1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/codeHeapState.hpp"
  32 #include "code/dependencyContext.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compileLog.hpp"
  35 #include "compiler/compilerOracle.hpp"
  36 #include "compiler/directivesParser.hpp"
  37 #include "interpreter/linkResolver.hpp"
  38 #include "jfr/jfrEvents.hpp"
  39 #include "logging/log.hpp"
  40 #include "logging/logStream.hpp"
  41 #include "memory/allocation.inline.hpp"
  42 #include "memory/resourceArea.hpp"
  43 #include "oops/methodData.hpp"
  44 #include "oops/method.inline.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "prims/nativeLookup.hpp"
  47 #include "prims/whitebox.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/atomic.hpp"
  50 #include "runtime/compilationPolicy.hpp"
  51 #include "runtime/init.hpp"
  52 #include "runtime/interfaceSupport.inline.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/jniHandles.inline.hpp"
  55 #include "runtime/os.hpp"
  56 #include "runtime/safepointVerifiers.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/sweeper.hpp"
  59 #include "runtime/timerTrace.hpp"
  60 #include "runtime/vframe.inline.hpp"
  61 #include "utilities/debug.hpp"
  62 #include "utilities/dtrace.hpp"
  63 #include "utilities/events.hpp"
  64 #include "utilities/formatBuffer.hpp"
  65 #include "utilities/macros.hpp"
  66 #ifdef COMPILER1
  67 #include "c1/c1_Compiler.hpp"
  68 #endif
  69 #if INCLUDE_JVMCI
  70 #include "jvmci/jvmciEnv.hpp"
  71 #include "jvmci/jvmciRuntime.hpp"
  72 #endif
  73 #ifdef COMPILER2
  74 #include "opto/c2compiler.hpp"
  75 #endif
  76 
  77 #ifdef DTRACE_ENABLED
  78 
  79 // Only bother with this argument setup if dtrace is available
  80 
  81 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)             \
  82   {                                                                      \
  83     Symbol* klass_name = (method)->klass_name();                         \
  84     Symbol* name = (method)->name();                                     \
  85     Symbol* signature = (method)->signature();                           \
  86     HOTSPOT_METHOD_COMPILE_BEGIN(                                        \
  87       (char *) comp_name, strlen(comp_name),                             \
  88       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
  89       (char *) name->bytes(), name->utf8_length(),                       \
  90       (char *) signature->bytes(), signature->utf8_length());            \
  91   }
  92 
  93 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)      \
  94   {                                                                      \
  95     Symbol* klass_name = (method)->klass_name();                         \
  96     Symbol* name = (method)->name();                                     \
  97     Symbol* signature = (method)->signature();                           \
  98     HOTSPOT_METHOD_COMPILE_END(                                          \
  99       (char *) comp_name, strlen(comp_name),                             \
 100       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
 101       (char *) name->bytes(), name->utf8_length(),                       \
 102       (char *) signature->bytes(), signature->utf8_length(), (success)); \
 103   }
 104 
 105 #else //  ndef DTRACE_ENABLED
 106 
 107 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)
 108 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)
 109 
 110 #endif // ndef DTRACE_ENABLED
 111 
 112 bool CompileBroker::_initialized = false;
 113 volatile bool CompileBroker::_should_block = false;
 114 volatile int  CompileBroker::_print_compilation_warning = 0;
 115 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation;
 116 
 117 // The installed compiler(s)
 118 AbstractCompiler* CompileBroker::_compilers[2];
 119 
 120 // The maximum numbers of compiler threads to be determined during startup.
 121 int CompileBroker::_c1_count = 0;
 122 int CompileBroker::_c2_count = 0;
 123 
 124 // An array of compiler names as Java String objects
 125 jobject* CompileBroker::_compiler1_objects = NULL;
 126 jobject* CompileBroker::_compiler2_objects = NULL;
 127 
 128 CompileLog** CompileBroker::_compiler1_logs = NULL;
 129 CompileLog** CompileBroker::_compiler2_logs = NULL;
 130 
 131 // These counters are used to assign an unique ID to each compilation.
 132 volatile jint CompileBroker::_compilation_id     = 0;
 133 volatile jint CompileBroker::_osr_compilation_id = 0;
 134 
 135 // Debugging information
 136 int  CompileBroker::_last_compile_type     = no_compile;
 137 int  CompileBroker::_last_compile_level    = CompLevel_none;
 138 char CompileBroker::_last_method_compiled[CompileBroker::name_buffer_length];
 139 
 140 // Performance counters
 141 PerfCounter* CompileBroker::_perf_total_compilation = NULL;
 142 PerfCounter* CompileBroker::_perf_osr_compilation = NULL;
 143 PerfCounter* CompileBroker::_perf_standard_compilation = NULL;
 144 
 145 PerfCounter* CompileBroker::_perf_total_bailout_count = NULL;
 146 PerfCounter* CompileBroker::_perf_total_invalidated_count = NULL;
 147 PerfCounter* CompileBroker::_perf_total_compile_count = NULL;
 148 PerfCounter* CompileBroker::_perf_total_osr_compile_count = NULL;
 149 PerfCounter* CompileBroker::_perf_total_standard_compile_count = NULL;
 150 
 151 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = NULL;
 152 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = NULL;
 153 PerfCounter* CompileBroker::_perf_sum_nmethod_size = NULL;
 154 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = NULL;
 155 
 156 PerfStringVariable* CompileBroker::_perf_last_method = NULL;
 157 PerfStringVariable* CompileBroker::_perf_last_failed_method = NULL;
 158 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = NULL;
 159 PerfVariable*       CompileBroker::_perf_last_compile_type = NULL;
 160 PerfVariable*       CompileBroker::_perf_last_compile_size = NULL;
 161 PerfVariable*       CompileBroker::_perf_last_failed_type = NULL;
 162 PerfVariable*       CompileBroker::_perf_last_invalidated_type = NULL;
 163 
 164 // Timers and counters for generating statistics
 165 elapsedTimer CompileBroker::_t_total_compilation;
 166 elapsedTimer CompileBroker::_t_osr_compilation;
 167 elapsedTimer CompileBroker::_t_standard_compilation;
 168 elapsedTimer CompileBroker::_t_invalidated_compilation;
 169 elapsedTimer CompileBroker::_t_bailedout_compilation;
 170 
 171 int CompileBroker::_total_bailout_count            = 0;
 172 int CompileBroker::_total_invalidated_count        = 0;
 173 int CompileBroker::_total_compile_count            = 0;
 174 int CompileBroker::_total_osr_compile_count        = 0;
 175 int CompileBroker::_total_standard_compile_count   = 0;
 176 int CompileBroker::_total_compiler_stopped_count   = 0;
 177 int CompileBroker::_total_compiler_restarted_count = 0;
 178 
 179 int CompileBroker::_sum_osr_bytes_compiled         = 0;
 180 int CompileBroker::_sum_standard_bytes_compiled    = 0;
 181 int CompileBroker::_sum_nmethod_size               = 0;
 182 int CompileBroker::_sum_nmethod_code_size          = 0;
 183 
 184 long CompileBroker::_peak_compilation_time         = 0;
 185 
 186 CompileQueue* CompileBroker::_c2_compile_queue     = NULL;
 187 CompileQueue* CompileBroker::_c1_compile_queue     = NULL;
 188 
 189 
 190 
 191 class CompilationLog : public StringEventLog {
 192  public:
 193   CompilationLog() : StringEventLog("Compilation events") {
 194   }
 195 
 196   void log_compile(JavaThread* thread, CompileTask* task) {
 197     StringLogMessage lm;
 198     stringStream sstr(lm.buffer(), lm.size());
 199     // msg.time_stamp().update_to(tty->time_stamp().ticks());
 200     task->print(&sstr, NULL, true, false);
 201     log(thread, "%s", (const char*)lm);
 202   }
 203 
 204   void log_nmethod(JavaThread* thread, nmethod* nm) {
 205     log(thread, "nmethod %d%s " INTPTR_FORMAT " code [" INTPTR_FORMAT ", " INTPTR_FORMAT "]",
 206         nm->compile_id(), nm->is_osr_method() ? "%" : "",
 207         p2i(nm), p2i(nm->code_begin()), p2i(nm->code_end()));
 208   }
 209 
 210   void log_failure(JavaThread* thread, CompileTask* task, const char* reason, const char* retry_message) {
 211     StringLogMessage lm;
 212     lm.print("%4d   COMPILE SKIPPED: %s", task->compile_id(), reason);
 213     if (retry_message != NULL) {
 214       lm.append(" (%s)", retry_message);
 215     }
 216     lm.print("\n");
 217     log(thread, "%s", (const char*)lm);
 218   }
 219 
 220   void log_metaspace_failure(const char* reason) {
 221     ResourceMark rm;
 222     StringLogMessage lm;
 223     lm.print("%4d   COMPILE PROFILING SKIPPED: %s", -1, reason);
 224     lm.print("\n");
 225     log(JavaThread::current(), "%s", (const char*)lm);
 226   }
 227 };
 228 
 229 static CompilationLog* _compilation_log = NULL;
 230 
 231 bool compileBroker_init() {
 232   if (LogEvents) {
 233     _compilation_log = new CompilationLog();
 234   }
 235 
 236   // init directives stack, adding default directive
 237   DirectivesStack::init();
 238 
 239   if (DirectivesParser::has_file()) {
 240     return DirectivesParser::parse_from_flag();
 241   } else if (CompilerDirectivesPrint) {
 242     // Print default directive even when no other was added
 243     DirectivesStack::print(tty);
 244   }
 245 
 246   return true;
 247 }
 248 
 249 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) {
 250   CompilerThread* thread = CompilerThread::current();
 251   thread->set_task(task);
 252 #if INCLUDE_JVMCI
 253   if (task->is_blocking() && CompileBroker::compiler(task->comp_level())->is_jvmci()) {
 254     task->set_jvmci_compiler_thread(thread);
 255   }
 256 #endif
 257   CompileLog*     log  = thread->log();
 258   if (log != NULL && !task->is_unloaded())  task->log_task_start(log);
 259 }
 260 
 261 CompileTaskWrapper::~CompileTaskWrapper() {
 262   CompilerThread* thread = CompilerThread::current();
 263   CompileTask* task = thread->task();
 264   CompileLog*  log  = thread->log();
 265   if (log != NULL && !task->is_unloaded())  task->log_task_done(log);
 266   thread->set_task(NULL);
 267   task->set_code_handle(NULL);
 268   thread->set_env(NULL);
 269   if (task->is_blocking()) {
 270     bool free_task = false;
 271     {
 272       MutexLocker notifier(task->lock(), thread);
 273       task->mark_complete();
 274 #if INCLUDE_JVMCI
 275       if (CompileBroker::compiler(task->comp_level())->is_jvmci()) {
 276         if (!task->has_waiter()) {
 277           // The waiting thread timed out and thus did not free the task.
 278           free_task = true;
 279         }
 280         task->set_jvmci_compiler_thread(NULL);
 281       }
 282 #endif
 283       if (!free_task) {
 284         // Notify the waiting thread that the compilation has completed
 285         // so that it can free the task.
 286         task->lock()->notify_all();
 287       }
 288     }
 289     if (free_task) {
 290       // The task can only be freed once the task lock is released.
 291       CompileTask::free(task);
 292     }
 293   } else {
 294     task->mark_complete();
 295 
 296     // By convention, the compiling thread is responsible for
 297     // recycling a non-blocking CompileTask.
 298     CompileTask::free(task);
 299   }
 300 }
 301 
 302 /**
 303  * Check if a CompilerThread can be removed and update count if requested.
 304  */
 305 bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) {
 306   assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here");
 307   if (!ReduceNumberOfCompilerThreads) return false;
 308 
 309   AbstractCompiler *compiler = ct->compiler();
 310   int compiler_count = compiler->num_compiler_threads();
 311   bool c1 = compiler->is_c1();
 312 
 313   // Keep at least 1 compiler thread of each type.
 314   if (compiler_count < 2) return false;
 315 
 316   // Keep thread alive for at least some time.
 317   if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false;
 318 
 319 #if INCLUDE_JVMCI
 320   if (compiler->is_jvmci()) {
 321     // Handles for JVMCI thread objects may get released concurrently.
 322     if (do_it) {
 323       assert(CompileThread_lock->owner() == ct, "must be holding lock");
 324     } else {
 325       // Skip check if it's the last thread and let caller check again.
 326       return true;
 327     }
 328   }
 329 #endif
 330 
 331   // We only allow the last compiler thread of each type to get removed.
 332   jobject last_compiler = c1 ? compiler1_object(compiler_count - 1)
 333                              : compiler2_object(compiler_count - 1);
 334   if (oopDesc::equals(ct->threadObj(), JNIHandles::resolve_non_null(last_compiler))) {
 335     if (do_it) {
 336       assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent.
 337       compiler->set_num_compiler_threads(compiler_count - 1);
 338 #if INCLUDE_JVMCI
 339       if (compiler->is_jvmci()) {
 340         // Old j.l.Thread object can die when no longer referenced elsewhere.
 341         JNIHandles::destroy_global(compiler2_object(compiler_count - 1));
 342         _compiler2_objects[compiler_count - 1] = NULL;
 343       }
 344 #endif
 345     }
 346     return true;
 347   }
 348   return false;
 349 }
 350 
 351 /**
 352  * Add a CompileTask to a CompileQueue.
 353  */
 354 void CompileQueue::add(CompileTask* task) {
 355   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 356 
 357   task->set_next(NULL);
 358   task->set_prev(NULL);
 359 
 360   if (_last == NULL) {
 361     // The compile queue is empty.
 362     assert(_first == NULL, "queue is empty");
 363     _first = task;
 364     _last = task;
 365   } else {
 366     // Append the task to the queue.
 367     assert(_last->next() == NULL, "not last");
 368     _last->set_next(task);
 369     task->set_prev(_last);
 370     _last = task;
 371   }
 372   ++_size;
 373 
 374   // Mark the method as being in the compile queue.
 375   task->method()->set_queued_for_compilation();
 376 
 377   if (CIPrintCompileQueue) {
 378     print_tty();
 379   }
 380 
 381   if (LogCompilation && xtty != NULL) {
 382     task->log_task_queued();
 383   }
 384 
 385   // Notify CompilerThreads that a task is available.
 386   MethodCompileQueue_lock->notify_all();
 387 }
 388 
 389 /**
 390  * Empties compilation queue by putting all compilation tasks onto
 391  * a freelist. Furthermore, the method wakes up all threads that are
 392  * waiting on a compilation task to finish. This can happen if background
 393  * compilation is disabled.
 394  */
 395 void CompileQueue::free_all() {
 396   MutexLocker mu(MethodCompileQueue_lock);
 397   CompileTask* next = _first;
 398 
 399   // Iterate over all tasks in the compile queue
 400   while (next != NULL) {
 401     CompileTask* current = next;
 402     next = current->next();
 403     {
 404       // Wake up thread that blocks on the compile task.
 405       MutexLocker ct_lock(current->lock());
 406       current->lock()->notify();
 407     }
 408     // Put the task back on the freelist.
 409     CompileTask::free(current);
 410   }
 411   _first = NULL;
 412 
 413   // Wake up all threads that block on the queue.
 414   MethodCompileQueue_lock->notify_all();
 415 }
 416 
 417 /**
 418  * Get the next CompileTask from a CompileQueue
 419  */
 420 CompileTask* CompileQueue::get() {
 421   // save methods from RedefineClasses across safepoint
 422   // across MethodCompileQueue_lock below.
 423   methodHandle save_method;
 424   methodHandle save_hot_method;
 425 
 426   MutexLocker locker(MethodCompileQueue_lock);
 427   // If _first is NULL we have no more compile jobs. There are two reasons for
 428   // having no compile jobs: First, we compiled everything we wanted. Second,
 429   // we ran out of code cache so compilation has been disabled. In the latter
 430   // case we perform code cache sweeps to free memory such that we can re-enable
 431   // compilation.
 432   while (_first == NULL) {
 433     // Exit loop if compilation is disabled forever
 434     if (CompileBroker::is_compilation_disabled_forever()) {
 435       return NULL;
 436     }
 437 
 438     // If there are no compilation tasks and we can compile new jobs
 439     // (i.e., there is enough free space in the code cache) there is
 440     // no need to invoke the sweeper. As a result, the hotness of methods
 441     // remains unchanged. This behavior is desired, since we want to keep
 442     // the stable state, i.e., we do not want to evict methods from the
 443     // code cache if it is unnecessary.
 444     // We need a timed wait here, since compiler threads can exit if compilation
 445     // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads
 446     // is not critical and we do not want idle compiler threads to wake up too often.
 447     MethodCompileQueue_lock->wait(!Mutex::_no_safepoint_check_flag, 5*1000);
 448 
 449     if (UseDynamicNumberOfCompilerThreads && _first == NULL) {
 450       // Still nothing to compile. Give caller a chance to stop this thread.
 451       if (CompileBroker::can_remove(CompilerThread::current(), false)) return NULL;
 452     }
 453   }
 454 
 455   if (CompileBroker::is_compilation_disabled_forever()) {
 456     return NULL;
 457   }
 458 
 459   CompileTask* task;
 460   {
 461     NoSafepointVerifier nsv;
 462     task = CompilationPolicy::policy()->select_task(this);
 463     if (task != NULL) {
 464       task = task->select_for_compilation();
 465     }
 466   }
 467 
 468   if (task != NULL) {
 469     // Save method pointers across unlock safepoint.  The task is removed from
 470     // the compilation queue, which is walked during RedefineClasses.
 471     save_method = methodHandle(task->method());
 472     save_hot_method = methodHandle(task->hot_method());
 473 
 474     remove(task);
 475   }
 476   purge_stale_tasks(); // may temporarily release MCQ lock
 477   return task;
 478 }
 479 
 480 // Clean & deallocate stale compile tasks.
 481 // Temporarily releases MethodCompileQueue lock.
 482 void CompileQueue::purge_stale_tasks() {
 483   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 484   if (_first_stale != NULL) {
 485     // Stale tasks are purged when MCQ lock is released,
 486     // but _first_stale updates are protected by MCQ lock.
 487     // Once task processing starts and MCQ lock is released,
 488     // other compiler threads can reuse _first_stale.
 489     CompileTask* head = _first_stale;
 490     _first_stale = NULL;
 491     {
 492       MutexUnlocker ul(MethodCompileQueue_lock);
 493       for (CompileTask* task = head; task != NULL; ) {
 494         CompileTask* next_task = task->next();
 495         CompileTaskWrapper ctw(task); // Frees the task
 496         task->set_failure_reason("stale task");
 497         task = next_task;
 498       }
 499     }
 500   }
 501 }
 502 
 503 void CompileQueue::remove(CompileTask* task) {
 504   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 505   if (task->prev() != NULL) {
 506     task->prev()->set_next(task->next());
 507   } else {
 508     // max is the first element
 509     assert(task == _first, "Sanity");
 510     _first = task->next();
 511   }
 512 
 513   if (task->next() != NULL) {
 514     task->next()->set_prev(task->prev());
 515   } else {
 516     // max is the last element
 517     assert(task == _last, "Sanity");
 518     _last = task->prev();
 519   }
 520   --_size;
 521 }
 522 
 523 void CompileQueue::remove_and_mark_stale(CompileTask* task) {
 524   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 525   remove(task);
 526 
 527   // Enqueue the task for reclamation (should be done outside MCQ lock)
 528   task->set_next(_first_stale);
 529   task->set_prev(NULL);
 530   _first_stale = task;
 531 }
 532 
 533 // methods in the compile queue need to be marked as used on the stack
 534 // so that they don't get reclaimed by Redefine Classes
 535 void CompileQueue::mark_on_stack() {
 536   CompileTask* task = _first;
 537   while (task != NULL) {
 538     task->mark_on_stack();
 539     task = task->next();
 540   }
 541 }
 542 
 543 
 544 CompileQueue* CompileBroker::compile_queue(int comp_level) {
 545   if (is_c2_compile(comp_level)) return _c2_compile_queue;
 546   if (is_c1_compile(comp_level)) return _c1_compile_queue;
 547   return NULL;
 548 }
 549 
 550 void CompileBroker::print_compile_queues(outputStream* st) {
 551   st->print_cr("Current compiles: ");
 552 
 553   char buf[2000];
 554   int buflen = sizeof(buf);
 555   Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true);
 556 
 557   st->cr();
 558   if (_c1_compile_queue != NULL) {
 559     _c1_compile_queue->print(st);
 560   }
 561   if (_c2_compile_queue != NULL) {
 562     _c2_compile_queue->print(st);
 563   }
 564 }
 565 
 566 void CompileQueue::print(outputStream* st) {
 567   assert_locked_or_safepoint(MethodCompileQueue_lock);
 568   st->print_cr("%s:", name());
 569   CompileTask* task = _first;
 570   if (task == NULL) {
 571     st->print_cr("Empty");
 572   } else {
 573     while (task != NULL) {
 574       task->print(st, NULL, true, true);
 575       task = task->next();
 576     }
 577   }
 578   st->cr();
 579 }
 580 
 581 void CompileQueue::print_tty() {
 582   ResourceMark rm;
 583   stringStream ss;
 584   // Dump the compile queue into a buffer before locking the tty
 585   print(&ss);
 586   {
 587     ttyLocker ttyl;
 588     tty->print("%s", ss.as_string());
 589   }
 590 }
 591 
 592 CompilerCounters::CompilerCounters() {
 593   _current_method[0] = '\0';
 594   _compile_type = CompileBroker::no_compile;
 595 }
 596 
 597 // ------------------------------------------------------------------
 598 // CompileBroker::compilation_init
 599 //
 600 // Initialize the Compilation object
 601 void CompileBroker::compilation_init_phase1(TRAPS) {
 602   _last_method_compiled[0] = '\0';
 603 
 604   // No need to initialize compilation system if we do not use it.
 605   if (!UseCompiler) {
 606     return;
 607   }
 608   // Set the interface to the current compiler(s).
 609   _c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
 610   _c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
 611 
 612 #if INCLUDE_JVMCI
 613   if (EnableJVMCI) {
 614     // This is creating a JVMCICompiler singleton.
 615     JVMCICompiler* jvmci = new JVMCICompiler();
 616 
 617     if (UseJVMCICompiler) {
 618       _compilers[1] = jvmci;
 619       if (FLAG_IS_DEFAULT(JVMCIThreads)) {
 620         if (BootstrapJVMCI) {
 621           // JVMCI will bootstrap so give it more threads
 622           _c2_count = MIN2(32, os::active_processor_count());
 623         }
 624       } else {
 625         _c2_count = JVMCIThreads;
 626       }
 627       if (FLAG_IS_DEFAULT(JVMCIHostThreads)) {
 628       } else {
 629         _c1_count = JVMCIHostThreads;
 630       }
 631     }
 632   }
 633 #endif // INCLUDE_JVMCI
 634 
 635 #ifdef COMPILER1
 636   if (_c1_count > 0) {
 637     _compilers[0] = new Compiler();
 638   }
 639 #endif // COMPILER1
 640 
 641 #ifdef COMPILER2
 642   if (true JVMCI_ONLY( && !UseJVMCICompiler)) {
 643     if (_c2_count > 0) {
 644       _compilers[1] = new C2Compiler();
 645     }
 646   }
 647 #endif // COMPILER2
 648 
 649   // Start the compiler thread(s) and the sweeper thread
 650   init_compiler_sweeper_threads();
 651   // totalTime performance counter is always created as it is required
 652   // by the implementation of java.lang.management.CompilationMBean.
 653   {
 654     EXCEPTION_MARK;
 655     _perf_total_compilation =
 656                  PerfDataManager::create_counter(JAVA_CI, "totalTime",
 657                                                  PerfData::U_Ticks, CHECK);
 658   }
 659 
 660   if (UsePerfData) {
 661 
 662     EXCEPTION_MARK;
 663 
 664     // create the jvmstat performance counters
 665     _perf_osr_compilation =
 666                  PerfDataManager::create_counter(SUN_CI, "osrTime",
 667                                                  PerfData::U_Ticks, CHECK);
 668 
 669     _perf_standard_compilation =
 670                  PerfDataManager::create_counter(SUN_CI, "standardTime",
 671                                                  PerfData::U_Ticks, CHECK);
 672 
 673     _perf_total_bailout_count =
 674                  PerfDataManager::create_counter(SUN_CI, "totalBailouts",
 675                                                  PerfData::U_Events, CHECK);
 676 
 677     _perf_total_invalidated_count =
 678                  PerfDataManager::create_counter(SUN_CI, "totalInvalidates",
 679                                                  PerfData::U_Events, CHECK);
 680 
 681     _perf_total_compile_count =
 682                  PerfDataManager::create_counter(SUN_CI, "totalCompiles",
 683                                                  PerfData::U_Events, CHECK);
 684     _perf_total_osr_compile_count =
 685                  PerfDataManager::create_counter(SUN_CI, "osrCompiles",
 686                                                  PerfData::U_Events, CHECK);
 687 
 688     _perf_total_standard_compile_count =
 689                  PerfDataManager::create_counter(SUN_CI, "standardCompiles",
 690                                                  PerfData::U_Events, CHECK);
 691 
 692     _perf_sum_osr_bytes_compiled =
 693                  PerfDataManager::create_counter(SUN_CI, "osrBytes",
 694                                                  PerfData::U_Bytes, CHECK);
 695 
 696     _perf_sum_standard_bytes_compiled =
 697                  PerfDataManager::create_counter(SUN_CI, "standardBytes",
 698                                                  PerfData::U_Bytes, CHECK);
 699 
 700     _perf_sum_nmethod_size =
 701                  PerfDataManager::create_counter(SUN_CI, "nmethodSize",
 702                                                  PerfData::U_Bytes, CHECK);
 703 
 704     _perf_sum_nmethod_code_size =
 705                  PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize",
 706                                                  PerfData::U_Bytes, CHECK);
 707 
 708     _perf_last_method =
 709                  PerfDataManager::create_string_variable(SUN_CI, "lastMethod",
 710                                        CompilerCounters::cmname_buffer_length,
 711                                        "", CHECK);
 712 
 713     _perf_last_failed_method =
 714             PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod",
 715                                        CompilerCounters::cmname_buffer_length,
 716                                        "", CHECK);
 717 
 718     _perf_last_invalidated_method =
 719         PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod",
 720                                      CompilerCounters::cmname_buffer_length,
 721                                      "", CHECK);
 722 
 723     _perf_last_compile_type =
 724              PerfDataManager::create_variable(SUN_CI, "lastType",
 725                                               PerfData::U_None,
 726                                               (jlong)CompileBroker::no_compile,
 727                                               CHECK);
 728 
 729     _perf_last_compile_size =
 730              PerfDataManager::create_variable(SUN_CI, "lastSize",
 731                                               PerfData::U_Bytes,
 732                                               (jlong)CompileBroker::no_compile,
 733                                               CHECK);
 734 
 735 
 736     _perf_last_failed_type =
 737              PerfDataManager::create_variable(SUN_CI, "lastFailedType",
 738                                               PerfData::U_None,
 739                                               (jlong)CompileBroker::no_compile,
 740                                               CHECK);
 741 
 742     _perf_last_invalidated_type =
 743          PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType",
 744                                           PerfData::U_None,
 745                                           (jlong)CompileBroker::no_compile,
 746                                           CHECK);
 747   }
 748 }
 749 
 750 // Completes compiler initialization. Compilation requests submitted
 751 // prior to this will be silently ignored.
 752 void CompileBroker::compilation_init_phase2() {
 753   _initialized = true;
 754 }
 755 
 756 Handle CompileBroker::create_thread_oop(const char* name, TRAPS) {
 757   Handle string = java_lang_String::create_from_str(name, CHECK_NH);
 758   Handle thread_group(THREAD, Universe::system_thread_group());
 759   return JavaCalls::construct_new_instance(
 760                        SystemDictionary::Thread_klass(),
 761                        vmSymbols::threadgroup_string_void_signature(),
 762                        thread_group,
 763                        string,
 764                        CHECK_NH);
 765 }
 766 
 767 
 768 JavaThread* CompileBroker::make_thread(jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, TRAPS) {
 769   JavaThread* thread = NULL;
 770   {
 771     MutexLocker mu(Threads_lock, THREAD);
 772     if (comp != NULL) {
 773       if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) {
 774         CompilerCounters* counters = new CompilerCounters();
 775         thread = new CompilerThread(queue, counters);
 776       }
 777     } else {
 778       thread = new CodeCacheSweeperThread();
 779     }
 780     // At this point the new CompilerThread data-races with this startup
 781     // thread (which I believe is the primoridal thread and NOT the VM
 782     // thread).  This means Java bytecodes being executed at startup can
 783     // queue compile jobs which will run at whatever default priority the
 784     // newly created CompilerThread runs at.
 785 
 786 
 787     // At this point it may be possible that no osthread was created for the
 788     // JavaThread due to lack of memory. We would have to throw an exception
 789     // in that case. However, since this must work and we do not allow
 790     // exceptions anyway, check and abort if this fails. But first release the
 791     // lock.
 792 
 793     if (thread != NULL && thread->osthread() != NULL) {
 794 
 795       java_lang_Thread::set_thread(JNIHandles::resolve_non_null(thread_handle), thread);
 796 
 797       // Note that this only sets the JavaThread _priority field, which by
 798       // definition is limited to Java priorities and not OS priorities.
 799       // The os-priority is set in the CompilerThread startup code itself
 800 
 801       java_lang_Thread::set_priority(JNIHandles::resolve_non_null(thread_handle), NearMaxPriority);
 802 
 803       // Note that we cannot call os::set_priority because it expects Java
 804       // priorities and we are *explicitly* using OS priorities so that it's
 805       // possible to set the compiler thread priority higher than any Java
 806       // thread.
 807 
 808       int native_prio = CompilerThreadPriority;
 809       if (native_prio == -1) {
 810         if (UseCriticalCompilerThreadPriority) {
 811           native_prio = os::java_to_os_priority[CriticalPriority];
 812         } else {
 813           native_prio = os::java_to_os_priority[NearMaxPriority];
 814         }
 815       }
 816       os::set_native_priority(thread, native_prio);
 817 
 818       java_lang_Thread::set_daemon(JNIHandles::resolve_non_null(thread_handle));
 819 
 820       thread->set_threadObj(JNIHandles::resolve_non_null(thread_handle));
 821       if (comp != NULL) {
 822         thread->as_CompilerThread()->set_compiler(comp);
 823       }
 824       Threads::add(thread);
 825       Thread::start(thread);
 826     }
 827   }
 828 
 829   // First release lock before aborting VM.
 830   if (thread == NULL || thread->osthread() == NULL) {
 831     if (UseDynamicNumberOfCompilerThreads && comp != NULL && comp->num_compiler_threads() > 0) {
 832       if (thread != NULL) {
 833         thread->smr_delete();
 834       }
 835       return NULL;
 836     }
 837     vm_exit_during_initialization("java.lang.OutOfMemoryError",
 838                                   os::native_thread_creation_failed_msg());
 839   }
 840 
 841   // Let go of Threads_lock before yielding
 842   os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS)
 843 
 844   return thread;
 845 }
 846 
 847 
 848 void CompileBroker::init_compiler_sweeper_threads() {
 849   EXCEPTION_MARK;
 850 #if !defined(ZERO)
 851   assert(_c2_count > 0 || _c1_count > 0, "No compilers?");
 852 #endif // !ZERO
 853   // Initialize the compilation queue
 854   if (_c2_count > 0) {
 855     const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue";
 856     _c2_compile_queue  = new CompileQueue(name);
 857     _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler);
 858     _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler);
 859   }
 860   if (_c1_count > 0) {
 861     _c1_compile_queue  = new CompileQueue("C1 compile queue");
 862     _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler);
 863     _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler);
 864   }
 865 
 866   char name_buffer[256];
 867 
 868   for (int i = 0; i < _c2_count; i++) {
 869     jobject thread_handle = NULL;
 870     // Create all j.l.Thread objects for C1 and C2 threads here, but only one
 871     // for JVMCI compiler which can create further ones on demand.
 872     JVMCI_ONLY(if (!UseJVMCICompiler || !UseDynamicNumberOfCompilerThreads || i == 0) {)
 873     // Create a name for our thread.
 874     sprintf(name_buffer, "%s CompilerThread%d", _compilers[1]->name(), i);
 875     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
 876     thread_handle = JNIHandles::make_global(thread_oop);
 877     JVMCI_ONLY(})
 878     _compiler2_objects[i] = thread_handle;
 879     _compiler2_logs[i] = NULL;
 880 
 881     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
 882       JavaThread *ct = make_thread(thread_handle, _c2_compile_queue, _compilers[1], CHECK);
 883       assert(ct != NULL, "should have been handled for initial thread");
 884       _compilers[1]->set_num_compiler_threads(i + 1);
 885       if (TraceCompilerThreads) {
 886         ResourceMark rm;
 887         MutexLocker mu(Threads_lock);
 888         tty->print_cr("Added initial compiler thread %s", ct->get_thread_name());
 889       }
 890     }
 891   }
 892 
 893   for (int i = 0; i < _c1_count; i++) {
 894     // Create a name for our thread.
 895     sprintf(name_buffer, "C1 CompilerThread%d", i);
 896     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
 897     jobject thread_handle = JNIHandles::make_global(thread_oop);
 898     _compiler1_objects[i] = thread_handle;
 899     _compiler1_logs[i] = NULL;
 900 
 901     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
 902       JavaThread *ct = make_thread(thread_handle, _c1_compile_queue, _compilers[0], CHECK);
 903       assert(ct != NULL, "should have been handled for initial thread");
 904       _compilers[0]->set_num_compiler_threads(i + 1);
 905       if (TraceCompilerThreads) {
 906         ResourceMark rm;
 907         MutexLocker mu(Threads_lock);
 908         tty->print_cr("Added initial compiler thread %s", ct->get_thread_name());
 909       }
 910     }
 911   }
 912 
 913   if (UsePerfData) {
 914     PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count, CHECK);
 915   }
 916 
 917   if (MethodFlushing) {
 918     // Initialize the sweeper thread
 919     Handle thread_oop = create_thread_oop("Sweeper thread", CHECK);
 920     jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
 921     make_thread(thread_handle, NULL, NULL, CHECK);
 922   }
 923 }
 924 
 925 void CompileBroker::possibly_add_compiler_threads() {
 926   EXCEPTION_MARK;
 927 
 928   julong available_memory = os::available_memory();
 929   // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All).
 930   size_t available_cc_np  = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled),
 931          available_cc_p   = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled);
 932 
 933   // Only do attempt to start additional threads if the lock is free.
 934   if (!CompileThread_lock->try_lock()) return;
 935 
 936   if (_c2_compile_queue != NULL) {
 937     int old_c2_count = _compilers[1]->num_compiler_threads();
 938     int new_c2_count = MIN4(_c2_count,
 939         _c2_compile_queue->size() / 2,
 940         (int)(available_memory / (200*M)),
 941         (int)(available_cc_np / (128*K)));
 942 
 943     for (int i = old_c2_count; i < new_c2_count; i++) {
 944 #if INCLUDE_JVMCI
 945       if (UseJVMCICompiler) {
 946         // Native compiler threads as used in C1/C2 can reuse the j.l.Thread
 947         // objects as their existence is completely hidden from the rest of
 948         // the VM (and those compiler threads can't call Java code to do the
 949         // creation anyway). For JVMCI we have to create new j.l.Thread objects
 950         // as they are visible and we can see unexpected thread lifecycle
 951         // transitions if we bind them to new JavaThreads.
 952         if (!THREAD->can_call_java()) break;
 953         char name_buffer[256];
 954         sprintf(name_buffer, "%s CompilerThread%d", _compilers[1]->name(), i);
 955         Handle thread_oop;
 956         {
 957           // We have to give up the lock temporarily for the Java calls.
 958           MutexUnlocker mu(CompileThread_lock);
 959           thread_oop = create_thread_oop(name_buffer, THREAD);
 960         }
 961         if (HAS_PENDING_EXCEPTION) {
 962           if (TraceCompilerThreads) {
 963             ResourceMark rm;
 964             tty->print_cr("JVMCI compiler thread creation failed:");
 965             PENDING_EXCEPTION->print();
 966           }
 967           CLEAR_PENDING_EXCEPTION;
 968           break;
 969         }
 970         // Check if another thread has beaten us during the Java calls.
 971         if (_compilers[1]->num_compiler_threads() != i) break;
 972         jobject thread_handle = JNIHandles::make_global(thread_oop);
 973         assert(compiler2_object(i) == NULL, "Old one must be released!");
 974         _compiler2_objects[i] = thread_handle;
 975       }
 976 #endif
 977       JavaThread *ct = make_thread(compiler2_object(i), _c2_compile_queue, _compilers[1], CHECK);
 978       if (ct == NULL) break;
 979       _compilers[1]->set_num_compiler_threads(i + 1);
 980       if (TraceCompilerThreads) {
 981         ResourceMark rm;
 982         MutexLocker mu(Threads_lock);
 983         tty->print_cr("Added compiler thread %s (available memory: %dMB, available non-profiled code cache: %dMB)",
 984                       ct->get_thread_name(), (int)(available_memory/M), (int)(available_cc_np/M));
 985       }
 986     }
 987   }
 988 
 989   if (_c1_compile_queue != NULL) {
 990     int old_c1_count = _compilers[0]->num_compiler_threads();
 991     int new_c1_count = MIN4(_c1_count,
 992         _c1_compile_queue->size() / 4,
 993         (int)(available_memory / (100*M)),
 994         (int)(available_cc_p / (128*K)));
 995 
 996     for (int i = old_c1_count; i < new_c1_count; i++) {
 997       JavaThread *ct = make_thread(compiler1_object(i), _c1_compile_queue, _compilers[0], CHECK);
 998       if (ct == NULL) break;
 999       _compilers[0]->set_num_compiler_threads(i + 1);
1000       if (TraceCompilerThreads) {
1001         ResourceMark rm;
1002         MutexLocker mu(Threads_lock);
1003         tty->print_cr("Added compiler thread %s (available memory: %dMB, available profiled code cache: %dMB)",
1004                       ct->get_thread_name(), (int)(available_memory/M), (int)(available_cc_p/M));
1005       }
1006     }
1007   }
1008 
1009   CompileThread_lock->unlock();
1010 }
1011 
1012 
1013 /**
1014  * Set the methods on the stack as on_stack so that redefine classes doesn't
1015  * reclaim them. This method is executed at a safepoint.
1016  */
1017 void CompileBroker::mark_on_stack() {
1018   assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
1019   // Since we are at a safepoint, we do not need a lock to access
1020   // the compile queues.
1021   if (_c2_compile_queue != NULL) {
1022     _c2_compile_queue->mark_on_stack();
1023   }
1024   if (_c1_compile_queue != NULL) {
1025     _c1_compile_queue->mark_on_stack();
1026   }
1027 }
1028 
1029 // ------------------------------------------------------------------
1030 // CompileBroker::compile_method
1031 //
1032 // Request compilation of a method.
1033 void CompileBroker::compile_method_base(const methodHandle& method,
1034                                         int osr_bci,
1035                                         int comp_level,
1036                                         const methodHandle& hot_method,
1037                                         int hot_count,
1038                                         CompileTask::CompileReason compile_reason,
1039                                         bool blocking,
1040                                         Thread* thread) {
1041   guarantee(!method->is_abstract(), "cannot compile abstract methods");
1042   assert(method->method_holder()->is_instance_klass(),
1043          "sanity check");
1044   assert(!method->method_holder()->is_not_initialized(),
1045          "method holder must be initialized");
1046   assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys");
1047 
1048   if (CIPrintRequests) {
1049     tty->print("request: ");
1050     method->print_short_name(tty);
1051     if (osr_bci != InvocationEntryBci) {
1052       tty->print(" osr_bci: %d", osr_bci);
1053     }
1054     tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count);
1055     if (!hot_method.is_null()) {
1056       tty->print(" hot: ");
1057       if (hot_method() != method()) {
1058           hot_method->print_short_name(tty);
1059       } else {
1060         tty->print("yes");
1061       }
1062     }
1063     tty->cr();
1064   }
1065 
1066   // A request has been made for compilation.  Before we do any
1067   // real work, check to see if the method has been compiled
1068   // in the meantime with a definitive result.
1069   if (compilation_is_complete(method, osr_bci, comp_level)) {
1070     return;
1071   }
1072 
1073 #ifndef PRODUCT
1074   if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) {
1075     if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) {
1076       // Positive OSROnlyBCI means only compile that bci.  Negative means don't compile that BCI.
1077       return;
1078     }
1079   }
1080 #endif
1081 
1082   // If this method is already in the compile queue, then
1083   // we do not block the current thread.
1084   if (compilation_is_in_queue(method)) {
1085     // We may want to decay our counter a bit here to prevent
1086     // multiple denied requests for compilation.  This is an
1087     // open compilation policy issue. Note: The other possibility,
1088     // in the case that this is a blocking compile request, is to have
1089     // all subsequent blocking requesters wait for completion of
1090     // ongoing compiles. Note that in this case we'll need a protocol
1091     // for freeing the associated compile tasks. [Or we could have
1092     // a single static monitor on which all these waiters sleep.]
1093     return;
1094   }
1095 
1096   if (TieredCompilation) {
1097     // Tiered policy requires MethodCounters to exist before adding a method to
1098     // the queue. Create if we don't have them yet.
1099     method->get_method_counters(thread);
1100   }
1101 
1102   // Outputs from the following MutexLocker block:
1103   CompileTask* task     = NULL;
1104   CompileQueue* queue  = compile_queue(comp_level);
1105 
1106   // Acquire our lock.
1107   {
1108     MutexLocker locker(MethodCompileQueue_lock, thread);
1109 
1110     // Make sure the method has not slipped into the queues since
1111     // last we checked; note that those checks were "fast bail-outs".
1112     // Here we need to be more careful, see 14012000 below.
1113     if (compilation_is_in_queue(method)) {
1114       return;
1115     }
1116 
1117     // We need to check again to see if the compilation has
1118     // completed.  A previous compilation may have registered
1119     // some result.
1120     if (compilation_is_complete(method, osr_bci, comp_level)) {
1121       return;
1122     }
1123 
1124     // We now know that this compilation is not pending, complete,
1125     // or prohibited.  Assign a compile_id to this compilation
1126     // and check to see if it is in our [Start..Stop) range.
1127     int compile_id = assign_compile_id(method, osr_bci);
1128     if (compile_id == 0) {
1129       // The compilation falls outside the allowed range.
1130       return;
1131     }
1132 
1133 #if INCLUDE_JVMCI
1134     if (UseJVMCICompiler && blocking) {
1135       // Don't allow blocking compiles for requests triggered by JVMCI.
1136       if (thread->is_Compiler_thread()) {
1137         blocking = false;
1138       }
1139 
1140       if (!UseJVMCINativeLibrary) {
1141         // Don't allow blocking compiles if inside a class initializer or while performing class loading
1142         vframeStream vfst((JavaThread*) thread);
1143         for (; !vfst.at_end(); vfst.next()) {
1144           if (vfst.method()->is_static_initializer() ||
1145               (vfst.method()->method_holder()->is_subclass_of(SystemDictionary::ClassLoader_klass()) &&
1146                   vfst.method()->name() == vmSymbols::loadClass_name())) {
1147             blocking = false;
1148             break;
1149           }
1150         }
1151       }
1152 
1153       // Don't allow blocking compilation requests to JVMCI
1154       // if JVMCI itself is not yet initialized
1155       if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) {
1156         blocking = false;
1157       }
1158 
1159       // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown
1160       // to avoid deadlock between compiler thread(s) and threads run at shutdown
1161       // such as the DestroyJavaVM thread.
1162       if (JVMCI::shutdown_called()) {
1163         blocking = false;
1164       }
1165     }
1166 #endif // INCLUDE_JVMCI
1167 
1168     // We will enter the compilation in the queue.
1169     // 14012000: Note that this sets the queued_for_compile bits in
1170     // the target method. We can now reason that a method cannot be
1171     // queued for compilation more than once, as follows:
1172     // Before a thread queues a task for compilation, it first acquires
1173     // the compile queue lock, then checks if the method's queued bits
1174     // are set or it has already been compiled. Thus there can not be two
1175     // instances of a compilation task for the same method on the
1176     // compilation queue. Consider now the case where the compilation
1177     // thread has already removed a task for that method from the queue
1178     // and is in the midst of compiling it. In this case, the
1179     // queued_for_compile bits must be set in the method (and these
1180     // will be visible to the current thread, since the bits were set
1181     // under protection of the compile queue lock, which we hold now.
1182     // When the compilation completes, the compiler thread first sets
1183     // the compilation result and then clears the queued_for_compile
1184     // bits. Neither of these actions are protected by a barrier (or done
1185     // under the protection of a lock), so the only guarantee we have
1186     // (on machines with TSO (Total Store Order)) is that these values
1187     // will update in that order. As a result, the only combinations of
1188     // these bits that the current thread will see are, in temporal order:
1189     // <RESULT, QUEUE> :
1190     //     <0, 1> : in compile queue, but not yet compiled
1191     //     <1, 1> : compiled but queue bit not cleared
1192     //     <1, 0> : compiled and queue bit cleared
1193     // Because we first check the queue bits then check the result bits,
1194     // we are assured that we cannot introduce a duplicate task.
1195     // Note that if we did the tests in the reverse order (i.e. check
1196     // result then check queued bit), we could get the result bit before
1197     // the compilation completed, and the queue bit after the compilation
1198     // completed, and end up introducing a "duplicate" (redundant) task.
1199     // In that case, the compiler thread should first check if a method
1200     // has already been compiled before trying to compile it.
1201     // NOTE: in the event that there are multiple compiler threads and
1202     // there is de-optimization/recompilation, things will get hairy,
1203     // and in that case it's best to protect both the testing (here) of
1204     // these bits, and their updating (here and elsewhere) under a
1205     // common lock.
1206     task = create_compile_task(queue,
1207                                compile_id, method,
1208                                osr_bci, comp_level,
1209                                hot_method, hot_count, compile_reason,
1210                                blocking);
1211   }
1212 
1213   if (blocking) {
1214     wait_for_completion(task);
1215   }
1216 }
1217 
1218 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1219                                        int comp_level,
1220                                        const methodHandle& hot_method, int hot_count,
1221                                        CompileTask::CompileReason compile_reason,
1222                                        Thread* THREAD) {
1223   // Do nothing if compilebroker is not initalized or compiles are submitted on level none
1224   if (!_initialized || comp_level == CompLevel_none) {
1225     return NULL;
1226   }
1227 
1228   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
1229   assert(comp != NULL, "Ensure we have a compiler");
1230 
1231   DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp);
1232   nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, directive, THREAD);
1233   DirectivesStack::release(directive);
1234   return nm;
1235 }
1236 
1237 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1238                                          int comp_level,
1239                                          const methodHandle& hot_method, int hot_count,
1240                                          CompileTask::CompileReason compile_reason,
1241                                          DirectiveSet* directive,
1242                                          Thread* THREAD) {
1243 
1244   // make sure arguments make sense
1245   assert(method->method_holder()->is_instance_klass(), "not an instance method");
1246   assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range");
1247   assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods");
1248   assert(!method->method_holder()->is_not_initialized(), "method holder must be initialized");
1249   assert(!TieredCompilation || comp_level <= TieredStopAtLevel, "Invalid compilation level");
1250   // allow any levels for WhiteBox
1251   assert(WhiteBoxAPI || TieredCompilation || comp_level == CompLevel_highest_tier, "only CompLevel_highest_tier must be used in non-tiered");
1252   // return quickly if possible
1253 
1254   // lock, make sure that the compilation
1255   // isn't prohibited in a straightforward way.
1256   AbstractCompiler* comp = CompileBroker::compiler(comp_level);
1257   if (comp == NULL || !comp->can_compile_method(method) ||
1258       compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) {
1259     return NULL;
1260   }
1261 
1262 #if INCLUDE_JVMCI
1263   if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) {
1264     return NULL;
1265   }
1266 #endif
1267 
1268   if (osr_bci == InvocationEntryBci) {
1269     // standard compilation
1270     CompiledMethod* method_code = method->code();
1271     if (method_code != NULL && method_code->is_nmethod()) {
1272       if (compilation_is_complete(method, osr_bci, comp_level)) {
1273         return (nmethod*) method_code;
1274       }
1275     }
1276     if (method->is_not_compilable(comp_level)) {
1277       return NULL;
1278     }
1279   } else {
1280     // osr compilation
1281 #ifndef TIERED
1282     // seems like an assert of dubious value
1283     assert(comp_level == CompLevel_highest_tier,
1284            "all OSR compiles are assumed to be at a single compilation level");
1285 #endif // TIERED
1286     // We accept a higher level osr method
1287     nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1288     if (nm != NULL) return nm;
1289     if (method->is_not_osr_compilable(comp_level)) return NULL;
1290   }
1291 
1292   assert(!HAS_PENDING_EXCEPTION, "No exception should be present");
1293   // some prerequisites that are compiler specific
1294   if (comp->is_c2()) {
1295     method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NULL);
1296     // Resolve all classes seen in the signature of the method
1297     // we are compiling.
1298     Method::load_signature_classes(method, CHECK_AND_CLEAR_NULL);
1299   }
1300 
1301   // If the method is native, do the lookup in the thread requesting
1302   // the compilation. Native lookups can load code, which is not
1303   // permitted during compilation.
1304   //
1305   // Note: A native method implies non-osr compilation which is
1306   //       checked with an assertion at the entry of this method.
1307   if (method->is_native() && !method->is_method_handle_intrinsic()) {
1308     bool in_base_library;
1309     address adr = NativeLookup::lookup(method, in_base_library, THREAD);
1310     if (HAS_PENDING_EXCEPTION) {
1311       // In case of an exception looking up the method, we just forget
1312       // about it. The interpreter will kick-in and throw the exception.
1313       method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable()
1314       CLEAR_PENDING_EXCEPTION;
1315       return NULL;
1316     }
1317     assert(method->has_native_function(), "must have native code by now");
1318   }
1319 
1320   // RedefineClasses() has replaced this method; just return
1321   if (method->is_old()) {
1322     return NULL;
1323   }
1324 
1325   // JVMTI -- post_compile_event requires jmethod_id() that may require
1326   // a lock the compiling thread can not acquire. Prefetch it here.
1327   if (JvmtiExport::should_post_compiled_method_load()) {
1328     method->jmethod_id();
1329   }
1330 
1331   // do the compilation
1332   if (method->is_native()) {
1333     if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) {
1334       // The following native methods:
1335       //
1336       // java.lang.Float.intBitsToFloat
1337       // java.lang.Float.floatToRawIntBits
1338       // java.lang.Double.longBitsToDouble
1339       // java.lang.Double.doubleToRawLongBits
1340       //
1341       // are called through the interpreter even if interpreter native stubs
1342       // are not preferred (i.e., calling through adapter handlers is preferred).
1343       // The reason is that on x86_32 signaling NaNs (sNaNs) are not preserved
1344       // if the version of the methods from the native libraries is called.
1345       // As the interpreter and the C2-intrinsified version of the methods preserves
1346       // sNaNs, that would result in an inconsistent way of handling of sNaNs.
1347       if ((UseSSE >= 1 &&
1348           (method->intrinsic_id() == vmIntrinsics::_intBitsToFloat ||
1349            method->intrinsic_id() == vmIntrinsics::_floatToRawIntBits)) ||
1350           (UseSSE >= 2 &&
1351            (method->intrinsic_id() == vmIntrinsics::_longBitsToDouble ||
1352             method->intrinsic_id() == vmIntrinsics::_doubleToRawLongBits))) {
1353         return NULL;
1354       }
1355 
1356       // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that
1357       // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime).
1358       //
1359       // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter
1360       // in this case.  If we can't generate one and use it we can not execute the out-of-line method handle calls.
1361       AdapterHandlerLibrary::create_native_wrapper(method);
1362     } else {
1363       return NULL;
1364     }
1365   } else {
1366     // If the compiler is shut off due to code cache getting full
1367     // fail out now so blocking compiles dont hang the java thread
1368     if (!should_compile_new_jobs()) {
1369       CompilationPolicy::policy()->delay_compilation(method());
1370       return NULL;
1371     }
1372     bool is_blocking = !directive->BackgroundCompilationOption || CompileTheWorld || ReplayCompiles;
1373     compile_method_base(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, is_blocking, THREAD);
1374   }
1375 
1376   // return requested nmethod
1377   // We accept a higher level osr method
1378   if (osr_bci == InvocationEntryBci) {
1379     CompiledMethod* code = method->code();
1380     if (code == NULL) {
1381       return (nmethod*) code;
1382     } else {
1383       return code->as_nmethod_or_null();
1384     }
1385   }
1386   return method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1387 }
1388 
1389 
1390 // ------------------------------------------------------------------
1391 // CompileBroker::compilation_is_complete
1392 //
1393 // See if compilation of this method is already complete.
1394 bool CompileBroker::compilation_is_complete(const methodHandle& method,
1395                                             int                 osr_bci,
1396                                             int                 comp_level) {
1397   bool is_osr = (osr_bci != standard_entry_bci);
1398   if (is_osr) {
1399     if (method->is_not_osr_compilable(comp_level)) {
1400       return true;
1401     } else {
1402       nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true);
1403       return (result != NULL);
1404     }
1405   } else {
1406     if (method->is_not_compilable(comp_level)) {
1407       return true;
1408     } else {
1409       CompiledMethod* result = method->code();
1410       if (result == NULL) return false;
1411       return comp_level == result->comp_level();
1412     }
1413   }
1414 }
1415 
1416 
1417 /**
1418  * See if this compilation is already requested.
1419  *
1420  * Implementation note: there is only a single "is in queue" bit
1421  * for each method.  This means that the check below is overly
1422  * conservative in the sense that an osr compilation in the queue
1423  * will block a normal compilation from entering the queue (and vice
1424  * versa).  This can be remedied by a full queue search to disambiguate
1425  * cases.  If it is deemed profitable, this may be done.
1426  */
1427 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) {
1428   return method->queued_for_compilation();
1429 }
1430 
1431 // ------------------------------------------------------------------
1432 // CompileBroker::compilation_is_prohibited
1433 //
1434 // See if this compilation is not allowed.
1435 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) {
1436   bool is_native = method->is_native();
1437   // Some compilers may not support the compilation of natives.
1438   AbstractCompiler *comp = compiler(comp_level);
1439   if (is_native &&
1440       (!CICompileNatives || comp == NULL || !comp->supports_native())) {
1441     method->set_not_compilable_quietly("native methods not supported", comp_level);
1442     return true;
1443   }
1444 
1445   bool is_osr = (osr_bci != standard_entry_bci);
1446   // Some compilers may not support on stack replacement.
1447   if (is_osr &&
1448       (!CICompileOSR || comp == NULL || !comp->supports_osr())) {
1449     method->set_not_osr_compilable("OSR not supported", comp_level);
1450     return true;
1451   }
1452 
1453   // The method may be explicitly excluded by the user.
1454   double scale;
1455   if (excluded || (CompilerOracle::has_option_value(method, "CompileThresholdScaling", scale) && scale == 0)) {
1456     bool quietly = CompilerOracle::should_exclude_quietly();
1457     if (PrintCompilation && !quietly) {
1458       // This does not happen quietly...
1459       ResourceMark rm;
1460       tty->print("### Excluding %s:%s",
1461                  method->is_native() ? "generation of native wrapper" : "compile",
1462                  (method->is_static() ? " static" : ""));
1463       method->print_short_name(tty);
1464       tty->cr();
1465     }
1466     method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly);
1467   }
1468 
1469   return false;
1470 }
1471 
1472 /**
1473  * Generate serialized IDs for compilation requests. If certain debugging flags are used
1474  * and the ID is not within the specified range, the method is not compiled and 0 is returned.
1475  * The function also allows to generate separate compilation IDs for OSR compilations.
1476  */
1477 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) {
1478 #ifdef ASSERT
1479   bool is_osr = (osr_bci != standard_entry_bci);
1480   int id;
1481   if (method->is_native()) {
1482     assert(!is_osr, "can't be osr");
1483     // Adapters, native wrappers and method handle intrinsics
1484     // should be generated always.
1485     return Atomic::add(1, &_compilation_id);
1486   } else if (CICountOSR && is_osr) {
1487     id = Atomic::add(1, &_osr_compilation_id);
1488     if (CIStartOSR <= id && id < CIStopOSR) {
1489       return id;
1490     }
1491   } else {
1492     id = Atomic::add(1, &_compilation_id);
1493     if (CIStart <= id && id < CIStop) {
1494       return id;
1495     }
1496   }
1497 
1498   // Method was not in the appropriate compilation range.
1499   method->set_not_compilable_quietly("Not in requested compile id range");
1500   return 0;
1501 #else
1502   // CICountOSR is a develop flag and set to 'false' by default. In a product built,
1503   // only _compilation_id is incremented.
1504   return Atomic::add(1, &_compilation_id);
1505 #endif
1506 }
1507 
1508 // ------------------------------------------------------------------
1509 // CompileBroker::assign_compile_id_unlocked
1510 //
1511 // Public wrapper for assign_compile_id that acquires the needed locks
1512 uint CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) {
1513   MutexLocker locker(MethodCompileQueue_lock, thread);
1514   return assign_compile_id(method, osr_bci);
1515 }
1516 
1517 // ------------------------------------------------------------------
1518 // CompileBroker::preload_classes
1519 void CompileBroker::preload_classes(const methodHandle& method, TRAPS) {
1520   // Move this code over from c1_Compiler.cpp
1521   ShouldNotReachHere();
1522 }
1523 
1524 
1525 // ------------------------------------------------------------------
1526 // CompileBroker::create_compile_task
1527 //
1528 // Create a CompileTask object representing the current request for
1529 // compilation.  Add this task to the queue.
1530 CompileTask* CompileBroker::create_compile_task(CompileQueue*       queue,
1531                                                 int                 compile_id,
1532                                                 const methodHandle& method,
1533                                                 int                 osr_bci,
1534                                                 int                 comp_level,
1535                                                 const methodHandle& hot_method,
1536                                                 int                 hot_count,
1537                                                 CompileTask::CompileReason compile_reason,
1538                                                 bool                blocking) {
1539   CompileTask* new_task = CompileTask::allocate();
1540   new_task->initialize(compile_id, method, osr_bci, comp_level,
1541                        hot_method, hot_count, compile_reason,
1542                        blocking);
1543   queue->add(new_task);
1544   return new_task;
1545 }
1546 
1547 #if INCLUDE_JVMCI
1548 // The number of milliseconds to wait before checking if
1549 // JVMCI compilation has made progress.
1550 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000;
1551 
1552 // The number of JVMCI compilation progress checks that must fail
1553 // before unblocking a thread waiting for a blocking compilation.
1554 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10;
1555 
1556 /**
1557  * Waits for a JVMCI compiler to complete a given task. This thread
1558  * waits until either the task completes or it sees no JVMCI compilation
1559  * progress for N consecutive milliseconds where N is
1560  * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE *
1561  * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS.
1562  *
1563  * @return true if this thread needs to free/recycle the task
1564  */
1565 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) {
1566   MutexLocker waiter(task->lock(), thread);
1567   int progress_wait_attempts = 0;
1568   int methods_compiled = jvmci->methods_compiled();
1569   while (!task->is_complete() && !is_compilation_disabled_forever() &&
1570          task->lock()->wait(!Mutex::_no_safepoint_check_flag, JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) {
1571     CompilerThread* jvmci_compiler_thread = task->jvmci_compiler_thread();
1572 
1573     bool progress;
1574     if (jvmci_compiler_thread != NULL) {
1575       // If the JVMCI compiler thread is not blocked, we deem it to be making progress.
1576       progress = jvmci_compiler_thread->thread_state() != _thread_blocked;
1577     } else {
1578       // Still waiting on JVMCI compiler queue. This thread may be holding a lock
1579       // that all JVMCI compiler threads are blocked on. We use the counter for
1580       // successful JVMCI compilations to determine whether JVMCI compilation
1581       // is still making progress through the JVMCI compiler queue.
1582       progress = jvmci->methods_compiled() != methods_compiled;
1583     }
1584 
1585     if (!progress) {
1586       if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) {
1587         if (PrintCompilation) {
1588           task->print(tty, "wait for blocking compilation timed out");
1589         }
1590         break;
1591       }
1592     } else {
1593       progress_wait_attempts = 0;
1594       if (jvmci_compiler_thread == NULL) {
1595         methods_compiled = jvmci->methods_compiled();
1596       }
1597     }
1598   }
1599   task->clear_waiter();
1600   return task->is_complete();
1601 }
1602 #endif
1603 
1604 /**
1605  *  Wait for the compilation task to complete.
1606  */
1607 void CompileBroker::wait_for_completion(CompileTask* task) {
1608   if (CIPrintCompileQueue) {
1609     ttyLocker ttyl;
1610     tty->print_cr("BLOCKING FOR COMPILE");
1611   }
1612 
1613   assert(task->is_blocking(), "can only wait on blocking task");
1614 
1615   JavaThread* thread = JavaThread::current();
1616   thread->set_blocked_on_compilation(true);
1617 
1618   methodHandle method(thread, task->method());
1619   bool free_task;
1620 #if INCLUDE_JVMCI
1621   AbstractCompiler* comp = compiler(task->comp_level());
1622   if (comp->is_jvmci()) {
1623     free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread);
1624   } else
1625 #endif
1626   {
1627     MutexLocker waiter(task->lock(), thread);
1628     free_task = true;
1629     while (!task->is_complete() && !is_compilation_disabled_forever()) {
1630       task->lock()->wait();
1631     }
1632   }
1633 
1634   thread->set_blocked_on_compilation(false);
1635   if (free_task) {
1636     if (is_compilation_disabled_forever()) {
1637       CompileTask::free(task);
1638       return;
1639     }
1640 
1641     // It is harmless to check this status without the lock, because
1642     // completion is a stable property (until the task object is recycled).
1643     assert(task->is_complete(), "Compilation should have completed");
1644     assert(task->code_handle() == NULL, "must be reset");
1645 
1646     // By convention, the waiter is responsible for recycling a
1647     // blocking CompileTask. Since there is only one waiter ever
1648     // waiting on a CompileTask, we know that no one else will
1649     // be using this CompileTask; we can free it.
1650     CompileTask::free(task);
1651   }
1652 }
1653 
1654 /**
1655  * Initialize compiler thread(s) + compiler object(s). The postcondition
1656  * of this function is that the compiler runtimes are initialized and that
1657  * compiler threads can start compiling.
1658  */
1659 bool CompileBroker::init_compiler_runtime() {
1660   CompilerThread* thread = CompilerThread::current();
1661   AbstractCompiler* comp = thread->compiler();
1662   // Final sanity check - the compiler object must exist
1663   guarantee(comp != NULL, "Compiler object must exist");
1664 
1665   int system_dictionary_modification_counter;
1666   {
1667     MutexLocker locker(Compile_lock, thread);
1668     system_dictionary_modification_counter = SystemDictionary::number_of_modifications();
1669   }
1670 
1671   {
1672     // Must switch to native to allocate ci_env
1673     ThreadToNativeFromVM ttn(thread);
1674     ciEnv ci_env(NULL, system_dictionary_modification_counter);
1675     // Cache Jvmti state
1676     ci_env.cache_jvmti_state();
1677     // Cache DTrace flags
1678     ci_env.cache_dtrace_flags();
1679 
1680     // Switch back to VM state to do compiler initialization
1681     ThreadInVMfromNative tv(thread);
1682     ResetNoHandleMark rnhm;
1683 
1684     // Perform per-thread and global initializations
1685     comp->initialize();
1686   }
1687 
1688   if (comp->is_failed()) {
1689     disable_compilation_forever();
1690     // If compiler initialization failed, no compiler thread that is specific to a
1691     // particular compiler runtime will ever start to compile methods.
1692     shutdown_compiler_runtime(comp, thread);
1693     return false;
1694   }
1695 
1696   // C1 specific check
1697   if (comp->is_c1() && (thread->get_buffer_blob() == NULL)) {
1698     warning("Initialization of %s thread failed (no space to run compilers)", thread->name());
1699     return false;
1700   }
1701 
1702   return true;
1703 }
1704 
1705 /**
1706  * If C1 and/or C2 initialization failed, we shut down all compilation.
1707  * We do this to keep things simple. This can be changed if it ever turns
1708  * out to be a problem.
1709  */
1710 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) {
1711   // Free buffer blob, if allocated
1712   if (thread->get_buffer_blob() != NULL) {
1713     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1714     CodeCache::free(thread->get_buffer_blob());
1715   }
1716 
1717   if (comp->should_perform_shutdown()) {
1718     // There are two reasons for shutting down the compiler
1719     // 1) compiler runtime initialization failed
1720     // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing
1721     warning("%s initialization failed. Shutting down all compilers", comp->name());
1722 
1723     // Only one thread per compiler runtime object enters here
1724     // Set state to shut down
1725     comp->set_shut_down();
1726 
1727     // Delete all queued compilation tasks to make compiler threads exit faster.
1728     if (_c1_compile_queue != NULL) {
1729       _c1_compile_queue->free_all();
1730     }
1731 
1732     if (_c2_compile_queue != NULL) {
1733       _c2_compile_queue->free_all();
1734     }
1735 
1736     // Set flags so that we continue execution with using interpreter only.
1737     UseCompiler    = false;
1738     UseInterpreter = true;
1739 
1740     // We could delete compiler runtimes also. However, there are references to
1741     // the compiler runtime(s) (e.g.,  nmethod::is_compiled_by_c1()) which then
1742     // fail. This can be done later if necessary.
1743   }
1744 }
1745 
1746 /**
1747  * Helper function to create new or reuse old CompileLog.
1748  */
1749 CompileLog* CompileBroker::get_log(CompilerThread* ct) {
1750   if (!LogCompilation) return NULL;
1751 
1752   AbstractCompiler *compiler = ct->compiler();
1753   bool c1 = compiler->is_c1();
1754   jobject* compiler_objects = c1 ? _compiler1_objects : _compiler2_objects;
1755   assert(compiler_objects != NULL, "must be initialized at this point");
1756   CompileLog** logs = c1 ? _compiler1_logs : _compiler2_logs;
1757   assert(logs != NULL, "must be initialized at this point");
1758   int count = c1 ? _c1_count : _c2_count;
1759 
1760   // Find Compiler number by its threadObj.
1761   oop compiler_obj = ct->threadObj();
1762   int compiler_number = 0;
1763   bool found = false;
1764   for (; compiler_number < count; compiler_number++) {
1765     if (oopDesc::equals(JNIHandles::resolve_non_null(compiler_objects[compiler_number]), compiler_obj)) {
1766       found = true;
1767       break;
1768     }
1769   }
1770   assert(found, "Compiler must exist at this point");
1771 
1772   // Determine pointer for this thread's log.
1773   CompileLog** log_ptr = &logs[compiler_number];
1774 
1775   // Return old one if it exists.
1776   CompileLog* log = *log_ptr;
1777   if (log != NULL) {
1778     ct->init_log(log);
1779     return log;
1780   }
1781 
1782   // Create a new one and remember it.
1783   init_compiler_thread_log();
1784   log = ct->log();
1785   *log_ptr = log;
1786   return log;
1787 }
1788 
1789 // ------------------------------------------------------------------
1790 // CompileBroker::compiler_thread_loop
1791 //
1792 // The main loop run by a CompilerThread.
1793 void CompileBroker::compiler_thread_loop() {
1794   CompilerThread* thread = CompilerThread::current();
1795   CompileQueue* queue = thread->queue();
1796   // For the thread that initializes the ciObjectFactory
1797   // this resource mark holds all the shared objects
1798   ResourceMark rm;
1799 
1800   // First thread to get here will initialize the compiler interface
1801 
1802   {
1803     ASSERT_IN_VM;
1804     MutexLocker only_one (CompileThread_lock, thread);
1805     if (!ciObjectFactory::is_initialized()) {
1806       ciObjectFactory::initialize();
1807     }
1808   }
1809 
1810   // Open a log.
1811   CompileLog* log = get_log(thread);
1812   if (log != NULL) {
1813     log->begin_elem("start_compile_thread name='%s' thread='" UINTX_FORMAT "' process='%d'",
1814                     thread->name(),
1815                     os::current_thread_id(),
1816                     os::current_process_id());
1817     log->stamp();
1818     log->end_elem();
1819   }
1820 
1821   // If compiler thread/runtime initialization fails, exit the compiler thread
1822   if (!init_compiler_runtime()) {
1823     return;
1824   }
1825 
1826   thread->start_idle_timer();
1827 
1828   // Poll for new compilation tasks as long as the JVM runs. Compilation
1829   // should only be disabled if something went wrong while initializing the
1830   // compiler runtimes. This, in turn, should not happen. The only known case
1831   // when compiler runtime initialization fails is if there is not enough free
1832   // space in the code cache to generate the necessary stubs, etc.
1833   while (!is_compilation_disabled_forever()) {
1834     // We need this HandleMark to avoid leaking VM handles.
1835     HandleMark hm(thread);
1836 
1837     CompileTask* task = queue->get();
1838     if (task == NULL) {
1839       if (UseDynamicNumberOfCompilerThreads) {
1840         // Access compiler_count under lock to enforce consistency.
1841         MutexLocker only_one(CompileThread_lock);
1842         if (can_remove(thread, true)) {
1843           if (TraceCompilerThreads) {
1844             tty->print_cr("Removing compiler thread %s after " JLONG_FORMAT " ms idle time",
1845                           thread->name(), thread->idle_time_millis());
1846           }
1847           // Free buffer blob, if allocated
1848           if (thread->get_buffer_blob() != NULL) {
1849             MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1850             CodeCache::free(thread->get_buffer_blob());
1851           }
1852           return; // Stop this thread.
1853         }
1854       }
1855     } else {
1856 
1857       // Give compiler threads an extra quanta.  They tend to be bursty and
1858       // this helps the compiler to finish up the job.
1859       if (CompilerThreadHintNoPreempt) {
1860         os::hint_no_preempt();
1861       }
1862 
1863       // Assign the task to the current thread.  Mark this compilation
1864       // thread as active for the profiler.
1865       // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition
1866       // occurs after fetching the compile task off the queue.
1867       CompileTaskWrapper ctw(task);
1868       nmethodLocker result_handle;  // (handle for the nmethod produced by this task)
1869       task->set_code_handle(&result_handle);
1870       methodHandle method(thread, task->method());
1871 
1872       // Never compile a method if breakpoints are present in it
1873       if (method()->number_of_breakpoints() == 0) {
1874         // Compile the method.
1875         if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) {
1876           invoke_compiler_on_method(task);
1877           thread->start_idle_timer();
1878         } else {
1879           // After compilation is disabled, remove remaining methods from queue
1880           method->clear_queued_for_compilation();
1881           task->set_failure_reason("compilation is disabled");
1882         }
1883       }
1884 
1885       if (UseDynamicNumberOfCompilerThreads) {
1886         possibly_add_compiler_threads();
1887       }
1888     }
1889   }
1890 
1891   // Shut down compiler runtime
1892   shutdown_compiler_runtime(thread->compiler(), thread);
1893 }
1894 
1895 // ------------------------------------------------------------------
1896 // CompileBroker::init_compiler_thread_log
1897 //
1898 // Set up state required by +LogCompilation.
1899 void CompileBroker::init_compiler_thread_log() {
1900     CompilerThread* thread = CompilerThread::current();
1901     char  file_name[4*K];
1902     FILE* fp = NULL;
1903     intx thread_id = os::current_thread_id();
1904     for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) {
1905       const char* dir = (try_temp_dir ? os::get_temp_directory() : NULL);
1906       if (dir == NULL) {
1907         jio_snprintf(file_name, sizeof(file_name), "hs_c" UINTX_FORMAT "_pid%u.log",
1908                      thread_id, os::current_process_id());
1909       } else {
1910         jio_snprintf(file_name, sizeof(file_name),
1911                      "%s%shs_c" UINTX_FORMAT "_pid%u.log", dir,
1912                      os::file_separator(), thread_id, os::current_process_id());
1913       }
1914 
1915       fp = fopen(file_name, "wt");
1916       if (fp != NULL) {
1917         if (LogCompilation && Verbose) {
1918           tty->print_cr("Opening compilation log %s", file_name);
1919         }
1920         CompileLog* log = new(ResourceObj::C_HEAP, mtCompiler) CompileLog(file_name, fp, thread_id);
1921         if (log == NULL) {
1922           fclose(fp);
1923           return;
1924         }
1925         thread->init_log(log);
1926 
1927         if (xtty != NULL) {
1928           ttyLocker ttyl;
1929           // Record any per thread log files
1930           xtty->elem("thread_logfile thread='" INTX_FORMAT "' filename='%s'", thread_id, file_name);
1931         }
1932         return;
1933       }
1934     }
1935     warning("Cannot open log file: %s", file_name);
1936 }
1937 
1938 void CompileBroker::log_metaspace_failure() {
1939   const char* message = "some methods may not be compiled because metaspace "
1940                         "is out of memory";
1941   if (_compilation_log != NULL) {
1942     _compilation_log->log_metaspace_failure(message);
1943   }
1944   if (PrintCompilation) {
1945     tty->print_cr("COMPILE PROFILING SKIPPED: %s", message);
1946   }
1947 }
1948 
1949 
1950 // ------------------------------------------------------------------
1951 // CompileBroker::set_should_block
1952 //
1953 // Set _should_block.
1954 // Call this from the VM, with Threads_lock held and a safepoint requested.
1955 void CompileBroker::set_should_block() {
1956   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
1957   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already");
1958 #ifndef PRODUCT
1959   if (PrintCompilation && (Verbose || WizardMode))
1960     tty->print_cr("notifying compiler thread pool to block");
1961 #endif
1962   _should_block = true;
1963 }
1964 
1965 // ------------------------------------------------------------------
1966 // CompileBroker::maybe_block
1967 //
1968 // Call this from the compiler at convenient points, to poll for _should_block.
1969 void CompileBroker::maybe_block() {
1970   if (_should_block) {
1971 #ifndef PRODUCT
1972     if (PrintCompilation && (Verbose || WizardMode))
1973       tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current()));
1974 #endif
1975     ThreadInVMfromNative tivfn(JavaThread::current());
1976   }
1977 }
1978 
1979 // wrapper for CodeCache::print_summary()
1980 static void codecache_print(bool detailed)
1981 {
1982   ResourceMark rm;
1983   stringStream s;
1984   // Dump code cache  into a buffer before locking the tty,
1985   {
1986     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1987     CodeCache::print_summary(&s, detailed);
1988   }
1989   ttyLocker ttyl;
1990   tty->print("%s", s.as_string());
1991 }
1992 
1993 // wrapper for CodeCache::print_summary() using outputStream
1994 static void codecache_print(outputStream* out, bool detailed) {
1995   ResourceMark rm;
1996   stringStream s;
1997 
1998   // Dump code cache into a buffer
1999   {
2000     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2001     CodeCache::print_summary(&s, detailed);
2002   }
2003 
2004   char* remaining_log = s.as_string();
2005   while (*remaining_log != '\0') {
2006     char* eol = strchr(remaining_log, '\n');
2007     if (eol == NULL) {
2008       out->print_cr("%s", remaining_log);
2009       remaining_log = remaining_log + strlen(remaining_log);
2010     } else {
2011       *eol = '\0';
2012       out->print_cr("%s", remaining_log);
2013       remaining_log = eol + 1;
2014     }
2015   }
2016 }
2017 
2018 void CompileBroker::post_compile(CompilerThread* thread, CompileTask* task, bool success, ciEnv* ci_env,
2019                                  int compilable, const char* failure_reason) {
2020   if (success) {
2021     task->mark_success();
2022     if (ci_env != NULL) {
2023       task->set_num_inlined_bytecodes(ci_env->num_inlined_bytecodes());
2024     }
2025     if (_compilation_log != NULL) {
2026       nmethod* code = task->code();
2027       if (code != NULL) {
2028         _compilation_log->log_nmethod(thread, code);
2029       }
2030     }
2031   } else if (AbortVMOnCompilationFailure) {
2032     if (compilable == ciEnv::MethodCompilable_not_at_tier) {
2033       fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason);
2034     }
2035     if (compilable == ciEnv::MethodCompilable_never) {
2036       fatal("Never compilable: %s", failure_reason);
2037     }
2038   }
2039   // simulate crash during compilation
2040   assert(task->compile_id() != CICrashAt, "just as planned");
2041 }
2042 
2043 static void post_compilation_event(EventCompilation* event, CompileTask* task) {
2044   assert(event != NULL, "invariant");
2045   assert(event->should_commit(), "invariant");
2046   event->set_method(task->method());
2047   event->set_compileId(task->compile_id());
2048   event->set_compileLevel(task->comp_level());
2049   event->set_succeded(task->is_success());
2050   event->set_isOsr(task->osr_bci() != CompileBroker::standard_entry_bci);
2051   event->set_codeSize((task->code() == NULL) ? 0 : task->code()->total_size());
2052   event->set_inlinedBytes(task->num_inlined_bytecodes());
2053   event->commit();
2054 }
2055 
2056 int DirectivesStack::_depth = 0;
2057 CompilerDirectives* DirectivesStack::_top = NULL;
2058 CompilerDirectives* DirectivesStack::_bottom = NULL;
2059 
2060 // ------------------------------------------------------------------
2061 // CompileBroker::invoke_compiler_on_method
2062 //
2063 // Compile a method.
2064 //
2065 void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
2066   task->print_ul();
2067   if (PrintCompilation) {
2068     ResourceMark rm;
2069     task->print_tty();
2070   }
2071   elapsedTimer time;
2072 
2073   CompilerThread* thread = CompilerThread::current();
2074   ResourceMark rm(thread);
2075 
2076   if (LogEvents) {
2077     _compilation_log->log_compile(thread, task);
2078   }
2079 
2080   // Common flags.
2081   uint compile_id = task->compile_id();
2082   int osr_bci = task->osr_bci();
2083   bool is_osr = (osr_bci != standard_entry_bci);
2084   bool should_log = (thread->log() != NULL);
2085   bool should_break = false;
2086   const int task_level = task->comp_level();
2087   AbstractCompiler* comp = task->compiler();
2088 
2089   DirectiveSet* directive;
2090   {
2091     // create the handle inside it's own block so it can't
2092     // accidentally be referenced once the thread transitions to
2093     // native.  The NoHandleMark before the transition should catch
2094     // any cases where this occurs in the future.
2095     methodHandle method(thread, task->method());
2096     assert(!method->is_native(), "no longer compile natives");
2097 
2098     // Look up matching directives
2099     directive = DirectivesStack::getMatchingDirective(method, comp);
2100 
2101     // Save information about this method in case of failure.
2102     set_last_compile(thread, method, is_osr, task_level);
2103 
2104     DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level));
2105   }
2106 
2107   should_break = directive->BreakAtExecuteOption || task->check_break_at_flags();
2108   if (should_log && !directive->LogOption) {
2109     should_log = false;
2110   }
2111 
2112   // Allocate a new set of JNI handles.
2113   push_jni_handle_block();
2114   Method* target_handle = task->method();
2115   int compilable = ciEnv::MethodCompilable;
2116   const char* failure_reason = NULL;
2117   bool failure_reason_on_C_heap = false;
2118   const char* retry_message = NULL;
2119 
2120   int system_dictionary_modification_counter;
2121   {
2122     MutexLocker locker(Compile_lock, thread);
2123     system_dictionary_modification_counter = SystemDictionary::number_of_modifications();
2124   }
2125 
2126 #if INCLUDE_JVMCI
2127   if (UseJVMCICompiler && comp != NULL && comp->is_jvmci()) {
2128     JVMCICompiler* jvmci = (JVMCICompiler*) comp;
2129 
2130     TraceTime t1("compilation", &time);
2131     EventCompilation event;

2132 





2133     // Skip redefined methods
2134     if (target_handle->is_old()) {
2135       failure_reason = "redefined method";
2136       retry_message = "not retryable";
2137       compilable = ciEnv::MethodCompilable_never;
2138     } else {
2139       JVMCICompileState compile_state(task, system_dictionary_modification_counter);
2140       JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__);
2141       methodHandle method(thread, target_handle);
2142       env.runtime()->compile_method(&env, jvmci, method, osr_bci);

2143 
2144       failure_reason = compile_state.failure_reason();
2145       failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap();
2146       if (!compile_state.retryable()) {
2147         retry_message = "not retryable";
2148         compilable = ciEnv::MethodCompilable_not_at_tier;
2149       }
2150       if (task->code() == NULL) {
2151         assert(failure_reason != NULL, "must specify failure_reason");
2152       }
2153     }
2154     post_compile(thread, task, task->code() != NULL, NULL, compilable, failure_reason);
2155     if (event.should_commit()) {
2156       post_compilation_event(&event, task);
2157     }
2158 
2159   } else
2160 #endif // INCLUDE_JVMCI
2161   {
2162     NoHandleMark  nhm;
2163     ThreadToNativeFromVM ttn(thread);
2164 
2165     ciEnv ci_env(task, system_dictionary_modification_counter);
2166     if (should_break) {
2167       ci_env.set_break_at_compile(true);
2168     }
2169     if (should_log) {
2170       ci_env.set_log(thread->log());
2171     }
2172     assert(thread->env() == &ci_env, "set by ci_env");
2173     // The thread-env() field is cleared in ~CompileTaskWrapper.
2174 
2175     // Cache Jvmti state
2176     ci_env.cache_jvmti_state();
2177 
2178     // Cache DTrace flags
2179     ci_env.cache_dtrace_flags();
2180 
2181     ciMethod* target = ci_env.get_method_from_handle(target_handle);
2182 
2183     TraceTime t1("compilation", &time);
2184     EventCompilation event;
2185 
2186     if (comp == NULL) {
2187       ci_env.record_method_not_compilable("no compiler", !TieredCompilation);
2188     } else {
2189       if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2190         MonitorLockerEx locker(Compilation_lock, Mutex::_no_safepoint_check_flag);
2191         while (WhiteBox::compilation_locked) {
2192           locker.wait(Mutex::_no_safepoint_check_flag);
2193         }
2194       }
2195       comp->compile_method(&ci_env, target, osr_bci, directive);
2196     }
2197 
2198     if (!ci_env.failing() && task->code() == NULL) {
2199       //assert(false, "compiler should always document failure");
2200       // The compiler elected, without comment, not to register a result.
2201       // Do not attempt further compilations of this method.
2202       ci_env.record_method_not_compilable("compile failed", !TieredCompilation);
2203     }
2204 
2205     // Copy this bit to the enclosing block:
2206     compilable = ci_env.compilable();
2207 
2208     if (ci_env.failing()) {
2209       failure_reason = ci_env.failure_reason();
2210       retry_message = ci_env.retry_message();
2211       ci_env.report_failure(failure_reason);
2212     }
2213 
2214     post_compile(thread, task, !ci_env.failing(), &ci_env, compilable, failure_reason);
2215     if (event.should_commit()) {
2216       post_compilation_event(&event, task);
2217     }
2218   }
2219   // Remove the JNI handle block after the ciEnv destructor has run in
2220   // the previous block.
2221   pop_jni_handle_block();
2222 
2223   if (failure_reason != NULL) {
2224     task->set_failure_reason(failure_reason, failure_reason_on_C_heap);
2225     if (_compilation_log != NULL) {
2226       _compilation_log->log_failure(thread, task, failure_reason, retry_message);
2227     }
2228     if (PrintCompilation) {
2229       FormatBufferResource msg = retry_message != NULL ?
2230         FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) :
2231         FormatBufferResource("COMPILE SKIPPED: %s",      failure_reason);
2232       task->print(tty, msg);
2233     }
2234   }
2235 
2236   methodHandle method(thread, task->method());
2237 
2238   DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success());
2239 
2240   collect_statistics(thread, time, task);
2241 
2242   nmethod* nm = task->code();
2243   if (nm != NULL) {
2244     nm->maybe_print_nmethod(directive);
2245   }
2246   DirectivesStack::release(directive);
2247 
2248   if (PrintCompilation && PrintCompilation2) {
2249     tty->print("%7d ", (int) tty->time_stamp().milliseconds());  // print timestamp
2250     tty->print("%4d ", compile_id);    // print compilation number
2251     tty->print("%s ", (is_osr ? "%" : " "));
2252     if (task->code() != NULL) {
2253       tty->print("size: %d(%d) ", task->code()->total_size(), task->code()->insts_size());
2254     }
2255     tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes());
2256   }
2257 
2258   Log(compilation, codecache) log;
2259   if (log.is_debug()) {
2260     LogStream ls(log.debug());
2261     codecache_print(&ls, /* detailed= */ false);
2262   }
2263   if (PrintCodeCacheOnCompilation) {
2264     codecache_print(/* detailed= */ false);
2265   }
2266   // Disable compilation, if required.
2267   switch (compilable) {
2268   case ciEnv::MethodCompilable_never:
2269     if (is_osr)
2270       method->set_not_osr_compilable_quietly("MethodCompilable_never");
2271     else
2272       method->set_not_compilable_quietly("MethodCompilable_never");
2273     break;
2274   case ciEnv::MethodCompilable_not_at_tier:
2275     if (is_osr)
2276       method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2277     else
2278       method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2279     break;
2280   }
2281 
2282   // Note that the queued_for_compilation bits are cleared without
2283   // protection of a mutex. [They were set by the requester thread,
2284   // when adding the task to the compile queue -- at which time the
2285   // compile queue lock was held. Subsequently, we acquired the compile
2286   // queue lock to get this task off the compile queue; thus (to belabour
2287   // the point somewhat) our clearing of the bits must be occurring
2288   // only after the setting of the bits. See also 14012000 above.
2289   method->clear_queued_for_compilation();
2290 
2291 #ifdef ASSERT
2292   if (CollectedHeap::fired_fake_oom()) {
2293     // The current compile received a fake OOM during compilation so
2294     // go ahead and exit the VM since the test apparently succeeded
2295     tty->print_cr("*** Shutting down VM after successful fake OOM");
2296     vm_exit(0);
2297   }
2298 #endif
2299 }
2300 
2301 /**
2302  * The CodeCache is full. Print warning and disable compilation.
2303  * Schedule code cache cleaning so compilation can continue later.
2304  * This function needs to be called only from CodeCache::allocate(),
2305  * since we currently handle a full code cache uniformly.
2306  */
2307 void CompileBroker::handle_full_code_cache(int code_blob_type) {
2308   UseInterpreter = true;
2309   if (UseCompiler || AlwaysCompileLoopMethods ) {
2310     if (xtty != NULL) {
2311       ResourceMark rm;
2312       stringStream s;
2313       // Dump code cache state into a buffer before locking the tty,
2314       // because log_state() will use locks causing lock conflicts.
2315       CodeCache::log_state(&s);
2316       // Lock to prevent tearing
2317       ttyLocker ttyl;
2318       xtty->begin_elem("code_cache_full");
2319       xtty->print("%s", s.as_string());
2320       xtty->stamp();
2321       xtty->end_elem();
2322     }
2323 
2324 #ifndef PRODUCT
2325     if (CompileTheWorld || ExitOnFullCodeCache) {
2326       codecache_print(/* detailed= */ true);
2327       before_exit(JavaThread::current());
2328       exit_globals(); // will delete tty
2329       vm_direct_exit(CompileTheWorld ? 0 : 1);
2330     }
2331 #endif
2332     if (UseCodeCacheFlushing) {
2333       // Since code cache is full, immediately stop new compiles
2334       if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) {
2335         NMethodSweeper::log_sweep("disable_compiler");
2336       }
2337     } else {
2338       disable_compilation_forever();
2339     }
2340 
2341     CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning());
2342   }
2343 }
2344 
2345 // ------------------------------------------------------------------
2346 // CompileBroker::set_last_compile
2347 //
2348 // Record this compilation for debugging purposes.
2349 void CompileBroker::set_last_compile(CompilerThread* thread, const methodHandle& method, bool is_osr, int comp_level) {
2350   ResourceMark rm;
2351   char* method_name = method->name()->as_C_string();
2352   strncpy(_last_method_compiled, method_name, CompileBroker::name_buffer_length);
2353   _last_method_compiled[CompileBroker::name_buffer_length - 1] = '\0'; // ensure null terminated
2354   char current_method[CompilerCounters::cmname_buffer_length];
2355   size_t maxLen = CompilerCounters::cmname_buffer_length;
2356 
2357   if (UsePerfData) {
2358     const char* class_name = method->method_holder()->name()->as_C_string();
2359 
2360     size_t s1len = strlen(class_name);
2361     size_t s2len = strlen(method_name);
2362 
2363     // check if we need to truncate the string
2364     if (s1len + s2len + 2 > maxLen) {
2365 
2366       // the strategy is to lop off the leading characters of the
2367       // class name and the trailing characters of the method name.
2368 
2369       if (s2len + 2 > maxLen) {
2370         // lop of the entire class name string, let snprintf handle
2371         // truncation of the method name.
2372         class_name += s1len; // null string
2373       }
2374       else {
2375         // lop off the extra characters from the front of the class name
2376         class_name += ((s1len + s2len + 2) - maxLen);
2377       }
2378     }
2379 
2380     jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name);
2381   }
2382 
2383   if (CICountOSR && is_osr) {
2384     _last_compile_type = osr_compile;
2385   } else {
2386     _last_compile_type = normal_compile;
2387   }
2388   _last_compile_level = comp_level;
2389 
2390   if (UsePerfData) {
2391     CompilerCounters* counters = thread->counters();
2392     counters->set_current_method(current_method);
2393     counters->set_compile_type((jlong)_last_compile_type);
2394   }
2395 }
2396 
2397 
2398 // ------------------------------------------------------------------
2399 // CompileBroker::push_jni_handle_block
2400 //
2401 // Push on a new block of JNI handles.
2402 void CompileBroker::push_jni_handle_block() {
2403   JavaThread* thread = JavaThread::current();
2404 
2405   // Allocate a new block for JNI handles.
2406   // Inlined code from jni_PushLocalFrame()
2407   JNIHandleBlock* java_handles = thread->active_handles();
2408   JNIHandleBlock* compile_handles = JNIHandleBlock::allocate_block(thread);
2409   assert(compile_handles != NULL && java_handles != NULL, "should not be NULL");
2410   compile_handles->set_pop_frame_link(java_handles);  // make sure java handles get gc'd.
2411   thread->set_active_handles(compile_handles);
2412 }
2413 
2414 
2415 // ------------------------------------------------------------------
2416 // CompileBroker::pop_jni_handle_block
2417 //
2418 // Pop off the current block of JNI handles.
2419 void CompileBroker::pop_jni_handle_block() {
2420   JavaThread* thread = JavaThread::current();
2421 
2422   // Release our JNI handle block
2423   JNIHandleBlock* compile_handles = thread->active_handles();
2424   JNIHandleBlock* java_handles = compile_handles->pop_frame_link();
2425   thread->set_active_handles(java_handles);
2426   compile_handles->set_pop_frame_link(NULL);
2427   JNIHandleBlock::release_block(compile_handles, thread); // may block
2428 }
2429 
2430 // ------------------------------------------------------------------
2431 // CompileBroker::collect_statistics
2432 //
2433 // Collect statistics about the compilation.
2434 
2435 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) {
2436   bool success = task->is_success();
2437   methodHandle method (thread, task->method());
2438   uint compile_id = task->compile_id();
2439   bool is_osr = (task->osr_bci() != standard_entry_bci);
2440   nmethod* code = task->code();
2441   CompilerCounters* counters = thread->counters();
2442 
2443   assert(code == NULL || code->is_locked_by_vm(), "will survive the MutexLocker");
2444   MutexLocker locker(CompileStatistics_lock);
2445 
2446   // _perf variables are production performance counters which are
2447   // updated regardless of the setting of the CITime and CITimeEach flags
2448   //
2449 
2450   // account all time, including bailouts and failures in this counter;
2451   // C1 and C2 counters are counting both successful and unsuccessful compiles
2452   _t_total_compilation.add(time);
2453 
2454   if (!success) {
2455     _total_bailout_count++;
2456     if (UsePerfData) {
2457       _perf_last_failed_method->set_value(counters->current_method());
2458       _perf_last_failed_type->set_value(counters->compile_type());
2459       _perf_total_bailout_count->inc();
2460     }
2461     _t_bailedout_compilation.add(time);
2462   } else if (code == NULL) {
2463     if (UsePerfData) {
2464       _perf_last_invalidated_method->set_value(counters->current_method());
2465       _perf_last_invalidated_type->set_value(counters->compile_type());
2466       _perf_total_invalidated_count->inc();
2467     }
2468     _total_invalidated_count++;
2469     _t_invalidated_compilation.add(time);
2470   } else {
2471     // Compilation succeeded
2472 
2473     // update compilation ticks - used by the implementation of
2474     // java.lang.management.CompilationMBean
2475     _perf_total_compilation->inc(time.ticks());
2476     _peak_compilation_time = time.milliseconds() > _peak_compilation_time ? time.milliseconds() : _peak_compilation_time;
2477 
2478     if (CITime) {
2479       int bytes_compiled = method->code_size() + task->num_inlined_bytecodes();
2480       if (is_osr) {
2481         _t_osr_compilation.add(time);
2482         _sum_osr_bytes_compiled += bytes_compiled;
2483       } else {
2484         _t_standard_compilation.add(time);
2485         _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes();
2486       }
2487 
2488 #if INCLUDE_JVMCI
2489       AbstractCompiler* comp = compiler(task->comp_level());
2490       if (comp) {
2491         CompilerStatistics* stats = comp->stats();
2492         if (stats) {
2493           if (is_osr) {
2494             stats->_osr.update(time, bytes_compiled);
2495           } else {
2496             stats->_standard.update(time, bytes_compiled);
2497           }
2498           stats->_nmethods_size += code->total_size();
2499           stats->_nmethods_code_size += code->insts_size();
2500         } else { // if (!stats)
2501           assert(false, "Compiler statistics object must exist");
2502         }
2503       } else { // if (!comp)
2504         assert(false, "Compiler object must exist");
2505       }
2506 #endif // INCLUDE_JVMCI
2507     }
2508 
2509     if (UsePerfData) {
2510       // save the name of the last method compiled
2511       _perf_last_method->set_value(counters->current_method());
2512       _perf_last_compile_type->set_value(counters->compile_type());
2513       _perf_last_compile_size->set_value(method->code_size() +
2514                                          task->num_inlined_bytecodes());
2515       if (is_osr) {
2516         _perf_osr_compilation->inc(time.ticks());
2517         _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2518       } else {
2519         _perf_standard_compilation->inc(time.ticks());
2520         _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2521       }
2522     }
2523 
2524     if (CITimeEach) {
2525       float bytes_per_sec = 1.0 * (method->code_size() + task->num_inlined_bytecodes()) / time.seconds();
2526       tty->print_cr("%3d   seconds: %f bytes/sec : %f (bytes %d + %d inlined)",
2527                     compile_id, time.seconds(), bytes_per_sec, method->code_size(), task->num_inlined_bytecodes());
2528     }
2529 
2530     // Collect counts of successful compilations
2531     _sum_nmethod_size      += code->total_size();
2532     _sum_nmethod_code_size += code->insts_size();
2533     _total_compile_count++;
2534 
2535     if (UsePerfData) {
2536       _perf_sum_nmethod_size->inc(     code->total_size());
2537       _perf_sum_nmethod_code_size->inc(code->insts_size());
2538       _perf_total_compile_count->inc();
2539     }
2540 
2541     if (is_osr) {
2542       if (UsePerfData) _perf_total_osr_compile_count->inc();
2543       _total_osr_compile_count++;
2544     } else {
2545       if (UsePerfData) _perf_total_standard_compile_count->inc();
2546       _total_standard_compile_count++;
2547     }
2548   }
2549   // set the current method for the thread to null
2550   if (UsePerfData) counters->set_current_method("");
2551 }
2552 
2553 const char* CompileBroker::compiler_name(int comp_level) {
2554   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
2555   if (comp == NULL) {
2556     return "no compiler";
2557   } else {
2558     return (comp->name());
2559   }
2560 }
2561 
2562 #if INCLUDE_JVMCI
2563 void CompileBroker::print_times(AbstractCompiler* comp) {
2564   CompilerStatistics* stats = comp->stats();
2565   if (stats) {
2566     tty->print_cr("  %s {speed: %d bytes/s; standard: %6.3f s, %d bytes, %d methods; osr: %6.3f s, %d bytes, %d methods; nmethods_size: %d bytes; nmethods_code_size: %d bytes}",
2567                 comp->name(), stats->bytes_per_second(),
2568                 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count,
2569                 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count,
2570                 stats->_nmethods_size, stats->_nmethods_code_size);
2571   } else { // if (!stats)
2572     assert(false, "Compiler statistics object must exist");
2573   }
2574   comp->print_timers();
2575 }
2576 #endif // INCLUDE_JVMCI
2577 
2578 void CompileBroker::print_times(bool per_compiler, bool aggregate) {
2579 #if INCLUDE_JVMCI
2580   elapsedTimer standard_compilation;
2581   elapsedTimer total_compilation;
2582   elapsedTimer osr_compilation;
2583 
2584   int standard_bytes_compiled = 0;
2585   int osr_bytes_compiled = 0;
2586 
2587   int standard_compile_count = 0;
2588   int osr_compile_count = 0;
2589   int total_compile_count = 0;
2590 
2591   int nmethods_size = 0;
2592   int nmethods_code_size = 0;
2593   bool printedHeader = false;
2594 
2595   for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) {
2596     AbstractCompiler* comp = _compilers[i];
2597     if (comp != NULL) {
2598       if (per_compiler && aggregate && !printedHeader) {
2599         printedHeader = true;
2600         tty->cr();
2601         tty->print_cr("Individual compiler times (for compiled methods only)");
2602         tty->print_cr("------------------------------------------------");
2603         tty->cr();
2604       }
2605       CompilerStatistics* stats = comp->stats();
2606 
2607       if (stats) {
2608         standard_compilation.add(stats->_standard._time);
2609         osr_compilation.add(stats->_osr._time);
2610 
2611         standard_bytes_compiled += stats->_standard._bytes;
2612         osr_bytes_compiled += stats->_osr._bytes;
2613 
2614         standard_compile_count += stats->_standard._count;
2615         osr_compile_count += stats->_osr._count;
2616 
2617         nmethods_size += stats->_nmethods_size;
2618         nmethods_code_size += stats->_nmethods_code_size;
2619       } else { // if (!stats)
2620         assert(false, "Compiler statistics object must exist");
2621       }
2622 
2623       if (per_compiler) {
2624         print_times(comp);
2625       }
2626     }
2627   }
2628   total_compile_count = osr_compile_count + standard_compile_count;
2629   total_compilation.add(osr_compilation);
2630   total_compilation.add(standard_compilation);
2631 
2632   // In hosted mode, print the JVMCI compiler specific counters manually.
2633   if (!UseJVMCICompiler) {
2634     JVMCICompiler::print_compilation_timers();
2635   }
2636 #else // INCLUDE_JVMCI
2637   elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation;
2638   elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation;
2639   elapsedTimer total_compilation = CompileBroker::_t_total_compilation;
2640 
2641   int standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled;
2642   int osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled;
2643 
2644   int standard_compile_count = CompileBroker::_total_standard_compile_count;
2645   int osr_compile_count = CompileBroker::_total_osr_compile_count;
2646   int total_compile_count = CompileBroker::_total_compile_count;
2647 
2648   int nmethods_size = CompileBroker::_sum_nmethod_code_size;
2649   int nmethods_code_size = CompileBroker::_sum_nmethod_size;
2650 #endif // INCLUDE_JVMCI
2651 
2652   if (!aggregate) {
2653     return;
2654   }
2655   tty->cr();
2656   tty->print_cr("Accumulated compiler times");
2657   tty->print_cr("----------------------------------------------------------");
2658                //0000000000111111111122222222223333333333444444444455555555556666666666
2659                //0123456789012345678901234567890123456789012345678901234567890123456789
2660   tty->print_cr("  Total compilation time   : %7.3f s", total_compilation.seconds());
2661   tty->print_cr("    Standard compilation   : %7.3f s, Average : %2.3f s",
2662                 standard_compilation.seconds(),
2663                 standard_compilation.seconds() / standard_compile_count);
2664   tty->print_cr("    Bailed out compilation : %7.3f s, Average : %2.3f s",
2665                 CompileBroker::_t_bailedout_compilation.seconds(),
2666                 CompileBroker::_t_bailedout_compilation.seconds() / CompileBroker::_total_bailout_count);
2667   tty->print_cr("    On stack replacement   : %7.3f s, Average : %2.3f s",
2668                 osr_compilation.seconds(),
2669                 osr_compilation.seconds() / osr_compile_count);
2670   tty->print_cr("    Invalidated            : %7.3f s, Average : %2.3f s",
2671                 CompileBroker::_t_invalidated_compilation.seconds(),
2672                 CompileBroker::_t_invalidated_compilation.seconds() / CompileBroker::_total_invalidated_count);
2673 
2674   AbstractCompiler *comp = compiler(CompLevel_simple);
2675   if (comp != NULL) {
2676     tty->cr();
2677     comp->print_timers();
2678   }
2679   comp = compiler(CompLevel_full_optimization);
2680   if (comp != NULL) {
2681     tty->cr();
2682     comp->print_timers();
2683   }
2684   tty->cr();
2685   tty->print_cr("  Total compiled methods    : %8d methods", total_compile_count);
2686   tty->print_cr("    Standard compilation    : %8d methods", standard_compile_count);
2687   tty->print_cr("    On stack replacement    : %8d methods", osr_compile_count);
2688   int tcb = osr_bytes_compiled + standard_bytes_compiled;
2689   tty->print_cr("  Total compiled bytecodes  : %8d bytes", tcb);
2690   tty->print_cr("    Standard compilation    : %8d bytes", standard_bytes_compiled);
2691   tty->print_cr("    On stack replacement    : %8d bytes", osr_bytes_compiled);
2692   double tcs = total_compilation.seconds();
2693   int bps = tcs == 0.0 ? 0 : (int)(tcb / tcs);
2694   tty->print_cr("  Average compilation speed : %8d bytes/s", bps);
2695   tty->cr();
2696   tty->print_cr("  nmethod code size         : %8d bytes", nmethods_code_size);
2697   tty->print_cr("  nmethod total size        : %8d bytes", nmethods_size);
2698 }
2699 
2700 // Debugging output for failure
2701 void CompileBroker::print_last_compile() {
2702   if (_last_compile_level != CompLevel_none &&
2703       compiler(_last_compile_level) != NULL &&
2704       _last_compile_type != no_compile) {
2705     if (_last_compile_type == osr_compile) {
2706       tty->print_cr("Last parse:  [osr]%d+++(%d) %s",
2707                     _osr_compilation_id, _last_compile_level, _last_method_compiled);
2708     } else {
2709       tty->print_cr("Last parse:  %d+++(%d) %s",
2710                     _compilation_id, _last_compile_level, _last_method_compiled);
2711     }
2712   }
2713 }
2714 
2715 // Print general/accumulated JIT information.
2716 void CompileBroker::print_info(outputStream *out) {
2717   if (out == NULL) out = tty;
2718   out->cr();
2719   out->print_cr("======================");
2720   out->print_cr("   General JIT info   ");
2721   out->print_cr("======================");
2722   out->cr();
2723   out->print_cr("            JIT is : %7s",     should_compile_new_jobs() ? "on" : "off");
2724   out->print_cr("  Compiler threads : %7d",     (int)CICompilerCount);
2725   out->cr();
2726   out->print_cr("CodeCache overview");
2727   out->print_cr("--------------------------------------------------------");
2728   out->cr();
2729   out->print_cr("         Reserved size : " SIZE_FORMAT_W(7) " KB", CodeCache::max_capacity() / K);
2730   out->print_cr("        Committed size : " SIZE_FORMAT_W(7) " KB", CodeCache::capacity() / K);
2731   out->print_cr("  Unallocated capacity : " SIZE_FORMAT_W(7) " KB", CodeCache::unallocated_capacity() / K);
2732   out->cr();
2733 
2734   out->cr();
2735   out->print_cr("CodeCache cleaning overview");
2736   out->print_cr("--------------------------------------------------------");
2737   out->cr();
2738   NMethodSweeper::print(out);
2739   out->print_cr("--------------------------------------------------------");
2740   out->cr();
2741 }
2742 
2743 // Note: tty_lock must not be held upon entry to this function.
2744 //       Print functions called from herein do "micro-locking" on tty_lock.
2745 //       That's a tradeoff which keeps together important blocks of output.
2746 //       At the same time, continuous tty_lock hold time is kept in check,
2747 //       preventing concurrently printing threads from stalling a long time.
2748 void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) {
2749   TimeStamp ts_total;
2750   TimeStamp ts;
2751 
2752   bool allFun = !strcmp(function, "all");
2753   bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun;
2754   bool usedSpace = !strcmp(function, "UsedSpace") || allFun;
2755   bool freeSpace = !strcmp(function, "FreeSpace") || allFun;
2756   bool methodCount = !strcmp(function, "MethodCount") || allFun;
2757   bool methodSpace = !strcmp(function, "MethodSpace") || allFun;
2758   bool methodAge = !strcmp(function, "MethodAge") || allFun;
2759   bool methodNames = !strcmp(function, "MethodNames") || allFun;
2760   bool discard = !strcmp(function, "discard") || allFun;
2761 
2762   if (out == NULL) {
2763     out = tty;
2764   }
2765 
2766   if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) {
2767     out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function);
2768     out->cr();
2769     return;
2770   }
2771 
2772   ts_total.update(); // record starting point
2773 
2774   if (aggregate) {
2775     print_info(out);
2776   }
2777 
2778   // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function.
2779   // That helps us getting a consistent view on the CodeHeap, at least for the "all" function.
2780   // When we request individual parts of the analysis via the jcmd interface, it is possible
2781   // that in between another thread (another jcmd user or the vm running into CodeCache OOM)
2782   // updated the aggregated data. That's a tolerable tradeoff because we can't hold a lock
2783   // across user interaction.
2784   ts.update(); // record starting point
2785   MutexLockerEx mu1(CodeHeapStateAnalytics_lock, Mutex::_no_safepoint_check_flag);
2786   out->cr();
2787   out->print_cr("__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________", ts.seconds());
2788   out->cr();
2789 
2790   if (aggregate) {
2791     // It is sufficient to hold the CodeCache_lock only for the aggregate step.
2792     // All other functions operate on aggregated data - except MethodNames, but that should be safe.
2793     // The separate CodeHeapStateAnalytics_lock protects the printing functions against
2794     // concurrent aggregate steps. Acquire this lock before acquiring the CodeCache_lock.
2795     // CodeHeapStateAnalytics_lock could be held by a concurrent thread for a long time,
2796     // leading to an unnecessarily long hold time of the CodeCache_lock.
2797     ts.update(); // record starting point
2798     MutexLockerEx mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2799     out->cr();
2800     out->print_cr("__ CodeCache lock wait took %10.3f seconds _________", ts.seconds());
2801     out->cr();
2802 
2803     ts.update(); // record starting point
2804     CodeCache::aggregate(out, granularity);
2805     out->cr();
2806     out->print_cr("__ CodeCache lock hold took %10.3f seconds _________", ts.seconds());
2807     out->cr();
2808   }
2809 
2810   if (usedSpace) CodeCache::print_usedSpace(out);
2811   if (freeSpace) CodeCache::print_freeSpace(out);
2812   if (methodCount) CodeCache::print_count(out);
2813   if (methodSpace) CodeCache::print_space(out);
2814   if (methodAge) CodeCache::print_age(out);
2815   if (methodNames) CodeCache::print_names(out);
2816   if (discard) CodeCache::discard(out);
2817 
2818   out->cr();
2819   out->print_cr("__ CodeHeapStateAnalytics total duration %10.3f seconds _________", ts_total.seconds());
2820   out->cr();
2821 }
--- EOF ---