen("/proc/self/stat", "r");
1180     if (fp) {
1181       statlen = fread(stat, 1, 2047, fp);
1182       stat[statlen] = '\0';
1183       fclose(fp);
1184 
1185       // Skip pid and the command string. Note that we could be dealing with
1186       // weird command names, e.g. user could decide to rename java launcher
1187       // to "java 1.4.2 :)", then the stat file would look like
1188       //                1234 (java 1.4.2 :)) R ... ...
1189       // We don't really need to know the command string, just find the last
1190       // occurrence of ")" and then start parsing from there. See bug 4726580.
1191       char * s = strrchr(stat, ')');
1192 
1193       i = 0;
1194       if (s) {
1195         // Skip blank chars
1196         do { s++; } while (s && isspace(*s));
1197 
1198 #define _UFM UINTX_FORMAT
1199 #define _DFM INTX_FORMAT
1200 
1201         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1202         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1203         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1204                    &state,          // 3  %c
1205                    &ppid,           // 4  %d
1206                    &pgrp,           // 5  %d
1207                    &session,        // 6  %d
1208                    &nr,             // 7  %d
1209                    &tpgrp,          // 8  %d
1210                    &flags,          // 9  %lu
1211                    &minflt,         // 10 %lu
1212                    &cminflt,        // 11 %lu
1213                    &majflt,         // 12 %lu
1214                    &cmajflt,        // 13 %lu
1215                    &utime,          // 14 %lu
1216                    &stime,          // 15 %lu
1217                    &cutime,         // 16 %ld
1218                    &cstime,         // 17 %ld
1219                    &prio,           // 18 %ld
1220                    &nice,           // 19 %ld
1221                    &junk,           // 20 %ld
1222                    &it_real,        // 21 %ld
1223                    &start,          // 22 UINTX_FORMAT
1224                    &vsize,          // 23 UINTX_FORMAT
1225                    &rss,            // 24 INTX_FORMAT
1226                    &rsslim,         // 25 UINTX_FORMAT
1227                    &scodes,         // 26 UINTX_FORMAT
1228                    &ecode,          // 27 UINTX_FORMAT
1229                    &stack_start);   // 28 UINTX_FORMAT
1230       }
1231 
1232 #undef _UFM
1233 #undef _DFM
1234 
1235       if (i != 28 - 2) {
1236         assert(false, "Bad conversion from /proc/self/stat");
1237         // product mode - assume we are the initial thread, good luck in the
1238         // embedded case.
1239         warning("Can't detect initial thread stack location - bad conversion");
1240         stack_start = (uintptr_t) &rlim;
1241       }
1242     } else {
1243       // For some reason we can't open /proc/self/stat (for example, running on
1244       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1245       // most cases, so don't abort:
1246       warning("Can't detect initial thread stack location - no /proc/self/stat");
1247       stack_start = (uintptr_t) &rlim;
1248     }
1249   }
1250 
1251   // Now we have a pointer (stack_start) very close to the stack top, the
1252   // next thing to do is to figure out the exact location of stack top. We
1253   // can find out the virtual memory area that contains stack_start by
1254   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1255   // and its upper limit is the real stack top. (again, this would fail if
1256   // running inside chroot, because /proc may not exist.)
1257 
1258   uintptr_t stack_top;
1259   address low, high;
1260   if (find_vma((address)stack_start, &low, &high)) {
1261     // success, "high" is the true stack top. (ignore "low", because initial
1262     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1263     stack_top = (uintptr_t)high;
1264   } else {
1265     // failed, likely because /proc/self/maps does not exist
1266     warning("Can't detect initial thread stack location - find_vma failed");
1267     // best effort: stack_start is normally within a few pages below the real
1268     // stack top, use it as stack top, and reduce stack size so we won't put
1269     // guard page outside stack.
1270     stack_top = stack_start;
1271     stack_size -= 16 * page_size();
1272   }
1273 
1274   // stack_top could be partially down the page so align it
1275   stack_top = align_size_up(stack_top, page_size());
1276 
1277   if (max_size && stack_size > max_size) {
1278     _initial_thread_stack_size = max_size;
1279   } else {
1280     _initial_thread_stack_size = stack_size;
1281   }
1282 
1283   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1284   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1285 }
1286 
1287 ////////////////////////////////////////////////////////////////////////////////
1288 // time support
1289 
1290 // Time since start-up in seconds to a fine granularity.
1291 // Used by VMSelfDestructTimer and the MemProfiler.
1292 double os::elapsedTime() {
1293 
1294   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1295 }
1296 
1297 jlong os::elapsed_counter() {
1298   return javaTimeNanos() - initial_time_count;
1299 }
1300 
1301 jlong os::elapsed_frequency() {
1302   return NANOSECS_PER_SEC; // nanosecond resolution
1303 }
1304 
1305 bool os::supports_vtime() { return true; }
1306 bool os::enable_vtime()   { return false; }
1307 bool os::vtime_enabled()  { return false; }
1308 
1309 double os::elapsedVTime() {
1310   struct rusage usage;
1311   int retval = getrusage(RUSAGE_THREAD, &usage);
1312   if (retval == 0) {
1313     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1314   } else {
1315     // better than nothing, but not much
1316     return elapsedTime();
1317   }
1318 }
1319 
1320 jlong os::javaTimeMillis() {
1321   timeval time;
1322   int status = gettimeofday(&time, NULL);
1323   assert(status != -1, "linux error");
1324   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1325 }
1326 
1327 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1328   timeval time;
1329   int status = gettimeofday(&time, NULL);
1330   assert(status != -1, "linux error");
1331   seconds = jlong(time.tv_sec);
1332   nanos = jlong(time.tv_usec) * 1000;
1333 }
1334 
1335 
1336 #ifndef CLOCK_MONOTONIC
1337   #define CLOCK_MONOTONIC (1)
1338 #endif
1339 
1340 void os::Linux::clock_init() {
1341   // we do dlopen's in this particular order due to bug in linux
1342   // dynamical loader (see 6348968) leading to crash on exit
1343   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1344   if (handle == NULL) {
1345     handle = dlopen("librt.so", RTLD_LAZY);
1346   }
1347 
1348   if (handle) {
1349     int (*clock_getres_func)(clockid_t, struct timespec*) =
1350            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1351     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1352            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1353     if (clock_getres_func && clock_gettime_func) {
1354       // See if monotonic clock is supported by the kernel. Note that some
1355       // early implementations simply return kernel jiffies (updated every
1356       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1357       // for nano time (though the monotonic property is still nice to have).
1358       // It's fixed in newer kernels, however clock_getres() still returns
1359       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1360       // resolution for now. Hopefully as people move to new kernels, this
1361       // won't be a problem.
1362       struct timespec res;
1363       struct timespec tp;
1364       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1365           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1366         // yes, monotonic clock is supported
1367         _clock_gettime = clock_gettime_func;
1368         return;
1369       } else {
1370         // close librt if there is no monotonic clock
1371         dlclose(handle);
1372       }
1373     }
1374   }
1375   warning("No monotonic clock was available - timed services may " \
1376           "be adversely affected if the time-of-day clock changes");
1377 }
1378 
1379 #ifndef SYS_clock_getres
1380   #if defined(IA32) || defined(AMD64)
1381     #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1382     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1383   #else
1384     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1385     #define sys_clock_getres(x,y)  -1
1386   #endif
1387 #else
1388   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1389 #endif
1390 
1391 void os::Linux::fast_thread_clock_init() {
1392   if (!UseLinuxPosixThreadCPUClocks) {
1393     return;
1394   }
1395   clockid_t clockid;
1396   struct timespec tp;
1397   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1398       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1399 
1400   // Switch to using fast clocks for thread cpu time if
1401   // the sys_clock_getres() returns 0 error code.
1402   // Note, that some kernels may support the current thread
1403   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1404   // returned by the pthread_getcpuclockid().
1405   // If the fast Posix clocks are supported then the sys_clock_getres()
1406   // must return at least tp.tv_sec == 0 which means a resolution
1407   // better than 1 sec. This is extra check for reliability.
1408 
1409   if (pthread_getcpuclockid_func &&
1410       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1411       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1412     _supports_fast_thread_cpu_time = true;
1413     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1414   }
1415 }
1416 
1417 jlong os::javaTimeNanos() {
1418   if (os::supports_monotonic_clock()) {
1419     struct timespec tp;
1420     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1421     assert(status == 0, "gettime error");
1422     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1423     return result;
1424   } else {
1425     timeval time;
1426     int status = gettimeofday(&time, NULL);
1427     assert(status != -1, "linux error");
1428     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1429     return 1000 * usecs;
1430   }
1431 }
1432 
1433 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1434   if (os::supports_monotonic_clock()) {
1435     info_ptr->max_value = ALL_64_BITS;
1436 
1437     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1438     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1439     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1440   } else {
1441     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1442     info_ptr->max_value = ALL_64_BITS;
1443 
1444     // gettimeofday is a real time clock so it skips
1445     info_ptr->may_skip_backward = true;
1446     info_ptr->may_skip_forward = true;
1447   }
1448 
1449   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1450 }
1451 
1452 // Return the real, user, and system times in seconds from an
1453 // arbitrary fixed point in the past.
1454 bool os::getTimesSecs(double* process_real_time,
1455                       double* process_user_time,
1456                       double* process_system_time) {
1457   struct tms ticks;
1458   clock_t real_ticks = times(&ticks);
1459 
1460   if (real_ticks == (clock_t) (-1)) {
1461     return false;
1462   } else {
1463     double ticks_per_second = (double) clock_tics_per_sec;
1464     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1465     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1466     *process_real_time = ((double) real_ticks) / ticks_per_second;
1467 
1468     return true;
1469   }
1470 }
1471 
1472 
1473 char * os::local_time_string(char *buf, size_t buflen) {
1474   struct tm t;
1475   time_t long_time;
1476   time(&long_time);
1477   localtime_r(&long_time, &t);
1478   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1479                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1480                t.tm_hour, t.tm_min, t.tm_sec);
1481   return buf;
1482 }
1483 
1484 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1485   return localtime_r(clock, res);
1486 }
1487 
1488 ////////////////////////////////////////////////////////////////////////////////
1489 // runtime exit support
1490 
1491 // Note: os::shutdown() might be called very early during initialization, or
1492 // called from signal handler. Before adding something to os::shutdown(), make
1493 // sure it is async-safe and can handle partially initialized VM.
1494 void os::shutdown() {
1495 
1496   // allow PerfMemory to attempt cleanup of any persistent resources
1497   perfMemory_exit();
1498 
1499   // needs to remove object in file system
1500   AttachListener::abort();
1501 
1502   // flush buffered output, finish log files
1503   ostream_abort();
1504 
1505   // Check for abort hook
1506   abort_hook_t abort_hook = Arguments::abort_hook();
1507   if (abort_hook != NULL) {
1508     abort_hook();
1509   }
1510 
1511 }
1512 
1513 // Note: os::abort() might be called very early during initialization, or
1514 // called from signal handler. Before adding something to os::abort(), make
1515 // sure it is async-safe and can handle partially initialized VM.
1516 void os::abort(bool dump_core) {
1517   os::shutdown();
1518   if (dump_core) {
1519 #ifndef PRODUCT
1520     fdStream out(defaultStream::output_fd());
1521     out.print_raw("Current thread is ");
1522     char buf[16];
1523     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1524     out.print_raw_cr(buf);
1525     out.print_raw_cr("Dumping core ...");
1526 #endif
1527     ::abort(); // dump core
1528   }
1529 
1530   ::exit(1);
1531 }
1532 
1533 // Die immediately, no exit hook, no abort hook, no cleanup.
1534 void os::die() {
1535   // _exit() on LinuxThreads only kills current thread
1536   ::abort();
1537 }
1538 
1539 
1540 // This method is a copy of JDK's sysGetLastErrorString
1541 // from src/solaris/hpi/src/system_md.c
1542 
1543 size_t os::lasterror(char *buf, size_t len) {
1544   if (errno == 0)  return 0;
1545 
1546   const char *s = ::strerror(errno);
1547   size_t n = ::strlen(s);
1548   if (n >= len) {
1549     n = len - 1;
1550   }
1551   ::strncpy(buf, s, n);
1552   buf[n] = '\0';
1553   return n;
1554 }
1555 
1556 intx os::current_thread_id() { return (intx)pthread_self(); }
1557 int os::current_process_id() {
1558 
1559   // Under the old linux thread library, linux gives each thread
1560   // its own process id. Because of this each thread will return
1561   // a different pid if this method were to return the result
1562   // of getpid(2). Linux provides no api that returns the pid
1563   // of the launcher thread for the vm. This implementation
1564   // returns a unique pid, the pid of the launcher thread
1565   // that starts the vm 'process'.
1566 
1567   // Under the NPTL, getpid() returns the same pid as the
1568   // launcher thread rather than a unique pid per thread.
1569   // Use gettid() if you want the old pre NPTL behaviour.
1570 
1571   // if you are looking for the result of a call to getpid() that
1572   // returns a unique pid for the calling thread, then look at the
1573   // OSThread::thread_id() method in osThread_linux.hpp file
1574 
1575   return (int)(_initial_pid ? _initial_pid : getpid());
1576 }
1577 
1578 // DLL functions
1579 
1580 const char* os::dll_file_extension() { return ".so"; }
1581 
1582 // This must be hard coded because it's the system's temporary
1583 // directory not the java application's temp directory, ala java.io.tmpdir.
1584 const char* os::get_temp_directory() { return "/tmp"; }
1585 
1586 static bool file_exists(const char* filename) {
1587   struct stat statbuf;
1588   if (filename == NULL || strlen(filename) == 0) {
1589     return false;
1590   }
1591   return os::stat(filename, &statbuf) == 0;
1592 }
1593 
1594 bool os::dll_build_name(char* buffer, size_t buflen,
1595                         const char* pname, const char* fname) {
1596   bool retval = false;
1597   // Copied from libhpi
1598   const size_t pnamelen = pname ? strlen(pname) : 0;
1599 
1600   // Return error on buffer overflow.
1601   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1602     return retval;
1603   }
1604 
1605   if (pnamelen == 0) {
1606     snprintf(buffer, buflen, "lib%s.so", fname);
1607     retval = true;
1608   } else if (strchr(pname, *os::path_separator()) != NULL) {
1609     int n;
1610     char** pelements = split_path(pname, &n);
1611     if (pelements == NULL) {
1612       return false;
1613     }
1614     for (int i = 0; i < n; i++) {
1615       // Really shouldn't be NULL, but check can't hurt
1616       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1617         continue; // skip the empty path values
1618       }
1619       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1620       if (file_exists(buffer)) {
1621         retval = true;
1622         break;
1623       }
1624     }
1625     // release the storage
1626     for (int i = 0; i < n; i++) {
1627       if (pelements[i] != NULL) {
1628         FREE_C_HEAP_ARRAY(char, pelements[i]);
1629       }
1630     }
1631     if (pelements != NULL) {
1632       FREE_C_HEAP_ARRAY(char*, pelements);
1633     }
1634   } else {
1635     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1636     retval = true;
1637   }
1638   return retval;
1639 }
1640 
1641 // check if addr is inside libjvm.so
1642 bool os::address_is_in_vm(address addr) {
1643   static address libjvm_base_addr;
1644   Dl_info dlinfo;
1645 
1646   if (libjvm_base_addr == NULL) {
1647     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1648       libjvm_base_addr = (address)dlinfo.dli_fbase;
1649     }
1650     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1651   }
1652 
1653   if (dladdr((void *)addr, &dlinfo) != 0) {
1654     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1655   }
1656 
1657   return false;
1658 }
1659 
1660 bool os::dll_address_to_function_name(address addr, char *buf,
1661                                       int buflen, int *offset) {
1662   // buf is not optional, but offset is optional
1663   assert(buf != NULL, "sanity check");
1664 
1665   Dl_info dlinfo;
1666 
1667   if (dladdr((void*)addr, &dlinfo) != 0) {
1668     // see if we have a matching symbol
1669     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1670       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1671         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1672       }
1673       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1674       return true;
1675     }
1676     // no matching symbol so try for just file info
1677     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1678       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1679                           buf, buflen, offset, dlinfo.dli_fname)) {
1680         return true;
1681       }
1682     }
1683   }
1684 
1685   buf[0] = '\0';
1686   if (offset != NULL) *offset = -1;
1687   return false;
1688 }
1689 
1690 struct _address_to_library_name {
1691   address addr;          // input : memory address
1692   size_t  buflen;        //         size of fname
1693   char*   fname;         // output: library name
1694   address base;          //         library base addr
1695 };
1696 
1697 static int address_to_library_name_callback(struct dl_phdr_info *info,
1698                                             size_t size, void *data) {
1699   int i;
1700   bool found = false;
1701   address libbase = NULL;
1702   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1703 
1704   // iterate through all loadable segments
1705   for (i = 0; i < info->dlpi_phnum; i++) {
1706     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1707     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1708       // base address of a library is the lowest address of its loaded
1709       // segments.
1710       if (libbase == NULL || libbase > segbase) {
1711         libbase = segbase;
1712       }
1713       // see if 'addr' is within current segment
1714       if (segbase <= d->addr &&
1715           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1716         found = true;
1717       }
1718     }
1719   }
1720 
1721   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1722   // so dll_address_to_library_name() can fall through to use dladdr() which
1723   // can figure out executable name from argv[0].
1724   if (found && info->dlpi_name && info->dlpi_name[0]) {
1725     d->base = libbase;
1726     if (d->fname) {
1727       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1728     }
1729     return 1;
1730   }
1731   return 0;
1732 }
1733 
1734 bool os::dll_address_to_library_name(address addr, char* buf,
1735                                      int buflen, int* offset) {
1736   // buf is not optional, but offset is optional
1737   assert(buf != NULL, "sanity check");
1738 
1739   Dl_info dlinfo;
1740   struct _address_to_library_name data;
1741 
1742   // There is a bug in old glibc dladdr() implementation that it could resolve
1743   // to wrong library name if the .so file has a base address != NULL. Here
1744   // we iterate through the program headers of all loaded libraries to find
1745   // out which library 'addr' really belongs to. This workaround can be
1746   // removed once the minimum requirement for glibc is moved to 2.3.x.
1747   data.addr = addr;
1748   data.fname = buf;
1749   data.buflen = buflen;
1750   data.base = NULL;
1751   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1752 
1753   if (rslt) {
1754     // buf already contains library name
1755     if (offset) *offset = addr - data.base;
1756     return true;
1757   }
1758   if (dladdr((void*)addr, &dlinfo) != 0) {
1759     if (dlinfo.dli_fname != NULL) {
1760       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1761     }
1762     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1763       *offset = addr - (address)dlinfo.dli_fbase;
1764     }
1765     return true;
1766   }
1767 
1768   buf[0] = '\0';
1769   if (offset) *offset = -1;
1770   return false;
1771 }
1772 
1773 // Loads .dll/.so and
1774 // in case of error it checks if .dll/.so was built for the
1775 // same architecture as Hotspot is running on
1776 
1777 
1778 // Remember the stack's state. The Linux dynamic linker will change
1779 // the stack to 'executable' at most once, so we must safepoint only once.
1780 bool os::Linux::_stack_is_executable = false;
1781 
1782 // VM operation that loads a library.  This is necessary if stack protection
1783 // of the Java stacks can be lost during loading the library.  If we
1784 // do not stop the Java threads, they can stack overflow before the stacks
1785 // are protected again.
1786 class VM_LinuxDllLoad: public VM_Operation {
1787  private:
1788   const char *_filename;
1789   char *_ebuf;
1790   int _ebuflen;
1791   void *_lib;
1792  public:
1793   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1794     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1795   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1796   void doit() {
1797     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1798     os::Linux::_stack_is_executable = true;
1799   }
1800   void* loaded_library() { return _lib; }
1801 };
1802 
1803 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1804   void * result = NULL;
1805   bool load_attempted = false;
1806 
1807   // Check whether the library to load might change execution rights
1808   // of the stack. If they are changed, the protection of the stack
1809   // guard pages will be lost. We need a safepoint to fix this.
1810   //
1811   // See Linux man page execstack(8) for more info.
1812   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1813     ElfFile ef(filename);
1814     if (!ef.specifies_noexecstack()) {
1815       if (!is_init_completed()) {
1816         os::Linux::_stack_is_executable = true;
1817         // This is OK - No Java threads have been created yet, and hence no
1818         // stack guard pages to fix.
1819         //
1820         // This should happen only when you are building JDK7 using a very
1821         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1822         //
1823         // Dynamic loader will make all stacks executable after
1824         // this function returns, and will not do that again.
1825         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1826       } else {
1827         warning("You have loaded library %s which might have disabled stack guard. "
1828                 "The VM will try to fix the stack guard now.\n"
1829                 "It's highly recommended that you fix the library with "
1830                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1831                 filename);
1832 
1833         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1834         JavaThread *jt = JavaThread::current();
1835         if (jt->thread_state() != _thread_in_native) {
1836           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1837           // that requires ExecStack. Cannot enter safe point. Let's give up.
1838           warning("Unable to fix stack guard. Giving up.");
1839         } else {
1840           if (!LoadExecStackDllInVMThread) {
1841             // This is for the case where the DLL has an static
1842             // constructor function that executes JNI code. We cannot
1843             // load such DLLs in the VMThread.
1844             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1845           }
1846 
1847           ThreadInVMfromNative tiv(jt);
1848           debug_only(VMNativeEntryWrapper vew;)
1849 
1850           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1851           VMThread::execute(&op);
1852           if (LoadExecStackDllInVMThread) {
1853             result = op.loaded_library();
1854           }
1855           load_attempted = true;
1856         }
1857       }
1858     }
1859   }
1860 
1861   if (!load_attempted) {
1862     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1863   }
1864 
1865   if (result != NULL) {
1866     // Successful loading
1867     return result;
1868   }
1869 
1870   Elf32_Ehdr elf_head;
1871   int diag_msg_max_length=ebuflen-strlen(ebuf);
1872   char* diag_msg_buf=ebuf+strlen(ebuf);
1873 
1874   if (diag_msg_max_length==0) {
1875     // No more space in ebuf for additional diagnostics message
1876     return NULL;
1877   }
1878 
1879 
1880   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1881 
1882   if (file_descriptor < 0) {
1883     // Can't open library, report dlerror() message
1884     return NULL;
1885   }
1886 
1887   bool failed_to_read_elf_head=
1888     (sizeof(elf_head)!=
1889      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1890 
1891   ::close(file_descriptor);
1892   if (failed_to_read_elf_head) {
1893     // file i/o error - report dlerror() msg
1894     return NULL;
1895   }
1896 
1897   typedef struct {
1898     Elf32_Half  code;         // Actual value as defined in elf.h
1899     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1900     char        elf_class;    // 32 or 64 bit
1901     char        endianess;    // MSB or LSB
1902     char*       name;         // String representation
1903   } arch_t;
1904 
1905 #ifndef EM_486
1906   #define EM_486          6               /* Intel 80486 */
1907 #endif
1908 #ifndef EM_AARCH64
1909   #define EM_AARCH64    183               /* ARM AARCH64 */
1910 #endif
1911 
1912   static const arch_t arch_array[]={
1913     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1914     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1915     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1916     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1917     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1918     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1919     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1920     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1921 #if defined(VM_LITTLE_ENDIAN)
1922     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1923 #else
1924     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1925 #endif
1926     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1927     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1928     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1929     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1930     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1931     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1932     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1933     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1934   };
1935 
1936 #if  (defined IA32)
1937   static  Elf32_Half running_arch_code=EM_386;
1938 #elif   (defined AMD64)
1939   static  Elf32_Half running_arch_code=EM_X86_64;
1940 #elif  (defined IA64)
1941   static  Elf32_Half running_arch_code=EM_IA_64;
1942 #elif  (defined __sparc) && (defined _LP64)
1943   static  Elf32_Half running_arch_code=EM_SPARCV9;
1944 #elif  (defined __sparc) && (!defined _LP64)
1945   static  Elf32_Half running_arch_code=EM_SPARC;
1946 #elif  (defined __powerpc64__)
1947   static  Elf32_Half running_arch_code=EM_PPC64;
1948 #elif  (defined __powerpc__)
1949   static  Elf32_Half running_arch_code=EM_PPC;
1950 #elif  (defined ARM)
1951   static  Elf32_Half running_arch_code=EM_ARM;
1952 #elif  (defined S390)
1953   static  Elf32_Half running_arch_code=EM_S390;
1954 #elif  (defined ALPHA)
1955   static  Elf32_Half running_arch_code=EM_ALPHA;
1956 #elif  (defined MIPSEL)
1957   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1958 #elif  (defined PARISC)
1959   static  Elf32_Half running_arch_code=EM_PARISC;
1960 #elif  (defined MIPS)
1961   static  Elf32_Half running_arch_code=EM_MIPS;
1962 #elif  (defined M68K)
1963   static  Elf32_Half running_arch_code=EM_68K;
1964 #elif  (defined AARCH64)
1965   static  Elf32_Half running_arch_code=EM_AARCH64;
1966 #else
1967     #error Method os::dll_load requires that one of following is defined:\
1968          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1969 #endif
1970 
1971   // Identify compatability class for VM's architecture and library's architecture
1972   // Obtain string descriptions for architectures
1973 
1974   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1975   int running_arch_index=-1;
1976 
1977   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1978     if (running_arch_code == arch_array[i].code) {
1979       running_arch_index    = i;
1980     }
1981     if (lib_arch.code == arch_array[i].code) {
1982       lib_arch.compat_class = arch_array[i].compat_class;
1983       lib_arch.name         = arch_array[i].name;
1984     }
1985   }
1986 
1987   assert(running_arch_index != -1,
1988          "Didn't find running architecture code (running_arch_code) in arch_array");
1989   if (running_arch_index == -1) {
1990     // Even though running architecture detection failed
1991     // we may still continue with reporting dlerror() message
1992     return NULL;
1993   }
1994 
1995   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1996     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1997     return NULL;
1998   }
1999 
2000 #ifndef S390
2001   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2002     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2003     return NULL;
2004   }
2005 #endif // !S390
2006 
2007   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2008     if (lib_arch.name!=NULL) {
2009       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2010                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2011                  lib_arch.name, arch_array[running_arch_index].name);
2012     } else {
2013       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2014                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2015                  lib_arch.code,
2016                  arch_array[running_arch_index].name);
2017     }
2018   }
2019 
2020   return NULL;
2021 }
2022 
2023 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
2024                                 int ebuflen) {
2025   void * result = ::dlopen(filename, RTLD_LAZY);
2026   if (result == NULL) {
2027     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2028     ebuf[ebuflen-1] = '\0';
2029   }
2030   return result;
2031 }
2032 
2033 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
2034                                        int ebuflen) {
2035   void * result = NULL;
2036   if (LoadExecStackDllInVMThread) {
2037     result = dlopen_helper(filename, ebuf, ebuflen);
2038   }
2039 
2040   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2041   // library that requires an executable stack, or which does not have this
2042   // stack attribute set, dlopen changes the stack attribute to executable. The
2043   // read protection of the guard pages gets lost.
2044   //
2045   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2046   // may have been queued at the same time.
2047 
2048   if (!_stack_is_executable) {
2049     JavaThread *jt = Threads::first();
2050 
2051     while (jt) {
2052       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2053           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2054         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2055                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2056           warning("Attempt to reguard stack yellow zone failed.");
2057         }
2058       }
2059       jt = jt->next();
2060     }
2061   }
2062 
2063   return result;
2064 }
2065 
2066 // glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2067 // chances are you might want to run the generated bits against glibc-2.0
2068 // libdl.so, so always use locking for any version of glibc.
2069 //
2070 void* os::dll_lookup(void* handle, const char* name) {
2071   pthread_mutex_lock(&dl_mutex);
2072   void* res = dlsym(handle, name);
2073   pthread_mutex_unlock(&dl_mutex);
2074   return res;
2075 }
2076 
2077 void* os::get_default_process_handle() {
2078   return (void*)::dlopen(NULL, RTLD_LAZY);
2079 }
2080 
2081 static bool _print_ascii_file(const char* filename, outputStream* st) {
2082   int fd = ::open(filename, O_RDONLY);
2083   if (fd == -1) {
2084     return false;
2085   }
2086 
2087   char buf[32];
2088   int bytes;
2089   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2090     st->print_raw(buf, bytes);
2091   }
2092 
2093   ::close(fd);
2094 
2095   return true;
2096 }
2097 
2098 void os::print_dll_info(outputStream *st) {
2099   st->print_cr("Dynamic libraries:");
2100 
2101   char fname[32];
2102   pid_t pid = os::Linux::gettid();
2103 
2104   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2105 
2106   if (!_print_ascii_file(fname, st)) {
2107     st->print("Can not get library information for pid = %d\n", pid);
2108   }
2109 }
2110 
2111 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2112   FILE *procmapsFile = NULL;
2113 
2114   // Open the procfs maps file for the current process
2115   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2116     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2117     char line[PATH_MAX + 100];
2118 
2119     // Read line by line from 'file'
2120     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2121       u8 base, top, offset, inode;
2122       char permissions[5];
2123       char device[6];
2124       char name[PATH_MAX + 1];
2125 
2126       // Parse fields from line
2127       sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
2128 
2129       // Filter by device id '00:00' so that we only get file system mapped files.
2130       if (strcmp(device, "00:00") != 0) {
2131 
2132         // Call callback with the fields of interest
2133         if(callback(name, (address)base, (address)top, param)) {
2134           // Oops abort, callback aborted
2135           fclose(procmapsFile);
2136           return 1;
2137         }
2138       }
2139     }
2140     fclose(procmapsFile);
2141   }
2142   return 0;
2143 }
2144 
2145 void os::print_os_info_brief(outputStream* st) {
2146   os::Linux::print_distro_info(st);
2147 
2148   os::Posix::print_uname_info(st);
2149 
2150   os::Linux::print_libversion_info(st);
2151 
2152 }
2153 
2154 void os::print_os_info(outputStream* st) {
2155   st->print("OS:");
2156 
2157   os::Linux::print_distro_info(st);
2158 
2159   os::Posix::print_uname_info(st);
2160 
2161   // Print warning if unsafe chroot environment detected
2162   if (unsafe_chroot_detected) {
2163     st->print("WARNING!! ");
2164     st->print_cr("%s", unstable_chroot_error);
2165   }
2166 
2167   os::Linux::print_libversion_info(st);
2168 
2169   os::Posix::print_rlimit_info(st);
2170 
2171   os::Posix::print_load_average(st);
2172 
2173   os::Linux::print_full_memory_info(st);
2174 }
2175 
2176 // Try to identify popular distros.
2177 // Most Linux distributions have a /etc/XXX-release file, which contains
2178 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2179 // file that also contains the OS version string. Some have more than one
2180 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2181 // /etc/redhat-release.), so the order is important.
2182 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2183 // their own specific XXX-release file as well as a redhat-release file.
2184 // Because of this the XXX-release file needs to be searched for before the
2185 // redhat-release file.
2186 // Since Red Hat has a lsb-release file that is not very descriptive the
2187 // search for redhat-release needs to be before lsb-release.
2188 // Since the lsb-release file is the new standard it needs to be searched
2189 // before the older style release files.
2190 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2191 // next to last resort.  The os-release file is a new standard that contains
2192 // distribution information and the system-release file seems to be an old
2193 // standard that has been replaced by the lsb-release and os-release files.
2194 // Searching for the debian_version file is the last resort.  It contains
2195 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2196 // "Debian " is printed before the contents of the debian_version file.
2197 void os::Linux::print_distro_info(outputStream* st) {
2198   if (!_print_ascii_file("/etc/oracle-release", st) &&
2199       !_print_ascii_file("/etc/mandriva-release", st) &&
2200       !_print_ascii_file("/etc/mandrake-release", st) &&
2201       !_print_ascii_file("/etc/sun-release", st) &&
2202       !_print_ascii_file("/etc/redhat-release", st) &&
2203       !_print_ascii_file("/etc/lsb-release", st) &&
2204       !_print_ascii_file("/etc/SuSE-release", st) &&
2205       !_print_ascii_file("/etc/turbolinux-release", st) &&
2206       !_print_ascii_file("/etc/gentoo-release", st) &&
2207       !_print_ascii_file("/etc/ltib-release", st) &&
2208       !_print_ascii_file("/etc/angstrom-version", st) &&
2209       !_print_ascii_file("/etc/system-release", st) &&
2210       !_print_ascii_file("/etc/os-release", st)) {
2211 
2212     if (file_exists("/etc/debian_version")) {
2213       st->print("Debian ");
2214       _print_ascii_file("/etc/debian_version", st);
2215     } else {
2216       st->print("Linux");
2217     }
2218   }
2219   st->cr();
2220 }
2221 
2222 void os::Linux::print_libversion_info(outputStream* st) {
2223   // libc, pthread
2224   st->print("libc:");
2225   st->print("%s ", os::Linux::glibc_version());
2226   st->print("%s ", os::Linux::libpthread_version());
2227   if (os::Linux::is_LinuxThreads()) {
2228     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2229   }
2230   st->cr();
2231 }
2232 
2233 void os::Linux::print_full_memory_info(outputStream* st) {
2234   st->print("\n/proc/meminfo:\n");
2235   _print_ascii_file("/proc/meminfo", st);
2236   st->cr();
2237 }
2238 
2239 void os::print_memory_info(outputStream* st) {
2240 
2241   st->print("Memory:");
2242   st->print(" %dk page", os::vm_page_size()>>10);
2243 
2244   // values in struct sysinfo are "unsigned long"
2245   struct sysinfo si;
2246   sysinfo(&si);
2247 
2248   st->print(", physical " UINT64_FORMAT "k",
2249             os::physical_memory() >> 10);
2250   st->print("(" UINT64_FORMAT "k free)",
2251             os::available_memory() >> 10);
2252   st->print(", swap " UINT64_FORMAT "k",
2253             ((jlong)si.totalswap * si.mem_unit) >> 10);
2254   st->print("(" UINT64_FORMAT "k free)",
2255             ((jlong)si.freeswap * si.mem_unit) >> 10);
2256   st->cr();
2257 }
2258 
2259 void os::pd_print_cpu_info(outputStream* st) {
2260   st->print("\n/proc/cpuinfo:\n");
2261   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2262     st->print("  <Not Available>");
2263   }
2264   st->cr();
2265 }
2266 
2267 void os::print_siginfo(outputStream* st, void* siginfo) {
2268   const siginfo_t* si = (const siginfo_t*)siginfo;
2269 
2270   os::Posix::print_siginfo_brief(st, si);
2271 #if INCLUDE_CDS
2272   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2273       UseSharedSpaces) {
2274     FileMapInfo* mapinfo = FileMapInfo::current_info();
2275     if (mapinfo->is_in_shared_space(si->si_addr)) {
2276       st->print("\n\nError accessing class data sharing archive."   \
2277                 " Mapped file inaccessible during execution, "      \
2278                 " possible disk/network problem.");
2279     }
2280   }
2281 #endif
2282   st->cr();
2283 }
2284 
2285 
2286 static void print_signal_handler(outputStream* st, int sig,
2287                                  char* buf, size_t buflen);
2288 
2289 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2290   st->print_cr("Signal Handlers:");
2291   print_signal_handler(st, SIGSEGV, buf, buflen);
2292   print_signal_handler(st, SIGBUS , buf, buflen);
2293   print_signal_handler(st, SIGFPE , buf, buflen);
2294   print_signal_handler(st, SIGPIPE, buf, buflen);
2295   print_signal_handler(st, SIGXFSZ, buf, buflen);
2296   print_signal_handler(st, SIGILL , buf, buflen);
2297   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2298   print_signal_handler(st, SR_signum, buf, buflen);
2299   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2300   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2301   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2302   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2303 #if defined(PPC64)
2304   print_signal_handler(st, SIGTRAP, buf, buflen);
2305 #endif
2306 }
2307 
2308 static char saved_jvm_path[MAXPATHLEN] = {0};
2309 
2310 // Find the full path to the current module, libjvm.so
2311 void os::jvm_path(char *buf, jint buflen) {
2312   // Error checking.
2313   if (buflen < MAXPATHLEN) {
2314     assert(false, "must use a large-enough buffer");
2315     buf[0] = '\0';
2316     return;
2317   }
2318   // Lazy resolve the path to current module.
2319   if (saved_jvm_path[0] != 0) {
2320     strcpy(buf, saved_jvm_path);
2321     return;
2322   }
2323 
2324   char dli_fname[MAXPATHLEN];
2325   bool ret = dll_address_to_library_name(
2326                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2327                                          dli_fname, sizeof(dli_fname), NULL);
2328   assert(ret, "cannot locate libjvm");
2329   char *rp = NULL;
2330   if (ret && dli_fname[0] != '\0') {
2331     rp = realpath(dli_fname, buf);
2332   }
2333   if (rp == NULL) {
2334     return;
2335   }
2336 
2337   if (Arguments::sun_java_launcher_is_altjvm()) {
2338     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2339     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2340     // If "/jre/lib/" appears at the right place in the string, then
2341     // assume we are installed in a JDK and we're done. Otherwise, check
2342     // for a JAVA_HOME environment variable and fix up the path so it
2343     // looks like libjvm.so is installed there (append a fake suffix
2344     // hotspot/libjvm.so).
2345     const char *p = buf + strlen(buf) - 1;
2346     for (int count = 0; p > buf && count < 5; ++count) {
2347       for (--p; p > buf && *p != '/'; --p)
2348         /* empty */ ;
2349     }
2350 
2351     if (strncmp(p, "/jre/lib/", 9) != 0) {
2352       // Look for JAVA_HOME in the environment.
2353       char* java_home_var = ::getenv("JAVA_HOME");
2354       if (java_home_var != NULL && java_home_var[0] != 0) {
2355         char* jrelib_p;
2356         int len;
2357 
2358         // Check the current module name "libjvm.so".
2359         p = strrchr(buf, '/');
2360         if (p == NULL) {
2361           return;
2362         }
2363         assert(strstr(p, "/libjvm") == p, "invalid library name");
2364 
2365         rp = realpath(java_home_var, buf);
2366         if (rp == NULL) {
2367           return;
2368         }
2369 
2370         // determine if this is a legacy image or modules image
2371         // modules image doesn't have "jre" subdirectory
2372         len = strlen(buf);
2373         assert(len < buflen, "Ran out of buffer room");
2374         jrelib_p = buf + len;
2375         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2376         if (0 != access(buf, F_OK)) {
2377           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2378         }
2379 
2380         if (0 == access(buf, F_OK)) {
2381           // Use current module name "libjvm.so"
2382           len = strlen(buf);
2383           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2384         } else {
2385           // Go back to path of .so
2386           rp = realpath(dli_fname, buf);
2387           if (rp == NULL) {
2388             return;
2389           }
2390         }
2391       }
2392     }
2393   }
2394 
2395   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2396   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2397 }
2398 
2399 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2400   // no prefix required, not even "_"
2401 }
2402 
2403 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2404   // no suffix required
2405 }
2406 
2407 ////////////////////////////////////////////////////////////////////////////////
2408 // sun.misc.Signal support
2409 
2410 static volatile jint sigint_count = 0;
2411 
2412 static void UserHandler(int sig, void *siginfo, void *context) {
2413   // 4511530 - sem_post is serialized and handled by the manager thread. When
2414   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2415   // don't want to flood the manager thread with sem_post requests.
2416   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2417     return;
2418   }
2419 
2420   // Ctrl-C is pressed during error reporting, likely because the error
2421   // handler fails to abort. Let VM die immediately.
2422   if (sig == SIGINT && is_error_reported()) {
2423     os::die();
2424   }
2425 
2426   os::signal_notify(sig);
2427 }
2428 
2429 void* os::user_handler() {
2430   return CAST_FROM_FN_PTR(void*, UserHandler);
2431 }
2432 
2433 class Semaphore : public StackObj {
2434  public:
2435   Semaphore();
2436   ~Semaphore();
2437   void signal();
2438   void wait();
2439   bool trywait();
2440   bool timedwait(unsigned int sec, int nsec);
2441  private:
2442   sem_t _semaphore;
2443 };
2444 
2445 Semaphore::Semaphore() {
2446   sem_init(&_semaphore, 0, 0);
2447 }
2448 
2449 Semaphore::~Semaphore() {
2450   sem_destroy(&_semaphore);
2451 }
2452 
2453 void Semaphore::signal() {
2454   sem_post(&_semaphore);
2455 }
2456 
2457 void Semaphore::wait() {
2458   sem_wait(&_semaphore);
2459 }
2460 
2461 bool Semaphore::trywait() {
2462   return sem_trywait(&_semaphore) == 0;
2463 }
2464 
2465 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2466 
2467   struct timespec ts;
2468   // Semaphore's are always associated with CLOCK_REALTIME
2469   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2470   // see unpackTime for discussion on overflow checking
2471   if (sec >= MAX_SECS) {
2472     ts.tv_sec += MAX_SECS;
2473     ts.tv_nsec = 0;
2474   } else {
2475     ts.tv_sec += sec;
2476     ts.tv_nsec += nsec;
2477     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2478       ts.tv_nsec -= NANOSECS_PER_SEC;
2479       ++ts.tv_sec; // note: this must be <= max_secs
2480     }
2481   }
2482 
2483   while (1) {
2484     int result = sem_timedwait(&_semaphore, &ts);
2485     if (result == 0) {
2486       return true;
2487     } else if (errno == EINTR) {
2488       continue;
2489     } else if (errno == ETIMEDOUT) {
2490       return false;
2491     } else {
2492       return false;
2493     }
2494   }
2495 }
2496 
2497 extern "C" {
2498   typedef void (*sa_handler_t)(int);
2499   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2500 }
2501 
2502 void* os::signal(int signal_number, void* handler) {
2503   struct sigaction sigAct, oldSigAct;
2504 
2505   sigfillset(&(sigAct.sa_mask));
2506   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2507   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2508 
2509   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2510     // -1 means registration failed
2511     return (void *)-1;
2512   }
2513 
2514   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2515 }
2516 
2517 void os::signal_raise(int signal_number) {
2518   ::raise(signal_number);
2519 }
2520 
2521 // The following code is moved from os.cpp for making this
2522 // code platform specific, which it is by its very nature.
2523 
2524 // Will be modified when max signal is changed to be dynamic
2525 int os::sigexitnum_pd() {
2526   return NSIG;
2527 }
2528 
2529 // a counter for each possible signal value
2530 static volatile jint pending_signals[NSIG+1] = { 0 };
2531 
2532 // Linux(POSIX) specific hand shaking semaphore.
2533 static sem_t sig_sem;
2534 static Semaphore sr_semaphore;
2535 
2536 void os::signal_init_pd() {
2537   // Initialize signal structures
2538   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2539 
2540   // Initialize signal semaphore
2541   ::sem_init(&sig_sem, 0, 0);
2542 }
2543 
2544 void os::signal_notify(int sig) {
2545   Atomic::inc(&pending_signals[sig]);
2546   ::sem_post(&sig_sem);
2547 }
2548 
2549 static int check_pending_signals(bool wait) {
2550   Atomic::store(0, &sigint_count);
2551   for (;;) {
2552     for (int i = 0; i < NSIG + 1; i++) {
2553       jint n = pending_signals[i];
2554       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2555         return i;
2556       }
2557     }
2558     if (!wait) {
2559       return -1;
2560     }
2561     JavaThread *thread = JavaThread::current();
2562     ThreadBlockInVM tbivm(thread);
2563 
2564     bool threadIsSuspended;
2565     do {
2566       thread->set_suspend_equivalent();
2567       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2568       ::sem_wait(&sig_sem);
2569 
2570       // were we externally suspended while we were waiting?
2571       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2572       if (threadIsSuspended) {
2573         // The semaphore has been incremented, but while we were waiting
2574         // another thread suspended us. We don't want to continue running
2575         // while suspended because that would surprise the thread that
2576         // suspended us.
2577         ::sem_post(&sig_sem);
2578 
2579         thread->java_suspend_self();
2580       }
2581     } while (threadIsSuspended);
2582   }
2583 }
2584 
2585 int os::signal_lookup() {
2586   return check_pending_signals(false);
2587 }
2588 
2589 int os::signal_wait() {
2590   return check_pending_signals(true);
2591 }
2592 
2593 ////////////////////////////////////////////////////////////////////////////////
2594 // Virtual Memory
2595 
2596 int os::vm_page_size() {
2597   // Seems redundant as all get out
2598   assert(os::Linux::page_size() != -1, "must call os::init");
2599   return os::Linux::page_size();
2600 }
2601 
2602 // Solaris allocates memory by pages.
2603 int os::vm_allocation_granularity() {
2604   assert(os::Linux::page_size() != -1, "must call os::init");
2605   return os::Linux::page_size();
2606 }
2607 
2608 // Rationale behind this function:
2609 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2610 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2611 //  samples for JITted code. Here we create private executable mapping over the code cache
2612 //  and then we can use standard (well, almost, as mapping can change) way to provide
2613 //  info for the reporting script by storing timestamp and location of symbol
2614 void linux_wrap_code(char* base, size_t size) {
2615   static volatile jint cnt = 0;
2616 
2617   if (!UseOprofile) {
2618     return;
2619   }
2620 
2621   char buf[PATH_MAX+1];
2622   int num = Atomic::add(1, &cnt);
2623 
2624   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2625            os::get_temp_directory(), os::current_process_id(), num);
2626   unlink(buf);
2627 
2628   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2629 
2630   if (fd != -1) {
2631     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2632     if (rv != (off_t)-1) {
2633       if (::write(fd, "", 1) == 1) {
2634         mmap(base, size,
2635              PROT_READ|PROT_WRITE|PROT_EXEC,
2636              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2637       }
2638     }
2639     ::close(fd);
2640     unlink(buf);
2641   }
2642 }
2643 
2644 static bool recoverable_mmap_error(int err) {
2645   // See if the error is one we can let the caller handle. This
2646   // list of errno values comes from JBS-6843484. I can't find a
2647   // Linux man page that documents this specific set of errno
2648   // values so while this list currently matches Solaris, it may
2649   // change as we gain experience with this failure mode.
2650   switch (err) {
2651   case EBADF:
2652   case EINVAL:
2653   case ENOTSUP:
2654     // let the caller deal with these errors
2655     return true;
2656 
2657   default:
2658     // Any remaining errors on this OS can cause our reserved mapping
2659     // to be lost. That can cause confusion where different data
2660     // structures think they have the same memory mapped. The worst
2661     // scenario is if both the VM and a library think they have the
2662     // same memory mapped.
2663     return false;
2664   }
2665 }
2666 
2667 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2668                                     int err) {
2669   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2670           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2671           strerror(err), err);
2672 }
2673 
2674 static void warn_fail_commit_memory(char* addr, size_t size,
2675                                     size_t alignment_hint, bool exec,
2676                                     int err) {
2677   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2678           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2679           alignment_hint, exec, strerror(err), err);
2680 }
2681 
2682 // NOTE: Linux kernel does not really reserve the pages for us.
2683 //       All it does is to check if there are enough free pages
2684 //       left at the time of mmap(). This could be a potential
2685 //       problem.
2686 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2687   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2688   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2689                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2690   if (res != (uintptr_t) MAP_FAILED) {
2691     if (UseNUMAInterleaving) {
2692       numa_make_global(addr, size);
2693     }
2694     return 0;
2695   }
2696 
2697   int err = errno;  // save errno from mmap() call above
2698 
2699   if (!recoverable_mmap_error(err)) {
2700     warn_fail_commit_memory(addr, size, exec, err);
2701     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2702   }
2703 
2704   return err;
2705 }
2706 
2707 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2708   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2709 }
2710 
2711 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2712                                   const char* mesg) {
2713   assert(mesg != NULL, "mesg must be specified");
2714   int err = os::Linux::commit_memory_impl(addr, size, exec);
2715   if (err != 0) {
2716     // the caller wants all commit errors to exit with the specified mesg:
2717     warn_fail_commit_memory(addr, size, exec, err);
2718     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2719   }
2720 }
2721 
2722 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2723 #ifndef MAP_HUGETLB
2724   #define MAP_HUGETLB 0x40000
2725 #endif
2726 
2727 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2728 #ifndef MADV_HUGEPAGE
2729   #define MADV_HUGEPAGE 14
2730 #endif
2731 
2732 int os::Linux::commit_memory_impl(char* addr, size_t size,
2733                                   size_t alignment_hint, bool exec) {
2734   int err = os::Linux::commit_memory_impl(addr, size, exec);
2735   if (err == 0) {
2736     realign_memory(addr, size, alignment_hint);
2737   }
2738   return err;
2739 }
2740 
2741 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2742                           bool exec) {
2743   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2744 }
2745 
2746 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2747                                   size_t alignment_hint, bool exec,
2748                                   const char* mesg) {
2749   assert(mesg != NULL, "mesg must be specified");
2750   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2751   if (err != 0) {
2752     // the caller wants all commit errors to exit with the specified mesg:
2753     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2754     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2755   }
2756 }
2757 
2758 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2759   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2760     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2761     // be supported or the memory may already be backed by huge pages.
2762     ::madvise(addr, bytes, MADV_HUGEPAGE);
2763   }
2764 }
2765 
2766 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2767   // This method works by doing an mmap over an existing mmaping and effectively discarding
2768   // the existing pages. However it won't work for SHM-based large pages that cannot be
2769   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2770   // small pages on top of the SHM segment. This method always works for small pages, so we
2771   // allow that in any case.
2772   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2773     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2774   }
2775 }
2776 
2777 void os::numa_make_global(char *addr, size_t bytes) {
2778   Linux::numa_interleave_memory(addr, bytes);
2779 }
2780 
2781 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2782 // bind policy to MPOL_PREFERRED for the current thread.
2783 #define USE_MPOL_PREFERRED 0
2784 
2785 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2786   // To make NUMA and large pages more robust when both enabled, we need to ease
2787   // the requirements on where the memory should be allocated. MPOL_BIND is the
2788   // default policy and it will force memory to be allocated on the specified
2789   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2790   // the specified node, but will not force it. Using this policy will prevent
2791   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2792   // free large pages.
2793   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2794   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2795 }
2796 
2797 bool os::numa_topology_changed() { return false; }
2798 
2799 size_t os::numa_get_groups_num() {
2800   int max_node = Linux::numa_max_node();
2801   return max_node > 0 ? max_node + 1 : 1;
2802 }
2803 
2804 int os::numa_get_group_id() {
2805   int cpu_id = Linux::sched_getcpu();
2806   if (cpu_id != -1) {
2807     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2808     if (lgrp_id != -1) {
2809       return lgrp_id;
2810     }
2811   }
2812   return 0;
2813 }
2814 
2815 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2816   for (size_t i = 0; i < size; i++) {
2817     ids[i] = i;
2818   }
2819   return size;
2820 }
2821 
2822 bool os::get_page_info(char *start, page_info* info) {
2823   return false;
2824 }
2825 
2826 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2827                      page_info* page_found) {
2828   return end;
2829 }
2830 
2831 
2832 int os::Linux::sched_getcpu_syscall(void) {
2833   unsigned int cpu;
2834   int retval = -1;
2835 
2836 #if defined(IA32)
2837   #ifndef SYS_getcpu
2838     #define SYS_getcpu 318
2839   #endif
2840   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2841 #elif defined(AMD64)
2842 // Unfortunately we have to bring all these macros here from vsyscall.h
2843 // to be able to compile on old linuxes.
2844   #define __NR_vgetcpu 2
2845   #define VSYSCALL_START (-10UL << 20)
2846   #define VSYSCALL_SIZE 1024
2847   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2848   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2849   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2850   retval = vgetcpu(&cpu, NULL, NULL);
2851 #endif
2852 
2853   return (retval == -1) ? retval : cpu;
2854 }
2855 
2856 // Something to do with the numa-aware allocator needs these symbols
2857 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2858 extern "C" JNIEXPORT void numa_error(char *where) { }
2859 extern "C" JNIEXPORT int fork1() { return fork(); }
2860 
2861 
2862 // If we are running with libnuma version > 2, then we should
2863 // be trying to use symbols with versions 1.1
2864 // If we are running with earlier version, which did not have symbol versions,
2865 // we should use the base version.
2866 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2867   void *f = dlvsym(handle, name, "libnuma_1.1");
2868   if (f == NULL) {
2869     f = dlsym(handle, name);
2870   }
2871   return f;
2872 }
2873 
2874 bool os::Linux::libnuma_init() {
2875   // sched_getcpu() should be in libc.
2876   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2877                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2878 
2879   // If it's not, try a direct syscall.
2880   if (sched_getcpu() == -1) {
2881     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2882                                     (void*)&sched_getcpu_syscall));
2883   }
2884 
2885   if (sched_getcpu() != -1) { // Does it work?
2886     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2887     if (handle != NULL) {
2888       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2889                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2890       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2891                                        libnuma_dlsym(handle, "numa_max_node")));
2892       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2893                                         libnuma_dlsym(handle, "numa_available")));
2894       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2895                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2896       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2897                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2898       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2899                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2900 
2901 
2902       if (numa_available() != -1) {
2903         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2904         // Create a cpu -> node mapping
2905         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2906         rebuild_cpu_to_node_map();
2907         return true;
2908       }
2909     }
2910   }
2911   return false;
2912 }
2913 
2914 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2915 // The table is later used in get_node_by_cpu().
2916 void os::Linux::rebuild_cpu_to_node_map() {
2917   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2918                               // in libnuma (possible values are starting from 16,
2919                               // and continuing up with every other power of 2, but less
2920                               // than the maximum number of CPUs supported by kernel), and
2921                               // is a subject to change (in libnuma version 2 the requirements
2922                               // are more reasonable) we'll just hardcode the number they use
2923                               // in the library.
2924   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2925 
2926   size_t cpu_num = os::active_processor_count();
2927   size_t cpu_map_size = NCPUS / BitsPerCLong;
2928   size_t cpu_map_valid_size =
2929     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2930 
2931   cpu_to_node()->clear();
2932   cpu_to_node()->at_grow(cpu_num - 1);
2933   size_t node_num = numa_get_groups_num();
2934 
2935   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2936   for (size_t i = 0; i < node_num; i++) {
2937     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2938       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2939         if (cpu_map[j] != 0) {
2940           for (size_t k = 0; k < BitsPerCLong; k++) {
2941             if (cpu_map[j] & (1UL << k)) {
2942               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2943             }
2944           }
2945         }
2946       }
2947     }
2948   }
2949   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2950 }
2951 
2952 int os::Linux::get_node_by_cpu(int cpu_id) {
2953   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2954     return cpu_to_node()->at(cpu_id);
2955   }
2956   return -1;
2957 }
2958 
2959 GrowableArray<int>* os::Linux::_cpu_to_node;
2960 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2961 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2962 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2963 os::Linux::numa_available_func_t os::Linux::_numa_available;
2964 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2965 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2966 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2967 unsigned long* os::Linux::_numa_all_nodes;
2968 
2969 bool os::pd_uncommit_memory(char* addr, size_t size) {
2970   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2971                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2972   return res  != (uintptr_t) MAP_FAILED;
2973 }
2974 
2975 static address get_stack_commited_bottom(address bottom, size_t size) {
2976   address nbot = bottom;
2977   address ntop = bottom + size;
2978 
2979   size_t page_sz = os::vm_page_size();
2980   unsigned pages = size / page_sz;
2981 
2982   unsigned char vec[1];
2983   unsigned imin = 1, imax = pages + 1, imid;
2984   int mincore_return_value = 0;
2985 
2986   assert(imin <= imax, "Unexpected page size");
2987 
2988   while (imin < imax) {
2989     imid = (imax + imin) / 2;
2990     nbot = ntop - (imid * page_sz);
2991 
2992     // Use a trick with mincore to check whether the page is mapped or not.
2993     // mincore sets vec to 1 if page resides in memory and to 0 if page
2994     // is swapped output but if page we are asking for is unmapped
2995     // it returns -1,ENOMEM
2996     mincore_return_value = mincore(nbot, page_sz, vec);
2997 
2998     if (mincore_return_value == -1) {
2999       // Page is not mapped go up
3000       // to find first mapped page
3001       if (errno != EAGAIN) {
3002         assert(errno == ENOMEM, "Unexpected mincore errno");
3003         imax = imid;
3004       }
3005     } else {
3006       // Page is mapped go down
3007       // to find first not mapped page
3008       imin = imid + 1;
3009     }
3010   }
3011 
3012   nbot = nbot + page_sz;
3013 
3014   // Adjust stack bottom one page up if last checked page is not mapped
3015   if (mincore_return_value == -1) {
3016     nbot = nbot + page_sz;
3017   }
3018 
3019   return nbot;
3020 }
3021 
3022 
3023 // Linux uses a growable mapping for the stack, and if the mapping for
3024 // the stack guard pages is not removed when we detach a thread the
3025 // stack cannot grow beyond the pages where the stack guard was
3026 // mapped.  If at some point later in the process the stack expands to
3027 // that point, the Linux kernel cannot expand the stack any further
3028 // because the guard pages are in the way, and a segfault occurs.
3029 //
3030 // However, it's essential not to split the stack region by unmapping
3031 // a region (leaving a hole) that's already part of the stack mapping,
3032 // so if the stack mapping has already grown beyond the guard pages at
3033 // the time we create them, we have to truncate the stack mapping.
3034 // So, we need to know the extent of the stack mapping when
3035 // create_stack_guard_pages() is called.
3036 
3037 // We only need this for stacks that are growable: at the time of
3038 // writing thread stacks don't use growable mappings (i.e. those
3039 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3040 // only applies to the main thread.
3041 
3042 // If the (growable) stack mapping already extends beyond the point
3043 // where we're going to put our guard pages, truncate the mapping at
3044 // that point by munmap()ping it.  This ensures that when we later
3045 // munmap() the guard pages we don't leave a hole in the stack
3046 // mapping. This only affects the main/initial thread
3047 
3048 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3049   if (os::Linux::is_initial_thread()) {
3050     // As we manually grow stack up to bottom inside create_attached_thread(),
3051     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3052     // we don't need to do anything special.
3053     // Check it first, before calling heavy function.
3054     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3055     unsigned char vec[1];
3056 
3057     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3058       // Fallback to slow path on all errors, including EAGAIN
3059       stack_extent = (uintptr_t) get_stack_commited_bottom(
3060                                                            os::Linux::initial_thread_stack_bottom(),
3061                                                            (size_t)addr - stack_extent);
3062     }
3063 
3064     if (stack_extent < (uintptr_t)addr) {
3065       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3066     }
3067   }
3068 
3069   return os::commit_memory(addr, size, !ExecMem);
3070 }
3071 
3072 // If this is a growable mapping, remove the guard pages entirely by
3073 // munmap()ping them.  If not, just call uncommit_memory(). This only
3074 // affects the main/initial thread, but guard against future OS changes
3075 // It's safe to always unmap guard pages for initial thread because we
3076 // always place it right after end of the mapped region
3077 
3078 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3079   uintptr_t stack_extent, stack_base;
3080 
3081   if (os::Linux::is_initial_thread()) {
3082     return ::munmap(addr, size) == 0;
3083   }
3084 
3085   return os::uncommit_memory(addr, size);
3086 }
3087 
3088 static address _highest_vm_reserved_address = NULL;
3089 
3090 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3091 // at 'requested_addr'. If there are existing memory mappings at the same
3092 // location, however, they will be overwritten. If 'fixed' is false,
3093 // 'requested_addr' is only treated as a hint, the return value may or
3094 // may not start from the requested address. Unlike Linux mmap(), this
3095 // function returns NULL to indicate failure.
3096 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3097   char * addr;
3098   int flags;
3099 
3100   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3101   if (fixed) {
3102     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3103     flags |= MAP_FIXED;
3104   }
3105 
3106   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3107   // touch an uncommitted page. Otherwise, the read/write might
3108   // succeed if we have enough swap space to back the physical page.
3109   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3110                        flags, -1, 0);
3111 
3112   if (addr != MAP_FAILED) {
3113     // anon_mmap() should only get called during VM initialization,
3114     // don't need lock (actually we can skip locking even it can be called
3115     // from multiple threads, because _highest_vm_reserved_address is just a
3116     // hint about the upper limit of non-stack memory regions.)
3117     if ((address)addr + bytes > _highest_vm_reserved_address) {
3118       _highest_vm_reserved_address = (address)addr + bytes;
3119     }
3120   }
3121 
3122   return addr == MAP_FAILED ? NULL : addr;
3123 }
3124 
3125 // Don't update _highest_vm_reserved_address, because there might be memory
3126 // regions above addr + size. If so, releasing a memory region only creates
3127 // a hole in the address space, it doesn't help prevent heap-stack collision.
3128 //
3129 static int anon_munmap(char * addr, size_t size) {
3130   return ::munmap(addr, size) == 0;
3131 }
3132 
3133 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3134                             size_t alignment_hint) {
3135   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3136 }
3137 
3138 bool os::pd_release_memory(char* addr, size_t size) {
3139   return anon_munmap(addr, size);
3140 }
3141 
3142 static address highest_vm_reserved_address() {
3143   return _highest_vm_reserved_address;
3144 }
3145 
3146 static bool linux_mprotect(char* addr, size_t size, int prot) {
3147   // Linux wants the mprotect address argument to be page aligned.
3148   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3149 
3150   // According to SUSv3, mprotect() should only be used with mappings
3151   // established by mmap(), and mmap() always maps whole pages. Unaligned
3152   // 'addr' likely indicates problem in the VM (e.g. trying to change
3153   // protection of malloc'ed or statically allocated memory). Check the
3154   // caller if you hit this assert.
3155   assert(addr == bottom, "sanity check");
3156 
3157   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3158   return ::mprotect(bottom, size, prot) == 0;
3159 }
3160 
3161 // Set protections specified
3162 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3163                         bool is_committed) {
3164   unsigned int p = 0;
3165   switch (prot) {
3166   case MEM_PROT_NONE: p = PROT_NONE; break;
3167   case MEM_PROT_READ: p = PROT_READ; break;
3168   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3169   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3170   default:
3171     ShouldNotReachHere();
3172   }
3173   // is_committed is unused.
3174   return linux_mprotect(addr, bytes, p);
3175 }
3176 
3177 bool os::guard_memory(char* addr, size_t size) {
3178   return linux_mprotect(addr, size, PROT_NONE);
3179 }
3180 
3181 bool os::unguard_memory(char* addr, size_t size) {
3182   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3183 }
3184 
3185 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3186                                                     size_t page_size) {
3187   bool result = false;
3188   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3189                  MAP_ANONYMOUS|MAP_PRIVATE,
3190                  -1, 0);
3191   if (p != MAP_FAILED) {
3192     void *aligned_p = align_ptr_up(p, page_size);
3193 
3194     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3195 
3196     munmap(p, page_size * 2);
3197   }
3198 
3199   if (warn && !result) {
3200     warning("TransparentHugePages is not supported by the operating system.");
3201   }
3202 
3203   return result;
3204 }
3205 
3206 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3207   bool result = false;
3208   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3209                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3210                  -1, 0);
3211 
3212   if (p != MAP_FAILED) {
3213     // We don't know if this really is a huge page or not.
3214     FILE *fp = fopen("/proc/self/maps", "r");
3215     if (fp) {
3216       while (!feof(fp)) {
3217         char chars[257];
3218         long x = 0;
3219         if (fgets(chars, sizeof(chars), fp)) {
3220           if (sscanf(chars, "%lx-%*x", &x) == 1
3221               && x == (long)p) {
3222             if (strstr (chars, "hugepage")) {
3223               result = true;
3224               break;
3225             }
3226           }
3227         }
3228       }
3229       fclose(fp);
3230     }
3231     munmap(p, page_size);
3232   }
3233 
3234   if (warn && !result) {
3235     warning("HugeTLBFS is not supported by the operating system.");
3236   }
3237 
3238   return result;
3239 }
3240 
3241 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3242 //
3243 // From the coredump_filter documentation:
3244 //
3245 // - (bit 0) anonymous private memory
3246 // - (bit 1) anonymous shared memory
3247 // - (bit 2) file-backed private memory
3248 // - (bit 3) file-backed shared memory
3249 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3250 //           effective only if the bit 2 is cleared)
3251 // - (bit 5) hugetlb private memory
3252 // - (bit 6) hugetlb shared memory
3253 //
3254 static void set_coredump_filter(void) {
3255   FILE *f;
3256   long cdm;
3257 
3258   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3259     return;
3260   }
3261 
3262   if (fscanf(f, "%lx", &cdm) != 1) {
3263     fclose(f);
3264     return;
3265   }
3266 
3267   rewind(f);
3268 
3269   if ((cdm & LARGEPAGES_BIT) == 0) {
3270     cdm |= LARGEPAGES_BIT;
3271     fprintf(f, "%#lx", cdm);
3272   }
3273 
3274   fclose(f);
3275 }
3276 
3277 // Large page support
3278 
3279 static size_t _large_page_size = 0;
3280 
3281 size_t os::Linux::find_large_page_size() {
3282   size_t large_page_size = 0;
3283 
3284   // large_page_size on Linux is used to round up heap size. x86 uses either
3285   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3286   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3287   // page as large as 256M.
3288   //
3289   // Here we try to figure out page size by parsing /proc/meminfo and looking
3290   // for a line with the following format:
3291   //    Hugepagesize:     2048 kB
3292   //
3293   // If we can't determine the value (e.g. /proc is not mounted, or the text
3294   // format has been changed), we'll use the largest page size supported by
3295   // the processor.
3296 
3297 #ifndef ZERO
3298   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3299                      ARM_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3300 #endif // ZERO
3301 
3302   FILE *fp = fopen("/proc/meminfo", "r");
3303   if (fp) {
3304     while (!feof(fp)) {
3305       int x = 0;
3306       char buf[16];
3307       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3308         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3309           large_page_size = x * K;
3310           break;
3311         }
3312       } else {
3313         // skip to next line
3314         for (;;) {
3315           int ch = fgetc(fp);
3316           if (ch == EOF || ch == (int)'\n') break;
3317         }
3318       }
3319     }
3320     fclose(fp);
3321   }
3322 
3323   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3324     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3325             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3326             proper_unit_for_byte_size(large_page_size));
3327   }
3328 
3329   return large_page_size;
3330 }
3331 
3332 size_t os::Linux::setup_large_page_size() {
3333   _large_page_size = Linux::find_large_page_size();
3334   const size_t default_page_size = (size_t)Linux::page_size();
3335   if (_large_page_size > default_page_size) {
3336     _page_sizes[0] = _large_page_size;
3337     _page_sizes[1] = default_page_size;
3338     _page_sizes[2] = 0;
3339   }
3340 
3341   return _large_page_size;
3342 }
3343 
3344 bool os::Linux::setup_large_page_type(size_t page_size) {
3345   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3346       FLAG_IS_DEFAULT(UseSHM) &&
3347       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3348 
3349     // The type of large pages has not been specified by the user.
3350 
3351     // Try UseHugeTLBFS and then UseSHM.
3352     UseHugeTLBFS = UseSHM = true;
3353 
3354     // Don't try UseTransparentHugePages since there are known
3355     // performance issues with it turned on. This might change in the future.
3356     UseTransparentHugePages = false;
3357   }
3358 
3359   if (UseTransparentHugePages) {
3360     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3361     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3362       UseHugeTLBFS = false;
3363       UseSHM = false;
3364       return true;
3365     }
3366     UseTransparentHugePages = false;
3367   }
3368 
3369   if (UseHugeTLBFS) {
3370     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3371     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3372       UseSHM = false;
3373       return true;
3374     }
3375     UseHugeTLBFS = false;
3376   }
3377 
3378   return UseSHM;
3379 }
3380 
3381 void os::large_page_init() {
3382   if (!UseLargePages &&
3383       !UseTransparentHugePages &&
3384       !UseHugeTLBFS &&
3385       !UseSHM) {
3386     // Not using large pages.
3387     return;
3388   }
3389 
3390   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3391     // The user explicitly turned off large pages.
3392     // Ignore the rest of the large pages flags.
3393     UseTransparentHugePages = false;
3394     UseHugeTLBFS = false;
3395     UseSHM = false;
3396     return;
3397   }
3398 
3399   size_t large_page_size = Linux::setup_large_page_size();
3400   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3401 
3402   set_coredump_filter();
3403 }
3404 
3405 #ifndef SHM_HUGETLB
3406   #define SHM_HUGETLB 04000
3407 #endif
3408 
3409 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3410                                             char* req_addr, bool exec) {
3411   // "exec" is passed in but not used.  Creating the shared image for
3412   // the code cache doesn't have an SHM_X executable permission to check.
3413   assert(UseLargePages && UseSHM, "only for SHM large pages");
3414   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3415 
3416   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3417     return NULL; // Fallback to small pages.
3418   }
3419 
3420   key_t key = IPC_PRIVATE;
3421   char *addr;
3422 
3423   bool warn_on_failure = UseLargePages &&
3424                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3425                          !FLAG_IS_DEFAULT(UseSHM) ||
3426                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3427   char msg[128];
3428 
3429   // Create a large shared memory region to attach to based on size.
3430   // Currently, size is the total size of the heap
3431   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3432   if (shmid == -1) {
3433     // Possible reasons for shmget failure:
3434     // 1. shmmax is too small for Java heap.
3435     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3436     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3437     // 2. not enough large page memory.
3438     //    > check available large pages: cat /proc/meminfo
3439     //    > increase amount of large pages:
3440     //          echo new_value > /proc/sys/vm/nr_hugepages
3441     //      Note 1: different Linux may use different name for this property,
3442     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3443     //      Note 2: it's possible there's enough physical memory available but
3444     //            they are so fragmented after a long run that they can't
3445     //            coalesce into large pages. Try to reserve large pages when
3446     //            the system is still "fresh".
3447     if (warn_on_failure) {
3448       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3449       warning("%s", msg);
3450     }
3451     return NULL;
3452   }
3453 
3454   // attach to the region
3455   addr = (char*)shmat(shmid, req_addr, 0);
3456   int err = errno;
3457 
3458   // Remove shmid. If shmat() is successful, the actual shared memory segment
3459   // will be deleted when it's detached by shmdt() or when the process
3460   // terminates. If shmat() is not successful this will remove the shared
3461   // segment immediately.
3462   shmctl(shmid, IPC_RMID, NULL);
3463 
3464   if ((intptr_t)addr == -1) {
3465     if (warn_on_failure) {
3466       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3467       warning("%s", msg);
3468     }
3469     return NULL;
3470   }
3471 
3472   return addr;
3473 }
3474 
3475 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3476                                         int error) {
3477   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3478 
3479   bool warn_on_failure = UseLargePages &&
3480       (!FLAG_IS_DEFAULT(UseLargePages) ||
3481        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3482        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3483 
3484   if (warn_on_failure) {
3485     char msg[128];
3486     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3487                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3488     warning("%s", msg);
3489   }
3490 }
3491 
3492 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3493                                                         char* req_addr,
3494                                                         bool exec) {
3495   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3496   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3497   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3498 
3499   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3500   char* addr = (char*)::mmap(req_addr, bytes, prot,
3501                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3502                              -1, 0);
3503 
3504   if (addr == MAP_FAILED) {
3505     warn_on_large_pages_failure(req_addr, bytes, errno);
3506     return NULL;
3507   }
3508 
3509   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3510 
3511   return addr;
3512 }
3513 
3514 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3515                                                          size_t alignment,
3516                                                          char* req_addr,
3517                                                          bool exec) {
3518   size_t large_page_size = os::large_page_size();
3519 
3520   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3521 
3522   // Allocate small pages.
3523 
3524   char* start;
3525   if (req_addr != NULL) {
3526     assert(is_ptr_aligned(req_addr, alignment), "Must be");
3527     assert(is_size_aligned(bytes, alignment), "Must be");
3528     start = os::reserve_memory(bytes, req_addr);
3529     assert(start == NULL || start == req_addr, "Must be");
3530   } else {
3531     start = os::reserve_memory_aligned(bytes, alignment);
3532   }
3533 
3534   if (start == NULL) {
3535     return NULL;
3536   }
3537 
3538   assert(is_ptr_aligned(start, alignment), "Must be");
3539 
3540   if (MemTracker::tracking_level() > NMT_minimal) {
3541     // os::reserve_memory_special will record this memory area.
3542     // Need to release it here to prevent overlapping reservations.
3543     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3544     tkr.record((address)start, bytes);
3545   }
3546 
3547   char* end = start + bytes;
3548 
3549   // Find the regions of the allocated chunk that can be promoted to large pages.
3550   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3551   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3552 
3553   size_t lp_bytes = lp_end - lp_start;
3554 
3555   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3556 
3557   if (lp_bytes == 0) {
3558     // The mapped region doesn't even span the start and the end of a large page.
3559     // Fall back to allocate a non-special area.
3560     ::munmap(start, end - start);
3561     return NULL;
3562   }
3563 
3564   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3565 
3566 
3567   void* result;
3568 
3569   if (start != lp_start) {
3570     result = ::mmap(start, lp_start - start, prot,
3571                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3572                     -1, 0);
3573     if (result == MAP_FAILED) {
3574       ::munmap(lp_start, end - lp_start);
3575       return NULL;
3576     }
3577   }
3578 
3579   result = ::mmap(lp_start, lp_bytes, prot,
3580                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3581                   -1, 0);
3582   if (result == MAP_FAILED) {
3583     warn_on_large_pages_failure(req_addr, bytes, errno);
3584     // If the mmap above fails, the large pages region will be unmapped and we
3585     // have regions before and after with small pages. Release these regions.
3586     //
3587     // |  mapped  |  unmapped  |  mapped  |
3588     // ^          ^            ^          ^
3589     // start      lp_start     lp_end     end
3590     //
3591     ::munmap(start, lp_start - start);
3592     ::munmap(lp_end, end - lp_end);
3593     return NULL;
3594   }
3595 
3596   if (lp_end != end) {
3597     result = ::mmap(lp_end, end - lp_end, prot,
3598                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3599                     -1, 0);
3600     if (result == MAP_FAILED) {
3601       ::munmap(start, lp_end - start);
3602       return NULL;
3603     }
3604   }
3605 
3606   return start;
3607 }
3608 
3609 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3610                                                    size_t alignment,
3611                                                    char* req_addr,
3612                                                    bool exec) {
3613   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3614   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3615   assert(is_power_of_2(alignment), "Must be");
3616   assert(is_power_of_2(os::large_page_size()), "Must be");
3617   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3618 
3619   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3620     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3621   } else {
3622     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3623   }
3624 }
3625 
3626 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3627                                  char* req_addr, bool exec) {
3628   assert(UseLargePages, "only for large pages");
3629 
3630   char* addr;
3631   if (UseSHM) {
3632     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3633   } else {
3634     assert(UseHugeTLBFS, "must be");
3635     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3636   }
3637 
3638   if (addr != NULL) {
3639     if (UseNUMAInterleaving) {
3640       numa_make_global(addr, bytes);
3641     }
3642 
3643     // The memory is committed
3644     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3645   }
3646 
3647   return addr;
3648 }
3649 
3650 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3651   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3652   return shmdt(base) == 0;
3653 }
3654 
3655 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3656   return pd_release_memory(base, bytes);
3657 }
3658 
3659 bool os::release_memory_special(char* base, size_t bytes) {
3660   bool res;
3661   if (MemTracker::tracking_level() > NMT_minimal) {
3662     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3663     res = os::Linux::release_memory_special_impl(base, bytes);
3664     if (res) {
3665       tkr.record((address)base, bytes);
3666     }
3667 
3668   } else {
3669     res = os::Linux::release_memory_special_impl(base, bytes);
3670   }
3671   return res;
3672 }
3673 
3674 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3675   assert(UseLargePages, "only for large pages");
3676   bool res;
3677 
3678   if (UseSHM) {
3679     res = os::Linux::release_memory_special_shm(base, bytes);
3680   } else {
3681     assert(UseHugeTLBFS, "must be");
3682     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3683   }
3684   return res;
3685 }
3686 
3687 size_t os::large_page_size() {
3688   return _large_page_size;
3689 }
3690 
3691 // With SysV SHM the entire memory region must be allocated as shared
3692 // memory.
3693 // HugeTLBFS allows application to commit large page memory on demand.
3694 // However, when committing memory with HugeTLBFS fails, the region
3695 // that was supposed to be committed will lose the old reservation
3696 // and allow other threads to steal that memory region. Because of this
3697 // behavior we can't commit HugeTLBFS memory.
3698 bool os::can_commit_large_page_memory() {
3699   return UseTransparentHugePages;
3700 }
3701 
3702 bool os::can_execute_large_page_memory() {
3703   return UseTransparentHugePages || UseHugeTLBFS;
3704 }
3705 
3706 // Reserve memory at an arbitrary address, only if that area is
3707 // available (and not reserved for something else).
3708 
3709 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3710   const int max_tries = 10;
3711   char* base[max_tries];
3712   size_t size[max_tries];
3713   const size_t gap = 0x000000;
3714 
3715   // Assert only that the size is a multiple of the page size, since
3716   // that's all that mmap requires, and since that's all we really know
3717   // about at this low abstraction level.  If we need higher alignment,
3718   // we can either pass an alignment to this method or verify alignment
3719   // in one of the methods further up the call chain.  See bug 5044738.
3720   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3721 
3722   // Repeatedly allocate blocks until the block is allocated at the
3723   // right spot. Give up after max_tries. Note that reserve_memory() will
3724   // automatically update _highest_vm_reserved_address if the call is
3725   // successful. The variable tracks the highest memory address every reserved
3726   // by JVM. It is used to detect heap-stack collision if running with
3727   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3728   // space than needed, it could confuse the collision detecting code. To
3729   // solve the problem, save current _highest_vm_reserved_address and
3730   // calculate the correct value before return.
3731   address old_highest = _highest_vm_reserved_address;
3732 
3733   // Linux mmap allows caller to pass an address as hint; give it a try first,
3734   // if kernel honors the hint then we can return immediately.
3735   char * addr = anon_mmap(requested_addr, bytes, false);
3736   if (addr == requested_addr) {
3737     return requested_addr;
3738   }
3739 
3740   if (addr != NULL) {
3741     // mmap() is successful but it fails to reserve at the requested address
3742     anon_munmap(addr, bytes);
3743   }
3744 
3745   int i;
3746   for (i = 0; i < max_tries; ++i) {
3747     base[i] = reserve_memory(bytes);
3748 
3749     if (base[i] != NULL) {
3750       // Is this the block we wanted?
3751       if (base[i] == requested_addr) {
3752         size[i] = bytes;
3753         break;
3754       }
3755 
3756       // Does this overlap the block we wanted? Give back the overlapped
3757       // parts and try again.
3758 
3759       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3760       if (top_overlap >= 0 && top_overlap < bytes) {
3761         unmap_memory(base[i], top_overlap);
3762         base[i] += top_overlap;
3763         size[i] = bytes - top_overlap;
3764       } else {
3765         size_t bottom_overlap = base[i] + bytes - requested_addr;
3766         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3767           unmap_memory(requested_addr, bottom_overlap);
3768           size[i] = bytes - bottom_overlap;
3769         } else {
3770           size[i] = bytes;
3771         }
3772       }
3773     }
3774   }
3775 
3776   // Give back the unused reserved pieces.
3777 
3778   for (int j = 0; j < i; ++j) {
3779     if (base[j] != NULL) {
3780       unmap_memory(base[j], size[j]);
3781     }
3782   }
3783 
3784   if (i < max_tries) {
3785     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3786     return requested_addr;
3787   } else {
3788     _highest_vm_reserved_address = old_highest;
3789     return NULL;
3790   }
3791 }
3792 
3793 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3794   return ::read(fd, buf, nBytes);
3795 }
3796 
3797 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3798   return ::pread(fd, buf, nBytes, offset);
3799 }
3800 
3801 // Short sleep, direct OS call.
3802 //
3803 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3804 // sched_yield(2) will actually give up the CPU:
3805 //
3806 //   * Alone on this pariticular CPU, keeps running.
3807 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3808 //     (pre 2.6.39).
3809 //
3810 // So calling this with 0 is an alternative.
3811 //
3812 void os::naked_short_sleep(jlong ms) {
3813   struct timespec req;
3814 
3815   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3816   req.tv_sec = 0;
3817   if (ms > 0) {
3818     req.tv_nsec = (ms % 1000) * 1000000;
3819   } else {
3820     req.tv_nsec = 1;
3821   }
3822 
3823   nanosleep(&req, NULL);
3824 
3825   return;
3826 }
3827 
3828 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3829 void os::infinite_sleep() {
3830   while (true) {    // sleep forever ...
3831     ::sleep(100);   // ... 100 seconds at a time
3832   }
3833 }
3834 
3835 // Used to convert frequent JVM_Yield() to nops
3836 bool os::dont_yield() {
3837   return DontYieldALot;
3838 }
3839 
3840 void os::naked_yield() {
3841   sched_yield();
3842 }
3843 
3844 ////////////////////////////////////////////////////////////////////////////////
3845 // thread priority support
3846 
3847 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3848 // only supports dynamic priority, static priority must be zero. For real-time
3849 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3850 // However, for large multi-threaded applications, SCHED_RR is not only slower
3851 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3852 // of 5 runs - Sep 2005).
3853 //
3854 // The following code actually changes the niceness of kernel-thread/LWP. It
3855 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3856 // not the entire user process, and user level threads are 1:1 mapped to kernel
3857 // threads. It has always been the case, but could change in the future. For
3858 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3859 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3860 
3861 int os::java_to_os_priority[CriticalPriority + 1] = {
3862   19,              // 0 Entry should never be used
3863 
3864    4,              // 1 MinPriority
3865    3,              // 2
3866    2,              // 3
3867 
3868    1,              // 4
3869    0,              // 5 NormPriority
3870   -1,              // 6
3871 
3872   -2,              // 7
3873   -3,              // 8
3874   -4,              // 9 NearMaxPriority
3875 
3876   -5,              // 10 MaxPriority
3877 
3878   -5               // 11 CriticalPriority
3879 };
3880 
3881 static int prio_init() {
3882   if (ThreadPriorityPolicy == 1) {
3883     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3884     // if effective uid is not root. Perhaps, a more elegant way of doing
3885     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3886     if (geteuid() != 0) {
3887       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3888         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3889       }
3890       ThreadPriorityPolicy = 0;
3891     }
3892   }
3893   if (UseCriticalJavaThreadPriority) {
3894     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3895   }
3896   return 0;
3897 }
3898 
3899 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3900   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3901 
3902   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3903   return (ret == 0) ? OS_OK : OS_ERR;
3904 }
3905 
3906 OSReturn os::get_native_priority(const Thread* const thread,
3907                                  int *priority_ptr) {
3908   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3909     *priority_ptr = java_to_os_priority[NormPriority];
3910     return OS_OK;
3911   }
3912 
3913   errno = 0;
3914   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3915   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3916 }
3917 
3918 // Hint to the underlying OS that a task switch would not be good.
3919 // Void return because it's a hint and can fail.
3920 void os::hint_no_preempt() {}
3921 
3922 ////////////////////////////////////////////////////////////////////////////////
3923 // suspend/resume support
3924 
3925 //  the low-level signal-based suspend/resume support is a remnant from the
3926 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3927 //  within hotspot. Now there is a single use-case for this:
3928 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3929 //      that runs in the watcher thread.
3930 //  The remaining code is greatly simplified from the more general suspension
3931 //  code that used to be used.
3932 //
3933 //  The protocol is quite simple:
3934 //  - suspend:
3935 //      - sends a signal to the target thread
3936 //      - polls the suspend state of the osthread using a yield loop
3937 //      - target thread signal handler (SR_handler) sets suspend state
3938 //        and blocks in sigsuspend until continued
3939 //  - resume:
3940 //      - sets target osthread state to continue
3941 //      - sends signal to end the sigsuspend loop in the SR_handler
3942 //
3943 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3944 
3945 static void resume_clear_context(OSThread *osthread) {
3946   osthread->set_ucontext(NULL);
3947   osthread->set_siginfo(NULL);
3948 }
3949 
3950 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3951                                  ucontext_t* context) {
3952   osthread->set_ucontext(context);
3953   osthread->set_siginfo(siginfo);
3954 }
3955 
3956 // Handler function invoked when a thread's execution is suspended or
3957 // resumed. We have to be careful that only async-safe functions are
3958 // called here (Note: most pthread functions are not async safe and
3959 // should be avoided.)
3960 //
3961 // Note: sigwait() is a more natural fit than sigsuspend() from an
3962 // interface point of view, but sigwait() prevents the signal hander
3963 // from being run. libpthread would get very confused by not having
3964 // its signal handlers run and prevents sigwait()'s use with the
3965 // mutex granting granting signal.
3966 //
3967 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3968 //
3969 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3970   // Save and restore errno to avoid confusing native code with EINTR
3971   // after sigsuspend.
3972   int old_errno = errno;
3973 
3974   Thread* thread = Thread::current();
3975   OSThread* osthread = thread->osthread();
3976   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3977 
3978   os::SuspendResume::State current = osthread->sr.state();
3979   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3980     suspend_save_context(osthread, siginfo, context);
3981 
3982     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3983     os::SuspendResume::State state = osthread->sr.suspended();
3984     if (state == os::SuspendResume::SR_SUSPENDED) {
3985       sigset_t suspend_set;  // signals for sigsuspend()
3986 
3987       // get current set of blocked signals and unblock resume signal
3988       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3989       sigdelset(&suspend_set, SR_signum);
3990 
3991       sr_semaphore.signal();
3992       // wait here until we are resumed
3993       while (1) {
3994         sigsuspend(&suspend_set);
3995 
3996         os::SuspendResume::State result = osthread->sr.running();
3997         if (result == os::SuspendResume::SR_RUNNING) {
3998           sr_semaphore.signal();
3999           break;
4000         }
4001       }
4002 
4003     } else if (state == os::SuspendResume::SR_RUNNING) {
4004       // request was cancelled, continue
4005     } else {
4006       ShouldNotReachHere();
4007     }
4008 
4009     resume_clear_context(osthread);
4010   } else if (current == os::SuspendResume::SR_RUNNING) {
4011     // request was cancelled, continue
4012   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4013     // ignore
4014   } else {
4015     // ignore
4016   }
4017 
4018   errno = old_errno;
4019 }
4020 
4021 
4022 static int SR_initialize() {
4023   struct sigaction act;
4024   char *s;
4025   // Get signal number to use for suspend/resume
4026   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4027     int sig = ::strtol(s, 0, 10);
4028     if (sig > 0 || sig < _NSIG) {
4029       SR_signum = sig;
4030     }
4031   }
4032 
4033   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4034          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4035 
4036   sigemptyset(&SR_sigset);
4037   sigaddset(&SR_sigset, SR_signum);
4038 
4039   // Set up signal handler for suspend/resume
4040   act.sa_flags = SA_RESTART|SA_SIGINFO;
4041   act.sa_handler = (void (*)(int)) SR_handler;
4042 
4043   // SR_signum is blocked by default.
4044   // 4528190 - We also need to block pthread restart signal (32 on all
4045   // supported Linux platforms). Note that LinuxThreads need to block
4046   // this signal for all threads to work properly. So we don't have
4047   // to use hard-coded signal number when setting up the mask.
4048   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4049 
4050   if (sigaction(SR_signum, &act, 0) == -1) {
4051     return -1;
4052   }
4053 
4054   // Save signal flag
4055   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4056   return 0;
4057 }
4058 
4059 static int sr_notify(OSThread* osthread) {
4060   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4061   assert_status(status == 0, status, "pthread_kill");
4062   return status;
4063 }
4064 
4065 // "Randomly" selected value for how long we want to spin
4066 // before bailing out on suspending a thread, also how often
4067 // we send a signal to a thread we want to resume
4068 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4069 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4070 
4071 // returns true on success and false on error - really an error is fatal
4072 // but this seems the normal response to library errors
4073 static bool do_suspend(OSThread* osthread) {
4074   assert(osthread->sr.is_running(), "thread should be running");
4075   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4076 
4077   // mark as suspended and send signal
4078   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4079     // failed to switch, state wasn't running?
4080     ShouldNotReachHere();
4081     return false;
4082   }
4083 
4084   if (sr_notify(osthread) != 0) {
4085     ShouldNotReachHere();
4086   }
4087 
4088   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4089   while (true) {
4090     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4091       break;
4092     } else {
4093       // timeout
4094       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4095       if (cancelled == os::SuspendResume::SR_RUNNING) {
4096         return false;
4097       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4098         // make sure that we consume the signal on the semaphore as well
4099         sr_semaphore.wait();
4100         break;
4101       } else {
4102         ShouldNotReachHere();
4103         return false;
4104       }
4105     }
4106   }
4107 
4108   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4109   return true;
4110 }
4111 
4112 static void do_resume(OSThread* osthread) {
4113   assert(osthread->sr.is_suspended(), "thread should be suspended");
4114   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4115 
4116   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4117     // failed to switch to WAKEUP_REQUEST
4118     ShouldNotReachHere();
4119     return;
4120   }
4121 
4122   while (true) {
4123     if (sr_notify(osthread) == 0) {
4124       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4125         if (osthread->sr.is_running()) {
4126           return;
4127         }
4128       }
4129     } else {
4130       ShouldNotReachHere();
4131     }
4132   }
4133 
4134   guarantee(osthread->sr.is_running(), "Must be running!");
4135 }
4136 
4137 ///////////////////////////////////////////////////////////////////////////////////
4138 // signal handling (except suspend/resume)
4139 
4140 // This routine may be used by user applications as a "hook" to catch signals.
4141 // The user-defined signal handler must pass unrecognized signals to this
4142 // routine, and if it returns true (non-zero), then the signal handler must
4143 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4144 // routine will never retun false (zero), but instead will execute a VM panic
4145 // routine kill the process.
4146 //
4147 // If this routine returns false, it is OK to call it again.  This allows
4148 // the user-defined signal handler to perform checks either before or after
4149 // the VM performs its own checks.  Naturally, the user code would be making
4150 // a serious error if it tried to handle an exception (such as a null check
4151 // or breakpoint) that the VM was generating for its own correct operation.
4152 //
4153 // This routine may recognize any of the following kinds of signals:
4154 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4155 // It should be consulted by handlers for any of those signals.
4156 //
4157 // The caller of this routine must pass in the three arguments supplied
4158 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4159 // field of the structure passed to sigaction().  This routine assumes that
4160 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4161 //
4162 // Note that the VM will print warnings if it detects conflicting signal
4163 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4164 //
4165 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4166                                                  siginfo_t* siginfo,
4167                                                  void* ucontext,
4168                                                  int abort_if_unrecognized);
4169 
4170 void signalHandler(int sig, siginfo_t* info, void* uc) {
4171   assert(info != NULL && uc != NULL, "it must be old kernel");
4172   int orig_errno = errno;  // Preserve errno value over signal handler.
4173   JVM_handle_linux_signal(sig, info, uc, true);
4174   errno = orig_errno;
4175 }
4176 
4177 
4178 // This boolean allows users to forward their own non-matching signals
4179 // to JVM_handle_linux_signal, harmlessly.
4180 bool os::Linux::signal_handlers_are_installed = false;
4181 
4182 // For signal-chaining
4183 struct sigaction os::Linux::sigact[MAXSIGNUM];
4184 unsigned int os::Linux::sigs = 0;
4185 bool os::Linux::libjsig_is_loaded = false;
4186 typedef struct sigaction *(*get_signal_t)(int);
4187 get_signal_t os::Linux::get_signal_action = NULL;
4188 
4189 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4190   struct sigaction *actp = NULL;
4191 
4192   if (libjsig_is_loaded) {
4193     // Retrieve the old signal handler from libjsig
4194     actp = (*get_signal_action)(sig);
4195   }
4196   if (actp == NULL) {
4197     // Retrieve the preinstalled signal handler from jvm
4198     actp = get_preinstalled_handler(sig);
4199   }
4200 
4201   return actp;
4202 }
4203 
4204 static bool call_chained_handler(struct sigaction *actp, int sig,
4205                                  siginfo_t *siginfo, void *context) {
4206   // Call the old signal handler
4207   if (actp->sa_handler == SIG_DFL) {
4208     // It's more reasonable to let jvm treat it as an unexpected exception
4209     // instead of taking the default action.
4210     return false;
4211   } else if (actp->sa_handler != SIG_IGN) {
4212     if ((actp->sa_flags & SA_NODEFER) == 0) {
4213       // automaticlly block the signal
4214       sigaddset(&(actp->sa_mask), sig);
4215     }
4216 
4217     sa_handler_t hand;
4218     sa_sigaction_t sa;
4219     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4220     // retrieve the chained handler
4221     if (siginfo_flag_set) {
4222       sa = actp->sa_sigaction;
4223     } else {
4224       hand = actp->sa_handler;
4225     }
4226 
4227     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4228       actp->sa_handler = SIG_DFL;
4229     }
4230 
4231     // try to honor the signal mask
4232     sigset_t oset;
4233     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4234 
4235     // call into the chained handler
4236     if (siginfo_flag_set) {
4237       (*sa)(sig, siginfo, context);
4238     } else {
4239       (*hand)(sig);
4240     }
4241 
4242     // restore the signal mask
4243     pthread_sigmask(SIG_SETMASK, &oset, 0);
4244   }
4245   // Tell jvm's signal handler the signal is taken care of.
4246   return true;
4247 }
4248 
4249 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4250   bool chained = false;
4251   // signal-chaining
4252   if (UseSignalChaining) {
4253     struct sigaction *actp = get_chained_signal_action(sig);
4254     if (actp != NULL) {
4255       chained = call_chained_handler(actp, sig, siginfo, context);
4256     }
4257   }
4258   return chained;
4259 }
4260 
4261 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4262   if ((((unsigned int)1 << sig) & sigs) != 0) {
4263     return &sigact[sig];
4264   }
4265   return NULL;
4266 }
4267 
4268 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4269   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4270   sigact[sig] = oldAct;
4271   sigs |= (unsigned int)1 << sig;
4272 }
4273 
4274 // for diagnostic
4275 int os::Linux::sigflags[MAXSIGNUM];
4276 
4277 int os::Linux::get_our_sigflags(int sig) {
4278   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4279   return sigflags[sig];
4280 }
4281 
4282 void os::Linux::set_our_sigflags(int sig, int flags) {
4283   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4284   sigflags[sig] = flags;
4285 }
4286 
4287 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4288   // Check for overwrite.
4289   struct sigaction oldAct;
4290   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4291 
4292   void* oldhand = oldAct.sa_sigaction
4293                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4294                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4295   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4296       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4297       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4298     if (AllowUserSignalHandlers || !set_installed) {
4299       // Do not overwrite; user takes responsibility to forward to us.
4300       return;
4301     } else if (UseSignalChaining) {
4302       // save the old handler in jvm
4303       save_preinstalled_handler(sig, oldAct);
4304       // libjsig also interposes the sigaction() call below and saves the
4305       // old sigaction on it own.
4306     } else {
4307       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4308                     "%#lx for signal %d.", (long)oldhand, sig));
4309     }
4310   }
4311 
4312   struct sigaction sigAct;
4313   sigfillset(&(sigAct.sa_mask));
4314   sigAct.sa_handler = SIG_DFL;
4315   if (!set_installed) {
4316     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4317   } else {
4318     sigAct.sa_sigaction = signalHandler;
4319     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4320   }
4321   // Save flags, which are set by ours
4322   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4323   sigflags[sig] = sigAct.sa_flags;
4324 
4325   int ret = sigaction(sig, &sigAct, &oldAct);
4326   assert(ret == 0, "check");
4327 
4328   void* oldhand2  = oldAct.sa_sigaction
4329                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4330                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4331   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4332 }
4333 
4334 // install signal handlers for signals that HotSpot needs to
4335 // handle in order to support Java-level exception handling.
4336 
4337 void os::Linux::install_signal_handlers() {
4338   if (!signal_handlers_are_installed) {
4339     signal_handlers_are_installed = true;
4340 
4341     // signal-chaining
4342     typedef void (*signal_setting_t)();
4343     signal_setting_t begin_signal_setting = NULL;
4344     signal_setting_t end_signal_setting = NULL;
4345     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4346                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4347     if (begin_signal_setting != NULL) {
4348       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4349                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4350       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4351                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4352       libjsig_is_loaded = true;
4353       assert(UseSignalChaining, "should enable signal-chaining");
4354     }
4355     if (libjsig_is_loaded) {
4356       // Tell libjsig jvm is setting signal handlers
4357       (*begin_signal_setting)();
4358     }
4359 
4360     set_signal_handler(SIGSEGV, true);
4361     set_signal_handler(SIGPIPE, true);
4362     set_signal_handler(SIGBUS, true);
4363     set_signal_handler(SIGILL, true);
4364     set_signal_handler(SIGFPE, true);
4365 #if defined(PPC64)
4366     set_signal_handler(SIGTRAP, true);
4367 #endif
4368     set_signal_handler(SIGXFSZ, true);
4369 
4370     if (libjsig_is_loaded) {
4371       // Tell libjsig jvm finishes setting signal handlers
4372       (*end_signal_setting)();
4373     }
4374 
4375     // We don't activate signal checker if libjsig is in place, we trust ourselves
4376     // and if UserSignalHandler is installed all bets are off.
4377     // Log that signal checking is off only if -verbose:jni is specified.
4378     if (CheckJNICalls) {
4379       if (libjsig_is_loaded) {
4380         if (PrintJNIResolving) {
4381           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4382         }
4383         check_signals = false;
4384       }
4385       if (AllowUserSignalHandlers) {
4386         if (PrintJNIResolving) {
4387           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4388         }
4389         check_signals = false;
4390       }
4391     }
4392   }
4393 }
4394 
4395 // This is the fastest way to get thread cpu time on Linux.
4396 // Returns cpu time (user+sys) for any thread, not only for current.
4397 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4398 // It might work on 2.6.10+ with a special kernel/glibc patch.
4399 // For reference, please, see IEEE Std 1003.1-2004:
4400 //   http://www.unix.org/single_unix_specification
4401 
4402 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4403   struct timespec tp;
4404   int rc = os::Linux::clock_gettime(clockid, &tp);
4405   assert(rc == 0, "clock_gettime is expected to return 0 code");
4406 
4407   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4408 }
4409 
4410 /////
4411 // glibc on Linux platform uses non-documented flag
4412 // to indicate, that some special sort of signal
4413 // trampoline is used.
4414 // We will never set this flag, and we should
4415 // ignore this flag in our diagnostic
4416 #ifdef SIGNIFICANT_SIGNAL_MASK
4417   #undef SIGNIFICANT_SIGNAL_MASK
4418 #endif
4419 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4420 
4421 static const char* get_signal_handler_name(address handler,
4422                                            char* buf, int buflen) {
4423   int offset;
4424   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4425   if (found) {
4426     // skip directory names
4427     const char *p1, *p2;
4428     p1 = buf;
4429     size_t len = strlen(os::file_separator());
4430     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4431     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4432   } else {
4433     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4434   }
4435   return buf;
4436 }
4437 
4438 static void print_signal_handler(outputStream* st, int sig,
4439                                  char* buf, size_t buflen) {
4440   struct sigaction sa;
4441 
4442   sigaction(sig, NULL, &sa);
4443 
4444   // See comment for SIGNIFICANT_SIGNAL_MASK define
4445   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4446 
4447   st->print("%s: ", os::exception_name(sig, buf, buflen));
4448 
4449   address handler = (sa.sa_flags & SA_SIGINFO)
4450     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4451     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4452 
4453   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4454     st->print("SIG_DFL");
4455   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4456     st->print("SIG_IGN");
4457   } else {
4458     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4459   }
4460 
4461   st->print(", sa_mask[0]=");
4462   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4463 
4464   address rh = VMError::get_resetted_sighandler(sig);
4465   // May be, handler was resetted by VMError?
4466   if (rh != NULL) {
4467     handler = rh;
4468     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4469   }
4470 
4471   st->print(", sa_flags=");
4472   os::Posix::print_sa_flags(st, sa.sa_flags);
4473 
4474   // Check: is it our handler?
4475   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4476       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4477     // It is our signal handler
4478     // check for flags, reset system-used one!
4479     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4480       st->print(
4481                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4482                 os::Linux::get_our_sigflags(sig));
4483     }
4484   }
4485   st->cr();
4486 }
4487 
4488 
4489 #define DO_SIGNAL_CHECK(sig)                      \
4490   do {                                            \
4491     if (!sigismember(&check_signal_done, sig)) {  \
4492       os::Linux::check_signal_handler(sig);       \
4493     }                                             \
4494   } while (0)
4495 
4496 // This method is a periodic task to check for misbehaving JNI applications
4497 // under CheckJNI, we can add any periodic checks here
4498 
4499 void os::run_periodic_checks() {
4500   if (check_signals == false) return;
4501 
4502   // SEGV and BUS if overridden could potentially prevent
4503   // generation of hs*.log in the event of a crash, debugging
4504   // such a case can be very challenging, so we absolutely
4505   // check the following for a good measure:
4506   DO_SIGNAL_CHECK(SIGSEGV);
4507   DO_SIGNAL_CHECK(SIGILL);
4508   DO_SIGNAL_CHECK(SIGFPE);
4509   DO_SIGNAL_CHECK(SIGBUS);
4510   DO_SIGNAL_CHECK(SIGPIPE);
4511   DO_SIGNAL_CHECK(SIGXFSZ);
4512 #if defined(PPC64)
4513   DO_SIGNAL_CHECK(SIGTRAP);
4514 #endif
4515 
4516   // ReduceSignalUsage allows the user to override these handlers
4517   // see comments at the very top and jvm_solaris.h
4518   if (!ReduceSignalUsage) {
4519     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4520     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4521     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4522     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4523   }
4524 
4525   DO_SIGNAL_CHECK(SR_signum);
4526   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4527 }
4528 
4529 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4530 
4531 static os_sigaction_t os_sigaction = NULL;
4532 
4533 void os::Linux::check_signal_handler(int sig) {
4534   char buf[O_BUFLEN];
4535   address jvmHandler = NULL;
4536 
4537 
4538   struct sigaction act;
4539   if (os_sigaction == NULL) {
4540     // only trust the default sigaction, in case it has been interposed
4541     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4542     if (os_sigaction == NULL) return;
4543   }
4544 
4545   os_sigaction(sig, (struct sigaction*)NULL, &act);
4546 
4547 
4548   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4549 
4550   address thisHandler = (act.sa_flags & SA_SIGINFO)
4551     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4552     : CAST_FROM_FN_PTR(address, act.sa_handler);
4553 
4554 
4555   switch (sig) {
4556   case SIGSEGV:
4557   case SIGBUS:
4558   case SIGFPE:
4559   case SIGPIPE:
4560   case SIGILL:
4561   case SIGXFSZ:
4562     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4563     break;
4564 
4565   case SHUTDOWN1_SIGNAL:
4566   case SHUTDOWN2_SIGNAL:
4567   case SHUTDOWN3_SIGNAL:
4568   case BREAK_SIGNAL:
4569     jvmHandler = (address)user_handler();
4570     break;
4571 
4572   case INTERRUPT_SIGNAL:
4573     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4574     break;
4575 
4576   default:
4577     if (sig == SR_signum) {
4578       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4579     } else {
4580       return;
4581     }
4582     break;
4583   }
4584 
4585   if (thisHandler != jvmHandler) {
4586     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4587     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4588     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4589     // No need to check this sig any longer
4590     sigaddset(&check_signal_done, sig);
4591     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4592     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4593       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4594                     exception_name(sig, buf, O_BUFLEN));
4595     }
4596   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4597     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4598     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4599     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4600     // No need to check this sig any longer
4601     sigaddset(&check_signal_done, sig);
4602   }
4603 
4604   // Dump all the signal
4605   if (sigismember(&check_signal_done, sig)) {
4606     print_signal_handlers(tty, buf, O_BUFLEN);
4607   }
4608 }
4609 
4610 extern void report_error(char* file_name, int line_no, char* title,
4611                          char* format, ...);
4612 
4613 extern bool signal_name(int signo, char* buf, size_t len);
4614 
4615 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4616   if (0 < exception_code && exception_code <= SIGRTMAX) {
4617     // signal
4618     if (!signal_name(exception_code, buf, size)) {
4619       jio_snprintf(buf, size, "SIG%d", exception_code);
4620     }
4621     return buf;
4622   } else {
4623     return NULL;
4624   }
4625 }
4626 
4627 // this is called _before_ the most of global arguments have been parsed
4628 void os::init(void) {
4629   char dummy;   // used to get a guess on initial stack address
4630 //  first_hrtime = gethrtime();
4631 
4632   // With LinuxThreads the JavaMain thread pid (primordial thread)
4633   // is different than the pid of the java launcher thread.
4634   // So, on Linux, the launcher thread pid is passed to the VM
4635   // via the sun.java.launcher.pid property.
4636   // Use this property instead of getpid() if it was correctly passed.
4637   // See bug 6351349.
4638   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4639 
4640   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4641 
4642   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4643 
4644   init_random(1234567);
4645 
4646   ThreadCritical::initialize();
4647 
4648   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4649   if (Linux::page_size() == -1) {
4650     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4651                   strerror(errno)));
4652   }
4653   init_page_sizes((size_t) Linux::page_size());
4654 
4655   Linux::initialize_system_info();
4656 
4657   // main_thread points to the aboriginal thread
4658   Linux::_main_thread = pthread_self();
4659 
4660   Linux::clock_init();
4661   initial_time_count = javaTimeNanos();
4662 
4663   // pthread_condattr initialization for monotonic clock
4664   int status;
4665   pthread_condattr_t* _condattr = os::Linux::condAttr();
4666   if ((status = pthread_condattr_init(_condattr)) != 0) {
4667     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4668   }
4669   // Only set the clock if CLOCK_MONOTONIC is available
4670   if (os::supports_monotonic_clock()) {
4671     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4672       if (status == EINVAL) {
4673         warning("Unable to use monotonic clock with relative timed-waits" \
4674                 " - changes to the time-of-day clock may have adverse affects");
4675       } else {
4676         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4677       }
4678     }
4679   }
4680   // else it defaults to CLOCK_REALTIME
4681 
4682   pthread_mutex_init(&dl_mutex, NULL);
4683 
4684   // If the pagesize of the VM is greater than 8K determine the appropriate
4685   // number of initial guard pages.  The user can change this with the
4686   // command line arguments, if needed.
4687   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4688     StackYellowPages = 1;
4689     StackRedPages = 1;
4690     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4691   }
4692 
4693   // retrieve entry point for pthread_setname_np
4694   Linux::_pthread_setname_np =
4695     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4696 
4697 }
4698 
4699 // To install functions for atexit system call
4700 extern "C" {
4701   static void perfMemory_exit_helper() {
4702     perfMemory_exit();
4703   }
4704 }
4705 
4706 // this is called _after_ the global arguments have been parsed
4707 jint os::init_2(void) {
4708   Linux::fast_thread_clock_init();
4709 
4710   // Allocate a single page and mark it as readable for safepoint polling
4711   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4712   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4713 
4714   os::set_polling_page(polling_page);
4715 
4716 #ifndef PRODUCT
4717   if (Verbose && PrintMiscellaneous) {
4718     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4719                (intptr_t)polling_page);
4720   }
4721 #endif
4722 
4723   if (!UseMembar) {
4724     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4725     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4726     os::set_memory_serialize_page(mem_serialize_page);
4727 
4728 #ifndef PRODUCT
4729     if (Verbose && PrintMiscellaneous) {
4730       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4731                  (intptr_t)mem_serialize_page);
4732     }
4733 #endif
4734   }
4735 
4736   // initialize suspend/resume support - must do this before signal_sets_init()
4737   if (SR_initialize() != 0) {
4738     perror("SR_initialize failed");
4739     return JNI_ERR;
4740   }
4741 
4742   Linux::signal_sets_init();
4743   Linux::install_signal_handlers();
4744 
4745   // Check minimum allowable stack size for thread creation and to initialize
4746   // the java system classes, including StackOverflowError - depends on page
4747   // size.  Add a page for compiler2 recursion in main thread.
4748   // Add in 2*BytesPerWord times page size to account for VM stack during
4749   // class initialization depending on 32 or 64 bit VM.
4750   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4751                                       (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4752                                       (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4753 
4754   size_t threadStackSizeInBytes = ThreadStackSize * K;
4755   if (threadStackSizeInBytes != 0 &&
4756       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4757     tty->print_cr("\nThe stack size specified is too small, "
4758                   "Specify at least %dk",
4759                   os::Linux::min_stack_allowed/ K);
4760     return JNI_ERR;
4761   }
4762 
4763   // Make the stack size a multiple of the page size so that
4764   // the yellow/red zones can be guarded.
4765   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4766                                                 vm_page_size()));
4767 
4768   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4769 
4770 #if defined(IA32)
4771   workaround_expand_exec_shield_cs_limit();
4772 #endif
4773 
4774   Linux::libpthread_init();
4775   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4776     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4777                   Linux::glibc_version(), Linux::libpthread_version(),
4778                   Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4779   }
4780 
4781   if (UseNUMA) {
4782     if (!Linux::libnuma_init()) {
4783       UseNUMA = false;
4784     } else {
4785       if ((Linux::numa_max_node() < 1)) {
4786         // There's only one node(they start from 0), disable NUMA.
4787         UseNUMA = false;
4788       }
4789     }
4790     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4791     // we can make the adaptive lgrp chunk resizing work. If the user specified
4792     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4793     // disable adaptive resizing.
4794     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4795       if (FLAG_IS_DEFAULT(UseNUMA)) {
4796         UseNUMA = false;
4797       } else {
4798         if (FLAG_IS_DEFAULT(UseLargePages) &&
4799             FLAG_IS_DEFAULT(UseSHM) &&
4800             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4801           UseLargePages = false;
4802         } else {
4803           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4804           UseAdaptiveSizePolicy = false;
4805           UseAdaptiveNUMAChunkSizing = false;
4806         }
4807       }
4808     }
4809     if (!UseNUMA && ForceNUMA) {
4810       UseNUMA = true;
4811     }
4812   }
4813 
4814   if (MaxFDLimit) {
4815     // set the number of file descriptors to max. print out error
4816     // if getrlimit/setrlimit fails but continue regardless.
4817     struct rlimit nbr_files;
4818     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4819     if (status != 0) {
4820       if (PrintMiscellaneous && (Verbose || WizardMode)) {
4821         perror("os::init_2 getrlimit failed");
4822       }
4823     } else {
4824       nbr_files.rlim_cur = nbr_files.rlim_max;
4825       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4826       if (status != 0) {
4827         if (PrintMiscellaneous && (Verbose || WizardMode)) {
4828           perror("os::init_2 setrlimit failed");
4829         }
4830       }
4831     }
4832   }
4833 
4834   // Initialize lock used to serialize thread creation (see os::create_thread)
4835   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4836 
4837   // at-exit methods are called in the reverse order of their registration.
4838   // atexit functions are called on return from main or as a result of a
4839   // call to exit(3C). There can be only 32 of these functions registered
4840   // and atexit() does not set errno.
4841 
4842   if (PerfAllowAtExitRegistration) {
4843     // only register atexit functions if PerfAllowAtExitRegistration is set.
4844     // atexit functions can be delayed until process exit time, which
4845     // can be problematic for embedded VM situations. Embedded VMs should
4846     // call DestroyJavaVM() to assure that VM resources are released.
4847 
4848     // note: perfMemory_exit_helper atexit function may be removed in
4849     // the future if the appropriate cleanup code can be added to the
4850     // VM_Exit VMOperation's doit method.
4851     if (atexit(perfMemory_exit_helper) != 0) {
4852       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4853     }
4854   }
4855 
4856   // initialize thread priority policy
4857   prio_init();
4858 
4859   return JNI_OK;
4860 }
4861 
4862 // Mark the polling page as unreadable
4863 void os::make_polling_page_unreadable(void) {
4864   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4865     fatal("Could not disable polling page");
4866   }
4867 }
4868 
4869 // Mark the polling page as readable
4870 void os::make_polling_page_readable(void) {
4871   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4872     fatal("Could not enable polling page");
4873   }
4874 }
4875 
4876 int os::active_processor_count() {
4877   // Linux doesn't yet have a (official) notion of processor sets,
4878   // so just return the number of online processors.
4879   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4880   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4881   return online_cpus;
4882 }
4883 
4884 void os::set_native_thread_name(const char *name) {
4885   if (Linux::_pthread_setname_np) {
4886     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4887     snprintf(buf, sizeof(buf), "%s", name);
4888     buf[sizeof(buf) - 1] = '\0';
4889     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4890     // ERANGE should not happen; all other errors should just be ignored.
4891     assert(rc != ERANGE, "pthread_setname_np failed");
4892   }
4893 }
4894 
4895 bool os::distribute_processes(uint length, uint* distribution) {
4896   // Not yet implemented.
4897   return false;
4898 }
4899 
4900 bool os::bind_to_processor(uint processor_id) {
4901   // Not yet implemented.
4902   return false;
4903 }
4904 
4905 ///
4906 
4907 void os::SuspendedThreadTask::internal_do_task() {
4908   if (do_suspend(_thread->osthread())) {
4909     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4910     do_task(context);
4911     do_resume(_thread->osthread());
4912   }
4913 }
4914 
4915 class PcFetcher : public os::SuspendedThreadTask {
4916  public:
4917   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4918   ExtendedPC result();
4919  protected:
4920   void do_task(const os::SuspendedThreadTaskContext& context);
4921  private:
4922   ExtendedPC _epc;
4923 };
4924 
4925 ExtendedPC PcFetcher::result() {
4926   guarantee(is_done(), "task is not done yet.");
4927   return _epc;
4928 }
4929 
4930 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4931   Thread* thread = context.thread();
4932   OSThread* osthread = thread->osthread();
4933   if (osthread->ucontext() != NULL) {
4934     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4935   } else {
4936     // NULL context is unexpected, double-check this is the VMThread
4937     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4938   }
4939 }
4940 
4941 // Suspends the target using the signal mechanism and then grabs the PC before
4942 // resuming the target. Used by the flat-profiler only
4943 ExtendedPC os::get_thread_pc(Thread* thread) {
4944   // Make sure that it is called by the watcher for the VMThread
4945   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4946   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4947 
4948   PcFetcher fetcher(thread);
4949   fetcher.run();
4950   return fetcher.result();
4951 }
4952 
4953 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond,
4954                                    pthread_mutex_t *_mutex,
4955                                    const struct timespec *_abstime) {
4956   if (is_NPTL()) {
4957     return pthread_cond_timedwait(_cond, _mutex, _abstime);
4958   } else {
4959     // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4960     // word back to default 64bit precision if condvar is signaled. Java
4961     // wants 53bit precision.  Save and restore current value.
4962     int fpu = get_fpu_control_word();
4963     int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4964     set_fpu_control_word(fpu);
4965     return status;
4966   }
4967 }
4968 
4969 ////////////////////////////////////////////////////////////////////////////////
4970 // debug support
4971 
4972 bool os::find(address addr, outputStream* st) {
4973   Dl_info dlinfo;
4974   memset(&dlinfo, 0, sizeof(dlinfo));
4975   if (dladdr(addr, &dlinfo) != 0) {
4976     st->print(PTR_FORMAT ": ", addr);
4977     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4978       st->print("%s+%#x", dlinfo.dli_sname,
4979                 addr - (intptr_t)dlinfo.dli_saddr);
4980     } else if (dlinfo.dli_fbase != NULL) {
4981       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4982     } else {
4983       st->print("<absolute address>");
4984     }
4985     if (dlinfo.dli_fname != NULL) {
4986       st->print(" in %s", dlinfo.dli_fname);
4987     }
4988     if (dlinfo.dli_fbase != NULL) {
4989       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4990     }
4991     st->cr();
4992 
4993     if (Verbose) {
4994       // decode some bytes around the PC
4995       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4996       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4997       address       lowest = (address) dlinfo.dli_sname;
4998       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4999       if (begin < lowest)  begin = lowest;
5000       Dl_info dlinfo2;
5001       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5002           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5003         end = (address) dlinfo2.dli_saddr;
5004       }
5005       Disassembler::decode(begin, end, st);
5006     }
5007     return true;
5008   }
5009   return false;
5010 }
5011 
5012 ////////////////////////////////////////////////////////////////////////////////
5013 // misc
5014 
5015 // This does not do anything on Linux. This is basically a hook for being
5016 // able to use structured exception handling (thread-local exception filters)
5017 // on, e.g., Win32.
5018 void
5019 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5020                          JavaCallArguments* args, Thread* thread) {
5021   f(value, method, args, thread);
5022 }
5023 
5024 void os::print_statistics() {
5025 }
5026 
5027 int os::message_box(const char* title, const char* message) {
5028   int i;
5029   fdStream err(defaultStream::error_fd());
5030   for (i = 0; i < 78; i++) err.print_raw("=");
5031   err.cr();
5032   err.print_raw_cr(title);
5033   for (i = 0; i < 78; i++) err.print_raw("-");
5034   err.cr();
5035   err.print_raw_cr(message);
5036   for (i = 0; i < 78; i++) err.print_raw("=");
5037   err.cr();
5038 
5039   char buf[16];
5040   // Prevent process from exiting upon "read error" without consuming all CPU
5041   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5042 
5043   return buf[0] == 'y' || buf[0] == 'Y';
5044 }
5045 
5046 int os::stat(const char *path, struct stat *sbuf) {
5047   char pathbuf[MAX_PATH];
5048   if (strlen(path) > MAX_PATH - 1) {
5049     errno = ENAMETOOLONG;
5050     return -1;
5051   }
5052   os::native_path(strcpy(pathbuf, path));
5053   return ::stat(pathbuf, sbuf);
5054 }
5055 
5056 bool os::check_heap(bool force) {
5057   return true;
5058 }
5059 
5060 // Is a (classpath) directory empty?
5061 bool os::dir_is_empty(const char* path) {
5062   DIR *dir = NULL;
5063   struct dirent *ptr;
5064 
5065   dir = opendir(path);
5066   if (dir == NULL) return true;
5067 
5068   // Scan the directory
5069   bool result = true;
5070   char buf[sizeof(struct dirent) + MAX_PATH];
5071   while (result && (ptr = ::readdir(dir)) != NULL) {
5072     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5073       result = false;
5074     }
5075   }
5076   closedir(dir);
5077   return result;
5078 }
5079 
5080 // This code originates from JDK's sysOpen and open64_w
5081 // from src/solaris/hpi/src/system_md.c
5082 
5083 int os::open(const char *path, int oflag, int mode) {
5084   if (strlen(path) > MAX_PATH - 1) {
5085     errno = ENAMETOOLONG;
5086     return -1;
5087   }
5088 
5089   // All file descriptors that are opened in the Java process and not
5090   // specifically destined for a subprocess should have the close-on-exec
5091   // flag set.  If we don't set it, then careless 3rd party native code
5092   // might fork and exec without closing all appropriate file descriptors
5093   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5094   // turn might:
5095   //
5096   // - cause end-of-file to fail to be detected on some file
5097   //   descriptors, resulting in mysterious hangs, or
5098   //
5099   // - might cause an fopen in the subprocess to fail on a system
5100   //   suffering from bug 1085341.
5101   //
5102   // (Yes, the default setting of the close-on-exec flag is a Unix
5103   // design flaw)
5104   //
5105   // See:
5106   // 1085341: 32-bit stdio routines should support file descriptors >255
5107   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5108   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5109   //
5110   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5111   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5112   // because it saves a system call and removes a small window where the flag
5113   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5114   // and we fall back to using FD_CLOEXEC (see below).
5115 #ifdef O_CLOEXEC
5116   oflag |= O_CLOEXEC;
5117 #endif
5118 
5119   int fd = ::open64(path, oflag, mode);
5120   if (fd == -1) return -1;
5121 
5122   //If the open succeeded, the file might still be a directory
5123   {
5124     struct stat64 buf64;
5125     int ret = ::fstat64(fd, &buf64);
5126     int st_mode = buf64.st_mode;
5127 
5128     if (ret != -1) {
5129       if ((st_mode & S_IFMT) == S_IFDIR) {
5130         errno = EISDIR;
5131         ::close(fd);
5132         return -1;
5133       }
5134     } else {
5135       ::close(fd);
5136       return -1;
5137     }
5138   }
5139 
5140 #ifdef FD_CLOEXEC
5141   // Validate that the use of the O_CLOEXEC flag on open above worked.
5142   // With recent kernels, we will perform this check exactly once.
5143   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5144   if (!O_CLOEXEC_is_known_to_work) {
5145     int flags = ::fcntl(fd, F_GETFD);
5146     if (flags != -1) {
5147       if ((flags & FD_CLOEXEC) != 0)
5148         O_CLOEXEC_is_known_to_work = 1;
5149       else
5150         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5151     }
5152   }
5153 #endif
5154 
5155   return fd;
5156 }
5157 
5158 
5159 // create binary file, rewriting existing file if required
5160 int os::create_binary_file(const char* path, bool rewrite_existing) {
5161   int oflags = O_WRONLY | O_CREAT;
5162   if (!rewrite_existing) {
5163     oflags |= O_EXCL;
5164   }
5165   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5166 }
5167 
5168 // return current position of file pointer
5169 jlong os::current_file_offset(int fd) {
5170   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5171 }
5172 
5173 // move file pointer to the specified offset
5174 jlong os::seek_to_file_offset(int fd, jlong offset) {
5175   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5176 }
5177 
5178 // This code originates from JDK's sysAvailable
5179 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5180 
5181 int os::available(int fd, jlong *bytes) {
5182   jlong cur, end;
5183   int mode;
5184   struct stat64 buf64;
5185 
5186   if (::fstat64(fd, &buf64) >= 0) {
5187     mode = buf64.st_mode;
5188     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5189       // XXX: is the following call interruptible? If so, this might
5190       // need to go through the INTERRUPT_IO() wrapper as for other
5191       // blocking, interruptible calls in this file.
5192       int n;
5193       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5194         *bytes = n;
5195         return 1;
5196       }
5197     }
5198   }
5199   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5200     return 0;
5201   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5202     return 0;
5203   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5204     return 0;
5205   }
5206   *bytes = end - cur;
5207   return 1;
5208 }
5209 
5210 // Map a block of memory.
5211 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5212                         char *addr, size_t bytes, bool read_only,
5213                         bool allow_exec) {
5214   int prot;
5215   int flags = MAP_PRIVATE;
5216 
5217   if (read_only) {
5218     prot = PROT_READ;
5219   } else {
5220     prot = PROT_READ | PROT_WRITE;
5221   }
5222 
5223   if (allow_exec) {
5224     prot |= PROT_EXEC;
5225   }
5226 
5227   if (addr != NULL) {
5228     flags |= MAP_FIXED;
5229   }
5230 
5231   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5232                                      fd, file_offset);
5233   if (mapped_address == MAP_FAILED) {
5234     return NULL;
5235   }
5236   return mapped_address;
5237 }
5238 
5239 
5240 // Remap a block of memory.
5241 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5242                           char *addr, size_t bytes, bool read_only,
5243                           bool allow_exec) {
5244   // same as map_memory() on this OS
5245   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5246                         allow_exec);
5247 }
5248 
5249 
5250 // Unmap a block of memory.
5251 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5252   return munmap(addr, bytes) == 0;
5253 }
5254 
5255 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5256 
5257 static clockid_t thread_cpu_clockid(Thread* thread) {
5258   pthread_t tid = thread->osthread()->pthread_id();
5259   clockid_t clockid;
5260 
5261   // Get thread clockid
5262   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5263   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5264   return clockid;
5265 }
5266 
5267 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5268 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5269 // of a thread.
5270 //
5271 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5272 // the fast estimate available on the platform.
5273 
5274 jlong os::current_thread_cpu_time() {
5275   if (os::Linux::supports_fast_thread_cpu_time()) {
5276     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5277   } else {
5278     // return user + sys since the cost is the same
5279     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5280   }
5281 }
5282 
5283 jlong os::thread_cpu_time(Thread* thread) {
5284   // consistent with what current_thread_cpu_time() returns
5285   if (os::Linux::supports_fast_thread_cpu_time()) {
5286     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5287   } else {
5288     return slow_thread_cpu_time(thread, true /* user + sys */);
5289   }
5290 }
5291 
5292 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5293   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5294     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5295   } else {
5296     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5297   }
5298 }
5299 
5300 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5301   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5302     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5303   } else {
5304     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5305   }
5306 }
5307 
5308 //  -1 on error.
5309 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5310   pid_t  tid = thread->osthread()->thread_id();
5311   char *s;
5312   char stat[2048];
5313   int statlen;
5314   char proc_name[64];
5315   int count;
5316   long sys_time, user_time;
5317   char cdummy;
5318   int idummy;
5319   long ldummy;
5320   FILE *fp;
5321 
5322   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5323   fp = fopen(proc_name, "r");
5324   if (fp == NULL) return -1;
5325   statlen = fread(stat, 1, 2047, fp);
5326   stat[statlen] = '\0';
5327   fclose(fp);
5328 
5329   // Skip pid and the command string. Note that we could be dealing with
5330   // weird command names, e.g. user could decide to rename java launcher
5331   // to "java 1.4.2 :)", then the stat file would look like
5332   //                1234 (java 1.4.2 :)) R ... ...
5333   // We don't really need to know the command string, just find the last
5334   // occurrence of ")" and then start parsing from there. See bug 4726580.
5335   s = strrchr(stat, ')');
5336   if (s == NULL) return -1;
5337 
5338   // Skip blank chars
5339   do { s++; } while (s && isspace(*s));
5340 
5341   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5342                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5343                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5344                  &user_time, &sys_time);
5345   if (count != 13) return -1;
5346   if (user_sys_cpu_time) {
5347     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5348   } else {
5349     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5350   }
5351 }
5352 
5353 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5354   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5355   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5356   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5357   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5358 }
5359 
5360 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5361   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5362   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5363   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5364   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5365 }
5366 
5367 bool os::is_thread_cpu_time_supported() {
5368   return true;
5369 }
5370 
5371 // System loadavg support.  Returns -1 if load average cannot be obtained.
5372 // Linux doesn't yet have a (official) notion of processor sets,
5373 // so just return the system wide load average.
5374 int os::loadavg(double loadavg[], int nelem) {
5375   return ::getloadavg(loadavg, nelem);
5376 }
5377 
5378 void os::pause() {
5379   char filename[MAX_PATH];
5380   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5381     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5382   } else {
5383     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5384   }
5385 
5386   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5387   if (fd != -1) {
5388     struct stat buf;
5389     ::close(fd);
5390     while (::stat(filename, &buf) == 0) {
5391       (void)::poll(NULL, 0, 100);
5392     }
5393   } else {
5394     jio_fprintf(stderr,
5395                 "Could not open pause file '%s', continuing immediately.\n", filename);
5396   }
5397 }
5398 
5399 
5400 // Refer to the comments in os_solaris.cpp park-unpark. The next two
5401 // comment paragraphs are worth repeating here:
5402 //
5403 // Assumption:
5404 //    Only one parker can exist on an event, which is why we allocate
5405 //    them per-thread. Multiple unparkers can coexist.
5406 //
5407 // _Event serves as a restricted-range semaphore.
5408 //   -1 : thread is blocked, i.e. there is a waiter
5409 //    0 : neutral: thread is running or ready,
5410 //        could have been signaled after a wait started
5411 //    1 : signaled - thread is running or ready
5412 //
5413 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5414 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5415 // For specifics regarding the bug see GLIBC BUGID 261237 :
5416 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5417 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5418 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5419 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5420 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5421 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5422 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5423 // of libpthread avoids the problem, but isn't practical.
5424 //
5425 // Possible remedies:
5426 //
5427 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5428 //      This is palliative and probabilistic, however.  If the thread is preempted
5429 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5430 //      than the minimum period may have passed, and the abstime may be stale (in the
5431 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5432 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5433 //
5434 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5435 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5436 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5437 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5438 //      thread.
5439 //
5440 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5441 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5442 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5443 //      This also works well.  In fact it avoids kernel-level scalability impediments
5444 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5445 //      timers in a graceful fashion.
5446 //
5447 // 4.   When the abstime value is in the past it appears that control returns
5448 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5449 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5450 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5451 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5452 //      It may be possible to avoid reinitialization by checking the return
5453 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5454 //      condvar we must establish the invariant that cond_signal() is only called
5455 //      within critical sections protected by the adjunct mutex.  This prevents
5456 //      cond_signal() from "seeing" a condvar that's in the midst of being
5457 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5458 //      desirable signal-after-unlock optimization that avoids futile context switching.
5459 //
5460 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5461 //      structure when a condvar is used or initialized.  cond_destroy()  would
5462 //      release the helper structure.  Our reinitialize-after-timedwait fix
5463 //      put excessive stress on malloc/free and locks protecting the c-heap.
5464 //
5465 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5466 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5467 // and only enabling the work-around for vulnerable environments.
5468 
5469 // utility to compute the abstime argument to timedwait:
5470 // millis is the relative timeout time
5471 // abstime will be the absolute timeout time
5472 // TODO: replace compute_abstime() with unpackTime()
5473 
5474 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5475   if (millis < 0)  millis = 0;
5476 
5477   jlong seconds = millis / 1000;
5478   millis %= 1000;
5479   if (seconds > 50000000) { // see man cond_timedwait(3T)
5480     seconds = 50000000;
5481   }
5482 
5483   if (os::supports_monotonic_clock()) {
5484     struct timespec now;
5485     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5486     assert_status(status == 0, status, "clock_gettime");
5487     abstime->tv_sec = now.tv_sec  + seconds;
5488     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5489     if (nanos >= NANOSECS_PER_SEC) {
5490       abstime->tv_sec += 1;
5491       nanos -= NANOSECS_PER_SEC;
5492     }
5493     abstime->tv_nsec = nanos;
5494   } else {
5495     struct timeval now;
5496     int status = gettimeofday(&now, NULL);
5497     assert(status == 0, "gettimeofday");
5498     abstime->tv_sec = now.tv_sec  + seconds;
5499     long usec = now.tv_usec + millis * 1000;
5500     if (usec >= 1000000) {
5501       abstime->tv_sec += 1;
5502       usec -= 1000000;
5503     }
5504     abstime->tv_nsec = usec * 1000;
5505   }
5506   return abstime;
5507 }
5508 
5509 void os::PlatformEvent::park() {       // AKA "down()"
5510   // Transitions for _Event:
5511   //   -1 => -1 : illegal
5512   //    1 =>  0 : pass - return immediately
5513   //    0 => -1 : block; then set _Event to 0 before returning
5514 
5515   // Invariant: Only the thread associated with the Event/PlatformEvent
5516   // may call park().
5517   // TODO: assert that _Assoc != NULL or _Assoc == Self
5518   assert(_nParked == 0, "invariant");
5519 
5520   int v;
5521   for (;;) {
5522     v = _Event;
5523     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5524   }
5525   guarantee(v >= 0, "invariant");
5526   if (v == 0) {
5527     // Do this the hard way by blocking ...
5528     int status = pthread_mutex_lock(_mutex);
5529     assert_status(status == 0, status, "mutex_lock");
5530     guarantee(_nParked == 0, "invariant");
5531     ++_nParked;
5532     while (_Event < 0) {
5533       status = pthread_cond_wait(_cond, _mutex);
5534       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5535       // Treat this the same as if the wait was interrupted
5536       if (status == ETIME) { status = EINTR; }
5537       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5538     }
5539     --_nParked;
5540 
5541     _Event = 0;
5542     status = pthread_mutex_unlock(_mutex);
5543     assert_status(status == 0, status, "mutex_unlock");
5544     // Paranoia to ensure our locked and lock-free paths interact
5545     // correctly with each other.
5546     OrderAccess::fence();
5547   }
5548   guarantee(_Event >= 0, "invariant");
5549 }
5550 
5551 int os::PlatformEvent::park(jlong millis) {
5552   // Transitions for _Event:
5553   //   -1 => -1 : illegal
5554   //    1 =>  0 : pass - return immediately
5555   //    0 => -1 : block; then set _Event to 0 before returning
5556 
5557   guarantee(_nParked == 0, "invariant");
5558 
5559   int v;
5560   for (;;) {
5561     v = _Event;
5562     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5563   }
5564   guarantee(v >= 0, "invariant");
5565   if (v != 0) return OS_OK;
5566 
5567   // We do this the hard way, by blocking the thread.
5568   // Consider enforcing a minimum timeout value.
5569   struct timespec abst;
5570   compute_abstime(&abst, millis);
5571 
5572   int ret = OS_TIMEOUT;
5573   int status = pthread_mutex_lock(_mutex);
5574   assert_status(status == 0, status, "mutex_lock");
5575   guarantee(_nParked == 0, "invariant");
5576   ++_nParked;
5577 
5578   // Object.wait(timo) will return because of
5579   // (a) notification
5580   // (b) timeout
5581   // (c) thread.interrupt
5582   //
5583   // Thread.interrupt and object.notify{All} both call Event::set.
5584   // That is, we treat thread.interrupt as a special case of notification.
5585   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5586   // We assume all ETIME returns are valid.
5587   //
5588   // TODO: properly differentiate simultaneous notify+interrupt.
5589   // In that case, we should propagate the notify to another waiter.
5590 
5591   while (_Event < 0) {
5592     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5593     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5594       pthread_cond_destroy(_cond);
5595       pthread_cond_init(_cond, os::Linux::condAttr());
5596     }
5597     assert_status(status == 0 || status == EINTR ||
5598                   status == ETIME || status == ETIMEDOUT,
5599                   status, "cond_timedwait");
5600     if (!FilterSpuriousWakeups) break;                 // previous semantics
5601     if (status == ETIME || status == ETIMEDOUT) break;
5602     // We consume and ignore EINTR and spurious wakeups.
5603   }
5604   --_nParked;
5605   if (_Event >= 0) {
5606     ret = OS_OK;
5607   }
5608   _Event = 0;
5609   status = pthread_mutex_unlock(_mutex);
5610   assert_status(status == 0, status, "mutex_unlock");
5611   assert(_nParked == 0, "invariant");
5612   // Paranoia to ensure our locked and lock-free paths interact
5613   // correctly with each other.
5614   OrderAccess::fence();
5615   return ret;
5616 }
5617 
5618 void os::PlatformEvent::unpark() {
5619   // Transitions for _Event:
5620   //    0 => 1 : just return
5621   //    1 => 1 : just return
5622   //   -1 => either 0 or 1; must signal target thread
5623   //         That is, we can safely transition _Event from -1 to either
5624   //         0 or 1.
5625   // See also: "Semaphores in Plan 9" by Mullender & Cox
5626   //
5627   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5628   // that it will take two back-to-back park() calls for the owning
5629   // thread to block. This has the benefit of forcing a spurious return
5630   // from the first park() call after an unpark() call which will help
5631   // shake out uses of park() and unpark() without condition variables.
5632 
5633   if (Atomic::xchg(1, &_Event) >= 0) return;
5634 
5635   // Wait for the thread associated with the event to vacate
5636   int status = pthread_mutex_lock(_mutex);
5637   assert_status(status == 0, status, "mutex_lock");
5638   int AnyWaiters = _nParked;
5639   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5640   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5641     AnyWaiters = 0;
5642     pthread_cond_signal(_cond);
5643   }
5644   status = pthread_mutex_unlock(_mutex);
5645   assert_status(status == 0, status, "mutex_unlock");
5646   if (AnyWaiters != 0) {
5647     // Note that we signal() *after* dropping the lock for "immortal" Events.
5648     // This is safe and avoids a common class of  futile wakeups.  In rare
5649     // circumstances this can cause a thread to return prematurely from
5650     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5651     // will simply re-test the condition and re-park itself.
5652     // This provides particular benefit if the underlying platform does not
5653     // provide wait morphing.
5654     status = pthread_cond_signal(_cond);
5655     assert_status(status == 0, status, "cond_signal");
5656   }
5657 }
5658 
5659 
5660 // JSR166
5661 // -------------------------------------------------------
5662 
5663 // The solaris and linux implementations of park/unpark are fairly
5664 // conservative for now, but can be improved. They currently use a
5665 // mutex/condvar pair, plus a a count.
5666 // Park decrements count if > 0, else does a condvar wait.  Unpark
5667 // sets count to 1 and signals condvar.  Only one thread ever waits
5668 // on the condvar. Contention seen when trying to park implies that someone
5669 // is unparking you, so don't wait. And spurious returns are fine, so there
5670 // is no need to track notifications.
5671 
5672 // This code is common to linux and solaris and will be moved to a
5673 // common place in dolphin.
5674 //
5675 // The passed in time value is either a relative time in nanoseconds
5676 // or an absolute time in milliseconds. Either way it has to be unpacked
5677 // into suitable seconds and nanoseconds components and stored in the
5678 // given timespec structure.
5679 // Given time is a 64-bit value and the time_t used in the timespec is only
5680 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5681 // overflow if times way in the future are given. Further on Solaris versions
5682 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5683 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5684 // As it will be 28 years before "now + 100000000" will overflow we can
5685 // ignore overflow and just impose a hard-limit on seconds using the value
5686 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5687 // years from "now".
5688 
5689 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5690   assert(time > 0, "convertTime");
5691   time_t max_secs = 0;
5692 
5693   if (!os::supports_monotonic_clock() || isAbsolute) {
5694     struct timeval now;
5695     int status = gettimeofday(&now, NULL);
5696     assert(status == 0, "gettimeofday");
5697 
5698     max_secs = now.tv_sec + MAX_SECS;
5699 
5700     if (isAbsolute) {
5701       jlong secs = time / 1000;
5702       if (secs > max_secs) {
5703         absTime->tv_sec = max_secs;
5704       } else {
5705         absTime->tv_sec = secs;
5706       }
5707       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5708     } else {
5709       jlong secs = time / NANOSECS_PER_SEC;
5710       if (secs >= MAX_SECS) {
5711         absTime->tv_sec = max_secs;
5712         absTime->tv_nsec = 0;
5713       } else {
5714         absTime->tv_sec = now.tv_sec + secs;
5715         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5716         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5717           absTime->tv_nsec -= NANOSECS_PER_SEC;
5718           ++absTime->tv_sec; // note: this must be <= max_secs
5719         }
5720       }
5721     }
5722   } else {
5723     // must be relative using monotonic clock
5724     struct timespec now;
5725     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5726     assert_status(status == 0, status, "clock_gettime");
5727     max_secs = now.tv_sec + MAX_SECS;
5728     jlong secs = time / NANOSECS_PER_SEC;
5729     if (secs >= MAX_SECS) {
5730       absTime->tv_sec = max_secs;
5731       absTime->tv_nsec = 0;
5732     } else {
5733       absTime->tv_sec = now.tv_sec + secs;
5734       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5735       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5736         absTime->tv_nsec -= NANOSECS_PER_SEC;
5737         ++absTime->tv_sec; // note: this must be <= max_secs
5738       }
5739     }
5740   }
5741   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5742   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5743   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5744   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5745 }
5746 
5747 void Parker::park(bool isAbsolute, jlong time) {
5748   // Ideally we'd do something useful while spinning, such
5749   // as calling unpackTime().
5750 
5751   // Optional fast-path check:
5752   // Return immediately if a permit is available.
5753   // We depend on Atomic::xchg() having full barrier semantics
5754   // since we are doing a lock-free update to _counter.
5755   if (Atomic::xchg(0, &_counter) > 0) return;
5756 
5757   Thread* thread = Thread::current();
5758   assert(thread->is_Java_thread(), "Must be JavaThread");
5759   JavaThread *jt = (JavaThread *)thread;
5760 
5761   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5762   // Check interrupt before trying to wait
5763   if (Thread::is_interrupted(thread, false)) {
5764     return;
5765   }
5766 
5767   // Next, demultiplex/decode time arguments
5768   timespec absTime;
5769   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5770     return;
5771   }
5772   if (time > 0) {
5773     unpackTime(&absTime, isAbsolute, time);
5774   }
5775 
5776 
5777   // Enter safepoint region
5778   // Beware of deadlocks such as 6317397.
5779   // The per-thread Parker:: mutex is a classic leaf-lock.
5780   // In particular a thread must never block on the Threads_lock while
5781   // holding the Parker:: mutex.  If safepoints are pending both the
5782   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5783   ThreadBlockInVM tbivm(jt);
5784 
5785   // Don't wait if cannot get lock since interference arises from
5786   // unblocking.  Also. check interrupt before trying wait
5787   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5788     return;
5789   }
5790 
5791   int status;
5792   if (_counter > 0)  { // no wait needed
5793     _counter = 0;
5794     status = pthread_mutex_unlock(_mutex);
5795     assert(status == 0, "invariant");
5796     // Paranoia to ensure our locked and lock-free paths interact
5797     // correctly with each other and Java-level accesses.
5798     OrderAccess::fence();
5799     return;
5800   }
5801 
5802 #ifdef ASSERT
5803   // Don't catch signals while blocked; let the running threads have the signals.
5804   // (This allows a debugger to break into the running thread.)
5805   sigset_t oldsigs;
5806   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5807   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5808 #endif
5809 
5810   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5811   jt->set_suspend_equivalent();
5812   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5813 
5814   assert(_cur_index == -1, "invariant");
5815   if (time == 0) {
5816     _cur_index = REL_INDEX; // arbitrary choice when not timed
5817     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5818   } else {
5819     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5820     status = os::Linux::safe_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5821     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5822       pthread_cond_destroy(&_cond[_cur_index]);
5823       pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5824     }
5825   }
5826   _cur_index = -1;
5827   assert_status(status == 0 || status == EINTR ||
5828                 status == ETIME || status == ETIMEDOUT,
5829                 status, "cond_timedwait");
5830 
5831 #ifdef ASSERT
5832   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5833 #endif
5834 
5835   _counter = 0;
5836   status = pthread_mutex_unlock(_mutex);
5837   assert_status(status == 0, status, "invariant");
5838   // Paranoia to ensure our locked and lock-free paths interact
5839   // correctly with each other and Java-level accesses.
5840   OrderAccess::fence();
5841 
5842   // If externally suspended while waiting, re-suspend
5843   if (jt->handle_special_suspend_equivalent_condition()) {
5844     jt->java_suspend_self();
5845   }
5846 }
5847 
5848 void Parker::unpark() {
5849   int status = pthread_mutex_lock(_mutex);
5850   assert(status == 0, "invariant");
5851   const int s = _counter;
5852   _counter = 1;
5853   if (s < 1) {
5854     // thread might be parked
5855     if (_cur_index != -1) {
5856       // thread is definitely parked
5857       if (WorkAroundNPTLTimedWaitHang) {
5858         status = pthread_cond_signal(&_cond[_cur_index]);
5859         assert(status == 0, "invariant");
5860         status = pthread_mutex_unlock(_mutex);
5861         assert(status == 0, "invariant");
5862       } else {
5863         status = pthread_mutex_unlock(_mutex);
5864         assert(status == 0, "invariant");
5865         status = pthread_cond_signal(&_cond[_cur_index]);
5866         assert(status == 0, "invariant");
5867       }
5868     } else {
5869       pthread_mutex_unlock(_mutex);
5870       assert(status == 0, "invariant");
5871     }
5872   } else {
5873     pthread_mutex_unlock(_mutex);
5874     assert(status == 0, "invariant");
5875   }
5876 }
5877 
5878 
5879 extern char** environ;
5880 
5881 #ifndef __NR_fork
5882   #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57) AARCH64_ONLY(1079)
5883 #endif
5884 
5885 #ifndef __NR_execve
5886   #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59) AARCH64_ONLY(221)
5887 #endif
5888 
5889 // Run the specified command in a separate process. Return its exit value,
5890 // or -1 on failure (e.g. can't fork a new process).
5891 // Unlike system(), this function can be called from signal handler. It
5892 // doesn't block SIGINT et al.
5893 int os::fork_and_exec(char* cmd) {
5894   const char * argv[4] = {"sh", "-c", cmd, NULL};
5895 
5896   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5897   // pthread_atfork handlers and reset pthread library. All we need is a
5898   // separate process to execve. Make a direct syscall to fork process.
5899   // On IA64 there's no fork syscall, we have to use fork() and hope for
5900   // the best...
5901   pid_t pid = NOT_IA64(syscall(__NR_fork);)
5902   IA64_ONLY(fork();)
5903 
5904   if (pid < 0) {
5905     // fork failed
5906     return -1;
5907 
5908   } else if (pid == 0) {
5909     // child process
5910 
5911     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5912     // first to kill every thread on the thread list. Because this list is
5913     // not reset by fork() (see notes above), execve() will instead kill
5914     // every thread in the parent process. We know this is the only thread
5915     // in the new process, so make a system call directly.
5916     // IA64 should use normal execve() from glibc to match the glibc fork()
5917     // above.
5918     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5919     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5920 
5921     // execve failed
5922     _exit(-1);
5923 
5924   } else  {
5925     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5926     // care about the actual exit code, for now.
5927 
5928     int status;
5929 
5930     // Wait for the child process to exit.  This returns immediately if
5931     // the child has already exited. */
5932     while (waitpid(pid, &status, 0) < 0) {
5933       switch (errno) {
5934       case ECHILD: return 0;
5935       case EINTR: break;
5936       default: return -1;
5937       }
5938     }
5939 
5940     if (WIFEXITED(status)) {
5941       // The child exited normally; get its exit code.
5942       return WEXITSTATUS(status);
5943     } else if (WIFSIGNALED(status)) {
5944       // The child exited because of a signal
5945       // The best value to return is 0x80 + signal number,
5946       // because that is what all Unix shells do, and because
5947       // it allows callers to distinguish between process exit and
5948       // process death by signal.
5949       return 0x80 + WTERMSIG(status);
5950     } else {
5951       // Unknown exit code; pass it through
5952       return status;
5953     }
5954   }
5955 }
5956 
5957 // is_headless_jre()
5958 //
5959 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5960 // in order to report if we are running in a headless jre
5961 //
5962 // Since JDK8 xawt/libmawt.so was moved into the same directory
5963 // as libawt.so, and renamed libawt_xawt.so
5964 //
5965 bool os::is_headless_jre() {
5966   struct stat statbuf;
5967   char buf[MAXPATHLEN];
5968   char libmawtpath[MAXPATHLEN];
5969   const char *xawtstr  = "/xawt/libmawt.so";
5970   const char *new_xawtstr = "/libawt_xawt.so";
5971   char *p;
5972 
5973   // Get path to libjvm.so
5974   os::jvm_path(buf, sizeof(buf));
5975 
5976   // Get rid of libjvm.so
5977   p = strrchr(buf, '/');
5978   if (p == NULL) {
5979     return false;
5980   } else {
5981     *p = '\0';
5982   }
5983 
5984   // Get rid of client or server
5985   p = strrchr(buf, '/');
5986   if (p == NULL) {
5987     return false;
5988   } else {
5989     *p = '\0';
5990   }
5991 
5992   // check xawt/libmawt.so
5993   strcpy(libmawtpath, buf);
5994   strcat(libmawtpath, xawtstr);
5995   if (::stat(libmawtpath, &statbuf) == 0) return false;
5996 
5997   // check libawt_xawt.so
5998   strcpy(libmawtpath, buf);
5999   strcat(libmawtpath, new_xawtstr);
6000   if (::stat(libmawtpath, &statbuf) == 0) return false;
6001 
6002   return true;
6003 }
6004 
6005 // Get the default path to the core file
6006 // Returns the length of the string
6007 int os::get_core_path(char* buffer, size_t bufferSize) {
6008   /*
6009    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
6010    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
6011    */
6012   const int core_pattern_len = 129;
6013   char core_pattern[core_pattern_len] = {0};
6014 
6015   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
6016   if (core_pattern_file != -1) {
6017     ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
6018     ::close(core_pattern_file);
6019 
6020     if (ret > 0) {
6021       char *last_char = core_pattern + strlen(core_pattern) - 1;
6022 
6023       if (*last_char == '\n') {
6024         *last_char = '\0';
6025       }
6026     }
6027   }
6028 
6029   if (strlen(core_pattern) == 0) {
6030     return 0;
6031   }
6032 
6033   char *pid_pos = strstr(core_pattern, "%p");
6034   size_t written;
6035 
6036   if (core_pattern[0] == '/') {
6037     written = jio_snprintf(buffer, bufferSize, core_pattern);
6038   } else {
6039     char cwd[PATH_MAX];
6040 
6041     const char* p = get_current_directory(cwd, PATH_MAX);
6042     if (p == NULL) {
6043       assert(p != NULL, "failed to get current directory");
6044       return 0;
6045     }
6046 
6047     if (core_pattern[0] == '|') {
6048       written = jio_snprintf(buffer, bufferSize,
6049                         "\"%s\" (or dumping to %s/core.%d)",
6050                                      &core_pattern[1], p, current_process_id());
6051     } else {
6052       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6053     }
6054   }
6055 
6056   if ((written >= 0) && (written < bufferSize)
6057             && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6058     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6059 
6060     if (core_uses_pid_file != -1) {
6061       char core_uses_pid = 0;
6062       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6063       ::close(core_uses_pid_file);
6064 
6065       if (core_uses_pid == '1'){
6066         jio_snprintf(buffer + written, bufferSize - written,
6067                                           ".%d", current_process_id());
6068       }
6069     }
6070   }
6071 
6072   return strlen(buffer);
6073 }
6074 
6075 /////////////// Unit tests ///////////////
6076 
6077 #ifndef PRODUCT
6078 
6079 #define test_log(...)              \
6080   do {                             \
6081     if (VerboseInternalVMTests) {  \
6082       tty->print_cr(__VA_ARGS__);  \
6083       tty->flush();                \
6084     }                              \
6085   } while (false)
6086 
6087 class TestReserveMemorySpecial : AllStatic {
6088  public:
6089   static void small_page_write(void* addr, size_t size) {
6090     size_t page_size = os::vm_page_size();
6091 
6092     char* end = (char*)addr + size;
6093     for (char* p = (char*)addr; p < end; p += page_size) {
6094       *p = 1;
6095     }
6096   }
6097 
6098   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6099     if (!UseHugeTLBFS) {
6100       return;
6101     }
6102 
6103     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6104 
6105     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6106 
6107     if (addr != NULL) {
6108       small_page_write(addr, size);
6109 
6110       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6111     }
6112   }
6113 
6114   static void test_reserve_memory_special_huge_tlbfs_only() {
6115     if (!UseHugeTLBFS) {
6116       return;
6117     }
6118 
6119     size_t lp = os::large_page_size();
6120 
6121     for (size_t size = lp; size <= lp * 10; size += lp) {
6122       test_reserve_memory_special_huge_tlbfs_only(size);
6123     }
6124   }
6125 
6126   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6127     if (!UseHugeTLBFS) {
6128       return;
6129     }
6130 
6131     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6132              size, alignment);
6133 
6134     assert(size >= os::large_page_size(), "Incorrect input to test");
6135 
6136     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6137 
6138     if (addr != NULL) {
6139       small_page_write(addr, size);
6140 
6141       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6142     }
6143   }
6144 
6145   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6146     size_t lp = os::large_page_size();
6147     size_t ag = os::vm_allocation_granularity();
6148 
6149     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6150       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6151     }
6152   }
6153 
6154   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6155     size_t lp = os::large_page_size();
6156     size_t ag = os::vm_allocation_granularity();
6157 
6158     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6159     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6160     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6161     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6162     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6163     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6164     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6165     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6166     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6167   }
6168 
6169   static void test_reserve_memory_special_huge_tlbfs() {
6170     if (!UseHugeTLBFS) {
6171       return;
6172     }
6173 
6174     test_reserve_memory_special_huge_tlbfs_only();
6175     test_reserve_memory_special_huge_tlbfs_mixed();
6176   }
6177 
6178   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6179     if (!UseSHM) {
6180       return;
6181     }
6182 
6183     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6184 
6185     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6186 
6187     if (addr != NULL) {
6188       assert(is_ptr_aligned(addr, alignment), "Check");
6189       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6190 
6191       small_page_write(addr, size);
6192 
6193       os::Linux::release_memory_special_shm(addr, size);
6194     }
6195   }
6196 
6197   static void test_reserve_memory_special_shm() {
6198     size_t lp = os::large_page_size();
6199     size_t ag = os::vm_allocation_granularity();
6200 
6201     for (size_t size = ag; size < lp * 3; size += ag) {
6202       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6203         test_reserve_memory_special_shm(size, alignment);
6204       }
6205     }
6206   }
6207 
6208   static void test() {
6209     test_reserve_memory_special_huge_tlbfs();
6210     test_reserve_memory_special_shm();
6211   }
6212 };
6213 
6214 void TestReserveMemorySpecial_test() {
6215   TestReserveMemorySpecial::test();
6216 }
6217 
6218 #endif