1 /*
   2  * Copyright (c) 1994, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.io.ObjectStreamField;
  29 import java.io.UnsupportedEncodingException;
  30 import java.nio.charset.Charset;
  31 import java.util.ArrayList;
  32 import java.util.Arrays;
  33 import java.util.Comparator;
  34 import java.util.Formatter;
  35 import java.util.Locale;
  36 import java.util.Objects;
  37 import java.util.Spliterator;
  38 import java.util.StringJoiner;
  39 import java.util.regex.Matcher;
  40 import java.util.regex.Pattern;
  41 import java.util.regex.PatternSyntaxException;
  42 import java.util.stream.IntStream;
  43 import java.util.stream.StreamSupport;
  44 import jdk.internal.HotSpotIntrinsicCandidate;
  45 import jdk.internal.vm.annotation.Stable;
  46 
  47 /**
  48  * The {@code String} class represents character strings. All
  49  * string literals in Java programs, such as {@code "abc"}, are
  50  * implemented as instances of this class.
  51  * <p>
  52  * Strings are constant; their values cannot be changed after they
  53  * are created. String buffers support mutable strings.
  54  * Because String objects are immutable they can be shared. For example:
  55  * <blockquote><pre>
  56  *     String str = "abc";
  57  * </pre></blockquote><p>
  58  * is equivalent to:
  59  * <blockquote><pre>
  60  *     char data[] = {'a', 'b', 'c'};
  61  *     String str = new String(data);
  62  * </pre></blockquote><p>
  63  * Here are some more examples of how strings can be used:
  64  * <blockquote><pre>
  65  *     System.out.println("abc");
  66  *     String cde = "cde";
  67  *     System.out.println("abc" + cde);
  68  *     String c = "abc".substring(2,3);
  69  *     String d = cde.substring(1, 2);
  70  * </pre></blockquote>
  71  * <p>
  72  * The class {@code String} includes methods for examining
  73  * individual characters of the sequence, for comparing strings, for
  74  * searching strings, for extracting substrings, and for creating a
  75  * copy of a string with all characters translated to uppercase or to
  76  * lowercase. Case mapping is based on the Unicode Standard version
  77  * specified by the {@link java.lang.Character Character} class.
  78  * <p>
  79  * The Java language provides special support for the string
  80  * concatenation operator (&nbsp;+&nbsp;), and for conversion of
  81  * other objects to strings. For additional information on string
  82  * concatenation and conversion, see <i>The Java&trade; Language Specification</i>.
  83  *
  84  * <p> Unless otherwise noted, passing a {@code null} argument to a constructor
  85  * or method in this class will cause a {@link NullPointerException} to be
  86  * thrown.
  87  *
  88  * <p>A {@code String} represents a string in the UTF-16 format
  89  * in which <em>supplementary characters</em> are represented by <em>surrogate
  90  * pairs</em> (see the section <a href="Character.html#unicode">Unicode
  91  * Character Representations</a> in the {@code Character} class for
  92  * more information).
  93  * Index values refer to {@code char} code units, so a supplementary
  94  * character uses two positions in a {@code String}.
  95  * <p>The {@code String} class provides methods for dealing with
  96  * Unicode code points (i.e., characters), in addition to those for
  97  * dealing with Unicode code units (i.e., {@code char} values).
  98  *
  99  * <p>Unless otherwise noted, methods for comparing Strings do not take locale
 100  * into account.  The {@link java.text.Collator} class provides methods for
 101  * finer-grain, locale-sensitive String comparison.
 102  *
 103  * @implNote The implementation of the string concatenation operator is left to
 104  * the discretion of a Java compiler, as long as the compiler ultimately conforms
 105  * to <i>The Java&trade; Language Specification</i>. For example, the {@code javac} compiler
 106  * may implement the operator with {@code StringBuffer}, {@code StringBuilder},
 107  * or {@code java.lang.invoke.StringConcatFactory} depending on the JDK version. The
 108  * implementation of string conversion is typically through the method {@code toString},
 109  * defined by {@code Object} and inherited by all classes in Java.
 110  *
 111  * @author  Lee Boynton
 112  * @author  Arthur van Hoff
 113  * @author  Martin Buchholz
 114  * @author  Ulf Zibis
 115  * @see     java.lang.Object#toString()
 116  * @see     java.lang.StringBuffer
 117  * @see     java.lang.StringBuilder
 118  * @see     java.nio.charset.Charset
 119  * @since   1.0
 120  * @jls     15.18.1 String Concatenation Operator +
 121  */
 122 
 123 public final class String
 124     implements java.io.Serializable, Comparable<String>, CharSequence {
 125 
 126     /**
 127      * The value is used for character storage.
 128      *
 129      * @implNote This field is trusted by the VM, and is a subject to
 130      * constant folding if String instance is constant. Overwriting this
 131      * field after construction will cause problems.
 132      *
 133      * Additionally, it is marked with {@link Stable} to trust the contents
 134      * of the array. No other facility in JDK provides this functionality (yet).
 135      * {@link Stable} is safe here, because value is never null.
 136      */
 137     @Stable
 138     private final byte[] value;
 139 
 140     /**
 141      * The identifier of the encoding used to encode the bytes in
 142      * {@code value}. The supported values in this implementation are
 143      *
 144      * LATIN1
 145      * UTF16
 146      *
 147      * @implNote This field is trusted by the VM, and is a subject to
 148      * constant folding if String instance is constant. Overwriting this
 149      * field after construction will cause problems.
 150      */
 151     private final byte coder;
 152 
 153     /** Cache the hash code for the string */
 154     private int hash; // Default to 0
 155 
 156     /** use serialVersionUID from JDK 1.0.2 for interoperability */
 157     private static final long serialVersionUID = -6849794470754667710L;
 158 
 159     /**
 160      * If String compaction is disabled, the bytes in {@code value} are
 161      * always encoded in UTF16.
 162      *
 163      * For methods with several possible implementation paths, when String
 164      * compaction is disabled, only one code path is taken.
 165      *
 166      * The instance field value is generally opaque to optimizing JIT
 167      * compilers. Therefore, in performance-sensitive place, an explicit
 168      * check of the static boolean {@code COMPACT_STRINGS} is done first
 169      * before checking the {@code coder} field since the static boolean
 170      * {@code COMPACT_STRINGS} would be constant folded away by an
 171      * optimizing JIT compiler. The idioms for these cases are as follows.
 172      *
 173      * For code such as:
 174      *
 175      *    if (coder == LATIN1) { ... }
 176      *
 177      * can be written more optimally as
 178      *
 179      *    if (coder() == LATIN1) { ... }
 180      *
 181      * or:
 182      *
 183      *    if (COMPACT_STRINGS && coder == LATIN1) { ... }
 184      *
 185      * An optimizing JIT compiler can fold the above conditional as:
 186      *
 187      *    COMPACT_STRINGS == true  => if (coder == LATIN1) { ... }
 188      *    COMPACT_STRINGS == false => if (false)           { ... }
 189      *
 190      * @implNote
 191      * The actual value for this field is injected by JVM. The static
 192      * initialization block is used to set the value here to communicate
 193      * that this static final field is not statically foldable, and to
 194      * avoid any possible circular dependency during vm initialization.
 195      */
 196     static final boolean COMPACT_STRINGS;
 197 
 198     static final boolean DEBUG_INTRINSICS;
 199 
 200     static {
 201         COMPACT_STRINGS = true;
 202         DEBUG_INTRINSICS = false;
 203     }
 204 
 205     /**
 206      * Class String is special cased within the Serialization Stream Protocol.
 207      *
 208      * A String instance is written into an ObjectOutputStream according to
 209      * <a href="{@docRoot}/../platform/serialization/spec/output.html">
 210      * Object Serialization Specification, Section 6.2, "Stream Elements"</a>
 211      */
 212     private static final ObjectStreamField[] serialPersistentFields =
 213         new ObjectStreamField[0];
 214 
 215     /**
 216      * Initializes a newly created {@code String} object so that it represents
 217      * an empty character sequence.  Note that use of this constructor is
 218      * unnecessary since Strings are immutable.
 219      */
 220     public String() {
 221         this.value = "".value;
 222         this.coder = "".coder;
 223     }
 224 
 225     /**
 226      * Initializes a newly created {@code String} object so that it represents
 227      * the same sequence of characters as the argument; in other words, the
 228      * newly created string is a copy of the argument string. Unless an
 229      * explicit copy of {@code original} is needed, use of this constructor is
 230      * unnecessary since Strings are immutable.
 231      *
 232      * @param  original
 233      *         A {@code String}
 234      */
 235     @HotSpotIntrinsicCandidate
 236     public String(String original) {
 237         this.value = original.value;
 238         this.coder = original.coder;
 239         this.hash = original.hash;
 240     }
 241 
 242     /**
 243      * Allocates a new {@code String} so that it represents the sequence of
 244      * characters currently contained in the character array argument. The
 245      * contents of the character array are copied; subsequent modification of
 246      * the character array does not affect the newly created string.
 247      *
 248      * @param  value
 249      *         The initial value of the string
 250      */
 251     public String(char value[]) {
 252         this(value, 0, value.length, null);
 253     }
 254 
 255     /**
 256      * Allocates a new {@code String} that contains characters from a subarray
 257      * of the character array argument. The {@code offset} argument is the
 258      * index of the first character of the subarray and the {@code count}
 259      * argument specifies the length of the subarray. The contents of the
 260      * subarray are copied; subsequent modification of the character array does
 261      * not affect the newly created string.
 262      *
 263      * @param  value
 264      *         Array that is the source of characters
 265      *
 266      * @param  offset
 267      *         The initial offset
 268      *
 269      * @param  count
 270      *         The length
 271      *
 272      * @throws  IndexOutOfBoundsException
 273      *          If {@code offset} is negative, {@code count} is negative, or
 274      *          {@code offset} is greater than {@code value.length - count}
 275      */
 276     public String(char value[], int offset, int count) {
 277         this(value, offset, count, rangeCheck(value, offset, count));
 278     }
 279 
 280     private static Void rangeCheck(char[] value, int offset, int count) {
 281         checkBoundsOffCount(offset, count, value.length);
 282         return null;
 283     }
 284 
 285     /**
 286      * Allocates a new {@code String} that contains characters from a subarray
 287      * of the <a href="Character.html#unicode">Unicode code point</a> array
 288      * argument.  The {@code offset} argument is the index of the first code
 289      * point of the subarray and the {@code count} argument specifies the
 290      * length of the subarray.  The contents of the subarray are converted to
 291      * {@code char}s; subsequent modification of the {@code int} array does not
 292      * affect the newly created string.
 293      *
 294      * @param  codePoints
 295      *         Array that is the source of Unicode code points
 296      *
 297      * @param  offset
 298      *         The initial offset
 299      *
 300      * @param  count
 301      *         The length
 302      *
 303      * @throws  IllegalArgumentException
 304      *          If any invalid Unicode code point is found in {@code
 305      *          codePoints}
 306      *
 307      * @throws  IndexOutOfBoundsException
 308      *          If {@code offset} is negative, {@code count} is negative, or
 309      *          {@code offset} is greater than {@code codePoints.length - count}
 310      *
 311      * @since  1.5
 312      */
 313     public String(int[] codePoints, int offset, int count) {
 314         checkBoundsOffCount(offset, count, codePoints.length);
 315         if (count == 0) {
 316             this.value = "".value;
 317             this.coder = "".coder;
 318             return;
 319         }
 320         if (COMPACT_STRINGS) {
 321             byte[] val = StringLatin1.toBytes(codePoints, offset, count);
 322             if (val != null) {
 323                 this.coder = LATIN1;
 324                 this.value = val;
 325                 return;
 326             }
 327         }
 328         this.coder = UTF16;
 329         this.value = StringUTF16.toBytes(codePoints, offset, count);
 330     }
 331 
 332     /**
 333      * Allocates a new {@code String} constructed from a subarray of an array
 334      * of 8-bit integer values.
 335      *
 336      * <p> The {@code offset} argument is the index of the first byte of the
 337      * subarray, and the {@code count} argument specifies the length of the
 338      * subarray.
 339      *
 340      * <p> Each {@code byte} in the subarray is converted to a {@code char} as
 341      * specified in the method above.
 342      *
 343      * @deprecated This method does not properly convert bytes into characters.
 344      * As of JDK&nbsp;1.1, the preferred way to do this is via the
 345      * {@code String} constructors that take a {@link
 346      * java.nio.charset.Charset}, charset name, or that use the platform's
 347      * default charset.
 348      *
 349      * @param  ascii
 350      *         The bytes to be converted to characters
 351      *
 352      * @param  hibyte
 353      *         The top 8 bits of each 16-bit Unicode code unit
 354      *
 355      * @param  offset
 356      *         The initial offset
 357      * @param  count
 358      *         The length
 359      *
 360      * @throws  IndexOutOfBoundsException
 361      *          If {@code offset} is negative, {@code count} is negative, or
 362      *          {@code offset} is greater than {@code ascii.length - count}
 363      *
 364      * @see  #String(byte[], int)
 365      * @see  #String(byte[], int, int, java.lang.String)
 366      * @see  #String(byte[], int, int, java.nio.charset.Charset)
 367      * @see  #String(byte[], int, int)
 368      * @see  #String(byte[], java.lang.String)
 369      * @see  #String(byte[], java.nio.charset.Charset)
 370      * @see  #String(byte[])
 371      */
 372     @Deprecated(since="1.1")
 373     public String(byte ascii[], int hibyte, int offset, int count) {
 374         checkBoundsOffCount(offset, count, ascii.length);
 375         if (count == 0) {
 376             this.value = "".value;
 377             this.coder = "".coder;
 378             return;
 379         }
 380         if (COMPACT_STRINGS && (byte)hibyte == 0) {
 381             this.value = Arrays.copyOfRange(ascii, offset, offset + count);
 382             this.coder = LATIN1;
 383         } else {
 384             hibyte <<= 8;
 385             byte[] val = StringUTF16.newBytesFor(count);
 386             for (int i = 0; i < count; i++) {
 387                 StringUTF16.Trusted.putChar(val, i, hibyte | (ascii[offset++] & 0xff));
 388             }
 389             this.value = val;
 390             this.coder = UTF16;
 391         }
 392     }
 393 
 394     /**
 395      * Allocates a new {@code String} containing characters constructed from
 396      * an array of 8-bit integer values. Each character <i>c</i>in the
 397      * resulting string is constructed from the corresponding component
 398      * <i>b</i> in the byte array such that:
 399      *
 400      * <blockquote><pre>
 401      *     <b><i>c</i></b> == (char)(((hibyte &amp; 0xff) &lt;&lt; 8)
 402      *                         | (<b><i>b</i></b> &amp; 0xff))
 403      * </pre></blockquote>
 404      *
 405      * @deprecated  This method does not properly convert bytes into
 406      * characters.  As of JDK&nbsp;1.1, the preferred way to do this is via the
 407      * {@code String} constructors that take a {@link
 408      * java.nio.charset.Charset}, charset name, or that use the platform's
 409      * default charset.
 410      *
 411      * @param  ascii
 412      *         The bytes to be converted to characters
 413      *
 414      * @param  hibyte
 415      *         The top 8 bits of each 16-bit Unicode code unit
 416      *
 417      * @see  #String(byte[], int, int, java.lang.String)
 418      * @see  #String(byte[], int, int, java.nio.charset.Charset)
 419      * @see  #String(byte[], int, int)
 420      * @see  #String(byte[], java.lang.String)
 421      * @see  #String(byte[], java.nio.charset.Charset)
 422      * @see  #String(byte[])
 423      */
 424     @Deprecated(since="1.1")
 425     public String(byte ascii[], int hibyte) {
 426         this(ascii, hibyte, 0, ascii.length);
 427     }
 428 
 429     /**
 430      * Constructs a new {@code String} by decoding the specified subarray of
 431      * bytes using the specified charset.  The length of the new {@code String}
 432      * is a function of the charset, and hence may not be equal to the length
 433      * of the subarray.
 434      *
 435      * <p> The behavior of this constructor when the given bytes are not valid
 436      * in the given charset is unspecified.  The {@link
 437      * java.nio.charset.CharsetDecoder} class should be used when more control
 438      * over the decoding process is required.
 439      *
 440      * @param  bytes
 441      *         The bytes to be decoded into characters
 442      *
 443      * @param  offset
 444      *         The index of the first byte to decode
 445      *
 446      * @param  length
 447      *         The number of bytes to decode
 448 
 449      * @param  charsetName
 450      *         The name of a supported {@linkplain java.nio.charset.Charset
 451      *         charset}
 452      *
 453      * @throws  UnsupportedEncodingException
 454      *          If the named charset is not supported
 455      *
 456      * @throws  IndexOutOfBoundsException
 457      *          If {@code offset} is negative, {@code length} is negative, or
 458      *          {@code offset} is greater than {@code bytes.length - length}
 459      *
 460      * @since  1.1
 461      */
 462     public String(byte bytes[], int offset, int length, String charsetName)
 463             throws UnsupportedEncodingException {
 464         if (charsetName == null)
 465             throw new NullPointerException("charsetName");
 466         checkBoundsOffCount(offset, length, bytes.length);
 467         StringCoding.Result ret =
 468             StringCoding.decode(charsetName, bytes, offset, length);
 469         this.value = ret.value;
 470         this.coder = ret.coder;
 471     }
 472 
 473     /**
 474      * Constructs a new {@code String} by decoding the specified subarray of
 475      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 476      * The length of the new {@code String} is a function of the charset, and
 477      * hence may not be equal to the length of the subarray.
 478      *
 479      * <p> This method always replaces malformed-input and unmappable-character
 480      * sequences with this charset's default replacement string.  The {@link
 481      * java.nio.charset.CharsetDecoder} class should be used when more control
 482      * over the decoding process is required.
 483      *
 484      * @param  bytes
 485      *         The bytes to be decoded into characters
 486      *
 487      * @param  offset
 488      *         The index of the first byte to decode
 489      *
 490      * @param  length
 491      *         The number of bytes to decode
 492      *
 493      * @param  charset
 494      *         The {@linkplain java.nio.charset.Charset charset} to be used to
 495      *         decode the {@code bytes}
 496      *
 497      * @throws  IndexOutOfBoundsException
 498      *          If {@code offset} is negative, {@code length} is negative, or
 499      *          {@code offset} is greater than {@code bytes.length - length}
 500      *
 501      * @since  1.6
 502      */
 503     public String(byte bytes[], int offset, int length, Charset charset) {
 504         if (charset == null)
 505             throw new NullPointerException("charset");
 506         checkBoundsOffCount(offset, length, bytes.length);
 507         StringCoding.Result ret =
 508             StringCoding.decode(charset, bytes, offset, length);
 509         this.value = ret.value;
 510         this.coder = ret.coder;
 511     }
 512 
 513     /**
 514      * Constructs a new {@code String} by decoding the specified array of bytes
 515      * using the specified {@linkplain java.nio.charset.Charset charset}.  The
 516      * length of the new {@code String} is a function of the charset, and hence
 517      * may not be equal to the length of the byte array.
 518      *
 519      * <p> The behavior of this constructor when the given bytes are not valid
 520      * in the given charset is unspecified.  The {@link
 521      * java.nio.charset.CharsetDecoder} class should be used when more control
 522      * over the decoding process is required.
 523      *
 524      * @param  bytes
 525      *         The bytes to be decoded into characters
 526      *
 527      * @param  charsetName
 528      *         The name of a supported {@linkplain java.nio.charset.Charset
 529      *         charset}
 530      *
 531      * @throws  UnsupportedEncodingException
 532      *          If the named charset is not supported
 533      *
 534      * @since  1.1
 535      */
 536     public String(byte bytes[], String charsetName)
 537             throws UnsupportedEncodingException {
 538         this(bytes, 0, bytes.length, charsetName);
 539     }
 540 
 541     /**
 542      * Constructs a new {@code String} by decoding the specified array of
 543      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 544      * The length of the new {@code String} is a function of the charset, and
 545      * hence may not be equal to the length of the byte array.
 546      *
 547      * <p> This method always replaces malformed-input and unmappable-character
 548      * sequences with this charset's default replacement string.  The {@link
 549      * java.nio.charset.CharsetDecoder} class should be used when more control
 550      * over the decoding process is required.
 551      *
 552      * @param  bytes
 553      *         The bytes to be decoded into characters
 554      *
 555      * @param  charset
 556      *         The {@linkplain java.nio.charset.Charset charset} to be used to
 557      *         decode the {@code bytes}
 558      *
 559      * @since  1.6
 560      */
 561     public String(byte bytes[], Charset charset) {
 562         this(bytes, 0, bytes.length, charset);
 563     }
 564 
 565     /**
 566      * Constructs a new {@code String} by decoding the specified subarray of
 567      * bytes using the platform's default charset.  The length of the new
 568      * {@code String} is a function of the charset, and hence may not be equal
 569      * to the length of the subarray.
 570      *
 571      * <p> The behavior of this constructor when the given bytes are not valid
 572      * in the default charset is unspecified.  The {@link
 573      * java.nio.charset.CharsetDecoder} class should be used when more control
 574      * over the decoding process is required.
 575      *
 576      * @param  bytes
 577      *         The bytes to be decoded into characters
 578      *
 579      * @param  offset
 580      *         The index of the first byte to decode
 581      *
 582      * @param  length
 583      *         The number of bytes to decode
 584      *
 585      * @throws  IndexOutOfBoundsException
 586      *          If {@code offset} is negative, {@code length} is negative, or
 587      *          {@code offset} is greater than {@code bytes.length - length}
 588      *
 589      * @since  1.1
 590      */
 591     public String(byte bytes[], int offset, int length) {
 592         checkBoundsOffCount(offset, length, bytes.length);
 593         StringCoding.Result ret = StringCoding.decode(bytes, offset, length);
 594         this.value = ret.value;
 595         this.coder = ret.coder;
 596     }
 597 
 598     /**
 599      * Constructs a new {@code String} by decoding the specified array of bytes
 600      * using the platform's default charset.  The length of the new {@code
 601      * String} is a function of the charset, and hence may not be equal to the
 602      * length of the byte array.
 603      *
 604      * <p> The behavior of this constructor when the given bytes are not valid
 605      * in the default charset is unspecified.  The {@link
 606      * java.nio.charset.CharsetDecoder} class should be used when more control
 607      * over the decoding process is required.
 608      *
 609      * @param  bytes
 610      *         The bytes to be decoded into characters
 611      *
 612      * @since  1.1
 613      */
 614     public String(byte[] bytes) {
 615         this(bytes, 0, bytes.length);
 616     }
 617 
 618     /**
 619      * Allocates a new string that contains the sequence of characters
 620      * currently contained in the string buffer argument. The contents of the
 621      * string buffer are copied; subsequent modification of the string buffer
 622      * does not affect the newly created string.
 623      *
 624      * @param  buffer
 625      *         A {@code StringBuffer}
 626      */
 627     public String(StringBuffer buffer) {
 628         this(buffer.toString());
 629     }
 630 
 631     /**
 632      * Allocates a new string that contains the sequence of characters
 633      * currently contained in the string builder argument. The contents of the
 634      * string builder are copied; subsequent modification of the string builder
 635      * does not affect the newly created string.
 636      *
 637      * <p> This constructor is provided to ease migration to {@code
 638      * StringBuilder}. Obtaining a string from a string builder via the {@code
 639      * toString} method is likely to run faster and is generally preferred.
 640      *
 641      * @param   builder
 642      *          A {@code StringBuilder}
 643      *
 644      * @since  1.5
 645      */
 646     public String(StringBuilder builder) {
 647         this(builder, null);
 648     }
 649 
 650    /*
 651     * Package private constructor which shares value array for speed.
 652     * this constructor is always expected to be called with share==true.
 653     * a separate constructor is needed because we already have a public
 654     * String(char[]) constructor that makes a copy of the given char[].
 655     */
 656     // TBD: this is kept for package internal use (Thread/System),
 657     // should be removed if they all have a byte[] version
 658     String(char[] val, boolean share) {
 659         // assert share : "unshared not supported";
 660         this(val, 0, val.length, null);
 661     }
 662 
 663     /**
 664      * Returns the length of this string.
 665      * The length is equal to the number of <a href="Character.html#unicode">Unicode
 666      * code units</a> in the string.
 667      *
 668      * @return  the length of the sequence of characters represented by this
 669      *          object.
 670      */
 671     public int length() {
 672         return value.length >> coder();
 673     }
 674 
 675     /**
 676      * Returns {@code true} if, and only if, {@link #length()} is {@code 0}.
 677      *
 678      * @return {@code true} if {@link #length()} is {@code 0}, otherwise
 679      * {@code false}
 680      *
 681      * @since 1.6
 682      */
 683     public boolean isEmpty() {
 684         return value.length == 0;
 685     }
 686 
 687     /**
 688      * Returns the {@code char} value at the
 689      * specified index. An index ranges from {@code 0} to
 690      * {@code length() - 1}. The first {@code char} value of the sequence
 691      * is at index {@code 0}, the next at index {@code 1},
 692      * and so on, as for array indexing.
 693      *
 694      * <p>If the {@code char} value specified by the index is a
 695      * <a href="Character.html#unicode">surrogate</a>, the surrogate
 696      * value is returned.
 697      *
 698      * @param      index   the index of the {@code char} value.
 699      * @return     the {@code char} value at the specified index of this string.
 700      *             The first {@code char} value is at index {@code 0}.
 701      * @exception  IndexOutOfBoundsException  if the {@code index}
 702      *             argument is negative or not less than the length of this
 703      *             string.
 704      */
 705     public char charAt(int index) {
 706         if (isLatin1()) {
 707             return StringLatin1.charAt(value, index);
 708         } else {
 709             return StringUTF16.charAt(value, index);
 710         }
 711     }
 712 
 713     /**
 714      * Returns the character (Unicode code point) at the specified
 715      * index. The index refers to {@code char} values
 716      * (Unicode code units) and ranges from {@code 0} to
 717      * {@link #length()}{@code  - 1}.
 718      *
 719      * <p> If the {@code char} value specified at the given index
 720      * is in the high-surrogate range, the following index is less
 721      * than the length of this {@code String}, and the
 722      * {@code char} value at the following index is in the
 723      * low-surrogate range, then the supplementary code point
 724      * corresponding to this surrogate pair is returned. Otherwise,
 725      * the {@code char} value at the given index is returned.
 726      *
 727      * @param      index the index to the {@code char} values
 728      * @return     the code point value of the character at the
 729      *             {@code index}
 730      * @exception  IndexOutOfBoundsException  if the {@code index}
 731      *             argument is negative or not less than the length of this
 732      *             string.
 733      * @since      1.5
 734      */
 735     public int codePointAt(int index) {
 736         if (isLatin1()) {
 737             checkIndex(index, value.length);
 738             return value[index] & 0xff;
 739         }
 740         int length = value.length >> 1;
 741         checkIndex(index, length);
 742         return StringUTF16.codePointAt(value, index, length);
 743     }
 744 
 745     /**
 746      * Returns the character (Unicode code point) before the specified
 747      * index. The index refers to {@code char} values
 748      * (Unicode code units) and ranges from {@code 1} to {@link
 749      * CharSequence#length() length}.
 750      *
 751      * <p> If the {@code char} value at {@code (index - 1)}
 752      * is in the low-surrogate range, {@code (index - 2)} is not
 753      * negative, and the {@code char} value at {@code (index -
 754      * 2)} is in the high-surrogate range, then the
 755      * supplementary code point value of the surrogate pair is
 756      * returned. If the {@code char} value at {@code index -
 757      * 1} is an unpaired low-surrogate or a high-surrogate, the
 758      * surrogate value is returned.
 759      *
 760      * @param     index the index following the code point that should be returned
 761      * @return    the Unicode code point value before the given index.
 762      * @exception IndexOutOfBoundsException if the {@code index}
 763      *            argument is less than 1 or greater than the length
 764      *            of this string.
 765      * @since     1.5
 766      */
 767     public int codePointBefore(int index) {
 768         int i = index - 1;
 769         if (i < 0 || i >= length()) {
 770             throw new StringIndexOutOfBoundsException(index);
 771         }
 772         if (isLatin1()) {
 773             return (value[i] & 0xff);
 774         }
 775         return StringUTF16.codePointBefore(value, index);
 776     }
 777 
 778     /**
 779      * Returns the number of Unicode code points in the specified text
 780      * range of this {@code String}. The text range begins at the
 781      * specified {@code beginIndex} and extends to the
 782      * {@code char} at index {@code endIndex - 1}. Thus the
 783      * length (in {@code char}s) of the text range is
 784      * {@code endIndex-beginIndex}. Unpaired surrogates within
 785      * the text range count as one code point each.
 786      *
 787      * @param beginIndex the index to the first {@code char} of
 788      * the text range.
 789      * @param endIndex the index after the last {@code char} of
 790      * the text range.
 791      * @return the number of Unicode code points in the specified text
 792      * range
 793      * @exception IndexOutOfBoundsException if the
 794      * {@code beginIndex} is negative, or {@code endIndex}
 795      * is larger than the length of this {@code String}, or
 796      * {@code beginIndex} is larger than {@code endIndex}.
 797      * @since  1.5
 798      */
 799     public int codePointCount(int beginIndex, int endIndex) {
 800         if (beginIndex < 0 || beginIndex > endIndex ||
 801             endIndex > length()) {
 802             throw new IndexOutOfBoundsException();
 803         }
 804         if (isLatin1()) {
 805             return endIndex - beginIndex;
 806         }
 807         return StringUTF16.codePointCount(value, beginIndex, endIndex);
 808     }
 809 
 810     /**
 811      * Returns the index within this {@code String} that is
 812      * offset from the given {@code index} by
 813      * {@code codePointOffset} code points. Unpaired surrogates
 814      * within the text range given by {@code index} and
 815      * {@code codePointOffset} count as one code point each.
 816      *
 817      * @param index the index to be offset
 818      * @param codePointOffset the offset in code points
 819      * @return the index within this {@code String}
 820      * @exception IndexOutOfBoundsException if {@code index}
 821      *   is negative or larger then the length of this
 822      *   {@code String}, or if {@code codePointOffset} is positive
 823      *   and the substring starting with {@code index} has fewer
 824      *   than {@code codePointOffset} code points,
 825      *   or if {@code codePointOffset} is negative and the substring
 826      *   before {@code index} has fewer than the absolute value
 827      *   of {@code codePointOffset} code points.
 828      * @since 1.5
 829      */
 830     public int offsetByCodePoints(int index, int codePointOffset) {
 831         if (index < 0 || index > length()) {
 832             throw new IndexOutOfBoundsException();
 833         }
 834         return Character.offsetByCodePoints(this, index, codePointOffset);
 835     }
 836 
 837     /**
 838      * Copies characters from this string into the destination character
 839      * array.
 840      * <p>
 841      * The first character to be copied is at index {@code srcBegin};
 842      * the last character to be copied is at index {@code srcEnd-1}
 843      * (thus the total number of characters to be copied is
 844      * {@code srcEnd-srcBegin}). The characters are copied into the
 845      * subarray of {@code dst} starting at index {@code dstBegin}
 846      * and ending at index:
 847      * <blockquote><pre>
 848      *     dstBegin + (srcEnd-srcBegin) - 1
 849      * </pre></blockquote>
 850      *
 851      * @param      srcBegin   index of the first character in the string
 852      *                        to copy.
 853      * @param      srcEnd     index after the last character in the string
 854      *                        to copy.
 855      * @param      dst        the destination array.
 856      * @param      dstBegin   the start offset in the destination array.
 857      * @exception IndexOutOfBoundsException If any of the following
 858      *            is true:
 859      *            <ul><li>{@code srcBegin} is negative.
 860      *            <li>{@code srcBegin} is greater than {@code srcEnd}
 861      *            <li>{@code srcEnd} is greater than the length of this
 862      *                string
 863      *            <li>{@code dstBegin} is negative
 864      *            <li>{@code dstBegin+(srcEnd-srcBegin)} is larger than
 865      *                {@code dst.length}</ul>
 866      */
 867     public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
 868         checkBoundsBeginEnd(srcBegin, srcEnd, length());
 869         checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length);
 870         if (isLatin1()) {
 871             StringLatin1.getChars(value, srcBegin, srcEnd, dst, dstBegin);
 872         } else {
 873             StringUTF16.getChars(value, srcBegin, srcEnd, dst, dstBegin);
 874         }
 875     }
 876 
 877     /**
 878      * Copies characters from this string into the destination byte array. Each
 879      * byte receives the 8 low-order bits of the corresponding character. The
 880      * eight high-order bits of each character are not copied and do not
 881      * participate in the transfer in any way.
 882      *
 883      * <p> The first character to be copied is at index {@code srcBegin}; the
 884      * last character to be copied is at index {@code srcEnd-1}.  The total
 885      * number of characters to be copied is {@code srcEnd-srcBegin}. The
 886      * characters, converted to bytes, are copied into the subarray of {@code
 887      * dst} starting at index {@code dstBegin} and ending at index:
 888      *
 889      * <blockquote><pre>
 890      *     dstBegin + (srcEnd-srcBegin) - 1
 891      * </pre></blockquote>
 892      *
 893      * @deprecated  This method does not properly convert characters into
 894      * bytes.  As of JDK&nbsp;1.1, the preferred way to do this is via the
 895      * {@link #getBytes()} method, which uses the platform's default charset.
 896      *
 897      * @param  srcBegin
 898      *         Index of the first character in the string to copy
 899      *
 900      * @param  srcEnd
 901      *         Index after the last character in the string to copy
 902      *
 903      * @param  dst
 904      *         The destination array
 905      *
 906      * @param  dstBegin
 907      *         The start offset in the destination array
 908      *
 909      * @throws  IndexOutOfBoundsException
 910      *          If any of the following is true:
 911      *          <ul>
 912      *            <li> {@code srcBegin} is negative
 913      *            <li> {@code srcBegin} is greater than {@code srcEnd}
 914      *            <li> {@code srcEnd} is greater than the length of this String
 915      *            <li> {@code dstBegin} is negative
 916      *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code
 917      *                 dst.length}
 918      *          </ul>
 919      */
 920     @Deprecated(since="1.1")
 921     public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
 922         checkBoundsBeginEnd(srcBegin, srcEnd, length());
 923         Objects.requireNonNull(dst);
 924         checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length);
 925         if (isLatin1()) {
 926             StringLatin1.getBytes(value, srcBegin, srcEnd, dst, dstBegin);
 927         } else {
 928             StringUTF16.getBytes(value, srcBegin, srcEnd, dst, dstBegin);
 929         }
 930     }
 931 
 932     /**
 933      * Encodes this {@code String} into a sequence of bytes using the named
 934      * charset, storing the result into a new byte array.
 935      *
 936      * <p> The behavior of this method when this string cannot be encoded in
 937      * the given charset is unspecified.  The {@link
 938      * java.nio.charset.CharsetEncoder} class should be used when more control
 939      * over the encoding process is required.
 940      *
 941      * @param  charsetName
 942      *         The name of a supported {@linkplain java.nio.charset.Charset
 943      *         charset}
 944      *
 945      * @return  The resultant byte array
 946      *
 947      * @throws  UnsupportedEncodingException
 948      *          If the named charset is not supported
 949      *
 950      * @since  1.1
 951      */
 952     public byte[] getBytes(String charsetName)
 953             throws UnsupportedEncodingException {
 954         if (charsetName == null) throw new NullPointerException();
 955         return StringCoding.encode(charsetName, coder(), value);
 956     }
 957 
 958     /**
 959      * Encodes this {@code String} into a sequence of bytes using the given
 960      * {@linkplain java.nio.charset.Charset charset}, storing the result into a
 961      * new byte array.
 962      *
 963      * <p> This method always replaces malformed-input and unmappable-character
 964      * sequences with this charset's default replacement byte array.  The
 965      * {@link java.nio.charset.CharsetEncoder} class should be used when more
 966      * control over the encoding process is required.
 967      *
 968      * @param  charset
 969      *         The {@linkplain java.nio.charset.Charset} to be used to encode
 970      *         the {@code String}
 971      *
 972      * @return  The resultant byte array
 973      *
 974      * @since  1.6
 975      */
 976     public byte[] getBytes(Charset charset) {
 977         if (charset == null) throw new NullPointerException();
 978         return StringCoding.encode(charset, coder(), value);
 979      }
 980 
 981     /**
 982      * Encodes this {@code String} into a sequence of bytes using the
 983      * platform's default charset, storing the result into a new byte array.
 984      *
 985      * <p> The behavior of this method when this string cannot be encoded in
 986      * the default charset is unspecified.  The {@link
 987      * java.nio.charset.CharsetEncoder} class should be used when more control
 988      * over the encoding process is required.
 989      *
 990      * @return  The resultant byte array
 991      *
 992      * @since      1.1
 993      */
 994     public byte[] getBytes() {
 995         return StringCoding.encode(coder(), value);
 996     }
 997 
 998     /**
 999      * Compares this string to the specified object.  The result is {@code
1000      * true} if and only if the argument is not {@code null} and is a {@code
1001      * String} object that represents the same sequence of characters as this
1002      * object.
1003      *
1004      * <p>For finer-grained String comparison, refer to
1005      * {@link java.text.Collator}.
1006      *
1007      * @param  anObject
1008      *         The object to compare this {@code String} against
1009      *
1010      * @return  {@code true} if the given object represents a {@code String}
1011      *          equivalent to this string, {@code false} otherwise
1012      *
1013      * @see  #compareTo(String)
1014      * @see  #equalsIgnoreCase(String)
1015      */
1016     public boolean equals(Object anObject) {
1017         if (this == anObject) {
1018             return true;
1019         }
1020         if (anObject instanceof String) {
1021             String aString = (String)anObject;
1022             if (coder() == aString.coder()) {
1023                 return isLatin1() ? StringLatin1.equals(value, aString.value)
1024                                   : StringUTF16.equals(value, aString.value);
1025             }
1026         }
1027         return false;
1028     }
1029 
1030     /**
1031      * Compares this string to the specified {@code StringBuffer}.  The result
1032      * is {@code true} if and only if this {@code String} represents the same
1033      * sequence of characters as the specified {@code StringBuffer}. This method
1034      * synchronizes on the {@code StringBuffer}.
1035      *
1036      * <p>For finer-grained String comparison, refer to
1037      * {@link java.text.Collator}.
1038      *
1039      * @param  sb
1040      *         The {@code StringBuffer} to compare this {@code String} against
1041      *
1042      * @return  {@code true} if this {@code String} represents the same
1043      *          sequence of characters as the specified {@code StringBuffer},
1044      *          {@code false} otherwise
1045      *
1046      * @since  1.4
1047      */
1048     public boolean contentEquals(StringBuffer sb) {
1049         return contentEquals((CharSequence)sb);
1050     }
1051 
1052     private boolean nonSyncContentEquals(AbstractStringBuilder sb) {
1053         int len = length();
1054         if (len != sb.length()) {
1055             return false;
1056         }
1057         byte v1[] = value;
1058         byte v2[] = sb.getValue();
1059         if (coder() == sb.getCoder()) {
1060             int n = v1.length;
1061             for (int i = 0; i < n; i++) {
1062                 if (v1[i] != v2[i]) {
1063                     return false;
1064                 }
1065             }
1066         } else {
1067             if (!isLatin1()) {  // utf16 str and latin1 abs can never be "equal"
1068                 return false;
1069             }
1070             return StringUTF16.contentEquals(v1, v2, len);
1071         }
1072         return true;
1073     }
1074 
1075     /**
1076      * Compares this string to the specified {@code CharSequence}.  The
1077      * result is {@code true} if and only if this {@code String} represents the
1078      * same sequence of char values as the specified sequence. Note that if the
1079      * {@code CharSequence} is a {@code StringBuffer} then the method
1080      * synchronizes on it.
1081      *
1082      * <p>For finer-grained String comparison, refer to
1083      * {@link java.text.Collator}.
1084      *
1085      * @param  cs
1086      *         The sequence to compare this {@code String} against
1087      *
1088      * @return  {@code true} if this {@code String} represents the same
1089      *          sequence of char values as the specified sequence, {@code
1090      *          false} otherwise
1091      *
1092      * @since  1.5
1093      */
1094     public boolean contentEquals(CharSequence cs) {
1095         // Argument is a StringBuffer, StringBuilder
1096         if (cs instanceof AbstractStringBuilder) {
1097             if (cs instanceof StringBuffer) {
1098                 synchronized(cs) {
1099                    return nonSyncContentEquals((AbstractStringBuilder)cs);
1100                 }
1101             } else {
1102                 return nonSyncContentEquals((AbstractStringBuilder)cs);
1103             }
1104         }
1105         // Argument is a String
1106         if (cs instanceof String) {
1107             return equals(cs);
1108         }
1109         // Argument is a generic CharSequence
1110         int n = cs.length();
1111         if (n != length()) {
1112             return false;
1113         }
1114         byte[] val = this.value;
1115         if (isLatin1()) {
1116             for (int i = 0; i < n; i++) {
1117                 if ((val[i] & 0xff) != cs.charAt(i)) {
1118                     return false;
1119                 }
1120             }
1121         } else {
1122             if (!StringUTF16.contentEquals(val, cs, n)) {
1123                 return false;
1124             }
1125         }
1126         return true;
1127     }
1128 
1129     /**
1130      * Compares this {@code String} to another {@code String}, ignoring case
1131      * considerations.  Two strings are considered equal ignoring case if they
1132      * are of the same length and corresponding characters in the two strings
1133      * are equal ignoring case.
1134      *
1135      * <p> Two characters {@code c1} and {@code c2} are considered the same
1136      * ignoring case if at least one of the following is true:
1137      * <ul>
1138      *   <li> The two characters are the same (as compared by the
1139      *        {@code ==} operator)
1140      *   <li> Calling {@code Character.toLowerCase(Character.toUpperCase(char))}
1141      *        on each character produces the same result
1142      * </ul>
1143      *
1144      * <p>Note that this method does <em>not</em> take locale into account, and
1145      * will result in unsatisfactory results for certain locales.  The
1146      * {@link java.text.Collator} class provides locale-sensitive comparison.
1147      *
1148      * @param  anotherString
1149      *         The {@code String} to compare this {@code String} against
1150      *
1151      * @return  {@code true} if the argument is not {@code null} and it
1152      *          represents an equivalent {@code String} ignoring case; {@code
1153      *          false} otherwise
1154      *
1155      * @see  #equals(Object)
1156      */
1157     public boolean equalsIgnoreCase(String anotherString) {
1158         return (this == anotherString) ? true
1159                 : (anotherString != null)
1160                 && (anotherString.length() == length())
1161                 && regionMatches(true, 0, anotherString, 0, length());
1162     }
1163 
1164     /**
1165      * Compares two strings lexicographically.
1166      * The comparison is based on the Unicode value of each character in
1167      * the strings. The character sequence represented by this
1168      * {@code String} object is compared lexicographically to the
1169      * character sequence represented by the argument string. The result is
1170      * a negative integer if this {@code String} object
1171      * lexicographically precedes the argument string. The result is a
1172      * positive integer if this {@code String} object lexicographically
1173      * follows the argument string. The result is zero if the strings
1174      * are equal; {@code compareTo} returns {@code 0} exactly when
1175      * the {@link #equals(Object)} method would return {@code true}.
1176      * <p>
1177      * This is the definition of lexicographic ordering. If two strings are
1178      * different, then either they have different characters at some index
1179      * that is a valid index for both strings, or their lengths are different,
1180      * or both. If they have different characters at one or more index
1181      * positions, let <i>k</i> be the smallest such index; then the string
1182      * whose character at position <i>k</i> has the smaller value, as
1183      * determined by using the {@code <} operator, lexicographically precedes the
1184      * other string. In this case, {@code compareTo} returns the
1185      * difference of the two character values at position {@code k} in
1186      * the two string -- that is, the value:
1187      * <blockquote><pre>
1188      * this.charAt(k)-anotherString.charAt(k)
1189      * </pre></blockquote>
1190      * If there is no index position at which they differ, then the shorter
1191      * string lexicographically precedes the longer string. In this case,
1192      * {@code compareTo} returns the difference of the lengths of the
1193      * strings -- that is, the value:
1194      * <blockquote><pre>
1195      * this.length()-anotherString.length()
1196      * </pre></blockquote>
1197      *
1198      * <p>For finer-grained String comparison, refer to
1199      * {@link java.text.Collator}.
1200      *
1201      * @param   anotherString   the {@code String} to be compared.
1202      * @return  the value {@code 0} if the argument string is equal to
1203      *          this string; a value less than {@code 0} if this string
1204      *          is lexicographically less than the string argument; and a
1205      *          value greater than {@code 0} if this string is
1206      *          lexicographically greater than the string argument.
1207      */
1208     public int compareTo(String anotherString) {
1209         byte v1[] = value;
1210         byte v2[] = anotherString.value;
1211         if (coder() == anotherString.coder()) {
1212             return isLatin1() ? StringLatin1.compareTo(v1, v2)
1213                               : StringUTF16.compareTo(v1, v2);
1214         }
1215         return isLatin1() ? StringLatin1.compareToUTF16(v1, v2)
1216                           : StringUTF16.compareToLatin1(v1, v2);
1217      }
1218 
1219     /**
1220      * A Comparator that orders {@code String} objects as by
1221      * {@code compareToIgnoreCase}. This comparator is serializable.
1222      * <p>
1223      * Note that this Comparator does <em>not</em> take locale into account,
1224      * and will result in an unsatisfactory ordering for certain locales.
1225      * The {@link java.text.Collator} class provides locale-sensitive comparison.
1226      *
1227      * @see     java.text.Collator
1228      * @since   1.2
1229      */
1230     public static final Comparator<String> CASE_INSENSITIVE_ORDER
1231                                          = new CaseInsensitiveComparator();
1232     private static class CaseInsensitiveComparator
1233             implements Comparator<String>, java.io.Serializable {
1234         // use serialVersionUID from JDK 1.2.2 for interoperability
1235         private static final long serialVersionUID = 8575799808933029326L;
1236 
1237         public int compare(String s1, String s2) {
1238             byte v1[] = s1.value;
1239             byte v2[] = s2.value;
1240             if (s1.coder() == s2.coder()) {
1241                 return s1.isLatin1() ? StringLatin1.compareToCI(v1, v2)
1242                                      : StringUTF16.compareToCI(v1, v2);
1243             }
1244             return s1.isLatin1() ? StringLatin1.compareToCI_UTF16(v1, v2)
1245                                  : StringUTF16.compareToCI_Latin1(v1, v2);
1246         }
1247 
1248         /** Replaces the de-serialized object. */
1249         private Object readResolve() { return CASE_INSENSITIVE_ORDER; }
1250     }
1251 
1252     /**
1253      * Compares two strings lexicographically, ignoring case
1254      * differences. This method returns an integer whose sign is that of
1255      * calling {@code compareTo} with normalized versions of the strings
1256      * where case differences have been eliminated by calling
1257      * {@code Character.toLowerCase(Character.toUpperCase(character))} on
1258      * each character.
1259      * <p>
1260      * Note that this method does <em>not</em> take locale into account,
1261      * and will result in an unsatisfactory ordering for certain locales.
1262      * The {@link java.text.Collator} class provides locale-sensitive comparison.
1263      *
1264      * @param   str   the {@code String} to be compared.
1265      * @return  a negative integer, zero, or a positive integer as the
1266      *          specified String is greater than, equal to, or less
1267      *          than this String, ignoring case considerations.
1268      * @see     java.text.Collator
1269      * @since   1.2
1270      */
1271     public int compareToIgnoreCase(String str) {
1272         return CASE_INSENSITIVE_ORDER.compare(this, str);
1273     }
1274 
1275     /**
1276      * Tests if two string regions are equal.
1277      * <p>
1278      * A substring of this {@code String} object is compared to a substring
1279      * of the argument other. The result is true if these substrings
1280      * represent identical character sequences. The substring of this
1281      * {@code String} object to be compared begins at index {@code toffset}
1282      * and has length {@code len}. The substring of other to be compared
1283      * begins at index {@code ooffset} and has length {@code len}. The
1284      * result is {@code false} if and only if at least one of the following
1285      * is true:
1286      * <ul><li>{@code toffset} is negative.
1287      * <li>{@code ooffset} is negative.
1288      * <li>{@code toffset+len} is greater than the length of this
1289      * {@code String} object.
1290      * <li>{@code ooffset+len} is greater than the length of the other
1291      * argument.
1292      * <li>There is some nonnegative integer <i>k</i> less than {@code len}
1293      * such that:
1294      * {@code this.charAt(toffset + }<i>k</i>{@code ) != other.charAt(ooffset + }
1295      * <i>k</i>{@code )}
1296      * </ul>
1297      *
1298      * <p>Note that this method does <em>not</em> take locale into account.  The
1299      * {@link java.text.Collator} class provides locale-sensitive comparison.
1300      *
1301      * @param   toffset   the starting offset of the subregion in this string.
1302      * @param   other     the string argument.
1303      * @param   ooffset   the starting offset of the subregion in the string
1304      *                    argument.
1305      * @param   len       the number of characters to compare.
1306      * @return  {@code true} if the specified subregion of this string
1307      *          exactly matches the specified subregion of the string argument;
1308      *          {@code false} otherwise.
1309      */
1310     public boolean regionMatches(int toffset, String other, int ooffset, int len) {
1311         byte tv[] = value;
1312         byte ov[] = other.value;
1313         // Note: toffset, ooffset, or len might be near -1>>>1.
1314         if ((ooffset < 0) || (toffset < 0) ||
1315              (toffset > (long)length() - len) ||
1316              (ooffset > (long)other.length() - len)) {
1317             return false;
1318         }
1319         if (coder() == other.coder()) {
1320             if (!isLatin1() && (len > 0)) {
1321                 toffset = toffset << 1;
1322                 ooffset = ooffset << 1;
1323                 len = len << 1;
1324             }
1325             while (len-- > 0) {
1326                 if (tv[toffset++] != ov[ooffset++]) {
1327                     return false;
1328                 }
1329             }
1330         } else {
1331             if (coder() == LATIN1) {
1332                 while (len-- > 0) {
1333                     if (StringLatin1.getChar(tv, toffset++) !=
1334                         StringUTF16.Trusted.getChar(ov, ooffset++)) {
1335                         return false;
1336                     }
1337                 }
1338             } else {
1339                 while (len-- > 0) {
1340                     if (StringUTF16.Trusted.getChar(tv, toffset++) !=
1341                         StringLatin1.getChar(ov, ooffset++)) {
1342                         return false;
1343                     }
1344                 }
1345             }
1346         }
1347         return true;
1348     }
1349 
1350     /**
1351      * Tests if two string regions are equal.
1352      * <p>
1353      * A substring of this {@code String} object is compared to a substring
1354      * of the argument {@code other}. The result is {@code true} if these
1355      * substrings represent character sequences that are the same, ignoring
1356      * case if and only if {@code ignoreCase} is true. The substring of
1357      * this {@code String} object to be compared begins at index
1358      * {@code toffset} and has length {@code len}. The substring of
1359      * {@code other} to be compared begins at index {@code ooffset} and
1360      * has length {@code len}. The result is {@code false} if and only if
1361      * at least one of the following is true:
1362      * <ul><li>{@code toffset} is negative.
1363      * <li>{@code ooffset} is negative.
1364      * <li>{@code toffset+len} is greater than the length of this
1365      * {@code String} object.
1366      * <li>{@code ooffset+len} is greater than the length of the other
1367      * argument.
1368      * <li>{@code ignoreCase} is {@code false} and there is some nonnegative
1369      * integer <i>k</i> less than {@code len} such that:
1370      * <blockquote><pre>
1371      * this.charAt(toffset+k) != other.charAt(ooffset+k)
1372      * </pre></blockquote>
1373      * <li>{@code ignoreCase} is {@code true} and there is some nonnegative
1374      * integer <i>k</i> less than {@code len} such that:
1375      * <blockquote><pre>
1376      * Character.toLowerCase(Character.toUpperCase(this.charAt(toffset+k))) !=
1377      Character.toLowerCase(Character.toUpperCase(other.charAt(ooffset+k)))
1378      * </pre></blockquote>
1379      * </ul>
1380      *
1381      * <p>Note that this method does <em>not</em> take locale into account,
1382      * and will result in unsatisfactory results for certain locales when
1383      * {@code ignoreCase} is {@code true}.  The {@link java.text.Collator} class
1384      * provides locale-sensitive comparison.
1385      *
1386      * @param   ignoreCase   if {@code true}, ignore case when comparing
1387      *                       characters.
1388      * @param   toffset      the starting offset of the subregion in this
1389      *                       string.
1390      * @param   other        the string argument.
1391      * @param   ooffset      the starting offset of the subregion in the string
1392      *                       argument.
1393      * @param   len          the number of characters to compare.
1394      * @return  {@code true} if the specified subregion of this string
1395      *          matches the specified subregion of the string argument;
1396      *          {@code false} otherwise. Whether the matching is exact
1397      *          or case insensitive depends on the {@code ignoreCase}
1398      *          argument.
1399      */
1400     public boolean regionMatches(boolean ignoreCase, int toffset,
1401             String other, int ooffset, int len) {
1402         if (!ignoreCase) {
1403             return regionMatches(toffset, other, ooffset, len);
1404         }
1405         // Note: toffset, ooffset, or len might be near -1>>>1.
1406         if ((ooffset < 0) || (toffset < 0)
1407                 || (toffset > (long)length() - len)
1408                 || (ooffset > (long)other.length() - len)) {
1409             return false;
1410         }
1411         byte tv[] = value;
1412         byte ov[] = other.value;
1413         if (coder() == other.coder()) {
1414             return isLatin1()
1415               ? StringLatin1.regionMatchesCI(tv, toffset, ov, ooffset, len)
1416               : StringUTF16.regionMatchesCI(tv, toffset, ov, ooffset, len);
1417         }
1418         return isLatin1()
1419               ? StringLatin1.regionMatchesCI_UTF16(tv, toffset, ov, ooffset, len)
1420               : StringUTF16.regionMatchesCI_Latin1(tv, toffset, ov, ooffset, len);
1421     }
1422 
1423     /**
1424      * Tests if the substring of this string beginning at the
1425      * specified index starts with the specified prefix.
1426      *
1427      * @param   prefix    the prefix.
1428      * @param   toffset   where to begin looking in this string.
1429      * @return  {@code true} if the character sequence represented by the
1430      *          argument is a prefix of the substring of this object starting
1431      *          at index {@code toffset}; {@code false} otherwise.
1432      *          The result is {@code false} if {@code toffset} is
1433      *          negative or greater than the length of this
1434      *          {@code String} object; otherwise the result is the same
1435      *          as the result of the expression
1436      *          <pre>
1437      *          this.substring(toffset).startsWith(prefix)
1438      *          </pre>
1439      */
1440     public boolean startsWith(String prefix, int toffset) {
1441         // Note: toffset might be near -1>>>1.
1442         if (toffset < 0 || toffset > length() - prefix.length()) {
1443             return false;
1444         }
1445         byte ta[] = value;
1446         byte pa[] = prefix.value;
1447         int po = 0;
1448         int pc = pa.length;
1449         if (coder() == prefix.coder()) {
1450             int to = isLatin1() ? toffset : toffset << 1;
1451             while (po < pc) {
1452                 if (ta[to++] != pa[po++]) {
1453                     return false;
1454                 }
1455             }
1456         } else {
1457             if (isLatin1()) {  // && pcoder == UTF16
1458                 return false;
1459             }
1460             // coder == UTF16 && pcoder == LATIN1)
1461             while (po < pc) {
1462                 if (StringUTF16.Trusted.getChar(ta, toffset++) != (pa[po++] & 0xff)) {
1463                     return false;
1464                }
1465             }
1466         }
1467         return true;
1468     }
1469 
1470     /**
1471      * Tests if this string starts with the specified prefix.
1472      *
1473      * @param   prefix   the prefix.
1474      * @return  {@code true} if the character sequence represented by the
1475      *          argument is a prefix of the character sequence represented by
1476      *          this string; {@code false} otherwise.
1477      *          Note also that {@code true} will be returned if the
1478      *          argument is an empty string or is equal to this
1479      *          {@code String} object as determined by the
1480      *          {@link #equals(Object)} method.
1481      * @since   1.0
1482      */
1483     public boolean startsWith(String prefix) {
1484         return startsWith(prefix, 0);
1485     }
1486 
1487     /**
1488      * Tests if this string ends with the specified suffix.
1489      *
1490      * @param   suffix   the suffix.
1491      * @return  {@code true} if the character sequence represented by the
1492      *          argument is a suffix of the character sequence represented by
1493      *          this object; {@code false} otherwise. Note that the
1494      *          result will be {@code true} if the argument is the
1495      *          empty string or is equal to this {@code String} object
1496      *          as determined by the {@link #equals(Object)} method.
1497      */
1498     public boolean endsWith(String suffix) {
1499         return startsWith(suffix, length() - suffix.length());
1500     }
1501 
1502     /**
1503      * Returns a hash code for this string. The hash code for a
1504      * {@code String} object is computed as
1505      * <blockquote><pre>
1506      * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
1507      * </pre></blockquote>
1508      * using {@code int} arithmetic, where {@code s[i]} is the
1509      * <i>i</i>th character of the string, {@code n} is the length of
1510      * the string, and {@code ^} indicates exponentiation.
1511      * (The hash value of the empty string is zero.)
1512      *
1513      * @return  a hash code value for this object.
1514      */
1515     public int hashCode() {
1516         int h = hash;
1517         if (h == 0 && value.length > 0) {
1518             hash = h = isLatin1() ? StringLatin1.hashCode(value)
1519                                   : StringUTF16.hashCode(value);
1520         }
1521         return h;
1522     }
1523 
1524     /**
1525      * Returns the index within this string of the first occurrence of
1526      * the specified character. If a character with value
1527      * {@code ch} occurs in the character sequence represented by
1528      * this {@code String} object, then the index (in Unicode
1529      * code units) of the first such occurrence is returned. For
1530      * values of {@code ch} in the range from 0 to 0xFFFF
1531      * (inclusive), this is the smallest value <i>k</i> such that:
1532      * <blockquote><pre>
1533      * this.charAt(<i>k</i>) == ch
1534      * </pre></blockquote>
1535      * is true. For other values of {@code ch}, it is the
1536      * smallest value <i>k</i> such that:
1537      * <blockquote><pre>
1538      * this.codePointAt(<i>k</i>) == ch
1539      * </pre></blockquote>
1540      * is true. In either case, if no such character occurs in this
1541      * string, then {@code -1} is returned.
1542      *
1543      * @param   ch   a character (Unicode code point).
1544      * @return  the index of the first occurrence of the character in the
1545      *          character sequence represented by this object, or
1546      *          {@code -1} if the character does not occur.
1547      */
1548     public int indexOf(int ch) {
1549         return indexOf(ch, 0);
1550     }
1551 
1552     /**
1553      * Returns the index within this string of the first occurrence of the
1554      * specified character, starting the search at the specified index.
1555      * <p>
1556      * If a character with value {@code ch} occurs in the
1557      * character sequence represented by this {@code String}
1558      * object at an index no smaller than {@code fromIndex}, then
1559      * the index of the first such occurrence is returned. For values
1560      * of {@code ch} in the range from 0 to 0xFFFF (inclusive),
1561      * this is the smallest value <i>k</i> such that:
1562      * <blockquote><pre>
1563      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1564      * </pre></blockquote>
1565      * is true. For other values of {@code ch}, it is the
1566      * smallest value <i>k</i> such that:
1567      * <blockquote><pre>
1568      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1569      * </pre></blockquote>
1570      * is true. In either case, if no such character occurs in this
1571      * string at or after position {@code fromIndex}, then
1572      * {@code -1} is returned.
1573      *
1574      * <p>
1575      * There is no restriction on the value of {@code fromIndex}. If it
1576      * is negative, it has the same effect as if it were zero: this entire
1577      * string may be searched. If it is greater than the length of this
1578      * string, it has the same effect as if it were equal to the length of
1579      * this string: {@code -1} is returned.
1580      *
1581      * <p>All indices are specified in {@code char} values
1582      * (Unicode code units).
1583      *
1584      * @param   ch          a character (Unicode code point).
1585      * @param   fromIndex   the index to start the search from.
1586      * @return  the index of the first occurrence of the character in the
1587      *          character sequence represented by this object that is greater
1588      *          than or equal to {@code fromIndex}, or {@code -1}
1589      *          if the character does not occur.
1590      */
1591     public int indexOf(int ch, int fromIndex) {
1592         return isLatin1() ? StringLatin1.indexOf(value, ch, fromIndex)
1593                           : StringUTF16.indexOf(value, ch, fromIndex);
1594     }
1595 
1596     /**
1597      * Returns the index within this string of the last occurrence of
1598      * the specified character. For values of {@code ch} in the
1599      * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
1600      * units) returned is the largest value <i>k</i> such that:
1601      * <blockquote><pre>
1602      * this.charAt(<i>k</i>) == ch
1603      * </pre></blockquote>
1604      * is true. For other values of {@code ch}, it is the
1605      * largest value <i>k</i> such that:
1606      * <blockquote><pre>
1607      * this.codePointAt(<i>k</i>) == ch
1608      * </pre></blockquote>
1609      * is true.  In either case, if no such character occurs in this
1610      * string, then {@code -1} is returned.  The
1611      * {@code String} is searched backwards starting at the last
1612      * character.
1613      *
1614      * @param   ch   a character (Unicode code point).
1615      * @return  the index of the last occurrence of the character in the
1616      *          character sequence represented by this object, or
1617      *          {@code -1} if the character does not occur.
1618      */
1619     public int lastIndexOf(int ch) {
1620         return lastIndexOf(ch, length() - 1);
1621     }
1622 
1623     /**
1624      * Returns the index within this string of the last occurrence of
1625      * the specified character, searching backward starting at the
1626      * specified index. For values of {@code ch} in the range
1627      * from 0 to 0xFFFF (inclusive), the index returned is the largest
1628      * value <i>k</i> such that:
1629      * <blockquote><pre>
1630      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1631      * </pre></blockquote>
1632      * is true. For other values of {@code ch}, it is the
1633      * largest value <i>k</i> such that:
1634      * <blockquote><pre>
1635      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1636      * </pre></blockquote>
1637      * is true. In either case, if no such character occurs in this
1638      * string at or before position {@code fromIndex}, then
1639      * {@code -1} is returned.
1640      *
1641      * <p>All indices are specified in {@code char} values
1642      * (Unicode code units).
1643      *
1644      * @param   ch          a character (Unicode code point).
1645      * @param   fromIndex   the index to start the search from. There is no
1646      *          restriction on the value of {@code fromIndex}. If it is
1647      *          greater than or equal to the length of this string, it has
1648      *          the same effect as if it were equal to one less than the
1649      *          length of this string: this entire string may be searched.
1650      *          If it is negative, it has the same effect as if it were -1:
1651      *          -1 is returned.
1652      * @return  the index of the last occurrence of the character in the
1653      *          character sequence represented by this object that is less
1654      *          than or equal to {@code fromIndex}, or {@code -1}
1655      *          if the character does not occur before that point.
1656      */
1657     public int lastIndexOf(int ch, int fromIndex) {
1658         return isLatin1() ? StringLatin1.lastIndexOf(value, ch, fromIndex)
1659                           : StringUTF16.lastIndexOf(value, ch, fromIndex);
1660     }
1661 
1662     /**
1663      * Returns the index within this string of the first occurrence of the
1664      * specified substring.
1665      *
1666      * <p>The returned index is the smallest value {@code k} for which:
1667      * <pre>{@code
1668      * this.startsWith(str, k)
1669      * }</pre>
1670      * If no such value of {@code k} exists, then {@code -1} is returned.
1671      *
1672      * @param   str   the substring to search for.
1673      * @return  the index of the first occurrence of the specified substring,
1674      *          or {@code -1} if there is no such occurrence.
1675      */
1676     public int indexOf(String str) {
1677         if (coder() == str.coder()) {
1678             return isLatin1() ? StringLatin1.indexOf(value, str.value)
1679                               : StringUTF16.indexOf(value, str.value);
1680         }
1681         if (coder() == LATIN1) {  // str.coder == UTF16
1682             return -1;
1683         }
1684         return StringUTF16.indexOfLatin1(value, str.value);
1685     }
1686 
1687     /**
1688      * Returns the index within this string of the first occurrence of the
1689      * specified substring, starting at the specified index.
1690      *
1691      * <p>The returned index is the smallest value {@code k} for which:
1692      * <pre>{@code
1693      *     k >= Math.min(fromIndex, this.length()) &&
1694      *                   this.startsWith(str, k)
1695      * }</pre>
1696      * If no such value of {@code k} exists, then {@code -1} is returned.
1697      *
1698      * @param   str         the substring to search for.
1699      * @param   fromIndex   the index from which to start the search.
1700      * @return  the index of the first occurrence of the specified substring,
1701      *          starting at the specified index,
1702      *          or {@code -1} if there is no such occurrence.
1703      */
1704     public int indexOf(String str, int fromIndex) {
1705         return indexOf(value, coder(), length(), str, fromIndex);
1706     }
1707 
1708     /**
1709      * Code shared by String and AbstractStringBuilder to do searches. The
1710      * source is the character array being searched, and the target
1711      * is the string being searched for.
1712      *
1713      * @param   src       the characters being searched.
1714      * @param   srcCoder  the coder of the source string.
1715      * @param   srcCount  length of the source string.
1716      * @param   tgtStr    the characters being searched for.
1717      * @param   fromIndex the index to begin searching from.
1718      */
1719     static int indexOf(byte[] src, byte srcCoder, int srcCount,
1720                        String tgtStr, int fromIndex) {
1721         byte[] tgt    = tgtStr.value;
1722         byte tgtCoder = tgtStr.coder();
1723         int tgtCount  = tgtStr.length();
1724 
1725         if (fromIndex >= srcCount) {
1726             return (tgtCount == 0 ? srcCount : -1);
1727         }
1728         if (fromIndex < 0) {
1729             fromIndex = 0;
1730         }
1731         if (tgtCount == 0) {
1732             return fromIndex;
1733         }
1734         if (tgtCount > srcCount) {
1735             return -1;
1736         }
1737         if (srcCoder == tgtCoder) {
1738             return srcCoder == LATIN1
1739                 ? StringLatin1.indexOf(src, srcCount, tgt, tgtCount, fromIndex)
1740                 : StringUTF16.indexOf(src, srcCount, tgt, tgtCount, fromIndex);
1741         }
1742         if (srcCoder == LATIN1) {    //  && tgtCoder == UTF16
1743             return -1;
1744         }
1745         // srcCoder == UTF16 && tgtCoder == LATIN1) {
1746         return StringUTF16.indexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex);
1747     }
1748 
1749     /**
1750      * Returns the index within this string of the last occurrence of the
1751      * specified substring.  The last occurrence of the empty string ""
1752      * is considered to occur at the index value {@code this.length()}.
1753      *
1754      * <p>The returned index is the largest value {@code k} for which:
1755      * <pre>{@code
1756      * this.startsWith(str, k)
1757      * }</pre>
1758      * If no such value of {@code k} exists, then {@code -1} is returned.
1759      *
1760      * @param   str   the substring to search for.
1761      * @return  the index of the last occurrence of the specified substring,
1762      *          or {@code -1} if there is no such occurrence.
1763      */
1764     public int lastIndexOf(String str) {
1765         return lastIndexOf(str, length());
1766     }
1767 
1768     /**
1769      * Returns the index within this string of the last occurrence of the
1770      * specified substring, searching backward starting at the specified index.
1771      *
1772      * <p>The returned index is the largest value {@code k} for which:
1773      * <pre>{@code
1774      *     k <= Math.min(fromIndex, this.length()) &&
1775      *                   this.startsWith(str, k)
1776      * }</pre>
1777      * If no such value of {@code k} exists, then {@code -1} is returned.
1778      *
1779      * @param   str         the substring to search for.
1780      * @param   fromIndex   the index to start the search from.
1781      * @return  the index of the last occurrence of the specified substring,
1782      *          searching backward from the specified index,
1783      *          or {@code -1} if there is no such occurrence.
1784      */
1785     public int lastIndexOf(String str, int fromIndex) {
1786         return lastIndexOf(value, coder(), length(), str, fromIndex);
1787     }
1788 
1789     /**
1790      * Code shared by String and AbstractStringBuilder to do searches. The
1791      * source is the character array being searched, and the target
1792      * is the string being searched for.
1793      *
1794      * @param   src         the characters being searched.
1795      * @param   srcCoder    coder handles the mapping between bytes/chars
1796      * @param   srcCount    count of the source string.
1797      * @param   tgt         the characters being searched for.
1798      * @param   fromIndex   the index to begin searching from.
1799      */
1800     static int lastIndexOf(byte[] src, byte srcCoder, int srcCount,
1801                            String tgtStr, int fromIndex) {
1802         byte[] tgt = tgtStr.value;
1803         byte tgtCoder = tgtStr.coder();
1804         int tgtCount = tgtStr.length();
1805         /*
1806          * Check arguments; return immediately where possible. For
1807          * consistency, don't check for null str.
1808          */
1809         int rightIndex = srcCount - tgtCount;
1810         if (fromIndex > rightIndex) {
1811             fromIndex = rightIndex;
1812         }
1813         if (fromIndex < 0) {
1814             return -1;
1815         }
1816         /* Empty string always matches. */
1817         if (tgtCount == 0) {
1818             return fromIndex;
1819         }
1820         if (srcCoder == tgtCoder) {
1821             return srcCoder == LATIN1
1822                 ? StringLatin1.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex)
1823                 : StringUTF16.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex);
1824         }
1825         if (srcCoder == LATIN1) {    // && tgtCoder == UTF16
1826             return -1;
1827         }
1828         // srcCoder == UTF16 && tgtCoder == LATIN1
1829         return StringUTF16.lastIndexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex);
1830     }
1831 
1832     /**
1833      * Returns a string that is a substring of this string. The
1834      * substring begins with the character at the specified index and
1835      * extends to the end of this string. <p>
1836      * Examples:
1837      * <blockquote><pre>
1838      * "unhappy".substring(2) returns "happy"
1839      * "Harbison".substring(3) returns "bison"
1840      * "emptiness".substring(9) returns "" (an empty string)
1841      * </pre></blockquote>
1842      *
1843      * @param      beginIndex   the beginning index, inclusive.
1844      * @return     the specified substring.
1845      * @exception  IndexOutOfBoundsException  if
1846      *             {@code beginIndex} is negative or larger than the
1847      *             length of this {@code String} object.
1848      */
1849     public String substring(int beginIndex) {
1850         if (beginIndex < 0) {
1851             throw new StringIndexOutOfBoundsException(beginIndex);
1852         }
1853         int subLen = length() - beginIndex;
1854         if (subLen < 0) {
1855             throw new StringIndexOutOfBoundsException(subLen);
1856         }
1857         if (beginIndex == 0) {
1858             return this;
1859         }
1860         return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen)
1861                           : StringUTF16.newString(value, beginIndex, subLen);
1862     }
1863 
1864     /**
1865      * Returns a string that is a substring of this string. The
1866      * substring begins at the specified {@code beginIndex} and
1867      * extends to the character at index {@code endIndex - 1}.
1868      * Thus the length of the substring is {@code endIndex-beginIndex}.
1869      * <p>
1870      * Examples:
1871      * <blockquote><pre>
1872      * "hamburger".substring(4, 8) returns "urge"
1873      * "smiles".substring(1, 5) returns "mile"
1874      * </pre></blockquote>
1875      *
1876      * @param      beginIndex   the beginning index, inclusive.
1877      * @param      endIndex     the ending index, exclusive.
1878      * @return     the specified substring.
1879      * @exception  IndexOutOfBoundsException  if the
1880      *             {@code beginIndex} is negative, or
1881      *             {@code endIndex} is larger than the length of
1882      *             this {@code String} object, or
1883      *             {@code beginIndex} is larger than
1884      *             {@code endIndex}.
1885      */
1886     public String substring(int beginIndex, int endIndex) {
1887         int length = length();
1888         checkBoundsBeginEnd(beginIndex, endIndex, length);
1889         int subLen = endIndex - beginIndex;
1890         if (beginIndex == 0 && endIndex == length) {
1891             return this;
1892         }
1893         return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen)
1894                           : StringUTF16.newString(value, beginIndex, subLen);
1895     }
1896 
1897     /**
1898      * Returns a character sequence that is a subsequence of this sequence.
1899      *
1900      * <p> An invocation of this method of the form
1901      *
1902      * <blockquote><pre>
1903      * str.subSequence(begin,&nbsp;end)</pre></blockquote>
1904      *
1905      * behaves in exactly the same way as the invocation
1906      *
1907      * <blockquote><pre>
1908      * str.substring(begin,&nbsp;end)</pre></blockquote>
1909      *
1910      * @apiNote
1911      * This method is defined so that the {@code String} class can implement
1912      * the {@link CharSequence} interface.
1913      *
1914      * @param   beginIndex   the begin index, inclusive.
1915      * @param   endIndex     the end index, exclusive.
1916      * @return  the specified subsequence.
1917      *
1918      * @throws  IndexOutOfBoundsException
1919      *          if {@code beginIndex} or {@code endIndex} is negative,
1920      *          if {@code endIndex} is greater than {@code length()},
1921      *          or if {@code beginIndex} is greater than {@code endIndex}
1922      *
1923      * @since 1.4
1924      * @spec JSR-51
1925      */
1926     public CharSequence subSequence(int beginIndex, int endIndex) {
1927         return this.substring(beginIndex, endIndex);
1928     }
1929 
1930     /**
1931      * Concatenates the specified string to the end of this string.
1932      * <p>
1933      * If the length of the argument string is {@code 0}, then this
1934      * {@code String} object is returned. Otherwise, a
1935      * {@code String} object is returned that represents a character
1936      * sequence that is the concatenation of the character sequence
1937      * represented by this {@code String} object and the character
1938      * sequence represented by the argument string.<p>
1939      * Examples:
1940      * <blockquote><pre>
1941      * "cares".concat("s") returns "caress"
1942      * "to".concat("get").concat("her") returns "together"
1943      * </pre></blockquote>
1944      *
1945      * @param   str   the {@code String} that is concatenated to the end
1946      *                of this {@code String}.
1947      * @return  a string that represents the concatenation of this object's
1948      *          characters followed by the string argument's characters.
1949      */
1950     public String concat(String str) {
1951         int olen = str.length();
1952         if (olen == 0) {
1953             return this;
1954         }
1955         if (coder() == str.coder()) {
1956             byte[] val = this.value;
1957             byte[] oval = str.value;
1958             int len = val.length + oval.length;
1959             byte[] buf = Arrays.copyOf(val, len);
1960             System.arraycopy(oval, 0, buf, val.length, oval.length);
1961             return new String(buf, coder);
1962         }
1963         int len = length();
1964         byte[] buf = StringUTF16.newBytesFor(len + olen);
1965         getBytes(buf, 0, UTF16);
1966         str.getBytes(buf, len, UTF16);
1967         return new String(buf, UTF16);
1968     }
1969 
1970     /**
1971      * Returns a string resulting from replacing all occurrences of
1972      * {@code oldChar} in this string with {@code newChar}.
1973      * <p>
1974      * If the character {@code oldChar} does not occur in the
1975      * character sequence represented by this {@code String} object,
1976      * then a reference to this {@code String} object is returned.
1977      * Otherwise, a {@code String} object is returned that
1978      * represents a character sequence identical to the character sequence
1979      * represented by this {@code String} object, except that every
1980      * occurrence of {@code oldChar} is replaced by an occurrence
1981      * of {@code newChar}.
1982      * <p>
1983      * Examples:
1984      * <blockquote><pre>
1985      * "mesquite in your cellar".replace('e', 'o')
1986      *         returns "mosquito in your collar"
1987      * "the war of baronets".replace('r', 'y')
1988      *         returns "the way of bayonets"
1989      * "sparring with a purple porpoise".replace('p', 't')
1990      *         returns "starring with a turtle tortoise"
1991      * "JonL".replace('q', 'x') returns "JonL" (no change)
1992      * </pre></blockquote>
1993      *
1994      * @param   oldChar   the old character.
1995      * @param   newChar   the new character.
1996      * @return  a string derived from this string by replacing every
1997      *          occurrence of {@code oldChar} with {@code newChar}.
1998      */
1999     public String replace(char oldChar, char newChar) {
2000         if (oldChar != newChar) {
2001             String ret = isLatin1() ? StringLatin1.replace(value, oldChar, newChar)
2002                                     : StringUTF16.replace(value, oldChar, newChar);
2003             if (ret != null) {
2004                 return ret;
2005             }
2006         }
2007         return this;
2008     }
2009 
2010     /**
2011      * Tells whether or not this string matches the given <a
2012      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2013      *
2014      * <p> An invocation of this method of the form
2015      * <i>str</i>{@code .matches(}<i>regex</i>{@code )} yields exactly the
2016      * same result as the expression
2017      *
2018      * <blockquote>
2019      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#matches(String,CharSequence)
2020      * matches(<i>regex</i>, <i>str</i>)}
2021      * </blockquote>
2022      *
2023      * @param   regex
2024      *          the regular expression to which this string is to be matched
2025      *
2026      * @return  {@code true} if, and only if, this string matches the
2027      *          given regular expression
2028      *
2029      * @throws  PatternSyntaxException
2030      *          if the regular expression's syntax is invalid
2031      *
2032      * @see java.util.regex.Pattern
2033      *
2034      * @since 1.4
2035      * @spec JSR-51
2036      */
2037     public boolean matches(String regex) {
2038         return Pattern.matches(regex, this);
2039     }
2040 
2041     /**
2042      * Returns true if and only if this string contains the specified
2043      * sequence of char values.
2044      *
2045      * @param s the sequence to search for
2046      * @return true if this string contains {@code s}, false otherwise
2047      * @since 1.5
2048      */
2049     public boolean contains(CharSequence s) {
2050         return indexOf(s.toString()) >= 0;
2051     }
2052 
2053     /**
2054      * Replaces the first substring of this string that matches the given <a
2055      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2056      * given replacement.
2057      *
2058      * <p> An invocation of this method of the form
2059      * <i>str</i>{@code .replaceFirst(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2060      * yields exactly the same result as the expression
2061      *
2062      * <blockquote>
2063      * <code>
2064      * {@link java.util.regex.Pattern}.{@link
2065      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2066      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2067      * java.util.regex.Matcher#replaceFirst replaceFirst}(<i>repl</i>)
2068      * </code>
2069      * </blockquote>
2070      *
2071      *<p>
2072      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2073      * replacement string may cause the results to be different than if it were
2074      * being treated as a literal replacement string; see
2075      * {@link java.util.regex.Matcher#replaceFirst}.
2076      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2077      * meaning of these characters, if desired.
2078      *
2079      * @param   regex
2080      *          the regular expression to which this string is to be matched
2081      * @param   replacement
2082      *          the string to be substituted for the first match
2083      *
2084      * @return  The resulting {@code String}
2085      *
2086      * @throws  PatternSyntaxException
2087      *          if the regular expression's syntax is invalid
2088      *
2089      * @see java.util.regex.Pattern
2090      *
2091      * @since 1.4
2092      * @spec JSR-51
2093      */
2094     public String replaceFirst(String regex, String replacement) {
2095         return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
2096     }
2097 
2098     /**
2099      * Replaces each substring of this string that matches the given <a
2100      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2101      * given replacement.
2102      *
2103      * <p> An invocation of this method of the form
2104      * <i>str</i>{@code .replaceAll(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2105      * yields exactly the same result as the expression
2106      *
2107      * <blockquote>
2108      * <code>
2109      * {@link java.util.regex.Pattern}.{@link
2110      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2111      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2112      * java.util.regex.Matcher#replaceAll replaceAll}(<i>repl</i>)
2113      * </code>
2114      * </blockquote>
2115      *
2116      *<p>
2117      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2118      * replacement string may cause the results to be different than if it were
2119      * being treated as a literal replacement string; see
2120      * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
2121      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2122      * meaning of these characters, if desired.
2123      *
2124      * @param   regex
2125      *          the regular expression to which this string is to be matched
2126      * @param   replacement
2127      *          the string to be substituted for each match
2128      *
2129      * @return  The resulting {@code String}
2130      *
2131      * @throws  PatternSyntaxException
2132      *          if the regular expression's syntax is invalid
2133      *
2134      * @see java.util.regex.Pattern
2135      *
2136      * @since 1.4
2137      * @spec JSR-51
2138      */
2139     public String replaceAll(String regex, String replacement) {
2140         return Pattern.compile(regex).matcher(this).replaceAll(replacement);
2141     }
2142 
2143     /**
2144      * Replaces each substring of this string that matches the literal target
2145      * sequence with the specified literal replacement sequence. The
2146      * replacement proceeds from the beginning of the string to the end, for
2147      * example, replacing "aa" with "b" in the string "aaa" will result in
2148      * "ba" rather than "ab".
2149      *
2150      * @param  target The sequence of char values to be replaced
2151      * @param  replacement The replacement sequence of char values
2152      * @return  The resulting string
2153      * @since 1.5
2154      */
2155     public String replace(CharSequence target, CharSequence replacement) {
2156         String tgtStr = target.toString();
2157         String replStr = replacement.toString();
2158         int j = indexOf(tgtStr);
2159         if (j < 0) {
2160             return this;
2161         }
2162         int tgtLen = tgtStr.length();
2163         int tgtLen1 = Math.max(tgtLen, 1);
2164         int thisLen = length();
2165 
2166         int newLenHint = thisLen - tgtLen + replStr.length();
2167         if (newLenHint < 0) {
2168             throw new OutOfMemoryError();
2169         }
2170         StringBuilder sb = new StringBuilder(newLenHint);
2171         int i = 0;
2172         do {
2173             sb.append(this, i, j).append(replStr);
2174             i = j + tgtLen;
2175         } while (j < thisLen && (j = indexOf(tgtStr, j + tgtLen1)) > 0);
2176         return sb.append(this, i, thisLen).toString();
2177     }
2178 
2179     /**
2180      * Splits this string around matches of the given
2181      * <a href="../util/regex/Pattern.html#sum">regular expression</a>.
2182      *
2183      * <p> The array returned by this method contains each substring of this
2184      * string that is terminated by another substring that matches the given
2185      * expression or is terminated by the end of the string.  The substrings in
2186      * the array are in the order in which they occur in this string.  If the
2187      * expression does not match any part of the input then the resulting array
2188      * has just one element, namely this string.
2189      *
2190      * <p> When there is a positive-width match at the beginning of this
2191      * string then an empty leading substring is included at the beginning
2192      * of the resulting array. A zero-width match at the beginning however
2193      * never produces such empty leading substring.
2194      *
2195      * <p> The {@code limit} parameter controls the number of times the
2196      * pattern is applied and therefore affects the length of the resulting
2197      * array.  If the limit <i>n</i> is greater than zero then the pattern
2198      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
2199      * length will be no greater than <i>n</i>, and the array's last entry
2200      * will contain all input beyond the last matched delimiter.  If <i>n</i>
2201      * is non-positive then the pattern will be applied as many times as
2202      * possible and the array can have any length.  If <i>n</i> is zero then
2203      * the pattern will be applied as many times as possible, the array can
2204      * have any length, and trailing empty strings will be discarded.
2205      *
2206      * <p> The string {@code "boo:and:foo"}, for example, yields the
2207      * following results with these parameters:
2208      *
2209      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split example showing regex, limit, and result">
2210      * <tr>
2211      *     <th>Regex</th>
2212      *     <th>Limit</th>
2213      *     <th>Result</th>
2214      * </tr>
2215      * <tr><td align=center>:</td>
2216      *     <td align=center>2</td>
2217      *     <td>{@code { "boo", "and:foo" }}</td></tr>
2218      * <tr><td align=center>:</td>
2219      *     <td align=center>5</td>
2220      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2221      * <tr><td align=center>:</td>
2222      *     <td align=center>-2</td>
2223      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2224      * <tr><td align=center>o</td>
2225      *     <td align=center>5</td>
2226      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2227      * <tr><td align=center>o</td>
2228      *     <td align=center>-2</td>
2229      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2230      * <tr><td align=center>o</td>
2231      *     <td align=center>0</td>
2232      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2233      * </table></blockquote>
2234      *
2235      * <p> An invocation of this method of the form
2236      * <i>str.</i>{@code split(}<i>regex</i>{@code ,}&nbsp;<i>n</i>{@code )}
2237      * yields the same result as the expression
2238      *
2239      * <blockquote>
2240      * <code>
2241      * {@link java.util.regex.Pattern}.{@link
2242      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2243      * java.util.regex.Pattern#split(java.lang.CharSequence,int) split}(<i>str</i>,&nbsp;<i>n</i>)
2244      * </code>
2245      * </blockquote>
2246      *
2247      *
2248      * @param  regex
2249      *         the delimiting regular expression
2250      *
2251      * @param  limit
2252      *         the result threshold, as described above
2253      *
2254      * @return  the array of strings computed by splitting this string
2255      *          around matches of the given regular expression
2256      *
2257      * @throws  PatternSyntaxException
2258      *          if the regular expression's syntax is invalid
2259      *
2260      * @see java.util.regex.Pattern
2261      *
2262      * @since 1.4
2263      * @spec JSR-51
2264      */
2265     public String[] split(String regex, int limit) {
2266         /* fastpath if the regex is a
2267          (1)one-char String and this character is not one of the
2268             RegEx's meta characters ".$|()[{^?*+\\", or
2269          (2)two-char String and the first char is the backslash and
2270             the second is not the ascii digit or ascii letter.
2271          */
2272         char ch = 0;
2273         if (((regex.length() == 1 &&
2274              ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
2275              (regex.length() == 2 &&
2276               regex.charAt(0) == '\\' &&
2277               (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
2278               ((ch-'a')|('z'-ch)) < 0 &&
2279               ((ch-'A')|('Z'-ch)) < 0)) &&
2280             (ch < Character.MIN_HIGH_SURROGATE ||
2281              ch > Character.MAX_LOW_SURROGATE))
2282         {
2283             int off = 0;
2284             int next = 0;
2285             boolean limited = limit > 0;
2286             ArrayList<String> list = new ArrayList<>();
2287             while ((next = indexOf(ch, off)) != -1) {
2288                 if (!limited || list.size() < limit - 1) {
2289                     list.add(substring(off, next));
2290                     off = next + 1;
2291                 } else {    // last one
2292                     //assert (list.size() == limit - 1);
2293                     int last = length();
2294                     list.add(substring(off, last));
2295                     off = last;
2296                     break;
2297                 }
2298             }
2299             // If no match was found, return this
2300             if (off == 0)
2301                 return new String[]{this};
2302 
2303             // Add remaining segment
2304             if (!limited || list.size() < limit)
2305                 list.add(substring(off, length()));
2306 
2307             // Construct result
2308             int resultSize = list.size();
2309             if (limit == 0) {
2310                 while (resultSize > 0 && list.get(resultSize - 1).length() == 0) {
2311                     resultSize--;
2312                 }
2313             }
2314             String[] result = new String[resultSize];
2315             return list.subList(0, resultSize).toArray(result);
2316         }
2317         return Pattern.compile(regex).split(this, limit);
2318     }
2319 
2320     /**
2321      * Splits this string around matches of the given <a
2322      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2323      *
2324      * <p> This method works as if by invoking the two-argument {@link
2325      * #split(String, int) split} method with the given expression and a limit
2326      * argument of zero.  Trailing empty strings are therefore not included in
2327      * the resulting array.
2328      *
2329      * <p> The string {@code "boo:and:foo"}, for example, yields the following
2330      * results with these expressions:
2331      *
2332      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split examples showing regex and result">
2333      * <tr>
2334      *  <th>Regex</th>
2335      *  <th>Result</th>
2336      * </tr>
2337      * <tr><td align=center>:</td>
2338      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2339      * <tr><td align=center>o</td>
2340      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2341      * </table></blockquote>
2342      *
2343      *
2344      * @param  regex
2345      *         the delimiting regular expression
2346      *
2347      * @return  the array of strings computed by splitting this string
2348      *          around matches of the given regular expression
2349      *
2350      * @throws  PatternSyntaxException
2351      *          if the regular expression's syntax is invalid
2352      *
2353      * @see java.util.regex.Pattern
2354      *
2355      * @since 1.4
2356      * @spec JSR-51
2357      */
2358     public String[] split(String regex) {
2359         return split(regex, 0);
2360     }
2361 
2362     /**
2363      * Returns a new String composed of copies of the
2364      * {@code CharSequence elements} joined together with a copy of
2365      * the specified {@code delimiter}.
2366      *
2367      * <blockquote>For example,
2368      * <pre>{@code
2369      *     String message = String.join("-", "Java", "is", "cool");
2370      *     // message returned is: "Java-is-cool"
2371      * }</pre></blockquote>
2372      *
2373      * Note that if an element is null, then {@code "null"} is added.
2374      *
2375      * @param  delimiter the delimiter that separates each element
2376      * @param  elements the elements to join together.
2377      *
2378      * @return a new {@code String} that is composed of the {@code elements}
2379      *         separated by the {@code delimiter}
2380      *
2381      * @throws NullPointerException If {@code delimiter} or {@code elements}
2382      *         is {@code null}
2383      *
2384      * @see java.util.StringJoiner
2385      * @since 1.8
2386      */
2387     public static String join(CharSequence delimiter, CharSequence... elements) {
2388         Objects.requireNonNull(delimiter);
2389         Objects.requireNonNull(elements);
2390         // Number of elements not likely worth Arrays.stream overhead.
2391         StringJoiner joiner = new StringJoiner(delimiter);
2392         for (CharSequence cs: elements) {
2393             joiner.add(cs);
2394         }
2395         return joiner.toString();
2396     }
2397 
2398     /**
2399      * Returns a new {@code String} composed of copies of the
2400      * {@code CharSequence elements} joined together with a copy of the
2401      * specified {@code delimiter}.
2402      *
2403      * <blockquote>For example,
2404      * <pre>{@code
2405      *     List<String> strings = List.of("Java", "is", "cool");
2406      *     String message = String.join(" ", strings);
2407      *     //message returned is: "Java is cool"
2408      *
2409      *     Set<String> strings =
2410      *         new LinkedHashSet<>(List.of("Java", "is", "very", "cool"));
2411      *     String message = String.join("-", strings);
2412      *     //message returned is: "Java-is-very-cool"
2413      * }</pre></blockquote>
2414      *
2415      * Note that if an individual element is {@code null}, then {@code "null"} is added.
2416      *
2417      * @param  delimiter a sequence of characters that is used to separate each
2418      *         of the {@code elements} in the resulting {@code String}
2419      * @param  elements an {@code Iterable} that will have its {@code elements}
2420      *         joined together.
2421      *
2422      * @return a new {@code String} that is composed from the {@code elements}
2423      *         argument
2424      *
2425      * @throws NullPointerException If {@code delimiter} or {@code elements}
2426      *         is {@code null}
2427      *
2428      * @see    #join(CharSequence,CharSequence...)
2429      * @see    java.util.StringJoiner
2430      * @since 1.8
2431      */
2432     public static String join(CharSequence delimiter,
2433             Iterable<? extends CharSequence> elements) {
2434         Objects.requireNonNull(delimiter);
2435         Objects.requireNonNull(elements);
2436         StringJoiner joiner = new StringJoiner(delimiter);
2437         for (CharSequence cs: elements) {
2438             joiner.add(cs);
2439         }
2440         return joiner.toString();
2441     }
2442 
2443     /**
2444      * Converts all of the characters in this {@code String} to lower
2445      * case using the rules of the given {@code Locale}.  Case mapping is based
2446      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2447      * class. Since case mappings are not always 1:1 char mappings, the resulting
2448      * {@code String} may be a different length than the original {@code String}.
2449      * <p>
2450      * Examples of lowercase  mappings are in the following table:
2451      * <table border="1" summary="Lowercase mapping examples showing language code of locale, upper case, lower case, and description">
2452      * <tr>
2453      *   <th>Language Code of Locale</th>
2454      *   <th>Upper Case</th>
2455      *   <th>Lower Case</th>
2456      *   <th>Description</th>
2457      * </tr>
2458      * <tr>
2459      *   <td>tr (Turkish)</td>
2460      *   <td>\u0130</td>
2461      *   <td>\u0069</td>
2462      *   <td>capital letter I with dot above -&gt; small letter i</td>
2463      * </tr>
2464      * <tr>
2465      *   <td>tr (Turkish)</td>
2466      *   <td>\u0049</td>
2467      *   <td>\u0131</td>
2468      *   <td>capital letter I -&gt; small letter dotless i </td>
2469      * </tr>
2470      * <tr>
2471      *   <td>(all)</td>
2472      *   <td>French Fries</td>
2473      *   <td>french fries</td>
2474      *   <td>lowercased all chars in String</td>
2475      * </tr>
2476      * <tr>
2477      *   <td>(all)</td>
2478      *   <td><img src="doc-files/capiota.gif" alt="capiota"><img src="doc-files/capchi.gif" alt="capchi">
2479      *       <img src="doc-files/captheta.gif" alt="captheta"><img src="doc-files/capupsil.gif" alt="capupsil">
2480      *       <img src="doc-files/capsigma.gif" alt="capsigma"></td>
2481      *   <td><img src="doc-files/iota.gif" alt="iota"><img src="doc-files/chi.gif" alt="chi">
2482      *       <img src="doc-files/theta.gif" alt="theta"><img src="doc-files/upsilon.gif" alt="upsilon">
2483      *       <img src="doc-files/sigma1.gif" alt="sigma"></td>
2484      *   <td>lowercased all chars in String</td>
2485      * </tr>
2486      * </table>
2487      *
2488      * @param locale use the case transformation rules for this locale
2489      * @return the {@code String}, converted to lowercase.
2490      * @see     java.lang.String#toLowerCase()
2491      * @see     java.lang.String#toUpperCase()
2492      * @see     java.lang.String#toUpperCase(Locale)
2493      * @since   1.1
2494      */
2495     public String toLowerCase(Locale locale) {
2496         return isLatin1() ? StringLatin1.toLowerCase(this, value, locale)
2497                           : StringUTF16.toLowerCase(this, value, locale);
2498     }
2499 
2500     /**
2501      * Converts all of the characters in this {@code String} to lower
2502      * case using the rules of the default locale. This is equivalent to calling
2503      * {@code toLowerCase(Locale.getDefault())}.
2504      * <p>
2505      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2506      * results if used for strings that are intended to be interpreted locale
2507      * independently.
2508      * Examples are programming language identifiers, protocol keys, and HTML
2509      * tags.
2510      * For instance, {@code "TITLE".toLowerCase()} in a Turkish locale
2511      * returns {@code "t\u005Cu0131tle"}, where '\u005Cu0131' is the
2512      * LATIN SMALL LETTER DOTLESS I character.
2513      * To obtain correct results for locale insensitive strings, use
2514      * {@code toLowerCase(Locale.ROOT)}.
2515      *
2516      * @return  the {@code String}, converted to lowercase.
2517      * @see     java.lang.String#toLowerCase(Locale)
2518      */
2519     public String toLowerCase() {
2520         return toLowerCase(Locale.getDefault());
2521     }
2522 
2523     /**
2524      * Converts all of the characters in this {@code String} to upper
2525      * case using the rules of the given {@code Locale}. Case mapping is based
2526      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2527      * class. Since case mappings are not always 1:1 char mappings, the resulting
2528      * {@code String} may be a different length than the original {@code String}.
2529      * <p>
2530      * Examples of locale-sensitive and 1:M case mappings are in the following table.
2531      *
2532      * <table border="1" summary="Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.">
2533      * <tr>
2534      *   <th>Language Code of Locale</th>
2535      *   <th>Lower Case</th>
2536      *   <th>Upper Case</th>
2537      *   <th>Description</th>
2538      * </tr>
2539      * <tr>
2540      *   <td>tr (Turkish)</td>
2541      *   <td>\u0069</td>
2542      *   <td>\u0130</td>
2543      *   <td>small letter i -&gt; capital letter I with dot above</td>
2544      * </tr>
2545      * <tr>
2546      *   <td>tr (Turkish)</td>
2547      *   <td>\u0131</td>
2548      *   <td>\u0049</td>
2549      *   <td>small letter dotless i -&gt; capital letter I</td>
2550      * </tr>
2551      * <tr>
2552      *   <td>(all)</td>
2553      *   <td>\u00df</td>
2554      *   <td>\u0053 \u0053</td>
2555      *   <td>small letter sharp s -&gt; two letters: SS</td>
2556      * </tr>
2557      * <tr>
2558      *   <td>(all)</td>
2559      *   <td>Fahrvergn&uuml;gen</td>
2560      *   <td>FAHRVERGN&Uuml;GEN</td>
2561      *   <td></td>
2562      * </tr>
2563      * </table>
2564      * @param locale use the case transformation rules for this locale
2565      * @return the {@code String}, converted to uppercase.
2566      * @see     java.lang.String#toUpperCase()
2567      * @see     java.lang.String#toLowerCase()
2568      * @see     java.lang.String#toLowerCase(Locale)
2569      * @since   1.1
2570      */
2571     public String toUpperCase(Locale locale) {
2572         return isLatin1() ? StringLatin1.toUpperCase(this, value, locale)
2573                           : StringUTF16.toUpperCase(this, value, locale);
2574     }
2575 
2576     /**
2577      * Converts all of the characters in this {@code String} to upper
2578      * case using the rules of the default locale. This method is equivalent to
2579      * {@code toUpperCase(Locale.getDefault())}.
2580      * <p>
2581      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2582      * results if used for strings that are intended to be interpreted locale
2583      * independently.
2584      * Examples are programming language identifiers, protocol keys, and HTML
2585      * tags.
2586      * For instance, {@code "title".toUpperCase()} in a Turkish locale
2587      * returns {@code "T\u005Cu0130TLE"}, where '\u005Cu0130' is the
2588      * LATIN CAPITAL LETTER I WITH DOT ABOVE character.
2589      * To obtain correct results for locale insensitive strings, use
2590      * {@code toUpperCase(Locale.ROOT)}.
2591      *
2592      * @return  the {@code String}, converted to uppercase.
2593      * @see     java.lang.String#toUpperCase(Locale)
2594      */
2595     public String toUpperCase() {
2596         return toUpperCase(Locale.getDefault());
2597     }
2598 
2599     /**
2600      * Returns a string whose value is this string, with any leading and trailing
2601      * whitespace removed.
2602      * <p>
2603      * If this {@code String} object represents an empty character
2604      * sequence, or the first and last characters of character sequence
2605      * represented by this {@code String} object both have codes
2606      * greater than {@code '\u005Cu0020'} (the space character), then a
2607      * reference to this {@code String} object is returned.
2608      * <p>
2609      * Otherwise, if there is no character with a code greater than
2610      * {@code '\u005Cu0020'} in the string, then a
2611      * {@code String} object representing an empty string is
2612      * returned.
2613      * <p>
2614      * Otherwise, let <i>k</i> be the index of the first character in the
2615      * string whose code is greater than {@code '\u005Cu0020'}, and let
2616      * <i>m</i> be the index of the last character in the string whose code
2617      * is greater than {@code '\u005Cu0020'}. A {@code String}
2618      * object is returned, representing the substring of this string that
2619      * begins with the character at index <i>k</i> and ends with the
2620      * character at index <i>m</i>-that is, the result of
2621      * {@code this.substring(k, m + 1)}.
2622      * <p>
2623      * This method may be used to trim whitespace (as defined above) from
2624      * the beginning and end of a string.
2625      *
2626      * @return  A string whose value is this string, with any leading and trailing white
2627      *          space removed, or this string if it has no leading or
2628      *          trailing white space.
2629      */
2630     public String trim() {
2631         String ret = isLatin1() ? StringLatin1.trim(value)
2632                                 : StringUTF16.trim(value);
2633         return ret == null ? this : ret;
2634     }
2635 
2636     /**
2637      * This object (which is already a string!) is itself returned.
2638      *
2639      * @return  the string itself.
2640      */
2641     public String toString() {
2642         return this;
2643     }
2644 
2645     /**
2646      * Returns a stream of {@code int} zero-extending the {@code char} values
2647      * from this sequence.  Any char which maps to a <a
2648      * href="{@docRoot}/java/lang/Character.html#unicode">surrogate code
2649      * point</a> is passed through uninterpreted.
2650      *
2651      * @return an IntStream of char values from this sequence
2652      * @since 9
2653      */
2654     @Override
2655     public IntStream chars() {
2656         return StreamSupport.intStream(
2657             isLatin1() ? new StringLatin1.CharsSpliterator(value, Spliterator.IMMUTABLE)
2658                        : new StringUTF16.CharsSpliterator(value, Spliterator.IMMUTABLE),
2659             false);
2660     }
2661 
2662 
2663     /**
2664      * Returns a stream of code point values from this sequence.  Any surrogate
2665      * pairs encountered in the sequence are combined as if by {@linkplain
2666      * Character#toCodePoint Character.toCodePoint} and the result is passed
2667      * to the stream. Any other code units, including ordinary BMP characters,
2668      * unpaired surrogates, and undefined code units, are zero-extended to
2669      * {@code int} values which are then passed to the stream.
2670      *
2671      * @return an IntStream of Unicode code points from this sequence
2672      * @since 9
2673      */
2674     @Override
2675     public IntStream codePoints() {
2676         return StreamSupport.intStream(
2677             isLatin1() ? new StringLatin1.CharsSpliterator(value, Spliterator.IMMUTABLE)
2678                        : new StringUTF16.CodePointsSpliterator(value, Spliterator.IMMUTABLE),
2679             false);
2680     }
2681 
2682     /**
2683      * Converts this string to a new character array.
2684      *
2685      * @return  a newly allocated character array whose length is the length
2686      *          of this string and whose contents are initialized to contain
2687      *          the character sequence represented by this string.
2688      */
2689     public char[] toCharArray() {
2690         return isLatin1() ? StringLatin1.toChars(value)
2691                           : StringUTF16.toChars(value);
2692     }
2693 
2694     /**
2695      * Returns a formatted string using the specified format string and
2696      * arguments.
2697      *
2698      * <p> The locale always used is the one returned by {@link
2699      * java.util.Locale#getDefault(java.util.Locale.Category)
2700      * Locale.getDefault(Locale.Category)} with
2701      * {@link java.util.Locale.Category#FORMAT FORMAT} category specified.
2702      *
2703      * @param  format
2704      *         A <a href="../util/Formatter.html#syntax">format string</a>
2705      *
2706      * @param  args
2707      *         Arguments referenced by the format specifiers in the format
2708      *         string.  If there are more arguments than format specifiers, the
2709      *         extra arguments are ignored.  The number of arguments is
2710      *         variable and may be zero.  The maximum number of arguments is
2711      *         limited by the maximum dimension of a Java array as defined by
2712      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2713      *         The behaviour on a
2714      *         {@code null} argument depends on the <a
2715      *         href="../util/Formatter.html#syntax">conversion</a>.
2716      *
2717      * @throws  java.util.IllegalFormatException
2718      *          If a format string contains an illegal syntax, a format
2719      *          specifier that is incompatible with the given arguments,
2720      *          insufficient arguments given the format string, or other
2721      *          illegal conditions.  For specification of all possible
2722      *          formatting errors, see the <a
2723      *          href="../util/Formatter.html#detail">Details</a> section of the
2724      *          formatter class specification.
2725      *
2726      * @return  A formatted string
2727      *
2728      * @see  java.util.Formatter
2729      * @since  1.5
2730      */
2731     public static String format(String format, Object... args) {
2732         return new Formatter().format(format, args).toString();
2733     }
2734 
2735     /**
2736      * Returns a formatted string using the specified locale, format string,
2737      * and arguments.
2738      *
2739      * @param  l
2740      *         The {@linkplain java.util.Locale locale} to apply during
2741      *         formatting.  If {@code l} is {@code null} then no localization
2742      *         is applied.
2743      *
2744      * @param  format
2745      *         A <a href="../util/Formatter.html#syntax">format string</a>
2746      *
2747      * @param  args
2748      *         Arguments referenced by the format specifiers in the format
2749      *         string.  If there are more arguments than format specifiers, the
2750      *         extra arguments are ignored.  The number of arguments is
2751      *         variable and may be zero.  The maximum number of arguments is
2752      *         limited by the maximum dimension of a Java array as defined by
2753      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2754      *         The behaviour on a
2755      *         {@code null} argument depends on the
2756      *         <a href="../util/Formatter.html#syntax">conversion</a>.
2757      *
2758      * @throws  java.util.IllegalFormatException
2759      *          If a format string contains an illegal syntax, a format
2760      *          specifier that is incompatible with the given arguments,
2761      *          insufficient arguments given the format string, or other
2762      *          illegal conditions.  For specification of all possible
2763      *          formatting errors, see the <a
2764      *          href="../util/Formatter.html#detail">Details</a> section of the
2765      *          formatter class specification
2766      *
2767      * @return  A formatted string
2768      *
2769      * @see  java.util.Formatter
2770      * @since  1.5
2771      */
2772     public static String format(Locale l, String format, Object... args) {
2773         return new Formatter(l).format(format, args).toString();
2774     }
2775 
2776     /**
2777      * Returns the string representation of the {@code Object} argument.
2778      *
2779      * @param   obj   an {@code Object}.
2780      * @return  if the argument is {@code null}, then a string equal to
2781      *          {@code "null"}; otherwise, the value of
2782      *          {@code obj.toString()} is returned.
2783      * @see     java.lang.Object#toString()
2784      */
2785     public static String valueOf(Object obj) {
2786         return (obj == null) ? "null" : obj.toString();
2787     }
2788 
2789     /**
2790      * Returns the string representation of the {@code char} array
2791      * argument. The contents of the character array are copied; subsequent
2792      * modification of the character array does not affect the returned
2793      * string.
2794      *
2795      * @param   data     the character array.
2796      * @return  a {@code String} that contains the characters of the
2797      *          character array.
2798      */
2799     public static String valueOf(char data[]) {
2800         return new String(data);
2801     }
2802 
2803     /**
2804      * Returns the string representation of a specific subarray of the
2805      * {@code char} array argument.
2806      * <p>
2807      * The {@code offset} argument is the index of the first
2808      * character of the subarray. The {@code count} argument
2809      * specifies the length of the subarray. The contents of the subarray
2810      * are copied; subsequent modification of the character array does not
2811      * affect the returned string.
2812      *
2813      * @param   data     the character array.
2814      * @param   offset   initial offset of the subarray.
2815      * @param   count    length of the subarray.
2816      * @return  a {@code String} that contains the characters of the
2817      *          specified subarray of the character array.
2818      * @exception IndexOutOfBoundsException if {@code offset} is
2819      *          negative, or {@code count} is negative, or
2820      *          {@code offset+count} is larger than
2821      *          {@code data.length}.
2822      */
2823     public static String valueOf(char data[], int offset, int count) {
2824         return new String(data, offset, count);
2825     }
2826 
2827     /**
2828      * Equivalent to {@link #valueOf(char[], int, int)}.
2829      *
2830      * @param   data     the character array.
2831      * @param   offset   initial offset of the subarray.
2832      * @param   count    length of the subarray.
2833      * @return  a {@code String} that contains the characters of the
2834      *          specified subarray of the character array.
2835      * @exception IndexOutOfBoundsException if {@code offset} is
2836      *          negative, or {@code count} is negative, or
2837      *          {@code offset+count} is larger than
2838      *          {@code data.length}.
2839      */
2840     public static String copyValueOf(char data[], int offset, int count) {
2841         return new String(data, offset, count);
2842     }
2843 
2844     /**
2845      * Equivalent to {@link #valueOf(char[])}.
2846      *
2847      * @param   data   the character array.
2848      * @return  a {@code String} that contains the characters of the
2849      *          character array.
2850      */
2851     public static String copyValueOf(char data[]) {
2852         return new String(data);
2853     }
2854 
2855     /**
2856      * Returns the string representation of the {@code boolean} argument.
2857      *
2858      * @param   b   a {@code boolean}.
2859      * @return  if the argument is {@code true}, a string equal to
2860      *          {@code "true"} is returned; otherwise, a string equal to
2861      *          {@code "false"} is returned.
2862      */
2863     public static String valueOf(boolean b) {
2864         return b ? "true" : "false";
2865     }
2866 
2867     /**
2868      * Returns the string representation of the {@code char}
2869      * argument.
2870      *
2871      * @param   c   a {@code char}.
2872      * @return  a string of length {@code 1} containing
2873      *          as its single character the argument {@code c}.
2874      */
2875     public static String valueOf(char c) {
2876         if (COMPACT_STRINGS && StringLatin1.canEncode(c)) {
2877             return new String(StringLatin1.toBytes(c), LATIN1);
2878         }
2879         return new String(StringUTF16.toBytes(c), UTF16);
2880     }
2881 
2882     /**
2883      * Returns the string representation of the {@code int} argument.
2884      * <p>
2885      * The representation is exactly the one returned by the
2886      * {@code Integer.toString} method of one argument.
2887      *
2888      * @param   i   an {@code int}.
2889      * @return  a string representation of the {@code int} argument.
2890      * @see     java.lang.Integer#toString(int, int)
2891      */
2892     public static String valueOf(int i) {
2893         return Integer.toString(i);
2894     }
2895 
2896     /**
2897      * Returns the string representation of the {@code long} argument.
2898      * <p>
2899      * The representation is exactly the one returned by the
2900      * {@code Long.toString} method of one argument.
2901      *
2902      * @param   l   a {@code long}.
2903      * @return  a string representation of the {@code long} argument.
2904      * @see     java.lang.Long#toString(long)
2905      */
2906     public static String valueOf(long l) {
2907         return Long.toString(l);
2908     }
2909 
2910     /**
2911      * Returns the string representation of the {@code float} argument.
2912      * <p>
2913      * The representation is exactly the one returned by the
2914      * {@code Float.toString} method of one argument.
2915      *
2916      * @param   f   a {@code float}.
2917      * @return  a string representation of the {@code float} argument.
2918      * @see     java.lang.Float#toString(float)
2919      */
2920     public static String valueOf(float f) {
2921         return Float.toString(f);
2922     }
2923 
2924     /**
2925      * Returns the string representation of the {@code double} argument.
2926      * <p>
2927      * The representation is exactly the one returned by the
2928      * {@code Double.toString} method of one argument.
2929      *
2930      * @param   d   a {@code double}.
2931      * @return  a  string representation of the {@code double} argument.
2932      * @see     java.lang.Double#toString(double)
2933      */
2934     public static String valueOf(double d) {
2935         return Double.toString(d);
2936     }
2937 
2938     /**
2939      * Returns a canonical representation for the string object.
2940      * <p>
2941      * A pool of strings, initially empty, is maintained privately by the
2942      * class {@code String}.
2943      * <p>
2944      * When the intern method is invoked, if the pool already contains a
2945      * string equal to this {@code String} object as determined by
2946      * the {@link #equals(Object)} method, then the string from the pool is
2947      * returned. Otherwise, this {@code String} object is added to the
2948      * pool and a reference to this {@code String} object is returned.
2949      * <p>
2950      * It follows that for any two strings {@code s} and {@code t},
2951      * {@code s.intern() == t.intern()} is {@code true}
2952      * if and only if {@code s.equals(t)} is {@code true}.
2953      * <p>
2954      * All literal strings and string-valued constant expressions are
2955      * interned. String literals are defined in section 3.10.5 of the
2956      * <cite>The Java&trade; Language Specification</cite>.
2957      *
2958      * @return  a string that has the same contents as this string, but is
2959      *          guaranteed to be from a pool of unique strings.
2960      * @jls 3.10.5 String Literals
2961      */
2962     public native String intern();
2963 
2964     ////////////////////////////////////////////////////////////////
2965 
2966     /**
2967      * Copy character bytes from this string into dst starting at dstBegin.
2968      * This method doesn't perform any range checking.
2969      *
2970      * Invoker guarantees: dst is in UTF16 (inflate itself for asb), if two
2971      * coders are different, and dst is big enough (range check)
2972      *
2973      * @param dstBegin  the char index, not offset of byte[]
2974      * @param coder     the coder of dst[]
2975      */
2976     void getBytes(byte dst[], int dstBegin, byte coder) {
2977         if (coder() == coder) {
2978             System.arraycopy(value, 0, dst, dstBegin << coder, value.length);
2979         } else {    // this.coder == LATIN && coder == UTF16
2980             StringLatin1.inflate(value, 0, dst, dstBegin, value.length);
2981         }
2982     }
2983 
2984     /*
2985      * Package private constructor. Trailing Void argument is there for
2986      * disambiguating it against other (public) constructors.
2987      *
2988      * Stores the char[] value into a byte[] that each byte represents
2989      * the8 low-order bits of the corresponding character, if the char[]
2990      * contains only latin1 character. Or a byte[] that stores all
2991      * characters in their byte sequences defined by the {@code StringUTF16}.
2992      */
2993     String(char[] value, int off, int len, Void sig) {
2994         if (len == 0) {
2995             this.value = "".value;
2996             this.coder = "".coder;
2997             return;
2998         }
2999         if (COMPACT_STRINGS) {
3000             byte[] val = StringUTF16.compress(value, off, len);
3001             if (val != null) {
3002                 this.value = val;
3003                 this.coder = LATIN1;
3004                 return;
3005             }
3006         }
3007         this.coder = UTF16;
3008         this.value = StringUTF16.toBytes(value, off, len);
3009     }
3010 
3011     /*
3012      * Package private constructor. Trailing Void argument is there for
3013      * disambiguating it against other (public) constructors.
3014      */
3015     String(AbstractStringBuilder asb, Void sig) {
3016         byte[] val = asb.getValue();
3017         int length = asb.length();
3018         if (asb.isLatin1()) {
3019             this.coder = LATIN1;
3020             this.value = Arrays.copyOfRange(val, 0, length);
3021         } else {
3022             if (COMPACT_STRINGS) {
3023                 byte[] buf = StringUTF16.compress(val, 0, length);
3024                 if (buf != null) {
3025                     this.coder = LATIN1;
3026                     this.value = buf;
3027                     return;
3028                 }
3029             }
3030             this.coder = UTF16;
3031             this.value = Arrays.copyOfRange(val, 0, length << 1);
3032         }
3033     }
3034 
3035    /*
3036     * Package private constructor which shares value array for speed.
3037     */
3038     String(byte[] value, byte coder) {
3039         this.value = value;
3040         this.coder = coder;
3041     }
3042 
3043     byte coder() {
3044         return COMPACT_STRINGS ? coder : UTF16;
3045     }
3046 
3047     private boolean isLatin1() {
3048         return COMPACT_STRINGS && coder == LATIN1;
3049     }
3050 
3051     static final byte LATIN1 = 0;
3052     static final byte UTF16  = 1;
3053 
3054     /*
3055      * StringIndexOutOfBoundsException  if {@code index} is
3056      * negative or greater than or equal to {@code length}.
3057      */
3058     static void checkIndex(int index, int length) {
3059         if (index < 0 || index >= length) {
3060             throw new StringIndexOutOfBoundsException("index " + index +
3061                                                       ",length " + length);
3062         }
3063     }
3064 
3065     /*
3066      * StringIndexOutOfBoundsException  if {@code offset}
3067      * is negative or greater than {@code length}.
3068      */
3069     static void checkOffset(int offset, int length) {
3070         if (offset < 0 || offset > length) {
3071             throw new StringIndexOutOfBoundsException("offset " + offset +
3072                                                       ",length " + length);
3073         }
3074     }
3075 
3076     /*
3077      * Check {@code offset}, {@code count} against {@code 0} and {@code length}
3078      * bounds.
3079      *
3080      * @throws  StringIndexOutOfBoundsException
3081      *          If {@code offset} is negative, {@code count} is negative,
3082      *          or {@code offset} is greater than {@code length - count}
3083      */
3084     static void checkBoundsOffCount(int offset, int count, int length) {
3085         if (offset < 0 || count < 0 || offset > length - count) {
3086             throw new StringIndexOutOfBoundsException(
3087                 "offset " + offset + ", count " + count + ", length " + length);
3088         }
3089     }
3090 
3091     /*
3092      * Check {@code begin}, {@code end} against {@code 0} and {@code length}
3093      * bounds.
3094      *
3095      * @throws  StringIndexOutOfBoundsException
3096      *          If {@code begin} is negative, {@code begin} is greater than
3097      *          {@code end}, or {@code end} is greater than {@code length}.
3098      */
3099     static void checkBoundsBeginEnd(int begin, int end, int length) {
3100         if (begin < 0 || begin > end || end > length) {
3101             throw new StringIndexOutOfBoundsException(
3102                 "begin " + begin + ", end " + end + ", length " + length);
3103         }
3104     }
3105 }